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Abstract

Stabilized explicit methods are particularly e�cient for large systems of sti� stochastic dif-
ferential equations (SDEs) due to their extended stability domain. However, they loose their
e�ciency when a severe sti�ness is induced by very few �fast� degrees of freedom, as the sti�
and nonsti� terms are evaluated concurrently. Therefore, inspired by [A. Abdulle, M. J. Grote,
and G. Rosilho de Souza, Preprint (2020), arXiv:2006.00744], we introduce a stochastic modi-
�ed equation whose sti�ness depends solely on the �slow� terms. By integrating this modi�ed
equation with a stabilized explicit scheme we devise a multirate method which overcomes the
bottleneck caused by a few severely sti� terms and recovers the e�ciency of stabilized schemes
for large systems of nonlinear SDEs. The scheme is not based on any scale separation as-
sumption of the SDE and therefore it is employable for problems stemming from the spatial
discretization of stochastic parabolic partial di�erential equations on locally re�ned grids. The
multirate scheme has strong order 1/2, weak order 1 and its stability is proved on a model
problem. Numerical experiments con�rm the e�ciency and accuracy of the scheme.

Key words. sti� equations, stochastic multirate methods, stabilized Runge�Kutta methods, explicit
time integrators, local time-stepping
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1 Introduction

We consider Itô systems of stochastic di�erential equations of the form

dX(t) = f(X(t)) dt+ g(X(t)) dW (t), X(0) = X0, (1.1)

where
f(X) = fF (X) + fS(X)

splits in an inexpensive but sti� term fF associated to fast time-scales and an expensive but mildly
sti� term fS associated to relatively slow time-scales. In (1.1), X(t) is a stochastic process in
Rn, fF , fS : Rn → Rn are drift terms, g : Rn → Rn×m is the di�usion term and W (t) is an m-
dimensional Wiener process. We emphasize that fF is sti� compared to fS , nonetheless not all the
eigenvalues of the Jacobian of fF are large in magnitude, hence we do not make any scale separation
assumption. Therefore, the schemes presented here can be employed, for instance, for problems
stemming from the spatial discretization of stochastic parabolic partial di�erential equations on
locally re�ned grids. Indeed, fF and fS would represent the discrete Laplacian in the re�ned and
coarse region, respectively; hence, fF contains fast and slow scales. In contrast, fS contains relatively
slow terms only.
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Due to the sti�ness of f , traditional explicit schemes as Euler�Maruyama face stringent condi-
tions on the step size. On the other hand, implicit methods require the solution to possibly nonlinear
systems. Stochastic stabilized explicit methods (the S-ROCK family) [1, 2, 3, 7] are a good compro-
mise, as they enjoy an extended stability domain growing quadratically with the number of stages s.
The scheme presented in [1], called SK-ROCK for second kind Runge�Kutta orthogonal Chebyshev,
attains an optimal mean-square stability domain of size Ls ≈ 2s2. It is based on the deterministic
Runge�Kutta�Chebyshev (RKC) method [38, 39, 42], which has an optimal stability domain along
the negative real axis for an s-stage Runge�Kutta method [19], and employs second kind Chebyshev
polynomials for the stabilization of the stochastic integral. However, the number of stages s is dic-
tated by the sti�ness of f . Therefore, even if sti�ness is induced by only a few degrees of freedom
in fF , the cost of numerical integration is high; indeed, the nonsti� expensive term fS is evaluated
concurrently to the sti� term fF . Consequently, a multirate/multiscale strategy must be employed.

In the class of multiscale methods for stochastic di�erential equations, we �nd the heterogeneous
multiscale methods [13, 18, 28, 40]. They are based on a scale separation assumption and therefore
derive an e�ective equation for the slow variables, which depends on the invariant measure of the
fast dynamics. An extension of those methods to stochastic partial di�erential equations is found in
[5, 6], while a close family of schemes are the projective methods [18, 24] � see [41] for a review. As
the aforementioned methods are strongly based on a scale separation assumption, they cannot be
employed when (1.1) stems from the spatial discretization of a stochastic parabolic partial di�erential
equation.

Since the early work of Rice [30], many multirate strategies for the solution of the sti� ordinary
di�erential equation (ODE) y′ = fF (y)+fS(y) have been developed, see for instance [8, 15, 17, 20, 27,
36, 37]. These methods are based on predictor-corrector strategies, on interpolation/extrapolation
of �fast� and �slow� variables (which is known to trigger instabilities) or are implicit. An alternative
approach consists in deriving an e�ective equation for the slow dynamics [12, 14, 16], but this
strategy works for scale separated problems only. More recently, multirate methods based on the
GARK framework have been developed [21, 31, 34, 35]. This approach allows for the development
of high order multirate schemes but in order to obtain satisfying stability properties some degree of
implicitness is required. In [4], a stabilized explicit multirate method, called mRKC for multirate
RKC, is introduced. It is based on a modi�ed equation, de�ned by an averaged force, whose sti�ness
depends on fS only and is decreased due to an average along the direction de�ned by a fast but
cheap auxiliary problem. Due to the decreased sti�ness, integration of the modi�ed equation by
an explicit scheme is cheaper than integrating the original problem with the same scheme. In [4],
the modi�ed equation and the auxiliary problems are integrated by RKC schemes; the number of
expensive evaluations of fS depends on the slow terms only and the bottleneck caused by the sti�ness
of fF is overcome without sacri�cing accuracy nor explicitness.

The contribution of this paper is twofold. First, in Section 2 we extend the modi�ed equation
for ODEs, introduced in [4], to SDEs, obtaining a stochastic modi�ed equation. This is not a trivial
generalization of [4] as it requires an approximation of the di�usion term g, called damped di�u-
sion, so that the mean-square stability properties of (1.1) are inherited by the stochastic modi�ed
equation. Second, in Section 3 we de�ne the multirate SK-ROCK (mSK-ROCK) method as a time
discretization of the stochastic modi�ed equation using the SK-ROCK scheme, while the determin-
istic auxiliary problems are solved with RKC schemes. The resulting method inherits the main
properties of the mRKC and SK-ROCK schemes: it is explicit, the stability domain grows optimally
and quadratically with the number of stages, the number of expensive function evaluations depends
on fS only, it is not based on any scale separation assumption, there is no need of interpolations nor
extrapolations and therefore it is straightforward to implement. The stability and accuracy anal-
ysis of the mSK-ROCK scheme is presented in Section 4, while Section 5 is devoted to numerical
experiments, where we illustrate the theoretical results and con�rm the e�ciency of the multirate
method. Application of the method to the E. Coli bacteria heat shock response and to a di�usion
problem across a narrow channel with multiplicative time-space noise is also provided.
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2 The stochastic modi�ed equation

In this section we introduce the stochastic modi�ed equation

dXη(t) = fη(X(t)) dt+ gη(X(t)) dW (t), Xη(0) = X0, (2.1)

which is an approximation of (1.1) but whose sti�ness depends solely on fS and therefore is not
a�ected by the severely sti� terms in fF . Indeed, the averaged force fη is an approximation of
f satisfying ρη ≤ ρS , where ρη, ρS are the spectral radii of the Jacobians of fη, fS , respectively.
Hence, in (2.1), the aim in replacing fF + fS by fη is to reduce the sti�ness. Di�erently, the damped
di�usion gη is needed to preserve the mean-square stability properties of the original problem (1.1);
as fη is less sti� than f it is also less contractive and therefore it cannot damp the original noise
term g enough to maintain stability.

We �rst recall the averaged force and the deterministic modi�ed equation introduced in [4]. Then
we de�ne the damped di�usion gη and analyze the stochastic modi�ed equation (2.1).

2.1 The modi�ed equation for deterministic problems

We consider sti� multirate di�erential equations of the type

y′ = f(y) := fF (y) + fS(y), y(0) = y0, (2.2)

where fF is a cheap but severely sti� term and fS is an expensive but only mildly sti� term. In [4],
the right-hand side f = fF + fS is replaced by an averaged force fη depending on a free parameter
η ≥ 0. For large enough η it holds ρη ≤ ρS and since ρS � ρF , where ρF , ρS are the spectral radii
of the Jacobians of fF , fS , respectively, integration of the averaged system

y′η = fη(yη), yη(0) = y0 (2.3)

with an explicit scheme is much cheaper than (2.2). In practice, evaluation of fη requires the solution
to a fast but cheap auxiliary ODE, which is as well approximated by an explicit scheme. In the rest
of the section we will de�ne (2.3) and recall some its key stability properties.

The averaged force

Here we de�ne the averaged force fη and recall some of its main properties.

De�nition 2.1. Let η ≥ 0, u0 ∈ Rn and u : [0, η]→ Rn de�ned by

u′ = fF (u) + fS(u0) t ∈ [0, η], u(0) = u0. (2.4)

For η > 0, we de�ne fη as

fη(u0) =
1

η
(u(η)− u0) (2.5)

and for η = 0 we de�ne f0 = f .

From (2.4) and (2.5) we obtain

fη(u0) =
1

η

∫ η

0

u′(s) ds = fS(u0) +
1

η

∫ η

0

fF (u(s)) ds,

hence fη is an average of f along the auxiliary solution u. In [4] it is shown that fF has a smoothing
e�ect on fη and thus (2.3) has a reduced sti�ness when compared to (2.2). More precisely, for linear
fF we have the following result.

Lemma 2.2. Let fF (y) = AF y with AF ∈ Rn×n. Then

fη(u0) = ϕ(ηAF )f(u0), (2.6)

where

ϕ(z) =
ez − 1

z
for z 6= 0 and ϕ(0) = 1. (2.7)
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Figure 1. Illustration of ϕ(z) and ϕ(z/2)2, used for damping the drift and di�usion terms, respectively.

The function ϕ(z) satis�es limz→−∞ ϕ(z) = 0 and ϕ(z) ∈ (0, 1) for all z < 0, see Figure 1.
Lemma 2.2 states that if fF is linear then we have a closed expression for fη and we see in (2.6) the
smoothing e�ect of a negative de�nite matrix AF on f . In (2.6) we see as well the role of η: it is a
free parameter used to tune this smoothing e�ect. In [4] it is shown that fη inherits the contractivity
properties of f and that the error between the exact solution y to (2.2) and the solution yη to (2.3)
is of �rst-order in η and bounded independently of the sti�ness of the problem.

Linear stability analysis on the multirate test equation

Here we recall the conditions on η for which the spectral radius of fη depends only on fS . To do so,
we apply De�nition 2.1 to the multirate test equation

y′ = λy + ζy, y(0) = y0, (2.8)

with λ, ζ ≤ 0 and y0 ∈ R. We set fF (y) = λy and fS(y) = ζy; thus, ρF = |λ| and ρS = |ζ|. From
(2.6) follows

fη(u0) = ϕ(ηλ)(λ+ ζ)u0

and thus (2.3) becomes
y′η = ϕ(ηλ)(λ+ ζ)yη, yη(0) = y0. (2.9)

The next Theorem 2.3, proved in [4], states that if η is taken large enough then |ϕ(ηλ)(λ+ ζ)| ≤ |ζ|
and the sti�ness of (2.9) depends only on ζ, thus on fS . Furthermore, λ can take any nonpositive
value and thus there is no scale separation assumption.

Theorem 2.3. Let ζ < 0, it holds ϕ(ηλ)(λ+ ζ) ∈ [ζ, 0] for all λ ≤ 0 if, and only if, η|ζ| ≥ 2.

2.2 The modi�ed equation for stochastic problems

As fη is less sti� than f it follows that it has also weaker contractivity and therefore it cannot damp
enough the original noise term g, hence in this section we introduce a damped noise term gη to
restore for the modi�ed equation (2.1) the mean-square stability properties of the original problem
(1.1).

The damped di�usion

Here we de�ne the damped di�usion term gη of (2.1) and study its properties.

De�nition 2.4. Let η ≥ 0, v0 ∈ Rn and v, v̄ : [0, η]→ Rn de�ned by v(0) = v̄(0) = v0 and

v′ =
1

2
fF (v) + g(v0), v̄′ =

1

2
fF (v̄), (2.10)

for t ∈ [0, η]. For η > 0, we de�ne gη as

gη(v0) =
1

η
(v(η)− v̄(η)) (2.11)
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and for η = 0 we de�ne g0 = g.

The motivation for De�nition 2.4 and the factor 1/2 will be better seen in the linear stability
analysis given in the next paragraph.

Lemma 2.5. Let fF (y) = AF y with AF ∈ Rn×n, then

gη(v0) = ϕ

(
η

2
AF

)
g(v0). (2.12)

Proof. Replacing fF (y) = AF y in (2.10) and using the variation-of-constants formula we deduce

v(η) = e
η
2AF v0 + ηϕ

(
η

2
AF

)
g(v0), v̄(η) = e

η
2AF v0

and (2.12) follows from (2.11).

In (2.12) we observe the smoothing e�ect of fF on g and since ϕ(z) = 1 + O(z) as z → 0 then
gη(v0) = g(v0) +O(η) as η → 0. For a general fF , from (2.10), (2.11), we obtain

gη(v0) =
1

η

∫ η

0

(v′(s)− v̄′(s)) ds = g(v0) +
1

2η

∫ η

0

(fF (v(s))− fF (v̄(s))) ds,

hence gη is still composed of g plus additional higher order terms. The role of fF (v) is still to
stabilize g, while fF (v̄) is used to remove the low order polluting terms introduced by fF (v) (as is
seen in the proof of Lemma 2.5).

Linear mean-square stability analysis of the modi�ed equation

As for sti� SDEs, we will consider the relevant notion of mean-square stability and extend the widely
used linear scalar test equation [22, 33] to multirate stochastic problems. Therefore, we consider

dX(t) = (λ+ ζ)X(t) dt+ µX(t) dW (t), X(0) = X0, (2.13)

with λ, ζ ≤ 0 and µ ∈ R. Next, we identify fF (X) = λX and fS(X) = ζX, while we let g(X) = µX.
The exact solution to (2.13) is called mean-square stable if, and only if, limt→∞ E(|X(t)|2) = 0,
which holds if (λ, ζ, µ) ∈ SmMS , where

SmMS = {(λ, ζ, µ) ∈ R3 : λ+ ζ +
1

2
|µ|2 < 0, λ ≤ 0, ζ ≤ 0} (2.14)

is the mean-square stability domain for the stochastic multirate test equation (2.13).
From (2.6) and (2.12) the modi�ed equation (2.1) yields for the stochastic multirate test equation

dXη(t) = ϕ(ηλ)(λ+ ζ)Xη(t) dt+ ϕ

(
η

2
λ

)
µXη(t) dW (t), Xη(0) = X0. (2.15)

In Theorem 2.7 we will show that (2.15) is mean-square stable, to do so the next property of ϕ(z)
(de�ned in (2.7)) is crucial.

Lemma 2.6. Let z ∈ R, then ϕ
(
z
2

)2 ≤ ϕ(z).

Proof. Since ϕ(z) =
∫ 1

0
ezs ds the result follows from Jensen's inequality. Indeed,

ϕ

(
z

2

)2

=

(∫ 1

0

e
z
2 s ds

)2

≤
∫ 1

0

ezs ds = ϕ(z).

Theorem 2.7. If the stochastic multirate test equation (2.13) is mean-square stable, then the mod-
i�ed equation (2.15) is mean-square stable for any value of η ≥ 0.
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(λ+ ζ, µ) falls in the darker region
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(b) The function ϕ(z) is such that
(ϕ(ηλ)(λ + ζ), ϕ(ηλ/2)µ) falls in the
darker region, hence equation (2.15) is
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Figure 2. Illustration of the mean-square stability properties of the original problem (2.13) (left), the stochastic
modi�ed equation (2.15) (center) and a case where the noise is not damped (right).

Proof. The modi�ed equation (2.15) is mean-square stable if, and only if,

ϕ(ηλ)(λ+ ζ) +
1

2
|ϕ(ηλ/2)µ|2 < 0. (2.16)

Using Lemma 2.6 and (λ, ζ, µ) ∈ SmMS it follows

ϕ(ηλ)(λ+ ζ) +
1

2
|ϕ(ηλ/2)µ|2 ≤ ϕ(ηλ)(λ+ ζ +

1

2
|µ|2) < 0.

In view of Lemmas 2.5 and 2.6 and Theorem 2.7 we understand why we need a factor 1/2 in the
de�nition of gη in (2.10); this guarantees the right damping for the di�usion term. In practice, η is
chosen so that η|ζ| ≥ 2 as from Theorem 2.3 this choice of η guarantees that sti�ness of (2.1) depends
only on the slow term fS . In Figure 1 we illustrate the inequality ϕ(z/2)2 ≤ ϕ(z) and see that it
is very tight; hence, replacing g by gη guarantees mean-square stability without over damping the
di�usion term. In Figures 2(a) and 2(b) we illustrate the stability conditions (λ, ζ, µ) ∈ SmMS and
(2.16), respectively, and show that if (λ, ζ, µ) ∈ SmMS is satis�ed then also (2.16) is satis�ed. We
however emphasize, as illustrated in Figure 2(c), that if the noise term is not damped the modi�ed
equation might be unstable.

3 The multirate second-kind orthogonal Runge�Kutta�Chebyshev

method

We introduce here a stabilized explicit multirate method for (1.1) based on the stochastic modi�ed
equation (2.1): the mSK-ROCK scheme. We �rst recall the mRKC method for the deterministic
multirate di�erential equation (2.2) based on the modi�ed equation (2.3).

3.1 The multirate Runge�Kutta�Chebyshev method

The multirate Runge�Kutta�Chebyshev (mRKC) method is obtained by discretizing (2.3) with an
s-stage Runge�Kutta�Chebyshev (RKC) method and approximating fη given in De�nition 2.1 by
solving (2.4) with an m-stage RKC method. The RKC method [39] employed for the approximation
of (2.3) and (2.4) is a stabilized explicit scheme with stability domain growing quadratically with
the number of function evaluations, see [38, 39, 42] for more details.

The algorithm

Let τ > 0 be the step size and the stages s,m of the two RKC methods satisfy the stability conditions

τρS ≤ βs2, ηρF ≤ βm2, with η =
6τ

βs2

m2

m2 − 1
, (3.1)
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β = 2−4/3ε and typically ε = 0.05. The value of η follows from the stability analysis of the scheme,
see [4]. One step of the mRKC scheme is given by a classical RKC scheme applied to the modi�ed
equation, i.e.,

k0 = yn,

k1 = k0 + µ1τfη(k0),

kj = νjkj−1 + κjkj−2 + µjτfη(kj−1) j = 2, . . . , s,

yn+1 = ks,

(3.2)

where the coe�cients depend on ω0 = 1 + ε/s2, ω1 = Ts(ω0)/T ′s(ω0), with Ts(x) the Chebyshev
polynomial of the �rst kind of degree s. The parameters of the scheme are given by µ1 = ω1/ω0,

µj = 2ω1bj/bj−1, νj = 2ω0bj/bj−1, κj = −bj/bj−2, for j = 2, . . . , s, (3.3)

with bj = Tj(ω0)−1 for j = 0, . . . , s. Note that the recurrent de�nition of the RKC scheme (3.2) is
possible thanks to the recurrence relations Tj(x) = 2xTj−1(x) − Tj−2(x), T0(x) = 1 and T1(x) = x
[39], this allows for an e�cient implementation as only three vectors must be stored (even if s is
large). This recurrence relation allows also for a good internal stability with respect to roundo�
errors [42]. Moreover, the scheme (3.2) is stable for τρS ≤ βs2 and this ensures a quadratic growth
of the stability domain with respect to the stage number s. This is in sharp contrast with the explicit
Euler method (where the stability domain grows only linearly with respect to the number of steps).

Following (2.5) the averaged force is de�ned by

fη(u0) =
1

η
(uη − u0), (3.4)

where uη is obtained applying one step of size η of a RKC method with m stages to (2.4). Hence,
it is computed with the scheme

u1 = u0 + α1η(fF (u0) + fS(u0)),

uj = βjuj−1 + γjuj−2 + αjη(fF (uj−1) + fS(u0)) j = 2, . . . ,m,

uη = um.

(3.5)

The parameters of the m-stage RKC scheme are given by υ0 = 1 + ε/m2, υ1 = Tm(υ0)/T ′m(υ0),
aj = Tj(υ0)−1 for j = 0, . . . ,m and α1 = υ1/υ0,

αj = 2υ1aj/aj−1, βj = 2υ0aj/aj−1, γj = −aj/aj−2, for j = 2, . . . ,m. (3.6)

The mRKC scheme (3.1) to (3.6) is �rst-order accurate [4].

Linear stability analysis on the multirate test equation

Here we recall the stability properties of the mRKC scheme, as they are crucial for studying the
stability of the mSK-ROCK scheme introduced in Section 3. First, we compute a closed expression
for fη when the mRKC scheme (3.1) to (3.6) is applied to the multirate test equation (2.8). Let

Am(z) =
Tm(υ0 + υ1z)

Tm(υ0)
, Φm(z) =

Am(z)− 1

z
for z 6= 0 (3.7)

and Φm(0) = 1, where Am(z) is the stability polynomial of the m-stage RKC scheme satisfying
|Am(z)| ≤ 1 for |z| ≤ βm2. The function Φm(z) is the numerical counterpart of ϕ(z) given in (2.7),
indeed in [4] it is proved the following.

Lemma 3.1. Let λ, ζ ≤ 0, fS(y) = ζy, fF (y) = λy, η > 0, m ∈ N and u0 ∈ R. Then

fη(u0) = Φm(ηλ)(λ+ ζ)u0. (3.8)
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Therefore, as ϕ(z), Φm(z) has a smoothing e�ect on λ + ζ, which decreases the sti�ness of the
problem as long as |z| ≤ βm2 and thus |Am(z)| ≤ 1. Plugging fη(u0) from (3.8) into (3.2) leads to

yn+1 = As(τΦm(ηλ)(λ+ ζ))yn,

where As(p) is the stability polynomial of the s-stage RKC scheme. Hence, the scheme is stable if
|τΦm(ηλ)(λ+ ζ)| ≤ βs2 and thus |As(τΦm(ηλ)(λ+ ζ))| ≤ 1. In [4] the following result is proved.

Theorem 3.2. Let the damping ε = 0, λ ≤ 0 and ζ < 0. Then, for all τ > 0, s,m and η satisfying
(3.1) with ρF = |λ| and ρS = |ζ| it holds |As(τΦm(ηλ)(λ+ζ))| ≤ 1, i.e. the mRKC scheme is stable.

It is shown in [4] that the scheme is stable also for small damping parameters ε > 0 and numerical
experiments con�rm that stability holds for any damping, here we consider ε = 0 for simplicity.

3.2 The multirate SK-ROCK method

The mSK-ROCK method is a generalization of the mRKC method of Section 3.1 to SDEs. It consists
in the time discretization of (2.1) with the SK-ROCK scheme [1], but where fη is replaced by fη and
gη of De�nition 2.4 is approximated by solving the two auxiliary problems in (2.10) with a modi�ed
RKC method.

The algorithm

For simplicity, we de�ne the mSK-ROCK method for a vector valued di�usion term g : Rn → Rn
and generalize the scheme to a matrix valued di�usion g : Rn → Rn×m at the end of this section.

Let s, m and η be as in (3.1) but with the constraint that m must be even. Denote m = 2r with
r ∈ N∗. One step of the mSK-ROCK method is given by

K0 = Xn,

K1 = K0 + µ1τfη(K0 + ν1Qη) + κ1Qη,

Kj = νjKj−1 + κjKj−2 + µjτfη(Kj−1) j = 2, . . . , s,

Xn+1 = Ks,

(3.9)

with Qη = gη(K0)∆Wn, ∆Wn = W (tn+1)−W (tn), fη as in (3.4),(3.5), µj , νj , κj for j = 2, . . . , s as
in (3.3) and µ1 = ω1/ω0, ν1 = s ω1/2, κ1 = s ω1/ω0. Observe that in this scheme the noise term is
introduced in the �rst stage.

The function gη is a numerical approximation of gη. From (2.11) we de�ne

gη(v0) =
1

η
(vη − v̄η), (3.10)

where vη and v̄η are approximations of v(η) and v̄(η), respectively. We compute vη using a modi�ed
r-stage RKC scheme: the parameters are those of a RKC scheme with m = 2r stages and the
contribution of g(v0) appears only in the �rst stage. Hence, vη is given by

v1 = v0 + α1ηfF (v0 + β1θ1ηg(v0)) + γ1θ1ηg(v0),

vj = βjvj−1 + γjvj−2 + αjηfF (vj−1) j = 2, . . . , r,

vη = vr

(3.11)

and v̄η is given by v̄0 = v0 and

v̄1 = v̄0 + α1ηfF (v̄0),

v̄j = βj v̄j−1 + γj v̄j−2 + αjηfF (v̄j−1) j = 2, . . . , r,

v̄η = v̄r,

(3.12)
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where in (3.11) and (3.12) the parameters α1 and αj , βj , γj for j = 2, . . . , r are the parameters of
the m-stage RKC scheme given in (3.6) with m = 2r and the additional parameters in (3.11) are
given by β1 = mυ1/2, γ1 = mυ1/υ0 and θ1 = Tr(υ0)/(2υ1T

′
r(υ0)).

Note that the 1/2 factor in (2.10) disappears from (3.11) and (3.12) but is re�ected on the fact
that we take r = m/2 stages. Indeed, for the approximation gη of gη for linear problems (see (2.12))
the numerical counterpart of Lemma 2.6 rely on the identity 2Tr(x)2 = T2r(x) + 1 of Chebyshev
polynomials. This sets the relation between the number of stages r for computing gη and and the

number of stages m = 2r for computing fη, see Lemma 4.2 below.
Now, we discuss the case where g : Rn → Rn×m is a matrix valued function and therefore (3.11)

is not well-de�ned. One possible approach is to compute (3.11) for each column of g and build a
modi�ed matrix gη column-wise. However, this way of proceeding entails the computation of (3.11)
for each column of g, which can rapidly become expensive. A better solution is to replace ηg(v0) in
(3.11) by ηg(v0)∆Wn, which is vector valued and therefore (3.10) to (3.12) can be computed. Then
we replace Qη in (3.9) by Qη = gη(v0), as ∆Wn is already contained in gη(v0). With this second
approach, (3.11) is computed only once and therefore the cost of stabilizing a vector or a matrix
valued di�usion term g is equivalent. Note that when fF is linear the two approaches give exactly
the same result gη. When fF is nonlinear we obtain two slightly di�erent methods, nonetheless we
can show that both have the same accuracy and mean-square stability properties.

E�ciency analysis

Given the spectral radii ρF , ρS of the Jacobians of fF , fS , respectively, we want to compare the
theoretical e�ciency, in terms of function evaluations, of the mSK-ROCK and SK-ROCK method.
We set ε = 0 and let s,m vary in R. The cost of evaluating fF , fS , g relatively to the cost of
evaluating fF + fS + g is denoted cF , cS , cg ∈ [0, 1], respectively, with cF + cS + cg = 1.

One step of mSK-ROCK requires s evaluations of fη and one of gη. Each evaluation of fη needs
m evaluations of fF and one of fS , an evaluation of gη requires 2r = m evaluations of fF and one
of g. Hence, the cost of one step of mSK-ROCK is given by

CmSK-ROCK = s(mcF + cS) +mcF + cg = ((s+ 1)m− 1)cF + (s− 1)cS + 1,

where we used cg = 1 − cF − cS . Conditions (3.1) with β = 2 yield s =
√
τρS/2 and m =√

3ρF /ρS + 1, thus

CmSK-ROCK =

(√τρS
2

+ 1

)√
3
ρF
ρS

+ 1− 1

 cF +

(√
τρS

2
− 1

)
cS + 1.

In contrast, the standard SK-ROCK method is given by (3.9) but with fη replaced by f = fF + fS
and gη replaced by g. Hence, one step of SK-ROCK needs s evaluations of fF + fS and one of g,

with s =
√
τρ/2, where ρ is the spectral radius of the Jacobian of f and we assume ρ = ρF + ρS .

Thus, the cost of one step of SK-ROCK is

CSK-ROCK = s(cF + cS) + cg = (s− 1)(cF + cS) + 1 =

(√
τ(ρF + ρS)

2
− 1

)
(cF + cS) + 1.

Let pF = τρF and pS = τρS , the theoretical relative speed-up S is de�ned as the ratio between
the two costs:

S =
CSK-ROCK

CmSK-ROCK
=

(√
pF + pS −

√
2
)

(cF + cS) +
√

2((√
pS +

√
2
)√

3pFpS + 1−
√

2

)
cF +

(√
pS −

√
2
)
cS +

√
2

.

For some values of pF , pS we display S in function of cF , cS in Figure 3, with cF +cS ∈ [0, 1]. We see
that the speed-up increases as cS → 1; indeed, SK-ROCK needs more evaluations of fS . In contrast,
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S

1

(a) Speed-up for pF = 2000, pS = 200.

S

1

(b) Speed-up for pF = 20000, pS = 200.

Figure 3. The relative speed-up S of mSK-ROCK over SK-ROCK, for some �xed values of pF = τρF and pS = τρS .
The black surface corresponds to the constant function 1, for S > 1 the mSK-ROCK scheme is faster than SK-ROCK
while for S < 1 the SK-ROCK scheme is faster than mSK-ROCK.

the mSK-ROCK method is slower than SK-ROCK (S < 1) if cF is not su�ciently small, as it needs
more evaluations of fF . However, we recall that we intend to use the mSK-ROCK method when fF
is cheap to evaluate, otherwise we simply use the SK-ROCK scheme.

4 Stability and convergence analysis

This section is devoted to the stability and accuracy analysis of the mSK-ROCK method.

4.1 Stability analysis on the stochastic multirate test equation

We show here that when the mSK-ROCK method is applied to the stochastic multirate test equation
(2.13) the scheme is stable.

In order to analyze the stability of the mRKC method in Section 3.1 we computed a closed
expression for fη in (3.1). We start by deriving an expression for gη given in the next lemma. De�ne

Ψr(z) =
Ur−1(υ0 + υ1z)

Ur−1(υ0)

(
1 +

υ1

2
z

)
,

where Uk(x) is the Chebyshev polynomial of the second kind of degree k and υ0, υ1 are given in
Section 3.1. The Chebyshev polynomials of the second kind have a recurrence relation Uk(x) =
2xUk−1(x) − Uk−2(x), similar to the Chebyshev polynomials of the �rst kind Tk(x) except for the
initial values U0(x) = 1 and U1(x) = 2x.

Lemma 4.1. Under the assumptions of Lemma 3.1 and gη(v0) = µv0 with µ, v0 ∈ R, it holds

gη(v0) = Ψr(ηλ)µv0. (4.1)

Proof. Replacing fF (x) = λx and g(v0) = µv0 in (3.11) yields

v1 = v0 + α1zv0 + r1,

vj = βjvj−1 + γjvj−2 + αjzvj−1 j = 2, . . . , r,
(4.2)

with z = ηλ and r1 = (α1β1z + γ1)θ1ηµv0. Scheme (4.2) is a perturbed (by r1) RKC scheme, these
schemes are studied in [42] and it can be shown (see [32] for more details) that

vη = arTr(υ0 + υ1z)v0 +
ar
a1
Ur−1(υ0 + υ1z)r1.
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From the de�nitions of α1, β1, γ1, θ1, υ0, aj and T1(υ0) = υ0, T
′
n(x) = nUn−1(x) it follows

ar
a1
r1 =

1

Ur−1(υ0)

(
1 +

υ1

2
z

)
ηµυ0

and thus vη = arTr(υ0 + υ1z)v0 + ηΨr(z)µv0. We have as well v̄η = arTr(υ0 + υ1z)v0, which, with
(3.10), yields (4.1).

We now apply the mSK-ROCK method to the stochastic multirate test equation (2.13). Let
∆Wn = τ1/2ξn with ξn ∼ N (0, 1), plugging (3.8) and (4.1) into (3.9) yields

Xn+1 = Rs(pm, qr, ξ)Xn, where Rs(p, q, ξ) = As(p) +Bs(p)qξ

is the stability polynomial of the SK-ROCK method [1], with As(p) given by (3.7) and

Bs(p) =
Us−1(ω0 + ω1p)

Us−1(ω0)

(
1 +

ω1

2
p

)
, pm = τΦm(ηλ)(λ+ ζ), qr = Ψr(ηλ)µτ1/2.

The next lemma is the numerical counterpart of Lemma 2.6 and therefore it is the main tool for
proving stability of the scheme in Theorem 4.3 below.

Lemma 4.2. Let m, r ∈ N∗, m = 2r and ε = 0. Then Ψr(z)
2 ≤ Φm(z) for all z ∈ [−βm2, 0].

Proof. Since Ψr(0)2 = Φm(0) = 1 we consider z ∈ [−βm2, 0), with β = 2. For ε = 0 we also have
υ0 = 1, υ1 = 1/m2. Letting x = υ0 + υ1z = 1 + z/m2 ∈ [−1, 1) and using Ur−1(1) = r yields

Ψr(z) =
Ur−1(x)

2r
(x+ 1). (4.3)

The identity 2Tk(x)Tj(x) = Tk+j(x) + T|k−j|(x) implies T2r(x) = 2Tr(x)2 − 1 and thus

Φ2r(z) =
T2r(x)− 1

z
=

2Tr(x)2 − 2

(2r)2(x− 1)
=
Tr(x)2 − 1

2r2(x− 1)
. (4.4)

From (4.3), (4.4) and x− 1 < 0, Ψr(z)
2 ≤ Φ2r(z) is equivalent to

0 ≤ Ur−1(x)2(x2 − 1)(x+ 1)− 2(Tr(x)2 − 1).

The result follows from the identity Tr(x)2 − 1 = Ur−1(x)2(x2 − 1) and x ∈ [−1, 1).

Numerical evidences show that Lemma 4.2 is valid for any damping parameter ε ≥ 0. Indeed, we
display Φ2r(z) and Ψr(z)

2 for r = 3 in Figure 4, for a small damping ε = 0.05 and a high damping
ε = 1. In both cases relation Ψr(z)

2 ≤ Φ2r(z) holds and is tight.

Theorem 4.3. Let ε = 0 and (λ, ζ, µ) ∈ SmMS (see (2.14)). Then, for all τ > 0, s,m and η
satisfying (3.1) with ρF = |λ|, ρS = |ζ| and m = 2r, it holds E(|Rs(pm, qr, ξ)|2) ≤ 1, i.e. the
mSK-ROCK method is mean-square stable.

Proof. In [1, Theorem 3.2] it is shown that if pm+ 1
2 |qr|

2 ≤ 0 and |pm| ≤ βs2 then E(|Rs(pm, qr, ξ)|2) ≤
1. We start noting that

pm +
1

2
|qr|2 ≤ 0 ⇐⇒ Φm(ηλ)(λ+ ζ) +

1

2
Ψr(ηλ)2|µ|2 ≤ 0.

From η|λ| ≤ βm2 and Lemma 4.2 follows Ψr(ηλ)2 ≤ Φm(ηλ), using (λ, ζ, µ) ∈ SmMS yields

Φm(ηλ)(λ+ ζ) +
1

2
Ψr(ηλ)2|µ|2 ≤ Φm(ηλ)

(
λ+ ζ +

1

2
|µ|2

)
≤ 0. (4.5)

Furthermore, Theorem 3.2 implies |pm| ≤ βs2 (see [4]). Thus, E(|Rs(pm, qr, ξ)|2) ≤ 1.
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(a) Small damping ε = 0.05.
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Ψ3(z)2

(b) High damping ε = 1.

Figure 4. Illustration of Φ2r(z) and Ψr(z)2 for r = 3, with damping ε = 0.05 (left) or ε = 1 (right).

Even though Theorem 4.3 is stated for ε = 0, numerical evidences show that it is valid for any
damping ε > 0; indeed, Theorem 3.2, Lemma 4.2 and [1, Theorem 3.2] hold for ε > 0.

We see from (4.5) that the stability of the mSK-ROCK scheme relies on the inequality Ψr(z)
2 ≤

Φm(z), where Ψr(z) and Φm(z) are polynomials associated to the modi�ed RKC scheme (3.11) and
the standard RKC scheme (3.5), respectively. If instead of (3.11) a standard RKC scheme is used
then Φr(z/2)2 ≤ Φm(z) is needed for mean-square stability but this condition does not hold; hence,
a modi�ed RKC scheme is needed.

4.2 Convergence analysis

In this section we prove that the mSK-ROCK method has strong order 1/2 and weak order 1. We
denote by C4

p(Rn,Rn) the space of functions from Rn to Rn four times continuously di�erentiable
having derivatives with at most polynomial growth. We start the convergence analysis stating a
technical lemma, whose proof can be found in [32, Section 4.5.2].

Lemma 4.4. Let fF , fS , g be Lipschitz continuous, then there exists C > 0 such that

|fη(x)− fη(y)|+ |gη(x)− gη(y)| ≤ C|x− y|, (4.6)

|fη(x)− f(x)|+ |gη(x)− g(x)| ≤ C(1 + |x|)η (4.7)

for all x, y ∈ Rn. Furthermore, the stages Kj and Qη of (3.9) satisfy the estimate

|Qη|+ |Kj −Xn| ≤ C(1 + |Xn|)(τ + |∆Wn|), (4.8)

|E(Qη|Xn)|+ |E(Kj −Xn|Xn)| ≤ C(1 + |Xn|)τ (4.9)

for j = 1, . . . , s.

Lemma 4.5. Let fF , fS , g be Lipschitz continuous, then the solution Xn+1 of (3.9) satis�es

Xn+1 = Xn + τf(Xn) + g(Xn)∆Wn +R,

with

|E(R|Xn)| ≤ C(1 + |Xn|)τ3/2 and E(|R|2|Xn)1/2 ≤ C(1 + |Xn|)τ3/2. (4.10)

If, furthermore, fF , fS ∈ C1
p(Rn,Rn), then |E(R|Xn)| ≤ C(1 + |Xn|q)τ2, with q ∈ N.

Proof. It is shown recursively (see [32, Lemma 4.19]) that

Xn+1 = Xn +
bs
b1
Us−1(ω0)κ1Qη + τ

s∑
k=1

bs
bk
Us−k(ω0)µkfη(K̃k−1),
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where K̃0 = K0+ν1Qη and K̃k = Kk for k = 1, . . . , s−1. Since bsb1Us−1(ω0)κ1 = 1,
∑s
k=1

bs
bk
Us−k(ω0)µk =

1 and Qη = gη(Xn)∆Wn, we can write

Xn+1 = Xn + τf(Xn) + g(Xn)∆Wn +R,

with

R = R1 +R2 +R3, R1 = τ(fη(Xn)− f(Xn)),

R2 = (gη(Xn)− g(Xn))∆Wn, R3 = τ

s∑
k=1

bs
bk
Us−k(ω0)µk(fη(K̃k−1)− fη(Xn)).

From (4.7),
|R1|2 ≤ C(1 + |Xn|)2η2τ2, |R2|2 ≤ C(1 + |Xn|)2η2∆W 2

n . (4.11)

Since bs
bk
Us−k(ω0)µk ≥ 0 and

∑s
k=1

bs
bk
Us−k(ω0)µk = 1, using (4.6) and (4.8) we obtain

|R3|2 ≤ τ2 max
k=1,...,s

|fη(K̃k−1)− fη(Xn)|2 ≤ Cτ2 max
k=1,...,s

|K̃k−1 −Xn|2

≤ C(1 + |Xn|)2τ2(τ + |∆Wn|)2.
(4.12)

From E(R2|Xn) = 0, (4.11) and (4.12), using Jensen's inequality we get

|E(R|Xn)| ≤ C(1 + |Xn|)(η + τ1/2)τ, E(|R|2|Xn) ≤ C(1 + |Xn|)2(η2τ + η2 + τ2)τ.

This proves (4.10) using (3.1), from where we deduce η ≤ 8τ (as βs2 ≥ 1 and m ≥ 2).
To show the improved estimate on |E(R|Xn)| we suppose fF , fS ∈ C1

p(R). It can be shown

recursively that fη ∈ C1
p(R) and from (4.9) it holds |E(K̃k−1 −Xn|Xn)| ≤ C(1 + |Xn|)τ , thus

|E(R3|Xn)| ≤ τ
s∑

k=1

bs
bk
Us−k(ω0)µk|E(fη(K̃k−1)− fη(Xn)|Xn)|

≤ τ max
k=1,...,s

|E(fη(K̃k−1)− fη(Xn)|Xn)|

≤ Cτ(1 + |Xn|q) max
k=1,...,s

|E(K̃k−1 −Xn|Xn)| ≤ C(1 + |Xn|q)τ2,

(4.13)

where we used fη ∈ C1
p(R) and (4.8) to bound the derivative of fη in [Xn, K̃k−1] by C(1 + |Xn|q).

Using |E(R1|Xn)| ≤ C(1 + |Xn|)τ2 and (4.13) yields |E(R|Xn)| ≤ C(1 + |Xn|q)τ2.

Theorem 4.6. Consider the system of SDEs (1.1) on [0, T ], T > 0. Assume that fF , fS , g ∈ C4
p(R)

are Lipschitz continuous, then the mSK-ROCK method has strong order 1/2 and weak order 1, i.e.

E(|X(tn)−Xn|2)1/2 ≤ C(1 + E(|X0|2))1/2τ1/2, (4.14)

|E(ψ(X(tn))− E(ψ(Xn))| ≤ C(1 + E(|X0|q))τ (4.15)

for tn = nτ ≤ T and all ψ ∈ C4
p(R), where C is independent from n, τ .

Proof. As fF , fS , g are Lipschitz continuous, by the Itô formula applied to (1.1) with initial value
X(tn) = Xn, we obtain

X(tn+1) = Xn + τf(Xn) + g(Xn)∆Wn +R

with |E(R|Xn)| ≤ C(1 + |Xn|)τ3/2 and E(|R|2|Xn)1/2 ≤ C(1 + |Xn|)τ . Therefore, it follows from
Lemma 4.5 that the local errors satisfy

|E(Xn+1 −X(tn+1)|Xn)| ≤ C(1 + |Xn|)τ3/2, E(|Xn+1 −X(tn+1)|2|Xn)1/2 ≤ C(1 + |Xn|)τ.
The classical result [29, Theorem 1.1], which asserts the global order of convergence from the local
error, implies estimate (4.14). From Lemma 4.5 and the Itô formula we obtain the local error
estimate

|E(ψ(X(tn+1))− ψ(Xn+1)|Xn)| ≤ C(1 + |Xn|q)τ2.

Next we need to show that the moments E(|Xn|2k) are bounded for k ∈ N and all n, τ with 0 ≤ nτ ≤
T uniformly with respect to all small enough τ . Using [29, Lemma 2.2] this follows from (4.8),(4.9).
Finally from the local error estimate, the bounded moments and the regularity assumption on fF , fS
and g we obtain (4.15) from the classical result for weak convergence [29, Theorem 2.1].
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Figure 5. Nonsti� convergence experiment. Strong and weak errors of mSK-ROCK vs. step size τ , for di�erent stage
choices.

5 Numerical experiments

Through a series of numerical experiments, we illustrate here the accuracy of the mSK-ROCK
method of Section 3.2 and compare its computational cost against the cost of the standard SK-
ROCK scheme; which is given by (3.9) but where fη, gη are replaced by f, g and the stability
condition is τρ ≤ βs2, with ρ the spectral radius of the Jacobian of f . At �rst, we con�rm the
strong and weak convergence properties of the mSK-ROCK scheme on a nonsti� problem, where we
�x the number of stages beforehand. Then we do the same but on a sti� problem, letting the scheme
automatically choose the number of stages based on the spectral radii and the step size. For the last
two examples we consider the application of the mSK-ROCK method to more challenging problems,
�rst on a chemical Langevin equation and then on a stochastic heat equation with multiplicative
noise. The last experiment has been performed with the help of the C++ library libMesh [25].

We note that while we compare the mSK-ROCKmethod only to the SK-ROCKmethod, reference
[1] contains comparisons of SK-ROCK with many other stabilized methods (S-ROCK, S-ROCK2,
PSK-ROCK) and for the type of problems considered here SK-ROCK shows the best performance.

5.1 Nonsti� problem convergence experiment

We perform a convergence experiment on the following SDE, taken from [1],

dX(t) =

(
1

4
X(t) +

1

2

√
X(t)2 + 1

)
dt+

√
X(t)2 + 1

2
dW (t), X(0) = 0,

where the exact solution is X(t) = sinh( t2 + W (t)√
2

). We let fF (X) = 1
2

√
X2 + 1 and fS(X) = 1

4X.

Considering the step sizes τ = 2−k, for k = 1, . . . , 10, we display the strong E(|X(T )−XN |2)1/2 and
weak |E(asinh(X(T ))) − E(asinh(XN ))| errors at time T = 1 = Nτ in Figure 5, using 106 samples
and (s,m) = (5, 4) or (s,m) = (10, 10). We observe that the method converges with the predicted
orders of accuracy and the error is essentially independent of the stages number.

5.2 Multiscale problem convergence experiment

We consider a chemical Langevin model of dimerization reactions in a genetic network [9]. The
model consists of 7 species and 10 reactions, described by the equations

dX(t) =

m∑
j=1

νjaj(X(t)) dt+

m∑
j=1

νj

√
aj(X(t)) dWj(t) t ∈ (0, T ], X(0) = X0, (5.1)

where m = 10, X(t) ∈ R7, T = 10 and νj , aj(x) are derived from the chemical reaction system
introduced in [9]. We consider the same initial conditions as in [9] but multiplied by 103.
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Figure 6. Multiscale convergence experiment. Strong and weak errors of mSK-ROCK and SK-ROCK vs. step size τ .

We order the reaction terms νjaj(x) from the fastest to the slowest (the sequence ρj of the
spectral radii of the Jacobians of νjaj(x), evaluated on a typical path X(t), is decreasing) and let

fF (x) =

3∑
j=1

νjaj(x), fS(x) =

10∑
j=4

νjaj(x),

hence fF represents the three fastest reactions. We run the mSK-ROCK method over 105 Brownian
paths with step size τ = T/2j for j = 4, . . . , 10 and measure the strong and weak errors committed
against reference solutions computed on the same paths but using the SK-ROCK method with a
step size τ = T/212. As weak error we consider the error committed on the second moment of X6.
Di�erently from Section 5.1 we let the mSK-ROCK method automatically choose the number of
stages s,m. We observe in Figure 6 that the mSK-ROCK method converges with the right orders
and have similar errors as the SK-ROCK scheme.

5.3 E. Coli bacteria heat shock response

We consider a chemical Langevin equation modeling E. coli bacteria's protein denaturation under
heat shocks. The original deterministic model is introduced in [26], while in [10, 23] it is considered
as a chemical reaction system.

The model consists of 28 species and 61 reactions, it is described by (5.1) with m = 61 and
X(t) ∈ R28. The initial condition is the same as in [23] but multiplied by 100 and we let T = 10.
The parameters νj , aj(x) are derived from the chemical reactions described in [23, Section 7.2]
and the terms νjaj(x) are ordered from the fastest to the slowest as explained in Section 5.2. For
r = 0, . . . , 10 we de�ne

frF (x) =

r∑
j=1

νjaj(x), frS(x) =

61∑
j=r+1

νjaj(x),

hence frF is de�ned by the r fastest reactions and frS by the remaining ones. Observe that for r = 0
it holds f0

F = 0 and thus all the reactions are considered to be slow.
Let τ = T/212 be �xed, for each value of r = 0, . . . , 10 we run the mSK-ROCK scheme and

measure the following data: the mean values of ρF , ρS , s, m along the integration interval and the
code e�ciency in terms of total multiplications needed to evaluate frF and frS . For r = 0 we have
f0
F = 0 and thus the original SK-ROCK scheme is used with f = f0

S . We display in Figures 7(a)
and 7(b) the values of ρF , ρS and s, m, respectively. We see how ρS decreases as r increases, indeed
more fast reactions are put into frF , as a consequence s decreases as well. In order to compensate the
decreasing stabilization made by the �outer� scheme, the �inner� method must increase the number
of stages m, see Figure 7(b). In Figure 8(a) we show the cost of the scheme, de�ned as the total
number of multiplications needed by mSK-ROCK in order to evaluate fη and gη. For r = 0 we have

15



0 2 4 6 8 10

104

106

r

S
p
ec
tr
a
l
ra
d
ii

ρF
ρS

(a) Spectral radii of the Jacobians of frS and frF .

0 2 4 6 8 10
100

101

102

r

S
ta
g
es

m
s

(b) Number of stages s, m.

Figure 7. E. Coli experiment. Spectral radii and number of stages vs. the number r of fast reactions put into frF .
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Figure 8. E. Coli experiment. Cost and relative speed-up of mSK-ROCK.

the cost of SK-ROCK and for r = 1, . . . , 10 the cost of mSK-ROCK. In Figure 8(b) we show the
relative speed-up of mSK-ROCK with respect to SK-ROCK, de�ned as the cost of SK-ROCK (r = 0
in Figure 8(a)) divided by the cost of mSK-ROCK for r = 1, . . . , 10. We note that the speed-up
reaches a maximal value and then decreases as more terms are put into frF and thus its evaluation
becomes more expensive.

5.4 Di�usion across a narrow channel with multiplicative space-time noise

Here, we consider a stochastic heat equation with multiplicative noise de�ned on a domain which
requires local mesh re�nement. We compare the e�ciency of the mSK-ROCK and SK-ROCKmethod
as the geometry imposes increasingly severe stability constraints. This problem is a stochastic version
of a PDE problem studied in [4].

We consider the next heat equation with multiplicative noise, colored in space and white in time:

du = (∆u+ b) dt+G(u) dW in Ωδ × [0, T ],

∇u · n = 0 in ∂Ωδ × [0, T ],

u = 0 in Ωδ × {0},
(5.2)

where T = 0.1 and Ωδ is a domain consisting in two 10×5 rectangles linked together by a narrow chan-
nel δ×0.05 of width δ > 0, see Figure 9. The source term b(x, t) = sin(10πt)2e−5‖x−c‖2 is a Gaussian
centered in c, the center of the upper rectangle in Ωδ. We de�ne G : L2(Ωδ) → L(L2(Ωδ), L

2(Ωδ))
by G(u)(v)(x) = u(x)v(x) and W (t) is a Q-Wiener process de�ned by a covariance operator
Q : L2(Ωδ)→ L2(Ωδ), i.e. W (t) satis�es

E(〈W (t), h〉) = 0 and E(〈W (t), h〉2) = t〈Qh, h〉 (5.3)
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(a) Solution for δ = 1/22. (b) Solution for δ = 1/27.

Figure 9. Narrow channel. Numerical solutions at t = 10 for a channel width δ = 1/22 (left) or δ = 1/27 (right).

for all h ∈ L2(Ωδ), where 〈·, ·, 〉 is the inner product in L2(Ωδ). For h ∈ L2(Ωδ) we de�ne Q by

(Qh)(x) =

∫
Ωδ

q(x− y)h(y) dy, where q(x) =
α

π
e−α‖x‖

2

is an approximation of the Dirac delta function and α = 100.
In Ωδ, we de�ne a Delaunay triangulationM composed by simplicial elements having maximal

size H ≈ 0.015. Let V = span{ϕi : i = 1, . . . , N} be a �rst-order discontinuous Galerkin �nite
element (DG-FE) [11] space on M and ∆H : V → V the DG-FE discretization of the Laplacian.

Then, the semidiscrete problem corresponding to (5.2) is to �nd the process uH(t) =
∑N
i=1 ui(t)ϕi

satisfying
duH = (∆HuH + PHb) dt+ PHG(uH) dŴ , (5.4)

where PH : L2(Ωδ) → V is the orthogonal projection operator and Ŵ (t) ∈ V is the numerical
counterpart of W (t) in (5.3), hence it satis�es

E(〈Ŵ (t), h〉) = 0 and E(〈Ŵ (t), h〉2) = t〈Qh, h〉

for all h ∈ V . We set

Ŵ (t) =

N∑
i=1

γ
1/2
i eiβi(t),

where {ei}Ni=1 is an orthonormal basis of V , γi ≥ 0 for i = 1, . . . , N and {βi(t)}Ni=1 is a sequence of

independently and identically distributed Brownian motions. We have E(〈Ŵ (t), h〉) = 0 and since

E(〈Ŵ (t), ei〉2) = tγi we set

γi = 〈Qei, ei〉 =

∫
Ωδ×Ωδ

q(x− y)ei(x)ei(y) dx dy.

Note that Ŵ (t) is a Q-Wiener process in V with covariance operator QH de�ned by QHei = γiei.
Taking the inner product on both sides of (5.4) with respect to ϕj we obtain the equivalent

equation
dX(t) = (AX(t) +M−1b̂(t)) dt+M−1Ĝ(X(t)) dB(t), (5.5)

with X(t) = (ui(t))
N
i=1, M the mass matrix, A the sti�ness matrix, B(t) = (βi(t))

N
i=1 an N -

dimensional Wiener process and b̂(t) ∈ RN , Ĝ(X) ∈ RN×N are de�ned by

b̂j(t) = 〈b(t), ϕj〉, Ĝ(X)ji = γ
1/2
i 〈G(uH)(ei), ϕj〉.
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(a) Zoom over the channel with δ = 1/22. (b) Zoom over the channel with δ = 1/27.

Figure 10. Narrow channel. Zoom of the FE mesh for channel width δ = 1/22 (left) or 1/27 (right), with the
subdomain ΩF,δ (in blue).

By setting
f(t,X) = AX +M−1b̂(t), g(X) = M−1Ĝ(X)

we obtain (1.1), in nonautonomous form. Note that the orthonormal basis {ei}Ni=1 can be computed
locally on each element and M is easy to invert since it is block-diagonal. Therefore, application of
SK-ROCK to (5.5) leads to a truly explicit method.

We illustrate the triangulation M in the neighborhood of the narrow channel in Figure 10, for
two values of δ. We observe that for large δ the typical element size is small enough to resolve
the channel (Figure 10(a)), while for small δ the elements in the channel are considerably smaller
(Figure 10(b)). As the spectral radius of the discrete Laplacian behaves as 1/h2, where h is the size
of the smallest elements in the mesh, then ρ, the spectral radius of the Jacobian of f , increases as δ
decreases. Therefore, the cost of SK-ROCK applied to (5.5) increases as δ decreases.

Now, we want to decompose f in two terms fF and fS such that as δ decreases then ρF increases
but ρS remains constant, where ρF and ρS are the spectral radii of the Jacobians of fF and fS ,
respectively. We de�ne a subdomain ΩF,δ consisting in the channel plus its neighboring elements
having size smaller than the typical mesh size H, see Figure 10. Therefore, the size of the elements
outside ΩF,δ is almost independent of δ. In order to identify fF and fS as the discrete Laplacian
inside and outside of ΩF,δ, respectively, we de�ne a diagonal matrix D ∈ RN×N by Djj = 1 if
supp(ϕj) ⊂ ΩF,δ and Djj = 0 else. We let

fF (X) = DAX, fS(t,X) = (I −D)AX +M−1b̂(t),

with I the identity matrix. Thus, as δ decreases, the size of the elements inside of ΩF,δ decrease and
ρF increases, while ρS is independent of δ.

We will solve (5.5) for varying channel width δ and investigate the e�ciency of the mSK-ROCK
and SK-ROCK method. Hence, for each δ = 1/2k with k = 0, . . . , 15 we solve once

dX(t) = fS(t,X(t)) dt+ fF (X(t)) dt+ g(X(t)) dB(t) t ∈ (0, T ], X(0) = 0

with the mSK-ROCK and SK-ROCK methods, on the same sample path B(t) with T = 0.1 and
the same step size τ = 0.01. The relative speed-up S given by the mSK-ROCK scheme over the
SK-ROCK method, in terms of CPU time, in function of δ is displayed in Figure 11(a). For large
δ both methods have the same performance (S ≈ 1), as δ decreases the mSK-ROCK becomes more
e�cient than SK-ROCK and it is at least 25 times faster for some values of δ.

The relative speed-up has been computed dividing the computational costs (CPU time) of the
SK-ROCK and mSK-ROCK method, that are plotted in Figure 11(b). This choice is justi�ed by
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the fact that the relative error between the two solutions, measured in the L2(Ωδ) norm at time T ,
is less than 1%�, see Figure 11(c). Note that in Figure 11(c) a jump appears exactly when m passes
from m = 2 to m ≥ 4 (see Figure 11(e)) and thus r passes from r = 1 to r ≥ 2. This is due to the
fact that for smaller m the mSK-ROCK and SK-ROCK schemes are closer.

The spectral radii ρ, ρF , ρS of the Jacobians of f, fF , fS are shown in Figure 11(d), for large δ the
typical element size is su�ciently small to resolve the channel (Figure 10(a)) and thus ρ ≈ ρF ≈ ρS ,
implying that the costs of mSK-ROCK and SK-ROCK are similar. As δ decreases then ρ, ρF
increase. Since ρS is almost constant the number of fS evaluations in the mSK-ROCK method
remains constant and only the number of fF evaluations increase, therefore the cost of mSK-ROCK
increases less rapidly than the one of SK-ROCK. Finally, in Figure 11(e) we show the number of
stages taken by the methods, which re�ects the behavior of the spectral radii.

In Figure 11(a) we see a decrease in speed-up for δ extremely small, this is due to the fact that the
cost of evaluating fF , with respect to fS and g, becomes important; a high number of tiny elements
is indeed needed to resolve the channel, hence the total cost cF +cS+cg = 1 is dominated by cF close
to 1 (see Section 3.2) and this is not the optimal speed-up for the mSK-ROCK method. Nevertheless,
the mSK-ROCK scheme still remains about 20 times faster than the SK-ROCK method. We note
that in practical applications the mesh outside the channel would also be re�ned and a value of cF
closer to the optimal speed-up could be reached.

6 Conclusion

We have introduced a modi�ed equation dXη(t) = fη(X(t)) dt+ gη(X(t)) dW (t) for sti� stochastic
di�erential equations dX(t) = fF (X(t)) dt+ fS(X(t)) dt+ g(X(t)) dW (t) with di�erent time-scales
but without any clear-cut scale separation, where the drift is composed by a sti� but cheap term
fF and a mildly sti� but expensive term fS . The averaged force fη is such that the sti�ness of the
modi�ed equation depends solely on the slow term fS , while the damped di�usion gη is such that
the mean-square stability properties of the original problem are preserved. Therefore, integration
of the modi�ed equation by explicit schemes is cheaper than the original problem, as the stability
conditions are not a�ected by a few severely sti� degrees of freedom in fF . Evaluation of both fη, gη
requires the solution to fast but cheap deterministic auxiliary problems (2.4) and (2.10), which can
be approximated by explicit schemes.

Starting from the modi�ed equation we devised an interpolation-free stabilized explicit multirate
scheme, given by (3.4), (3.5) and (3.9) to (3.12). The method consists in integrating the modi�ed
equation with a stabilized explicit scheme for SDEs (SK-ROCK) and evaluating fη, gη by solv-
ing the auxiliary problems with a stabilized explicit scheme for ODEs (RKC). The scheme, called
mSK-ROCK, is fully explicit, is stable, has strong order 1/2 and weak order 1 � see Theorems 4.3
and 4.6. The number of expensive function evaluations of fS needed by mSK-ROCK depends only
on fS itself; therefore, the e�ciency of the scheme is hardly a�ected by the severely sti� term fF .

Furthermore, an important property of the scheme is that it is not based on any scale separation
assumption. Therefore, it can be employed for systems stemming from the spatial discretization
of stochastic parabolic partial di�erential equations on locally re�ned grids, where fF , fS represent
the Laplacian in re�ned and coarse regions, respectively (see Section 5.4). Finally, the method is
straightforward to implement and numerical experiments demonstrate that the computational cost
is signi�cantly reduced without sacri�cing any accuracy, compared to the optimal stabilized method
for sti� SDEs, namely the SK-ROCK method.
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