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Collective computation is typically polynomial in the number of computational elements, such as

transistors or neurons, whether one considers the storage capacity of a memory device or the number of

floating-point operations per second of a CPU. However, we show here that the capacity of a computa-

tional network to resolve real-valued signals of arbitrary dimensions can be exponential in N, even if the

individual elements are noisy and unreliable. Nested, modular codes that achieve such high resolutions

mirror the properties of grid cells in vertebrates, which underlie spatial navigation.
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The brain encodes many stimulus variables, such as
the position of an object, the orientation of an edge,
or the frequency of a sound, with high precision.
Multidimensional stimulus spaces are represented by joint
activity across neurons, each of which fires noisy, unreli-
able spikes. Yet, despite the stochastic nature of neuronal
discharge, the nervous system achieves a highly efficient
representation of the outside world [1].

The simplest representation of a continuous stimulus
variable is a one-to-one map onto a neuronal firing rate.
Given unreliable spikes, however, a labeled line code
across different neurons is more robust and efficient [2].
The place code for spatial position in the hippocampus is
an instance of such a labeled line code. One drawback of
such a code is that the resolution only scales linearly in the
number of neurons [2–4].

A place code can be improved upon by using a cascade
of self-similar, periodic representations at different scales,
as depicted in Fig. 1. Each successive level refines the
representation at the previous coarser scale, such that the
overall resolution scales exponentially in the number of
neurons, as we show in this Letter.

Neuronal coding of sensory information at multiple
scales occurs in many brain areas [5] and arises naturally
in the theory of sparse coding [6]; we show here how the
dense coding at multiple scales found in the entorhinal
cortex and related areas, where each neuron has multiple
firing fields, can be highly efficient, even though the firing
rate of a single neuron no longer maps onto a single
stimulus, but to many possible stimuli.

We consider N statistically independent neurons encod-
ing a compact but possibly high-dimensional stimulus
space, normalized to ½0; 1�D. For simplicity, each stimulus

is assumed to be equally likely. Each neuron’s response is
characterized by the number of spikes ki emitted within a
time � after stimulus onset. The neuron’s mean firing rate
depends on the stimulus x through its tuning curve �iðxÞ.
The number of spikes is stochastic, so that observing a
response K ¼ ðk1; . . . ; kNÞ across the population of neu-
rons has a probability

PðKjxÞ ¼ YN
i¼1

Piðkij��iðxÞÞ: (1)

(a) (b)

FIG. 1 (color online). Example of nested modules. (a) All
modules, except for the coarsest one, have periodic tuning curves
�iðx� ciÞ. A module consists of a set of tuning curves with the
same period but different phases ci. The spatial period for
modules 2 and 3 are �2 ¼ 0:45 and �3 ¼ 0:3, respectively. In
each module, we highlight a single tuning curve by a solid line to
show the period. Shifted but otherwise identical tuning curves
are dashed. Nested modules successively refine the representa-
tion of the stimulus. Periodicity implies that the map from
stimulus to population response is not one-to-one within a single
module. Only the ensemble response provides a unique repre-
sentation of x. (b) A unimodal tuning curve � in two dimen-
sions, shown at the top, can be rescaled and periodically
extended using Eqs. (5) and (6). The periodic tuning curves
�� in the lower panel is based on a rectangular lattice � spanned
by v1 ¼ �ð1; 0Þ0 and v2 ¼ �ð0; 1Þ0, with � ¼ 1=2. For this
lattice, a fundamental domain U is depicted.
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We ask how accurately an ideal observer can deduce the
stimulus x from K. For this purpose, we use the Fisher
information matrix J with components

J��ðxÞ ¼
Z @ lnPðK; xÞ

@x�

@ lnPðK; xÞ
@x�

PðK; xÞdK; (2)

where �, � 2 f1; � � � ; Dg. The Cramér-Rao inequality [7]
relates the inverse of J to the covariance matrix � of any
unbiased estimator x̂ of the encoded stimulus x,

�ðx̂jxÞ � JðxÞ�1: (3)

Let us first consider a population of neurons with tuning
curves �iðxÞ such that each has a single peak of width �.
Suppose the tuning curves differ only in the center ci of the
peak, so that�iðxÞ ¼ �ðx� ciÞ. A single tuning curve has
Fisher information J�i

ðxÞ. For the stochastic population

model in Eq. (1), the Fisher information J�ðxÞ for the
population is simply the sum

J�ðxÞ ¼def
XN
i¼1

J�i
ðxÞ ¼

Z
½0;1�D

J�ðx� ’Þ�ð’Þd’;

where �ð’Þ ¼ P
N
i¼1 �ð’� ciÞ is the density of the centers.

Assume that the centers ci are uniformly distributed in
½0; 1�D, so that the tuning curves cover the entire stimulus
space. As the centers become increasingly dense with

increasing N, the Fisher information J�ðxÞ becomes inde-
pendent of the specific stimulus x and scales linearly in the
number of neurons

J� ¼ NK�ð�; �;DÞ (4)

for some function K� [3,8,9]. If the stimulus space were
not compact, but instead encompassed all of RD, then
K� � �D�2 [3].

The linear scaling of Eq. (4) in N can be dramatically
improved by switching to a nested modular code, in which
each module consists of a subpopulation of M periodic
tuning curves, as in Fig. 1. Each module is associated with
a unique spatial period.

We first compute the Fisher information for a single
module that has periodic tuning curves, such that M ¼ N.
Any unimodal tuning curve �ðxÞ on ½0; 1�D can be periodi-
cally extended. Let � � RD be a nondegenerate, affine
point lattice [10]

�¼uþ XD
�¼1

k�v� for k� 2Z; u; v� 2RD; (5)

such that ðv�Þ1���D is a basis for RD and u a center. Let
U � RD be a fundamental domain of this lattice. Then there
is a canonical coordinate transformation �: U ! ½0; 1ÞD in
terms of an invertible matrix T and a vector w, such that
� ¼ �wþ T. One defines the periodic extension of � as

��: R
D ! Rþ; x � � ��ðx mod �Þ: (6)

This definition is illustrated in Fig. 1(b) and is independent
of the particular representation (or translational shift) for U.
A family of shifted, periodic tuning curves on the lattice

� constitutes a module and is associated with Fisher infor-

mation J�;�. We now relate J�;� to the original J�. Under

the inverse map ��1, the transformed tuning curves have
centers c0i ¼ ��1ðciÞ 2 U. Therefore,

J�;�ðxÞ ¼def
XN
i¼1

J��
ðxþ c0iÞ ¼

Z
U
J��

ðxþ ’Þ�0ð’Þd’;

where �0ð’Þ ¼ PN
i¼1 �ð’� c0iÞ. By changing the variables

in the Fisher information [7] and using the periodicity of
�ððxþ ’Þ mod �Þ on U, we get

J�;�ðxÞ ¼
Z
U
TJ�ð�ðxþ ’ÞÞT0�0ð’Þd’

¼ T
Z
U
J�ð�ðxþ ’ÞÞ�0ð’Þd’T0:

In the last step, we interchanged the multidimensional
integration and matrix multiplication, as T and its trans-
pose T0 are independent of ’. Under the map�, we obtain

J�;�ðxÞ ¼ T
Z
½0;1�D

J�ðxþ yÞ � �ðyÞdyT0

¼ T

�XN
i¼1

J�ðxþ ciÞ
�
T0 ¼ TJ�ðxÞT0: (7)

Thus, we have derived the following rule: J�;�ðxÞ ¼
TJ�ðxÞT0. For an orthogonal lattice � defined by v� ¼
��e� on the canonical basis ðe�Þ1���D of RD, each entry
in the Fisher information matrix is rescaled by ð����Þ�1

under this transformation. If the original Fisher informa-

tion matrix is diagonal, then so is J�;�ðxÞ. Therefore,

rescaling the periodic tuning curves by a factor of 2 quad-
ruples the Fisher information, but at the cost of introducing
ambiguity—the value of x can only be recovered modulo
the lattice �. Resolving this ambiguity requires a multi-
scale representation consisting of multiple modules span-
ning different spatial periods.
How should these different spatial periods be chosen?

Suppose there are L modules with spatial periods
f�1; . . . ; �Lg, arranged in decreasing order from the
longest period to the shortest, as in Fig. 1. Each module
hasM ¼ N=L tuning curves, and each tuning curve within
a module is associated with a different phase shift.
The easiest case to analyze is the one in which the

lattices �k are orthogonal [11], the rescaling is uniform
in each dimension, and the tuning curve � is radially
symmetric. In such a case, a module on lattice �k has a

Fisher information matrix J�;�k
ðxÞ ¼ ��2

k J�, and radial

symmetry implies that J� ¼ JI is diagonal and propor-
tional to the identity matrix I [3]. To ensure that the first
module represents x 2 ½0; 1�D unambiguously, we treat
this module as a special case and make it aperiodic;
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i.e., the first module is a place code with the same tuning
width that a periodic module with � ¼ 1 would have.

Within the first module, the expected error in an un-

biased estimate of x asymptotically approaches 1=
ffiffiffi
J

p
,

according to Eq. (3). This error sets a lower bound on the
period of the next module that refines the representation of
x. Hence, each �k should obey

�kþ1 ¼ C�kffiffiffi
J

p ; (8)

where C is a safety factor, such that 1 	 C<
ffiffiffi
J

p
.

For a C larger than unity, the next module can correct
for the error in the previous module. The Fisher

information for the nested population is J�;�1����L
¼

J�;�1����L
I with

J�;�1����L
¼ XL

k¼1

J

�2
k

¼ XL
k¼1

Jk

C2ðk�1Þ :

If we take only the last term in the series and substitute
L ¼ N=M, we see that

J�;�1����L
>

JN=M

C2ðN=M�1Þ : (9)

For fixed module size M, the Fisher information scales
exponentially in the number of neurons N. Such a coding
scheme, therefore, outperforms a single module that only

(a) (b)

(d)(c)
− −

−

−

−

−

FIG. 2 (color online). (a) Grid codes (GC) outperform place codes (PC), regardless of the number of stimulus dimensions. A
population of N ¼ 3
 105 neurons is divided into one, two, or three modules, according to Eq. (8). The neurons’ tuning width is fixed
as � ¼ 2. (b) The Fisher information for a neuronal population with M ¼ 105 neurons per module and D ¼ 3. For a nested modular
code with Lmodules, the Fisher information grows exponentially in N ¼ L �M, whereas it is linear in N for a place code. (c) The error
of the estimator that minimizes ðx� x̂Þ2 for place and grid codes inD ¼ 3 dimensions, based on sampling the stochastic response 1200
times. Each module comprises M ¼ 83 equidistantly spaced cells. The lattice lengths for different modules are scaled according to
Eq. (8), with a safety factor C ¼ 20. The Cramér-Rao bound of Eq. (10) is tight for both the grid and place codes. (d) When the lattice
lengths contract more strongly than allowed by Eq. (8), such that C ¼ 1, the error fails to improve in a nested modular code. Although
the Fisher information predicts an error even lower than in (c), the uncertainty derived from the first module’s response is larger than
the lattice length scale of the next finer-grained module, so that adding modules with finer spacing does not improve the resolution.
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scales linearly in N. Note that this scaling is independent
of the dimension D.

As a concrete example, we consider a set of tuning
curves with Poisson noise, centers ci, tuning width
�, and period �, as given by �iðxÞ ¼ fmax

expð 1
�2

P
D
�¼1fcos½2�ðx� � ci;�Þ=�� � 1gÞ [12]. If the

number of neurons per period � isM � 1 and the centers
are uniformly distributed, the module’s average Fisher
information is given by

J ¼ M4�2fmax�

�2�2
K1ð�2ÞKD�1

0 ð�2ÞI (10)

where KnðxÞ ¼ expð�1=xÞInð�1=xÞ and InðxÞ is the nth
order modified Bessel function of the first kind. In
Fig. 2(a), the Fisher information for a large population of
N ¼ 300 000 (place) cells is plotted for stimulus dimensions
D ¼ 1 to 10. Dividing the population into separate grid
modules according to Eq. (10) with C ¼ 20 leads to a
much higher Fisher information—orders of magnitude,
irrespective of the dimension D of the stimulus space.
Figure 2(b) underscores the key finding of this Letter: the
Fisher information grows exponentially in the number N of
encoding neurons. The place code, in contrast, is linear inN.
To corroborate these analytical results, we sampled the
response K and estimated the minimum mean square error
based on the posterior probability distribution pðxjKÞ [13],
as shown in Figs. 2(c) and 2(d). These simulations show that
the Cramér-Rao bound is tight as long as the grid codes obey
the constraint in Eq. (8). For place codes, it is known that on
short time scales [14], or for low numbers of neurons [9], the
Cramér-Rao bound will not be tight, so that the Fisher
information underestimates the error in decoding the signal.
The same will hold true for grid codes. However, whenN >
M � 1 and the expected number of spikes at the center of
each tuning curve is appreciable, a nested modular code

leads to an error that scales as M�N=M.
Note that we assume that the firing of neurons is

uncorrelated. Whether this assumption holds in cortex is
a matter of fierce debate [15]. The Fisher information
deteriorates with increasing noise correlations, but its scal-
ing in N does not, at least not for the correlation strengths
measured by Ecker et al. in cortex.

Periodic tuning curves have been found in entorhinal
cortex of rodents—coined grid cells ([16]; see Supple-
mental Material [17]). This unexpected discovery has in-
spired theorists to explore the combinatorial capacity of
modular periodic codes and how they might be used in the
brain [18]. In some cases, the stimulus space is intrinsically
periodic—orientation and color hue are but two examples.
But when the space of stimulus x is infinite instead of
periodic, different spatial periods can be combined to
encode a much larger range of x uniquely than would
otherwise be possible [19]. Indeed, the exponential range
that can result confers a relative precision that is also
exponential [20]. This Letter, in contrast, shows that the

absolute precision in x can be exponential in N. Precision
is of paramount importance for path integration, for which
the mammalian brain is thought to use grid cells [21].
Interestingly, the periodic lattices for neighboring grid
cells share similar spatial periods and orientations, but
are spatially translated relative to each other [16].
Moreover, along the dorso-ventral axis of the entorhinal
cortex, the typical spatial period of the lattice grows from
roughly 20 cm to several meters, while the ratio of grid
field width to spatial period remains constant [22]. Our
theoretical analysis indicates that these grid cell properties
may endow the brain with a highly accurate representation
of space; the same principles might be used for represent-
ing other continuous, high-dimensional stimuli.
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