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Connecting multiple spatial scales to decode the
population activity of grid cells

Martin Stemmler,1* Alexander Mathis,2* Andreas V. M. Herz1†
D
ow

nlo
Mammalian grid cells fire when an animal crosses the points of an imaginary hexagonal grid tessellating the
environment. We show how animals can navigate by reading out a simple population vector of grid cell activity
across multiple spatial scales, even though neural activity is intrinsically stochastic. This theory of dead reckoning
explains why grid cells are organized into discrete modules within which all cells have the same lattice scale and
orientation. The lattice scale changes frommodule to module and should form a geometric progression with a scale
ratio of around 3/2 to minimize the risk of making large-scale errors in spatial localization. Such errors should also
occur if intermediate-scale modules are silenced, whereas knocking out the module at the smallest scale will only
affect spatial precision. For goal-directed navigation, the allocentric grid cell representation can be readily
transformed into the egocentric goal coordinates needed for planning movements. The goal location is set by non-
linear gain fields that act on goal vector cells. This theory predicts neural and behavioral correlates of grid cell readout
that transcend the known link between grid cells of the medial entorhinal cortex and place cells of the hippocampus.
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INTRODUCTION

The strikingly periodic spatial pattern of grid cell firing has caught the
attention of experimental and theoretical neuroscientists alike and is
thought to constitute a metric for space (1). Grid cells fire at regularly
spaced intervals, so the distance an animal travels might be estimated
by counting the number of episodes in which a particular grid cell
fired. However, the spacing between firing fields and, hence, the dis-
tance traveled depend on the angle of movement relative to the grid’s
orientation (Fig. 1A), which belies the notion of a metric at the single-
cell level. The ensemble activity of grid cells could be deciphered to yield
a spatial metric (2, 3), but the cipher might need to be learned (4). We
show here that a simple, biologically plausible decoder exists. This
decoder need not be learned, is consistent with known properties of
grid cells, and leads to a number of experimentally testable predictions.

Grid cells are organized into discrete modules (5); within each
module, the spatial scale and orientation of the grid lattice are the
same, but the lattice for different cells is shifted in space (Fig. 1B). This
organization, which might have a mechanistic explanation (6, 7), seems
to complicate the encoding of spatial information. Constellations of
grid cells will fire together at repeated locations, making the code am-
biguous (Fig. 1B); if the grid orientations were not aligned, different
sets of grid cells would fire together at these locations, creating unique
labels for encoding spatial position (Fig. 1C). Paradoxically, the align-
ment of grid lattices within each grid cell module is a prerequisite for
reading out the grid code using population vector averages across mul-
tiple spatial scales (Fig. 1D), as we show here.

RESULTS

Theoretical framework
For each grid cell, the spatial map of firing is captured by a bell-shaped
function of space that repeats itself on a hexagonal lattice (Fig. 1D). All
grid cells within one module have the same lattice orientation and grid
scale l but differ in their spatial phase (5, 8). To determine what the
neuronal population’s activity reveals about an animal’s location, con-
sider a snapshot of the activity by counting the number of spikes nj for
eachneuron in a fixed timewindow, such that the population’s response is
n = (n1,…, nN).When the animal is at position x→ ¼ ðx; yÞ, each neuron
fires an average of Wjðx→Þ spikes. However, the true number nj scatters
around this value. Assuming Poisson variability and statistically
independent neurons, an ideal observer, given the set of spike counts
n, will assign the following probability for the animal to be at position x→

Pðx→jnÞ∼∏
N

i¼1
exp½nj lnðWjðx→ÞÞ� ð1Þ

Choosing the most likely position x→ is known as maximum likelihood
(ML) decoding.

Population vector decoding and error correction in
one dimension
Grid spacings range from about 25 cm to several meters in rats (9).
The spiking of grid cells in the coarsest scale l0 conveys a rough idea
of where the animal is, but is subject to some uncertainty d. Equation
1 generically predicts that an error d introduced at scale l0 can
be corrected when a module with scale l1 is added; d is reduced to
d/[1 + M1/(M0s

2)], where s = l0/l1 and Mk is the number of cells at
scale lk. Staggered spatial scales thus implement error correction, and
the improvement grows with the number of neurons at the smaller
scale (Supplementary Materials and fig. S1).

Whenspace is restricted toonedimension, asonanarrowtrack (Fig. 2A),
ML decoding of a single module reduces to a linear readout of the pop-
ulation vector average (Fig. 2B), provided the firing rate maps are given
by von Mises functions (10). These are periodic generalizations of the
Gaussian, Wj(x) = nmax · exp{k[cos(2p(x – cj)/lj) – 1]}, where cj is the
preferred spatial phase of cell j and lj is its spatial period. The population
vector (11) points exactly to the most likely position of the animal, and
its length conveys the confidence in the position estimate.

In analogy to how one tells time using a traditional clock with an
hour hand and a minute hand (Fig. 2C), neuronal population vectors
lend themselves to an explicit algorithm for decoding position across
1 of 11

http://advances.sciencemag.org/


R E S EARCH ART I C L E

 on N
ovem

ber 6, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

multiple scales. Assume that the environment fits within the funda-
mental domain of the module with scale l0. The population vector
is formed by summing over all cells at scale l0, weighting each cell’s
spike count nj by its spatial phase cj. The coarse-scale estimate is then

x0 ¼ l0
2p

arg ∑
M0

j¼1
nj expðicjÞ

� �
ð2Þ

where exp(icj) = cos(cj) + i sin(cj) is a phasor and the arg function com-
putes the angle of a phasor in the complex plane (Fig. 2B). This estimate
Stemmler, Mathis, Herz Sci. Adv. 2015;1:e1500816 18 December 2015
(Fig. 2A) is refined by the population vector of the second module that
contains grid cells with scale l1

x1 ¼ x0 þ ẽ
l1
2p

arg expð−if̃ð0ÞÞ ∑
M0þM1

j¼M0þ1
nj expðicjÞ

� �
ð3Þ

with ẽ ¼ ðM1l−21 Þ=ðM0l−20 þM1l−21 Þ. The term involving f̃ð0Þ ¼
ð2p=l1Þx0 subtracts out the contribution from the earlier position
estimate. This procedure can be recursively iterated for modules at
finer scales and is necessary for a correct position estimate (fig. S2
and Supplementary Materials). Multiple modules thus implement er-
ror correction as shown by the increasingly more narrow distribution
of position estimates (Fig. 2D). The performance of such a population
vector decoder matches that of an ideal observer, but it requires that
the grid cells be arranged into modules whose spatial periods form a
discrete set. When the grid lattices span a continuum, an ideal observer
might still glean a comparable amount of spatial information from the
neuronal response, but a population vector decoder is invariably in-
ferior (see figs. S7 and S8).

Alignment of grid cell lattices in two dimensions within and
across modules
Unlike time, space has more than one dimension. Using three super-
imposed plane waves as the argument of the von Mises function, one
obtains a model for hexagonal firing fields in the plane. Periodicity in
two dimensions means that the lattice’s unit cell is mapped onto a
torus (Fig. 2E). Rather than a single clock, we now have two clocks,
one for each angle variable on the torus.

In one dimension, a population of neurons with von Mises tuning
curves yields a posterior probability Pðx→jnÞ that is also von Mises,
albeit more peaked. In two dimensions, the lattices of different grid
cells may be shifted in spatial phase, as before, or also rotated. Ran-
dom rotations within a module (Fig. 3A) destroy the hexagonal struc-
ture in Pðx→jnÞ. The tolerance to deviations from a perfect alignment
can be assessed by computing the grid score (1), which measures the
degree of local hexagonal symmetry. If the lattice orientations vary by
more than 10°, the grid score of Pðx→jnÞ drops precipitously (Fig. 3B).
As the lattices of measured grid cells are tightly aligned in orientation
(5, 12), the ensemble activity generates a grid-like posterior position
probability.

Whether the lattice orientations are aligned or not, any neural en-
semble can be decoded using Eq. 1. For ensembles with few neurons
and low peak firing rates, alignment within a single module leads to
slightly more accurate position estimates (Fig. 3C). Furthermore, the
discrete symmetry axes in Pðx→jnÞ allow the animal to calculate its po-
sition by trilateral intersection (Fig. 4A). Three population vectors ml
are formed by projecting the spatial phase onto the vectors k

→

l of the
hexagonal lattice. The ML estimate then reads

x
→
ML ¼ 2=3∑

3

l¼1
mlk

→

l ð4Þ
This procedure is equivalent to topographically arranging the population’s
spike counts and multiplying them by a set of spatial weighting functions
that are sinusoidal gratings (Fig. 4B), which correspond to the sine and
cosine terms of Eq. 2. These terms then give rise to the population vectors
that are summed inEq. 4. Implicit in thegratings’ spatial phases is theorigin
of the coordinate system, yet this origin is arbitrary; for instance, it could
represent the animal’s home or a reward location. Switching between loca-
tions can be accomplished by rotating the phases (Fig. 4B). Because
A

CB

D

1  (a.u.)

7

3

0 2 31−1−2−3

0 1 2 3

Fig. 1. Decoding spatial relations from single grid cells and single grid
cell modules. (A) Grid cells fire when the animal traverses the vertices of an

internally generated hexagonal grid tiling the environment. However,
counting the activity bouts of a single grid cell does not convey a measure
of distance. Depending on the angle of the animal’smotion relative to the grid
cell’s lattice, bumps in the spatial firing map will be encountered at spacings
such as l,

ffiffiffi
3

p
l, or

ffiffiffi
7

p
l. The periodicity of grid cell activity also makes it im-

possible touniquelydecode spatial location fromasinglegrid cell. a.u., arbitrary
units. (B) Nearby grid cells within amodule share a common lattice orientation
and scale, as depicted by the firing patterns of three idealized grid cells. The
population activity repeats periodically as well; thus, it is impossible to decode
the position at the population level, at least not on the basis of a singlemodule
when firing fields are setmore closely than thedimensions of the environment.
(C) Grid cell modules with different single-cell grid orientations could be de-
codedunambiguouslybut arenotobservedexperimentally. As a consequence,
spatial location can only be decoded by combining grid cell modules with
multiple spatial scales. (D) Indeed, grid cells have lattices whose length scales
lk formadiscrete set, ranging fromcoarse to fine [figure adapted fromStensola
et al. (5)]. The trajectories of a rat in a 2.2 × 2.2 m2 enclosure are shown in gray;
spikes from four grid cells are shown in red.
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sinðk→⋅ x→ þ fÞ ¼ sinðk→⋅ x→ÞcosðfÞ þ cosðk→⋅ x→ÞsinðfÞ, such a phase
change is tantamount to a multiplication of the sinusoidal gratings by a
functionof thephasef andresummation,akin to themultiplicativemodulation
of visual tuning curves in theposterior parietal cortexbygazedirection (13).

The estimate of the homing vector at one spatial scale sets an offset
for refining the estimate at the next finer scale (Fig. 5A). Shorter scales
imply that the lattice’s tiling of space becomes finer; thus, this offset
Stemmler, Mathis, Herz Sci. Adv. 2015;1:e1500816 18 December 2015
resolves the ambiguity associated with the lattice’s periodic nature.
The metric readout of the animal’s position relative to different loca-
tions of interest is then the result of a linear combination of scales (Fig.
5B). Though a population vector code requires the grid axes to be
aligned within a module, alignment across modules is not essential. How-
ever, such an alignment improves the spatial resolution (Fig. 6, A to F)
and has been observed experimentally (5, 14, 15).
A B

C

ED

Fig. 2. Reading a multiscale periodic code. (A) Tuning curves of four nested modules with M = 20 grid cells and evenly spaced phases. The animal’s
position yields a spike vector n in each module. The likelihood P(x|n) at that scale depicts the probability of being at a certain location, given the respective

spike vector. Modules with smaller spatial periods l have more localized likelihoods, but their multiple peaks result in ambiguous position estimates. The
joint likelihood given the responses of all modules, shown in gray, is highly localized and nonperiodic. The overall ML estimate is closer to the animal’s
position than x0, the ML estimate of the first module. (B) All ML estimates are determined by population vectors (PVs), which are formed by assigning each
position x to a phase on the unit circle, weighting the number of spikes of each cell by its preferred phase, and then summing, as shown for the first two
modules. (C) These PVs can be combined for refining the position estimate, similar to how the hour and minute hands of a clock are combined to read the
time of the day. In a clock, the ratio of successive scales is 12, as there are 12 hours in each half-day, and in each hour, the minute hand completes one full
cycle. (D) However, the scale ratio for successive grid modules is not generally an integer [the example in (A) has a ratio of 3:2]; hence, at the next scale, a
new PV refines the position estimate by using the earlier estimate xi as the center of the range of possible values for xi+1 (Eq. 3). The refined estimate x1 in
(A) is close to but not identical with the ML estimate from this module. Further estimates taking into account modules 2 and 3 are recursively calculated
(eq. S13). Histograms of these estimates for 213 realizations of the spike vector n are shown in colors corresponding to the different modules in (A). The
relative SDs s/l0 highlight that the estimate at each scale successively refines the position estimate (simulation parameters: nmax = 2, k = 2, and s = 3/2).
(E) In two dimensions, the periodicity of the lattice means that the unit cell (black hexagon) can be mapped onto a torus. The position x→ can be read out
like a two-dimensional (2D) clock with multiple scales.
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Decoding from elliptic grid patterns
In many cases, measured grid cell activity patterns deviate from hex-
agonal symmetry, most often in the vicinity of the boundaries of the
environmental enclosure (5, 8, 12, 15, 16). If the grid lattice shears,
the grid pattern becomes elliptical; this shearing can become more
pronounced over time, starting from an almost hexagonal initial ac-
tivity pattern (14).

No matter how extreme the ellipticity, the proposed population
vector readout using Eq. 4 is unchanged, except for a (potentially
location-dependent) rescaling of the wave vectors k

→

l (see the Supple-
mentary Materials and eq. S9). Indeed, any invertible linear transfor-
mation of the lattice can be readily incorporated into the readout.
Different modules may be subject to distinct distortions (14, 15),
and Eq. 4 can be adapted separately for each module. Within each
module, all grids should be distorted (locally) in a similar way, in ac-
cordance with findings by Stensola et al. (14).

Optimal scale ratio
The total number of grid cells might be as low as 5000 in rats (17), and
downstream neurons might sample from only a small set of cells. To
study the limits of grid cell coding under such adverse conditions, we
now consider low firing rates and few neurons per module. Pðx→jnÞ
will have a shallow peak, implying that decoding x→ becomes more un-
certain and mistakes become more likely. If one reads off the minute
hand on a clock, the answer cannot be off by more than 30 min;
likewise, the worst error in decoding a 2D module with length scale
l is l/2.

Refining the position estimate relies on nesting modules at differ-
ent length scales, with the goal of making the peak in the probability
distribution Pðx→jnÞ narrower. Figure 7A illustrates the change in
Stemmler, Mathis, Herz Sci. Adv. 2015;1:e1500816 18 December 2015
Pðx→jnÞ in one spatial dimension upon the addition of a second
module with a length scale l1. If the scale ratio is s = l0/l1 = 2, the
second module increases the probability of the worst possible error:
miscomputing the position by ±l0/2.

The ratio s = 3/2, on the other hand, is a safe choice. At x = l0/2,
the second module contributes a term proportional to cos(sp) to the
log probability, but cos(3/2p) = 0. Together with the normalization of
probability distribution, this trigonometric fact ensures that adding a
second module does not increase the probability of large decoding er-
rors, irrespective of the number of neurons, the firing rate, or the
shape parameter of the neurons’ tuning curve.

The same argument holds when the population code represents 2D
space. For the nonideal ratio of length scales s = 2, the histogram of
positions decoded from the population spike counts, measured relative
to the true position, exhibits a rosetta-like pattern (Fig. 7B): The hex-
agonal “petals” in this pattern reflect the interference between succes-
sive modules.

For a low firing rate and a small module sizeM, a four-module grid
code conveys themost informationwhen the length scales obey 1≤ s≤ 2
(Fig. 7C). If the number of bits is b, the spike count vector can resolve 2b

different locations. The greater the number of spikes across the four
modules, the higher the scale ratio s can be. The optimal s falls into discrete
levels, as assessed by the average decoding error (Fig. 7E). The first discrete
level distinct from s = 1 is centered on s = 3/2 (dotted line in Fig. 7D).

Representing space beyond the longest grid scale
If the scale ratio s = l0/l1 is not an integer, the smaller grid scales are
no longer periodic with respect to the unit cell L0 at the largest scale.
Indeed, the posterior Pðx→jnÞ, treated as a function of x→, does not
repeat itself until the least common multiple of all scales has been
A

B C

Fig. 3. At the population level, a periodic representation of 2D space results only for aligned grid lattices. (A) Four hundred neurons with randomly
phase-shifted, yet aligned grid-like tuning curves yield a posterior probability distribution P(x→|n) that is hexagonal (left). If the lattices are randomly oriented,

the hexagonal structure disappears (right). (B) The degree of variation in the lattice orientations strongly affects the hexagonal structure in P(x→|n), as measured
by its “gridness” (1). (C) Even for randomly oriented lattices, the population response can be decoded by an ideal observer; if the number of neurons is small,
aligned lattices result in a lower root mean square (RMS) error. Randomly positioning the lattices, as opposed to evenly spacing them, worsens the error.
Size of square box, 1 m2.
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reached. This fact has led to the proposal that grid codes instantiate a
residue number system to represent a spatial range much larger than
l0 (2, 18): Each module signals an independent spatial phase, such
that the set of phases represents a combinatorial code for spatial
position (Fig. 8A).

A fixed scale ratio s implies a geometric progression of scales across
modules. As soon as the number of modules L exceeds 2, the scales do
not form a co-prime set; in other words, the least common multiple of
the set is less than the product of all scales. This contravenes the Chi-
nese Remainder Theorem (19) that underlies modular arithmetic and
states that any combination of discrete spatial phases across modules
maps onto a unique position (modulo the largest common multiple of
all scales). However, violating the Chinese Remainder Theorem turns
out to provide an advantage. If we approximate the scale ratio by a
rational number s = p/q, where p and q are integers, certain combina-
tions of discretized spatial phases across modules are forbidden—they
Stemmler, Mathis, Herz Sci. Adv. 2015;1:e1500816 18 December 2015
should never appear in the deterministic limit. Because of the sto-
chastic nature of neuronal discharge, such combinations might occur,
however, when the population vectors are calculated, but then the
readout could seek the closest valid set of phases, as illustrated in Fig.
8B, and thereby correct the error.

For s= p/q, the linear dimension of the range is qL−1l0, where L is the
number of modules. In two dimensions, a set of three population vec-
tors are projected along the wave vectors k

→

l . For each k
→
l , a separate

residue number system exists. These are then summed as in Eq. 4. As
shown in Fig. 8C, modular arithmetic can be used to decode positions in
2D space far beyond the fundamental domain of the largest grid scale, as
long as there are sufficiently many grid cells firing vigorously. In the limit
of high noise, low firing rates, or low numbers of neurons,modular arith-
metic collapses (Fig. 8D). As the population model yields an explicit and
simple representation of the posterior probability Pðx→jnÞ, we can quan-
titatively assess the likelihood of making catastrophic errors.
A

B

y

Fig. 4. Decoding position in two dimensions. (A) The hexagonal lattice has three wave vectors, k
→

1, k
→

2, and k
→

3, spaced 60° apart. One can transform the
hexagonal unit cell into different equally sized rectangles: Form three such rectangles so that the short edge aligns with the k

→
’s. Compute the population
l

vector estimate of the position ml along the short edge of the rectangle, averaging across the long edge. For each rectangle, this yields a position estimate
along the axis k

→

i, without specifying the position in the orthogonal direction. At the height ml, draw a line parallel to the long edge in each rectangle. If the
projected position estimates are exact, the three resulting lines will meet at one point, the true position of the animal. Otherwise, the three lines form an
equilateral triangle, whose center is the ML solution x→ML. (B) The grid cell population response can yield a homing vector in egocentric coordinates to any
point in the environment, such as the location of the nest (purple) or a reward (orange). Topographically rearranging the cells according to spatial
phase yields a spike count map. The population vector is formed by multiplying the spike count with cosine gratings, which are aligned along
the three axes of the hexagonal lattice. Each such grating is complemented by a weight function phase-shifted by 90° (not shown). The phase of the
gratings determines where the homing vector points; rotating the phase of the weights shifts the vector from pointing to the nest to pointing to the
reward location.
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Let us focus on one dimension and L = 2, as the results that
follow generalize (Supplementary Materials). We can write the pos-
terior as

ln PðxjnÞ∼cos
�
2pc

x

p

�
þ cos

�
2pc

x

q

�

where we assume that each module has the same number of neu-
rons M. The term cos(2pcx/p) has maxima at x = kp/c, k ∈ ℤ,
whereas cos(2pcx/q) has maxima at x = lq/c, l ∈ ℤ. Errors most likely
occur when the amplitude of the secondary peaks in the posterior
P(x|n) lie close to the amplitude of the primary peak (Fig. 8E). The
highest secondary peak occurs when

kp − lq ¼ +−1

Solving this Diophantine (integer congruence) equation, we find
that the difference between the primary and secondary maxima in
the posterior is

Dln P xjnð Þº 2p2

p2 þ q2
ð5Þ
Stemmler, Mathis, Herz Sci. Adv. 2015;1:e1500816 18 December 2015
The scaling law in Eq. 5 also correctly predicts the frequency of
making large-scale decoding mistakes in the 2D plane, as determined
numerically (Fig. 8F).

Ideally, Dln P(x|n) should be as large as possible. In other words, p
and q should be small integers. We must have q > 1 for the range to be
larger than l0; hence, the smallest integer we can choose is q = 2. With
this choice, the smallest integer that is co-prime to q is p = 3. There-
fore, the optimal scale ratio is

sopt ¼ p

q
¼ 3

2

which coincides with the most robust s based on iterative refinement
of the vector estimate (Fig. 7, A to E). In the limit of high noise and
low firing rates, we predict that a modular arithmetic code would sac-
rifice range for robustness.

DISCUSSION

Multiscale grid codes can represent vast areas of space (2, 20) or a more
limited area with high precision (3). The resolution of such a code could
0

=

W

W

W

W

A

B

Module 0

Module 1
xx0

x1 x2

Module 2

x2
x0

x1

Module 1

Fig. 5. Combining population vectors at different scales. (A) For each scale, there is a reference frame set by the position estimate from the previous scale.
This guarantees that the correctionof theposition estimate lieswithin thehexagonal unit cell at thenext scale. (B) At each scale, periodicitymaps theunit cell in

2D Euclidean space onto a torus. The population vectors from the corresponding module yield a vector from the origin (circles) to the estimate of current
position (star). As shown in (A), this estimate sets the origin of the coordinate system at the next scale. A linear sum of the estimates (qi,fi) at each length scale,
multiplied byweightsWi, produces a precise estimate of the homing vector. TheseWi’s are functions of the ratio s= lk+1/lk of successive length scales. As long
as the longest length scale l0 is large enough to cover the local environment, the homing vector maps directly back onto Euclidean 2D space.
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reach a millimeter or less, based on an ideal observer decoding the
population response. As we have demonstrated here, the ideal observ-
er is unnecessary: Reading the code is both simple and biologically
plausible, once population vector decoding is used. Similar to a land
survey, measuring the position in two dimensions relies on determin-
ing multiple vectors; trigonometry predicts that several neuronal pop-
ulation vectors should be added together to obtain a position estimate.
This estimate yields a new egocentric vector from the current (allo-
centric) position x→ to an (arbitrary) origin y→; changing the origin of
Stemmler, Mathis, Herz Sci. Adv. 2015;1:e1500816 18 December 2015
the coordinate system using nonlinear gain fields is straightforward, so
that a multiscale grid code could let a foraging animal always know
the direction and distance to home or some goal. Such a mechanism
generalizes population vector average decoders that have been impli-
cated in visuomotor transformations (11, 21, 22).

The spatial activity of a single grid cell does not constitute a metric,
whereas an ensemble of hierarchically organized grid cells does pro-
vide a distance measure, as our results prove. Although spatial infor-
mation is highly distributed across scales, the readout is a simple linear
E

.u.a..

DC
.u.a..

F

B

^

s

Fig. 6. Failures of decoding and the alignment of orientations across modules. Take two modules whose spatial periods are in the ratio s = l0/l1 = 2
and rotate the finer-scale module’s lattice orientation by an angle f relative to the first module. (A) The expected logarithm of the posterior distribution

P(x→|n) when the two lattices are aligned, given that the true position is at x→true=(0,0). (B) Suppose that the population vector at scale l0 yields an estimate
x→0. This x

→
0 centers the fundamental domain of the module with the smaller lattice scale l1 (blue dashed lines), but now the true position must lie within

the smaller fundamental domain. If it does not, as shown above, then the refinement stage of decoding will try to estimate x→1 = (x→true mod L1) and not
x→true. Here,L1 is the fundamental domain at length scale l1 centered at x→0. For a scale ratio of s = 2, this leads to an error of l0/2, where l0 is the distance
between firing fields at the coarsest scale. (C) If the lattices in the second module are rotated by p/6 relative to the first, the side peaks P(x→|n) move toward
the vertices of the fundamental domain. Note that the effective spatial period in P(x→|n) also shrinks, compared to the case of aligned orientations. (D) An
error at the coarser scale is “corrected” toward x→1 = (x→true mod L1), which lies close to the vertex. (E) As the second module’s orientation varies, the
expected variance of x→ at a given spike count peaks at p/6. A value of k̂ = 2 was chosen for the posterior distribution (eq. S5). (F) This effect is most
pronounced in the regime of low neuron numbers M or low spike counts nmax, which leads to the small concentration parameter k̂ for the posterior
probability distribution. The width of the posterior distribution is inversely related to the concentration parameter k̂.
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combination of population vector averages that performs error correc-
tion. The metric’s accuracy stems from the geometric progression of
length scales, ranging from coarse to fine. Such nested scales have been
predicted by optimal coding (3). Measured grid cell maps cluster into
discrete groups at different length scales, such that the ratio s of suc-
cessive scales lies between 1.4 and 1.7 (5, 8). Wei et al. (23) derived an
optimal scale ratio of e1/D using a different measure of resolution, where
D is the dimension of space. In contrast, our argument that s ≈ 3/2
does not depend on D and is based on a worst-case analysis for small
numbers of spikes (see the Supplementary Materials); we predict that
grid fields in flying or swimming mammals also cluster into discrete
modules and that the scale ratio is similar to the one observed in the
spatial firing maps for terrestrial movement.

As the measured ratio between li and li+2 is about 2 (5) or larger
(8), silencing an intermediate-scale module should lead to systematic
errors (Fig. 7B). On the other hand, removing the grid module with
the smallest scale would only affect the fine precision of navigation.
Likewise, our theory predicts that increasing some grid scales by
down-regulating specific cellular conductances (24) should gradually
decrease spatial precision, whereas it would drastically alter the readout
if grid cells were used for modular arithmetic (2). These predictions
could be tested systematically with path integration experiments, in
which an animal would have to reproduce specific distances with high
spatial accuracy without the aid of landmarks. Specific subpopulations
called island and ocean cells have already been genetically identified
and characterized (17, 25). Given the ability to deep sequence single
neurons, acute manipulations of single grid modules could become
feasible in the near future. By perturbing specific modules using
targeted pharmacogenetic (26) or optogenetic manipulations (27),
the contributions of individual modules to navigational accuracy could
be compared to theoretical predictions.
Stemmler, Mathis, Herz Sci. Adv. 2015;1:e1500816 18 December 2015
Experiments show that grid patterns in adjacent compartments
fuse into a single, continuous pattern spanning both compartments
while the animal familiarizes itself with the environment (28). There-
fore, a single decoder will be able to read out the grid code, even over
long distances. The universal nature of the metric has been called into
question, however, as firing fields become more irregular in narrow
regions of space (15), which corroborates earlier findings that the spa-
tial representation in grid cells changes when a hairpin maze is introduced
into an open arena (16). The measured grids are typically elliptical,
and the eccentricity of the grid pattern often varies throughout one
arena (14, 29); the activity of boundary cells might influence these dif-
ferences in eccentricity (15, 30). Yet, as we have shown, the metric nature
of the spatial representation lies not in the regularity or periodicity of
the grid but in the population activity. Whatever the sources of dis-
tortion are, one can think of mechanisms by which the (location-
dependent) eccentricity would modulate the readout formula (Eq. 4), pre-
serving the population metric for space. The prerequisite for a univer-
sal metric is that the distortion be common to all cells within the same
module. Across modules, however, the eccentricity can be different, as
observed experimentally (5, 14, 15). If the brain did not use an adapt-
ive readout, this should result in distortions of spatial perception,
which could be tested in psychophysical experiments. Regardless of
whether the metric is universal or not, the grid metric by itself may
prove insufficient for real-world navigation, as it contains no informa-
tion about physical obstacles in the environment. How the nervous
system might translate the goal direction vector into a feasible shortest
path is an open question.

Within the nested hierarchy of grid modules, self-similar scaling
implies that the finer-scale modules provide higher spatial resolution.
In modular arithmetic, the resolution is assumed to be the same for each
module. However, as long as the true resolution is sufficient for
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Fig. 7. For grid cell decoding to be robust, the ratio of length scales in successive grid cell modules should be below 3/2. (A) Comparison of the
log posterior probability log[P(x|n)] for two scenarios with two modules each, but with different scale ratios s = l0/l1 > 1. Red shading indicates regions in

which the second module increases P(x|n); blue shading represents a decrease. (B) For a grid network composed of four modules with M = 64 neurons
each, the histogram shows the positions decoded from the spike count relative to the true positions, which were chosen at random 215 times. The length
scale of each module was one-half of the next coarser module (s = 2), such that the modules interfered. The thin hexagon delineates the spacing between
firing fields at the coarsest length scale l0, whereas the thick inscribed hexagon is the unit cell of the lattice. The maximum of the neuron’s tuning curve
was 2; the tuning curve’s shape parameter was k = 2. (C) Spatial information in the four-module network as a function of the scale ratio s, which reaches a
maximum around s = 3/2. (D) The optimal scale ratio s depends on the expected number of spikes 〈n〉 across all four modules and falls into discrete levels.
(E) The RMS error for the optimal scale ratio s, relative to a 1-m2 enclosure.
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C D

A B

E F

Fig. 8. Localization beyond the spatial scale of the largest module. (A) For the grid scales l = {9,7,4}, the Chinese Remainder Theorem holds: for any
set of integers 0 ≤ n ≤ l , there is an integerm that satisfiesmmod l = n . The l ’s in this case form a co-prime set; that is, they have no common divisors.
i i i i i

(B) On the other hand, the grid scales l = {9,6,4}, which form part of a geometric progression with s = li/li+1 = 3/2, are not co-prime. If we treat ni as the
discrete phase of the ith module’s neuronal response, then not all combinations of 0 ≤ ni ≤ li are allowed to occur. If they do occur, error correction in
the readout could map the response to the closest valid combination of phases. (C) Decoding the position (x,y) = (4.83,−2.32) from 200 realizations of
the population vectors across L = 3 modules. The fundamental domain L0 at the largest scale has a unit area. The ratio between the chosen spatial
periods is s = 7/5, implying that the range of the code increases twentyfive-fold. (D) For a smaller number of neurons and lower firing rates, modular
arithmetic fails. One thousand two hundred realizations are shown. The scatter of decoded positions is not completely random but reflects ancillary peaks
in the posterior probability, whose spatial positions are dictated by the scale ratio s = 7/5. The vertices of the dashed hexagon, which is exactly 52 times
the size of L0, represents but one subset of these ancillary peaks. (E) Discrete spatial scales imply that the log posterior probability for the model reflects
the sum of sine waves with different spatial frequencies, shown here with frequencies in the ratio of 7:5. Blue and red dots indicate the maxima of the
individual sine components. When these points draw close together, a secondary maximum is observed in the sum (purple line). Robust encoding re-
quires that the true position x = 0 be much more likely than any positions corresponding to secondary maxima. (F) The probability of making catastrophic
errors in the 2D plane using L = 2 modules. Such errors correspond to population vector decoding yielding a position outside of the fundamental domain
L0 around the true position. Samples (totaling 215) are drawn for each scale ratio s = p/q = {3/2,4/3,5/3,7/5,9/5}. Reliable decoding requires that both p and
q be small.
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modular arithmetic, the two decoding schemes are compatible with
each other: a readout mechanism could do both. In either scheme,
making the grid code robust predicts a geometric progression of grid
scales, in both cases with the scale ratio s = 3/2. Such a progression
stands in contrast to the original proposal for modular arithmetic,
which envisions a set of grid scales that are not divisible by a common
factor (2). Although a geometric progression forfeits some of the range
that co-prime number sequences of spatial periods would permit, the
spatial range could still cover several square kilometers, as the
following calculation inspired by experimental estimates shows: take
10 nested grid cell modules (5), with scales ranging from 25 cm to
several meters (9), which is consistent with a scale ratio of s = 3/2.
With these numbers, the range along each dimension of space is
29 · (3/2)9 · 0.25 m, which is approximately 5 km. Modular arithmetic
codes need to first be converted into an explicitly metric representa-
tion (2), though, whichmust be learned (4, 31). The high variability of
neuronal discharge in grid cells (10, 32, 33) stresses the importance of
robustness for any biological coding scheme. Given this variability, it
seems unlikely that single grid cells will signal spatial phase to
downstream networks of neurons with sufficient reliability; regardless
of the grid cell coding scheme, population averages will be required.

Population vector decoding predicts not only that grid cells are
grouped into modules but also that lattices within one module should
be aligned, as observed experimentally (1, 12). Spatial information
would still be present, were the lattices randomly aligned or the mod-
ules absent, but would not be as easily decoded. Yet, which neurons
read out the grid code? Landmark vector cells in the hippocampal area
CA1 are one candidate (34, 35), as these cells respond when the
homing vector matches a fixed vector describing a specific direction
and distance to a landmark. Outside of the hippocampus, circuits in
the retrosplenial and posterior parietal cortex, areas essential to memory-
dependent spatial navigation (36, 37), may be involved. A direct link
exists between (presumptive) grid cells of the presubiculum and
retrosplenial cortex (38), whereas the posterior parietal cortex, well
known for the multiplicative interactions between its inputs (13), re-
ceives afferents from the medial entorhinal cortex (39).

One of the key predictions of our theory is that the nervous sys-
tem will be able to rotate the population vector averages. According
to the sum rules of trigonometry, such a rotation is equivalent to mul-
tiplying the readout weights with cosine-like functions, which
would act as gain fields. The effect of such a multiplication is a
near-instantaneous change in the represented goal location. Neural
mechanisms for such multiplications have been proposed (40, 41),
but the neural implementation could be implicit at the network level
(42) and possibly be based on a restricted set of “template” functions
(43). In the latter case, a set of cells would change their firing rate on
the same time scale with which the goal location changes and switch
the phase of the readout weights. Two-photon imaging in animals
performing cued navigation tasks [for example, Harvey et al. (36)]
could be used to search for such goal-encoding neurons and, with
widefield imaging in freely navigating animals (44), could reveal sig-
natures of these computations. Multiplication is an intermediate step
in the computation of the homing vector, whose final result, if we
interpret the model literally, corresponds to a linear ramp of firing
activity as a function of distance to the goal (fig. S4); other repre-
sentations are also possible (45). Whether grid cell ensemble activ-
ity is indeed decoded in this manner remains a question for further
research.
Stemmler, Mathis, Herz Sci. Adv. 2015;1:e1500816 18 December 2015
MATERIALS AND METHODS

To model the spatial firing rate map Wðx→Þ of a grid cell, which de-
scribes the cell’s expected spike count when the animal is at location
x→ ¼ ðx; yÞ∈ℝ2, we superimposed three plane waves with wave vectors
wk

→

l , where jk→lj ¼ 1 for , l ∈{1,2,3}, and exponentiated the result

Wðx→Þ ¼ nmax ⋅ exp
�
k=3∑

3

l¼1
fcosðwk→l ⋅ x→Þ−1g

�
ð6Þ

This is a 2D von Mises function. For a hexagonal grid that is aligned
to the x axis, the three vectors are k

→

l ¼ ðcosðflÞ; sinðflÞÞ with fl =
−p/6 + lp/3. The term w is given by w = 2p/(sin(p/3)l), where l is
the spatial scale of the firing pattern (or grid size), 1/k measures the
cell’s relative tuning width, and nmax is the maximal expected spike
count. To capture the 2D spatial phase c→j of cell j’s firing pattern, the
argument x→ on the right-hand side of Eq. 6 is replaced by x→ − c→j .

We assumed that the number of spikes emitted by the jth grid cell
obeys Poisson statistics, such that the expected spike count isWðx→ − c→jÞ.
Each neuron is statistically independent, so the conditional probability
for being at location x→ given the spiking activity in a population of N
neurons is

P x
→jnð Þº∏

N

j¼1

Wðx→− c→jÞnj
nj!

exp −Wðx→ − c
→
jÞ

� � ð7Þ

In the Supplementary Materials, we reformulated this posterior
probability for the population of grid cells to derive a simple and
biologically plausible decoder that provides a position estimate x→̂ giv-
en a stochastic (noisy) realization of the population spike count
vector n = (n1,…, nN). Grid cells in the entorhinal cortex are sub-
divided into populations of cells with different grid spacings (5);
these subpopulations are called “modules.” To capture this property,
we assigned the same tuning curve to each neuron within a module,
such that w, nmax, and k are identical, but the spatial phases c→j are
different. The phases are either equidistantly arranged or randomly
(but uniformly) distributed across the unit cell L (also known as the
fundamental domain) of the hexagonal grid. The Supplementary
Materials show how a population vector decoder for a single module
can be derived from Eqs. 6 and 7 and how to combine the
information about position across modules.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/1/11/e1500816/DC1
Text
Fig. S1. Hierarchical self-similar scales enable error correction.
Fig. S2. Noninteger scale ratios imply that the decoding algorithm must be able to rotate
population vectors.
Fig. S3. The lengths of the population vectors K

^
l along the hexagonal grid’s axes are

correlated.
Fig. S4. Possible distributed representations of the position vector estimate m̂

→

of eq. S6 across a
population of readout neurons.
Fig. S5. Comparison of different decoding schemes for a single module in two dimensions.
Fig. S6. Comparison of different decoding schemes for multiple modules in two dimensions.
Fig. S7. If the grid scales are not organized into discrete modules, population vector decoding
is no longer straightforward.
Fig. S8. Continuum decoding requires multiple population vectors.
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