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Abstract
Conformal field theories (CFTs) play a very significant role in modern physics, appearing
in such diverse fields as particle physics, condensed matter and statistical physics and
in quantum gravity both as the string worldsheet theory and through the AdS/CFT
correspondence. In recent years major breakthroughs have been made in solving these
CFTs through a method called numerical conformal bootstrap. This method uses
consistency conditions on the CFT data in order to find and constrain conformal field
theories and obtain precise measurements of physical observables. In this thesis we apply
the conformal bootstrap to study among others the O(2)- and the ARP 3- models in 3D.
In the first chapter we extend the conventional scalar numerical conformal bootstrap
to a mixed system of correlators involving a scalar field charged under a global U(1)
symmetry and the associated conserved spin-1 current Jµ. The inclusion of a conserved
spinning operator is an important advance in the numerical bootstrap program. Using
numerical bootstrap techniques we obtain bounds on new observables not accessible in
the usual scalar bootstrap. Concentrating on the O(2) model we extract rigorous bounds
on the three-point function coefficient of two currents and the unique relevant scalar
singlet, as well as those of two currents and the stress tensor. Using these results, and
comparing with a quantum Monte Carlo simulation of the O(2) model conductivity, we
give estimates of the thermal one-point function of the relevant singlet and the stress
tensor. We also obtain new bounds on operators in various sectors.
In the second chapter we investigate the existence of a second-order phase transition
in the ARP 3 model. This model has a global O(4) symmetry and a discrete Z2 gauge
symmetry. It was shown by a perturbative renormalization group analysis that its
Landau-Ginzburg-Wilson effective description does not have any stable fixed point, thus
disallowing a second-order phase transition. However, it was also shown that lattice
simulations contradict this, finding strong evidence for the existence of a second-order
phase transition. In this chapter we apply conformal bootstrap methods to the correlator
of four scalars t transforming in the traceless symmetric representation of O(4) in order
to investigate the existence of this second order phase transition. We find various features
that stand out in the region predicted by the lattice data. Moreover, under reasonable
assumptions a candidate island can be isolated. We also apply a mixed t− s bootstrap
setup in which this island persists. In addition we study the kink-landscape for all
representations appearing in the t× t OPE for general N . Among others, we find a new
family of kinks in the upper-bound on the dimension of the first scalar operator in the
“Box” and “Hook” representations.
Keywords: Conformal field theory (CFT), Numerical conformal bootstrap,
Non-perturbative quantum field theory, O(2) model, APR3 model, spinning
correlators, Mixed Scalar-Current bootstrap.
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Zusammenfassung
Konforme Feldtheorien (CFTs) spielen in der modernen Physik eine sehr wichtige Rolle
und finden in diversen Gebieten Anwendung, beispielsweise in der Teilchenphysik, Physik
der kondensierten Materie und der statistischen Physik und in der Quantengravitation
sowohl als String Worldsheet Theory als auch mit der AdS/CFT-Korrespondenz. In den
letzten Jahren wurden mittels der numerischen konformen Bootstrap-Methode grosse
Durchbrüche erzielt. Diese Methode wendet Konsistenzbedingungen auf CFT-Daten
an um konforme Feldtheorien zu finden, einzuschränken und genaue Messungen von
physikalischen Observablen zu erhalten. In dieser Dissertation wenden wir die konforme
Bootstrap an um unter anderem die O(2)- und ARP 3-Modelle zu untersuchen.

Im ersten Kapitel erweitern wir die konventionelle skalare numerische konforme Bootstrap
auf ein gemischtes System von Korrelatoren an, das ein skalares Feld, geladen unter
einer globalen U(1)-Symmetrie, und den dazugehörigen konservierten Spin-1-Strom Jµ
beinhaltet. Das Einbeziehen eines konservierten Spinoperators ist ein wichtiger Fort-
schritt im numerischen Bootstrap-Programm. Indem wir numerische Bootstrap-Techniken
einsetzen, erhalten wir Beschränkungen von neuen Observablen, die mit der normalen
skalaren Bootstrap nicht zugänglich sind. Auf das O(2)-Modell fokussierend extrahieren
wir strenge Beschränkungen für den Drei-Punkte-Funktionskoeffizienten von zwei Stömen
und dem einzigartigen skalaren Singlet sowie diejenigen von zwei Strömungen und dem
Energie-Impuls Tensor. Mittels dieser Resultate und im Vergleich mit einer Quanten-
Monte-Carlo-Simulation der Leitfähigkeit des O(2).Modells schätzen wir die thermale
Ein-Punkt-Funktion des relevanten Singlets und des Energie-Impuls-Tensor. Ebenfalls
erhalten wir neue Beschränkungen von Operatoren in verschiedenen Sektoren.

Im zweiten Kapitel untersuchen wir die Existenz eines Phasenübergangs zweiter Ordnung
im ARP 3-Modell. Dieses Modell hat eine globale O(4)-Symmetrie und eine diskrete
Z2-Gauge-Symmetrie. Eine perturbative Renormierungsgruppenanalyse hat gezeigt, dass
seine effektive Beschreibung nach Landau-Ginzburg-Wilson keinen stabilen Fixpunkt hat
und somit keinen Phasenübergang zweiter Ordnung zulässt. Es wurde jedoch auch gezeigt,
dass Gittersimulationen dieser Erkenntnis widersprechen, indem sie starke Beweise für
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Zusammenfassung

die Existenz eines Phasenübergangs zweiter Ordnung fanden. In diesem Kapitel wenden
wir konforme Bootstrap-Methoden auf den Korrelator von vier t-Skalaren an, die sich in
die «traceless symmetric» Darstellung von O(4) transformieren, um die Existenz dieses
Phasenübergangs zweiter Ordnung zu untersuchen. Wir finden verschiedene Merkmale,
die in der durch die Gitterdaten vorhergesagten Region hervorstechen. Darüber hinaus
kann unter vernünftigen Annahmen eine Insel isoliert werden. Wir wenden auch eine
gemischte t− s-Bootstrap-Anordnung an, in der diese Insel fortbesteht. Darüber hinaus
untersuchen wir die Knicklandschaft für alle Darstellungen, die in der t × t OPE für
allgemeine N erscheinen. Unter anderem finden eine neue Familie von Knicken in der
oberen Beschränkung auf die Dimension des ersten Skalaroperators in den «Box» und
«Hook»-Darstellungen.
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Introduction

Quantum field theory (QFT) has been successfully used to describe particle physics and
condensed matter systems. The Standard Model is one of the most accurate physical
theories we know. Using perturbation theory particle interactions can be predicted to
astounding precision. Yet, there is much left to be explored. Most studies in QFT are
restricted to a perturbative approach dealing with asymptotic series. These expansion
are known to break down when the involved coupling constants become strong. Many
interesting physical phenomena are described by such strongly coupled systems. For
example, it is impossible to study confinement in Quantum Chromo Dynamics (QCD)
perturbatively, due to a growing coupling constant at low energies. Similarly many
interesting condensed matter systems such as the Ising and O(2) model are described by
strongly coupled quantum field theories and cannot be solved perturbatively. That is why
it is important to develop methods to solve quantum field theories non-perturbatively.
While lattice computations can sometimes provide the non-perturbative answers we seek
they do not give a complete answer due to finite size effects. Thus, it is essential to
develop other non-perturbative approaches to solving quantum field theories.

While it is very difficult to solve QFTs non-perturbatively there are some instances
where much progress can be made by studying consistency conditions. An especially
promising approach is available for conformal field theories (CFTs). These theories are
highly constrained due to additional symmetry requirements. As a consequence CFTs
can be defined by a set of numbers called the CFT data. Moreover, this CFT data has
to obey non-trivial consistency conditions in the form of sum rules. The study of these
consistency conditions is called the conformal bootstrap. In this thesis we study these
consistency conditions for two systems of physical interest using analytical and numerical
methods.

While CFTs are highly constrained they are also highly non-trivial, interesting and
universally present. At low energies QFTs will in general flow to a scale invariant fixed
point. The symmetry of the theory at such a fixed point is usually enhanced to full
conformal symmetry. As a consequence the theory at the fixed point is described by a
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Introduction

CFT.2 If the QFT is UV-complete the high energy limit of the QFT is also expected to
be described by a CFT and the theory at any energy can be understood as a deformation
of the UV-CFT by a relevant operator. This evolution from UV to IR is described by
the Renormalization Group (RG).

Similarly, condensed matter systems undergoing a second order phase transition are also
understood to be described by scale invariant fixed points of renormalization group flows.
Notable examples of such critical points are liquid-vapor transitions, transitions between
ferromagnetism and paramagnetism for various types of magnets and the superfluid
transition of 4He. At these critical points the correlation length, which is normally
given by the tiny interaction length of the microscopic interaction, diverges and various
observables show power law behavior whose exponents are called critical exponents.
Moreover, many such phase transitions turn out to be described by the same critical
exponents. Critical points exhibiting the same critical exponents are said to be in the
same universality class. The fact that different critical points are described by the same
critical exponents can be understood from an RG point of view. Scale invariance at
the transition imposes strong constraints on the effective description and forces the
suppression of so called irrelevant couplings that are sensitive to the microscopic degrees
of freedom of the system. As a consequence only the symmetry at the RG fixed point
matters in determining the universality class of a critical point and all phase transitions
with the same symmetries are described by the same critical exponents.

Thus, the transition between liquid and vapor is described by the same critical exponents
as the transition in easy-axis magnets3. The easy-plane ferromagnetic-to-paramagnetic
transition of for example GdAlO3 has the same critical exponents as the superfluid
transition in 4He. And again the Curie transitions in isotropic magnets such as Fe or
Ni also have the same critical exponents. Due to their Z2, O(2) and O(3) symmetry
these transitions are respectively described by the fixed point of the Ising model, the
O(2) model and the O(3) model, regardless of the details of the microscopic realization.
These were examples of euclidean statistical physics descriptions of systems at finite
temperature. Additional the same CFTs can describe quantum phase transitions at zero
temperature when wick rotated. For example the quantum critical point of thin-film

2In d = 2 dimensions the enhancement to full conformal symmetry is proven to occur for any unitary
Poincaré-invariant theory with a scale current and a discrete spectrum in the scaling dimension as long
as the scale invariance is unbroken. For other dimensions there is no non-perturbative proof but the
enhancement is expected to occur under the same assumptions. The additional assumptions are essential
since there are counter examples of scale invariant theories without conformal invariance. However, for
any interesting physical theory the enhancement is expected to occur [3].

3Easy axis magnets are magnets with one energetically favored axis for the microscopic spins to be
aligned with. As an effect the spin is effectively constrained to point either up or down in the direction of
the easy-axis. Dysprosium ethyl sulfate (DyES) forms such a magnet for example. If instead a plane is
energetically favored, forcing the spins to lie on a circle, this is called an easy-plane magnet.
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Introduction

superconductors is described by the Lorentzian O(2) model.

Finally, CFTs appear in quantum gravity both directly as the theory describing a string
worldsheet and indirectly through the AdS/CFT correspondence.

The conformal bootstrap. Central to the conformal bootstrap are two simple ideas.
Firstly, a conformal field theory is completely described by an (infinite) set of numbers
called the CFT data. And secondly this CFT data obeys complicated consistency relations
which are hypothesized to constrain the OPE data to families of isolated points in the
OPE data parameter space corresponding to CFTs with different symmetries.4

In this thesis we will mostly consider Euclidean signature CFTs, thus we will study
QFTs with SO(d+ 1, 1) symmetry. This symmetry group includes translations, rotations,
dilations (i.e. scale transformations) and special conformal transformations. These CFTs
can be analytically continued to Lorentzian QFTs by Wick rotation.5

The main objects in a QFT are correlation functions of local operators. These operators
transform under a finite dimensional representation of the (euclidean) Lorentz group.
Additionally, they are taken to be diagonal under the dilation operator meaning that
[D,O(0)] = ∆OO(0). The eigenvalue ∆ is called the (conformal) dimension of O. The
operators can be classified into primary operators and descendants. The translation and
special conformal transformation operators Pµ and Kµ respectively act as raising and
lowering operators changing the conformal dimension by ±1. Primary operators are the
lowest dimensional states, such that [Kµ,O(0)] = 0. In unitary CFTs primary operators
are guaranteed to have a dimension above a certain spin dependent positive value. This
lower bound is refered to as the unitarity bound. Descendants are built from primary
operators by acting with the raising operators Pµ. Primaries act as the building blocks
of all operators and unless specified otherwise any operator O in the rest of the thesis is
assumed to be a primary operator.

The simplest correlation functions is the one point correlator 〈O(x)〉. This function
has to be independent of x due to for example translational invariance. Additional
scale invariance implies there is no scale that this one point correlator can depend on.
Thus, we conclude 〈O〉 = 0. Two point functions can be non-zero but are completely
determined by conformal invariance (up to an arbitrary normalization constant). For

4Sometimes there can be connected lines (or higher dimensional planes) of consistent CFTs such as for
example the generalized free theory (GFT) line which exists for all ∆ above the unitarity bound (where
∆ is the dimension of the fundamental operator of the GFT.

5This thesis focuses on reflection positive CFTs. When Wick rotated to Lorentzian signature these
CFTs will be unitary. Note that statistical descriptions of statistical physics systems do not necessarily
have to have this symmetry. Hence non-unitary CFTs are also of interest. However, the main bootstrap
methods rely heavily on reflection positivity and do not extend to these CFTs.
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three point functions the xi dependence can be fixed completely by conformal invariance
but a non-trivial constant usually denoted λO1O2O3 is left undetermined. This constant
depends on the type of operators appearing in the three point function. The four point
correlator can only be fixed up to a function g(u, v) of two conformally invariant cross
ratios build from x1, x2, x3 and x4 and here one might fear that for higher-point functions
things only get worse as there will be more and more of such invariants.

However, CFTs come equipped with an additional powerful tool called the Operator
Product Expansion (OPE). The OPE relates the product of two operators to an (infinite)
sum over single operators. The coefficient appearing in front of the single operators in
this sum depends the operator appearing in the sum and on the two operators in the
initial product. In fact the constant is given by the coefficient of the three point function
of those three operators. That is why we call the constants λO1O2O3 OPE coefficients.
The OPE follows from the fact that in a CFT local operators acting on the vacuum
provide a complete set of states, a fact called the operator-state correspondence.

The OPE can be used to relate n-point functions to a sum over (n− 1)-point functions.
As a consequence all correlators can in principle be expressed in terms of three point
correlators. Therefore, the OPE constants λO1O2O3 in principle determine all correlation
functions of the CFT. Therefore this data is called the CFT data.6

Moreover, by applying the OPE in different orders to for example a four point correlator
one can retrieve consistency conditions on the constants λO1O2O3 .7 The resulting con-
straints are called the crossing equations. They are highly non-trivial to solve and are
expected to fully determine the CFT given some minor other input on the symmetries of
the CFT and for example the number of relevant operators.

The crossing equation. The conformal bootstrap equations are given by applying
the OPE inside a four-point function in two different ways or equivalently by inserting
a complete set of states in the middle of the four point function for two different
orderings of the four operators.8 In order to insert a complete set of states we first
define a projection operator onto the conformal multiplet of a primary operator O∆,l by
P∆,l =

∑
α,β=O,PO,PPO···

|α〉〈β|
〈α|β〉 . Here the sum over α and β runs over all descendants of

the primary operator O. The identity can then be written as 1 =
∑

∆,l P∆,l. For example
applied to the four-point function of 4 identical scalars, i.e. O1,2,3,4 = φ, applying the

6Usually one considers the OPE data to consist of the spectrum, i.e. the local operators with non-zero
two point functions, plus the OPE constants relating these operators, i.e. the OPE constants λO1O2O3 .
One could interpret the latter data as contained in the OPE coefficients λO1O2,1.

7One can show that if and only if all four point functions obey the resulting consistency conditions
the OPE is associative. So no new constraints can be found by examining higher point functions.

8Operators in a euclidean correlation functions commute.
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projector for two different operator orderings gives the relation∑
∆,l
〈φ(x1)φ(x2)| P∆,l |φ(x3)φ(x4)〉 =

∑
∆,l

λ12OλO†34G
1234
∆,l (x1, x2, x3, x4)

=
∑
∆,l
〈φ(x3)φ(x2)| P∆,l |φ(x1)φ(x4)〉 =

∑
∆,l

λ32OλO†14G
3214
∆,l (x3, x2, x1, x4) . (1)

The function G1234
∆,l is called the conformal partial wave. It is related to a function

called the conformal block through G1234
O (x1, x2, x3, x4) = K4(x1, x2, x3, x4)g1234

O (u, v)
where K4 is a kinematic factor chosen by convention so that the remainder depends
only on the conformal cross ratios u and v.9 The conformal block g depends on the
operators appearing in the four-point function, often called the external operators, and
on the operator O appearing in the sum, i.e. the exchanged operator. In the case of
scalar operators the conformal block only depends on the external operators through the
quantities ∆12 = ∆1 −∆2 and ∆34 = ∆3 −∆4 (or on ∆32 and ∆14 in the exchanged
channel). In the case of spinning external operators G also depends on the spin of the
external operators. Spinning three- and four-point functions can have multiple allowed
tensor structures. In this case the different three-point structures are summed over
and every different four-point tensor structure will give its own crossing equation since
different tensor structures cannot cancel each other. We can write this more general case
as

k(u, v)
∑
O,p,q

λ
(p)
12Oλ

(q)
34Og

(p,q) 1234
O,s (u, v) = k(v, u)

∑
O,p,q,s′

λ
(p)
32Oλ

(q)
14OM

ss′g
(p,q) 3214
O,s′ (v, u) (2)

Here the indices p, q run over the different allowed three-point functions while s labels
the different four-point tensor structures. The crossing equation can relate combinations
of different tensor structures and hence a matrix M ss′ appears.

Conformal blocks and how to compute them. By inserting a complete set of states
we found that the contribution to the four-point function of one (primal) operator is
controlled by the conformal block for that operator. If, after inserting the projector P∆,l
in the four-point function, we also insert the quadratic Casimir operator of the conformal
group we can find a differential equation that the conformal block must obey. Acting to
the left on P∆,l the conformal Casimir simply gives the eigenvalue C∆,l. Acting to the
right on the operators O3 and O4 it acts as a differential operator resulting in differential
equation of the form

Dg∆,l = C∆,lg∆,l (3)

where D is a second order differential operator. In even dimensions this differential
9Some of the literature does not make a distinction between conformal partial waves and conformal

blocks and uses these names interchangeably.
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equation can be solved exactly for scalars but in 3D alternative methods need to be used.
We will now give a brief overview of one of the main methods to compute the conformal
block. This method uses recursion relations to relate the conformal blocks g∆,l to other
conformal blocks g∆′,l′ (of lower order in a small parameter ρ). One advantage of this
method is that it is most easily extended to the computation of spinning conformal blocks
as required for the numerical bootstrap setup described in chapter 1.

For ∆ above the unitarity bound the matrix 〈α|β〉 appearing in the projector above is
positive definite and invertible. However, below the unitarity bound there are special
values ∆∗A where 〈α|β〉 = 0 for certain descendants. This means that the conformal block
has to have a pole at ∆ = ∆∗A.10 It turns out that the residue at this pole is proportional
to another conformal block, g∆,l ∼ RA

∆∗A
g∆A,lA . Here ∆A and lA are the dimension and

spin of the first null (zero norm) descendant. To write a recursion relation based on
this it is useful to write the conformal blocks in radial coordinates r and η which are a
function of the conformal cross ratios u and v above [4]. One can then define a regularized
conformal block h∆,l through g∆,l(r, η) = (4r)∆h∆,l(r, η) and find a recursion relation of
the form

h∆,`(r, η) = h∞,`(r, η) +
∑
A

RA
∆−∆∗A

(4r)nA h∆∗A+nA,`A(r, η) . (4)

The conventional numerical bootstrap approach expands the crossing equations around
the so called self dual point where r = 3− 2

√
2 ≈ 0.1716� 1. Thus the equation above

can be used as a recursion relation to compute h∆,l from different conformal blocks
h∆∗A+nA,`A at a lower order in r. The ∆-independent term h∞,`(r, η) can be found by
solving the Casimir equation at large ∆. The position of the poles ∆∗A can be found by
studying explicitly the norm for the various descendants which we schemetically denoted
as PO, PPO, · · · . The residue RA is given by three parts. One part is controlled by the
left three point function 〈O1O2O〉 while another is controlled by the right three point
function 〈OO3O4〉. The remaining part can be found from the rate at which

〈
O∆,l

∣∣O∆,l
〉

becomes null as one takes the limit ∆→ ∆∗A. For scalars these ingredients were found
in [5] while the spinning case was studied in [6]. In the case of spinning operators the
indices p, q of the three point tensor structures appear again and the recursion relation
will mix the three point tensor indices p and q. On the other hand the recursion relation
is diagonal in the four-point indices s.

Numerical conformal bootstrap The main idea of the numerical conformal bootstrap
is to admit defeat to solving the full crossing equations. Instead one should attempt
to bound CFT data by truncating the equations and showing the inconsistency of an
assumption on the spectrum. Take the simplest example of crossing of four identical

10In 3D it only has single poles. In 4D it also has double poles.

6



Introduction

scalar operators φ. In this case the crossing equation reads∑
O
λ2
φφOF∆,l(u, v) = 0 with F∆,l(u, v) = G∆,l(u, v)−G∆,l(v, u) (5)

If one could find a linear functional α that is positive on say the unit operator contribution,
i.e. α[F0,0] > 0, and non-negative for all other ∆ and l allowed by unitarity then any non-
zero OPE coefficient λφφO would lead to a contradiction since the positive contribution
from the identity operator would not be canceled by any other operator.11 The existence
of such a functional would proof that no non-trivial CFT exists. Of course such a
functional cannot be found. However, a functional can be found such that it is positive
for all ∆ greater than some critical value ∆∗s. The existence of such a functional proves
that the φ× φ OPE has to exchange an operator s with ∆s < ∆∗s. The search for such a
functional α is usually done numerically. The canonical approach considers functionals
of the form α[F ] =

∑
n,m αn,m∂

n
z ∂

m
z F |z=z̄=1/2 with n,m ∈ Z and n+m < Λ where Λ is

some cut-off on the number of derivatives that are included. The bigger the search space
for the functional (larger Λ) the more parameter space can be excluded. Initial studies,
such as the breakthrough papers [7–11], discretized and truncated the (∆, l) space to
approximate the continuous non-negativity constraint to a finite set of linear constraints
(linear in λφφO).12 α can then be found through linear programming. The discretization
of ∆ can be avoided by writing the problem as a polynomial inequality [12]. Such a
polynomial inequality can then be written as a semi-definite problem which can be solved
by semi-definite programming.13 In practice the semi-definite problems that appear in the
conformal bootstrap are found to require high precision arithmetic. SDPB is a dedicated
high precision semi-definite problem solver for the type of semi-definite problems that
appear in the conformal bootstrap [13]. A new version was recently released and was
used for many of the computations in this thesis [14].

Semi-definite programming also allows the extension of the conformal bootstrap to mixed
bootstrap setups studying multiple correlation functions at once. One of the biggest
achievements of the numerical conformal bootstrap program was the isolation of a small
precision island corresponding to the Ising CFT [5, 15], see figure 1 . With this island the
conformal bootstrap gives the most accurate measurement of the Ising critical exponents
related to ∆σ and ∆ε.

The new frontier: spinning correlators Until recently most numerical bootstrap

11We are allowed to move the linear functional inside the OPE sum due to the convergence properties
of the OPE.

12The large ∆ and l behavior is such that it is generally safe to make such a truncation.
13A semi-definite problem is a convex optimization problem with nice convergence properties, although

not as nice as linear programs. Any linear program can be written as a semi-definite program but the
reverse statement is not true.
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Ising: Scaling Dimensions
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Figure 1: Allowed space in the (∆σ,∆ε) plane and a comparison with a Monte Carlo
prediction for the same quantities. The conformal bootstrap island gives a far more
accurate prediction of the quantities ∆σ and ∆ε. This figure was borrowed from [15].

studies examined the crossing equations only involving external scalar operators. In recent
years this has been expanded to spinning correlators [16–19, 1, 20]. This is an important
new frontier. Spinning operators can give access to new sectors and allows the conformal
bootstrap to be applied to new theories. Additionally, there are some spinning operators
that are of special importance. A conserved stress tensor is present in all local CFTs.
Similarly, a conserved current exists for all CFTs with a continuous global symmetry.
There is an intimate relation between the existence of such a conserved operator and the
symmetries of the CFT. Moreover, the inclusion of correlators of conserved operators in
the numerical conformal bootstrap offers a major advantage over other operators: The
dimension of the conserved operator is fixed and known. The fact that each new external
operator adds another parameter that has to be scanned over is a major obstacle to the
multi-correlator bootstrap. However, the crossing equations of conserved operators can
be added without increasing the dimensionality of this search space. Still, there is a
cost. Correlation functions of spinning operators allow for many tensor structures and
many bootstrap equations. This can be very constraining. However, more equations also
mean heavier numerics. In addition it becomes more expensive and complicated to set up
the appropriate semi-definite programming problem due to the many different crossing
equations involved and the different required conformal blocks. An important goal of the
work presented in chapter one of this thesis is the assessment of the value of a mixed
scalar-current bootstrap.

Further recommended reading This introduction aimed to give context to the re-
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search presented in the main chapters of this thesis. However, including a full in-depth
treatment of CFT physics required to understand all the details in this thesis is of course
an impossible task. Instead I include references for some further advised reading below:

• For a more complete introduction to the conformal bootstrap: [21, 22].

• For an overview of 3D conformal bootstrap results (on results until 2018): [23].

• For the embedding space treatment of spinning operators: [24, 25].

• On spinning conformal blocks: [6, 26, 27].

• On the renormalization group and the connection to statistical physics systems:
[28].
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1 Mixed Scalar-Current bootstrap
in three dimensions.

Based on research done in collaboration with Emilio Trevisani and Alessan-
dro Vichi [1]. I, the candidate, performed and analyzed the numerical computations
presented in this paper and made major contributions to all steps of the research including:
the study of and comparison against the relevant literature, the analytic computations
leading to the numerical setup, and the writing of the paper itself.

1.1 Introduction and summary of results

Three dimensional Conformal Field Theories (CFTs) display a rich variety and range of
applications. While some of them were introduced a long time ago in order to describe
long known phase transitions in condensed matter and statistical models, in recent years
the zoo of renormalization group (RG) fixed points has vastly grown.

The numerical conformal bootstrap represents a powerful tool to shed some light on the
intricate world of three dimensional CFTs. After its revival a decade ago [7–11], it has
been successfully used to extract the most precise prediction of critical exponents in key
examples [5, 29, 30, 13, 15, 31, 32]. Moreover, interesting studies also displayed hints of
novel (and yet unclassified) CFTs [33, 34]. Many other great results have been achieved
in three dimensions [35, 16, 36–40, 17, 41, 19, 42–46]. See also [47, 48] for recent reviews
on the subject.

When examining the results obtained in the last few years, it appears evident that
bootstrap methods in presence of a global symmetry seem to be less powerful when
compared to simpler systems like the Ising model or its supersymmetric extension. One
possible argument is that, given that the theory is more involved, one simply needs
to consider correlators involving more than two scalars. In particular, relevant scalar

11



Chapter 1. Mixed Scalar-Current bootstrap in three dimensions.

operators seem to play a crucial role.

A second explanation could reside in how the presence of a global symmetry is imposed. In
past studies, the existence of a global symmetry was injected by declaring that operators
entering a correlation function transform according to irreducible representations of the
global symmetry group. In addition, selection rules were imposed on the operator product
expansion (OPE) of these operators. A complementary approach was also initiated in [18],
where the presence of a global symmetry was enforced by studying the correlation function
of the associated conserved spin-1 current. The latter method is definitively preferable,
but comes at the expense of considering spinning operators and thus complicating the
analysis. As a plus side, however, it does not introduce any new parameter to scan over,
since conserved currents have fixed dimensions. In this work we push this approach one
step further, and explore the constraints arising from the mixed system of correlation
functions involving one conserved current, associated to a U(1) global symmetry, together
with a scalar field charged under it.
One should be careful with the latter statement: without further assumptions, including
a conserved current in the bootstrap does not give us the right to identify it with the
generator of the global symmetry under which the scalar is charged. A trivial counter
examples is the tensor product of a generalized free scalar field φ and a generalized
free vector field Jµ. In order to impose that the external scalar and current couple non
trivially, one should force the correct global symmetry Ward identity, namely that the
three point function 〈φφ̄Jµ〉 is non vanishing.1 In this work we use this assumption in
our studies of the O(2) model. We plan to systematically make use of this assumption in
more general future explorations.

Among the obvious targets of our investigation one can list the O(2) vector model,
the Gross Neveu Yukawa model with N = 2 fermions, and QED3, both fermionic or
bosonic, where one identifies the global symmetry with the topological U(1)T . Although
in principle our set up could be used to analyze any system possessing a U(1) symmetry,
we found that our numerical bounds are subject to the same limitations as the single
scalar correlator analysis, namely they lose constraining power as the dimension of the
scalar grows. For this reason we mostly focus on the O(2) model where the charge-1
scalar has dimension close to the free value. We also explored more general bounds and
did not find other evidences of CFTs saturating them.

1In the numerical bootstrap framework this is equivalent to impose a finite current central charge CJ ,
see section 1.2.1.
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1.1. Introduction and summary of results

1.1.1 New data for the O(2) model

In this section we collect the most important constraints obtained in the present work.
The interested reader can find all the technical details and proper definitions in the next
sections. Additional and more general plots can be found in section 1.3.

As mentioned in the previous section, we mostly focused on the O(2) model. In this case
we identify our scalar φ with the order parameter of the Landau Ginzburg description
of the phase transition, while Jµ is the current associated to the global O(2) symmetry.
According to recent bootstrap results [15], this model is confined to live on a narrow
island in the plane (∆φ,∆S), where S here is the unique neutral relevant scalar operator.
Previous bootstrap studies also constrained the dimension of the unique relevant traceless
symmetric operator tij , the central charge CT and the current central charge CJ2 [35, 30].
A few OPE coefficients have also been determined in [15], such as λφφ̄S and λSSS .

44.5
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5
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γ

Δ
ϕ

(a) (b)

Figure 1.1: On the left: allowed region in the plane (∆φ, γ) assuming that the first spin-2,
parity-even and neutral traceless symmetric tensor T ′ after the conserved stress energy
tensor has dimension ∆T ′ ≥ 3.8, 4, 4.5, 4.8, 5. As the gap increases the allowed region
shrinks to an island. On the right: bound on ∆T ′ as a function of γ and ∆S . The bounds
have been obtained at Λ = 13.

When bootstrapping a mixed system of scalars, one can impose gaps in various scalar
sectors and exploit the existence of few relevant operators to create islands in parameter

2These are defined respectively as the normalization of the two-point function of the stress tensor Tµν
and the U(1) current Jµ.
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Λ = 13, ΔT'≥4

Λ = 19, ΔT'≥4

Λ = 19, ΔT'≥4.5
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-0.0805
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γ

Figure 1.2: Allowed region in the plane (γ, θ) assuming the known O(2) constraints
shown in Table 1.1 and ∆T ′ ≥ 4, 4.5. The lighter region has been computed at Λ = 13.
The two smaller regions instead have been computed at Λ = 19.

space. In our setup, however, the same strategy does not work.3 Our strategy will
then be to identify a new set of assumptions that allow to create an island and use
them to extract constraints on CFT-data that have never been bound before, such as
the parameter γ and the OPE coefficients λJJS . While the latter is self explanatory,
the former is related to the three point function of two currents and the stress tensor
—see section 1.2.1. As discussed in [49, 50], the conformal collider bounds require the
parameter γ to range between [−1/12, 1/12], with the extremes corresponding to free
theories. Numerical evidences of these bounds were also found by [18]. The value of
this parameter in the O(2) model was not known, although strong numerical evidences
supported a negative value, which was also confirmed by [18] under somewhat strong
assumptions on the spectrum of the theory.4

In our explorations we found that a discriminant characteristic of the O(2) model is
the presence of a rather large gap between the stress tensor and the next spin-2 neutral
operator, let us call it T ′. This property translates in a sharp peak in the bound on
∆T ′ as a function of ∆φ and γ, as shown in Fig. 1.1b. Intuitively this happens because
fake solutions of crossing or non-local theories do not require a stress tensor but usually
possess a spin-2 operator close to the unitarity bound; hence the bound on T ′ is effectively

3Because of Ward identities, the charge-1 sector does not contain scalars, besides φ itself. Gaps in the
other scalar sectors are not sufficient to create islands.

4In particular we checked that the assumption that all parity-odd operators have twist τ = ∆− ` ≥ 2.5
is inconsistent for the O(2) model. The milder assumption τ ≥ 2 is still consistent.
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a bound on the first spin-2 operator and only for local theories (which have a conserved
stress tensor) it becomes a bound on the second spin-2 operator. This property was also
exploited in [42] to create isolated regions in single correlator bootstrap.
In Fig. 1.1a we show the allowed region in the plane (∆φ, γ) with increasing gaps on T ′.
By raising the gap ∆T ′ , the allowed region shrinks to a very small island, with a ∆φ

value centered around the expected value of the O(2) model. By making the conservative
assumption ∆T ′ ≥ 4, we are able to create an isolated region, with the parameter γ
confined close to the lower extreme of its interval.

The above analysis shows that, in order to isolate the O(2) model, we can impose a
mild gap between the stress tensor operator and the next operator in the same sector.
Independent evidence for this can be found by considering the mixed correlator bootstrap
of scalars as in [15] and extracting the spectrum while moving inside the island. In what
follows we then use two assumptions to isolate the O(2) model, one more conservative
and one more realistic: ∆T ′ ≥ 4, 4.5. A refined analysis [51] of the O(2) model involving
three external scalar operators, φ, S and the unique relevant charge two scalar t, has
found ∆T ′ ≥ 4.6, which is consistent with both our assumptions.

Since in this section we are focusing on the O(2) model, in addition to the gap on T ′ we
will also input information from previous bootstrap analysis and use this assumptions to
determine bounds on new quantities.

Let us begin by γ and the OPE coefficient λJJS . We remind that, due to our framework,
the unique relevant neutral scalar S appears in two OPEs, schematically:

J × J ∼ 1 + λJJSS + . . . ,

φ× φ̄ ∼ 1 + λφφ̄SS + . . . . (1.1)

Let us define the ratio of OPE coefficients,

tan θ = λJJS
λφφ̄S

. (1.2)

We can then inspect what values of γ and the angle θ are consistent with the O(2) model
information we know. Fig. 1.2 shows the allowed region in the (γ, θ) plane once we input
the best determination for ∆φ and ∆S from [15] as well as other known O(2) constraints
shown in Table 1.1.5 Notice that in Fig. 1.2 and in the following plots we fixed the
external dimension to a precise value. Given the small size of the allowed range for ∆φ

[15, 51], moving this value would not alter the figure in a noticeable way.

5We demand positivity for a scan over the allowed intervals for ∆S and ∆t. Instead for ∆φ we pick a
central value in the allowed island.
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O(2) assumptions

∆φ = 0.5191
∆S ∈ [1.509, 1.514]
∆S′ > 3
∆t ∈ [1.204, 1.215]
∆t′ > 3
∆Q=0

0,− > 3
CJ < 0.9066CJ free

Table 1.1: List of assumptions used in our analysis. The bound for ∆S is taken from
[15]. The bound for ∆t and CJ are taken from [30]. S′ and t′ are respectively the first
operators appearing after S and t. Evidences for the gap on ∆Q=0

0,− were presented in [18].

Using the value determined in [15] for λφφ̄S and (1.2) we then conclude (for ∆T ′ ≥ 4):

γ = −0.0808(5),
|λJJS | = 0.645(4) . (1.3)

Similarly, we can extract upper and lower bounds on the central charge CT . These are
shown in Fig. 1.3 and allow us to conclude:

CT
C free
T

= 0.9442(6) . (1.4)

Finally, using the same set of assumptions, we can extract upper bounds on low lying
operators. We stress that these are bona fide upper bounds and are not obtained by the
extremal functional method. As an example we show in Fig. 1.4 the upper bounds on the
first neutral parity-odd scalar as a function of γ for fixed ∆φ. Again changing the value
of ∆φ within its allowed range does not affect the results in a noticeable way. Notice
that passing from Λ = 13 to Λ = 19 makes the bound stronger by a 5%, suggesting that
the bound is still not converged.

We repeated a similar analysis in other channels and we obtained the bounds summarized
in Table 1.2.

16



1.1. Introduction and summary of results

-0.0815 -0.0810 -0.0805 -0.0800
0.9430

0.9435

0.9440

0.9445

0.9450

γ

�
�
/�

�
��
��

Figure 1.3: Upper and lower bound on the central charge CT normalized to the free value
assuming the constraints shown in Table 1.1 and ∆T ′ ≥ 4.5. The bounds have been
computed at Λ = 13.
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Figure 1.4: Bound on the the dimension of the first neutral parity-odd scalar assuming
the known O(2) constraints shown in Table 1.1 and ∆T ′ ≥ 4.5. The bounds terminate
because γ is confined in an interval, see Fig. 1.2.

` P Q Λ = 13 Λ = 19

0 − 0 7.45 7.13
1 − 1 10.14 8.59
2 − 1 4.47 4.47
1 + 1 2.96 2.95

Table 1.2: Upper bounds on operators in the O(2) models.

1.1.2 Conductivity at finite temperature

CFTs also play an important role in the description of certain quantum critical points. It
was observed in [52] that transport properties of systems near a quantum critical point
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can be expressed in terms of CFT-data. There, the conductivity of a global symmetry
current in a (2+1) CFT non-zero temperature was computed in terms of the OPE J × J
and compared with a quantum Monte Carlo simulation (QMC) of the O(2)-model in the
limit of high frequencies, w � T .
The imaginary frequency conductivity is related to the thermal expectation value of the
current two point function by the expression

σ(iw)
σQ

= − 1
|w|
〈J̃µ=2(−w)J̃ν=2(w)〉T + (contact terms) , (1.5)

where σQ = e2/~ is the conductance quantum unit and J̃µ(w) denotes the Fourier
transform of the current Jµ(x).6

When using the OPE, the left-hand side receives contributions to all operators that
acquire a thermal expectation value.7 The leading term comes from the identity exchange
and corresponds to a constant value, usually called σ∞, identified with the conductivity
at T = 0. Next, for each primary operator O entering the J × J OPE, the conductivity
receives a contribution scaling as (T/w)∆O . As pointed out in [52], in the O(N) model,
the leading term in the expansion is the unique O(N) singlet relevant scalar, followed by
the stress tensor and then irrelevant operators.

In order to compare our bootstrap prediction with the quantum Monte Carlo simulation
for the O(2) model, we first need to express the conductivity defined in (1.5) in terms of
the CFT-data. After a brief calculation8, summarized in appendix A.1, we obtain:

σ(iw)
σQ

= CJ
32 + CJλJJS

4π
Γ(∆S + 1) sin

(
π∆S

2

)
2−∆S

Υ−1
(
T

w

)∆S

+ 72γCJ
CT

Hxx

(
T

w

)3
. . .

= σ∞ + b1

(
T

w

)∆S

+ b2

(
T

w

)3
+ . . . , (1.6)

where ∆S is the dimension of the relevant singlet in the O(2) model, Υ−1 measures the
normalized thermal expectation value of S, and Hxx is the thermal one-point function of
the stress tensor xx component, see appendix A.1 for a precise definition. The parameter
λJJS is the OPE coefficient determined in (1.3). The central charges CJ and CT measure
the normalization of the conserved current Jµ and the stress tensor Tµν . Our conventions
are such that in the theory of a single complex scalar one has

C free
J = 2 , C free

T = 3 . (1.7)

6The conductivity is defined only on Matsubara frequencies wn = 2πnT , but can be analytically
continued to intermediate values.

7Only primary operators acquire a thermal expectation value.
8See also [53] for a similar expression.
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By fitting the quantum Monte Carlo data, [52] obtained the values σQMC
∞ = 0.5662(5),

bQMC
1 = 1.43(5), bQMC

2 = −0.4(1), ∆QMC
S = 1.526(65). In addition, they independently

determined Υ = 1.18(13), by fitting different observables, namely the one- and two-point
function of the operator S. Using (1.6) and the bounds on CJ obtained in [30], we can
test the consistency of the results:

Bootstrap + QMC conductivity fit: Υ = 1.257(60) ,
QMC Υ direct fit: Υ = 1.18(13) .

We see that the two determinations of the parameter Υ are in agreement within their
errors. In particular the one using the bootstrap results for λJJS and ∆S is more
accurate.9

Plugging (1.3) and (1.4) in expression (1.6) we could also extract the value of the stress
tensor thermal one-point function. Unfortunately the fit of the conductivity performed
in [52] is marginally sensitive to the sub-leading terms and the value determined for b2
has a large uncertainty.10 Nevertheless, we can estimate:

Bootstrap + QMC conductivity fit: Hxx = 0.105(30) .

It would be nice to use the analytic bootstrap at finite temperature [55–57] to compute
the values of Υ and Hxx and compare them with the predictions given in this work.

1.2 Setup

In this section we explain our setup. We first discuss which are the possible operators
exchanged in the OPEs and we enumerate their associated OPE coefficients. In subsection
1.2.2 we explain how to write the crossing equations of the mixed J-φ sector (the two
sectors with only currents or only scalars were already studied in the literature, e.g.
[35, 18]). In subsection 1.2.3 we sketch which are the relevant conformal blocks and how
we computed them. Finally in subsection 1.2.4 we summarize the full set of bootstrap
equations in the form of sum rules.

Before entering the details of the setup, let us introduce the embedding space formalism
[25], which will be useful to classify conformal invariant tensor structures. The idea

9Notice however that the value extracted for σQMC
∞ from the fit of the conductivity is quite off

compared to latest bootstrap and Monte Carlo determinations, which could be caused by systematic
errors estimated of order 5-10% in [54]. The value of ∆QMC

S has instead larger uncertainties.
10Notice also that the next correction would come from the second neutral scalar S′, which has

dimension slightly above 3, and should therefore be treated on equal footing as the stress tensor.
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Chapter 1. Mixed Scalar-Current bootstrap in three dimensions.

is to uplift each coordinate to a null cone in Rd+1,1, namely x ∈ Rd → P ∈ Rd+1,1

such that P 2 = 0. This is very convenient since the conformal group SO(d+ 1, 1) acts
linearly on Rd+1,1 thus trivializing the problem of finding conformal invariants —in fact
the scalar product P1 · P2 of two embedding points is conformal invariant. In order to
define correlation functions in embedding space we uplift primary operators. We shall
focus on primary operators O(x, z) = zµ1 · · · zµ`Oµ1...µ`(x) in a traceless and symmetric
representation of SO(d), which are conveniently contracted with null polarization vectors
zµ. Each operator O(x, z) with dimension ∆ and spin ` is associated to a field O(P,Z),
which satisfies the condition

O(λP, αZ + βP ) = λ−∆α`O(P,Z) , (1.8)

where Z ∈ Rd+1,1 is an uplifted polarization vector. In the following we often classify
conformal invariant tensor structures by using the embedding space building blocks
introduced in [25],

Hij ≡
(Zi · Zj)(Pi · Pj)− (Zi · Pj)(Zj · Pi)

(Pi · Pj)
,

Vi,jk ≡
(Zi · Pj)(Pi · Pk)− (Zi · Pk)(Pi · Pj)√

−2(Pi · Pj)(Pi · Pk)(Pj · Pk)
. (1.9)

For example the two-point function of a primary operator O with dimension ∆ and spin
` is defined as follows

〈O(P1, Z1)O(P2, Z2)〉 = H`
12

P∆
12

, (1.10)

where Pij ≡ −2Pi · Pj . The central charges of a theory are defined from the two point
functions of canonically normalized currents and stress tensors,

〈J(P1, Z1)J(P2, Z2)〉 = CJ
(4π)2

H12

P d−1
12

, 〈T (P1, Z1)T (P2, Z2)〉 = CJ
(4π)2

H2
12

P d12
. (1.11)

However we keep these operators to be unit normalized according to (1.10). Therefore in
our conventions J and T are rescaled as follows

J → J(4π)/
√
CJ , T → T (4π)/

√
CT . (1.12)
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1.2.1 3pt functions

One of the features that makes the scalar-current bootstrap richer and more involved is
the presence of various different OPEs:

J × J, J × φ, φ× φ, φ̄× φ . (1.13)

Imposing the equality of operators in J × J and φ× φ and asking for conservation of the
currents we can enumerate the allowed OPE tensor structures as indicated in Table 1.3.
The operators are written in the form OQ` p, where ` is the SO(3) spin, p is the parity and

JJOQ=0
`+ JJOQ=0

`− JφOQ=1
`+ JφOQ=1

`− φφ̄OQ=0
`+ φφOQ=2

`+

` = 0 1 1 1 0 1 1
` = 1 0 0 1 1 1 0
` > 0, even 2 1 1 1 1 1
` > 1, odd 0 1 1 1 1 0

Table 1.3: Summary of the number of allowed tensor structures for each three point
function in our setup. The labels `,±, Q respectively correspond to spin, parity and U(1)
charge of the exchanged operator.

Q is the charge under the U(1) global symmetry. In the following we may drop some of
these labels for the sake of brevity.

For most of the three-point functions considered in table 1.3 there exists a unique tensor
structure. We will refer to the associated OPE coefficient as λ, i.e.

λJJO`=0+ , λJJO− , λJφO± , λφφO+ , λφφ̄O+
. (1.14)

Conversely there are two distinct OPE coefficients in the three-point functions of two
currents and a parity even operator OQ=0

`+ with even ` 6= 0 which we will define as

λ
(1)
JJO+

, λ
(2)
JJO+

. (1.15)

The explicit basis used to define OPE coefficients will not play an important role for the
understanding of the results. For this reason we decided to keep this definition implicit
in the main text and collect all the conventions in appendix A.2.

Next we use Ward identities to relate some OPE coefficients to the central charges CJ
and CT of equation (1.11). Using the Ward identities for J , we fix the OPE λφφ̄J in
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Chapter 1. Mixed Scalar-Current bootstrap in three dimensions.

terms of CJ . For concreteness, in our normalization this relation takes the form11

λφφ̄J = 4π√
CJ

. (1.16)

From the Ward identities of T the OPE coefficients λφφ̄T can be fixed in terms of CT
and ∆φ. Similarly the OPE coefficients λ(1)

JJT , λ
(2)
JJT are fixed in terms of CT and an extra

parameter that we call γ. In our normalization:

λφφ̄T =
√

3
2 ∆φ

√
CTfree

CT
, (1.17)

λ
(1)
JJT =

√
3

8 (1− 12γ)
√
CTfree

CT
, (1.18)

λ
(2)
JJT =

√
3

4 (5− 12γ)
√
CTfree

CT
, (1.19)

where CTfree ≡ 3 is the central charge of a free complex scalar. The coefficient γ is further
constrained by the conformal collider bounds [49] to lie in the following interval

− 1
12 ≤ γ ≤

1
12 . (1.20)

The two extremes correspond to complex free scalar (γ = − 1
12) and free fermion theory

(γ = 1
12).

1.2.2 Crossing equations

In this section we want to obtain all the crossing equations relevant for our setup.
Fortunately a big part of this goal is already solved in previous papers. For the scalar
correlators the situation is the standard one discussed for example in [35]. For the case
of four currents we exactly use the same setup detailed in [18]. What is left to discuss is
the case of mixed correlators of two scalars and two conserved currents. In the rest of
the section we focus on detailing this case.

Tensor structures

We start by considering four point functions of two scalars φi and two (so far non
conserved) vectors Ji. In order to classify the different tensor structures in their four
point functions it is convenient to write the correlation functions in embedding space

11We always assume that the external scalar has charge Q = 1 under the global U(1).
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[25],

〈J1(P1, Z1)φ1(P2)J2(P3, Z3)φ2(P4)〉 ≡ K(Pi)
∑5
s=1 fs(u, v)Q(f)

s ({Pi, Zi}) , (1.21)
〈J1(P1, Z1)J2(P2, Z2)φ1(P3)φ2(P4)〉 ≡ K(Pi)

∑5
s=1 gs(u, v)Q(g)

s ({Pi, Zi}) , (1.22)
〈φ1(P1)J1(P2, Z2)J2(P3, Z3)φ2(P4)〉 ≡ K(Pi)

∑5
s=1 hs(u, v)Q(h)

s ({Pi, Zi}) , (1.23)

where u ≡ P12P34/(P13P24) and v ≡ P23P14/(P13P24) are the usual conformal cross ratios.
The function K is a fixed kinematical factor

K(Pi) ≡ κ(v)

(
P24
P14

)∆1−∆2
2

(
P14
P13

)∆3−∆4
2

(P12)
∆1+∆2

2 (P34)
∆3+∆4

2

, κ(v) ≡ v−
∆2+∆3

2 . (1.24)

The factor κ(v) is introduced to get nicer definitions for the crossing equations. The
tensor structures Qs are the s-th component of the vectors ~Q defined below

~Q(f) = {H13, V1,23V3,21, V1,23V3,41, V1,43V3,21, V1,43V3,41} ,
~Q(g) = {H12, V1,23V2,14, V1,23V2,34, V1,43V2,14, V1,43V2,34} ,
~Q(h) = {H23, V2,14V3,21, V2,14V3,41, V2,34V3,21, V2,34V3,41} ,

(1.25)

where the structures Hij and Vi,jk are the building blocks of [25] defined in (1.9). So far
the structures Qs are fixed only by scaling. Extra constraints will be imposed in the
following by requiring that the two currents Ji are equal and conserved and by imposing
that ∆φ1 = ∆φ2 .

Crossing equations

Now that the tensor structures are classified, we are ready to write the crossing equations.
Crossing equations are obtained by demanding the invariance of the four point functions
under the permutations 1↔ 3 (i.e. of the operators inserted at point P1 and P3). This
implies relations between different functions fs and relates the functions gs and hs. The
resulting equations can be diagonalized by introducing the following change of basis,

fs ≡ 1√
2

5∑
s′=1

(Mf )ss′ f̂s′ , gs ≡ 1√
2

5∑
s′=1

(Mg)ss′ ĝs′ , hs ≡ 1√
2

5∑
s′=1

(Mh)ss′ ĥs′ ,

(1.26)
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where Mf,g,h are 5× 5 matrices defined as follows

Mf ≡


0 0 0

√
2 0

0 1 0 0 −1
1 0 1 0 0
1 0 −1 0 0
0 1 0 0 1

 , Mg ≡


0 0 0

√
2 0

0 1 −1 0 0
1 0 0 0 1
1 0 0 0 −1
0 1 1 0 0

 , Mh ≡


0 0 0

√
2 0

1 0 0 0 −1
0 1 1 0 0
0 1 −1 0 0
1 0 0 0 1

 .

(1.27)
With these definitions the permutation 1↔ 3 in (1.21) and (1.22) results in the following
set of crossing equations

f̂s(u, v) = f̂s(v, u) , s = 1, 2, 4, 5 , f̂3(u, v) = −f̂3(v, u) ,
ĝs(u, v) = ĥs(v, u) , s = 1, 2, 3, 4 , ĝ5(u, v) = −ĥ5(v, u) .

(1.28)

Equality

When the two vectors and the two scalars are equal (i.e. Ji = J , φi = O) we can use
extra crossing relations (for example a JOJO is invariant under (1, 2)↔ (3, 4)) which
constrain the functions f̂ , ĝ, ĥ,

f̂5(u, v) = 0 , ĝ5(u, v) = 0 , ĥ5(u, v) = 0 . (1.29)

However, we are interested in the case of different scalar operators with the same scaling
dimension ∆φ1 = ∆φ2 . In this case we are not allowed to use the crossing relation above,
however (1.29) still holds. Indeed we could show that for ∆φ1 = ∆φ2 the conformal
blocks which decompose the functions f̂5, ĝ5, ĥ5 exactly vanish. Thus, the functions must
vanish too.

Conservation

Conservation of the two operators Ji gives four independent partial differential equations
(of the first order) for the functions f̂s (similarly for ĝs and ĥs),

5∑
s=1

[(M (f)
u )s′s∂u + (M (f)

v )s′s∂v + (M (f)
0 )s′s]f̂s(u, v) = 0 , s′ = 1, 2, 3, 4,

5∑
s=1

[(M (g)
u )s′s∂u + (M (g)

v )s′s∂v + (M (g)
0 )s′s]ĝs(u, v) = 0 , s′ = 1, 2, 3, 4,

5∑
s=1

[(M (h)
u )s′s∂u + (M (h)

v )s′s∂v + (M (h)
0 )s′s]ĥs(u, v) = 0 , s′ = 1, 2, 3, 4,

(1.30)
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where Mu,Mv,M0 are 4× 5 matrices which depend on u, v.

Two of the four differential equations in (1.30) (for example s′ = 3, 4) involve only the fifth
functions f̂5 (similarly for ĝ5 and ĥ5). These two equations are therefore not important
in our setup since, as we argued above, the functions f̂5, ĝ5, ĥ5 must vanish when J1 = J2
and ∆φ1 = ∆φ2 .12

The remaining two differential equations, s′ = 1, 2, involve non zero functions. For the
case J1φ1J2φ2 one can use them to evolve the crossing equations of f̂3(u, v) = −f̂3(v, u)
and f̂4(u, v) = f̂4(v, u) from the line u = v to the plane. The crossing equation for f̂4 is
trivially satisfied on the line therefore we do not need to impose extra equations. On the
other hand to ensure crossing symmetry for f̂3 we need to impose the extra condition
f̂3(u, u) = 0. For the case of JJφφ̄ the conservation equations can be used to evolve the
equations ĝ3(u, v) = ĥ3(v, u) and ĝ4(u, v) = ĥ4(v, u) from the line u = v to the full plane.
One can in fact explicitly check that the evolution equations for ĝ3(u, v) and ĝ4(u, v) are
exactly equal to the ones of ĥ3(v, u) and ĥ4(v, u). In summary the final set of crossing
equations for two conserved equal currents and two scalars with equal dimensions are

f̂s(u, v) = f̂s(v, u) , ĝs(u, v) = ĥs(v, u) , (s = 1, 2) (1.34)

with the following constraint on the line

f̂3(u, u) = 0 , ĝ3(u, u) = ĥ3(u, u) , ĝ4(u, u) = ĥ4(u, u) . (1.35)

1.2.3 Conformal Blocks

In the previous section we explained how to write the crossing equations. The basic idea of
the bootstrap is to require the compatibility of the crossing equations with the conformal
block decomposition. In this section we explain which are the relevant conformal blocks
for our setup.

Let us consider a four point functions 〈O1O2O3O4〉 of operators Oi with dimensions ∆i

12As a curiosity we would like to report that, when the conformal dimensions of the two scalars is ∆φ

and the one of the currents is ∆J , we could solve these two differential equations, finding

f̂5(u, v) = c1
(
1− 2u+ (u− v)2 − 2v

)−∆J
2 (uv)

∆φ
2 + ∆J

2 , (1.31)

ĝ5(u, v) = c2 u
∆J+ 1

2 v
∆φ
2 + ∆J

2
(
1− 2u+ (u− v)2 − 2v

)−∆J
2 , (1.32)

ĥ5(u, v) = c3 u
∆φ
2 + ∆J

2 v∆J+ 1
2
(
1− 2u+ (u− v)2 − 2v

)−∆J
2 , (1.33)

where ci are constants of integration. Compatibility with the conformal blocks decomposition requires
ci = 0.
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and spin `i. By taking the OPE O1×O2 and O3×O4 we obtain the following conformal
block decomposition

〈O1O2O3O4〉 = K
∑
p,q

λ
(p)
O1O2Oλ

(q)
O3O4O

∑
s

g
(p,q)O1O2O3O4
O,s (u, v)Qs , (1.36)

where K is the prefactor defined in (1.24), Qs are the four-point function conformal invari-
ant tensor structures (E.g. (1.25)) and λ(p), λ(q) are the left and right OPE coefficients.
The conformal blocks g(p,q)O1O2O3O4

O,s (u, v) are functions of the cross ratios u and v, built
out of the insertions of the four operators. They depend on the representation of the
exchanged operator O which is labelled by ∆, ` and ±. The dependence on the external
operators Oi is twofold. Firstly, they depend on their conformal dimension ∆i, through
the combinations ∆12 and ∆34, where ∆ij ≡ ∆i −∆j . Most importantly they depend on
the spins `i of Oi which are responsible for the presence of different tensor structures
both for the OPE and for the four point function. This affects the possible values of the
conformal block labels p, q and s.

There are different strategies to compute conformal blocks. In this paper we mostly
used a recurrence relation [35, 6] which builds the blocks as a power series in the radial
coordinates r ≡ |ρ|, η ≡ (ρ+ ρ̄)/(2|ρ|) of [4], where

ρ = z

(1 +
√

1− z)2 , ρ̄ = z̄

(1 +
√

1− z̄)2 , (1.37)

and u = zz̄ and v = (1− z)(1− z̄). The recurrence relation is defined by studying the
analytic structure of the conformal blocks as functions of ∆. It takes the form

h
(p,q)O1O2O3O4
∆`,s (r, η) = h

(p,q)O1O2O3O4
∞`,s (r, η) +

∑
A

(4r)nA (RA)pp′qq′
∆−∆?

A

h
(p,q)O1O2O3O4
∆A`A,s

(r, η) ,

(1.38)
where h(p,q)

∆`,s(r, η) ≡ (4r)−∆g
(p,q)
∆`,s (r, η). There are a few ingredients that enter this formula:

h∞, RA and the labels ∆?
A,∆A, `A, nA. The latter are known from representation theory

for any conformal block in generic dimensions, while h∞, RA can be computed by some
standard computations [6, 26, 58]. Moreover, recently the paper [59] appeared with a
closed form solution for h∞ and RA for any conformal block in d = 3. This will be a
very useful tool to implement the conformal bootstrap in more complicated situations
involving mixed correlators with spinning operators.

For our setup we need to compute five different kinds of conformal blocks

gφφφφO (u, v) , gJφJφO,s (u, v) , gφJJφO,s (u, v) , g
(p) JJφφ
O,s (u, v) , g

(p,q) JJJJ
O,s (u, v) ,

(1.39)
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where φ here stands for any scalar operator of dimension ∆φ. In the following we discuss
how we computed these conformal blocks and some of their features.

φφφφ: The scalar block is a single function of the cross ratios which we computed, as
customary, by means of the recurrence relation (1.38).

JφJφ: The mixed blocks gJφJφO,s (u, v) were computed in [26] using the recurrence relation
(1.38). We used the ancillary file that was included in the publication. Notice that
in [26] the blocks are defined for generic spacetime dimension d and also for generic
non conserved vectors J1, J2 and different scalars φ1, φ2. The package generates
g

(p,q) JφJφ
O,s (u, v) for s = 1, . . . 5 and for O belonging both to traceless symmetric
representation of spin ` (in this case p, q = 1, 2) and to the mixed symmetric
representation (`, 1) of SO(d) (in this case p, q = 1). For our setup we need to
consider φ1 = φ2 and J1 = J2 conserved in dimension d = 3 —their normalization
is discussed in appendix A.3.2. This implies that we do not need to compute the 5
structures labelled by s but only the three combinations useful to decompose (1.34)
and (1.35) (one of these combinations is computed only in the u = v line). Finally,
we stress that the (`, 1) representation of SO(d) is identified as a parity odd spin `
representation of SO(3).

φJJφ: The blocks gφJJφO,s (u, v) have the same exact features as gJφJφO,s (u, v). Indeed they
can be computed from the latter by using permutation of the operators 1↔ 2 as
explained in appendix A.3.3. In particular one can compute the blocks gφJJφO,s (u, v)
at some order in the r expansion by knowing the blocks gJφJφO,s (u, v) at the same
order (provided that the complete dependence in the variable η is known at that
order). However we decided to compute these blocks by using the differential
operators of [24] to test if this algorithm was as effective as the recurrence relation.
In our implementations, the recurrence relation was faster.

JJφφ: We computed gφJJφO,s (u, v) using the recurrence relation (1.38) as we detail in
appendix A.3.1. Our program works in arbitrary dimensions and for generic vector
and scalar operators. For a generic setup p and s take values from 1 to 5. In our
case, due to conservation, p only runs over 1 and 2 and we only require s = 1, 2, 3, 4
(two on the u, v plane plus two at the u = v line) which are enough to expand the
crossing equations (1.34) and (1.35).

JJJJ : The g(p,q) JJJJ
O,s (u, v) blocks were computed in [18] using a recurrence relation valid

for generic vectors in d = 3. Of the 41 values of s, only 11 combinations are useful
to expand the crossing equation for conserved equal currents (5 on the full u, v
plane, 5 on the u = v line and 1 at the point u = v = 1/4). Moreover, for the
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conserved blocks, the values of p, q again run only from 1 to 2. In this work we
re-used the blocks generated for the paper [18].

Generating the five ingredients is not trivial. The JJJJ blocks are the hardest task
which was already done. However, computing the blocks φJJφ and JφJφ is also very
expensive because they both depend on the value of ∆φ. We decided to generate these
functions at low derivative order with an explicit dependence on ∆φ. This enabled us
to perform some exploratory scans in the dimension of φ. We then computed them at
higher derivatives for some fixed values of ∆φ compatible with the O(2) model. Finally,
the computation of the JJφφ and φφφφ blocks is reasonably fast.

1.2.4 Sum rules

The bootstrap equations are obtained by combining the crossing equations of subsection
1.2.2 with the conformal block decomposition of subsection 1.2.3. They take the form of
sum rules for some functions F [±] which are defined in terms of combinations of conformal
blocks,

F [±]O1O2O3O4 ≡ κ(v)gO1O2O3O4
O (u, v)± (u↔ v) , κ(v) ≡ v−

∆2+∆3
2 . (1.40)

In what follows we write down the sum rules for all the considered correlators. The
goal is to reach a single vectorial bootstrap equation that can be analyzed by means of
semidefinite programming.

The scalar sector

Let us start by reviewing how the scalar bootstrap equations arise. By equating the OPE
channels (12)(34) = (13)(24) of the correlation function 〈φφ̄φφ̄〉, we get the following
equation ∑

OQ=0
∆ `+

(−1)`|λφφ̄O|
2F

[−]φφ̄φφ̄
O (u, v) = 0 . (1.41)

The same strategy applied to 〈φ̄φφφ̄〉 generates two equations

∑
OQ=0

∆ `+

|λφφ̄O|
2F

[±]φ̄φφφ̄
O (u, v)∓

∑
OQ=2

∆ `+

|λφφO|2F
[±]φφφ̄φ̄
O (u, v) = 0 , (1.42)

parametrized by the label ±.

The mixed sector

As we explain in subsection 1.2.2, the crossing equations for the mixed correlators take a
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simpler form in the hatted basis (1.26). It is therefore convenient to define new functions
F [±] which are rotated accordingly,

F
[±]JφJφ̄
O,s (u, v) ≡ κ(v)−1∑5

s′=1(M−1
f )ss′g

[JφJφ̄]
O,s′ (u, v)± (u↔ v) ,

F
(q)[±]JJφφ̄
O,s (u, v) ≡ κ(v)−1∑5

s′=1(M−1
g )ss′g

(q)[JJφφ̄]
O,s′ (u, v)± (u↔ v) ,

F
[±]φJJφ̄
O,s (u, v) ≡ κ(v)−1∑5

s′=1(M−1
h )ss′g

[φJJφ̄]
O,s′ (u, v)± (u↔ v) ,

(1.43)

In this notation it is easy to write the bootstrap equations. From 〈JφJφ̄〉 we get two
equations on the plane and one on a line∑

OQ=1
∆ `±

σO|λJφO|2F
[−]JφJφ̄
O,s (u, v) = 0 , s = 1, 2 , (1.44)

∑
OQ=1

∆ `±

σO|λJφO|2F
[+]JφJφ̄
O,s (u, u) = 0 , s = 3 . (1.45)

Here σ is a sign which depends on the normalization of the three point functions.13 In
our case

σO =
{

1 if O = φ̄

(−1)`+p+1 if O 6= φ̄
, (1.48)

where p = 0, 1 and ` are respectively the parity and the spin of the exchanged operator
O.

From 〈φJJφ̄〉 we get four equations on a plane (labelled by s = 1, 2 and [±]) and two on
the line (s = 3, 4),

∑
OQ=0

∆ `+

2∑
q=1

λ
(q)
JJOλφφ̄OF

(q)[±]JJφφ̄
O,s (u, v)∓

∑
OQ=1

∆ `±

σO|λJφO|2F
[±]φJJφ̄
O,s (u, v) = 0 , s = 1, 2 ,

(1.49)∑
OQ=0

∆ `+

2∑
q=1

λ
(q)
JJOλφφ̄OF

(q)[+]JJφφ̄
O,s (u, u)−

∑
OQ=1

∆ `±

σO|λJφO|2F
[+]φJJφ̄
O,s (u, u) = 0 , s = 3, 4 .

(1.50)

The current sector
13This is due to the fact that we need rewrite the OPE coefficients in a positive combination,

λφJφ̄λφJφ̄ = λJφφ̄λφJφ̄ = |λJφφ̄|
2 , (1.46)

λφJOλŌJφ̄ = λJφOλŌJφ̄ = (−1)`+p+1|λJφO|2 (l > 0) . (1.47)
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Finally we review the sum rules for 〈JJJJ〉 as obtained in [18]. In that case conservation
and equality of the currents produced a set of 5 crossing equations valid on the plane,
5 on a line and a single one at a point. In terms of opportune functions F [±],14 the
equations are casted into the following sum rules

2∑
p=1

2∑
q=1

∑
OQ=0

∆ `+

λ
(p)
JJO+

λ
(q)
JJO+

F
[−](p,q)JJJJ
O+,s

(u, v)+
∑
OQ=0

∆ `−

|λJJO− |2F
[−]JJJJ
O−,s (u, v) = 0 , s = 13, 15,

16, 17

2∑
p=1

2∑
q=1

∑
OQ=0

∆ `+

λ
(p)
JJO+

λ
(q)
JJO+

F
[+](p,q)JJJJ
O+,s

(u, v)+
∑
OQ=0

∆ `−

|λJJO− |2F
[+]JJJJ
O−,s (u, v) = 0 , s = 7

2∑
p=1

2∑
q=1

∑
OQ=0

∆ `+

λ
(p)
JJO+

λ
(q)
JJO+

F
[+](p,q)JJJJ
O+,s

(u, u)+
∑
OQ=0

∆ `−

|λJJO− |2F
[+]JJJJ
O−,s (u, u) = 0 , s = 1, 2, 4,

5, 6

2∑
p=1

2∑
q=1

∑
OQ=0

∆ `+

λ
(p)
JJO+

λ
(q)
JJO+

F
[+](p,q)JJJJ
O+,s

(1
4 ,

1
4)+

∑
OQ=0

∆ `−

|λJJO− |2F
[+]JJJJ
O−,s (1

4 ,
1
4) = 0 , s = 3

In the equations above we explicitly show the parity of the exchanged operator since the
number of OPE coefficients depends on this quantum number.

The bootstrap equation

Since λ(p)
JJO+

λ
(q)
JJO+

and λ(p)
JJOλφφ̄O are not ensured to be positive quantities, it is necessary

to rearrange the equations into a single expression that can be studied using the standard

14The exact meaning of the functions F [±] is defined in [18], where it is used the notation F [+] → H̃
and F [−] → F̃ .
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semidefinite programming techniques,

~λT
1
~V Q=0

0,0,+
~λ1 +

∑
OQ=0
`=0,+


λφφ̄O+

λ
(1)
JJO+


T

·~V Q=0
∆,0,+ ·


λφφ̄O+

λ
(1)
JJO+

+
∑

OQ=0
`>0 even,+


λφφ̄O+

λ
(1)
JJO+

λ
(2)
JJO+


T

·~V Q=0
∆,`,+ ·


λφφ̄O+

λ
(1)
JJO+

λ
(2)
JJO+


+

∑
OQ=0
` odd,+

|λφφ̄O|
2~V Q=0

∆,`,+ +
∑
OQ=0
` 6=1,−

|λJJO− |2~V
Q=0

∆,`,− +
∑
OQ=1
`≥1,+

|λJφO|2~V Q=1
∆,`,+ +

∑
OQ=1
`≥1,−

|λJφO|2~V Q=1
∆,`,−

+
∑

OQ=2
` even,+

|λφφO|2~V Q=2
∆,`,+ + |λJφφ̄|

2 ~V Q=1
∆φ,0,+ = 0 .

(1.51)

where ~λ1 = (1, 1). Here we have separated the case of OQ=0
`=0,+ from the other ` > 0, since

in former case there is no OPE coefficient λ(2)
JJO. In appendix A.4 we write explicitly all

the vectors ~V Q
∆,`,±, where ∆ is the conformal dimension, ` is the spin, ± is the parity and

Q = 0, 1, 2 is the charge of the exchanged operator. By construction all the vectors ~V
are 23 dimensional. The 23 components of the vector ~V Q=0

∆,`,+ are 3× 3 matrices for ` > 0,
and 2× 2 matrices for ` = 0. The components of all the other vectors ~V do not have any
matrix structure.

In the next sections we use the following convention to denote the gaps of the exchanged
operators

∆Q
`,± ≡ Gap for operators with spin `, parity ± and charge Q . (1.52)

In this notation the bootstrap equations (1.51) depend on the following five infinite
families of gaps,

∆Q=0
`,+ , ∆Q=0

`,− , ∆Q=1
`,+ , ∆Q=1

`,− , ∆Q=2
`,+ . (1.53)

For brevity we sometimes refer to the gap of important operators by their name, e.g.
∆S = ∆Q=0

`=0,+, ∆φ2 = ∆Q=2
`=0,+, ∆T = ∆Q=0

`=2,+, and so on. We assume that the CFT is
unitarity, namely that all gaps in (1.51) are consistent with the unitarity bounds,

∆Q
`=0,± ≥

d

2 − 1 , ∆Q
`>0,± ≥ `+ d− 2 . (1.54)

If we increase enough some of the gaps ∆Q
`,±, we may find that the equations (1.51)

cannot be satisfied. In this case we say that the corresponding CFT is excluded. We can
thus think of ∆φ and the gaps (1.53) as the knobs which can turn to generate bounds.
Equation (1.51) can also be used to compute upper bounds on OPE coefficients. In
the following we show some interesting bounds obtained in this setup. All semi-definite
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Chapter 1. Mixed Scalar-Current bootstrap in three dimensions.

problems have been solved using SDPB [13] with parameters as in [18].

1.3 Results

1.3.1 Bounds on operator dimensions

Scalar operators

We begin by studying the bound on the first parity-even scalar, neutral under the global
U(1) symmetry. We denote its dimension by ∆S . As shown in Fig. 1.5 the bound
coincides with the constraint one would get by bootstrapping only the scalar correlator
〈φφ̄φφ̄〉, until it reaches the maximal value allowed by the current bound [18]. At that
point the bound becomes flat and independent on the external dimension. Although no
new interesting features appears, this bound represents a validation of our methods and
shows how the different crossing relations interplay.
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Figure 1.5: Bound on the dimension of the first neutral parity-even scalar operator as a
function of ∆φ. For ∆φ . 1.5 the bound is driven by the scalar bound. The plateau for
larger values of ∆φ corresponds to the bound from the current bootstrap. The bound
displays a kink corresponding to the O(2) model. The bounds have been obtained at
Λ = 13.

Next we consider a bound on the dimension of the first parity-even charge-2 scalar t. We
denote its dimension by ∆t. This operator only appears in the φ × φ OPE, thus it is
natural to expect that the bound is completely driven by the scalar crossing equations
only. We show this plot in Fig. 1.6, together with the same bound obtained using only
scalar correlators at higher Λ.15 The bound only shows a kink in corresponding to the

15Given the numerical complexity of our setup we could not push the mixed correlator analysis to the
same value of Λ.

32



1.3. Results

������ Λ = ��

������� Λ = ��

��� ��� ��� ��� ��� ��� ��� ���
Δϕ�

�

�

�

�

�

�

�
Δ�

Figure 1.6: Bound on the dimension of the first charge-2 parity-even scalar operator as a
function of ∆φ. The bound displays a kink in corresponding to the O(2) model. The
continuous line was obtained using the mixed system of bootstrap equations at Λ = 13;
the blue dashed line only uses the scalar correlator at Λ = 27. The grey dotted line is
the generalized free theory line. The red (black) dots correspond to the dimension of
the monopoles with charge q = 1/2 and q = 1 in bosonic (fermionic) QED3 computed in
large-N expansion [61, 60]. Here we show respectively N = 10, 12 and N = 4, 6.

O(2) model, nevertheless it allows to make contact with another set of CFTs that must
obey our exclusion plots.
The infrared fixed point of fermionic and bosonic QED3 contains a topological global
U(1) symmetry: we can then interpret φ as a scalar monopole operator with topological
charge q = 1/2 under this symmetry and identify Jµ with the associated current; then
the bound on ∆t is interpreted as the bound on the smaller monopole with charge q = 1.
Interestingly the dimension of these operators have been computed in a large N expansion
[60], where N is the number of copies of fermions or bosons in the gauge theory. The
predictions are shown in Fig. 1.6: although they do not saturate the bound, they seem
to get close for small values of N (where however the large-N expansion is not accurate).

The only other sector containing scalars in the mixed system of J and φ is the neutral
parity-odd one. We do not show its bound here, since it coincides exactly with the one
obtained in [18], except that it has a termination point dictated by the maximal value of
∆S allowed as a function of ∆φ.

Operators with spin

We now move to bounds on operators with spin. We have already pointed out in section 1.2
the advantages of bounding the dimension of T ′µν —the first neutral parity-even spin-2
operator after the stress tensor— to pinpoint the O(2) model. Let us now review this
statement by exploring the bound on ∆T ′ on a broader range of parameters. In Fig. 1.7
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Chapter 1. Mixed Scalar-Current bootstrap in three dimensions.

we show its upper bound as a function of the external dimension ∆φ and the parameter
γ ∈ [−1/12, 1/12] defined in (1.19).
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Figure 1.7: Bound on the dimension of the first neutral parity-even spin-2 operator after
the stress tensor as a function of ∆φ. Different curves corresponds to different values
of the parameter γ defined in (1.19). The dashed curves correspond to the function
min(4, 2∆φ + 2). The bounds have been obtained at Λ = 13.

We observe two interesting features at the extremes of the γ interval. Close to the
γ ∼ −1/12 the upper bound on ∆T ′ develops a sharp peak corresponding to a somewhat
large gap in the spin-2 sector. We interpret this gap as the signal of the existence of a
local CFT. Non-local theories or fake solutions of the crossing equations do not require a
conserved spin-2 primary. As a result for those theories the bound on ∆T ′ is actually a
bound on the first spin-2 operator. In section 1.1 we exploited this peak to create an
island in the (∆φ, γ) plane and provide the first precise determination of γ for the O(2)
model.16

In the proximity of the other extreme the bounds shows instead a clear kink around
∆φ ∼ 0.91. Although it would be nice to interpret this feature as an existing CFT, we
are not aware of obvious candidates. The value γ ∼ 1/12 suggests that the putative
CFT should admit a description in terms of fermions: in that case the scalar φ could be
a fermion bilinear with a large anomalous dimension. Another possibility is that φ is

16One can show the peak persist once additional information about the O(2) model is injected, such as
the presence of a single relevant neutral scalar.
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a monopole operator of a QED3-like theory.17 Unfortunately the parameter γ for the
topological current has never been computed. We leave the investigation of this kink
for future studies. It is also plausible that this is a reminiscence of the trivial solution
in which φ is a generalised free field and J is a decoupled conserved current. In this
case one has ∆T ′ = min(4, 2∆φ + 2). This solution is shown by a black dashed curve in
Fig. 1.7. We observe indeed that for values of γ outside the conformal collider interval
the bounds approaches this solution.

We also notice that all the curves in Fig. 1.7 eventually reach a plateau. We checked that
at this point the ∆φ-independent constraints from 〈JJJJ〉 take over.

So far we have considered bounds on operators that were accessible both using the scalar
correlator alone or the four current correlator alone. Let us now move to operators in the
Q = 1 sector, i.e. appearing in the OPE J × φ. We recall that, due to conservation, the
only scalar allowed in the OPE is φ itself. Moving to spin-1 operators, we find parity-even
and parity-odd charge-1 vectors.
In Fig. 1.8a we plot the bound on the dimension of the first parity-even vector charged
under the global U(1). With no additional assumption the bound displays the character-
istic fake-primary effect discussed in [20] due to a contamination from charge-1 spin-2
operators at threshold. By imposing a gap in the latter sector, the fake-primary effect is
removed. In addition to the jump, the bound also displays a kink approximatively in
correspondence with the O(2) model. However we observed that, injecting additional
information, the height of the kink changes substantially.18 For instance, by imposing
the existence of a single relevant spin-1 neutral current, the bound drops as shown in
Fig. 1.8b. We checked that imposing extra assumptions does not substantially improve
the bound further.19

We conclude the section by presenting in Fig. 1.9a and Fig. 1.9b bounds on the first
parity-odd charge-1 vector and tensor. Also in this case we must remove the fake primary
effect by imposing a finite gap in the spin-2 and spin-3 charge-1 parity-odd sector. In the
former case, however, the bound turns out to be heavily dependent on the gap. With
a gap smaller that 4.1 the bound seems to diverge when approaching the O(2) model,
however increasing the gap to 4.5, changes drastically the shape of the bound. We should
point out that further investigations show that a gap in the spin-2 charged parity-odd
sector of 4.5 is inconsistent with additional assumptions about the O(2) model.

17For instance large-N computation and bootstrap studies suggest that the smallest monopole in
fermionic QED3 with 4 flavours has dimension ∆M ∼ 1.034. The existence of a fixed point at small N is
an open question for both bosonic and fermionic QED3[47, 62]. In principle U(1) Chern-Simons theories
with non vanishing κ must also obey our bounds.

18It could be that the kink observed without further assumptions corresponds to another CFT.
19See also the upper bound presented in Table 1.2 found under additional constraints.
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Figure 1.8: On the left: bound on the dimension of the first charge-1 parity-even spin-1
operator as a function of ∆φ. Assuming a gap of 4 in the charge-1 parity-even spin-2
sector removes the fake primary effect. On the right: same bound with and without the
assumption of no relevant neutral vectors besides J . The bounds have been obtained at
Λ = 13.

Notice also that the bound in Fig. 1.9a stops existing as ∆φ approaches 0.96. A similar
phenomenon was observed in [63]. Also in our case, the point where the bound stops
existing shifts as we increase Λ. We believe this is a numerical artifact which could be
cured by imposing ad hoc gaps in the spectrum.
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Figure 1.9: On the left: bound on the dimension of the first charge-1 parity-odd spin-1
operator as a function of ∆φ. The dashed red line corresponds to the value of ∆φ of the
O(2) model. The two lines corresponds to different gaps in the charge-1 spin-2 parity-odd
sector to remove the fake primary effect. On the right: bound on the dimension of the
first charge-1 spin-2 parity-even operator as a function of ∆φ. When the bound reaches 5
it jumps to a much higher value. The bounds have been obtained at Λ = 13.
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(a) (b)

(c) (d)

Figure 1.10: Lower bound on the central charge CT /CT free as a function of γ for ∆φ =
0.505, 0.5192, 0.605, 1.05. The shaded region is allowed. The bounds have been obtained
at Λ = 13.

1.3.2 Bounds on central charges

Among the OPE coefficients appearing in the conformal block decomposition of our
correlation functions, the one associated to the exchange of the stress tensor plays a
special role. It is indeed related to the central charge CT by conformal Ward identities.
As shown in (1.19), the precise relation involves the parameter γ, which due to the collider
bounds is constrained in the interval [−1/12, 1/12]. Using the bootstrap, we can then
place a lower bound on the central charge as a function of the external dimension ∆φ and
the parameter γ. Lower bounds on the central charge for theories with O(2) symmetry
have also been computed using the scalar correlator [35] or the current correlator only
[18]. In the former case the bound decreases with ∆φ and is always weaker than the
free theory value C free

T , with a change of slope in proximity of the O(2) model.20 In the
latter case the bound remains below the free theory value for the allowed range of γ and
rapidly increases outside.21

20The discontinuity appeared to be slightly off in ∆φ.
21Assuming a mild gap after the stress tensor make the collider bounds more manifest and the bounds

rapidly grows for |γ| > 1/12.
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Figure 1.11: Lower bound on CJ as a function of ∆φ. The solid line is computed at
Λ = 13 using the mixed system of J-φ correlators, while the dashed line is computed at
Λ = 27 using only the scalar correlator. Both lines show a feature corresponding to the
O(2) model.

In Fig. 1.10 we show the results of our analysis. For values of ∆φ close to unitarity, the
bound displays a minimum in correspondence with the free scalar theory values of γ and
CT (the red dot in the picture). Increasing ∆φ to 0.5192 the bound gets slightly weaker
to accommodate a smaller central charge, as expected in the O(2) model (dashed line in
Fig. 1.10b). Interestingly one can already observe that CT ≤ C free

T requires a negative γ.
Increasing further the value of ∆φ makes the bound relax to the bounds obtained using
currents alone, Fig. 1.10d.

We conclude this section by studying the constraints imposed on the central charge CJ .
Due to Ward identities, this quantity is related to the inverse of the OPE coefficient λφφ̄J
according to (1.16). Notice that the latter OPE coefficient appears both in the scalar
correlator and in the mixed channel, schematically:

φ× φ̄ ∼ 1 + λφφ̄J J + . . . ,

J × φ ∼ λφJφ̄ φ+ . . . . (1.55)

There is however an important difference between the above expressions: in the first line
the block associated to the exchange of a conserved current is continuously connected to
non conserved spin-1 blocks; on the contrary, in the mixed channel, the block associated
to the exchange of φ̄ itself plays a special role and is, in fact, isolated. In practice this
means that this block cannot be mimicked by an operator arbitrarily close in dimension
and one can hope to place also an upper bound on CJ under suitable assumptions. We
will come back to this shortly.

Let us begin by exploring lower bounds on CJ . This is shown in Fig. 1.11 as a function
of ∆φ. By comparison we also show the bound obtained using the scalar correlator with
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higher numerical power. The shape is substantially similar and the only distinguishable
feature is in correspondence with the O(2) model, as already observed in [64].22
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Figure 1.12: Upper bound on CJ normalized to the central charge of a free complex
boson as a function of ∆φ at fixed values of the parameter γ assuming CT ≤ 0.95C free

T .
The bounds have been obtained at Λ = 13.

As mentioned earlier, in a pure scalar bootstrap setup, extracting bounds on CJ would
require to isolate the current conformal block by assuming a gap on the next spin-1
operator. In the present framework, however, the isolated nature of the φ-conformal
block in the mixed channel can be exploited to compute such a bound. Notice that a
finite value of CJ implies that the scalar is indeed charged under the external current J .
Despite the fact that we would like to focus on those cases, it is perfectly legitimate to
have a correlation function of a conserved current associated to a U(1) under which the
complex scalar φ is neutral.23 Thus, we do not expect an upper bound to exist without
further assumptions.
In our investigations we found that assuming a small value of the central charge CT forces
a finite value of CJ . This is shown in Fig. 1.12, where we computed an upper bound on
CJ as a function of ∆φ for several values of γ. This is the first numerical evidence that
the existence of a local stress tensor, together with a set of selection rules, implies the
presence of conserved current in the scalar OPE.

22The fact that the bound decreases for large external dimensions is expected: if one interpret J as a
topological U(1) current in QED3 and φ as a monopole operator then one has the asymptotic behavior
[60, 65]:

∆φ ' 0.265Nf − 0.0383 +O

(
1
Nf

)
,

CJ
Cfree
J

' 3.2423
Nf

(
1− 0.1423

Nf
+O

(
1
N2
f

))
, (1.56)

where Nf is the number of fermions in the UV theory. Unfortunately our bound is still far from these
values.

23The simplest case is a tensor product of a generalized free vector field and a generalized free scalar
theory. Alternatively one can consider for instance the O(4)-vector model identify φ ≡ φ1 + iφ2 and J as
the generator of rotations in the 3-4 direction.
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Figure 1.13: Lower bound on the central charge normalized to the central charge of a
free complex boson as a function of the parameter γ at fixed values of ∆φ assuming that
the scalar φ is neutral under the symmetry generated by the current J . The bounds have
been obtained at Λ = 13.

We could go one step further and ask for what values of the central charge such a bound
exists. This question can also be recast as a lower bound on CT , assuming CJ → ∞.
Fig. 1.13 answer precisely this question. We observe that if the central charge is below
the bound for given γ and ∆φ, the scalar must be charged under the external current
J . Intuitively this result can be restated as: in order to have an extended symmetry,
one needs enough degrees of freedom. While this statement is obvious in free theories, it
interesting to show that it can be extended to interacting CFTs, although at present the
bound on CJ only exists for small CT and ∆φ close to the unitarity bound.24

1.4 Conclusions

In this work we studied the impact of considering correlation functions involving a spin-1
conserved current and a scalar operator charged under the associated global U(1). Using
numerical bootstrap techniques we have explored the space of constraints. We found
that only the O(2) model seems to stand out, appearing as kinks in several operators
bounds and as a sharp peak in the bound on the first spin-2 operator after the stress
tensor. By using these features we manage to constrain several observables that are not
accessible by the scalar bootstrap, such as dimensions of certain operators and three-
point functions coefficients involving two currents and a third operator. In particular, we
determined with some accuracy the OPE coefficient λJJS , where S is the unique relevant
neutral deformation in the O(2) model. This parameter controls the leading correction
to the conductivity σ in the O(2) model at finite temperature and high frequencies. We
expressed the dependence of σ in terms of the CFT data and compared it to the QMC
simulations of [52] to extract the expectation value of the operator S at finite temperature.

24Indeed for larger values ∆φ, the bounds of Fig. 1.13 are on top of the bounds with no assumptions
on CJ shown in Fig. 1.10.
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Our determination agrees with the direct QMC determination and is more accurate.

We also accurately determined two more quantities, γ and the central charge CT , appearing
in the next-to-leading correction of σ. Their knowledge allowed to extract the thermal
expectation value of the stress tensor from the fit of the conductivity. In order to improve
the sensitivity to sub-leading corrections, the precision of the QMC simulation should be
increased, with particular attention to systematic errors.
Recently a QMC study of the Gross-Neveu model was performed in [66], together with
a fit of the conductivity. It would be interesting to repeat our bootstrap analysis and
extract the relevant CFT-data to compare with those results.25 In order to focus on the
Gross-Neveu model one should presumably consider external fermions.

Part of the motivation of this work was to establish whether it is worthwhile to include
conserved currents in the bootstrap. For certain questions we observed that the presence
of the spin-1 current was not determinant. On the other hand, when scanning over
parameters such as γ and θ, we observed interesting interplay of the crossing equations.
To make a conclusive statement one should consider an even more complicated system
and include the neutral scalar S as an external operator. That analysis, in conjunction
with new algorithms to cheaply scan over the OPE parameter space [51] could represent
the correct approach to deal with CFTs with global symmetries.

25We thank William Witczak-Krempa for bringing this work to our attention.
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2 Bootstrapping the ARP 3 model
using traceless symmetric O(N)
scalars.

Based on research done in collaboration with Maria Refinetti and Alessandro
Vichi [2]. I, the candidate, performed and analyzed the numerical computations presented
in this chapter and made major contributions to all steps of the research including the
study of and comparison against the relevant literature and the analytic computations
leading to the numerical setup. The chapter as it appears here was written exclusively by
me.

2.1 Introduction and summary of results

The conformal bootstrap has successfully classified many 3D CFTs (see for example
[35, 5, 30, 15, 67]). In most of these cases the bound on the dimension of the first
singlet shows a clear kink in the immediate vicinity of the the CFT (an exception is
[68]). However, some theories could be living in the interior of these bounds. Such a
theory can still be found as long as it lives close to the edge of the allowed region in
some other parameter space. Still, creating an island isolating the allowed dimensions of
lowest dimensional relevant operators is more challenging for such a theory and requires
additional assumptions to be made1 In this chapter we aim to isolate such a theory,
namely the ARP 3 model.

The ARP 3-model has O(4) symmetry as well as a discrete Z2 gauge symmetry. The
effective LGW action assumes a gauge invariant order parameter transforming in the
traceless symmetric representation. Previous studies of 3D CFTs with O(N) symmetry

1One notable advantage of the singlet channel over the other channels is that the number of relevant
singlet can usually easily be found from experimental realizations and/or lattice simulations. For other
representation one needs to make an educated guess on the dimension of the second lowest operator in
order isolate the lowest operator.

43



Chapter 2. Bootstrapping the ARP 3 model

have always assumed the existence of the vector representation φ. However, in the LGW
description of the ARP 3 model no such operator exists.

Lattice computations have shown evidence for the existence of a fixed point for this
model despite the fact that LGW effective action shows no such fixed point[69]. Possible
explanations could be that this gauge-invariant order parameter is not capturing the
full physics near the phase transition or that the perturbative computation (a five-loop
epsilon expansion [69]) of the critical value of N where two fix points merge and above
which the CFT becomes complex is inaccurate. This study aims to solve this discrepancy
using the conformal bootstrap.

According to lattice Monte Carlo simulations [69] the ARP 3 model has one relevant
singlet scalar with a dimension, ∆s = 1.28± 0.13 and the dimension of the first traceless
symmetric operator is found to be ∆t = 0.54± 0.02. Thus it lives deep in the interior of
the one relevant singlet scalar bounds.

Hence, in order to isolate an island in the (∆t,∆s) plane we are required to make certain
assumptions. These assumptions are motivated by features found in the OPE data of
non-trivial representations. Most notably we observe a peak in the maximal allowed
gap for the dimension of the first spin-2 singlet after the stress tensor (∆T ′) and kinks
in the dimension of the first mixed symmetry {2, 2}, or Box, scalar (∆b) and the first
anti-symmetric vector after the conserved current (∆J ′). All these features appear near
the value of ∆t predicted by the lattice simulations. Additionally, a small gap in the
dimension of the first {3, 3}, or Hook, vector allows us to exclude solutions related to the
O(9) model.2

Under these assumptions we manage to isolate an island in both the (∆t,∆s) and (∆t,∆b)
planes. The islands are shown in figures 2.1b and 2.1a. The islands are consistent with
the lattice bounds.

The traceless symmetric operator t in the ARP 3 model is expected to be Z2-odd due to
the transformation rules of the Landau-Ginzburg-Wilson order parameter. We therefore
also study the mixed t-s bootstrap where the external operator t is assumed to be Z2-odd.
This t− s bootstrap setup revealed that the top part of the peak found in ∆T ′ was not
given by true solutions with one relevant singlet. Moreover, the island in figure 2.1b
persists in the mixed setup at Λ = 35. Unexpectedly the mixed setup did not result in

2The O(9) model appears due to an identification between φa and tij in the crossing equations for
their respective four point functions. Under this identification the O(9) theory appears to have a Hook
vector with dimension ∆h = 2, i.e. at the unitarity bound. No theory with O(4) symmetry is expected to
have such an operator. Thus a small gap ∆h > 2.05 allows the exclusion of theories with O(9) symmetry.
This is explained further in section 2.3.3.
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Figure 2.1: On the right: Allowed region in the (∆t,∆b) plane assuming ∆T ′ > 4.5,
∆J ′ > 3, ∆h > 2.05 and ∆b > 2.8. The green region shows the prediction for the ARP 3

model from lattice computations. On the right: Corresponding allowed region in the
(∆t,∆s) plane (assuming ∆b > 1.3 instead of ∆b′ > 2.8 to avoid scanning over a 3
dimensional parameter space). The bounds have been obtained at Λ = 35.

any major improvements to the bound under these assumptions.

The mixed setup does allow access to the Z2-odd traceless symmetric representations
exchanged in the t× s OPE. This allows us to isolate ∆t′O

under the assumption that
t′ is the only relevant Z2-odd traceless symmetric scalar besides t itself. This bound is
shown in figure 2.2. The figure also includes the 3 dimensional allowed island under the
same assumptions that allowed us to isolate the island in figure 2.1b. All computations
in the mixed setup make use of the OPE scanning algorithm of [67]. As a side effect this
allows us to estimate that λsss

λtts
∈ (0.025, 2.5).3

Additionally we performed a systematic study of all lowest dimensional operators in the
t × t OPE. This uncovered two new family of sharp kinks as a function of N in the
bound on the first Box ({2, 2}) scalar and Hook ({3, 1}) vector, see figures 2.3a and 2.3b.
Possibly these kinks are related to the phenomenon found by [70]. There kinks were
found to correspond to a linear combination of 4-pt functions from different CFTs, such
as 〈OOOO〉GFT − 〈OOOO〉Free. However, such a solution would only be available at
∆t = 1 and not for ∆t < 1.4 The location of the kink does not seem to converge to
∆t = 1 for large N .

Moreover, we find strong evidence for solutions of crossing where the external operator
t is Z2-even (unlike in the ARP 3 model). The bound on the first traceless symmetric
operator exchanged in t× t shows some slight kinks. However, when we assume that t× t

3In our normalization λsss
λtts

= 1 for the free theories at ∆t = 1/2 and ∆t = 1.
4Similarly a linear combination of two different GFTs such as 〈OOOO〉t-GFT − 〈OOOO〉φ-GFT would

only be unitary starting from ∆t ≥ 1.

45



Chapter 2. Bootstrapping the ARP 3 model

Figure 2.2: In blue: Allowed values for ∆t′O
for (∆t,∆s) in the expected ARP 3 region

assuming the existence of exactly one relevant singlet and exactly one additional relevant
Z2-odd operator besides t-itself. These bounds have been obtained at Λ = 19. In orange:
Allowed region under the additional assumptions ∆T ′ > 4.5, ∆J ′ > 3, ∆h > 2.05 and
∆b > 1.3. These bounds have been obtained at Λ = 35.

exchanges t-itself these kinks become very sharp. This is strong evidence that there is a
real Z2 even CFT living at that kink.5 These bounds are shown in figures 2.3c and 2.3d.
These and some additional kinks are discussed in more detail in section 2.6.

2.2 Background

2.2.1 RPN−1 and ARPN−1 model

The RPN−1 model is defined as a spin system with spins sx taking values in the real
projective space RPN−1. Equivalently, we can describe the system by considering sx
to take values from RN under the restrictions that sx · sx = 1 and the identification
sx ∼ −sx, this last can be viewed as a Z2 gauge symmetry. The hamiltonian can be
written as

HRPN−1 = J
∑
〈x,y〉
|sx · sy|2 (2.1)

where 〈x,y〉 indicates a that the sum runs over pairs of nearest neighbors. For negative J
the system is ferromagnetic while for positive J it is anti-ferromagnetic. In this chapter
we will study the existence of a fixed point for the case of positive J for N = 4, i.e. the
ARP 3-model. For this model there is lattice data available that suggest the existence
of a fixed point with a traceless symmetric operator of dimension ∆t = 0.54(2) and one
relevant singlet with dimensions ∆s = 1.28(13)[71]. The existence of this fixed point is

5The t-GFT with the traceless symmetric operator as its fundamental field does not exchange t in the
t× t OPE.
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Figure 2.3: Bounds on the dimension of the first Box scalar (a), the first hook vector (b),
the first traceless symmetric operator (c) and the first additional traceless symmetric
operator assuming the exchange of t-itself (d). The blue, orange, green, red, purple and
brown lines correspond to respectively N = 4, 5, 10, 20, 100, 1000. (a) and (b) show a
family of kinks for all N . However, the locations (∆t) of the two families do not coincide.
In (c) various families of kinks are visible: One corresponding to the O(N ′) model, one
in the region 0.55 < ∆t′ < 0.6, one in the region 0.6 < ∆t′ < 0.75 (this one disappears at
N = 100), and a last one in the region 0.75 < ∆t′ < 1. The last family of kinks becomes
much sharper and more pronounced under the assumption that t-itself is exchanged (d),
especially for N = 20, 100. All bounds have been obtained at Λ = 27.

unexpected since the Landau-Ginzburg-Wilson approach of the same order parameter
does not show stable fixed points.6.

2.2.2 The Landau-Ginzburg-Wilson effective action

The Landau-Ginzburg-Wilson approach dictates that one identifies an order parameter
that describes the fluctuations near criticality. The order parameter is chosen such that
it vanishes in the disordered phase and is non-zero in the ordered phase. Thus, it is

6One unstable fixed point is given by the free Gaussian theory and another by the O(9) model. In
addition there are two fixed points that merge at N = Nc and turn complex for N > Nc. According to a
five-loop epsilon expansions Nc ≈ 3.6 [71].
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Chapter 2. Bootstrapping the ARP 3 model

expected to be small near criticality. The continuum limit of the order parameter results
in a field transforming in the same representation as the order parameter. The stable
critical point of the effective field theory describing this field describes the system near
criticality.

Ferromagnetic Case: the energy is minimized by aligning the directions of the spins.
Thus, at low energy the system breaks O(N) symmetry by aligning in a preferred direction.
This configuration preserves translational invariance. In the standard LGW approach
one looks for a gauge invariant order parameter that is non-zero in the ordered phase and
vanishes in the disordered phase. This order variable will built from the site variable,

P abx = saxs
b
x − δab/N (2.2)

We then define the order parameter as its sum over lattice sites

Mab =
∑
x

P abx . (2.3)

We see that in the ordered phase the contributions to Mab are cumulative, due to the
prefered direction, resulting in a non-zero matrix. At high temperature, in the isotropic
phase, contributions will cancel so that limT−>∞M

ab → 0. This order parameter
transform as the traceless symmetric representation of O(4). 7

Taking the continuum limit one can define a local order parameter field Φab in the
traceless symmetric O(N) representation. Since the order parameter was constructed
from a gauge invariant quantity there are no further restriction due to gauge symmetry
and we consider the effective hamiltonian:

H = Tr(∂µΦ)2 + rTrΦ2 + w0 Tr(Φ)3 + u0(Tr(Φ)2)2 + v0
4 Tr Φ4 (2.4)

For low N there are additional relations relating the various terms or equating them to 0.

Anti-ferromagnetic case: Here energy is instead minimized by taking sx · sy = 0 for
neighboring sites. Thus, in the ordered phase every spin is orthogonal to its nearest
neighbor. Unlike anti-correlation in the usual ferromagnetic case here the two lattices
are orthogonal. Orthogonality does not fix the configuration uniquely unlike correlation
or anti-correlation. Thus, it is not immediately clear what the symmetries of the ordered
state are and what order parameter has a non-zero expectation value in the ordered

7Gauge invariance forbids a linear order parameter sax so the next simplest order parameter is quadratic.
The vanishing of the order parameter in the disordered phase forces the subtraction of the trace resulting
in the traceless symmetric representation.
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phase. No comment is made on this in [71]. For the similar case of CPN models
this issue is examined in the [72]. In its appendix it was shown for N = 3 that the
most degenerate ground state configurations are aligned in the odd or even sub-lattice.
Other configurations are allowed but are less degenerate. The argument easily extends
to the RP 2 case. However, the argument does not easily extend to larger N because
orthogonality becomes much less constraining for larger N . Nevertheless, we expect
the same is true here for the ARP 3 model and that the appropriate order parameter is
constructed from a staggered site variable:

Aabx = pxP
ab
x (2.5)

where px = exp
[
iπ
∑3
k=1 xk

]
, i.e. the parity of the lattice site. Summing over the

staggered site variable the order parameter is given by

Mab =
∑

x
Aabx (2.6)

The extra factor of px effectively changes the sign of Aab on one of the sub-lattices so that
terms add up constructively in the ordered phase. In the disordered phase the staggering
has no effect and the order parameter still vanishes.

Summing over all sites we see that under a translation of the spins si → si+1 the order
parameter changes as

Mab =
∑
x

pxP
ab
x →

∑
x

pxP
ab
x+1 =

∑
x

px−1P
ab
x = −Mab (2.7)

where we relabeled the spins in the penultimate step8. This means that the order
parameter is Z2 odd under this additional symmetry (which is a symmetry of the
Hamiltonian). This forbids the cubic term in the effective LGW hamiltonian for the
ARP 3 model:

H = Tr(∂µΦ)2 + rTrΦ2 + u0(Tr(Φ)2)2 + v0
4 Tr Φ4 (2.8)

2.2.3 Lattice evidence

In finite size scaling one uses the fact that certain RG invariant quantities R are pro-
portional to a universal function fR(X) where X = (β − βc)L1/ν with ν the correlation

8Taking the continuum limit with periodic boundary conditions.
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length exponent, L the lattice size, and R the thermodynamic quantity. Scanning over
values of β there will be some value β = βc for which at any lattice size the RG invariant
is given by R(βc) = fR(0). Plotting R(β,L) will show a crossing points where lines R(β)|L
of different L meet. From this one can read of βc.

This is true up to corrections of the form t−yirr/ytuirr. Here t is the reduced temperature,
yirr is the RG eigenvalue of the first irrelevant term (and thus negative) and yt is the
eigenvalue of the first irrelevant singlet. uirr is a non-universal constant that depends on
the exact UV model that was used. In the case of an irrelevant untuned singlet the total
exponent is positive and the extra contribution goes to 0 exactly at β = βc.

However, if there is an un-tuned relevant singlet the correction goes as t−yuntuned/ytuirr.
In this case the total exponent would be negative and this in-analyticity would give a
major correction to the universal behavior determined by the CFT, i.e. lines of different
L in the finite-size-rescaling would not meet.

In [71] the RG invariant Rξ = ξ
L , where ξ is the correlation length, is studied using

finite-size-rescaling. It is observed that lines of different L indeed meet at a critical
temperature βc = 6.779(2). Moreover, the critical exponent ν = 0.59(5) was extracted9.
Additionally the behavior of the susceptibility around the fixed point is studied in order
to extract the critical exponent η = 0.08(4). Finally, a study of the Binder parameter
shows sizable corrections due to scaling possibly indicating an un-tuned singlet with a
dimension that is close to relevant. However, the data was insufficient to give a reliable
estimate on the corresponding critical exponent.

This results in the following estimates for the CFT data:

∆s = 1.28± 0.13 , ∆t = 0.54± 0.02 , ∆s′ > 3 (2.9)

2.3 Setup

In this section we explain the bootstrap setup of the 〈tttt〉 correlator and its extension
to the mixed t− s bootstrap. We first discuss the operators that can be exchanged in
the t× t OPE. We then explain how to write the crossing equations and the resulting
sum rules for the single 〈tttt〉 correlator. Next we discuss a map relating the traceless
symmetric bootstrap of O(N) to the vector bootstrap of O(N ′) with N ′ = N(N+1)/2−1.
Finally we present the extension to the mixed t− s bootstrap.

9The error is due to different methods of fitting the data. The statistical error is much smaller.
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2.3.1 The t× t OPE

We can write the t× t OPE as

t × t =
∑
∆,l
λS∆,lS + λT

2
∆,lT

2 + λT
4

∆,lT
4 + λA

2
∆,lA

2

+ λH∆,lH + +λB∆,lB (2.10)

Here S, T 2, T 4, A2 refer respectively to the singlet, traceless symmetric, four-index
symmetric and the anti-symmetric representations. H refers to the mixed symmetry
{3, 1} representation which we will call the Hook representation, while B refers to the
{2, 2} representation or Box representation. In the rest of the chapter we will leave out
the young tableau notation and refer to a dimension ∆ and spin l operator as R∆,l, where
R ∈ {S, T 2, T 4, A2, H,B}.10

Important special cases of operators are the first anti-symmetric vector, i.e. the conserved
current J = A2

2,1, the first spin-two singlet, i.e. the stress tensor T = S3,2. The first
anti-symmetric vector after the current will be denoted J ′ and the first spin-2 singlet
after the stress tensor T ′. Furthermore, we will refer to the first singlet scalar as s and
the external traceless symmetric scalar as t. Again higher dimensional operators will be
referred to by adding primes. For example s′ refers to the second lowest dimensional
singlet operator. t′ will denote the first traceless symmetric operator other than t-itself.
Further on when describing the t-s mixed setup the external operator t will be assumed to
be odd under an additional Z2 symmetry. When necessary Z2-even traceless symmetric
operators, i.e. those appearing in the t × t OPE, will be differentiated from Z2-odd
operators, i.e. those appearing in the t×s OPE by the additional labels E or O. Similarly
the first scalar in the Box representation and the first vector in the Hook representation
will be denote by b and h respectively.

Under exchange of x1 and x2 the spatial part of the three point function 〈t(x1)t2(x2)O3(x3)〉
goes to (−1)L times itself. Thus, for even spin the global tensor structure must be sym-
metric under the exchange of the indices of the first and second operator and for odd spin
anti-symmetric. The {S, T 2, T 4, B} representations only allow a symmetric structure
while the A and H representations only allow an anti-symmetric tensor structure. Thus,
the first set of representations will be exchanged for even spin and the second set for odd
spin.

10One can find which irreps are exchanged in the t× t OPE by checking that ⊗ ⊗R contains a
singlet, meaning that the OPE coefficients λttOR is allowed to be non-zero by symmetry. Equivalently,
one can simply decompose ⊗ . All irreps appearing in that decomposition must contain a singlet
in the ⊗ ⊗R decomposition.
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Two OPE coefficients are of special interest. Ward identities relate the OPE coefficients
of stress tensor T and the conserved current J respectively to the central charges CJ and
CT :

CJfree
CJ

= λ2
ttJ (2.11)

CTfree
CT

= λ2
ttT

∆2
t

= λ2
ssT
∆2
s

(2.12)

Our approach to finding all allowed O(N) tensor structures for the 3pt and 4pt functions
is to write the most general tensor structure obeying the appropriate permutation symme-
tries using the indexless notation described in [25] to keep track of symmetrized indices.
The young tableaux describing the O(N) irreps illustrate how indices corresponding
to blocks appearing in the same row are symmetrized while blocks appearing in the
same column are anti-symmetrized. The symmetrization of any row can automatically
be enforced by contracting all indices corresponding to the same row with the same
polarization vector Z. Similarly, indices corresponding to the next row are contracted
with U and so on (in this thesis no irreps with more than two rows appear). One then
only needs to enforce the anti-symmetry and tracelessness by hand. For tensor with
symmetrized indices this notation in terms of polarization vectors is much more compact
and useful than using the full index structure.

For example, imposing tracelessness and permutation symmetry we find the allowed
tensor structure for 〈ttOB〉,

〈ttOB〉 = λttB (U3 · Z1Z2 · Z3 − U3 · Z2Z1 · Z3)2 . (2.13)

All other 3pt tensor structures can be found in the same way. By contracting the indices
of an exchanged operator in two 3pt functions, i.e. 〈ttOα...〉 〈Oα...tt〉, we can find the
invariant subspace of a 4pt function corresponding to the exchange of that irrep allowind
the decomposition of the 4pt-function into the contributions from different irreps.11

2.3.2 4pt functions and the crossing equations

The crossing equations are obtained in the standard way by equating the s-channel and
t-channel decompositions of the 4pt-function. The 4pt-function 〈tttt〉 has six independent

11The sign of the projector gets fixed by imposing reflection positivity on the correlators in mirror
symmetric configurations, see for example section III.E.1 in [47].
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tensor structures each providing a crossing equation of the form

∑
R,OR

λ12ORλ34OR

g∆12,∆34
∆OR ,`OR

(z, z̄)

(zz̄)
∆1+∆2

2

=
∑

R′,O′
R′

λ32O′λ14O′
R′

g∆32,∆14
∆O′

R′
,`O′

R′
(1− z, 1− z̄)

((1− z)(1− z̄))
∆3+∆2

2

. (2.14)

Here z and z̄ are the standard crossing ratios and g is the scalar conformal block. For the
single correlator (of identical operators) both R and R′ run over {S, T 2, T 4, A2, H,B}
and ∆ij = 0∀ i, j.

The final crossing equations for 〈tttt〉 can be written as

∑
O
λ2
OVS,∆,` +

∑
O
λ2
OVT 2,∆,` +

∑
O
λ2
OVT 4,∆,`+∑

O
λ2
OVB,∆,` +

∑
O
λ2
OVA,∆,` +

∑
O
λ2
OVH,∆,` = 01×6,

where VR,∆,` is a 6 dimensional vector describing the contribution of a primary operator
O of dimension ∆, spin `, and representation R. The vector VR,∆,` is expressed in terms
of the usual F ’s and H’s

H =u
1
2 (∆2+∆3)g∆12,∆34

∆,` (v, u) + v
1
2 (∆2+∆3)g∆12,∆34

∆,` (u, v),

F =v
1
2 (∆2+∆3)g∆12,∆34

∆,` (u, v)− u
1
2 (∆2+∆3)g∆12,∆34

∆,` (v, u) (2.15)

Here g∆12,∆34 is the scalar conformal block normalized as entry 1 of Table I in [47]. In
this section the only correlation under consideration is 〈tttt〉 and this simplifies to

H =u∆tg∆,`(v, u) + v∆tg∆,`(u, v),
F =v∆tg∆,`(u, v)− u∆tg∆,`(v, u) (2.16)
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The crossing equations can also be represented by a 6 by 6 matrix. Its explicit form is12

M〈tttt〉,O(N) =



F 0 0 0 1
2F (n+ 4)(n− 1) −Fn

0 F 0 0 1
2F (n− 2) −Fn

2
0 0 −F 0 1

2F (n+ 4) −1
2F (n+ 2)

0 0 0 F −3F 2F
H 0 −2H(n−1)

n −H(n+4)(n+6)(n−1)
12n −H(n+4)(n−2)(n−1)

4n −H(n+2)(n−3)(n−2)
6n

0 H −H(n+4)(n−2)
n(n+2) −H(n+6)(n−2)

3n
H(n+4)(n−2)

n(n+2)
H(n+4)(n−3)

3n


(2.17)

Here rows correspond to the six different equations and columns correspond to the vectors
{VS , VT 2 , VA, VT 4 , VH , VB} in equation 2.15. The bootstrap problem consists of finding a
positive linear functional α such that α(VI) = 1

α(VR) ≥ 0 ∀R ∈ {S, T 2, T 4, A2, H,B}, ∀∆R,∆,` > ∆∗R,∆,`
(2.18)

If such a functional exists it excludes a spectrum with ∆R,∆,` > ∆∗R,`. ∆∗R,∆,` is usually
taken to be the unitarity bound except when we try to find the maximal allowed gap for
a certain operator or when we have reason to assume a gap above the unitarity bound
for a theory that we are trying to isolate.

In practice the crossing equations are truncated by taking derivatives around the crossing
symmetric point z = z̄ = 1/2 and the maximal number of derivatives is denoted by
Λ. These truncated crossing equations are used as input in the arbitrary precision
semi-definite programming solver SDPB (version 2) [13, 14]. The computations were
managed using Simpleboot [73].

In addition to finding the feasible set of ∆R,∆,` we can also find lower and upper bounds
on squared OPE coefficients λ2

ttO by picking the corresponding vector Vλ to define the
normalization of α, i.e. α(Vλ) = ±1 and maximizing the objective α(VI).13

2.3.3 Relationships between the traceless symmetric O(N) bootstrap
and the O(N(N + 1)/2− 1) vector bootstrap.

When bootstrapping the system of equations for a O(N) traceless symmetric operator the
bounds on the dimension of the first singlet scalar are actually dominated by solutions

12The exact form depends on the normalization of the OPE coefficients. We are free to rescale columns
by any positive factor and absorb this into the OPE coefficients. We are of course also free to rescale
rows, i.e. equations, by any factor.

13Normalizing α(Vλ) = 1 will give us an upper bound while α(Vλ) = −1 will give a lower bound on the
OPE coefficient.
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related to O(N ′) symmetry where N ′ = N(N + 1)/2 − 1. The reason is that crossing
equations for an O(N ′) vector are related to those of an O(N) traceless symmetric operator
by an identification where the vector φa gets rewritten as φij where a ∈ {0, ..., N ′} and
i, j ∈ {0, ..., N}. The φ × φ OPE exchanges operators in the singlet (S), traceless
symmetric (T) and antisymmetric (A) representations.14 Any solution to the O(N ′)
vector bootstrap equations also solves the O(N) traceless symmetric bootstrap equation
(giving a solution with ∆T 2 = ∆T 4 = ∆B = ∆T and ∆A2 = ∆H = ∆A).

Seen from the dual problem, one can show that there exist a positive linear map T

from any functional that is positive on the vectors {VS , VT , VA} to a positive functional
on the vectors {VS , VT 2 , VT 4 , VA2 , VH , VB}. The resulting functional has the following
(guaranteed) domain of positivity depending on the positivity properties of the original
functional:

SO(N ′) : αv → SO(N) : βt

∆∗R ≥


∆∗S R = S

∆∗T R ∈ {T 2, T 4, B}
∆∗A R ∈ {A,H}

SO(N) : βt → SO(N ′) : αv

∆∗R ≥


∆∗S R = S

max(∆∗T 2 ,∆∗T 4 ,∆∗B) R = T

max(∆∗A,∆∗H) R = A

(2.19)

Here ∆∗R indicates the minimum of the domain of positivity, i.e. α(VR) > 0∀∆ ∈ [∆∗R,∞).

A similar argument was recently made for the correspondence between the crossing
equations of the SU(N)× SU(N) bi-fundamental and that of an O(2N) vector in [74].

Theorem: Given a set of functionals αa with a ∈ {1, ..., 3} which are positive on
respectively the three crossing equations of the O(N)-vector system, a set of positive
functionals βi on the six bootstrap equations of the O(N) traceless symmetric irrep can
be found using positive linear map T such that βj = αiTij .

Proof: The O(N)-vector equations can be written as∑
O

λ2
OVS,∆,` +

∑
O

λ2
OVT,∆,` +

∑
O

λ2
OVA,∆,` = 01×6, (2.20)

14In this section T stands for the traceless symmetric representation appearing in the φ× φ OPE. We
leave out the superscript in order to differentiate it from the traceless symmetric operators appearing in
the t× t OPE. The same holds for the usage of A versus A2.
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or in matrix form as

M〈vvvv〉,SO(N ′) =


0 F −F
F

(
1− 1

N ′

)
F F

H −
(

1
N ′ + 1

)
H −H

 = 0, (2.21)

where the rows correspond to the three different equations and the columns correspond
to the vectors VS , VT and VA.

The problem of positive semi-definiteness of the bootstrap equation (after taking out the
term corresponding to the unit operator) can be written as finding αi such that

(αS αT αA) ≡ (α1 α2 α3) ·M〈vvvv〉,SO(N ′) ≥ 0, ∀∆R,` > ∆∗R,` (2.22)

We will show the existence of Tij such that βj = αiTij and

(αS αT 2 αT 4 αA2 αH αB) ≡ (β1 β2 β3 β4 β5 β6) ·M〈tttt〉,SO(N) ≥ 0, ∀∆R′,` > ∆∗R′,`
(2.23)

Decomposing the the irrep contributions {VS , VT , VA}, according to the contributions to
{VS , VT 2 , VT 4 , VA, VH , VBox}, one finds the following branching rules15:

〈vvvv〉 of SO(N ′) 〈tttt〉 of SO(N)
S ←→ VS , (2.24)
T ←→ VT 2 + VT 4 + VB, (2.25)
A ←→ VA + VH . (2.26)

This motivates us to restrict our search to a map T such that

(βS βT 2 βT 4 βA2 βH βB) = (αS x1αT x2αT x4αA x5αA x3αT ) . (2.27)

In other words we assume that the map T relates the vectors βR′ to αR through
βR′ = αRT̃

R
R′ with

T̃ =

 1 0 0 0 0 0
0 x1 0 x2 0 x3
0 0 x4 0 x5 0

 . (2.28)

For this ansatz to hold the related linear transformation T between αi’s and βi’s has to
be of the form

T = T̃ ·M−1
〈tttt〉,O(N) (2.29)

15It is essential that N ′ = N(N+1)−2
2 for other N ′ the branching of T would also contain a singlet.
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By imposing that the F and H equations do not mix we can fix the values xi and find a
unique map T (up to an overall constant). The xi in this map are given by16

~x = 1
n+ n2 − 4

(((
n+ n2)− 2

)2
n2 + n+ 2

n(n+ 1)(n+ 2)(n+ 6)(n− 1)2

12 (n2 + n+ 2)

n(n+ 1)(n+ 2)2(n− 3)(n− 1)
6 (n2 + n+ 2) n(n− 1) 1

4(n+ 1)(n+ 4)(n− 2)(n− 1)
)

(2.31)

The important thing to note is that these xi are positive for n > 3. Thus, any functional
~α such that (αS αT αA) < 0 guarantees that (βS βT 2 βT 4 βA2 βH βB) < 0 since these
are given by a positive coefficient times αS , αT or αA. To be precise βS is guaranteed to
be positive for ∆ > ∆S while βT 2 , βT 4 and βB are guaranteed to be positive for ∆ > ∆T

and βA2 and βH for ∆ > ∆A. (Positivity on this domain is guaranteed, but the functional
can be positive on a bigger domain.)

Similarly an inverse map T ′ can be found which provides a functional that is positive on
{VS , VT , VA} from functionals positive on {VS , VT 2 , VT 4 , VA, VH , VBox}. In this case we
look for a T ′ such that

(αS αT αA) = (βS x1βT 2 + x2βT 4 + x3βB x4βA2 + x5βH) . (2.32)

Again we find a unique solution for T ′ and the parameters xi

xi = 4
(n+ n2)− 2 i = 1, 2, 3, 4, 5. (2.33)

Here we see that αS < 0 is guaranteed when β < 0, αT < 0 is guaranteed to be positive
on the domain where each of βT 2 , βT 4 and βB are positive, i.e. ∆ ≥ max(∆∗T 2 ,∆∗T 4 ,∆∗B)
and αA < 0 is guaranteed to be positive if ∆ ≥ min(∆∗A2 ,∆∗H). The functional may be
positive on a bigger domain. Thus, the (guaranteed) domains of positivity under the
mappings T and T ′ are as described in equation 2.19.

This means that the bootstrap equations of the O(N) traceless symmetric scalar will
gives the same bounds as the bootstrap of the vector equations of O(N ′) as long as we

16The explicit form of T in our normalization is given by

T =


0 ((n+n2)−2)2

(n2+n+2)((n+n2)−4)
n(n−1)

(n+n2)−4
n(n+1)(n+2)(n+6)(n−1)2

12(n2+n+2)((n+n2)−4) 0 0

1 (12−8n+2n3+n4)−7n2

(n2+n+2)((n+n2)−4) − n(n−1)
(n+n2)−4

n(n+1)(n+3)(n+6)(n−2)(n−1)
12(n2+n+2)((n+n2)−4) 0 0

0 0 0 0 1 (2−n)−n2

(n+n2)−4

 . (2.30)
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Chapter 2. Bootstrapping the ARP 3 model

assume positivity of the form ∆A∗ = ∆H∗ and ∆T 2∗ = ∆T 4∗ = ∆B∗ . However, stronger
bounds can be found in the traceless symmetric bootstrap when we impose a different
domain of positivity, i.e. different ∆O∗ for these operators.

2.3.4 Setup of mixed t− s bootstrap

The operator t is expected to be Z2-odd under a discrete (ungauged) Z2 symmetry.
Indeed we saw that the order parameter appearing in the Landau-Ginzburg-Wilson
effective theory and the lattice simulations is odd under the exchange of the parity-odd
and parity-even lattice sites17.Therefore one should consider the mixed bootstrap of a
Z2-odd traceless symmetric operator tO. In that case the full system of crossing equations
is given by the crossing equations of the correlators 〈ttss〉 and 〈stts〉, 〈tsts〉, and 〈ssss〉.
Crossing equations involving three tO-operators trivially vanish because tO × s can only
exchange Z2 odd operators while t × t can only exchange Z2 even operators. All new
correlators are constrained to exchange only a single irrep: s × s can only exchange
neutral operators while t× s can only exchange operators in the T 2 irrep. The t× s OPE
does not have the permutation symmetry that the t× t OPE had and thus allows the
exchange of both odd and ever spin traceless symmetric operators.

Note that when we do not impose a gap forbidding the exchange of the external operator
t in t× t results in this section also hold for Z2-even t.

Restricting to the crossing equations for Z2-odd tO there are four additional crossing
equations, two between 〈sstt〉 and 〈tsst〉, one from 〈tsts〉 and one from 〈ssss〉. The
crossing equations can now be written as

∑
O

(λttO λssO)VS,∆,`

(
λttO
λssO

)
+
∑
O
λ2
ttO+VT 2,+,∆,` +

∑
O+

λ2
tsO−VT 2,−,∆,` +

∑
O
λ2
OVT 4,∆,` +

∑
O
λ2
ttOVB,∆,` +

∑
O
λ2
ttOVA,∆,` +

∑
O
λ2
ttOVH,∆,` + (λtts λsss)Vext.

(
λtts
λsss

)
= 01×10,

Here we have chosen to separate out the contributions proportional to the OPE coef-
ficients of the external vector into a separate vector Vext.. Since the A, T 4, H and B
representations cannot be exchanged in the new correlators the vectors VA, VT 4 , VH , VB
remain unaffected (apart from padding them with an appropriate number of zeros at the
end). The entries of VS become matrices since there are now contributions proportional
to λ2

ttS , λttSλssS and λ2
ssS . Furthermore, we split the traceless symmetric contribution

into a Z2 even part coming from the t× t OPE and a Z2 odd part coming from t×s OPE.

17This exchange is a translation by one lattice site and is thus a symmetry of the Hamiltonian
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2.4. Single correlator results

The Z2 even part remains identical to the vector VT 2 in equation 2.17. The t× s OPE
exchanges traceless symmetric operators of both odd and even spin. The new vectors VS ,
VT 2,O and Vext. are given by

VS =



1
2
((
n+ n2)− 2

)
F11

∆tt∆tt

000
000
000

1
2
((
n+ n2)− 2

)
H11

∆tt∆tt

000
000

−1
2H12

∆ss∆ss

1
2F12

∆ss∆ss

F22
∆ss∆ss



, Vext. =



1
2
((
n+ n2)− 2

)
F11

∆tt∆tt

000
000
000

1
2
((
n+ n2)− 2

)
H11

∆tt∆tt

000
F11

∆ts∆ts

H11
∆ts∆ts − 1

2H12
∆ss∆ss

F11
∆ts∆ts + 1

2F12
∆ss∆ss

F22
∆ss∆ss



, VT 2,O =



0
0
0
0
0
0

F∆ts∆ts

(−1)LH∆ts∆ts

(−1)LF∆ts∆ts

0


(2.34)

where we defined the matrices

(F∆1,∆2
ij )mn =

F∆1,∆2 (i = n ∧ j = m) ∨ (i = m ∧ j = n)
0 else

(F∆1,∆2
ij )mn =

H∆1,∆2 (i = n ∧ j = m) ∨ (i = m ∧ j = n)
0 else.

(2.35)

Finally, let us comment that the mixed t − s setup does not break the map between
the O(N ′) vector bootstrap and the O(N) traceless symmetric bootstrap and the same
positivity relations in equation 2.19 still hold.

2.4 Single correlator results

We will first discuss the bounds on operator-dimensions in the region where the ARP 3 is
expected to live, followed by a similar discussion about bounds on the OPE coefficients
λttT , λttJ and λttt. Next we will focus on isolating the ARP 3 model using a set of
reasonable assumptions.

Our goal is to isolate an island in the OPE data corresponding to the ARP 3 model (or
alternatively to exclude the existence of a plausible theory in the region predicted by
lattice computations). Lattice computations find a fixed point with a traceless symmetric
scalar with a dimension ∆t = 0.54± 0.02 and exactly one relevant singlet with dimension
1.28± 0.13 [71].
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Chapter 2. Bootstrapping the ARP 3 model

Unlike the Ising and O(N) models for which precision islands have been previously
obtained [35, 5, 30, 15, 67] the ARP 3 does not live close to the kink of the singlet bound.
Instead it lives well within the allowed region, see figure 2.4. As a consequence the theory
is not easily isolated without making appropriate assumptions on the spectrum. However,
we will see that bounds on other representations will have features such as kinks and
bumps indicating the presence of a theory living close to those extrema. These features
will motivate some reasonable assumptions under which isolated islands can be found in
the OPE data among others in the (∆t,∆s) plane.

0.50 0.55 0.60 0.65 0.70

Δt1.0

1.5

2.0

2.5

3.0

Δs

Figure 2.4: Bound on the dimension of the first singlet scalar. The black dashed lines
indicate the positions of two kinks. The blue cross indicates the position of the O(9) model
(as seen from the traceless symmetric bootstrap under the identification va → vij) [68].
The green region shows the prediction for the ARP 3 model from lattice computations.
The bounds have been obtained at Λ = 27.

2.4.1 Bounds on operator dimensions and OPE coefficients

Physical theories often stand out due to the presence of a large gap above known conserved
operators [1, 42]. If we demand positivity on the stress tensor T and maximize the gap
∆T ′ until the next spin-2 neutral operator we find a sharp peak as is shown in figure 2.5
(these bounds match those of the O(N ′) vector bootstrap under the same assumption).
The peak coincides with the lattice expectations for the location of the ARP 3 model. On
the other hand a high value of ∆T ′ is also expected close by due to the O(9) model at
∆t ≈ 0.519.

Similarly the bound on ∆J ′ , the dimension of the first spin-1 anti-symmetric vector
after the conserved current, shows a clear feature within the region of interest. The
kink in figure 2.6 hints at the existence of a theory with a high gap ∆J ′ in the region
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0.52 < ∆t < 0.535.

0.5 0.6 0.7 0.8 0.9 1.0

Δt5.0

5.5

6.0

6.5

ΔT'

Figure 2.5: Bound on the dimension of the first spin-2 singlet after the stress tensor. The
blue dashed line indicates the large N estimate of ∆φ for the O(9) model. The green
region shows the prediction for the ARP 3 model from lattice computations. The bounds
have been obtained at Λ = 27.

Next we consider a bound on ∆b , the dimension of the first scalar Box operator. This
bound shows two kinks within the expected lattice region. This is shown in figure 2.7.

In the ARP 3 model the lowest dimensional traceless symmetric operator t is expected to
be Z2-odd thus forbidding the exchange of t itself in the t× t OPE. Thus, we should ask
what the maximal allowed gap ∆t′ is. On the other hand, theories without a symmetry
forbidding this exchange are expected to exchange t itself as the first traceless symmetric
operator. In that case we can assume the exchange of t itself and bound the next traceless
symmetric operator t′ by demanding positivity on ∆t ∪ [∆∗t′ ,∞). Both bounds are shown
in figure 2.8. The first bound shows no special features in the region of interest. The
second shows two kinks in the ARP 3 region. Also in the ARP 3 region the second bound
is higher than the bound without this assumption. The two lines rejoin at a third kink
outside the expected ARP 3 region (before separating again).

Finally for the sake of completion we show the bounds on the four-index symmetric scalar
and the first Hook vector in figures 2.9a and 2.9b respectively. Neither of these bounds
show any clear feature in the ARP 3 region.

We can also find lower and upper bounds on the OPE coefficients squared. An upper
bound can be found for the OPE of any operator while a lower bounds can only be found
if the operator is disconnected from other similar operators by a gap. We are mainly
interested in the separable OPEs of the conserved operators T and J . As usual the

61
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Figure 2.6: Bound on the dimension of the first spin-1 antisymmetric vector after the
conserved current. The blue dashed line indicates the large N estimate of ∆φ for the
O(9) model. The green region shows the prediction for the ARP 3 model from lattice
computations. We see a clear kink within this region indicated by a black dashed line. In
addition various small kinks or wobbles appear in the region 0.51 < ∆t < 0.52 though not
in correspondence with large N estimate of the location of the O(9) model The bounds
have been obtained at Λ = 27.
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Δt1.0
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Δb

Figure 2.7: Bound on the dimension of the first scalar Box operator. The blue cross
indicates the position of the O(9) model. The green region shows the prediction for the
ARP 3 model from lattice computations. There are two kinks in this region indicated
here by black dashed lines. The bounds have been obtained at Λ = 27. .
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Figure 2.8: The blue line shows the bound on the dimension of the first traceless
symmetric operator exchanged in the t× t OPE. The orange line shows the bound on
the dimension of the first additional traceless symmetric operator t′ when assuming the
exchange of t itself. The green region shows the prediction for the ARP 3 model from
lattice computations. In the ARP 3 region allowing the exchange of t itself lifts (weakens)
the bound. This higher bound shows two kinks indicated by black dashed lines. The
two lines join again at a third kink outside the expected ARP 3 region. The bounds have
been obtained at Λ = 27.
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Figure 2.9: On the left: Bound on the dimension of the first four-index symmetric tensor.
The blue cross indicates the large N estimate of the position of the O(9) model. Note
that the estimate is excluded by these bounds, indicating an error due to higher order
corrections and/or non-perturbative effects. On the right: The same plot but for the
bound on the dimension of the first Hook vector. The green region shows the prediction
for the ARP 3 model from lattice computations. Neither figure shows any features in this
region. The bounds have been obtained at Λ = 27.
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bounds on both of these OPE coefficients gets weaker for larger values of the external
dimension. The λttT bound shows no clear features but the λttJ shows a kink around
∆T = 0.535. The value of the OPE found depends on the normalization of the conformal
blocks (or equivalently the choice of normalization of the three and two point function)
and thus it is often preferable to present the normalization invariant quantities of central
charges divided by the value of the central charge in the free theory using the same
normalizations. The resulting lower bounds on CT /CTfree and CJ/CJfree are shown in
figures 2.10a 2.10b.

Kinks are more clear in the OPE coefficient itself than in its reciprocal thus we also
show the upper bound on λttT and λttT in figure 2.11. In addition that figure includes
the upper bound on the λttt OPE coefficient. The extremal spectra, obtained using the
extremal functional method (EFM) [75]) at these maximal OPE values are included in
appendix B.1.
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Figure 2.10: (a): Lower bound on CT in units of CN=4
Tfree

. (b) Lower bound on CJ in units
of CN=4

Jfree
. The Dashed lines indicate the locations of kinks in the upper bound on λttJ .

The red dots indicate the central charge values in the N = 9 free vector boson theory.
All bounds have been obtained at Λ = 27.

In the next section we will try isolating island in the (∆t,∆s) and (∆t,∆b) planes using
various assumptions. But before we increase the dimensionality of the parameter space
of our search it is smart to see how various assumptions influence the bisection bounds
above.

For example, the Box operator shows one very strong kink in the regions allowed by the
lattice bounds. However, by repeating that bound under the assumptions ∆T ′ > 5.5
and ∆′J > 3, we can see that simultaneously having both a high values near the top of
the peak seen in figure 2.5 and high value near the plateau in figure 2.6 is incompatible
with ∆b taking a value close to this kink. This is shown in figure 2.12a. This is the first
indication that perhaps the assumptions ∆T ′ > 5.5 and ∆J ′ > 3 are too strong. We will
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Figure 2.11: (a): Upper bound on λttT . This bound shows no special features; (b) Upper
bound on λttJ . There are kinks at ∆t ≈ 0.505, 0.515 and 0.53685; (c) Upper bound on
λttt there is one kink at ∆t ≈ 0.529. The red dots indicate the OPE values in the N = 9
free vector boson theory. All bounds have been obtained at Λ = 27.
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see more evidence for this later on. We can also consider how assumptions on ∆T ′ , ∆h

and ∆b influence the maximal allowed gap ∆J ′ . An example of this is shown in figure
2.12b. This can be useful to already find the allowed ∆t range under those assumptions
in order to better locate any possible island in the larger spaces (∆t,∆s) and (∆t,∆b).
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Figure 2.12: On the left: Bound on the dimension of the first scalar Box operator. The
blue line shows the bound under no assumptions while the orange line is found under
the assumptions ∆T ′ > 5.5 and ∆J ′ > 3. The orange line shows a maximum close to the
position of the first kink of the blue line. The green region shows the prediction for the
ARP 3 model from lattice computations. This bound has been obtained at Λ = 35. On
the right: The bound on the first anti-symmetric spin-1 operator after the conserved
current assuming ∆T ′ > 4.5, ∆J ′ > 3, ∆h > 3 and ∆b > 1.37. This bound has been
obtained at Λ = 35.

2.4.2 Isolating the ARP 3 model

In order to isolate the ARP 3 theory we will have to make certain assumptions. The
simplest assumption to add is the isolation of the first singlet by assuming ∆s′ > 3. This
assumptions has strong evidence from the lattice simulations. However, we will see this
is not enough to isolate the ARP 3 theory. In addition we can make some reasonable
assumptions based on the fact that real theories usually have well isolated conserved
operators. This motivates us to make assumptions on the gaps ∆T ′ and ∆J ′ . Additionally,
it is very useful to consider the effect of a small gap on the dimension of the first hook
vector ∆h to remove solutions related to symmetries with O(N ′) symmetry. The map
from the bootstrap of the O(N ′)-vector to the bootstrap of the traceless symmetric of
O(N ′) decomposes the conserved current of O(N ′) into both the conserved current of
O(N) and a conserved operator in the Hook representation. Since no O(N) symmetric
theory is expected to have such a conserved current it should be safe to assume a small
gap ∆h for the dimension of this operator. This will help weed out solutions with O(N ′)
symmetry instead of O(N) symmetry.
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A one relevant singlet island

We now attempt to find an island in the (∆t,∆s) plane. The region allowed under the
assumption of the existence of exactly one relevant singlet is shown in figure 2.13a. The
main features are controlled by the O(9) free theory and the O(9) model. In addition
there is a small appendix around ∆s = ∆t = 0.58. Upon investigation at higher lambda
this feature moves and becomes more of an isolated peninsula. This is shown in figure
2.13b. The feature seems to be unrelated to the ARP 3 model or any theory with one
relevant singlet, as the mixed t− s bootstrap described in the next section will exclude
the whole region ∆s < 1 under the same assumptions of the existence of exactly one
relevant singlet. Thus, either it corresponds to a theory with multiple relevant singlet
scalars or, perhaps more likely, it is just some coincidental feature18.
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Figure 2.13: On the left: Allowed region in the (∆t,∆t) plane assuming the existence of
exactly one relevant singlet. The green region shows the prediction for the ARP 3 model
from lattice computations. Three features stand out. The free theory can be found at
the sharp corner of the peninsula near the unitarity bound. Another corner is controlled
by the O(9) model. Lastly a small appendix can be seen around ∆s = ∆t = 0.58. The
bounds have been obtained at Λ = 19. On the right: Zoom of the small appendix on
the bottom. As Λ is increased the appendix moves to the right. The bounds have been
obtained at Λ = 19 (solid) and Λ = 27 (dashed).

In figure 2.5 we saw a strong peak in the allowed value of ∆T ′ indicating the existence of
an interesting solution to crossing. In figure 2.14a we explore what region in the (∆t,∆s)
plane the peak corresponds to. We notice that the peak is centered in the expected
ARP 3 region. We can also add the assumptions that the first anti-symmetric vector
after the conserved current has a dimension larger than 3, i.e. assume that ∆J ′ takes a
value somewhere in the raised plateau in figure 2.6. This assumptions restricts the island

18Possibly something special happens at ∆s = ∆t. For example, the decomposition of the contribution
to 〈vvvv〉 from the traceless symmetric T 2 of O(N̄) with N̄ 6= n(n+1)−2

2 will appear to have an additional
singlet with ∆s = ∆T2 when viewed from the O(N) traceless symmetric bootstrap. So only when
∆t = ∆T2 = ∆s could such a O(N ′) theory appear to have exactly one relevant singlet.
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further and is compatible with the expected ARP 3 region, see figure 2.14b.
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Figure 2.14: On the left: Allowed region in the (∆t,∆s) plane assuming the existence of
exactly one relevant singlet and ∆T ′ > 5.5, 6.5. The peak is clearly centered around the
expected ARP 3 region. The bounds have been obtained at Λ = 19, 27 as indicated in
the legend. On the right: Allowed region in the (∆t,∆s) plane assuming the existence of
exactly one relevant singlet and the gaps ∆T ′ > 5.5 and ∆J ′ > 3. Allowed regions under
the lesser assumptions of one relevant singlet and the gap ∆T ′ > 5.5 are included for
reference as described in the legend.

For the sake of completion we can investigate the existence of an island where the external
t is given by a Z2 even operator where t itself is exchanged in the t × t OPE. Such a
solution to the crossing equation is less likely to be a fake solution to crossing but it is
also less likely to correspond to the ARP 3 CFT since t is expected to be Z2-odd. In order
to impose the exchange of t we impose that the dimension of the first traceless symmetric
operator after t has a dimension ∆t′ greater than would be allowed without the exchange
of t itself, i.e. above the blue line shown in figure 2.8. This imposes the exchange of t× t
but, this assumption also disallows theories exchanging ∆t and an additional operator
with ∆t′ both below the bound shown in figure 2.8. The resulting island is shown in 2.15.
The persistence of the island means that we cannot exclude it corresponding to a theory
where t is Z2 even.

We saw that assumptions on the gaps ∆T ′ and ∆J ′ could be valuable to single out
physical theories. However, for our search for the ARP 3 model we also have to exclude
the influence of the O(9) model and the free theory with O(9) symmetry. For this it
is useful to put assume a small gap on the fist Hook vector dimension ∆h. Due to
the identification φa = tij and the resulting reorganization of operators these theories
effectively have ∆h = ∆J = 2. Thus even a small gap above the unitarity bound can
exclude these. Furthermore, no theory where the symmetry group really is O(4) is
expected to have a conserved Hook vector. Thus, this assumptions should be safe to
make. If we assume, for example, that ∆h > 2.03 the peninsula clearly detaches from
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Figure 2.15: Allowed region in the (∆t,∆s) plane assuming the existence of exactly
one relevant singlet and successively more constraining assumptions as described in the
legend. The assumptions ∆t′ > ∆∗ means that we allow the exchange of t itself but
assume a gap ∆t′ > ∆∗(∆t) where ∆∗(∆t) is the value of the upper bound found on ∆t′

without any additional assumptions(see figure 2.8). This assumption excludes all theories
where t itself is not exchanged (and hence should exclude the ARP 3 model. The green
region shows the prediction for the ARP 3 model from lattice computations. The bounds
have been obtained at Λ = 19. .

those theories with O(9) symmetry, as can be seen in figure 2.16. Adding the same gap
to the ∆T ′ > 5.5 and ∆J ′ > 3 constraints gives a predictable intersection of the allowed
regions under those two sets of assumptions as is shown in 2.17.

Finally, we should investigate the influence of assumptions on the box operator on the
one relevant singlet island. Assumptions just on the Box operator do not greatly affect
the island, but combined with the assumptions ∆T ′ > 5.5, ∆J ′ > 3 the island shrinks
significantly 19. This is shown in figure 2.18.

A one relevant Box scalar Island

A key feature found in the bisection bounds of the previous section were two kinks in the
allowed gap in the dimension of the first Box scalar. This motivates us to investigate
the existence of a theory with one relevant box operator and to isolate an island in the
(∆t,∆b) plane.

19It is really the combination of the gap ∆J′ > 3 and ∆b > 1 that is more selective. The island found
under the assumptions ∆T ′ > 5.5 and ∆b > 1 is the same as the one found using only ∆T ′ > 5.5.
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Figure 2.16: Allowed region in the (∆t,∆s) plane assuming the existence of exactly one
relevant singlet and ∆h > 2.03. The green region shows the prediction for the ARP 3

model from lattice computations. The bounds have been obtained at Λ = 19.
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Figure 2.17: Allowed region in the (∆t,∆s) plane assuming the existence of exactly
one relevant singlet and ∆T ′ > 5.5, ∆J ′ > 3 and ∆h > 2.03. The green region shows
the prediction for the ARP 3 model from lattice computations. The bounds have been
obtained at Λ = 19.



2.4. Single correlator results

Δs'>3

+ ΔT' ≥ 5.5 + ΔJ' ≥ 3

+ Δb > 1.2

0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57

1.0

1.2

1.4

1.6

1.8

2.0

Δt

Δ
s

Figure 2.18: Allowed region in the (∆t,∆s) plane assuming the existence of exactly
one relevant singlet and ∆T ′ > 5.5, ∆J ′ > 3 and ∆b > 1.2. The green region shows
the prediction for the ARP 3 model from lattice computations. The bounds have been
obtained at Λ = 19. .

To start, assuming only the existence of exactly one relevant Box scalar we find the
peninsula depicted in figure 2.19.

We can ask again what area the elevated regions of ∆T ′ and ∆J ′ correspond to but now
in the (∆t,∆b) plane. For example under the assumptions ∆T ′ > 5.5, ∆J ′ > 3 the one
relevant Box scalar island shrinks to an island located around ∆b ≈ 1. This is shown in
figure 2.20a. Since part of the shape of the resulting island is controlled by both the free
theory and the O(9) theory it is useful to assume a small gap on the dimension of the
Hook vector. Assuming ∆h > 2.05 results in a small island that mostly lies within the
expected lattice bounds. See figure 2.20b.

However, this island is suspicious for various reasons. Firstly, the value of ∆b ≈ 1 is far
from the values it takes at the kinks in figure 2.7 and is close to one, its value in the O(9)
free theory. Moreover, at Λ = 27, under the same assumptions, the island gets excluded.
Finally, in the next section we will see that in the mixed t-s setup such a high ∆T ′ gap
as assumed here is excluded for values of ∆t and ∆s close to their expected lattice value.

Thus, let us consider the allowed region in the (∆t,∆b) plane under some more conservative
assumptions. Under the assumptions ∆T ′ > 4.5, ∆J ′ > 3, ∆h > 2.05 and ∆b′ > 3 the
peninsula splits into an upper and a lower part. As we increase Λ an isolated island
separates from the upper peninsula. This is shown in figure 2.21a. Moreover, the tip of
the lower peninsula is the area where the highest gap ∆T ′ is allowed while the isolated
island corresponds to a second slightly lower peak in ∆T ′ . This can be seen from the

71



72 CHAPTER 2. BOOTSTRAPPING THE ARP 3 MODEL

0.50 0.52 0.54 0.56 0.58 0.60

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Δt

Δ
b

Figure 2.19: Allowed region in the (∆t,∆b) plane assuming the existence of exactly one
relevant Box scalar. The green region shows the prediction for the ARP 3 model from
lattice computations. The blue dotted lines showes the bound on the maximal allowed
gap on the dimension of the first Box scalar for reference. The bounds have been obtained
at Λ = 19.
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Figure 2.20: On the left: Allowed region in the (∆t,∆b) plane assuming the existence
of exactly one relevant Box scalar and ∆T ′ > 5.5, ∆J ′ > 3. The green region shows the
prediction for the ARP 3 model from lattice computations. The blue cross indicates the
large N estimate of the position of the O(9) model. The bounds have been obtained at
Λ = 19 and Λ = 27. On the right: The same bound under the additional assumption
that ∆h > 2.05 the theories with O(9) symmetry are clearly excluded by this assumption.
The bound has been obtained at Λ = 19.
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bounds shown in figure 2.21b where we made increasingly stronger assumptions on ∆T ′ .
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Figure 2.21: On the left: Allowed region in the (∆t,∆b) plane assuming the existence
of exactly one relevant Box scalar and ∆T ′ > 4.5, ∆J ′ > 3 and ∆h > 2.05. The green
region shows the prediction for the ARP 3 model from lattice computations. The bounds
have been obtained at Λ = 19, 27, 31 (light to dark). On the right: In yellow, the same
bound under the stronger assumptions that ∆T ′ > 5 (dashed) and ∆T ′ > 5.5 (solid, also
shown in 2.20b). These bounds have been obtained at Λ = 19.

The island shown in figure 2.21a persists at Λ = 31 but unfortunately at Λ = 35 no primal
points could be found. We suspect that one of our assumptions was again too strong.
We found that if instead of ∆B′ > 3 we demand ∆B′ > 2.8 we find an isolated island
that survives at Λ = 35. This island is shown in figure 2.22a. We can then ask what
island in the (∆t,∆s) plane this island corresponds too. In order to avoid an expensive 3
dimensional scan we simply search for the allowed region under the constraints ∆T ′ > 4.5,
∆J ′ > 3, ∆h > 2.05 and ∆b > 1.3. The resulting island is shown in figure 2.22b.

2.5 Results mixed t-s bootstrap

In the mixed t-s bootstrap we always have to scan over both ∆t and ∆s. In order to find
more than the sum of the parts it is useful to enforce mixing through the assumption of
the existence of exactly one relevant singlet (equal to the dimension ∆s of the external
operator). One advantage of this setup is that it allows us to easily exclude the free
theory since 〈ssss〉 exchanges multiple relevant singlets (this does not exclude the O(9)
model where only one singlet is exchanged in 〈ssss〉). Making only this assumption we
already find a sizeable reduction in the allowed (∆t,∆s) plane, while leaving the expected
ARP 3 region intact.

Additional mixing can be enforced by explicitly contracting the external vector with
a vector {λtts, λsss}. Positivity of the resulting contraction is all that is required for
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Figure 2.22: On the right: Allowed region in the (∆t,∆b) plane assuming ∆T ′ > 4.5,
∆J ′ > 3, ∆h > 2.05 and ∆B′ > 2.8. The green region shows the prediction for the
ARP 3 model from lattice computations. On the right: Corresponding allowed region in
the (∆t,∆s) plane (assuming ∆b > 1.3 instead of ∆b′ > 2.8 to avoid scanning over a 3
dimensional parameter space). The bounds have been obtained at Λ = 35.

the consistency of the CFT and this is a lesser requirement on the functional then
semi-definite positiveness of the initial matrix. Thus, this allows us to exclude more at
the cost of scanning over an additional parameter. This OPE scan was performed using
the OPE scanning algorithm of Simpleboot [73]. Simpleboot efficiently takes advantage
of the occurrences of both dual and primal jumps and the ability to hotstart SDPB from
related points as well as the ability to exclude additional regions in the OPE space by
solving a quadratic equation for the roots of the functional applied to the external vector
contracted with generic ope coefficients, i.e. solving α({1, x} · Vext · {1, x}) > 0 for x.20

The assumption of the existence of exactly one relevant singlet is firmly backed up by
the lattice data so this already rigorously shows the minor constraint that ∆s > 1.052
for the ARP 3 model.

Unfortunately additional assumptions will now have to be made. Further, mixing can be
enforced by assuming a gap ∆T ′ above the stress tensor. The ward identity λOOT = ∆O√

CT
then enforces the 〈tttt〉 and 〈ssss〉 to mix. This is very effective, greatly improving the
equivalent single correlator bounds. Bounds corresponding to various assumptions on
the gap ∆T ′ are shown in figure 2.24. We find that the peak in ∆T ′ that we found earlier
(see figure 2.14a) was given by a fake solution since it disappeared by the addition of
additional bootstrap equations (without making any additional assumptions). The new
peak is no longer located in the expected ARP 3 region and is instead located at a much
higher value of ∆s and lies closer to the O(9) model. Notably, the assumption ∆T ′ > 5.5

20We assumed λsss ∈ {−5000λtts, 5000λtts}. For example for the free theory λtts = λsss in our
normalization. Primal ratio’s λtts

λsss
that we encountered were generally of order O(1).
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Figure 2.23: The allowed region in the (∆t,∆s) plane assuming the existence of exactly
one relevant singlet scalar with dimension ∆s is shown in orange. For reference the
equivalent single correlator bound is shown in blue. The bounds have been obtained at
Λ = 19.

that we often used in the previous sections is excluded for all ∆s close to the lattice
bounds. This suggests more caution is required when interpreting peaks and plateaus as
evidence for a theory living high within that peak. Even so the “fake” peaks location is
very suggestive and might still correspond to the location of true ARP 3 model.

As can be seen in figure 2.24, the peak in ∆T ′ is no longer located near the expected
ARP 3 region. The global peak has dropped significantly and is now located at a much
higher value of ∆s, close the O(9) theory. Assuming ∆T ′ > 6 no primal points can be
found anymore (at Λ = 19). So either ∆T ′ takes a value much closer to the base of
the peak in figure 2.5 or no ARP 3 CFT corresponding to the values found by lattice
computations exists.

Finally, the mixed setup also allows us to constrain the new channel of Z2-odd traceless
symmetric operators appearing in the t×s OPE. If we assume the exchange of t-itself and
only one additional relevant scalar t′O we find ∆t′O

= 2± 0.25 for the region of interest,
see figure 2.25. For large ∆s and ∆t all values for ∆t′O

are allowed. In the same figure
we also indicate the smaller allowed island corresponding to the island shown in figure
2.22b. As a side effect the OPE scan gives us an estimate for the external OPE ratio:
λsss
λtts
∈ (0.025, 2.5).

Surprisingly, in turn fixing ∆t′O
= 2 and assuming ∆t′′O

> 3 does not seem to constrain
the other parameter spaces significantly. For example it hardly effects the allowed one-
relevant-singlet island we found. In general, while the mixed t− s setup is significantly
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Figure 2.24: Allowed region in the (∆t,∆s) plane assuming the existence of exactly one
relevant singlet scalar and the gaps ∆T ′ = 4.5, 5, 5.5, 5.6 (light to dark). For reference the
single correlator bounds under the assumptions ∆T ′ > 5.5 (dashed line) and ∆T ′ > 6.5
(solid line) are indicated in blue. In the mixed setup no primal points can be found for
∆T ′ ≥ 6. The bounds have been obtained at Λ = 19.

Figure 2.25: Allowed values for ∆t′O
given {∆t,∆s} in the expected ARP 3 region assuming

the existence of exactly one relevant singlet and exactly one additional relevant Z2-odd
operator besides t-itself. Darker: the same bounds under the additional assumptions:
∆T ′ > 4.5, ∆J ′ > 3, ∆h > 2.05 and ∆b > 1.3. The bounds have been obtained at Λ = 19.



2.5. Results mixed t-s bootstrap

more constraining than the single correlator for certain types of bounds, overall its power
seems to be a bit underwhelming. For example, even when using the OPE scan the
results for the one relevant singlet island shown in 2.22b do not show any significant
improvement.
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2.6 A systematic study of general N

Here we present a systematic study of bounds on the dimension of the first operator
in all representations for general N . Specifically we examine N = 4, 5, 10, 20, 100 and
occasionally N = 1000 to study the asymptotics of certain kinks at large N . The bounds
on the singlet operators s and T are identical to the bounds found in the SO(2N)-vector
bootstrap21 while the other bounds are stronger then the related SO(2N) bounds on
∆S ,∆T ,∆A.

The bound on the dimension of the first singlet scalar ∆S shows a clear kink corresponding
to the O(N ′) model under the identification φa → φij . In addition there is a second set
of (dull) kinks in the region 0.52 < ∆t < 0.58 whose exact location becomes less and less
clear as N increase. An additional kink is visible around ∆t ≈ 1.1 for N = 4. These
bounds are shown in figure 2.26.
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Figure 2.26: Bound on the dimension of the first singlet scalar. The blue, orange, green,
red and purple lines correspond to respectively N = 4, 5, 10, 20, 100. These bounds have
been obtained at Λ = 27. The dotted lines indicate the same bound at Λ = 19 and are
included to illustrate the convergence. All bounds show a clear kink corresponding to
the O(N ′) model. An additional more dull kink is visible in the region 0.52 < ∆t < 0.58.
This kink gets less sharp and precisely located at larger N . For N = 4 an additional kink
is visible around ∆t = 1.1. The bounds get strictly weaker for larger N .

Next let us turn to the bound on the dimension of the first spin-2 singlet after the stress
tensor. For small N this bound shows a clear peak in the region 0.52 < ∆t < 0.58. For
larger N the peak fades and the most discernible feature becomes a kink around ∆t ≈ 0.7.
However it seems that especially for larger N the bounds are far from converged even at

21(as proven in section 2.3.3)
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Λ = 27. These bounds are shown in figure 2.27.
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Figure 2.27: Bound on the dimension of the first spin-2 singlet after the stress tensor. The
blue, orange, green, red and purple lines correspond to respectively N = 4, 5, 10, 20, 100.
These bounds have been obtained at Λ = 27. The dotted lines indicate the same bound
at Λ = 19 and are included to illustrate the convergence. For small N a peak is visible.
For larger N the peak fades and the most discernible feature becomes a kink around
∆t ≈ 0.7. The bounds get strictly weaker for larger N .

More interesting features are visible in the bound on the first spin-1 antisymmetric vector
after the conserved current. This is the first instance where the bounds are neither
strictly weaker nor stronger for increasing N . At large ∆t we see the behavior usual
found for singlet operators, i.e. the bounds get weaker for larger N . Near the unitarity
bound we see the usual behavior for non-singlet, i.e. the bounds get stronger for larger
N . In between there is a transition between these two regimes.

Next we examine the bound on the dimension of the first scalar Box operator, see figure
2.29a. For small N there are clear kinks in the region 0.54 < ∆t > 0.6 . Additionally
there is a family of very sharp kinks for all N moving to the right towards ∆t = 1 as
N increases. However, at Λ = 27 the location of the kink does not seem to converge
to 1 in the N → ∞ limit. Since the location of the kink does not change much when
changing from Λ = 19 to Λ = 27 it seems unlikely the location of the kink would converge
to ∆t = 1 in the Λ→∞, N →∞ limit.

A similar family of kinks can be seen in the bound on the dimension of the first spin-1
Hook vector as is shown in figure 2.29b. However, the location of the kink, i.e. the value
of ∆t of the kink, does not precisely match the location of the kinks in the bound on the
first scalar Box operator. Again, at Λ = 27 the location of the kink does not converge
to 1 in the N → ∞ limit. In fact in this case the location of the kink seems to have
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Figure 2.28: Both figures: Bound on the dimension of the first spin-1 anti-symmetric
vector after the conserved current. The bounds have been obtained at Λ = 27. On the
left: A zoom of the region 0.5 < ∆t < 0.58. Near the unitarity bound the bounds get
strictly stronger for larger N . On the right: Overview of the same bound on 0.5 < ∆t < 1.
A second kink appears for N = 10, 20, 100 around ∆t = 0.8. At large ∆t the bounds get
strictly weaker for larger N . The bound diverge near ∆t = 1.

converged already at N = 1000.22 However, in this case the bounds seem further from
convergence in Λ at Λ = 27. It is possible that in the Λ→∞, N →∞ limit the bounds
would converge to 1.

Moreover, we find strong evidence for a theory with a Z2-even t at large N . In figure
2.30 the bound on ∆t′ is shown both under the assumptions that t× t exchanges itself
and without it. When we assume the exchange of t itself in the t× t OPE a sharp kink
appears for large N . The kink gets sharper as N increases.

Finally, the bounds on the four-index-symmetric tensor are shown in figure 2.31. For
small N the only feature is the kink corresponding to the O(N ′) model. For large N a
second kink emerges, for example at N = 100 a kink located around ∆t ≈ 0.82.

22Moreover, neither the Hook nor the Box bound moves substantially when changing N = 1000 to
N = 1016 (this bound is not included in the figures).
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Figure 2.29: Bounds on the dimension of the first Box scalar (left) and the first hook
vector (right). The blue, orange, green, red, purple and brown lines correspond to
respectively N = 4, 5, 10, 20, 100, 1000. On the left: For N = 4, 5 there are kinks at
∆t = 0.54 and ∆t = 0.60 respectively. For larger N this kink disappears. A family of
sharp kinks is visible for all N . On the right: Again a family of sharp kinks is visible for
all N , unlike the figure at the left the the location of the kinks seems to have converged
to ∆t ≈ 0.91. The locations of the kinks does not coincide with the family of kinks shown
in the figure on the left. Neither figure seems to assymptote to ∆t′ = 1. All bounds
get strictly stronger for larger N and have been obtained at Λ = 27. The dotted lines
indicate the same bound at Λ = 19 and are included to illustrate the convergence.
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Figure 2.30: Bound on the dimension of the first traceless symmetric operator. The blue,
orange, green, red and purple lines correspond to respectively N = 4, 5, 10, 20, 100. On the
left: No additional assumptions. Various families of kinks are visible: One corresponding
to the O(N ′) model, one in the region 0.55 < ∆t′ < 0.6, one in the region 0.6 < ∆t′ < 0.75
(this one disappears at N = 100), and a last one in the region 0.75 < ∆t′ < 1. On
the right: The same bound assuming that t × t exchanges t itself. The last family of
kinks becomes much sharper and more pronounced under this assumption especially for
N = 20, 100. This is strong evidence that the kink corresponds to a theory with a Z2
even traceless symmetric operator. All bounds have been obtained at Λ = 27.
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Figure 2.31: Bound on the dimension of the first four-index-symmetric scalar. The blue,
orange, green, red and purple lines correspond to respectively N = 4, 5, 10, 20, 100. Apart
from a kink at the location of the O(N ′) model few features are visible. At N = 100 an
additional kink becomes visible. These bounds have been obtained at Λ = 27. The dotted
lines indicate the same bound at Λ = 19 and are included to illustrate the convergence.
The bounds get strictly weaker for larger N .



2.7. Conclusions

2.7 Conclusions

By isolating a candidate island for the ARP 3 model this study gives a partial answer to
the discrepancy between its effective Landau-Wilson-Ginzburg description and lattice
simulations [69]. The former predicts that no stable fixed points exist for N > 3.6 while
the lattice simulations show a clear second order phase transition. Indeed this work finds
evidence for the existence of a CFT compatible with the critical exponents extracted
by the lattice simulations. Possibly the perturbative estimate of Nc is wrong despite it
having a stable Padé-Borel approximation.

In agreement with the lattice data the allowed island lives deep within the one-relevant-
singlet peninsula. By finding an isolated island in the (∆t,∆s) plane as well as in other
parameter spaces we show that such interior CFTs can still be isolated. However, we fail
to determine dimensions such as (∆t,∆s) to any high precision. The mixed t−s bootstrap
equations did not greatly improve the bounds. Possibly the inclusion of a greater number
of the relevant scalars is required to obtain precision islands (see the efficacy of including
more relevant scalars in [67]). One could for example add the crossing equations involving
the parity even traceless symmetric operator tE or the first b operator. However, either
of these options results in a big set of bootstrap equations and is therefore numerically
quite heavy. Alternatively a mixed bootstrap involving a spinning operator such as the
conserved current J might offer significant improvement.

Finally, in our systematic study of all the operators of lowest dimension for general N
we also found various new and unexplained kinks. Most notably, two families of sharp
kinks appear for all N > 4 in the bound on the first Box scalar and the first Hook vector.
Additionally, we found various kinks in the bound on the dimension of the first traceless
symmetric operator. Some of these kinks become much sharper when it is assumed
that the t × t OPE exchanges t itself. This is strong evidence in favor of these kinks
corresponding to a CFT where t is Z2-even. We leave the investigation of these kinks (as
well as some others described in the main text) to future research.
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Conclusion and Outlook

In this thesis we extended the conventional numerical conformal bootstrap by performing
the first bootstrap of a mixed system involving scalars and spinning operators. By
extending the bootstrap of the conserved current to the mixed system of the current and
the scalar operator charged under it we opened the way to a new method of studying
systems with continuous symmetries. We assessed that this extension has the potential to
greatly improve numerical bounds and allow new and important quantities to be bounded
and extracted. Among others we found important OPE coefficients related to the OPE
between two currents and the stress tensor and the OPE coefficient of two currents with
the first singlet operator. Comparison of this OPE data to Monte Carlo data allowed for
the prediction of the thermal one-point function of the stress tensor. Multiple extensions
of this work come to mind. We saw that access to the external correlators involving
the singlet operator turned out be crucial for isolating the O(2) model. While we did
find a way around this by isolating the theory using the assumptions of a gap ∆T ′ in
the dimension of the first spin-2 singlet after the stress tensor, a better solution would
be to also include the correlators involving the singlet and do the φ− s− J bootstrap.
This would of course be computationally heavier but with the new scanning algorithms
of [67] it might be possible. An alternative is to consider the singlet operator instead
of the charged scalar. Another interesting extension is the application of the mixed
current-scalar bootstrap to non-abelian continuous symmetry groups.

We also managed to isolate a candidate island for the ARP 3 model despite the fact
that it lives deep within the bounds on the first singlet dimension. However, non-
trivial assumptions had to be made and we still did not achieve high precision islands.
Again considering a bigger bootstrap setup might be the solution. Possible candidates
for additional correlators to consider are those involving a Z2-even traceless symmetric
operator, those involving the Box operator, which seemed to play a crucial role in isolating
an island in our study, or those involving the spinning conserved current operator.

Recent advances in making use of both dual and primal jumps, hot-starting and better
more efficient OPE scanning algorithms [76, 67, 73] enable us to consider bigger bootstrap
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setups offering an interesting direction for future research, but it also reminds us to always
keep our eye out for ways of improving our basic bootstrapping methods themselves.
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A Appendices to chapter 1

A.1 Conductivity in terms of CFT data

We begin by defining the two point function of the U(1) current:

〈J(x1)J(x2)〉 ≡ 〈J(x1, z1)J(x2, z2)〉 = CJ
(4π)2

1
x4

12

[
z1 · z2 − 2(x12 · z1)(x12 · z2)

|x12|2
]
. (A.1)

In the above expression all polarizations zi and ccordinates are three dimensional and,
as usual xµ12 = (x1 − x2)µ. With this normalization the current Jµ satisfies the global
symmetry Ward identity and in the case of a free scalar field C free

J = 2.

We are interested in the leading terms in the OPE expansion of Jµ×Jν , with a particular
interest in the contribution of the smallest dimension scalar operator, let us call it S,
which is normalized according to

〈S(x)S(0)〉 = A

|x|2∆S
. (A.2)

This can be obtained by matching with the leading term in the x1 → x2 expansion of
the three-point function [18]:

〈J(x1)J(x2)S(x3)〉 = CJ
√
A

(4π)2 λ̂JJS
(∆S − 2)Ĥ12 + ∆SV̂1,23V̂2,31
|x12|4−∆S |x13|∆S |x23|∆S

, (A.3)

where as usual we are working in three dimensions. The prefactor CJ
√
A/(4π)2 has been

added so that the three-point function coefficient λ̂JJS is defined for unit-normalized
current and scalar. The three point function coefficient is related to the one used in the
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main text and appendix A.2 simply by

λ̂JJS = −∆SλJJS . (A.4)

The structures Ĥ and V̂ —which correspond to the physical space projection of the H
and V of (1.9)— are written as follows,

Ĥ12 = z1 · z2 − 2 (x12·z1)(x12·z2)
|x12|2 ,

V̂1,23 = (x12·z1)|x13|
|x12||x23| −

(x13·z1)|x12|
|x13||x23| , (A.5)

V̂2,31 = (x23·z2)|x12|
|x23||x13| + (x12·z2)|x23|

|x12||x13| .

By matching with the OPE expansion we get:

J(x1)× J(x2) ∼ CJ
(4π)2

[
Ĥ121 + λ̂JJS

|x12|4−∆S
×

×
(

(∆S − 2)(z1 · z2)− (∆S − 4)(x12 · z1)(x12 · z2)
|x12|2

)
S(x2)√
A

+ . . .

]
.

(A.6)

Next, let us consider the contribution to the OPE of the stress tensor Tµν . Following
[18], we can write this term as

J(x1)× J(x2) ∼ CJ
(4π)2

3
32π

(4π)2

CT

(
t1(x12, z1, z2)αβ + 12 γ t2(x12, z1, z2)αβ

)
Tαβ(x2) ,

(A.7)
where

t1(x12, z1, z2)α′β′(x) = zµ1 z
ν
2P

α′β′

αβ (6x̂(µδ
α
ν)x̂

β + 2δαµδβν + 3x̂µx̂ν x̂αx̂β − 5δµν x̂αx̂β) ,

t2(x12, z1, z2)α′β′(x) = zµ1 z
ν
2P

α′β′

αβ (2x̂(µδ
α
ν)x̂

β − 2δαµδβν − 3x̂µx̂ν x̂αx̂β − 3δµν x̂αx̂β) ,
(A.8)

and we explicitly introduced the projector on traceless symmetric indices

Pα
′β′

αβ = 1
2

(
δα
′

α δ
β′

β + δα
′

β δ
β′
α −

2
3ηαβη

α′β′
)
. (A.9)

In order to compute the conductivity we need to take the Fourier transform at point x1,2
of the expressions (A.6) and (A.7). Using standard formulas, see for instance appendix B
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of [77], we obtain:∫
d3x1d

3x2e
ip1·x1eip2·x2J(x1, z1)× J(x2, z2) ∼

∼
(
zµ1 Ĩµν(p1)zν2

)−|p1|
π3CJ

4 δ3(p1 + p2)− λJJS
4π|p1|∆S−1

Γ(∆S + 1) sin
(
π∆S

2

)
2−∆S

S̃(p2)√
A

+

+CJ
CT

1
|p|

(
t̃1(p1, z1, z2)αβ + 12γt̃2(p1, z1, z2)αβ

)
T̃αβ(p1 + p2) + . . . , (A.10)

where

t̃1(p1, z1, z2)αβ = 3zµ1 zν2 (ηανηβµ + ηαµηβν − ηαβηµν + p̂µp̂νηαβ − p̂β p̂νηαµ
−p̂αp̂νηβµ − p̂β p̂µηαν − p̂αp̂µηβν + p̂αp̂βηµν + p̂αp̂β p̂µp̂ν) ,(A.11)

t̃2(p, z1, z2)αβ =
(
zµ1 Ĩµν(p)zν2

)
(ηαβ − 3p̂αp̂β) ,

with Ĩµν(p) = (ηµν − p̂µp̂ν) and p̂µ = pµ/|p|. By choosing the polarizations along the 2nd
direction zi = (0, 1, 0), the momenta

p1 = w , p2 = −w + p , w = (Ω, 0, 0) , (A.12)

and taking the expectation value of the previous expression at finite temperature, we
obtain:

〈J2(−w)J2(w + p)〉T ∼ (2π3)δ3(p)|Ω|×

(
− CJ

32 −
CJλJJS

4π
Γ(∆S + 1) sin

(
π∆S

2

)
2−∆S

Υ−1
(
T

|Ω|

)∆S

− 72CJγ
CT

Ω2

|Ω|2Hxx

(
T

|Ω|

)3
+ . . .

)
, (A.13)

where we defined

〈S(0)〉T = BT∆S , Υ =
√
A

B
, 〈T22(0)〉T = 〈T33(0)〉T = −1

2〈T11(0)〉T = HxxT
3 .

(A.14)
Finally, given the relation [52],

σ(iw)
σQ

(2π)3δ3(p) = − 1
|w|
〈J2(−w)J2(w + p)〉T , (A.15)

we obtain equation (1.6) shown in the main text.
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A.2 Three point functions

A.2.1 Scalar-scalar OPE

We start by normalizing the OPE of two scalars O1 ×O2 such that

O(x, z)O1(0) ∼ λ12O
(−x · z)`

(x2)
∆+∆12+`

2

O2(0) , (A.16)

where zµ is a null polarization vector. The operator O is a parity even operator of spin `
and λ is the OPE coefficient. The symbol ∼ means that we consider only one primary
operator exchange, in this case O2. We are therefore omitting the contribution of all the
other primaries and all the descendants in the OPE of O×O1. We use this normalization
for both the cases O1 = O2 = φ and O1 = φ,O2 = φ̄. Notice however that for φ× φ, the
equality of the operators forces ` to be even.

A.2.2 Current-scalar OPE

We normalize the scalar current OPE J × φ as

O`,+(x, z)J(0, z1) ∼ 1
√
a`

φ(0)
(x2)α λJφO+

∑2
p=1 ωp t

(p)
+ (x, z, z1) ,

O`,−(x, z)J(0, z1) ∼ 1√
b`

φ(0)
(x2)α λJφO− t−(x, z, z1) ,

(A.17)

where O`,± is a parity even/odd operator of spin ` and charge one, and λ are OPE
coefficients and α ≡ ∆+∆J−∆φ+`+1

2 . The coefficients a` and b` are defined to match the
conventions of [26],

a` ≡
(−2)`−1(d/2)`−1
`2(d− 1)`−1

, b` ≡
a`

−2`(d+ `− 3) . (A.18)

The leading OPE tensor structures are defined as follows

t
(1)
+ (x, z, z1) = (x · z)`(x · z1) ,

t
(2)
+ (x, z, z1) = (x · z)`−1x2(z · z1) ,
t−(x, z, z1) = |x|(x · z)`−1ε(x, z1, z) .

(A.19)

When ` = 0 only t(1)
+ survives. In (A.17) a single combination of t(p)+ is used. This is

written in terms of the vector ω = {2(α− 1),−2α+ d+ `}/`, determined by imposing
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conservation of J . Finally we set d = 3 in all formulae above.

A.2.3 Current-current OPE

The normalization of the current-current OPE is as follows

O±(x, z)J1(0, z1) ∼ J2(0, ∂z2)
(x2)α±

∑
q

c
(q)
12O± t

[JJ ] (q)
± (x, z, z1, z2) , (A.20)

where α+ ≡ 1
2 + α− ≡ ∆+∆1−∆2+`+2

2 . In (A.20) q runs from one to five for parity even
operators. The correspondent OPE structures take the form

t
[JJ ] (1)
`+ (x, z, z1, z2) ≡ (x · z)`(z1 · z2)x2 ,

t
[JJ ] (2)
`+ (x, z, z1, z2) ≡ (x · z)`(x · z1)(x · z2) ,

t
[JJ ] (3)
`+ (x, z, z1, z2) ≡ (x · z)`−1(z · z1)(x · z2)x2 ,

t
[JJ ] (4)
`+ (x, z, z1, z2) ≡ (x · z)`−1(z · z2)(x · z1)x2 ,

t
[JJ ] (5)
`+ (x, z, z1, z2) ≡ (x · z)`−2(z · z1)(z · z2)x4 . (A.21)

By imposing equality and conservation of the currents Ji we find only two linearly
independent structures

5∑
p=1

(m+)p̃p t[JJ ] (p)
`+ (x, z, z1, z2) , (p̃ = 1, 2) , (A.22)

where

m+ =
(

(2−∆)(`+ ∆) (∆− `)(`+ ∆) 2`(∆− 2) 0 −`(∆− 2)
`−∆ + 2 0 −`+ ∆− 2 ∆− ` `−∆ + 1

)
.

(A.23)

For parity odd operators there are four possible tensor structures

t
[JJ ] (1)
`− = ε(x, z1, z2)(x · z)`

t
[JJ ] (2)
`− = ε(x, z, z1)(x · z2)(x · z)`−1

t
[JJ ] (3)
`− = ε(x, z, z2)(x · z1)(x · z)`−1

t
[JJ ] (4)
`− = [ε(x, z, z1)(z · z2) + ε(x, z, z2)(z · z1)](x · z)`−2x2 .

(A.24)

For conserved equal currents we obtain just one structure which takes a different form
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for ` even or odd, ∑
p

(m−)p t[JJ ] (p)
`− (x, z, z1, z2) , (A.25)

with
m− =

{
(∆− 3, `, `, 0) ` even,
(0,∆− `− 3,∆ + `+ 1, 1−∆) ` > 1, odd.

(A.26)

When ` = 1 there are no allowed tensor structures, while for ` = 0 there is one.
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A.3 Conformal Blocks

A.3.1 JJφφ̄

The blocks for JJφφ̄ are computed using the recurrence relation (1.38). We first consider
correlators of two vectors V1, V2 and two scalars φ1, φ2, we finally restrict to the equal,
conserved case. In order to use (1.38), we have to compute the coefficients RA and the
functions h∞.

As described in [6], RA are obtained as the product of three terms,

(RA)pp′ = (M (L)
A )pp′ QAM

(R)
A , (A.27)

where QA and MA are respectively related to the two- and three-point functions with
primary-descendants operators. For our case the three terms in (A.27) were already
computed in the literature. Indeed QA and M (R)

A are the same as for the scalar blocks
of [6], while (M (L)

A )pp′ are the same of [18]. Thus, the only missing computation is that
of h(p)

∞ `,s. These functions are obtained by solving the Casimir differential equation at
leading order in large ∆ [35, 6]. The Casimir equation mixes the five structures resulting
in a system of 5 coupled differential equations. We introduce the ansatz

h(s′)
s (r, η) ≡ A(r, η)P (s′)

s (r, η) , A(r, η) ≡
(
1− r2)1−h√

r2 − 2ηr + 1 (r2 + 2ηr + 1)3/2 . (A.28)

The resulting differential equations for P (s′)
s (r, η) are then easily solved using Mathematica.

The solution is given by

P =



(
r2 − 1

)2 (2rη +A3) 0 0 0 0
0 A1A

2
3 −2r2ηA1A3 −2r2ηA1A3 4r4η2A1

0 −2rA1A3 −A1A2A3 4r3ηA1 2r2ηA1A2
0 −2rA1A3 4r3ηA1 −A1A2A3 2r2ηA1A2
0 4r2A1 2rA1A2 2rA1A2 A1A

2
2

 ,

(A.29)
with A1 = (1 + r2 − 2rη), A2 = (−1 + r2 − 2rη), A3 = (1 + r2). Hence the functions h∞
can be written as a linear combination of the five h(s′)

s as follows

h
(p)
∞`+,s(r, η) =

5∑
s′

h(s′)
s (r, η)f (p)

`+,s′(η) , (A.30)

where the functions f are constants of integration that can be fixed by imposing the
correct initial conditions f (p)

`+,s(η) = h
(p)
∞`+,s(0, η). We then determine these constants by
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studying the OPE limit x2 → x1, x4 → x3 of the four point function [6],

lim
x2→x1
x4→x3

43∑
s=1

f
(p)
`±,s(η)Qs =

t
(p)
`+ (x̂12, I(x24) ·Dz, I(x12) · z1, z2)(−x34 · z)`

`!(h− 1)`
. (A.31)

Here (−x34 ·z)` comes from the scalar OPE (A.16) and t(p)`+ are the OPE structures defined
in (A.21). Here we also introduced the differential operator Dµ

z ≡ (d/2− 1 + z · ∂z) ∂µz −
1
2z
µ∂2

z and the reflection matrix I(x)µν = δµν − 2xµxν/x2. Finally, the conserved blocks
for JJφφ̄ are obtained from the contraction (m+)pqh(q), where m+ is defined in (A.23).

A.3.2 JφJφ̄

As we mention in section 1.2.3, we compute the conformal blocks of JφJφ̄ by using
the an improved version of the ancillary file of [26]. The code produces a single block
for the parity-odd exchanges and four blocks g(p′,q′)

∆`+,s (for p, q = 1, 2) for the parity-even
exchanges. To be consistent with the OPE basis defined in appendix A.2.2, we write the
parity-even conserved block as follows,

g∆ `+,s =
2∑

p′,q′=1
(ω̃(L))p′(ω̃(R))q′g

(p′,q′)
∆ `+,s , (A.32)

where

ω̃(L) = {`(`+ 1),∆−∆φ} , ω̃(R) = {−`(`+ 1),∆−∆φ} . (A.33)

A.3.3 φJJφ̄

The conformal blocks for the φJJφ̄ can be obtained from the ones of JφJφ̄ by using
crossing symmetry 1 ↔ 2. Indeed it is easy to see that the functions ĥs of (1.26) are
related to the f̂s as follows,

ĥ1(u, v) = −v∆φ+∆J+ 1
2
[
f̂2
(
u
v ,

1
v

)
+
√
u
(
f̂1
(
u
v ,

1
v

)
+ f̂3

(
u
v ,

1
v

))]
,

ĥ2(u, v) = 1
2v

∆φ+∆J

[
(u+ v + 1)f̂1

(
u
v ,

1
v

)
+ 2
√
uf̂2

(
u
v ,

1
v

)
+ (u+ v − 1)f̂3

(
u
v ,

1
v

)]
,

ĥ3(u, v) = 1
2v

∆φ+∆J

[
(−u+ v − 1)f̂1

(
u
v ,

1
v

)
− 2
√
uf̂2

(
u
v ,

1
v

)
+ (−u+ v + 1)f̂3

(
u
v ,

1
v

)]
,

ĥ4(u, v) = v∆φ+∆J f̂4
(
u
v ,

1
v

)
,

ĥ5(u, v) = −v∆φ+∆J+ 1
2 f̂5

(
u
v ,

1
v

)
.

(A.34)
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In terms of radial coordinates the equations above relate ĥs(r, η) to f̂s(r,−η). Therefore,
by means of (A.34), we can reconstruct ĥs(r, η) to some order O(rn) by knowing f̂s(r,−η)
to the same order. In particular, since f̂s is evaluated at −η, its complete dependence in
η has to be known at that order. This would require extra computations. Indeed, we
only need some derivatives at η = 1 of the JφJφ̄ blocks and their full dependence in η
was not computed. For this reason, instead of using (A.34), we built the φJJφ̄ blocks
using the differential operators of [24]. The final conserved blocks are then put in a basis
compatible with (A.34). This allows to have the same definition for the OPE coefficients
that multiply the JsJs and the sJJs blocks.

A.3.4 Conformal block decomposition

As an example, let us compute the conformal blocks decomposition of φJJφ̄ and JφJφ̄
for the theory of a free complex boson. We use the unit normalized current Jµ ≡
−i√

2(φ∂µφ̄− φ̄∂µφ) and compute the correlators by Wick contractions,

fs(u, v) =
{

1
2u

3/4
(√

u

( 1√
v

+ 2
)

+ 1
)
, 0, 1

2
4√u
√
v,
u7/4

2v , 0
}
, (A.35)

hs(u, v) =
{
u3/4 (

√
u (
√
v + 2) +

√
v)

2v2 ,−u
3/4

2v ,
4
√
u

2
√
v
,
u5/4 + u7/4

2v3/2 ,−u
3/4

2v

}
. (A.36)

Here the functions fs and hs are the ones defined in (1.21) and (1.23). Because of the
normalization explained in appendix A.3.3, the conformal block decomposition of the
functions fs and hs give the same OPE coefficients pO. These are exemplified in the
tables below for O being either a parity even or odd operator.

∆, ` 1
2 , 0

5
2 , 1

7
2 , 2

9
2 , 3

11
2 , 4

13
2 , 5

15
2 , 6

17
2 , 7

19
2 , 8

p∆`+
1
2

3
8 − 1

42
1

1056 − 12
25025

137
4534920 − 367

24025386
4859

3893984640 − 5669
9546570900

Table A.1: OPE coefficients for parity even operators in the conformal block decomposition
of JφJφ̄ and φJJφ̄.

∆, ` 9
2 , 2

11
2 , 3

13
2 , 4

15
2 , 5

17
2 , 6

19
2 , 7

21
2 , 8

23
2 , 9

p∆`+
1
15 − 1

182
1

510 − 107
373065

17
198835 − 193

12606300
2969

695987820 − 1319
1564192575

Table A.2: OPE coefficients for parity odd operators in the conformal block decomposition
of JφJφ̄ and φJJφ̄.
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A.4 Vectors for the bootstrap equations

In this appendix we detail the form of the 23-dimensional vectors in (1.51). The vector
V Q=0

∆,`,+ takes a different form for ` = 0 and ` > 0 (even),

(
V Q=0

∆,`,+
` even

)
1

= F
[−]φφ̄φφ̄
O+

(u, v)

 1 0 0
0 0 0
0 0 0

 ,

(
V Q=0

∆,`,+
` even

)
2

= F
[+]φ̄φφφ̄
O+

(u, v)

 1 0 0
0 0 0
0 0 0

 ,

(
V Q=0

∆,`,+
` even

)
3

= F
[−]φ̄φφφ̄
O+

(u, v)

 1 0 0
0 0 0
0 0 0

 ,

(
V Q=0

∆,`,+
` even

)
7

= S+
1 (u, v) ,(

V Q=0
∆,`,+
` even

)
8

= S−1 (u, v) ,(
V Q=0

∆,`,+
` even

)
9

= S+
2 (u, v) ,(

V Q=0
∆,`,+
` even

)
10

= S−2 (u, v) ,(
V Q=0

∆,`,+
` even

)
11

= S+
3 (u, u) ,(

V Q=0
∆,`,+
` even

)
12

= S+
4 (u, u) ,(

V Q=0
∆,`,+
` even

)
13

= R−13(u, v) ,(
V Q=0

∆,`,+
` even

)
14

= R−15(u, v) ,(
V Q=0

∆,`,+
` even

)
15

= R−16(u, v) ,(
V Q=0

∆,`,+
` even

)
16

= R−17(u, v) ,(
V Q=0

∆,`,+
` even

)
17

= R+
7 (u, v) ,(

V Q=0
∆,`,+
` even

)
18

= R+
1 (u, u) ,(

V Q=0
∆,`,+
` even

)
19

= R+
2 (u, u) ,(

V Q=0
∆,`,+
` even

)
20

= R+
4 (u, u) ,(

V Q=0
∆,`,+
` even

)
21

= R+
5 (u, u) ,(

V Q=0
∆,`,+
` even

)
22

= R+
6 (u, u) ,(

V Q=0
∆,`,+
` even

)
23

= R+
3 (1

4 ,
1
4) ,(

V Q=0
∆,`,+
` even

)
i

= 0 , i=4,5,6,

(
V Q=0

∆,0,+

)
1

= F
[−]φφ̄φφ̄
O+

(u, v)
(

1 0
0 0

)
,

(
V Q=0

∆,0,+

)
2

= F
[+]φ̄φφφ̄
O+

(u, v)
(

1 0
0 0

)
,

(
V Q=0

∆,0,+

)
3

= F
[−]φ̄φφφ̄
O+

(u, v)
(

1 0
0 0

)
,(

V Q=0
∆,0,+

)
7

= S+
1 (u, v) ,(

V Q=0
∆,0,+

)
8

= S−1 (u, v) ,(
V Q=0

∆,0,+

)
9

= S+
2 (u, v) ,(

V Q=0
∆,0,+

)
10

= S−2 (u, v) ,(
V Q=0

∆,0,+

)
11

= S+
3 (u, u) ,(

V Q=0
∆,0,+

)
12

= S+
4 (u, u) ,(

V Q=0
∆,0,+

)
13

= R−13(u, v) ,(
V Q=0

∆,0,+

)
14

= R−15(u, v) ,(
V Q=0

∆,0,+

)
15

= R−16(u, v) ,(
V Q=0

∆,0,+

)
16

= R−17(u, v) ,(
V Q=0

∆,0,+

)
17

= R+
7 (u, v) ,(

V Q=0
∆,0,+

)
18

= R+
1 (u, u) ,(

V Q=0
∆,0,+

)
19

= R+
2 (u, u) ,(

V Q=0
∆,0,+

)
20

= R+
4 (u, u) ,(

V Q=0
∆,0,+

)
21

= R+
5 (u, u) ,(

V Q=0
∆,0,+

)
22

= R+
6 (u, u) ,(

V Q=0
∆,0,+

)
23

= R+
3 (1

4 ,
1
4) ,(

V Q=0
∆,0,+

)
i

= 0 , i=4,5,6.

(A.37)
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A.4. Vectors for the bootstrap equations

The matrices R and S are 3× 3 and they can be written in terms of the functions F as
follows,

R±s (u, v) ≡


0 0 0
0 F

[±](1,1)JJJJ
O+,s

(u, v) F
[±](1,2)JJJJ
O+,s

(u, v)
0 F

[±](2,1)JJJJ
O+,s

(u, v) F
[±](2,2)JJJJ
O+,s

(u, v)

 , (A.38)

S±s (u, v) ≡ 1
2


0 F

[±](1)JJφφ̄
O+,s

(u, v) F
[±](2)JJφφ̄
O+,s

(u, v)
F

[±](1)JJφφ̄
O+,s

(u, v) 0 0
F

[±](2)JJφφ̄
O+,s

(u, v) 0 0

 . (A.39)

The matrices R and S are their 2× 2 counterparts,

R±s (u, v) ≡
(

0 0
0 F

[±](1,1)JJJJ
O+,s

(u, v)

)
, S±s (u, v) ≡ 1

2F
[±](1)JJφφ̄
O+,s

(u, v)
(

0 1
1 0

)
.

(A.40)
All the other vectors do not have any matrix structure,(

V Q=0
∆,`,+
` odd

)
1

= −F [−]φφ̄φφ̄
O+

(u, v) ,(
V Q=0

∆,`,+
` odd

)
2

= F
[+]φ̄φφφ̄
O+

(u, v) ,(
V Q=0

∆,`,+
` odd

)
3

= F
[−]φ̄φφφ̄
O+

(u, v) ,(
V Q=0

∆,`,+
` odd

)
i

= 0 , (i 6= 1, 2, 3)

(
V Q=2

∆,`,+

)
2

= −F [+]φφφ̄φ̄
O (u, v) ,(

V Q=2
∆,`,+

)
3

= F
[−]φφφ̄φ̄
O (u, v) ,(

V Q=2
∆,`,+

)
i

= 0 , (i 6= 2, 3) .

(A.41)
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(
V Q=0

∆,`,−

)
13

= F
[−](1,1)JJJJ
O−,13 (u, v) ,(

V Q=0
∆,`,−

)
14

= F
[−](1,1)JJJJ
O−,15 (u, v) ,(

V Q=0
∆,`,−

)
15

= F
[−](1,1)JJJJ
O−,16 (u, v) ,(

V Q=0
∆,`,−

)
16

= F
[−](1,1)JJJJ
O−,17 (u, v) ,(

V Q=0
∆,`,−

)
17

= F
[+](1,1)JJJJ
O−,7 (u, v) ,(

V Q=0
∆,`,−

)
18

= F
[+](1,1)JJJJ
O−,1 (u, u) ,(

V Q=0
∆,`,−

)
19

= F
[+](1,1)JJJJ
O−,2 (u, u) ,(

V Q=0
∆,`,−

)
20

= F
[+](1,1)JJJJ
O−,4 (u, u) ,(

V Q=0
∆,`,−

)
21

= F
[+](1,1)JJJJ
O−,5 (u, u) ,(

V Q=0
∆,`,−

)
22

= F
[+](1,1)JJJJ
O−,6 (u, u) ,(

V Q=0
∆,`,−

)
23

= F
[+](1,1)JJJJ
O−,3 (1/4, 1/4) ,(

V Q=0
∆,`,−

)
i

= 0 , otherwise ,

(
V Q=1

∆,`,±

)
4

= σOF
[−]Jφ̄Jφ
O±,1 (u, v) ,(

V Q=1
∆,`,±

)
5

= σOF
[−]Jφ̄Jφ
O±,2 (u, v) ,(

V Q=1
∆,`,±

)
6

= σOF
[+]Jφ̄Jφ
O±,3 (u, u) ,(

V Q=1
∆,`,±

)
7

= −σOF [+]φ̄JJφ
O±,1 (u, v) ,(

V Q=1
∆,`,±

)
8

= σOF
[−]φ̄JJφ
O±,1 (u, v) ,(

V Q=1
∆,`,±

)
9

= −σOF [+]φ̄JJφ
O±,2 (u, v) ,(

V Q=1
∆,`,±

)
10

= σOF
[−]φ̄JJφ
O±,2 (u, v) ,(

V Q=1
∆,`,±

)
11

= −σOF [+]φ̄JJφ
O±,3 (u, u) ,(

V Q=1
∆,`,±

)
12

= −σOF [+]φ̄JJφ
O±,4 (u, u) ,(

V Q=1
∆,`,±

)
i

= 0 , otherwise.

(A.42)
Recall that the sign sigma is defined in (1.48).
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B Appendices to chapter 2

B.1 Spectra at maximal OPE values

It is interesting to examine the spectrum of the lowest operators at the maximal values
of λttT , λttJ and λttt. It is expected that real theories often live close to the maximal
value of the OPE coefficient. This follows from the same logic that holds for operator
dimensions. It is often physical solutions to crossing that prevent the bound from coming
down further. A kink in this maximum or a sudden rearrangement in the spectrum gives
evidence for the presence of a genuine CFT. Indeed we observe that close to the location
of the kink in λttJ the spectrum indeed rearranges itself. Below we show once more the
bounds on all operator dimension but this time we include also the spectrum of the
corresponding lowest operator in the various extremal spectra1.

1We exclude from the spectrum any crossing through 0 of the extremal functional from negative to
positive values within machine precision of the unitarity bound. Otherwise the plot looks more erratic
because sometimes we do accurately detect this operator and sometimes we do not. As a consequence
the “lowest” dimensional operator is allowed to exceed the bound since in those cases another operator
exactly at the unitarity bound was already included.
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Figure B.1: The lowest dimensional operator in the extremal spectra found when
maximizing the OPE coefficients λttT , λttJ and λttt. The blue line show to the upperbound
on the lowest dimensional operator. The green, orange and red lines shows the lowest
dimensional operator found in the extremal functional at respectively the maximal value
of λttT , λttJ and λttt. The dashed orange lines indicate the location of kinks in the upper
bound on λttJ while the dashed red line indicates the location of a kink in the upper
bound on λttt.
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