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Abstract
The search of novel materials using in-silico high-throughput screening is emerging as a fun-

damental step in the pipeline of materials discovery, but its low yields in terms of synthesisable

structures limit its effectiveness.

In order to isolate configurations that show promise to be stable at experimental conditions,

scientists have traditionally relied on a convex hull construction, which finds the phases that

are favourable under known thermodynamic boundary conditions (i.e. pressure, composi-

tions). While this scheme is robust and computationally inexpensive, it is severely limited:

it can only isolate phases which exhibit stability to well known thermodynamic variables,

and does not provide a systematic way of dealing with the inevitable uncertainties in the

computationally determined formation energies of the candidate phases, or with the presence

of multiple similar phases that only differ because of disorder or defects.

In this thesis, we introduce a novel thermodynamic framework which aims at enhancing the

exploratory power of structure searches by generalising the convex hull construction (GCH).

This scheme relies on a set of data-driven, structural descriptors which correlate with the

systems’ responses to external thermodynamic conditions. Moreover, it is probabilistic, thus

offering a way to assign a probability to every configuration of becoming stabilisable by ap-

plication of a given thermodynamic constraint, rather than classifying in a binary manner

synthesisable and non-synthesisable phases.

We first benchmark the predictive power of this scheme in a series of increasingly complex

structure searches tasks, ranging from high-pressure hydrogen crystals to detection of molec-

ular crystals stabilisation through chemical substitution. We then show how the probabilistic

character of our proposed scheme increases the robustness of the convex hull constructions to

differences in the choice of potential energy surfaces and atomistic description of the system.

Finally, we show the results of a fully explorative search on the phase diagram of ice. The GCH

constructions re-discovers all the known 17 phases included in the set and further proposes

a set of candidates for meta-stability. To test the novel phases stability range we analyse

their enthalpies at various pressures, finding regimes where novel candidates appear to be

favourable over the already known phases.

The results presented in this thesis show that the GCH can effectively enhance structure

searches schemes with a robust and far-sighted probe for potentially synthesisable configura-

tion.

Key words: Machine learning, Thermodynamics, High-throughput screening, DFT, Crystal
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Abstract
La ricerca di nuovi materiali attraverso simulazioni high-throughput è un approccio emer-

gente nella scoperta di nuovi materiali, ma la sua efficacia è minata dallo scarsa capacità di

individuare strutture effettivamente sintetizzabili.

L’individuazione di configurazioni che dimostrano un alto potenziale di stabilizzazione speri-

mentale si basa tipicamente sull’utilizzo di convex hulls, capaci di trovare le fasi termodinami-

camente favorite sotto specifiche condizioni esterne.

Sebbene questo schema sia robusto ed efficiente in termini di costo computazionale, non

è esente da difetti fondamentali: può solo isolare le fasi stabilizzate da condizioni termodi-

namiche note a priori, e non contiene alcun modo sistematico di considerare le inevitabili

incertezze contenute nei cacoli delle energie di formazione delle fasi sotto screening.

In questa tesi introduciamo un nuovo approccio che mira ad aumentare il potere esplorativo

delle ricerche di strutture generalizzando la costruzione del convex hull. Questo schema si

basa su un insieme di descrittori strutturali estratti automaticamente dai dati, che possono

correlare con qualsiasi meccanismo di stabilizzazione che influisca sulle configurazioni ato-

miche delle fasi.

Inoltre, ha una natura probabilistica, e offre un modo per assegnare una probabilità ad ogni

configurazione di risultare stabilizzabile sotto l’applicazione un determinato vincolo ter-

modinamico, piuttosto che fornire una classificazione binaria fra fasi stabilizzabili e non

stabilizzabili. Il potere predittivo di questo schema viene inizialmente testato in una serie

di ricerche strutturali di complessità incrementale, partendo da idrogeno cristallino ad alta

pressione, fino alla caratterizzazione della stabilizzazione di cristalli molecolari attraverso

sostituzioni di specie chimiche.

Successivamente, mostriamo come la natura probabilistica del nostro schema proposto au-

menti la robustezza del convex hull rispetto alla scelta di potenziali differenti e nella scelta

della descrizione atomistica del sistema.

Infine, mostriamo i risultati di una ricerca completamente esplorativa sul diagramma di fase

del ghiaccio. Riscoprendo tutte le 17 fasi note incluse nel set, proponiamo inoltre una serie

di candidati alla metastabilità, e dimostriamo la validità delle fasi proposte testando la loro

stabilità rispetto a diverse condizioni termodinamiche. I risultati presentati in questa tesi di-

mostrano come il GCH possa aumentare, in maniera efficace, schemi di ricerca di strutture con

una estensione robusta e flessibile per la ricerca di fasi con alto potenziale di stabilizzazione.

Parole chiave: Machine learning, Termodinamica, High-throughput screening, DFT, Predizio-
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1 Introduction

When nature finishes to produce its own

species, man begins using natural things

in harmony with this very nature to

create an infinity of species

Leonardo Da Vinci

1.1 Materials Design

Materials science is a relatively modern branch of science which deals with the modelling

and fabrication of materials with a desired set of properties. However, the history of materials

research and discovery has played a key role in the development of human civilisation: many

fundamental technological breakthroughs have come through the discovery of new materials.

The fundamental role played by materials in history is made clear from the naming of ages

of civilisations – the stone, iron and bronze ages – with each new technological era being

brought about by a new material[1], as shown in Fig. 1.1. Notably, one can observe a trend

where subsequent discoveries of a revolutionary material involve a reduction of length scale

involved in their production process. The core business of materials science has thus evolved

throughout its history, from a practice strongly focused on chemical and industrial process, to

a fully interdisciplinary field of study aimed at uncovering the complex relations governing a

macroscopic material’s properties from its atomic constituents[2]. While a relevant portion

of materials research continues to strive for advanced and efficient production of existing

compounds, materials design from first principles has picked up an immense momentum[3].

With the advent of cutting edge experimental techniques like chemical vapour deposition

(CVD), focused ion beam (FIB) milling and etching it has become increasingly feasible to

synthesise materials with an atomistic resolution. Similarly, it is possible to characterise their

structure through Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), nuclear mag-

netic resonance (NMR) or Raman Spectroscopy (to name a few). This wealth of experimental
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Chapter 1. Introduction

Figure 1.1 – The history of technological ages defined by their fundamental materials

techniques has paved the way for the synthesis and characterisation of novel compounds.

In parallel to the evolution of experimental techniques, the theoretical modelling of materials

properties has seen a fundamental surge in all of its fields, bridging the wide gap between

the macroscopic, experimentally observable behaviour of materials and their physics at the

atomistic level.

Materials properties are determined by the relative arrangements of its single atoms con-

stituents, which are governed by their corresponding many-body Schrödinger equations.

While this is a conceptually well defined problem, its numerical solution proves to be pro-

hibitive for any system with more than a few electrons, and thus theoretical materials scientist

resort to numerical solutions of simpler, ideal systems which approximate the compounds of

interest[4]. This approach, combined with the progressive refinement of the approximated

models, has rendered the route of a fully computational experiment (in-silico) a viable route

to achieve the discovery of novel compounds and has paved the way for what is considered

today to be computational materials modelling[5, 6].

A fundamental branch of research has thus emerged from this materials discovery pipeline,

one that aims to performing as many exploratory computational experiments as possible, to

explore materials spaces (ensemble of compounds with specific stoichiometries) which can

yield materials with industrial value. Such practice is often called "high-throughput" compu-

tational materials science, and it is generally a resource-intensive preliminary screening step

in the materials design process[7, 8].

A current issue that limits the effectiveness of high-throughput searches is the efficiency

which existing algorithms offer, i.e. number of number of candidate materials that survive

the property screening (often calculated at a computationally costly quantum mechanical

level) over the number of compounds screened. It has become thus of imperative importance

to enhance further the explorative power of materials high-throughput search by raising its

efficiency, allowing for computational searches schemes which are more likely to find novel,

breakthrough materials. The bottlenecks often faced by the high-throughput search are often

of two kinds : the low number of configurations exhibiting the desired properties, and most

importantly, their experimental realisability.

The objective of this thesis is to empower computational structure searches with a framework
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capable to identify in an unbiased and automatic manner the structures which have the

highest likelihood of being synthesised in an experimental condition, and thus of industrial

interest.

1.2 Modelling Materials Stability

The task of computational materials modelling consists in characterising a materials behaviour

under a certain set of external constraints, which are modelled to mimic the effect of the ex-

perimental conditions it could be synthesised in. To achieve such a description at an atomistic

level, the coordinates of the nuclei defining a particular material’s building block are modelled

according to the thermodynamic ensemble the user wants to reproduce. These ensembles

define a probability distribution of arrangements of the atomic positions. Thus, to measure

an observable of interest one must obtain the values of the observable over the ensemble of

structures sampled, each weighted by its corresponding probability. The configuration space

accessible by a collection of atoms depends on the atoms involved in the material and the

physics determining their interactions.

To achieve a physically relevant modelling of a material’s behaviour one has to strike a balance

between an exhaustive sampling of the corresponding ensemble and an accurate descrip-

tion of the potential energy surface of the atomic arrangements defining it. While a correct

treatment of a compound’s behaviour should be founded on a first-principles (ab-initio)

quantum mechanical description of the nuclei-nuclei, nuclei-electron and electron-electron

interactions, the computational cost associated to the solution of their underlying Schrödinger

equation is often prohibitive. To sidestep this limitation, approximate methods ranging from

semi-empirical models to fully tabulated interactions (force fields) are often employed in place

of the rigorous ab-initio potential energy surfaces. While first principle interactions are general

and can be applied to any atomic arrangements, tabulated potentials can fall onto unphysical

descriptions of systems when exploring regions of phase space (atomic arrangements and

momenta) which lie outside of the conditions they have been parametrised for. Further, a

different number of configurations’ energies must be calculated depending on the in-silico

experiment of choice, which correspond to either particularly long simulations or system sizes

comprising intractably large collections of atoms. In practice the assessment of a material’s

behaviour from an atomistic simulation point of view requires a compromise between accu-

racy of description of its atoms’ interactions and extent of sampling of the ensemble of choice.

The evaluation of materials’ stability is often practiced finding a balance between the two axes

of sampling accuracy, and as a result different compromises are chosen depending on the

resources available or the level of accuracy required.

A common way to assess a material’s stability is whether its arrangement of atoms corresponds

to a minimum on its system’s potential energy surface (PES). While there are often a very

large number of configurations for which the net force acting on each atom is zero, their

enumeration defines a sound starting point for the discovery of structures that can exhibit
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stability to thermodynamic perturbations. The robustness of a minimum configuration is

correlated to its lifetime in an experimental realisation, and measured by the depth of its

well in the PES. Every point that is not the global minimum of the PES is considered to be

meta-stable.

The great limitation of such approach is that it disregards the effects that any temperature and

pressure related perturbation can have on the stability of the local configurations. To give a

concrete example, it is only by including vibrational degrees of freedom that the hexagonal

packing of ice results to be more stable than its cubic arrangement[9].

To establish a stronger link between experiments and simulations, it is thus fundamental to

include the contributions that arise from assessing the stability of the configuration in the

ensemble of interest, requiring in practice evaluations of their system’s free energies. These

energies require extensive sampling of the configurations interactions and thus become feasi-

ble only for a handful of candidates that exhibit promising features.

1.3 Machine Learning in Atomistic Modelling

The advent of machine learning (ML) has introduced a fundamental paradigm change in

almost all the fields of science, promoting the role of data into that of a powerful catalyst for

the discovery of previously unknown insights. In parallel, the combined growth of compu-

tational resources and materials modelling techniques has enabled materials scientists to

sidestep many costly experiments by approximating them with atomistic simulations [10].

This approach allows obtaining data containing far more information than the one pursued

by the computational experiment, as it encodes the physically relevant phenomena behind it.

The outcome of each computational experiment can be thus rethought as a collection of data

containing fundamental correlations which shed light on the atomic-scale behaviour of their

corresponding materials.

The application of machine learning techniques to data coming from atomistic simulations

has allowed computational materials scientist to achieve a broad spectrum of methodological

and theoretical breakthroughs ranging from fast surrogate ML models predicting ab-initio

grade properties at a fraction of the cost [11] to generative models which can autonomously

design molecules showing a desired set of properties [12].

The field of atomistic machine learning, however, has seen a late bloom when compared to

other fields of computational science. This delay was due to the need of finding an accurate

translation of atomistic systems into features, i.e. arrays of numbers commonly used as input

for ML schemes. The choice of a descriptor function used to "featurise" the molecular inputs

needs to satisfy a number of symmetries which lie at the core of the properties one wants to

characterise: two molecules of benzene should be described by the same feature irrespective

of their relative orientation, translation of reference axis, or permutation of labels of their

atoms.

With the introduction of symmetry-adapted descriptors, such as Bag of Bonds [13], Coulomb
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matrices [14] and SOAP fingerprints [15], there has been a prolific development of ML models

aimed at producing accurate predictors of a variety of molecular properties: electronic charge

density predictions on organic molecules [16], NMR chemical shifts in molecular crystals [17]

and machine-learning interatomic potentials [18] to list a few.

Since these set of descriptors aim at capturing the structural similarity between different

molecular inputs, one can extend their use to navigating extensive collections of data coming

from molecular dynamics or structures searches to recover recurring patterns hidden in the

data. This task is typically called unsupervised learning, and it has been used successfully to

identify novel definitions of hydrogen bonds in condensed matter [19] or discover the main

building blocks in zeolite frameworks [20]. These agnostic approaches can be combined with

training labels to obtain the flexibility of unsupervised learning with supervised schemes by

performing combined learning: the new patterns that are extracted in an agnostic approach

from the set can find their validation using the properties available in the training set.

The development of ML schemes to model materials stabilities has traditionally focused on

building supervised models capable of interpolating the energies of an atomic system using a

set of reference calculations. The goal of these machines is to cut the cost of a computationally

expensive, high accuracy energy evaluation by training a predictive model which infers a

new configuration’s energy based on its structure, as seen by its descriptors. Starting from

simple isolated molecule’s energies predictions [14], the community has developed strategies

to extend the predictive models to solids [21, 22], complex compounds spaces [23] and more

recently, charged systems [24].

These schemes can be a solid starting point for performing high-throughput screening of

materials with the desired range of stabilities. However, they can only provide static informa-

tion of the configuration under study. In order to include insight into the effect that thermal

excitation can have on the systems, ML potentials (MLP) can be trained to perform accurate

simulations at a reduced computational cost. While similar to the aforementioned static

energy regressors, MLIPs require a subtler and costlier training procedure, as they are built to

model the potential energy surfaces and their derivatives, thus requiring many out of equilib-

rium configurations. Despite their training requirements, MLPs are a very promising means to

endow costly calculations (either due to sheer system size or sampling time) with an accuracy

comparable to the one reached by ab-initio methods. Successful examples of their use are for

example, free energy calculations for achieving quantitative comparisons of phase stability in

ice [25], modelling of structural transition in nanometer scale dense disordered silicon [26]

or estimation of proton transfer’s free energy at the water-TiO2 interface [27]. While these

methods are very effective at performing comparisons of configurations well represented

by their training set, they have not proven to be reliable enough to single-handedly guide a

structure search exploration[28]. This observation limits the promise of ML aided structure

discovery heavily, requiring a different angle to enhance the efficiency of crystal structure

prediction routines.

Over the last decade, a tremendous amount of work has been dedicated to understand-

ing the interplay between the short-range interactions and long-range ordering effects in

hydrogen-bonded systems, showing how much of its behaviour is dominated by competing
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local structural motifs [29]. Similarly, the weak intermolecular forces causing polymorphism

in molecular crystals is determined mainly from the local interactions between the molecular

moieties [30]. These investigations proved that a detailed description of local environments in

such molecular systems could provide an insightful starting point for capturing the mecha-

nisms governing a system’s stability.

The overarching goal of this thesis is to use unsupervised ML techniques to discover the

link between structural patterns in crystals and stabilising mechanisms and leverage them

to widen the breadth of crystal structure search to probe stabilisation schemes beyond the

conventional ones. The result of this research is the introduction of a generalised convex hull

construction (GCH), a data-driven redefinition of the well established convex hull method

which is capable of extracting potentially stable phases arising from crystal structure searches

in an entirely agnostic manner.

1.4 Summary

The thesis is organised as follows: We provide a short introduction to machine learning

techniques in atomistic simulations in chapter II. In Chapter III, after a basic introduction on

geometrical approaches to determine phase stability, we introduce the theoretical framework

behind the generalised convex hull construction. In chapter IV, we show applications of the

method to solid hydrogen at high pressure, the hydrogen-oxygen binary system at different

stoichiometries and finally, in molecular materials. In chapter V we show an explorative

application of the GCH framework to aid the discovery of novel phases of ice.

Finally, in Chapter VI, we propose some future outlooks while drawing our conclusions.

Chapter III is partially adapted from refs.[31], while chapter IV is adapted from refs.[31].

Chapter V is adapted from [32].
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2 Unsupervised Machine Learning

2.1 Introduction

Machine learning (ML) is a branch of Artificial Intelligence, whose scope is to provide comput-

ers with a set of instructions that allow them to infer correlations from training data that can

be generalised to new, unseen inputs.

ML is a fundamentally interdisciplinary field which has seen massive progress over the past

decade, bringing breakthrough discoveries bringing breakthrough discoveries from IBM’s

Project Debate [33] to the automatic interpretation and translation of text [34]. The underlying

power of ML approaches is their ability to produce models that describe complex phenomena

by only training machines with examples, bypassing the need of either finding their analytical

models or running their costly underlying calculations when available.

The process of learning in an ML algorithm corresponds to the model’s performances increase

upon gaining experience, which in this analogy correspond to the amount of data. It is in fact

in the data that all the correlations between the input (i.e. the hypothesis) and the outputs

(the results) are encoded: the scope of a successful ML algorithm is to adapt its functional

form to model the input-output relation in the most accurate way possible, so to produce a

confident estimate of new outputs given an unseen set of inputs.

The practice of learning given these additional forms of information is known as supervised

learning (SL), in which a predictive model is trained to extrapolate an unknown property for a

new, unlabeled data entry. Alternatively, schemes targeting the extraction of recurring patterns

are commonly referred to as unsupervised learning (UL) and are typically used in cases where

no information on training data, such as classifications or dependent outputs, is available.

2.1.1 Supervised Learning

The typical setting of a Supervised Learning algorithm starts from an ensemble of input-output

pairs (x,y) with x ∈ RD and y ∈ RM , to produce a y∗ given a new input x∗. One can see how

such a formulation allows extreme flexibility in terms of the problem statement since the input
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x can be either an image (e.g. encoded in their RGB arrays) or a vector, while the output can

be either an array of floats or a set of binaries (multi-output classification).

The function F is a mapping between the inputs and the outputs, and depends on a series

of parameters often called "model": {wi }i∈model = w. In order to adapt the function to fit the

training points, it is customary to find the optimal w∗ by minimising the model’s loss function:

w = min
w

L
(
w, {xi , yi }i∈validation

)
Over a series of values coming from a validation set, which is extracted from the dataset and

used as a reference. Depending on the model of choice, many different functional forms can

be adopted, and the choice of their optimal weights extracted either analytically or through

global minimisation.

The early approaches stemmed from extending linear regression to multi-dimensional inputs

of the kind X = {wi }i∈dataset, consisting of a linear filter in the form of:

P (X) = w∗X

Overfitting arises when the model is trained to match perfectly the training inputs, at the cost

of its generality. To compensate, one can regularise the loss functions so to prevent its solu-

tions from following too closely the input data: the most common example is the Tikhonov

regularisation (L2)[35] or a Lasso regularisation (L1)[36]. Another merit of regularised ap-

proaches is to produce more stable estimators, as very often the large dimensional spaces

used as inputs suffer from multicollinearity (i.e. a linear dependence between them).

In modern supervised approaches many branches of modelling have been used to produce

efficient regressors: Boltzmann machines, decision trees, support vector machines, neural

networks and more recently, graph networks, are ubiquitous examples [37–39].

A very recent promising trend involves the use of deep learning schemes, where the architec-

ture of the models is often composed of multiple interconnected layers of non-linear functions.

These schemes leverage on the complexity of their structure (i.e. the raw number of fitting

parameters, often in the order of millions and above) to build models of extreme accuracy,

at the cost of long training times and requirement of massive training datasets. Examples of

these structures are deep Neural networks such as AlexNet (or VGG net), deep graph networks

and extreme learning [40, 41].

2.1.2 Unsupervised Learning

The other fundamental branch of ML is called unsupervised learning (UL), and it is commonly

used with cases where correlations have to inferred from unlabelled data.

The purpose of UL algorithms is two-fold:

1. explore the dataset in search of hidden correlations between the input points (dimen-

sionality reductions, outliers analysis).
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2. find rules to group them by (clustering analysis)

Since a great deal of the development work in this thesis lies its foundations on UL algorithms,

the scope of the following sections is to guide the reader throughout some critical algorithms

in both dimensionality reductions and clustering techniques. For the readers interested in

a general overview of ML, two interesting references are Information Theory, Inference, and

Learning Algorithms by DJC. MacKay [42] and Pattern Recognition and Machine Learning by C.

Bishop [43].

2.2 Dimensionality reduction

Dimensionality reduction (DR) aims at finding a lower-dimensional projection of a high

dimensional set such that a metric of choice is preserved. One can, in general, define their

dataset as a collection of points X = {xi }i=1..N and xi ∈ D, indicating a collection of N points

populating a D-dimensional "feature" space.

When a population of points comes from some form of sampling of its underlying distribution,

it is common for it to lie in a subspace of its full feature space. The effective dimensionality of

this lower-dimensional manifold is often called "intrinsic dimensionality" (ID). An accurate

estimation of a set’s ID is key in determining potential for compression in signals [44], fractals’

dimensions [45] and reconstructing a protein sequence [46]. DR techniques are devoted to

finding the optimal d < D dimensional space which preserves the relevant topology from the

full-dimensional space. Colloquially stated, DR is often used to provide a reduction of high

dimension data projected into human-interpretable dimensions, i.e. less than or equal to three.

The reduction of the dimensionality of the data is often used to aid its visualisation for rapid

detection of outliers or clusters, although it can be used to uncover much more information.

Further examples are the removal of unimportant degrees of freedom, identification of slow

modes in high dimensional time-series [47].

2.2.1 Principal Component Analysis

One of the most traditional approaches to DR is principal component analysis (PCA) [48].

PCA applies an orthogonal transformation to the feature space that reduces the number of its

(possibly) correlated dimensions into a (smaller) number of uncorrelated directions called

principal components (PC).

The rationale guiding the reduction is to produce a lower dimensionality embedding whose

dimensions are uncorrelated and ordered so that the first few retain most of the variation

present in the original variables. Although there are multiple ways to extract the PC from a set,

the practical calculation of the principal components often amounts solving an eigenvalue-

eigenvector problem for a positive-semidefinite symmetric matrix.

If one considers the set of N , D-dimensional points X = {xi }i=1..N , it is possible to extract its PC
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by calculating the eigenvectors of the covariance matrix associated to the centred distribution

X̃ = X− 1

N

N∑
i=0

xi (2.1)

Hereon the " " accent will be dropped for simplicity and all input sets "X" should be assumed

centered. We can calculate the covariance matrix C = XT X and the simply rewrite every points’

coordinate as :

xi = 1

N

N∑
i=0

xi +
N∑

k=1
pi ,k ek (2.2)

The ek are the eigenvectors of the matrix C and are D dimensional orthonormal vectors.

The scalar pi ,k is the projection of the point xi on the dimension k. At this stage, there still has

not been any compression, however, if one sorts the eigenvectors in descending order of their

corresponding eigenvalues, the new point’s coordinate can be approximating by cutting its

expansion until the d large enough eigenvalues.

This thresholding effectively allows to approximate:

xi ∼
d∑

k=1
pi ,k ek

PCA is extremely general and is often used to produce a rapid overview of the order of modality

of the distribution of inputs or filter the data representation from undesired noise.

2.2.2 The kernel trick

It is often the case that the relationship between points is best represented in terms of a kernel

measure of their similarity. Such a mathematical construction allows to bypass explicit refer-

encing to their underlying Hilbert space, provided the existence of kernel function associated

to it, as depicted in Fig. 2.1. This approach is often commonly called "kernel trick" and allows

to describe a distribution of points in a Hilbert space by knowing the values of the inner

product between their features. If we introduce a non-empty set X, one can define a kernel

k as any symmetric, real-valued function acting on X×X that is positive definite (psd). This

condition amounts to finding a symmetric function k : X ×X → R that satisfies:

n∑
i , j

ci c j k(xi , x j ) ≥ 0 (2.3)

for any n ∈ N, and x1, ..,xn ∈ X and c1, ..,cn ∈ R.

A useful property of a psd kernel is that it can be thought of as an inner product between two

feature veectors of its arguments[49]. This results in simple linear kernels by considering the

Gram Matrix obtained on the feature space, or consider higher order correlations between the
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Figure 2.1 – If one considers the set of points {xi }i=1..6 lying in the space X, one can either
characterise them by their coordinates x1, x2, x3..x6 or adopt a kernel representation of their
pairwise similarity. In this case, by using the 6×6 dimensional positive-definite symmetric
matrix k(xi , x j ) depicted above one encode the same spatial correlations. To formulate the pre-
dictions on a new point x, one will compare its similarity with respect to the initial embedding
set, by building a new similarity matrix between the new input and the training set.

data by adopting kernel functions, such as Gaussian, radial basis or polynomial kernels.

The advantage of this formulation is that it enables the highly non-linear mapping of the

input data and allows saving storage or memory space when representing datasets lying in

dimensions D far larger than their set size N .

For a more detailed discussion on kernel methods, we suggest the reading of reference [3, 49].

Alternatively, it is extremely common to represent a distribution of points through a measure

of their pairwise distance. In general, to define a distance metric d , acting on the same set X ,

one would need to define a function satisfying the following properties:

• d(xi , x j ) ≥ 0 and d(xi , y j ) = 0 if and only if i = j (non-negativity)

• d(xi , x j ) = d(x j , xi ) (symmetric)

• d(xi , xk ) ≥ d(xi , x j )+d(x j , xk ) (triangular inequality)

for any xi , x j , xz of X .

In case one is able to define a kernel measure between a distribution of points, it is possible to

produce a valid corresponding distance function by calculating:

d(xi , x j ) =
√

k(xi , xi )+k(x j , x j )−2k(xi , x j ) (2.4)

This equation allows one to seamlessly switch the two metrics, and effectively allows the use

of many-distance based techniques starting from kernels representations.
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2.2.3 Multidimensional scaling

A widely adopted strategy used to perform DR is to find the low dimensional Cartesian pro-

jection that best reproduces the pairwise distances in the high dimensional space. Such

approaches fall in the family of multi-dimensional scaling (MDS). In the case of metric MDS, a

stress function S (x1, x2, .., xN ) is defined, which accumulates the residual of the lower dimen-

sional embedding compared to the high dimensional space in the form :

S (x1, x2, .., xN ) = 1

N

√∑
i , j

(d p
i j −‖xi −x j‖)2 (2.5)

The p term is the parameter involved in the embedding, and can be tuned to weight with

different intensity the distances in the full-dimensional space.

The formulation of metric MDS is extremely flexible, and can be naturally extended to intro-

duce elements of nonlinearity by distorting the distances in the stress function.

The distortion of the distance functions serves the purpose of characterising the topology of

the high dimensional space one is trying to approximate. While keeping a Euclidean distance

can be useful in simple manifolds, it can in general reproduce a deceiving picture of the folding

of the points distribution. A powerful alternative consists finding the best embedding which

preserves the geodesic distances between the points in high dimension as sketched in Fig.2.2,

by following the Isomap algorithm [50]. Isomap aims to capture the complex shapes of a high

dimensional manifold M by minimising a distance metric which encodes the connectivity of

the full distribution of points.

To find the optimal embedding y∗, one has to follow three steps:

Figure 2.2 – In figure, a simple depiction of the difference between a projection preserving the
pairwise Euclidean distance between points, and on the right the corresponding isometric
mapping procedure.
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1. Calculate the Euclidean distance d(xi , x j ) between each pair of points in the set and

use it to build a corresponding (weighted) connectivity graph G . The resulting graph is

obtained by thresholding the distance matrix according to a fixed neighbouring radius ε.

The values of the edges between neighbouring points is their Euclidean distance.

2. The pairwise geodesic distance matrix dM (xi ,x j ) is approximated by the shortest path

distance matrix dG (xi ,x j ). To obtain dG , one sets all dG (xi ,x j ) elements corresponding

to neighbours on the connectivity graphs to their euclidean distance, and the remaining

ones to an arbitrarily high number (∞ in the original article). Finally, one fills every

entry remaining entry of the dG matrix by cycling throughout every point of the set

k = 1..N : dG (xi ,x j ) = mi n{dG (xi ,x),dG (xi ,x j )+dG (xk ,x j )}

3. Finally, classical MDS is applied to the matrix DG = {dG (xi , x j }i , j∈N , by optimising the

stress function X on the coordinate vectors yi of the resulting Euclidean embedding

space:

X = ‖τ(DG )−τ(DY )‖L2 (2.6)

Where DY represents the Euclidean distance matrix in the new, low dimensional space

Y and τ transforms the distance matrices into inner products [50].

The power of ISOMAP lies on its ability to produce a mapping which aims at unfolding the

global distribution of points in the high dimensional space, which allows for visualisation of

global pathways linking the main modes of the data.

2.2.4 Sketch-map

Another very effective way to introduce nonlinearity in case of data coming from atomistic sim-

ulations has been introduced in the Sketch-map algorithm [51]. To obtain a lower dimensional

embedding one can minimize the stress function :

X 2 = ∑
i 6= j

1

wi w j

∑
i 6= j

wi w j
[
F (Ri j )− f (ri j )

]2 (2.7)

Where wi is the weight of i -th point, Ri j = ‖Xi −X j‖ with X ∈RD and ri j = ‖xi −x j‖ with x ∈Rd ,

with D >> d . The two distances are filtered by two independent sigmoid functions F = S A,B ,σ

and f = Sa,b,σ,which maps monotonically R+ to [0,1), and uses the following functional form:

Sa,b,σ(r ) = 1− 1

[1+ (2
a
b −1)( r

σ )a]
b
a

(2.8)

This formulation allows the user to select through the parameter σ which distance to be

considered as a threshold for perceptual distance. The parameter a (b) tunes the steepness
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with which points falling before (after) σ are mapped to zero (one). The combination of σ

with the two steepness parameters allows the user to highlight similarity at the desired length

scale, disregarding fluctuations arising from the intrinsic noise in the data or suppressing slow

modes hidden in the samples.

Another advantage of MDS schemes is their scaling with the size of the database (i.e. the num-

ber N of points to embed). While the direct stress function minimisation scales O(N ) ∼ N 2

with N points, it is possible to approximate the embedding into a two-step problem, thereby

reducing the scaling to O(N ) ∼ N M .

To build such a reduction, one can produce an explicit embedding for a reduced set of repre-

sentative configurations M (landmarks), and minimise the stress function only in terms of

distances of every other X point from the M landmarks :

X 2(x) =
(

M∑
i=1

wi

)−1 M∑
i=1

wi [F (‖X−Xi‖)− f (‖x−xi‖)]2 (2.9)

Where wi is the weight assigned to the i -th landmark.

This formulation allows fast and non-linear embedding for millions of points and has been

used successfully in many molecular dynamics simulation data, where thermal vibrations

introduce often unimportant degrees of freedom. Relevant examples show its application in

describing the potential energy surface (see Chapter 2 for further details) of a Lennard Jones

system [52] or describe the conformations of aspartic acid in solution [53].

2.2.5 Kernel Principal Component Analysis

The PCA framework has been extended to kernels [54], allowing for an easier visualisation of

the high dimensional manifolds reproduced by the kernel trick.

Given that the kernel matrix corresponds to an inner product in its reproducing kernel Hilbert

space (RKHS)[55], considering two arbitrary elements x and x′, one can write that :

K (x,x′) = 〈φ(x),φ(x′)〉 =φ(x)φ(x′)T (2.10)

Where the function is a nonlinear mappingφ :RD→ F , projecting the dataset into a potentially

infinite dimensional space. If we assume that the data is centered in F , one can calculate the

covariance matrix associated with the mapped distribution as

Cφ = 1

N

N∑
i=1

φ(xi )Tφ(xi ) (2.11)

The solution to the eigenvalue problem will be given by all the eigenvectors V and their

corresponding eigenvalues λ. By construction, all the solutions included in V can be spanned

from the collection of {φ(xi )}N with linear combination weightsαi , which allows us to rephrase
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the solution to the eigenvalue problem in terms of :

λ(φ(xi ) ·V)) = (φ(xi ) ·CφV) and V =
N∑

i=1
αiφ(xi ) (2.12)

By combining these two conditions one can write the :

λ
N∑
i
αi (φ(xk )φ(xi )) = 1

N

N∑
i
αi (φ(xk ) ·

N∑
j
φ(x j ))(φ(x j )φ(xi )) for k = 1..N (2.13)

By recalling that the matrix element of the kernel matrix is Ki j =φ(xi )φ(x j )T , one can write

the equation in a matrix form NλKα= K2α.

The solution of such a system are found by solving the eigenvalue problem in α of Nλα= Kα.

If we consider all the eigenvalues λi D of K from above, andα their corresponding eigenvectors,

one can impose that their non-zero eigenvalues corresponding vectors in F are normalised:

(Vk ·Vk ) = 1 =∑
i , j
αk

i α
k
j Ki j = (αk ·Kαk ) =λ(αk ·αk ) (2.14)

When applying principal component analysis, it is customary to extract only the first d projec-

tions on the eigenvectors Vk in F , thus, given a new test point with an image φ(xtest ) , one can

write

(Vk ·φ(xtest)) =
D∑
i
αk

i (φ(xi ) ·φ(xtest)) = α ·k(x,xtest) (2.15)

This result extend the use of PCA to any non-linear mapping of the input data, and is a funda-

mental result of dimensionality reduction theory.

2.2.6 Other Dimensionality Reduction Schemes

Multidimensional scaling is not the only way to capture non-linear spatial features, as many

other approaches have been developed which suit different scenarios: Hessian based locally

linear embedding (He-LLE) [56], t-SNE [57], and diffusion maps [58].

A modern approach to dimensionality reduction is to train neural networks schemes called

autoencoders [59][60]. An autoencoder is an artificial neural network which aims at encoding

the input vector into an identical output vector. It can be simply turned into a dimensionality

reduction scheme by reducing an inner hidden layer number of units with an arbitrarily lower

number of nodes. The input vectors are thus mapped into a latent space which is used as a

lower-dimensional embedding of the input data. The rest of the network carries the task of

remapping the latent space inputs to the full high dimensional space, and is often called a

decoder.

Reducing dimensionality can be useful for characterising variability, removing unimportant
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degrees of freedom, and discovering better representations of complex data. In atomistic

simulations, for instance, the degrees of freedom characterising a system can be on the order

of millions, which often makes the reduction of dimensionality necessary for obtaining an

intuitive picture of the physics hidden in the data.

2.3 Clustering

A second family of unsupervised learning algorithms deals with the problem of automatically

partitioning points into groups. Such separation is usually carried out to reflect the similarity

between points belonging to the same groups and at the same time, meaningful difference

between points belonging to different groups.

The aim of such separation is to glance at the dominating traits in the dataset, which usually

reflect into a finite and clear number of clusters. This it plays a fundamental role in many

modern schemes and real-life scenarios: automatic detection of fake news [61] and fraudulent

behaviour [62].

As in most machine learning algorithms, at the core of a clustering scheme, there is a cost

function measuring the quality of grouping achieved at the iteration t as a function of every

point’s assignment L (X) = {l (xi )}i=1..N . The function l maps from RD →RNcluster s and stores

the assignments of each point xi ∈ X to the j -th cluster, either with a boolean value (hard

clustering) or with a probability (soft clustering).

2.3.1 k-means

The simplest algorithm for cluster analysis, k-means, is considered to be a partitioning scheme,

in that every point has to be assigned to a group, as shown in Fig.2.3.

The idea behind k-means is to partition n samples into k clusters in which each data point

Figure 2.3 – k-means clustering assignment applied to a set of five different tests. The two
(three in case (c),(d),(e)) different colours define the clusters found. One can already see how
k-means excels in presence of globular data (i.e. (c) and (e)) and finds it difficult to follow the
structure of the data whenever the differet modes become more anisotropic.

belongs to the cluster with the nearest mean, serving as a prototype of the cluster.

If one considers a feature matrix X = {xi }i=1..N , with x ∈ RD , the k-means objective is to
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partition it into a set S= S1,S2...,Sk that minimises the within-cluster sum of squares :

argmin
S

k∑
i=1

∑
x∈Si

‖x−µi‖2 (2.16)

The vector µi = 1
|Si |

∑
xi∈Si

represents the average value of the points belonging to the cluster i ,

it can be seen as a virtual input around which every cluster is centered.

To solve this problem, one can use Lloyd’s algorithm (Voronoi iteration) to obtain a solution

iteratively by following a two-step approach (often called Expectation-Maximisation):

1. Expectation: assign every point to a set:

S(t )
i = {xp : ‖xp −µ(t )

i ‖2 ≤ ‖xp −µ(t )
j ‖2∀ j ,1 ≤ j ≤ k}

where xp is assigned exclusively to one cluster per t iteration

2. Maximisation: update the mean positions by averaging over the points in the newly

built sets:

µ(t+1)
i = 1

‖S(t )
i ‖

∑
x j∈S(t )

i

x j

The algorithm converges with the assignments and their corresponding. This solution, how-

ever, does not always guarantee to coincide with the optimal solution: the local minimum

curse is one of the key weak spots of the k-means clustering.

This issue is strictly dependant on the choice of the initial means, but can be compensated by

either running multiple initialisations, or by choosing them systematically.

A popular fix to this has been proposed in k-means++ [63], which augments the speed of con-

vergence from O(N log N ) to O(log N ). The idea behind k-means++ revolves around the choice

of an optimal starting point for the mean vectors, which aims at maximising the coverage over

the distribution of points.

By defining a minimum distance of a data point from its closest centre D(x), one can obtain

an optimal set of k centres by using the following recipe:

1. Choose the first µ0 randomly from X

2. The next centre µt is the x ∈ X with the highest probability p(x) defined as follows :

p(x) = D(x)2∑
x∈X D(x)2

3. Repeat step 2 until k centres have been defined
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This approach allows to set up an efficient starting point for the classical k-means algorithm

defined before and produces consistently faster convergence to a lower minimum of the

associated cost function.

2.3.2 Gaussian mixture models

Figure 2.4 – Gaussian mixture model clustering assignment applied to a set of five different tests.
The two (three in case (c),(d),(e)) different colours define the clusters found. When compared
to the results obtained through k-means, one can see how GMM suffers of substantially
similar drawbacks. The capacity of employing anistropic gaussian mixtures allows it to follow
accurately the shape of data of case (d).

K-means is traditionally considered to be a hard clustering approach since every point can

be assigned to one and only one cluster. Such model can often be limiting, especially in

cases where distributions are scattered with different densities, or in the presence of unclear

boundaries between nuclei.

To alleviate for such condition one imagine the assignment vectors as probabilities of each

point of being part of a cluster Si . In Gaussian mixture models, the user supposes that the data

is distributed according to a multimodal Gaussian distribution, which can be decomposed in

sums of multiple Gaussians.

Each centre of these normal distributions represents a centre of a cluster, and their covariance

matrix is optimised so to maximise the likelihood of the spread of points around them.

In GMM, every point is assigned a probability P (x) that depends on the sum of the k models:

P (x) =
k∑

i=1
φi N

(
x | µi ,Σi

)
with

k∑
i=1

φi = 1 (2.17)

Whereφi is each model’s weight, and N
(
x | µi ,Σi

) = 1p
(2π)k |Σi |

exp
{(−1

2 (x −µi )TΣ−1
i (x −µi )

)}
represents a multivariate Normal distribution.

To find the optimal parameters the ML estimation is carried out numerically by using a two-

step expectation maximisation (EM) process, much like in k-means. The first step is called

expectation step and involves the calculation of the component assignments’s expectation Ck

for each xi ∈ X given a set of model parameters (φk ,µkσk ).

In the second step, often called maximisation step, the objective is to maximise the expecta-

tions coming from the previous step over the variables costituing the model parameters. In
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practice the result of this step will be the update the model parameters to (φk+1,µk+1σk+1).

This sequence of operations create an iterative process which continues until a convergence

of the model parameters is reached, giving a maximum likelihood estimate. Intuitively, the

algorithm works because knowing the component assignment Ck for each xi makes solving

for (φk ,µkσk ) easy, while knowing (φk ,µkσk ) makes inferring p(Ck |xi ) trivial.

The expectation step corresponds to the latter case, while the maximisation step corresponds

to the former. Thus, by alternating between which values are assumed fixed, or known, maxi-

mum likelihood estimates of the non-fixed values can be calculated efficiently.

To initialise the parameters, we extract from X to the k list of means µi i=1..k , and define a con-

stant variance for all the components equal to the variance in the set and fix every component

weight to φi = 1/k. To find the optimal (φk ,µkΣk ) one iterates through the EM steps as follows,

for a univariate case:

1. E-Step, where one calculates γi ,k , probability of a point i to be in cluster k, ∀ i ,k

γi ,k = φkN
(
xi | µk ,σk

)∑k
j=1φ j N

(
xi | µ j ,σ j

)
2. M-Step, which determines the update of the models’ parameters :

φk =
N∑

i=1

γi ,k

N
, µk =

∑N
i=1γi ,k xi∑N

i=1γi ,k
, σ2

k =
∑N

i=1γi ,k (xi −µk )2∑N
i=1γi ,k

The extension to a multivariate case is trivial and allows the user to capture clusters which

present anisotropic distributions.

Finally, to calculate the probability of a point i to belong to cluster k, one can calculate:

P (Sk |xi ) = φkN (x | µk ,σk )∑k
j=1φkN (x | µ j ,σ j )

(2.18)

The advantage of GMM over k-means clustering lies in the ability to perform soft assignments

and the ability to detect cluster with non-globular shapes, thanks to the anisotropy introduced

in the multivariate covariance matrices.

Similarly to k-means, it still requires in input the number k of clusters, which is practically

dealt with by running multiple iterations of the algorithm with increasing k, and plotting the

trend of a measure of the quality of their resultant assignments.

2.3.3 Validating the clustering

The assessment of the assignment can be carried out either internally (without relying on ex-

ternal information) or by leveraging on pre-existent knowledge about the input data (external,

or semi-supervised). A simple and effective way to validate the clustering efficacy internally is
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the silhouette coefficient[64], although several other metrics are available: Davies-Bouldin

index or the Dunn index are two common examples.

The silhouette value is a measure of how similar an object is to its own cluster (cohesion)

compared to other clusters (separation), and can be measured by calculating first:

• The mean inter-cluster distances a(i ) , for each data point i ∈ Si , where Si is cluster i:

a(i ) = 1

|Si |−1

∑
j∈Si ,i 6= j

d(i , j )

• The minimum among the mean intra-cluster distance, seen from point i ∈ Si to any

other cluster Sk (it can be thought of as a proxy of the distance from the closest cluster):

b(i ) = min
k 6=i

1

|Sk |
∑

j∈Sk

d(i , j )

• Finally, the silhouette is calculated as :

S(i ) = b(i )−a(i )

max{b(i ), a(i )}

The value of S(i ) peaks at 1 when the point would not be better assigned to any other cluster,

and is equal to −1 in the opposite scenario.

2.3.4 Density based Clustering

Figure 2.5 – DBSCAN clustering assignment applied to a set of five different tests. The two
(three in case (c),(d),(e)) different colours define the clusters found. The advantage of following
the density of points to trace the boundaries of the clusters renders DBSCAN particularly
performing in the examples shown so far. The points being part of boundary regions are
coloured black and labelled as noise. The main weak point of DBSCAN clustering scheme is its
reliance on a constant density of points: one can see how already in (c), the sparser sampling
in the regions of the main globe cannot be detected different from noise.

There are cases in which a-priori estimation of the number of clusters can be ill-defined or

defeat the purpose of the clustering in the first place. In these scenarios, it is common to
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adopt schemes that separate regions of points depending solely on their density distribution.

Such approaches have the advantage of being able to find the number of distinct clusters

automatically, although they need a parametric reference to the minimum density required

for a cloud of points to qualify as a cluster.

A popular algorithm to perform density-based clustering is DBSCAN[65], which labels points

closely packed together into different clusters and detects outlying samples in sparse regions

as noise. The critical parameters in DBSCAN are ε and minPts, which indicate the cutoff

distance connecting two points and the minimum number of points defining a dense neigh-

bourhood, respectively. Combining these two parameters with the pairwise distances between

the dataset’s samples, one can tag every point on whether they belong to core points, reachable

points (boundaries) and noise (outliers). A core point is defined as a point which has at least

minPts within ε distance from itself, while a reachable point is one which contains at least

one core point in its neighbourhood. Finally, all points with less than minPts, non-reachable

points, below ε are considered to be noise.

Once every point is labelled, a cluster is formed by all the core points and their corresponding

reachable points.

The advantage of clustering through DBSCAN is that one can group points belonging to

manifolds of any shape, provided they are sufficiently connected. It is a popular choice for

clustering due to its inherent robustness to outliers and the ease of interpretability of its

parameters. A limitation of DBSCAN lies in its ability to deal with distribution with regions

of varying densities. The solution to this problem has been introduced in the HDBSCAN

algorithm [66], which bypasses the definition of a ε distance by performing a cluster that is

solely dependant on the number of minPts defined.
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2.4 Machine learning in atomistic systems

The techniques introduced so far have been developed for a general class of problems, but

they all share the assumption that a particular set of inputs can be described in terms of

collection of vectors of numerical properties, often called feature matrix, "X". One of the first

critical issues in applying the techniques seen so far to a system described by a collection of

atoms lies in finding an efficient description of its features in terms of input vectors.

The choice of the optimal representation is a crucial step in any machine learning approach

since it establishes which degrees of freedom of the systems the algorithm will capture. As

such, the descriptors play an active role in the analysis of the data and must provide an injec-

tive mapping from the input to the feature space (i.e. different inputs corresponds to different

features). Before attempting to define approaches to extract a descriptor matrix from atomistic

simulation outputs, it is important to define what type of data structure is used commonly.

The vast majority of the data which is of interest of atomistic modelling of materials deals with

a collection of molecules or atoms described in terms of their Cartesian positions and the

species (elements) they contain.

The description of solids makes use of the periodicity of the system to represent the whole

material in terms of its unit cell1, while a finite-size system (often called "cluster") is defined

as a set of coordinates without an explicit box bounding them.

We can thus define a configuration (or frame) as P = {(xi , yi , zi ), zi }i=1..N , where i denotes

the i-th atom, (xi , yi , zi ) its i -th cartesian coordinates and zi its species atomic number. In

presence of a unit cell denoting an infinite periodic system, one will expect an additional term

h = (a,b,c) which contains the three cartesian vectors spanning the unit cell volume.

The scope of this thesis revolves around the characterisation of patterns existing in a material’s

atomistic description using machine learning techniques. Still, before one can apply the

existing algorithms out of the box, it is important to understand how to best represent (i.e.

vectorise) an ensemble of atoms into a feature matrix X. In the following subsections, we list a

group of successful approaches to featurisation of atomistic inputs, together with their limits

and advantages.

2.4.1 Cartesian coordinates and symmetries

The most basic form of feature one can assign to a configuration can be obtained by con-

sidering the list of its atomic coordinates. This approach maps any arbitrary configuration

Pi →R3Ni , where Ni corresponds to the number of atoms contained in the i -th frame. If the

analysis one has to carry out expects the same set of atoms in the same order and reference

frame, then it is possible to define a measure of similarity between two elements as the root

mean square displacement of each atom.

1Disordered systems are usually considered to be periodic as well, although with a large enough unit cell to
minimise the spatial correlations between each replica. In case of a crystal, the unit cell is chosen as its crystal’s
primitive cell.
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While simple in its implementation, such an approach is still widely used as an elementary

fingerprint to characterise structural motifs in biomolecular complexes [67]. However, this

representation presents several limitations: structures with different numbers of atoms lie in

different spaces and rigid translations or rotations of the reference system produce different

features for the same effective configuration.

It is clear that in most practical cases, one finds it useful to compare configurations where it

can be hard to define a fixed common reference set, or where in general , the number of atoms

and species can change. Depending on the machine learning task at hand, the choice of the

most suitable descriptor is often non-trivial.

The essential difference between domain-oriented machine learning models and general

algorithms is that often, the potential energy surface (i.e. the feature-to-property relation) one

wants to reproduce respects several well-known properties. These properties can be encoded

in the feature vectors themselves, allowing to model to focus only on the degrees of freedom

we are interested in modelling.

To offer a concrete example: when comparing two identical molecules of water, our algorithm

should be able to consider them identical irrespective of where the origin of their Cartesian

reference is, whether one is rotated with respect to another, or whether atoms labels are

swapped in order. Such set of conditions make the choice of Cartesian coordinates as a set

of descriptors a rather undesirable choice, and gave rise to a particularly prolific branch of

research devoted to finding symmetry adapted descriptors for atomistic systems.

2.4.2 Local descriptors

The concept of chemical bond introduced by Pauling [68] and Kohn’s principle of near sight-

edness [69] have in common the observation that fundamental local properties (such as the

electron density n(r) ) are most affected by their surrounding potential only at nearby points.

This important notion makes it possible to reconsider the exercise of reconstructing the prop-

erty of a larger ensemble of atoms in terms of a combination of contributions coming from

the local environments that constitute it.

Inspired by this fundamental principle, many approaches to obtain a description of atomic

systems start from breaking down the configurations into collections of so-called "environ-

ments", i.e. atom centred subvolumes of the atomic arrangements which cover until the

desired cutoff length rc. For the sake of simplicity, although many schemes exist to subsample

a portion of space containing a distribution of points, we cover only the ones using spherical

environments, centred around each of the frames’ atoms.

Before we start entering into the details of some of the most used schemes in the field of local

descriptors, we introduce a series of terms that are going to use in this work.

What we called so far as an "environment" Xi , is defined as the collection of atomic coordi-

nates appearing within a sphere of cutoff rc centred in the atom i , while to denote atoms from

a specific species, we use lower case greek letters. One of the first approaches to describe local
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environments comes from the development of a metric capable of distinguishing local order

in polycrystalline or amorphous systems.

Coordination number and Steinhardt Parameters

At its most basic implementation, one could already grasp the features of the particular

system at hand by merely counting the number of atoms contained in the environments of

interest. By calculating what is commonly referred to as "coordination number" N (X ) for an

environment X , it is possible to distinguish crystalline configurations or, in the context of

solidification of materials, separate environments being part of the different phases coexisting

in the simulation cell.

Such a simple scheme, however effective, fails to grasp differences between similarly dense

environments, where local ordering becomes a matter of particular angular distributions, such

as the case of water and ice polymorphs.

To this end, Steinhardt et al. introduced a set of local bond order parameters which are based

on the complex vectors qlm(i ):

ql m(X ) = 1

N (X )

N (X )∑
j=1

Ylm
(
rij

)
(2.19)

In this expression, Ylm denotes the spherical harmonics with quantum numbers l and

m ∈ [−l , l ], and rij describes the distance vector joining the central atom i to the j -th atom in

the environment X .

By calculating the root mean square over the l numbers, one can finally calculate the environ-

ment’s Steinhardt order parameter :

ql (X ) =
√√√√ 4π

2l +1

l∑
−l

|qlm(X )|2 (2.20)

These descriptors report solely information on the angular correlations contained within their

cutoffs, whose sensitivity can be tuned according to the l of choice. This information is, how-

ever, extremely efficient in distinguishing ordered, crystalline environments from disordered

ones, making Steinhardt parameters still an effective collective variable choice for enhanced

sampling techniques focusing on simple phase transitions.

Atom Centered Symmetry Functions

The full characterisation of a 3D distribution of points is far from a trivial computational task

in that it needs to capture two essential correlations between each of the points: their radial

and angular distributions. One of the first descriptors developed to quantify both radial and
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angular correlations came from the work of Behler and Parrinello [70], as an attempt to find a

succinct representation of atomic systems to be used as input in a Neural Network scheme

to model systems potential energy surfaces. In this work, the authors introduced a family of

functions acting on the atomic coordinates called "symmetry functions" (SF), which capture

correlations between atoms in a neighbourhood of a central atom indexed i. All the functions

involve the use of a cutoff functions which weighs every atomic contribution with a decaying

function of its distance from the center of choice, up until a cutoff radius Rc , here reported

according to the formalism introduced in [70]:

fc
(
Ri j

) =
{

tanh3
(
1− Ri j

Rc

)
for Ri j ≤ Rc

0 for Ri j > Rc
(2.21)

We define the distance Ri j as the euclidean distance between the center atom i with the j -th

atom of the frame. Once defined such a cutoff function, all the remaining symmetry functions

combine it with different functional forms that probe the angular and radial correlations

within the spherical environment around the atomic centres. While several SFs have been

introduced over the years, we limit ourselves to the description of the two most used ones, the

so-called G2 and G3 forms.

The G2 function calculated for atom i is defined as:

G2
i =

Natom∑
j=1

e−η(Ri j−Rs)2 · fc (Ri j ) (2.22)

The role of this radial descriptor is to provide an overview of the density of atoms distributed at

a distance from the central atom Rs by means of a Gaussian probe of width depending on η.It

is a 2-body function that requires calculation of the pairwise distances of the atoms present in

the frame, and depends on solely 2 continuous parameters.

To appreciate the angular correlations present in an environment, one needs to compute the

3-body correlation function G3, which functional form is defined as follows:

G3
i = 21−ζ ∑

j 6=i

∑
k 6=i , j

[(
1+λ ·cosθi j k

)ζ ·e
−η

(
R2

i j+R2
i k+R2

j k

)
· fc (Ri j ) · fc (Ri k ) · fc (R j k )

]
(2.23)

Similarly to the radial counterpart, this SF focuses on a portion of space which is Gaussian-

weighted (through the parameter η) on the pairwise distances between the three atoms

involved in the triplet. Moreover, it introduces an angular sensitivity through the introduction

of the angle θi j k formed by the scalar product between distance vectors R̂i j · R̂i k . The angular

resolution can be tweaked by modifying the two parameters η ∈R, which regulates the angular

width of the probe, and λ ∈ {−1,1}, which switches the octants where cosine function hits

its maximum. The calculation of the G3 function is computationally more involved as it

requires the enumeration of the triplets present in the desired environment, and depends

on three parameters. While a single SF cannot capture all the spatial correlations encoded

in a collection of frames, it is customary to use a collection of different parametrisations of

both G2 and G3 to produce an ensemble of angular and radial descriptions of each atomic
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neighbourhood.

The result of such an approach is an atomic feature vector XSF which contains N entries,

corresponding to the number of symmetry function choices found to be suitable for the

system. In practice, the SF selection can be seen as selective non-uniform gridding of the

neighbourhood of every atom. This consideration implies the need for the users to know

which angular and radial lengthscales encode the correlations relevant to the applications.

The SFs have been introduced to model atomic environments to be provided as inputs to

feed-forward neural network-based machine learning potentials (MLP) [70], and later have

been used to successfully build a classifier for local environments in polymorphic systems

[71]. Nowadays they still serve a central role in the development of MLPs owing to an efficient

implementation offered in the n2p2 package [72], and an overhauled functional form that

reduces computational cost related to the scaling with the species space [73].

While SFs can produce an intuitive description of an atom’s neighbourhood, they both require

an a-priori knowledge of the systems’ relevant length scales, and a large number of parameters

to perform model selection onto. A recent solution to automatise the search of a relevant set of

SF has been proposed by Imbalzano et al [74], where a deterministic CUR selection scheme is

used to subsample the set of SFs that capture the most variance throughout the configurations

available in the set.

Smooth Overlap of Atomic Positions

A different approach that has been introduced by Bartok et al. [15] aims at reproducing

a quantitative description of the similarity kernel between two different environments by

building probability density fields as proxies of atomic arrangements, and later compare them

by measuring their overlaps.

The result of this scheme is called smooth overlap of atomic probabilities (SOAP), and allows to

accurately map the correlations between the atoms in an environment onto a high dimensional

space which is sensitive to both the angular and radial information. To build the SOAP kernel,

the starting hypothesis is to define the atomic density ρX for an environment X centred

around an atom i as a sum of Gaussian density distributions centred around each atom’s

positions with width σ:

ρX (r) = ∑
i∈X

exp

{(
−‖r− ri‖2

σ2

)}
(2.24)

This represents a smooth proxy of the atomic arrangements and which is both permutationally

and translationally invariant. It serves as building block to build a measure of similarity

between two environments X ,X ′, which can be obtained by calculating the overlap between

the two densities across all the possible 3D rotations through the operator R̂, as depicted in

Fig.2.6:

k(X ,X ′) =
∫

dR̂

∣∣∣∣∫ ρX (r)ρ′
X (R̂r)dr

∣∣∣∣n

(2.25)
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2.4. Machine learning in atomistic systems

Figure 2.6 – The smooth overlap of atomic position description assumes to decorate each
atomic coordinate with a species dependent gaussian distribution. This way one can represent
the collection of atoms within an environment in terms of a density field (a). The overlap
between these densities evaluated over all the possible pairwise rotations defines thus the
similarity between the two structures (b).

It is important to note that, although the rotational integral introduces a sensitivity to the

angular correlations, to maintain them in the final kernel, one has to impose an exponent

n ≥ 2.2 It is customary to redefine a normalised kernel so that the self-similarity maxes out to

1, by writing simply:

k̂(X ,X ′) = k(X ,X ′)√
k(X ,X )k(X ′,X ′)

(2.26)

While the numerical evaluation of the integral across all rotations is far from trivial, it can be

calculated analytically by representing the density field in terms of orthogonal radial basis

function and spherical harmonics.

By rewriting the atom density as :

ρX (r) = ∑
i∈X

exp

{(
−‖r− ri‖2

σ2

)}
= ∑

nlm
cnlm gn (‖r‖)Ylm(r̂) (2.27)

This allows to evaluate the similarity kernel in the form of a dot product of the rotational

invariant power spectra:

p (X )nn′l = ∑
m

(cnlm)† cn′l m (2.28)

The unit vector p (X ) obtained by collecting all its components is the SOAP feature vector,

with the SOAP kernel amounting to the linear kernel calculated between two different envi-

2It can be trivially seen that, in case of an order n = 1 kernel, the integral order can be swapped, and thus the
rotational dependence integrated out. The result of such construction would be a radial kernel, akin to the overlap
of the two system’s radial distribution functions.
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ronments’ power spectra:

k(X ,X ′) = p (X ) ·p
(
X ′) (2.29)

While this formulation is in theory exact, in practice one limits the depth of the radial and

angular expansion to the number of components that can fit into the memory requirements,

obtaining an approximation of the overlap between the two atomic arrangements.

The cases analysed so far have been derived for a class of systems where there is no chemical

degree of freedom: there is no difference in species types between the environments under

scrutiny.

In more realistic scenarios, one usually needs to perform a comparison between environ-

ments which can include many different chemical species, here defined α1,α2..αN . In these

scenarios, De et al [21] have introduced a strategy to account for chemical diversity, by first

establishing the total number of different elements Ne present in the dataset.

Once this is available, one can build a collection of "partial" power spectra called pα,α′
(X )

which are based on the density spawned by the species pairs α,α′.To then build the final

environmental kernel it suffices to combine them all:

k(X ,X ′) = ∑
αα′ pαα

′
(X ) ·pαα

′ (
X ′) (2.30)

In which the new partial power spectra element is defined as :

p (X )αα
′

bb′l = ∑
m

(
cαb,lm

)†
cα

′
b′lm (2.31)

The key advantage brought forth by SOAPs is their physical interpretability, as the parameters

underlying the descriptors generation require solely the definition of the dimension of the

environment (their cutoff length) and the width of the Gaussian caps deposited into every

atomic site.

SOAPs found their first and principal use as the foundation for the Gaussian approximation

potentials [75], a class of MLP which models systems PES by interpolating between the training

set information using Gaussian process regression. The success of SOAPs has however gone

beyond their use in MLP, becoming a key element used for the regression of local properties

of atomic systems such as NMR shieldings in molecular crystals [17] or in the screening of

corrosive materials [76] to name a few recent examples.

Atom density representations

Both the methods described thus far attempt at a description of a local environment by

sampling the density distribution of its atoms: these approaches, in fact, fall into the category

of the so-called density-based descriptors [77].

Over the past decade, several different schemes involving sampling an environments density
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2.4. Machine learning in atomistic systems

Figure 2.7 – The molecule of ethanol can be represented in terms of the atom density descrip-
tors of the environments it is composed of in the real-space 〈r | basis. The separation of the
different chemical channels is achieved by decorating the functions with elemental kets.

distribution have emerged, but only recently they have been shown to be representable in the

same formalism, allowing for a fully general density representation scheme to be developed.

In the framework of the density-based descriptors [78], one can define the usual frames

containing all the atoms as the ket |A 〉. If we place a smooth localised function (i.e. a gaussian)

on every atom i and decorate it with an orthonormal ket |αi 〉 to denote each species (as shown

in Fig.2.7, one can represent A in the position space as :

〈r|A 〉 = ∑
i∈A

g (ri − r) |αi 〉 (2.32)

By the same token, one can represent an environment Xi centered around an atom i as :

〈r|Xi 〉 = ∑
j

fc
(
ri j

)
g

(
ri j − r

)∣∣α j
〉

(2.33)

Such environment can be represented in any basis set of choice, here shown for example the

case of an expansion on spherical harmonics and radial basis functions gn(r ):

〈αnlm|Xi 〉 =
∫

dr〈nlm|r〉〈αr|Xi 〉 =
∫

dr d r̂r 2gn (r )Y l
m(r̂)ψα

Xi
(r r̂) (2.34)

Where α denotes the species channel (i,e. H, C..etc) and ψα
Xi

(r r̂) the density field generated by

the distribution of atoms of type α. So far, this description presented in eq 2.33 is not invariant

to rotation of reference system.

An operative way to introduce the invariance to the desired operator is to symmetrise the
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descriptor by performing a Haar integration (i.e. an averaging over the symmetry group Ŝ):

∣∣A (1)〉
Ŝ =

∫
Ŝ |A 〉dŜ (2.35)

To achieve a rotational invariant description of an atomic environment X , it is sufficient to

peform the Haar integral of its ket |X 〉 over the SO(3) rotation group:

∣∣X (1)〉
R̂ =

∫
dR̂R̂ |X 〉 (2.36)

The drawback of performing such averaging operation directly on the descriptor’s ket is

to end up losing all the angular (or in general, higher body-order) correlations present the

environment. It has been shown in ref [78] that, in order to include high order correlations

between atomic positions one can take tensor products of the structural ket before performing

the Haar integral.

∣∣X (ν)〉
R̂ =

∫
dR̂

ν∏
i

R̂ ⊗
∣∣∣X (i )

〉
(2.37)

The result of this operation is a symmetrised representation vector, which encodes correlations

up to the (ν)+1 body orders. To obtain a descriptor akin to the SOAP introduced in the previous

examples, one needs to produce a description capturing angular information thus needs to

calculate the Haar integral using an exponent of ν = 2. To obtain the previously described

power spectra p between two chemical species α,α′, the integral becomes:

K (2) (Xi ,X j
) =

∫
dR̂| ∑

αnlm

〈Xi |αnlm〉〈αnlm|R̂∣∣X j
〉 |2 = ∑

αnα′n′l

〈
X (2)

i

∣∣∣αnα′n′l
〉〈

αnα′n′l
∣∣∣X (2)

j

〉
(2.38)

In this expression, one can distinguish the right hand form to be identical to the dot product

of the previously defined SOAP power spectra pαα′
nn′l (X ) between two species α,α′ on the

envirnment X .

The advantage of such notation is to provide both a flexible environment where to represent

multiple different density descriptors, and to allow for an operative way to introduce symme-

tries and desired body order correlations in the descriptors in a clear manner.

2.4.3 Global descriptors

The methods described so far have been developed to characterise inherently short-ranged

correlations, and are defined around the atoms composing the structures under study.

The vast majority of properties of interest of materials science are however global in nature,

that is, depend on the concerted interactions of the overall configuration at hand: measures

of stability of a particular crystalline system, or the radius of gyration of a supramolecular
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polymer to list a couple of simple examples.

This consideration leads many of the local schemes to be impractical for direct probing of fea-

tures that happen at scales that farther sighted than their cutoffs, and require either complex

manipulations of local representations or different approaches altogether.

Coulomb Matrix

An early attempt at featurising a global arrangement of atoms was introduced by Rupp et

al[14] with the use of Coulomb Matrices.

In their work, the authors propose a molecular descriptor based on the atoms coordinates

and their nuclear charges which is based on the matrix of the Coulomb repulsions existing

between the atoms in the configuration:

mi j =
{

0.5Z 2.4
i for i = j

Zi Z j

‖Ri−R j ‖ for i 6= j
(2.39)

The diagonal terms of this matrix are polynomial forms of the nuclear charge fitted onto the

atomic energies while the off-diagonal terms represent the pairwise Coulomb interaction

between the atoms of the molecule .

This formulation is, however, still incomplete, as still susceptible to changes in case of per-

mutation of the atoms’ labels. To overcome this limitation, the authors propose to either

adopt the eigenvalue list ε as a feature vector or taking the flattened upper triangle of the

M coulomb matrix, padding with zeros every vector where the number of atoms is different.

While both the solutions address the issue of permutational invariance, they introduce two

drawbacks respectively: the eigenvalues vector is not guaranteed to be unique, while the

sorting introduces discontinuities in the representation.

Bag of Bonds

Hansen et al introduced an incremental improvement to the Coulomb matrix. [13], by redis-

tributing the previous descriptors’ values into a feature vector called "Bag of Bonds".

In this formulation, every pair of elements αβ forms a "bag" (i.e. HO, HH..etc), that is a bin

which contains the values of the CM corresponding to every αβ pair present in the molecule,

in descending order. Every bag is of a fixed size, established by the greatest bag size across the

set, requiring zero-padding for every molecule smaller than the reference size.

Once the bags are filled, they are concatenated to form the Bag of Bond of a given molecule.

To build this in an automatically sorted manner :

fBoB (x, z1, z2) =
Na∑

i , j=1
δ

(
x −Zi Z j d−1

i , j

)
δ(z1, Zi )δ(z2, Z j ) (2.40)
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By running over the Na ××× Na pairs of atoms i , j in the frame, the bag of bonds descriptor

accumulates the dirac deltas of all the inverse distances into a continuous function, whenever

the selected Zi , Z j pairs are matching the bag of choice. By simply sampling the non-zero

elements per pair, one can obtain the discretised representation used in ref [13].

Many body tensor representation

A recent substantial upgrade to the BoB descriptors has generalised their formulation to higher

body order pairs, introducing the so called Many Body tensor representation[79]. One can

already see how the BoB defined above can be collected into a Ne ×××Ne ×××Xstep tensor, where Ne

represents the number of elements in the system, and Xstep the size of the discretised radial

distances axis.

They first introduce a spatial smoothing function D(x, g2(i , j )) in place of the Dirac delta’s,

capturing any functional relation g2(i , j ) between the pair of atoms i , j .

Further, rather than using a Kronecker δ to select the desired species pairing defining the 2

body bag, a matrix of elemental correlation C ∈ Ne×××Ne , with Ne being the number of chemical

species present in the dataset.

The final form of the MBTR descriptor, acting on a series of bags z = z1, z2, .., zn is defined as

follows:

fMBTR (x,z) =
Na∑

i
wk (i)D

(
x, gk (i)

) k∏
j=1

Cz j ,Zi j
(2.41)

The function w (i) can be used to map a scalar weight to different bags composed of the tuples

z ∈ Nk (with corresponding indices i = (i1, .., ik ), with different functional forms depending on

the choice of the body order k. 3

Once the descriptors are calculated, they are first discretised on the x axis into a sufficient

number of bins Nx , so that one can calculate the similarity between two configurations by

applying any desired kernel function to the resultant tensors of N k
e ×××Nx dimensions.

Local Environments Mixtures

A different approach in generating a global description for any given configuration relies on

creating it from a mixture of local descriptors of its environments.

Such strategy allows to extend the use and the accuracy of the techniques of subsec. 2.4.2 to

the description of molecules and solids.

One of the most successful approaches to produce global features starting from environmental

ones was developed by De et al [21], by creating e measure of global similarity between two

3The function gk is usually suggested to count atoms in single body descriptors, inverse distance in k = 2, angles
for k = 3 and dihedrals in k = 4
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2.4. Machine learning in atomistic systems

Figure 2.8 – The similarity between the two molecules in figure is casted in function of the
pairwise similarity between the environments they are composed of. Depending on the choice
mixing rule adopted to combine the kernels between the local structures one can obtain
different global similarity kernel K .

structures using the SOAP fingerprints of their respective environments. In their work, the

authors first introduce several ways to combine the environments into structural kernels (see

Fig.2.8) and then show their efficacy in both regression tasks and partitioning of different

crystalline configurations.

By first considering two different configurations A,B composed of atoms NA and NB , one can

define the (generally) rectangular correlation matrix:

Ci j (A,B) = k(X A
i ,X B

j ) (2.42)

Where X A
i (X B

j ) defines the i -th ( j -th) environment of frame A (B). The first, straightforward

way to combine all the information contained in C A,B consists of taking the average of all

the pairwise similarity of their respective environments. Such approach defines an average

structural kernel :

K̄ (A,B) = 1

NA NB

∑
i , j

Ci j (A,B) =
[

1

NA

∑
i

p
(
X A

i

)] ·
[

1

NB

∑
j

p
(
X B

j

)]
(2.43)

There are many advantages to this formulation. Firstly, one can save a considerable amount

of memory by simply storing the average SOAP power spectrum per structure and secondly,

it ensures a proper metric since it’s defined in terms of a dot product of two virtual power

spectra.

Another physical advantage of such description lies in its linearity with respect to the atomic
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composition of the two configurations, a feature that is desirable when building predictive

models of properties which can be thought as composition of local contributions. The obvi-

ous drawback of such formulation lies in its lack of uniqueness with respect to two different

configurations that appear to have the same average features.

To bypass these limitations, the authors introduced a regularised entropy match (REMatch)

kernel, which exploits optimal transport theory[55] to define a parametrised kernel mixing

rule that can tune the similarity between a fully averaged model to a best matching scheme

(i.e. where similarity between two configurations is assessed based on the most similar envi-

ronments).

In the simple case of a system with an equal number of atoms (although extendable to differ-

ently sized systems in [21]), one can start by defining the Best match kernel as :

K̂ (A,B) = max
P∈U (NA ,NB)

∑
i , j

Ci j (A,B)Pi j (2.44)

In this equation the search is carried out in set U (NA , NB ), containing all the NA ×××NB doubly

stochastic matrices, with normalized rows and columns so that they sum to 1/NA ,1/NB .

In the REMatch kernel, the final similarity measure is obtained by performing a weighted sum

between the elements of the Ci j matrix:

K̂ γ (A,B) = [
Tr

{
PγC (A,B)

}]ζ (2.45)

The ζ factor is an exponent that can increase the sensitivity of the measure to slight perturba-

tion in positions,while the mixing P term is obtained by using the Sinkhorn algorithm to find

the argument that minimises a regularised deviation between matching environments:

Pγ = argmin
P∈U (NA ,NB)

∑
i , j

Pi j
(
1−Ci j (A,B)+γ logPi j

)
(2.46)

The regularisation is given by the information entropy of the doubly stochastic matrix (i.e.

S(P) = −∑
Pi j logPi j ), while the parameter γ allows tuning between a best match scheme

(by switching the regularisation to zero) and an average kernel, in the limit of γ−>∞. The

work presented in the results section of this thesis makes extensive use of SOAP-based global

similarity measures, and in case the reader is interested in a detailed description of the

methods illustrated so far, we refer to [80, 81].
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3.1 Introduction

The fundamental knowledge that it is possible to obtain the ground state configuration of a

material by finding its corresponding global minimum in its Gibbs free energy landscape (i.e.

for any predetermined set of external variables) has empowered chemists and engineers with

an operative way to discover novel, technologically relevant, materials.

While such minima are by definition the most stable configuration a system can achieve, it is

often the case that many configurations exhibiting a meta-stable character can find critical

industrial applications [82].

Although higher in energy than the equilibrium ground state configurations, many meta-

stable states can be accessed under particular thermodynamic conditions, and if surrounded

by sufficiently high barriers, these can become kinetically persistent on a finite timescale. This

observation has extended the field of search for novel compounds beyond the global minimi-

sation of a system’s Gibbs free energy, requiring extensive enumeration and characterisation

of meta-stable phases spanning remote areas of compounds’ phase diagrams.

While the aforementioned approach becomes analytically intractable for complex systems,

many numerical approaches have been developed with the aim of obtaining efficient enumer-

ation of energy landscapes’ local minima.

In the following chapter, we cover the thermodynamic principles underlying the concept

of equilibrium between different phases, and the most common approaches to analyse it.

Further, particular emphasis is placed on the geometrical approach to solving the chemical

and phase equilibria problem utilising a convex hull (CH) construction. Finally, a series of

improvements of the conventional CH formula are presented and explained in details. A

considerable amount of the description presented in this chapter has been extracted from

[31]. The author’s contribution to the project was part of the theoretical development, the

numerical implementation and its application to a set of examples.
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3.2 Phase and chemical equilibrium

The problem of predicting the structure of a mixture at given thermodynamic conditions has a

long history, and finds its modern foundation in the works of Gibbs[83].

Finding which kind of phase would appear stable at a specific temperature, pressure and

composition is, in fact, a central task in chemical engineering, one that is usually solved by

finding the configuration for which the system’s Gibbs free energy G is minimal, under a fixed

temperature T and pressure p.

To be more concrete in our formulation, let’s assume to work with a closed systemΣ (one where

no mass transfer with the outside is allowed), with Λ being the list of chemical compounds

present in the mixture and starting moles per compound n0 = {n0
i }i∈Λ. Once the system

reaches equilibrium, there will beΠ different phases coexisting, each of them with a number

of moles nπ
i , for the phase π ∈ Π and i -th component. Within this framework, the goal of

solving for phase and chemical equilibrium amounts to finding the unique distribution of nπ
i

that rises from a given starting condition n0,T ,p, by performing a constrained optimisation

on GΣ. The total Gibbs free energy of such a system depends on each component’s chemical

potential µπi and can be defined as follows:

GΣ

(
n, p,T

) = ∑
π∈Π

∑
i∈Λ

nπ
i µ

π
i (3.1)

The constraint to optimise under comes from enforcing conservation of mass, which can be

written in a concise manner introducing a formula matrix notation, by imposing the total

number of atoms of each element as constant.

One can define be as the total number of moles of element e in the system, and E an array

containing all the elements necessary to form the chemical compounds inΛ. The vector of

b = {be }e∈E is composed of constant values which depend in turn from the initial distribution

of n0
i . By introducing ae,i (often called formula matrix element) as an atom counter for the

element e of the i component, one can impose the mass balance as :

be = ∑
π∈Π

∑
i∈Λ

ae,i nπ
i (3.2)

And combine it with the non negativity of the mole numbers nπ
i ≥ 0 to obtain two sets of linear

constraints to the phase and chemical equilibrium optimisation problem. It is common to

shorten the notation of the set of linear constraints by aggregating them into a succinct matrix

formulation:

An = b (3.3)

n ≥ 0 (3.4)

Where the b vector contains the total number of moles of every element in the system, A is the

formula matrix containing all the ae,i elements and n contains all the nπ
i moles per compound

i in phase π.
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3.3. Geometrical solution of phase equilibrium

In order to calculate the total Gibbs free energy, we need to define the chemical potential µπi
of every component as:

µπi = µ0,π
i +RT logcπi xπi (3.5)

Which adjusts the chemical potential of the species i in phase k from its value in a pure phase

µ0,π
i with a mixing term which depends on its molar fraction xπi through a coefficient cπi .

Depending on the nature of the interaction governing the mixture of phases one can adopt

different expressions for the molar fraction coefficients. In the case of ideal liquid solutions it

is usually taken as the unit, while in general, in a mixture of non-ideal liquids it takes the form

of an activity coefficient γπi .

From this point onward, we have cast the problem of finding the equilibrium configuration

of a mixture of species in terms that are addressable by standard algorithms of constrained

optimisation (e.g. Lagrangian multipliers):

GΣ

(
n, p,T

) = ∑
π∈Π

∑
i∈Λ

nπ
i µ

π
i (3.6)

s.t . An = b

n ≥ 0

A crucially useful trait of thermodynamic potentials is that they have been shown to be con-

cave functions of their intensive variables and convex functions of their extensive variables

[84], rendering the Gibbs free energy convex on the mole numbers n, and thus the molar Gibbs

free energy convex on the partial composition x.

The combination of the properties mentioned above have spawned several optimisations ap-

proaches that are based on convex optimisation, formalised in ref [85], but in general require

the assumption of ideal liquids mixtures, i.e. liquids whose activity coefficient is equal to one.

Typically once the equations of state (EOS) are set, prior knowledge of composition or equilib-

rium phases can be used to compute numerically the multiphase equilibrium configuration of

a variety of systems either linear programming approaches [86, 87], Quasi-Newton successive

substitution [88], particle swarm [89] and genetic algorithms [90].

3.3 Geometrical solution of phase equilibrium

The intrinsic difficulties in minimising G arise from the fact that while the problem statement

can be cast in an optimisation friendly form, conventional approaches can be ineffective at

finding solutions. This stems from the fact G is often multi-valued or can possess multiple

function definitions within the same thermodynamic boundaries (different EOS). Further,

while these schemes provided excellent solutions to many industrial problems, they are not

suitable to be applied in conjunction with computational structure searches, as in these cases

one finds it useful to obtain a relative comparison of stability between local minima of a
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system’s potential energy surface, with no information available in any configuration’s EOS. An

alternative and simpler approach to predicting equilibrium structures can be borrowed from

the works of Hildebrandt and Glasser [91], which aims at solving the minimisation problem of

finding G using a geometrical approach.

The conceptual foundations of such approach stem from the original work of Gibbs on Ther-

modynamic properties of substances [83], where the author studies the "primitive surfaces"

associated to the G(n)p,T (i.e. with p,T fixed) surface and determines the "derived surfaces",

convex hulls of the primitive surfaces, as the loci of the equilibrium configurations. To show

how one can employ such construction to obtain a solution substantially equivalent to that of

a non-linear optimisation problem (i.e. Eq. 3.6), we consider a mixture containing n different

species, fully described by the n −1 vector of molar fractions X = [x1, ..., xn−1]. Working in an

isobaric, isothermal condition, our system’s Gibbs free energy at Xi is G(Xi )1. If we consider a

composition at Xi , one would expect to find the equilibrium phase as the minimum in G(Xi ),

however, the system may be able to decrease G further by undergoing a phase decomposition

(i.e. by splitting into two or more phases). To be more concrete, one can consider a system at

composition X which splits in two phases X1 and X2 at fractions f1 and f2 = 1− f1.

Since the system’s Gibbs free energy is extensive and homogeneous to its arguments, one can

calculate the split system’s G as :

G s y s(X) = f1G(X1)+ f2G(X2) (3.7)

It is apparent that in case G s y s(X) <G(X), it is more convenient for the system to split into a

mixture of the two phases. While simple, this example shows how, when minimising G of a

system at the desired point, one must consider all the possible splits that could lower the total

free energy. In practice, this amounts to consider the boundaries of the linear envelope of G ,

by considering its convex hull "conv[G (X)]":

m∑
i=1

fi G (Xi ) ∈ conv[G (X)] (3.8)

Where the fractions fi are non-negative and sum up to one , the hull has m ≥ 1 vertices, and

∂{conv[G (X)]} defines its boundary.

We will prove now that a system’s Gibbs free energy is minimised at phase equilibrium if and

only if G s y s(X) lies on the boundary of the convex hull of G (X). To prove this, we follow the

proof proposed by Hildebrandt [91], and define a Y = [G , x1, ..., xn−1] n-dimensional object

containing the composition and the n −1 dimensional hypersurface G(X). The ∂{conv[G (X)]}

is an n −1 dimensional hypersurface enveloping the n dimensional polytope conv[G (X)].

If we consider the support hyperplane n to ∂{conv[G (X)]} in X, three different scenarios can

happen:

• n touches ∂{conv[G (X)]} only in X. In this case X is a vertex of the convex hull and G s y s

will be minimised by a pure phase of such composition, as shown in Fig. 3.1(a).

1As usual, G can be multi-valued, depending on the number of phases present in our system
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3.3. Geometrical solution of phase equilibrium

Figure 3.1 – Schematic depiction of the different way in which the support hypersurface can
touch the sides of the boundaries of the convex hull of G. In case (a) there is a single point of
contact, indicating a single solution corresponding to a stable pure phase X . In figure (b), in
case the hypersurface touches twice the convex hull, the resulting equilibrium configuration
will be a mixture of the two phases Y1,Y2

• n touches G (X) in two points, then the corresponding line Y2 −Y1 lies in ∂{conv[G (X)]},

shown in Fig. 3.1(b). G s y s will be minimised by a mixture of the two phases Y1,Y2.

• n touches G (X) in m points {X j } j=1..m with m < n, then the associated {Y j } j=1..m span a

m−1-dimensional hyperplane Sm ∈ ∂{conv[G (X)]}, which leads to G s y s being minimised

by a mixture of m different phases.

Let’s consider the third case, and call S the n −1 dimensional hyperplane containing Sm with

normal vector N. Such normal vector is by construction orthogonal to all the vectors contained

in the plane Sm :

N · (Y1 −Yi ) = 0 for i = 2, ..,m (3.9)

∇ [G −G (Xi )] = sN for i = 1, ..,m (3.10)

Where s is a scalar, and {Yi }i=1..m ∈ ∂{conv[G (X)]}. By recombining the two one can write:

∇ [G −G (Xi )] ·Yi = constant for i = 1, ..,m (3.11)

Which is equivalent to:

G −
n−1∑
i=1

∂G(X)

∂xi
xi = constant (3.12)

The above equation can be satisfied only when, across all the m phases and the n −1 compo-
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nents:

∂G(X1)

∂xi
= ∂G(X2)

∂xi
= ... = ∂G(Xm)

∂xi
for i = 1, ..,n −1 (3.13)

At phase equilibrium, we know that the chemical potential µi
(
X j

)
of species i involved in a

phase j has to be identical across all the m phases:

µi
(
X j

) = G
(
X j

)−n−1∑
k=1

xk
∂G(X j )

∂xk
+ ∂G(X j )

∂xi
for i < n (3.14)

µ
j
n
(
X j

) = G
(
X j

)−n−1∑
k=1

xk
∂G(X j )

∂xk
(3.15)

We can see that equations 3.11 and 3.14 lead to the same result, allowing for a purely geometric

solution to be a viable necessary (and sufficient) condition to find phase stability. While

mathematically sound, the geometrical approach to Gibbs free energy minimisation became

quickly uncommon, due to the computational complexity behind the scaling of convex hull

algorithms with the systems’ complexity.

In light of the modern rise of computational resources and the development of efficient

methods to compute convex hulls of curves lying in n-dimensional spaces [92], the use of

geometrical solutions to the phase stability problem has become a widespread practice in the

field of high-throughput materials discovery, from the materials project platform [93], leading

to the discovery of superionic states[94] and novel meta-stable high pressure phases[95, 96].

These examples are just the tip of a long list of scientific works which exploited this construc-

tion. Such a construction is well suited to theoretical materials discovery because it provides

a sufficient set of geometrical conditions to screen at once potentially stable phases on the

basis of their energetics.

The mission of high throughput materials searches consists usually in identifying the ground

states configuration that would emerge under a given set of thermodynamic constraints, by

performing crystal structure predictions (CSP) algorithms to explore a system’s configurational

degrees of freedom.

One critical aspect of CSP approaches is that they often rely on global optimisations of the

system’s potential energy (or at best, its enthalpy) as a cheaper proxy to the Gibbs free energy,

disregarding thermal effects altogether. Once several local minima of the potential energy

surface have been sampled, one constructs a convex hull of all phases on composition space

by building a formation energy (E-x) convex hull, and can thus determine the stable phases as

the ones forming its vertices.

When introducing pressure p > 0, it is useful to include the molar volume information to build

a CH (E-v), which can distinguish which phases would be stable at the desired pressure (re-

flected in molar volume). One can combine the two information to build a multidimensional

hull where both the features are considered at once, allowing to find the composition which is

most stable at a specific pressure.
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3.4. Generalising the convex hull construction

3.4 Generalising the convex hull construction

Convex hull constructions have proven useful in numerous structure searching applications

such as Refs. [97–103]. However, the conventional form has some crucial limitations. The

choice of one particular feature, such as molar volume, on which the CH is constructed, relies

on experimental evidence or preconceived notions of which thermodynamic constraints may

stabilise structures of interest. It limits which stabilisable structures are identified, and is

generally insufficient to explore the structural diversity that can be accessed experimentally

through complex thermodynamic constraints such as pressure, composition, doping with

guest molecules, substitution of portions of organic compounds, electric or magnetic fields,

etc. (for instance, see Ref. [104]). Secondly, the conventional CH construction neglects in-

evitable inaccuracies in the computed (free) energies and geometries, which render the CH

probabilistic in nature.

To overcome the above limitations, we introduce a probabilistic generalised CH (GCH) frame-

Figure 3.2 – Schematic representation of the GCH framework. Xk denotes structure k with
(free) energy Gk and the associated (SOAP) structural descriptors xi (Xk ) and (PCA) principal
features Φ(Xk ) = {Φi (Xk )}. H n , σGk , and σΦi denote the nth convex hull, the uncertainty
in the (free) energy of Xk with respect to the current convex hull, and the uncertainty inΦi ,
respectively. ξ are normally distributed random numbers and pv (Xk ) denotes the fraction of
the sampled hulls for which Xk ∈H (as a measure of the stabilisability of Xk ).

work for evaluating the probabilities of structures being stabilised by general thermodynamic

constraints. A schematic representation of this framework is shown in Fig. 3.2. It (i) quantifies

the uncertainty arising from the inevitable errors in the underlying energies and structures,

and (ii) rests on geometric fingerprintsΦ= {Φi }, which reflect the full structural diversity of

the dataset. While there is considerable freedom in choosing such fingerprints, they must
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exhibit an additive behaviour, that guarantees that a macroscopic sample X , which is a phase-

separated mixture of different components Xk with molar fractions wk , has a fingerprint

Φ(X ) =∑
k wkΦ(Xk ). A simple way to guarantee thatΦi fulfills this requirement is to choose

descriptors that are consistent with an atom-based decomposition,Φ(X ) =∑
X ∈X φ(X )/NX .

Here φ(X ) are the fingerprints of the NX atom-centered, local environments X within the

structure X . Additivity ensures that any structure with features inside a convex region of

D-dimensional feature-space can be decomposed into a phase-separated mixture of the D +1

vertices of the convex region, without changing the corresponding D features of the finger-

print describing the system (although the resultant fingerprint may differ in the remaining

features). By considering the molar free energy as a function of a set of D featuresΦi , one can

thus generalise the CH construction to identify the structures that are stable with respect to

decomposition subject to the abstract "thermodynamic constraint" defined by a given set of

D features.

3.4.1 Data-driven structure fingerprints.

For a given dataset {Xk } we extract a small set of key data-driven features that captures most

of its structural diversity by performing a kernel principal component analysis (KPCA) on a

kernel measure of similarity K (Xk , Xl ) between pairs of structures Xk and Xl . I.e. we compute

the eigenvalues λi and eigenvectors ui of the kernel matrix, Kkl = K (Xk , Xl ), and evaluate the

features of a structure Xk as

Φi (Xk ) =∑
l

ui
l

√
λi Kkl . (3.16)

These features are additive, provided that:

K (Xk , Xl ) = ∑
Xk∈Xk ,Xl∈Xl

k(Xk ,Xl )

NXk NXl

(3.17)

where k(Xk ,Xl ) is a kernel measure of similarity between pairs of local environments Xk

and Xl . Loosely speaking, the resultant KPCA featuresΦi (Xk ) are orthonormal measures of

the similarity of the structure Xk to a particular combination of all structures in the dataset,

dominated by the structurally most distinct configurations. Although the applications pre-

sented in the rest of the thesis involve the use of similarity kernels, the GCH construction is

not restricted to KPCA features.

In general, any structural descriptor that is linear to its environments can be used either

directly as a structure fingerprint. Alternatively, it can be cumulated in a feature matrix from

which to extract, through PCA, its resulting structure fingerprints (e.g. using collections of

Behler-Parrinello symmetry functions). The choice of structural descriptor is a fundamental

degree of freedom of the GCH construction, and should be chosen so to capture all the struc-

tural variability the database can offer.

From a practical point of view, the GCH built in this work are always based on SOAP similarity

kernels (as described in Chapter 2), by constructing a global similarity kernel obtained by

44



3.4. Generalising the convex hull construction

simple averaging of the databases’ environmental kernels.

3.4.2 Feature selection and interpretation.

The abstract nature of these KPCA features begs the question of (i) how to identify which

among them have the potential to stabilise structures and should thus be included in the

GCH construction, and (ii) how to relate them to experimentally-realisable conditions. Note

that the ambition to identify structures that can be stabilised by manipulating electronic

properties is put on a firm basis by the Hohenberg-Kohn theorem [105], which guarantees

that electronic ground-state properties correlate with structural features. When no prior

knowledge of the system is available, the KPCA eigenvalue spectrum provides an indication of

the maximum intrinsic dimensionality of the structure data at hand [106]. It can thus be used

to choose the dimensionality of the GCH such that the full structural diversity of the dataset is

explored. Even in this worst-case scenario, the resultant pool of candidates is typically orders

of magnitude smaller than the underlying structure database, rendering it possible to further

investigate the relations between the features of the candidates and physical observables (or

thermodynamic constraints) such as density, composition, etc. This can not only help to

translate abstract structural features into practically realisable synthetic protocols but also to

refine the selection of features on which the GCH is constructed a posteriori to those which

couple strongly to experimentally realisable conditions and thus have the greatest potential

for stabilising structures.

3.4.3 Probabilistic GCH and uncertainty quantification.

So far, the GCH framework neglects the inevitable uncertainties in (computed) free energies,

lattice parameters and atomic positions, and thus in the determination of the hull vertices.

We, therefore, propose a probabilistic extension in which the GCH probability distribution is

sampled by constructing many possible convex hulls based on free energies and geometries,

which have been randomised according to their respective uncertainties. In practice we take

the typical model errors on the energies ε and Cartesian coordinates (for example, due to the

choice of density functional in density-functional-theory (DFT) calculations or the absence

of quantum nuclear effects) to be known from experience or benchmarks. We estimate the

resultant errors in the energies relative to the instantaneous hull, σGk , exploiting structural

correlations to account for correlations between the errors in {Gk }. In particular, we ensure

that σGk vanishes for the vertex structures and any structure that is a phase-separated mixture

of the vertices of its associated simplex (its "parent phases"), while otherwise reflecting how

different a given non-hull structure is from the parent phases. The rationale is that the typical

errors are not random, but correlate with the structural features. Consider for instance a

phase-separated mixture Xk composed of molar fractions wkl of the parent phases Xl with

calculated energies Gl +εl . Its calculated energy is identical to the corresponding combination

of the energies of the parent phases, including their errors,
∑

l wkl (Gl +εl ). This is exactly the
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definition of the convex hull energy constructed on Gl +εl , so that the energy of Xk relative to

the hull will be zero regardless of the errors. Hence, σGk should vanish.

Let us introduce a practical definition that satisfies this requirement. We estimate σGk as the

fraction of the total error ε associated with the deviation of the featuresΦi (Xk ) from the ideal

interpolation in terms of the parent phases,ΦGCH
i (Xk ) ≡∑

X j∈H wk jΦi (X j )

σGk = ε
√

1

σ2
G

∑
i=1

[
gi

(
Φi (Xk )−ΦGCH

i

)]2
. (3.18)

Here gi is the energetic response to changes inΦi , which we learn by ridge regression from

a machine-learning model of Gk , and σ2
G is the variance of G over the entire dataset. Due to

additivity, for a physical mixture,Φi (Xk ) =ΦGCH
i (Xk ) for all the features, including those that

are not used for the GCH construction, which ensures that σGk = 0. On the contrary, for each

point that is not a physical mixture of hull points, only the features used to build the GCH will

coincide withΦGCH
i (Xk ). In this case, σGk scales with the residual structural diversity that is

not captured by the GCH coordinates.

Note that the dependence of the uncertainties σGk on the instantaneous hull implies that the

hull distribution must be sampled "self-consistently".

The randomisation of the features Φi requires knowledge of how the uncertainty in the un-

derlying atomic coordinates and lattice parameters (or "structure parameters") propagates

to uncertainties in the features, σΦi . At each iteration, we also randomise the featuresΦi to

reflect the uncertainty in the underlying atomic coordinates. We estimate σΦi by randomising

the structure parameters of nr reference configurations Xr , that we choose by farthest point

sampling. In practice, we randomize each reference structure ns times, compute the features

for the randomized structuresΦi (X s
r ), and evaluate

σΦi =
√

1

nsnr

nr∑
r

ns∑
s

(
Φi (X s

r )−Φi (Xr )
)2 . (3.19)

After an extensive sampling of the GCH distribution, the rate with which each structure occurs

as a vertex pvertex(Xk ) roughly quantifies how trustworthy the identification of the structure

Xk as stabilisable is, and its average distance from the hull provides a measure of its (meta-

)stability. One can interpret the uncertainties introduced thus far as a simplified thermal

motion which allows individuation of configurations exhibiting near degenerate energies and

structures. The advantage offered by such a scheme is to effectively introduce an approximate

measure of the effect of entropy in the different phases’ stability.

3.4.4 Coarse-graining of the GCH vertices.

In cases where large numbers of very similar structures (for example owing to stacking faults

or partial disorder) compete for stability, each candidate exhibits a small individual probability
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of becoming stable. However, collectively such a cluster of structures represents a stable

phase. For convenience, we reduce the full list of potential vertices to representatives of

each cluster, i.e. of each stable phase. These are identified by sequentially eliminating the

N lowest probability candidates with a cumulative probability
∑N

k=1 pvertex(Xk ) < 1 (which

guarantees that no complete cluster of structures that constitutes one stabilisable structure

gets eliminated entirely in one step) from the dataset and resampling the GCH for the thus

reduced dataset. This procedure is repeated until the lowest pvertex(Xk ) is above a set threshold

of 0.5. This "coarse-graining" ensures that the surviving candidates correctly accumulate the

probability of becoming stable associated with their respective clusters of similar structures.

Even though we only consider these marginal probabilities, the GCH directly samples the

full hull distribution, which can further be used to investigate, for instance, which structures

compete for stability. While the identification of experimentally-synthesisable compounds

is the focus of this work, the generalised CH (GCH) framework proposed in the following

also translates (at negligible computational cost) input energies into a far better measure of

structural stability, namely the energy relative to the GCH. The latter can be used in place of

bare energies in diverse applications, such as experimental crystal structure determination

protocols or as the fitness function driving structure searches in situ.

3.4.5 Code Availability

The method presented thus far has been implemented in python3 and is publicly available on

github2. The code follows a two step process, where a first routine (gch_init.py) initialises

the GCH construction parameters (errors in cartesian coordinates and energies, as well as

desired vertices minimum probability) and generates a set of new rattled configurations

for the configurational uncertainty estimate. Once the shaken configurations have been

successfully generated, the user is required to produce a similarity kernel between the novel

shaken configurations, and the database under study. To finally start the GCH construction is

thus sufficient to feed the similarity kernels generated for the novel rattled configurations into

the gch_run.py and find the resulting stable configurations contained in the dataset.

2https://github.com/andreanelli/GCH
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4 Applications to structure searches

4.1 Introduction

The generalised convex hull construction provides a succinct and robust approach to enumer-

ation of stable configurations, and is presented hereon as a natural complement to structure

searches investigations. The key parameter in all the GCH applications is the intrinsic dimen-

sionality of database under investigation, which reflects the breadth of structural sampling

obtained by the CSP algorithm of choice, and the complexity of the underlying crystal structure

landscape.
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Figure 4.1 – KPCA eigenvalues for the applications we discuss in this work, namely: hydrogen
(black), Hx O1−x (red), and pentacene (blue), obtained from SOAP similarity kernels with rc = 2
Å, 5 Å, and 5 Å, respectively.

The dimensionality of the convex hulls built in the following examples is chosen to be deter-

mined by the number of principal components features that are shown to have a sufficiently

large corresponding eigenvalue. In order to obtain them, we first calculate the SOAP kernel

of the whole database, and then extract the eigenvalue spectrum associated with its PCA

decomposition. The result of this operation is shown in figure 4.1.
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The aim of the estimation of the correct intrinsic dimensionality is to choose the minimum

number of components needed to capture the largest amount of structural variance in the

dataset.

To showcase the range of applicability of the GCH construction, we apply it to four problems

of increasing complexity, namely a database of hydrogen solid phases at gigapascal pressure,

a set of oxygen-hydrogen binary crystal structures, a subset of this database for which we

demonstrate how a GCH can predict oxygen phases that are stabilized by magnetism, and

a set of crystalline polymorphs of pentacene for which we investigate the effect of chemical

substitutions. Finally, the last section of the chapter covers the stability of the GCH to errors in

the input energy data and choice of descriptors hyperparameters.

Author Contributions

This chapter reproduces, with minor adjustments, the content of Ref. [31]. The contribution

of the author of this thesis to this work is the development and the design of the method,

while the calculations of the magnetisation in oxygen dimers and relaxations of the molecular

crystals have been obtained by Dr. Edgar Engel.

4.2 Hydrogen at gigapascal pressure.

Hydrogen at high pressures exhibits a strongly polymorphic character, transitioning from

structures formed by ordered hydrogen dimers to fully monoatomic arrangements with fun-

damentally different electronic structure properties.

In this jungle of monoatomic polymorphs, it has been long theorised the existence of a metallic

phase which could be used as a stable room temperature superconductor [107, 108]. Over

the past decade several attempts, both experimental and theoretical aimed at uncovering this

relatively unknown region of its phase diagram, with the discovery of a considerable number

of novel meta-stable phases ranging from phase-II to phase-VIb [109–114].

While novel experimental techniques such as diamond anvil processes have helped a great

deal in realising many of the theorised configurations [115], accurate simulation of hydrogen

electronic structure and its dynamics pose still a technological challenge [116]. These limits

hinder substantially the investigations of the possible dynamic paths that can lead phase

transitions across the phase space, and exacerbate an already complex gap existing between

solid hydrogen’s experimental characterisation and its modelling.

One of the most successful techniques in discovering hydrogen’s meta-stable phases has been

the systematic investigation of its potential energy surface using CSP algorithms, which we

use here onward as a starting basis for the following GCH constructions. Given the interest in

the high pressure region of hydrogen’s phase diagram and availability of CSP data, we use this

system as our first benchmark.

We analyze 7,964 locally-stable hydrogen structures from an ab initio random structure search
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4.2. Hydrogen at gigapascal pressure.

Figure 4.2 – Maps of 7,594 hydrogen structures spanned by the two dominant KPCA features,
Φ1 and Φ2. Due to their abstract nature (Eqs. (3.16) to (??)) the numerical value of Φ1 and
Φ2 is not shown. Each point corresponds to a structure in the dataset. The maps on the
left are colored according to molar volume (top) and to the molar energy (bottom). One
can see the clear correlation between the KPCA coordinates, and structural and energetic
properties. The larger map highlights structures with non-negligible probability pvertex of
being part of the GCH, which is represented as a color scale. Candidates surviving an additional
“coarse-graining” step down to the point where all remaining structures have pvertex = 1 are
labelled according to space group and number of atoms per unit cell. By comparison with the
map colored according to molar energy, one sees that the convex hull identifies clusters of
configurations that are low in energy and/or extremal in structure.

(AIRSS) [100, 117] at 500 GPa based on DFT geometry optimizations using the PBE func-

tional [118], where extensive experimental and theoretical literature [119–123] provides a

detailed reference of stabilisable structures.

Guided by the indication of the intrinsic dimensionality of the dataset provided by the KPCA

eigenvalue spectrum of a SOAP kernel (rc = 2 Å) (see Fig. 4.1) we construct the GCH on the

dominant four KPCA features, thus identifying 81 candidate structures. In the process, we

successfully recover the high-pressure molecular I 41amd and atomic R3̄m phases of hydro-

gen, as well as analogues of the lower-pressure phases II to IV. The result of this search are

presented in Fig. 4.2, where one can see how the many of the stable phases populate the

boundaries of the KPCA map. Notably, phase II and IV are not stable at the simulated condi-

tions, so being able to find very similar structures among the candidates is a testament to the

long-sightedness of AIRSS and the predictive power of the GCH.

To achieve the same feat using a conventional energy-volume CH, structures up to around

8 meV/atom above the CH have to be retained, leaving a disproportionately larger pool of

more than 2,000 potentially stabilisable structures. When constructed on just the first four

KPCA features the GCH framework identifies 81 stabilisable structures, including analogues of

the Pc21-24, the C 2/c-24 and C mca-12 [120], and the C mca-4 and Pc-48 [102] candidates

for phases II, III, and IV, respectively shown in Fig. 4.3.
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The aforementioned figure shows, albeit partially, the robustness of the construction to detec-

tion of phases in presence of distortions or analogues.

In order to elucidate stabilisation mechanisms it is necessary to understand which experimentally-

realizable thermodynamic constraints the KPCA features couple to. For instance, Fig. 4.4

highlights the strong correlation between the KPCA features and molar volume, indicating

that pressure may be exploited to stabilize various identified candidate structures. This is, of

course, consistent with the experimental fact that hydrogen phases I to V can consecutively

be stabilized by applying increasing pressure. This validation scheme offers an unsupervised

strategy to shed light on potentially novel mechanisms of stabilisation, by testing correlation

(e.g. R2 scores) measures with other response properties of the system.

Figure 4.3 – Comparison of literature candidate structures for hydrogen phases II to IV (left,
dark blue) and the high-pressure analogues identified as stabilisable by applying the GCH
framework to a dataset of hydrogen structures at 500 GPa (right, light blue).
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Figure 4.4 – On the left side, correlation between the KPCA features Φ1 to Φ4 and energy in
meV/atom, on the right side, correlation between the KPCA features Φ1 to Φ4 and molar
volume in Å3/atom.
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4.3 Oxygen-Hydrogen binary compounds.

The next level of complexity in computational materials discovery involves the modelling of

multi-component systems: in the case of 51,376 locally-stable Hx O1−x configurations from an

ab initio random structure search (AIRSS) [100, 117] at 20 GPa (again based on DFT geometry

optimizations using the PBE functional [118]) the GCH framework must resolve the most

stable stoichiometries, while at the same time recovering various hydrogen, ice and oxygen

phases.

This example is of fundamental importance, as it shows how the construction can be applied

to tackle both chemical and structural degrees of freedom at once.

The KPCA eigenvalues based on a SOAP kernel (rc = 5 Å) decay by more than an order of

magnitude after the first feature (see Fig. 4.1). This reflects the dominant role of composition

in determining structural diversity and forecloses the identification of the first KPCA feature

with composition (see Fig. 4.5 (a)).

Along this principal axis, one identifies the expected stable oxygen, hydrogen, and ice struc-

tures, but also crystalline hydrogen peroxide, ice phases with different fractions of intercalated

hydrogen molecules and crystalline molecular hydrogen and oxygen phases with guest water

molecules.

The latter are unstable in the absence of other stabilizing fields as highlighted by an energy-

composition CH construction. Their stability on the GCH arises because the first KPCA feature

(while predominantly describing composition) also measures molar volume as an additional

stabilizing factor.

When constructed on the first two KPCA features the GCH framework identifies 171 stabil-

isable structures, differing in both stoichiometry and geometry (see Fig. 4.5 (b)). Among

nine hydrogen structures are phase I, the Pc21-24 candidate for phase II, and the C mca-4

candidate for phase IV [102]. Reassuringly, the three ice phases include the experimentally

stable ice VII/VIII and the Pmc21 high-pressure candidate phase of Hermann et al. [124].
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(a)

(b)

Figure 4.5 – Map of 51,376 Hx O1−x structures spanned by the two dominant KPCA features,
Φ1 and Φ2. The structures are colored according to (a) composition, and (b) their probabil-
ity, pvertex, of constituting a vertex of the CH of E(Φ1,Φ2). The positions of experimentally-
confirmed and proposed hydrogen, ice, hydrogen peroxide, and oxygen structures are high-
lighted. Proposed structures are labelled according to their symmetry group.
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Figure 4.6 – PCA projection of the subset of 84 pure oxygen structures onto Φ1 and Φ2 as
obtained for the full dataset of 51,376 Hx O1−x structures. Diamagnetic molecular structures
(filled circles) are colored according to ∆G/∆m. Atomic and ferromagnetic molecular struc-
tures are shown as empty circles and crosses, respectively. The shaded regions highlight
molecular structures in the H, S, and X configurations ((b) to (d)), and are colored accord-
ing to the respective mean values of ∆G/∆m. This highlights the correlation between Φ1,2,
molecular tilts, and energetic response to magnetization ∆G/∆m as a proxy of the potential
for stabilisation by magnetic fields.

4.4 Magnetically-stabilized phases of oxygen.

The six oxygen structures deserve a more detailed discussion, as they demonstrate that the

GCH is capable of revealing subtle mechanisms of stabilisation, which have barely been

touched upon in literature, such as the stabilisation of unconventional molecular oxygen

phases by external magnetic fields. Using the nomenclature introduced in Refs. [125–127],

the six oxygen structures include the conventional α/β and ε [128] phases, in which the O2

molecules align in the so called “H”-state (Fig. 4.6 (b)). The GCH further detects α/β and δ

phases with uniformly-tilted O2 molecules (“S” state, Fig. 4.6 (c)) and an α phase, in which

the molecules display an alternating tilt pattern (“X” state, Fig. 4.6 (d)). Experimental evi-

dence suggests that these may be stabilized by strong magnetic fields [127, 129], which we

further substantiate using spin-polarized DFT calculations using Quantum Espresso [130] (see

Fig. 4.6, Fig. 4.7 and Fig. 4.8). This demonstrates (i) that structural features do indeed correlate

with subtle responses to manipulations of the electronic structure of a configuration and (ii)

how one can verify the coupling between abstract structural coordinates and experimentally-

realizable thermodynamic constraints.

The KPCA eigenvalue spectrum obtained for the full set of 51,376 locally-stable Ox H1−x struc-
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4.4. Magnetically-stabilized phases of oxygen.

tures of different stoichiometry reflects that composition is the central feature distinguishing

the 51,376 Ox H1−x structures.

This implies that the KPCA features obtained for the full dataset do not optimally distinguish

between different oxygen phases and begs the question whether the selection of stabilisable

oxygen phases presented in the global case survives a closer, separate inspection of the 84

oxygen phases.

We therefore reconstruct the KPCA and GCH on the “reduced dataset”, which only contains the

84 pure oxygen phases. Fig. 4.7 (a) highlights the resultant pronounced correlation between

(a)

(b)

Figure 4.7 – Dedicated KPCA projections of the 84 pure oxygen structures onto theΦ1 andΦ3

features. Molecular and atomic structures are shown as disks and circles, respectively. In (a)
they are colored according to their energetic response to magnetization ∆G/∆m (as a proxy of
their potential for stabilisation using external magnetic fields), while in (b) they are colored
according to the tilt of the molecular axes with respect to the molecular planes. The shaded
regions highlight molecular structures in the conventional H, and the S and X configurations,
and are colored according to the mean value of ∆G/∆m and the mean tilt across structures of
a given tilt configuration, respectively.

the third KPCA feature and the response to magnetization (as a proxy for the potential for

stabilisation by magnetic fields). Reassuringly, the identification of magnetic fields as a viable
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dependence of ∆E on magnetization m as a proxy for the potential for stabilisation by exter-
nal magnetic fields. The differences between ∆E for m = 0µB using the Quantum Espresso
implementation of PBE-DFT and those underlying the GCH construction highlights the size
of typical uncertainties in input energies.

stabilisation mechanism and the classification of (a) atomic and molecular phases and (b) “H”

and “S” type molecular phases is consistent with the structure of Fig. 4.6.

We also observe that this overall structure is retained when the similarity kernel is replaced

with a SOAP kernel with a substantially reduced cut-off radius of 3.25 Å, despite the differences

in the resulting structural similarity measure.

This sanity check is motivated by the observation that the original similarity kernel represents

a compromise required to simultaneously rationalize the different stoichiometries in the

Ox H1−x dataset.

Even though the (single) “X” configuration is is not identified as structurally extremal, it is

among the 33 candidates identified by a three-dimensional GCH construction. One might

speculate that the alternating tilt pattern characterizing the “X” configuration is not a good

discriminator for the remaining 83 oxygen structures and therefore not among the dominant

KPCA features.

Its succinct identification in the full Ox H1−x set may indicate that angular correlations in

structural environments play a more important role in distinguishing the 51,376 Ox H1−x

structures than the 84 oxygen structures.

To probe the stabilizing potential of external magnetic fields and the importance of molecular

oxygen in the “X” state we calculate the lattice energies of all oxygen structures as a func-

tion of magnetization using first-principles, spin-polarized DFT calculations using Quantum

Espresso [130] with the PBE functional [118].

Fig. 4.8 shows the lattice energy of the most promising oxygen candidates as a function of

magnetization. It demonstrates that magnetic fields have the potential to stabilize molecular
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4.4. Magnetically-stabilized phases of oxygen.

phases in the “S” configuration (with a uniform tilt of the O2 molecular axes) and ultimately

those in the “X” configuration (with an alternating tilt pattern) with respect to their counter-

parts in the conventional “H” configuration.

An important subtlety concerns the classification of “H”, “S”, and “X” type molecular phases.

The nomenclature introduced in Ref. [127] only uniquely defines the relative arrangement of

O2 molecules in an O2-O2 dimer (or an (O2)3 triplet). In order to generalize it to crystalline sys-

tems it is necessary to identify molecular layers. In analogy with the Heisenberg Hamiltonian

originally used to rationalize the emergence of ferro- and antiferromagnetism in molecular

oxygen system [125, 126], these are identified as containing the nearest neighbour molecules.

This is equivalent to maximizing the inter-layer spacing, and, heuristically, minimizing the

inter-layer coupling. A tilt-angle can then be uniquely defined as the angle of the molecular

axes with respect to the plane-normal associated with the molecular layers (see Fig. 4.7 (b)).

Despite the slowly decaying KPCA eigenvalue spectrum in Fig. 4.9, which forecloses a compar-
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Figure 4.9 – PCA eigenvalues, εi , (red) and estimates of the contributions to the energetic
variance of the dataset due to each feature, σE (Φi ), (blue) obtained from the SOAP similarity
kernel with rc = 5 Åfor 84 locally-stable oxygen structures at 20 GPa.

atively large number of stabilisable structures, a two-dimensional GCH already encompasses

the pool of stabilisable structures identified before.

The results for GCH constructions using up to three KPCA features are collected in Table 4.1.

For completeness, Table 4.1 also summarizes the results of the GCH constructed on the SOAP

kernel using rc = 3.25 Å.
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rc = 5 Å rc = 3.25 Å
1 2 3 1 2 3

α/β-H – + + + + +
α/β-S + + + + + +
δ-H – + + – – +
δ-S – + + + + +
ε-H + + + – + +
ε-S – – + – – –
ζ + + + + + +
ozone – – + – – +
chain – + + – – +
total 5 14 33 5 16 33

Table 4.1 – Recovery of known and proposed phases of high-pressure oxygen on the basis of
GCH constructions based on a SOAP similarity kernel for the oxygen-only dataset using 5 Å
and 3.2 Å cut-off radii, respectively. Note that the three-dimensional GCH based on the 3.25 Å
kernel also identifies the “X” state of α/β oxygen as stabilisable.
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4.5. Nitrogen substitution in pentacene.

Figure 4.10 – Sublimation energies, Esubl, of different pentacene configurations in kJ/mol
before (left) and after 5A nitrogen substitution (center), and after subsequent geometry opti-
mization (right). (a) is among the most unstable pentacene configurations in the dataset. (e) is
the most stable 5A substituted azapentacene configuration among 594 configurations from an
independent structure search [131]. The Esubl computed for the Campbell bulk phase (b) of
151.019 kJ/mol agrees with the experimental values of 154.5 [132] and 156.9±13.6 kJ/mol [133]
to within the errors.

4.5 Nitrogen substitution in pentacene.

As a final example, we analyze a database of 564 locally-stable arrangements of pentacene

molecules. This application beyond high-pressure physics demonstrates how the GCH can

suggest suitable starting points for structure searches studies involving chemical substitution.

A key problem in performing molecular scale crystal structure searches lies in the prohibitive

computational cost associated to a thorough sampling of the disruptive changes in properties

that chemical substitutions can offer.

In an ideal workflow, one would aim to perform a single reference potential energy surface

survey (i.e. for an unsubstituted molecular solid), to obtain an understanding of the quantita-

tive effect a single substitution would have on the system.

In reality this is often impossible as the potential energy surface of the substituted crystals

shares little in common with their underlying reference’s one, requiring an extensive layer of

additional sampling.

In this example we aim to show how much can be inferred by structural patterns emerging

from a CSP exercise on an "unsubstituted" reference system (pentacene crystals) and leverage
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it to discover configurations that can become energetically favourable upon substitution of

chemical species.

The configurations were obtained by a systematic structure search [131], based on rigid,

DFT-optimized molecular units interacting via the W99 force-field [134]. In Ref. [131], this

structure search is accompanied by independent searches for 5A (see Fig. 4.10) and 5B nitrogen-

substituted molecules: this is a fundamental requirement since the stability of a given molecule

is rarely a good predictor of the behavior of its substituted counterparts [135].

We first perform a KPCA of the pentacene dataset using the same SOAP kernel (rc = 5 Å and

σ= 0.3 Å) which has previously proven suitable for energy regressions [136].

Alongside conventional, energetically favourable herringbone configurations, such as the

Campbell bulk phase [137], the GCH constructed on the two dominant KPCA features iden-

tifies five energetically unfavourable configurations with planar, colinear arrangements of

molecules as stabilisable.

This finding leads us to consider the emerging structural patterns as potentially stabilisable by

a chemical substitution, since comparable with energetically favourable stacking observed in

the azapentacene independent structure search.

To put this intuition under test, we apply a nitrogen substitution that aims to bridge the

pentacene convex hull structures with the azapentacene’s set (generated according to a 5A

substitution scheme), observing their resultant stability.

Whereas nitrogen substitution of the global minimum pentacene configuration leads to a

high-energy, unstable structure, several of the GCH vertices that are much higher in energy,

which would therefore be discarded in a conventional analysis, retain their geometry upon ni-

trogen substitution and relaxation (see Fig. 4.10). Moreover, they exhibit competitive energies

compared to the most stable 5A substituted configuration.

The GCH framework has thus effectively identified pentacene configurations with potential

for stabilisation by nitrogen substitution.
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4.6. Sensitivity to errors in energetics.

4.6 Sensitivity to errors in energetics.

The probabilistic sampling of the GCH does not only provide a robust strategy to eliminate

redundant structures and for uncertainty quantification. It also significantly reduces the sensi-

tivity to errors in input energies compared to conventional deterministic CH constructions.

TP FP FN d̃ RMSE
E-ρ CH 3 0 2 0.0139 0.22
d-GCH (1D) 5 1 2 0.0227 0.11
GCH (1D) 8 2 11 0.0168 0.10
GCH (1D) cg 5 1 2 0.0046
d-GCH (3D) 51 9 13 0.0087 0.07
GCH (3D) 113 12 35 0.0066 0.07
GCH (3D) cg 50 8 12 0.0009

Table 4.2 – Sensitivity analysis of the (conventional) energy-density (E-ρ CH) hull, and deter-
ministic (d-GCH), and probabilistic hulls (GCH) constructed on the first (1D) and first three
(3D) KPCA features (before and after coarse-graining (cg)). Different metrics of the similarity
of different CH constructions are evaluated on the basis of W99 and DFT sublimation energies
for the 564 pentacene configurations from Ref. [131]: (i) the numbers of true (TP) and false
positive (FP), and false negative (FN) identifications of stabilisable pentacene configurations
on the basis of W99 energies, (ii) the distance d̃ between the W99 and DFT based hulls as
defined in Eq. (4.2), and (iii) the RMSE in kJ/mol in the W99 convex hull energies {E W99

k }
compared to “reference” DFT convex hull energies {E DFT

k } (for the full dataset).

To assess how sensitive different CH constructions are with respect to the details of the input

energies, we calculate DFT sublimation energies using Quantum Espresso [130] with the PBE

functional and a Grimme-D2 dispersion correction 1 for all 564 pentacene configurations for

comparison with those obtained from the W99 force-field.

The DFT and W99 sublimation energies exhibit substantial differences (resulting in a root-

mean-square error (RMSE) with respect to each other of the 0.15 kcal/mol after subtracting

the respective averages), including a different global energy minimum structure.

As shown in Table 4.2,one can reduce effectively the discrepancies by computing energies

relative to the convex hull:

E DFT/W99
k =GDFT/W99

k −∑
l

wDFT/W99
kl GDFT/W99

l (4.1)

This is a consequence of the fact that energy errors are correlated, which we also exploit in our

probabilistic hull construction.

The set of structures that are tagged as “synthesizable” is perhaps even more important than

1We use a plane-wave energy cut-off of 100 Rydberg, a Monkhorst-Pack k-point grid [monkhorst_1976] spacing
of less than 2π×0.07 Å−1, and the ultrasoft C.pbe-n-kjpaw_psl.0.1.UPF, H.pbe-kjpaw_psl.0.1.UPF, and N.pbe-n-
kjpaw_psl.0.1.UPF pseudopotentials from http://www.quantum-espresso.org
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the estimate of the instability of the other candidates. Since different, structurally very similar

configurations, for example only differing in proton or stacking (dis-)order, can be equivalently

valid representatives of the same (stabilisable) phase, one cannot simply compare the indices

of the structures identified as vertices. To determine whether two hulls HDFT and HW99

constructed on the basis of DFT and W99 energies, {GDFT
k } and {GW99

k }, respectively, contain

structurally similar vertices, we define a “distance” between hulls as the mean minimum

Euclidean distance between their respective vertices

d̃ = 1

2

(
d W99

DFT +d DFT
W99

)
d W99

DFT =
√

1

NDFT

∑
Xi∈HDFT

min
X j∈HW99

∣∣Φ(Xi )−Φ(X j )
∣∣2 .

(4.2)

The results of this analysis, shown in Table 4.2 confirm that the GCH construction reduces the

sensitivity of both the vertex selection and the measure of stability compared to a conventional

construction. Increasing the dimensionality of the fingerprint space on which the hull is

constructed, sampling probabilistically different realizations of the hull, and eliminating

redundant structures in the database, all lead to a more robust determination of stabilisable

structures that should be considered for further theoretical or experimental investigation.

4.7 Sensitivity to the construction of the similarity kernel

What we have shown so far relies on the choice of a short ranged descriptor which cuts off

any interaction involving distances larger than rc . The choice of such cutoff can often be non

trivial and its influence on the resulting GCH outcome must be benchmarked.

In this section we show how one can substantially obtain a consistent set of results from

GCH constructions built on different starting descriptions provided they offer a comparable

description. The critical parameter in the SOAP framework is the cutoff radius rc , which

determines the extension of the environments under study, and thus the spatial correlations

relevant to the application.

To define substantially different descriptions of our systems we assume that it is sufficient to

span a large enough number of cutoff radii, and finally calculate each of their corresponding

sets of convex hulls to assess their effect on the construction..

For the purpose of this example we perform a benchmark by building multiple generalised

convex hull analysis on the same solid hydrogen dataset, changing solely the cutoff radius of

the SOAP descriptor employed to generate the similarity kernels.

Fig. 4.11 shows the average radial distribution function (RDF) of the 7,594 hydrogen structures,

which suggests that the second, third, and fourth coordination shells typically sit at radii of

around 1.6, 2.7, and 3.7 Å.

This motivates the SOAP cut-off radius rc = 2 Å used in the construction, since choosing rc

in between coordination shells reduces the sensitivity of the kernel to marginal differences
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Figure 4.11 – Average RDF of 7,594 hydrogen structures. The mean radii between coordination
shells are indicated by solid black lines.

in coordination radii between very similar structures. The lack of a unique choice of rc is

mitigated by the observation that the GCH construction is relatively insensitive to the choice

of rc .

Fig. 4.12 (a) shows that the fraction of matching candidates relative to the number of unique

candidates in hulls based on slightly different rc (defined as
2|Hrc1∩Hrc2 |
|Hrc1 |+|Hrc2 | ) is a substantial 81%

(95%) for differences in rc of 0.15 Å(0.05 Å).

Fig. 4.12 (b) shows that the hulls obtained on the basis of kernels based on rc between (1) the

first and second and (2) the second and third coordination shells also match to about 80%.

In analogy to the sensitivity analysis in the above section, Table 4.3 further provides the typical

best match distance between candidates obtained using different cut-off radii, d̃(Hrc1 ,Hrc2 ).

In practice, d̃ is computed based on each of the two sets of KPCA features,Φrc1 andΦrc2 , and

averaged. For reference, we also report (i) the root mean square distance between structures:

D̃(rc1,rc2) = (D(rc1)+D(rc2))

2

D(rc ) =
√√√√ 1

N 2

N∑
i , j=1

∣∣Φrc (Xi )−Φrc (X j )
∣∣2

(4.3)

and (ii) the mean distance between the hulls Hrc and 1,000 randomly selected sets of struc-

tures of same size as Hrc , D̃(Hrc ) ∼ 0.09. Table 4.3 shows that d̃ is generally much smaller than

both D̃ and D̃, and furthermore comparable to the values obtained in the previous examples

for hulls constructed on input energies from different levels of theory. Further to Fig. 4.3 this

suggests that the uncertainty in the hulls due to the kernel construction is comparable to

that arising from the errors in the underlying structure data and that the hulls are relatively

insensitive to the details of the kernel construction.
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rc1 rc2 d̃ D̃(rc1,rc2)
1.95 2.00 0.009 0.130
1.95 2.05 0.018 0.128
1.95 2.10 0.019 0.125
2.00 2.05 0.010 0.125
2.00 2.10 0.012 0.123
2.05 2.10 0.013 0.120
2.05 3.10 0.025 0.111
2.05 4.25 0.024 0.095
3.10 4.25 0.015 0.083

Table 4.3 – The typical distance between best match structures from two hulls d̃(Hrc1 ,Hrc2 )
is much smaller than the average pairwise distance between the structures in the dataset
(Eq. (4.3)), suggesting that, if constructed on a physically meaningful similarity kernel, the
GCH framework identifies similar sets of stabilisable structures, irrespective of the details of
the kernel construction.
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4.7. Sensitivity to the construction of the similarity kernel

(a) GCH vertices obtained on the basis of kernels with rc = 1.95Å(blue circles), 2.0 Å(blue
pluses), 2.05 Å(red squares), and 2.1 Å(red crosses).

(b) GCH vertices obtained on the basis of kernels with rc = 2.05 Å(red circles), 3.1 Å(blue
pluses), and 4.25 Å(red crosses).

Figure 4.12 – Map of the 7,594 locally-stable hydrogen structures spanned by the featuresΦrc
1

andΦrc
2 obtained from a kernel with rc = 2.0 Å. GCH vertices obtained on the basis of kernels

with rc between 1.95 Åand 4.25 Åare highlighted, showing that the GCH selection is relatively
robust to substantial changes to the similarity kernel.
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4.8 Discussion

These examples clearly evidence the wide spectrum of thermodynamic constraints which can

be rationalized using the GCH framework and serve to showcase the remarkable versatility

and transferability of the GCH framework, which reflect its data-driven nature and conceptual

simplicity.

The construction is only weakly dependent on the details of the kernel, and its probabilistic

nature renders it robust to errors in the determination of the (free)-energies of different phases,

which is very important given the harsh compromises one has to make between the accuracy

and thoroughness of high-throughput structure searches.

Moreover, it is capable of eliminating redundant configurations in a physically meaningful

way and of providing estimates of stability regimes in terms of experimentally-realizable

thermodynamic constraints.

The GCH framework provides a robust, data-driven, method- and error-insensitive evolution

of the convex hull construction, one of the most essential tools to predict and rationalize

the stability of materials, and to identify experimentally stabilisable structures among large

numbers of potential, locally stable configurations.

If paired with a regression scheme based on the same descriptor, one can aim to predict an

estimate of a geometry’s energy and then observe it’s potential position with respect to the

GCH built with the training set of structures.

This scheme could allow for a rapid screening technique when biasing the configuration space

over which the CSP is performed, and potentially skew the search towards regions that either

unexplored or at lower energied.
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5 Navigating the phase diagram of ice

5.1 Introduction

Ice is a complex system of interest across much of science, ranging from astrophysics to biology.

On the Earth’s surface and in its atmosphere it plays a central role in determining climate and

in countless natural processes and technological applications. Ice is also a key constituent of

the Earth’s crust and mantle. Its phase diagram and properties have been investigated across a

wide range of temperatures and pressures by experimentalists and theoreticians alike.

A total of 18 crystalline ice phases have been formed under various conditions [138], seven of

which are metastable [139]. In addition, a number of hypothetical ice phases [140–151] have

been predicted and characterised using computer simulations. All of these phases are molecu-

lar crystals that fulfil the “Bernal-Fowler ice rules” [152] and form four-connected networks.

In most ice phases the distinct ways of dressing the oxygen sublattice with hydrogen atoms

within the ice rules (the so-called “proton-orderings”) are quasi-energetically degenerate [153].

The corresponding proton-disorder typically “freezes out” at low temperatures. Disregarding

proton-order ice only forms eight topologically-distinct oxygen networks under the pressure

and temperature conditions that have been explored experimentally thus far. Theoretical

studies have also suggested structures of water ice under ultrahigh pressures of up to many

terapascals and its eventual decomposition [154, 155].

The phase-diagram of ice has recently received renewed interest, firstly, because the theo-

retical discovery of the s-III clathrate hydrate [150] and the experimental description of ice

XVII [156] and of two-dimensional forms of ice [151, 157, 158] have demonstrated that our un-

derstanding of ice is far from complete. Secondly, it has become apparent that the nucleation

and melting of ice are complex processes in which meta-stable ice phases play a role [159, 160].

For example, stable hexagonal ice (Ih), meta-stable cubic ice (Ic), and stacking-disordered ice

(Isd) have been shown to play important roles in ice nucleation in molecular dynamics and

lattice switching Monte Carlo simulations [159, 160]. In classical nucleation theory an interfa-

cial free energy advantage of a few percent will lead to preferential nucleation of metastable

phases with free energies up to around 10 meV/molecule above the stable phase [161]. Despite
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valiant efforts using structure searching methods such as ab initio random structure searching

(AIRSS) [162], to our knowledge no comprehensive study of (meta-)stable ice phases and their

formation has been published to date. The problem is twofold: firstly, the enormous config-

uration space must be explored in a reasonably comprehensive manner. Secondly, in order

to render the structure search relevant to experiment, the large number of theoretical (meta-

)stable structures generated in the process must be reduced to those which can be formed

experimentally. This refinement must be a-priori and quantitative. Finally, different stabilising

factors – such as the absorption of guest molecules [163] – can be investigated further, and

methods such as forward flux sampling [164–167] and enhanced sampling metadynamics

[168–170] may be used to identify possible synthetic pathways.

This work aims for a comprehensive study of crystalline ice phases, focussing on the explo-

ration of configuration and the reduction of the resulting intractably large amount of structure

data to a small number of structures, which are likely to be accessible experimentally. In

the results (section 5.2) we exploit the isomorphism between ice and silica networks [149] to

explore the relevant parts of the configuration space of ice using databases of theoretically-

enumerated, four-connected networks. In section 5.4 we rationalise the resultant structural

data on the basis of purely energetic considerations and thereby identify structures which can

be stabilised under pressure. By design this approach cannot identify structures stabilised by

thermodynamic and kinetic constraints other than pressure, such as temperature, electric

fields, concentrations of guest molecules, etc. In section 5.5 we overcome this limitation by

applying the generalised convex hull construction. Moreover, we use the sketch-map algo-

rithm [51] to construct a navigable map of the configuration space of ice. This primarily serves

as an aide in developing an intuitive understanding of structural relationships. However, it

also shows potential for helping to identify formation pathways for new candidate ice phases.

Author Contributions

This chapter reproduces, with minor adjustments, the content of Ref.[32]. The contribution

of the author of this thesis to this work is the application of the generalised convex hull con-

struction to the set of ice configurations detailed in Section 5.5, calculation of the convex hulls

using different density functionals in 5.6 and the clustering scheme proposed in section 5.7.

5.2 Exploring configuration space

The strong isomorphism between ice and silica networks has previously been explored in

Ref. [149] and arises because both silica and water preferentially form four-connected networks

composed of corner-sharing tetrahedral units. For instance, the low-pressure ice structures,

ice Ih and ice Ic are isomorphs of tridymite (lonsdaleite net) and cristobalite (diamond net),

respectively, and clathrate hydrate cage structures like the sI and sII clathrate hydrates [171–

173], which are stabilised by absorption of small inert guest molecules [174], have direct
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Figure 5.1 – Correlation between the average ring sizes, r , of SiO2 and H2O polymorphs. More
than 1/3 of the ice polymorphs retain the ring statistics of their counterpart SiO2 network.

analogues in the world of alumino–silicates (or “zeolites”) [175–179]. The basic building blocks

of silica and water ice are so similar that it is even possible to form silica/water hetero-networks

in which silicate oligomers form part of the hydrate lattice [180, 181].

There is a vast literature on four-connected structures, including an atlas describing the

underlying networks of porous crystalline zeolites [182] and a number of very large databases

of theoretically-enumerated networks, such as the databases of Treacy [183] and Deem [184].

Graph network enumeration has previously been applied to crystal structure prediction [185]

and, in particular, to sp2- and sp3-carbon [186, 187]. The above databases have proven

to be a valuable resource in searching for sp3 allotropes of carbon [188] and constitute a

comprehensive source of four-connected networks from which topologically-distinct phases

of ice can be constructed and geometry optimised to the respective associated local minimum

energy structures using conjugate gradient methods. Recently, the search for computationally

stable ultralow-density ices [189] on the basis of the atlas of zeolites [182] has hinted at

the potential of this approach, despite its more limited scope and despite only considering

stabilisation under (effective negative) pressure. The search for (meta-)stable ice phases is

facilitated by the strong correspondence between zeolite and ice structures. Fig. 5.1 shows the

strong correlation between the average ring sizes of SiO2 structures and their counterpart H2O

polymorphs after geometry optimisation, indicating that structurally distinct SiO2 networks

generally translate into structurally distinct H2O networks.

The large size of the databases of hypothetical zeolites necessitates some preselection of

structures. Tribello et al. [149] show that the energies and densities of low-density SiO2

networks and their counterpart H2O networks are correlated, but this correlation does not

carry across to structures of densities comparable to and higher than that of ice Ih.
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Consequently, neither SiO2 lattice energies nor densities can be used for preselection. Since

all known ice phases (with the exception of ice V/XIII) have unit cells containing no more

than 16 molecules, applying a cut-off to the unit cell size provides a reasonable method for

preselection, which can be improved systematically by including structures with larger unit

cells. In practice, we preselect only networks with unit cell volumes of less than 800Å3 and

without 3-rings, which would normally induce excessive strain in an ice structure. Out of

331,172 (Deem) and 5,389,408 (Treacy) zeolites, this leaves 74,731 structures. This selection

contains duplicates since the databases are not mutually exclusive. Low density structures

with low SiO2 lattice energies are added back in by including the experimentally synthesised

zeolite networks from the IZA database [190].

5.3 Treatment of the database

Geometry optimisation of the resulting 74,963 structures using first-principles quantum-

mechanical methods is viable. However, at this stage only rough lattice energies are required

to identify the low energy sectors of configuration space. The definition of low energies is

provided by the differences between the lattice energies of different proton-orderings and

between the quantum vibrational corrections of different structures, which are both of order

∼ 10meV/H2O [191]. To obtain a coarse energetic filter the authors have chosen to calculate

the lattice energies of the unfiltered pool of candidates using a ReaxFF force field[192, 193]

rather than a fixed geometry approach such as TIP-4p.

The choice is consistent with the initial goal of rendering the search unbiased with respect to

hydrogen bonding network geometries.

In fact, structures such as ice X and higher pressure configurations could potential be disre-

garded given their distinct intermolecular distances.

After removing high energy configurations the geometries of the remaining structures are

refined using PBE-DFT. Removing duplicates leaves 15,882 distinct structures.

The duplicates were identified by applying the “crysim” tool from the AIRSS method [162] to

the oxygen sublattices.

5.4 Phase stability and characterisation of structures

The large pool of candidate structures highlights the central challenge of computational

structure searches: the number of theoretical (meta-)stable configurations which can be

constructed increases exponentially with system size, but only those that can be observed ex-

perimentally are of interest. Their selection must take into consideration the uncertainty in the

computational framework, the possibility of kinetic and/or surface effects promoting the for-

mation of metastable phases, and the (de-)stabilisation of phases by different thermodynamic

boundary conditions, such as pressure.

To identify the polymorphs which are most likely to form at different pressures we first consider
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Figure 5.2 – Energy-density convex hull of PBE-DFT static lattice energies (red) and free
energies including harmonic vibrations (blue) relative to ice Ih for known ice phases (blue
labels) and energetically competitive phases (black labels). The labels of the novel energetically
competitive phases correspond to the numbering scheme in Fig. 5.3. The energy-density
convex hulls at the static lattice and harmonic vibrational levels are indicated by red and blue
solid lines, respectively.

a well-established approach based on a convex-hull construction. The convex hull of energy

(as a proxy for free energy) as a function of density, Ech(ρ), is formed by structures which

are stable against decomposition into two or more structures with lower average energy at

the same average density, and the so called “tie-lines” that connect them. In the absence of

kinetic effects, the only phases that can be observed by manipulating the density of the system

(for example through pressure) are exactly those that constitute the vertices of the energy-

density convex hull (see Fig. 5.2). In analogy with the Bell-Evans-Polanyi principle, which

states that highly exothermic chemical reactions have low activation energies, the stability of a

given metastable structure can be assessed by the free energy of decomposition into stable

structures. We refer to this as the “dressed energy”. Plainly put, the proximity of a metastable

structure to the convex hull is a measure of its stability. The “dressed energy” is calculated

by subtracting the convex-hull energy at the corresponding density ρ from the lattice energy

E (as a proxy for free energy), Edr = E −Ech(ρ). Ultimately only structures with Edr less than

10meV are retained, for which kinetic, entropic and/or surface effects may plausibly lead to

preferential formation during nucleation.

Setting aside all prior knowledge of ice, this procedure identifies the theoretical i, 0, and

quartz phases, and the known Ih/XI, II, III/IX, V/XIII, VII/VIII, and X phases of ice. Moreover it

identifies the structure that has since been identified experimentally as the porous ice XVII [156,

194]. This clearly demonstrates the potential of our structure searching approach. However,

not all known ice phases are classified as synthesisable, which highlights the limitations of
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the established convex hull approach: it fails to identify synthesisable metastable structures

(such as ice IV and XII/XIV) and structures which can be stabilised and made synthesisable by

thermodynamic and kinetic constraints other than pressure (such as XVI which initially forms

by absorption of H2 guest molecules). These limitations will be addressed in Section 5.5.

In addition, the ice counterparts of the zeolites with network codes IRR, IWV, SGT, and DDR

and three hypothetical zeolites are identified as prime candidates for stabilisation by varying

the system density. The counterparts of the IRR and IWV (not shown in Fig. 5.2), 207_1_4435,

and DDR zeolites (labelled 1 and 17 in Fig. 5.2) are excellent candidates for stabilisation under

negative pressure or by inclusion of guest molecules. The DDR counterpart, in particular, has

previously been proposed as a possible clathrate hydrate [149]. The IRR and IWV counter-

parts exhibit substantially lower densities than the known CS-I, CS-II, and HS-III clathrate

hydrates [171–174], suggesting that they may only become stable at large negative pressures.

Conversely, the counterparts of the PCOD8172143 and 11_2_15848 zeolites (labelled 15 and 18

in Fig. 5.2) may be stabilised under positive pressure.

When comparing structures whose stabilities lie within a few meV/H2O of each other, anhar-

monic quantum nuclear effects (QNE) must be accounted for, as highlighted by the stabili-

sation of ice Ih with respect to Ic by anharmonic quantum nuclear vibrations [191], as well

as by effects of similar magnitude observed in other H-bonded crystals [195]. Anharmonic

QNE in particular stabilise ice XVII and the HS-III clathrate by a few meV/molecule with

respect to Ih. Their resultant zero pressure free energies exceed that of Ih by only 6.8 and 7.8

meV/molecule at the PBE-DFT level, respectively. The relative stability of the counterparts of

the PCOD8172143 and 11_2_15848 zeolites with respect to Ih, on the other hand, is affected

very little.

5.5 Using machine-learning to navigate the structural landscape

An analysis based on the energy-density convex hull as in Section 5.4 identifies candidate

structures that can be stabilised by pressure. However, this does not address several crucial

issues: (a) obtaining a global picture of configuration space from which one can gather an

intuitive understanding of the relations between different polymorphs; (b) assessing the

effectiveness of the structure search, identifying more or less obvious “gaps”; (c) selecting

candidates stabilised by thermodynamic constraints other than pressure, such as absorption

of guest molecules, electric fields, etc. All of these problems can be tackled effectively within a

framework that borrows ideas from the machine-learning community. Points (a) and (b) are

addressed by constructing an abstract, unbiased and general two-dimensional representation

of configuration space in terms of the similarity relations between structures. Point (c) is

addressed by generalising the conventional convex hull construction.

The first key ingredient of an intuitive representation of configuration space is a measure of

the similarity of different configurations.

We use the smooth overlap of atomic positions (SOAP) kernel [15], combined with an entropy-
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regularized matching (REMatch) approach [21]. This captures the fundamental symmetries of

the problem, such as invariance to alternative representations of the same periodic structure,

particle labelling, and rigid rotations and translations of the atomic coordinates. Based on the

kernel-induced distance, we apply the sketch-map algorithm [51] to obtain a two-dimensional

representation that reproduces as accurately as possible the (non-linearly transformed) dis-

tance between each pair of structures.

The construction and its parameters were designed to assess the oxygen lattice while being

insensitive to proton disorder and hydrogen-bonding defects.

To assess the structural similarity between the configurations in the database under study we

used a REMatch-SOAP kernel, as implemented in the glosim.py package (http://cosmo-epfl.

github.io), with the following choice of hyperparameters controlling the description of atomic

environments:

/src/glosim/glosim.py -n 9 -l 6 -c 5 -g 0.5 –periodic –nocenter 1 –kernel
rematch –gamma 0.01 –nonorm

Hydrogen atoms were included in the definition of the atom-density overlap, but were not

considered as environment centers, so as to de-emphasise proton (dis)order in the definition

of structural similarity. The choice of cut-off radius was tuned to achieve a clear separation

between the known phases of ice in the database.

The non-linear sketch-map dimensionality reduction scheme was then applied to the SOAP

kernel measure of similarity for 400 farthest-point-sampled landmark structures following

the procedure described in reference [51] and using the following parameters: σ= 0.12, A = 2,

B = 4, a = 2, b = 2

The resulting map is shown in Fig. 5.3 and provides a much-needed global picture of the lie

of the land. Notably it is spanned by collective coordinates measuring abstract structural

features, which in general cannot be related to single conventional observables such as density

in a meaningful way. Consequently, their numerical values are not shown in Fig. 5.3.

Several observations highlight the heuristic value of such a representation: (1) The positions on

the map correlate well with both density and lattice energy (see Fig. 5.4); (2) Structures related

by proton-disorder, such as Ih/XI, III/IX, and VII/VIII, are clustered together; (3) Structures

related by stacking disorder, such as Ih, Ic, and Isd, are clustered together; (4) The spread

in energy at a given point on the map is comparable to the energy scale of stacking defects

and H-bonding defects. H-bonding defects and different proton-orderings develop during

the geometry optimisation of the ice structures, which (in analogy with their SiO2 parent

structures) are initialised with bond-centered protons.

Furthermore, the general structure of the map is consistent with the strategy we followed to

construct our set of structures. The upper portion of the map, corresponding to tetrahedral ices

and silica-like networks is densely sampled, with structures clustered in partially-overlapping

regions. The lower part of the map, corresponding to very dense (e.g., ice X) and very open
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Figure 5.3 – Sketch-map of the structural similarity of 15,882 distinct PBE-DFT geometry-
optimised ice structures. The sketch-map coordinates correlate strongly with density and
configurational energy, but ultimately measure abstract structural features, which leaves their
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Their atomic structures are shown to highlight their structural diversity.

78



5.5. Using machine-learning to navigate the structural landscape

Figure 5.4 – The sketch-map coordinates correlations with (a) energy and (b) density

structures (e.g., those originating from the IZA zeolite dataset) is sparse. At high density,

this sparsity results from the increasing importance of geometric constraints, which limit

structural diversity and prohibit the formation of energetically feasible “mixed phases” con-

taining structural patterns from two or more low-energy configurations. At low density our

preselection strategy leads to sparse sampling. Sketch-map therefore provides indications of

the quality of configuration-space sampling, which can be used to focus the structure search

on the regions that need it most.

Finally, structures with low Edr are projected onto the periphery of the map, whereas the

central region is largely populated by defective, “mixed phase” structures that lie far from the

energy-density convex hull. This suggests that a GCH construction could be used to identify

configurations that can be stabilised (and made “synthesisable” [196]) by the application of ap-

propriate thermodynamic constraints beyond the conventional molar volume manipulation.

Conversely, the GCH allows us to identify structures, which can be stabilised by imposing

thermodynamic and/or kinetic constraints that couple to the abstract structural features. In

analogy with Edr one can then define a generalised dressed energy E (n)
dr , that quantifies the

stability of a given configuration subject to constraints that couple to the n structural features

φ1 . . .φn . This approach lends itself naturally to the objective of the search, as it allows to

probe all the structural breadth offered by a configuration search spanning a large pressure

range.

Crucially, the KPCA components (unlike the collective variables defining the highly non-linear

sketch-map projection) form a vector space in which the notion of convexity is well-defined.

To maintain linearity with respect to the underlying structure compositions however, the

global SOAP kernel must be reconstructed using an averaged descriptor.

By increasing the number n of features considered, the screening becomes progressively more
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inclusive, since multiple axes of structural diversity are considered simultaneously.

Including three KPCA descriptors in the GCH construction, we identify 50 structures within 20

meV of the GCH (see Fig. 5.3), which include all of the known ice phases except ice IV. Ice IV is

not classified as synthesisable due to its particularly high lattice energy, which is consistent

with the experimental observation that ice IV is metastable and only forms occasionally upon

slow heating of high-density amorphous ice before annealing to ice III, V, or VI.

The 50 structures also include the theoretical i, 0, quartz, and square phases, the CS-II clathrate

hydrate (which is identical in structure to ice XVI), and the HS-III clathrate hydrate. Further-

more, we identify 34 new configurations which are excellent candidates for experimental

formation and which we propose as candidates for ices XVIII through LI.

Among them are, in particular, the ice counterparts of the DDR, SGT, and NON zeolites, which

were previously suggested as promising candidates for clathrate hydrates by Tribello et al. [149],

and two structures reminiscent of a high pressure structure with Pbcm symmetry proposed

by Hermann et al. [124].

Notably, while the most promising candidates for experimental formation (as indicated by

their ordering in Fig. 5.3) are low-density ice counterparts of different zeolite networks, the

counterpart of the ITT network, which was suggested as the most stable “aeroice” structure

below around -0.4 GPa in Ref. [189], is dynamically unstable at the employed level of theory.

For reference, using the rPW86-vdW2 exchange-correlation functional ITT ice is still much

less stable than IRR ice proposed as stabilizable in this work.

It is worth noting that the counterpart of the LTA zeolite (structure 4 in Fig. 5.3) has also most

recently received attention as an “ultralow” density clathrate ice in Ref. [197].

5.6 Sensitivity to choice of density functional

While the GCH generally depends on the kernel, our choice of kernel representation is very

general and rather unbiased, which is reflected by the weak dependence of this selection of

structures on the choice of hyperparameters for the SOAP kernel (as shown in Chapter 4).

Notably, the GCH is also remarkably insensitive to the details of the underlying (free) energy

calculations.

To showcase its robustness to the choice of comparable potential energy surfaces here we

present a set of comparisons of the convex hulls obtained by recalculating the best 57 struc-

tures found in the PBE based search using other standard choices of functionals.

In this exercise one can see how the use of the PBE xc-functional is further justified by investi-

gating how the relative stability of the known and novel structures proposed for synthesis is

affected by the choice of xc-functional. Santra et al. [198] have shown that the rPW86-vdW2

xc-functional [199] produces particularly accurate relative stabilities for the known phases of

ice compared to different semi-local xc-functionals. More recently the SCAN functional of Sun

et al. [200] has been shown to reproduce said relative stabilities in equivalently good agreement

with experiment [201]. The PBE, rPW86-vdW2, and SCAN energies of the 50 synthesisable
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Figure 5.5 – Est with respect to ice Ih in meV/H2O as a function of ρ in g/cm3 for the 50 synthe-
sisable PBE-relaxed structures highlighted in the sketch-map (and 7 additional structures just
more than 20meV/H2O above the GCH) obtained using different xc-functionals. The Est of
the PBE-relaxed structures were calculated using the PBE [118] functional, the PBE functional
with the Grimme (G06) dispersion correction [202], the rPW86-vdW2 functional [199], and the
SCAN functional [200].

PBE-relaxed structures highlighted and 7 additional structures just more than 20meV/H2O

above the GCH (calculated using Quantum Espresso [130]1) is shown as a function of density

in Fig. 5.5. However, the more stringent and representative test in the context of this work

is the comparison of relative stabilities after geometry optimisation with the respective xc-

functional (see Fig. 5.6). Both figures highlight the importance of dispersion effects on the

static lattice energies of different ice structures and show that the energy-density CH (only

explicitly shown in Fig. 5.6) is sensitive to the choice of xc-functional, even though the set

of structures within ∼ 10meV/H2O is insensitive to it. Once again, the GCH construction

is largely unaffected by the choice of xc-functional, rendering the central features of the

configuration space map shown in Fig.5.3 insensitive to the choice of xc-functional. This is

most strikingly demonstrated by re-evaluating the GCH constructed on the first three KPCA

descriptors for the 136 most promising candidates, but using the Est obtained using the rPW86-

vdW2 [199] xc-functional. Out of 38 vertices obtained using PBE all but one are recovered

using rPW86-vdW2 and only three additional vertices emerge. To sum it up, 37 out of 38 struc-

tures are still identified as GCH vertices when the lattice energies of the structures highlighted

in Fig. 5.3 are computed using the dispersion-corrected rPW86-vdW2 exchange-correlation

functional [199] instead of the PBE functional, despite significant differences with respect

to the PBE lattice energies. The rPW86-vdW2 functional has been shown to be particularly

accurate for the known phases of ice [198].

In contrast the energy-density CH depends more sensitively on the choice of exchange-

correlation functional. One may wonder whether unoptimised structures might provide

a sufficient structural database, thereby eliminating the expensive geometry-optimisation

1with a plane-wave energy cut-off of 40 Rydberg, the same k-point grids employed in the original PBE-DFT
calculations, and the O.pbe-rrjkus.UPF, H.pbe-rrjkus.UPF, O.pbe-hgh.UPF, and H.pbe-hgh.UPF pseudopotentials
from http://www.quantum-espresso.org.
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was suggested as the most stable “aeroice” structure below around -0.4 GPa in Ref. [189], is
highlighted in cyan, but is unstable at the PBE level of theory and still far from stable at the
rPW86-vdW2 level of theory.

step, which also provides energetic information as a proxy for stability. Indeed, a GCH con-

struction based on structural information alone successfully identifies most of the known

ice phases. However, this apparent success crucially relies on identifying synthesisable con-

figurations as “extremal”. This in turn requires geometry optimisation in order to collapse

the large configuration space volumes associated with synthesisable configurations onto the

corresponding deep minima in the free energy surface. The correlation between the depth

of a minimum and the configuration space volume it attracts has been shown explicitly for

Lennard-Jones clusters [203, 204].

5.7 The novel phases

In Table 5.1 summarises the structural and energetic details of the structures highlighted

on the sketch-map in Fig.5.3. A typical characteristic of the GCH construction is that an

increasing the number of kPCA components produces an increasingly inclusive selection. In

Fig. 5.7 shows GCH selections with one and three components, setting a cutoff threshold on

the dressed energies at 20 meV. Points below this threshold are coloured according to their

GCH dressed energies.

In both cases the number of structures with low dressed energies is large, since the database

includes configurations that are only distinguished by the presence of proton disorder or

stacking faults, which are expected to change the binding energy by just a few meV/H2O.

While it would be possible to inspect structures manually to identify those that are genuinely

structurally distinct, it is easier to further reduce the number of proposed phases by an

additional clustering step, based on the high dimensional similarity matrix.
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Index Original label H2O
cell S.G. ρ ρref Eρ

dr EGC H−1
dr EGC H−3

dr

1 207_1_4435 12 Im3m 0.965 (0.772) 0.00 19.64 0.00
2 12_2_29187 6 I 4/m 0.998 0.797 38.13 44.20 0.00
3 ACO 16 Im3m 1.109 (0.887) 364.22 338.53 0.00
4 LTA 24 Pm3m 0.933 (0.764) 349.61 341.04 0.00
5 BSV 48 I a3d 0.879 (0.703) 127.77 131.70 0.00
6 169_2_7915 12 P6122 0.848 (0.678) 155.48 141.81 0.00
7 53_3_726600 16 C mcm 1.682 (1.346) 141.80 0.00 0.00
8 20_2_26425 6 P21 1.592 (1.274) 165.75 58.47 0.00
9 12_2_32449 6 C 2/c 1.577 (1.262) 100.96 65.68 0.00
10 84_2_1419 6 P42/m 1.349 1.089 57.14 37.74 0.00
11 61_2_8842 16 R3 1.339 1.085 26.36 20.96 0.00
12 169_2_10608 12 C 2221 1.177 0.946 50.76 38.10 0.00
13 PCOD8047078 12 P21 1.131 0.920 53.84 60.63 0.00
14 67_2_1563 16 Pbma 1.570 1.171 88.64 51.37 0.00
15 PCOD8172143 10 Pnn2 1.344 1.092 19.50 9.22 1.52
16 152_2_118474 9 P3121 1.599 1.270 89.78 61.98 1.79
17 DDR 40 C 2/m 0.996 0.801 19.02 19.83 2.40
18 11_2_15848 8 C 2/c 1.535 1.236 32.31 7.85 4.36
19 91_2_8335121 16 P1 1.688 (1.350) 17.15 29.05 5.44
20 PCOD8301974 16 I 41/a 1.443 1.110 31.52 14.31 8.99
21 PCOD8045578 8 R3m 1.422 (1.138) 83.74 69.60 10.48
22 58_2_511 12 C mcm 1.112 0.908 23.09 17.57 13.41
23 151_2_4949650 9 P3112 1.638 1.313 64.30 24.97 13.54
24 PCOD8007225 16 P1 1.438 (1.150) 30.20 19.83 15.54
25 2_2_342692 4 Pbnm 1.681 (1.345) 128.00 37.64 15.76
26 PCOD8321499 18 C 2221 1.260 1.024 35.38 21.64 15.97
27 PCOD8047931 16 P21 1.219 0.984 40.78 36.67 17.39
28 15_2_201714 6 I bam 1.472 1.068 49.18 21.46 17.76
29 MAR 72 P21/m 0.971 0.798 16.10 34.48 17.93
30 PCOD8324623 18 P21 1.323 1.081 38.29 28.75 18.20
31 SGT 32 I 41/amd 0.972 0.794 9.97 23.46 19.02
32 20_2_28176 6 C 2 1.262 (1.010) 38.23 27.73 19.19
33 14_2_48453 8 Pmnn 1.355 (1.084) 36.73 33.36 19.64
34 NON 22 F mmm 1.050 0.860 16.09 21.19 19.64

Table 5.1 – Structure data for novel candidate ice phases. Columns one and two provide the
mapping between the structure indices and the original labels of the corresponding four-
connected networks in the databases of Treacy et al. [183, 205, 206] and Deam et al. [184]
and the IZA atlas of zeolites [182]. The next columns provide the number of molecules per
unit cell, the space group, and the initial and refined PBE-DFT density, ρ and ρref (measured
in [g/cm3]). Brackets indicate values that have been estimated noting that the refined PBE-
DFT densities are consistently around 20 % smaller than those from the initial PBE-DFT
calculations. The last three columns contain the dressed energies relative to the CH built on
the density (Eρ

dr ), a generalised convex hull (GCH) with one principal component (EGC H−1
dr ),

and three components (EGC H−1
dr ). All energies are expressed in meV/H2O.
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Figure 5.7 – Sketch-map coloured according to distance from the GCH as a measure of stabilis-
ability. Structures are coloured according to their dressed energies with respect to the GCH
constructions using (a) one and (b) three kPCA components, respectively. Structures shown in
bright blue are more than 20 meV/H2O above the hulls, while the rest is coloured according to
the legends.
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5.8 Discussion

The success of the GCH construction in discovering the known ice phases and clathrate

hydrates entirely a priori highlights that, although kinetic factors play an important role

in determining which ice phases are formed in practice, structural and simple energetic

considerations can provide a great deal of physical insight. More importantly, it demonstrates

that the GCH approach does not simply discern structurally diverse configurations, but very

effectively selects configurations which can be formed in experiment. It thereby provides

strong support for the 34 proposed, new, structurally diverse candidates for ices XVIII to LI.

This should spur experimental efforts to ratify our predictions.

At this stage the candidates are embedded in a human-readable sketch-map of configura-

tion space mainly as an aide in developing an intuitive understanding of the relation of the

proposed candidates to the known ice phases. However, highlighting the phase transitions

between the known ice phases suggests that proximity on the sketch-map is a good indicator

for the existence a viable transition pathway. In conjunction with the GCH construction

the sketch-map therefore provides a tractably small and yet structurally diverse set of syn-

thesisable candidate structures and a means of identifying endpoints and suitable reaction

coordinates for further investigation of formation pathways, for example, using umbrella

sampling [207], forward flux sampling [164] or enhanced sampling metadynamics approaches

[208], which have already proven successful in simulating the nucleation of ice [165–169]. The

relation of the KPCA descriptors in the GCH construction to conventional quantities, such as

density, vibrational spectra, and concentrations of different types of guest molecules, promises

to provide more direct guidance in identifying experimental formation pathways. However,

this goes beyond the scope of this study.

In addition, the approach demonstrated in this work sheds light on the energetics of proton-

order/disorder, stacking-disorder, as well as H-bonding and planar defects, and also provides

a glimpse of the preferred (quasi-) two-dimensional forms of ice.

In its current state the biggest limitation of our structure search is the preselection cut-off

on system size. Relaxing this cut-off will drive the structure search towards completeness,

which is the obvious next step. More generally, the connection between structural patterns

and configurational energy exposed by the sketch-map dimensionality reduction suggests an

expedient recipe for even more extensive database-driven searches. These need not be limited

to crystalline water ice, but could range from other tetrahedrally coordinated systems, such as

silica or the carbon allotropes, to liquid, disordered, and glassy systems.
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6 Conclusions

The high-throughput search for novel phases of materials is nowadays an integral part of the

materials discovery pipeline, and its current limits can be alleviated by the application of novel

machine learning techniques.

The advent of accurate machine learning potentials has made it increasingly feasible to bypass

the computational costs involved in an ab-initio calculation, thus allowing to concentrate

resources to compute accurate measures of systems’ free energies and properties. However,

the exponential complexity associated with the exploration of a compound’s space and the

complex transition between its minima remain a fundamental challenge for efficient in-silico

materials design.

Understanding the key thermodynamic mechanisms underlying the transitions between meta-

stable phases of materials can provide experimentalists a fundamental starting point for the

successful synthesis of simulated materials, and represents a key milestone in the roadmap

towards a property guided materials design pipeline.

In this thesis, we have introduced a generalisation of the convex hull construction, a tool

which is commonly used to screen configurations that exhibit stability under a known thermo-

dynamic drive. The GCH employs as thermodynamic drives a set of fully agnostic, data-driven

structural features which in turn encode the effects of any general thermodynamic force. We

show that the GCH recovers phases that could be stabilised by applications of unconventional

fields, like magnetic fields (Hx O1−x binary compounds), the substitution of a chemical species

(pentacenes molecular crystals) as well as negative pressures (zeolitic phases of ice).

Further, it introduces a probabilistic measure for each structure to be a vertex, and thus propos-

ing a quantitative measure of a candidate’s stabilisability. In order to obtain these probabilities,

the structures are lightly randomised in their coordinates, and their corresponding hulls are

sampled until their their probabilities of being vertices converge.

This mechanism allows firstly to account, albeit very approximately, for thermal fluctuations,

and secondly, to allow competing configurations to lower each other probabilities, so to allow

for the pruning of similar configurations at every iteration.

The result of the GCH construction is a list of configurations that constitute its vertices, and

thus exhibit high potential for stabilisation. We further suggest a scheme to decode which
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thermodynamic field could couple to the extracted structural descriptors, by looking at corre-

lations with pre-existing calculated properties.

The interpretation of the abstract structural variables has much potential for further improve-

ments: the stabilisation mechanisms, however subtle, appear to have similar structural effects

across different compounds; thus a transfer learning scheme could be used a starting step to

suggest unexplored stabilisation mechanism for novel systems. As a more concrete example,

one can notice how concerted reorientation of dimer sub-units can be linked to an application

of an electromagnetic field, irrespective of the species involved.

A byproduct of a GCH construction is what we called the dressed energy Ehull , which measures

a structure’s distance from the constructed convex hull(s). This quantity represents more than

the direct regression of a system’s energy, having a direct implication on the configuration

proximity to becoming stabilisable.

If one considers the construction of GCH as a training over a set of configurations labelled

by their energies, and Ehull as the output of the prediction, it is easy to consider the GCH

method as a supervised machine learning model and use it to predict the potential stability of

a novel structure, given its position on the GCH space. This quantity could be used to enhance

crystal structure searching schemes to point searches towards unsampled, high energy regions,

and rendering the search more efficient. Moreover, one could use this scheme to early stop

structure minimisations which show low potential to get close, or surpass, the surfaces of the

GCH. The results of these investigations were built to produce a quantitative benchmark of

our models, and as such, many of the phases suggested by the GCH constructions haven’t

been further explored or tested for further stability studies.

The search for novel phases of hydrogen under high pressure is currently an active field of

research, with a strong effort aimed at finding the Wigner-Huntington transition leading to a

metallic, superconducting structure. A point of continuation of this study could be to char-

acterise in more details the free energies of configurations emerged from the high-pressure

hydrogen set, and test for the presence of potential candidates which exhibit metallic be-

haviour.

The study of the effects of chemical substitutions on the pentacene sets links the effect of

changes of molecular fragments to the system’s underlying potential energy surface. This ap-

plication has the potential to pave the way for a novel approach to characterise the stabilising

effects that specific moieties can produce when packed in a novel molecular crystal cell.

Finally, we show the exploratory power of the GCH construction by using it to lead a crystal

structure search aimed at uncovering unexplored regions of ice’s phase diagram. The result of

this work serves both as a benchmark - in that we recover all the known phases of ice contained

in the set - and a proof of the versatility of our model in dealing with a database spanning a

phase space ranging from negative pressures to units of GPa. This is substantiated by testing

the regime of stability of the proposed phases and showing them to be competitive with the

known phases at different ranges of pressures, showing promise for further stability studies.

To summarise, we have developed a method to facilitate the discovery of potentially stable

configurations coming from crystal structure searches. We showed its applicability in a wide

range of complex systems and used it to suggest or (re)discover their underlying stabilisation
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mechanisms. This novel approach can be used to both to uncover subtle, unknown structure

to property relations, and to extract meta-stable configurations that would have escaped

conventional screening procedures.
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