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We shall not cease from exploration
And the end of all our exploring

Will be to arrive where we started
And know the place for the first time.

— T.S. Elliot
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Abstract
Deep neural networks have been empirically successful in a variety of tasks, however

their theoretical understanding is still poor. In particular, modern deep neural networks
have many more parameters than training data. Thus, in principle they should overfit
the training samples and exhibit poor generalization to the complete data distribution.
Counter intuitively however, they manage to achieve both high training accuracy and
high testing accuracy. One can prove generalization using a validation set, however this
can be difficult when training samples are limited and at the same time we do not obtain
any information about why deep neural networks generalize well. Another approach is to
estimate the complexity of the deep neural network. The hypothesis is that if a network
with high training accuracy has high complexity it will have memorized the data, while
if it has low complexity it will have learned generalizable patterns.

In the first part of this thesis we explore Spectral Complexity, a measure of complexity
that depends on combinations of norms of the weight matrices of the deep neural network.
For a dataset that is difficult to classify, with no underlying model and/or no recurring
pattern, for example one where the labels have been chosen randomly, spectral complexity
has a large value, reflecting that the network needs to memorize the labels, and will
not generalize well. Putting back the real labels, the spectral complexity becomes lower
reflecting that some structure is present and the network has learned patterns that
might generalize to unseen data. Spectral complexity results in vacuous estimates of the
generalization error (the difference between the training and testing accuracy), and we
show that it can lead to counterintuitive results when comparing the generalization error
of different architectures.

In the second part of the thesis we explore non-vacuous estimates of the generalization
error. In Chapter 2 we analyze the case of PAC-Bayes where a posterior distribution over
the weights of a deep neural network is learned using stochastic variational inference,
and the generalization error is the KL divergence between this posterior and a prior
distribution. We find that a common approximation where the posterior is constrained
to be Gaussian with diagonal covariance, known as the mean-field approximation, limits
significantly any gains in bound tightness. We find that, if we choose the prior mean to be
the random network initialization, the generalization error estimate tightens significantly.

In Chapter 3 we explore an existing approach to learning the prior mean, in PAC-
Bayes, from the training set. Specifically, we explore differential privacy, which ensures
that the training samples contribute only a limited amount of information to the prior,
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Abstract

making it distribution and not training set dependent. In this way the prior should
generalize well to unseen data (as it hasn’t memorized individual samples) and at the
same time any posterior distribution that is close to it in terms of the KL divergence will
also exhibit good generalization.
Keywords: Complexity, Generalization Error, Spectral Complexity, PAC-Bayes, Differen-
tial Privacy, Invariance, Flat Minima, Algorithmic Stability.
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Résumé
Les réseaux neuronaux profonds sont empiriquement efficaces dans une variété de

tâches, mais leur compréhension théorique est encore faible. En particulier, les réseaux
neuronaux profonds modernes ont beaucoup plus de paramètres qui peuvent être appris
que de données dans l’ensemble des échantillons d’entraînement. Ainsi, en principe, ils
devraient surapprendre les échantillons d’entraînement et présenter une faible généralisa-
tion sur la distribution complète des données. Mais, contre toute attente, ils parviennent
à atteindre à la fois une haute précision sur la classification de l’ensemble d’entrainement
et de test. On peut prouver la généralisation en utilisant un ensemble de validation, mais
cela peut être difficile lorsque les échantillons d’entraînement sont limités et , dans le
même temps, cela n’apporte aucune information sur pourquoi les réseaux neuronaux
profonds se généralisent bien. Une autre approche consiste à estimer la complexité du
réseau neuronal profond. L’hypothèse est que si un réseau à faible risque empirique a une
complexité élevée, il aura mémorisé les données, tandis que s’il a une faible complexité, il
aura appris des modèles généralisables.

Dans la première partie de cette thèse, nous explorons la complexité spectrale, une
mesure de la complexité qui dépend des combinaisons de normes des matrices de poids
du réseau neuronal profond. Pour un ensemble de données qui est difficile à classifier,
sans modèle sous-jacent ou sans motif de données recurrent, par exemple un ensemble
dont les étiquettes ont été choisies au hasard, la complexité spectrale a une grande
valeur, reflétant le fait que le réseau doit mémoriser les étiquettes, et ne généralisera pas
bien. Inversement, Quand l’ensemble de données retrouve ses véritables étiquettes, la
complexité spectrale devient faible, ce qui reflète le fait qu’une certaine structure est
présente et que le réseau a appris des modèles qui pourraient se généraliser à des données
invisibles. La complexité spectrale donne lieu à des estimations vides de généralisation, et
nous montrons qu’elle peut conduire à des résultats contre-intuitifs lorsque l’on compare
l’erreur de généralisation de différentes architectures.

Dans la deuxième partie de la thèse, nous explorons les estimations non vides
de la généralisation. Dans le chapitre 2, nous analysons le cas de PAC-Bayes où une
distribution postérieure sur les poids d’un réseau neuronal profond est apprise en utilisant
l’inférence variationnelle stochastique, et l’erreur de généralisation est la divergence KL
entre cette distribution postérieure et une distribution antérieure. Nous constatons qu’une
approximation commune où le postérieur est contraint d’être gaussien avec covariance
diagonale, connue sous le nom d’approximation du champ moyen, limite de manière
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significative tout gain sur la précision des bornes. En revanche, nous constatons que
si l’on choisit l’hypothèse comme l’initialisation du réseau neuronal profond aléatoire,
l’estimation de la généralisation se resserre considérablement.

Au chapitre 3, nous explorons une approche existante pour apprendre l’hypothèse
dans PAC-Bayes à partir de l’ensemble de formation. Plus précisément, nous examinons la
confidentialité différentielle, qui garantit que les échantillons d’apprentissage n’apportent
qu’une quantité limitée d’informations à l’hypothèse, ce qui la rend dépendante de la
distribution et non de l’ensemble d’apprentissage. De cette façon, l’hypothèse devrait
bien se généraliser aux données non vues (car le réseau n’a pas mémorisé les échantillons
individuels) et en même temps toute distribution postérieure qui lui est proche en termes
de divergence de KL présentera également une bonne généralisation.
Mots-clés : Complexité, erreur de généralisation, compétitivité spectrale, PAC-Bayes,
confidentialité différentielle, invariance, minimum plat, stabilité algorithmique.
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Introduction
The success of deep learning contradicts a number of common machine learning intuitions.
Deep learning models have a highly non-convex optimization landscape which, in principle,
should present significant difficulties in finding even a good local minimum, i.e. one should
have difficulties in obtaining good training accuracy (Allen-Zhu et al., 2019; Du et al.,
2019). Deep learning models also include a significantly larger number of parameters
than the available training data. Thus, even if they managed to achieve good training
accuracy, based on the bias-variance trade-off (Bishop, 2006), they should in principle
overfit, memorize the training data and have low testing accuracy. Nevertheless, deep
neural networks manage to achieve both high training and testing accuracy, and have
evolved from a scientific curiosity to the dominant paradigm in a number of modern
machine learning tasks (Bengio et al., 2013). At the same time, as the field has matured,
it has been applied to real world applications, such as healthcare (Esteva et al., 2017),
finance (Nelson et al., 2017), and autonomous driving (Kendall and Gal, 2017), with
interesting new challenges in terms of estimating the risks involved and striving for ever
more efficient use of available data.

In this thesis we will explore the challenges and possible solutions to the generalization
puzzle of deep learning. In particular, assuming that a supervised deep learning model
can perfectly (or near perfectly) fit the training data we are interested in i) finding
measures that predict whether the model will perform well on testing data, possibly
giving some intuition into ii) why common deep neural networks manage to generalize
well. We will see why traditional measures of complexity are not well suited for the deep
learning setting. We will then explore a number of recent advances, that culminate with
non-vacuous generalization bounds for a number of small and intermediate networks.

We denote the learning sample (X,Y ) = {(xi, yi)}ni=1 ∈ (X × Y)n, that contains n
input-output pairs. Samples (X,Y ) are assumed to be sampled randomly from a
distribution D. Thus, we denote (X,Y ) ∼ Dn the i.i.d observation of n elements.
In this introductory chapter we will refer also to a validation set (Xval, Yval) of m samples
which is defined in a similar way as the learning sample. We consider loss functions
` : F × X × Y → R, where F is a set of predictors f : X → Y. We also denote the
empirical risk L̂`X,Y (f) = (1/n)∑i `(f,xi, yi) and the risk L`D(f) = E(x,y)∼D`(f,x, y).
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Introduction

In the following we will present a number of useful relations in an informal manner, and
will then make the statements formal in the main body of the thesis.

In general, the problem we are interested in, is bounding the risk

L`D(f) ≤ constant.

By far, the most common way of bounding the above in the context of deep neural
networks, is by use of a validation set (Langford, 2005; Kääriäinen and Langford, 2005).
One first trains a predictor f using a training set (X,Y ), and then computes a validation
risk L̂`Xval,Yval

(f). For m validation samples this can be readily turned into a bound on
the risk L`D(f), using a tail bound on the corresponding binomial distribution (Langford,
2005). However, this approach has some shortcomings. For one it requires a significant
number of samples. For a deep neural network with 0% validation risk to get an estimate
L`D(f) ≤ 0.0029 with high probability, one requires m ≥ 1000 validation samples. This
can be a problem in that these samples cannot be used for training, possibly hurting
the performance of the deep network. At the same time, for a number of fields such as
healthcare, the cost of obtaining validation samples can be prohibitively high (Davenport
and Kalakota, 2019). Finally, even though we can prove that the true risk will be low,
we do not get any information about the reason why the classifier performs well in the
first place.

As such, researchers often use the empirical risk (on the training set) together with the
complexity (Mohri et al., 2018) of the classifier to derive bounds roughly of the form

L`D(f) ≤ L̂`X,Y (f) + complexity,

and the difference L`D(f)−L̂`X,Y (f) is what we will call in the following the generalization
error (GE) of the classifier. Intuitively the more complex the classifier the more it is
possible for it to have simply memorized the training data, and to not have learned
any discriminative patterns, leading to high true risk. Complexity can be measured in
a number of different ways, and the above intuition about memorization immediately
presents difficulties for traditional complexity measures such as Rademacher complexity
(Mohri et al., 2018) and VC dimension (Blumer et al., 1989). The empirical Rademacher
complexity is defined as

R̂n(F) = Eσ

[
sup
f∈F

1
n

n∑
i=0

σif(xi)
]

where σ1, · · · , σn ∈ {±1} are i.i.d Rademacher random variables with P{σi = +1} =
P{σi = −1} = 1/2. As such, given the supremum, Rademacher complexity can be seen
as a measure of how well a classifier can fit a random binary labelling over the training
set (Zhang et al., 2016). Unfortunately, for the case of deep neural networks it has been
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shown empirically that most common architectures can fit a random binary labelling
perfectly over the training set (Zhang et al., 2016), therefore this would imply that
R̂n(F) = 1. At the same time a bound on the true risk should be better than random
chance to be non-vacuous (for a 10-class problem we already know that L`D(f) ≤ 0.9).
This leads to bounds based on Rademacher complexity to be vacuous. Similar arguments
exist for the VC dimension (Zhang et al., 2016). If modern deep neural networks have
enough capacity to memorize random labels they could in principle memorize also real
labels, therefore overfitting in all problems of interest.

Based on the above results, researchers focused on complexity measures which are data-
dependent (Golowich et al., 2017; Arora et al., 2018; Neyshabur et al., 2017b; Sokolić
et al., 2016; Bartlett et al., 2017; Dziugaite and Roy, 2017), meaning that they measure
the complexity of a deep neural network based on the specific weights that were computed
for it using stochastic gradient descent. This allows some room to maneuver. As weights
change when optimizing for different datasets, one could in principle identify a quantity
that is large for memorization problems such as fitting a random labelling, but that is
small for real labels, where the deep network will generalize well. Thus, in principle
the network has enough capacity to memorize the labels, but in practice architectural
biases and the optimization procedure will force it to choose the simplest possible fit, if
the learning problem has any structure. Indeed, researchers derived such measures of
complexity based on combinations of various norms of the weight matrices (Golowich
et al., 2017; Arora et al., 2018; Neyshabur et al., 2017b; Sokolić et al., 2016; Bartlett
et al., 2017). We illustrate the intuition behind this, using a simplified example. Assume
a one layer fully connected network f(x) = max(Wx, 0), for example it is obvious that
a network with ||W||2 > 0 will include more information about the training set than
one with ||W||2 = 0, and one could hypothesize that ||W1||2 > ||W2||2 might imply that
fW2 generalizes better than fW1 , if they have the same empirical risk.

This is the starting point of this thesis.

In Chapter 1 we elaborate on some weak points of norm based generalization bounds.
We focus on a prominent class called “spectral complexity” (Bartlett et al., 2017),
however other norm based bounds are quite similar. Spectral complexity based bounds
remain vacuous by several orders of magnitude (Arora et al., 2018) and are validated
by showing that they correlate empirically with generalization error (Arora et al., 2018;
Bartlett et al., 2017). However, we can easily construct datasets with an increasing
number of translations and elastic deformations, such that spectral complexity remains
constant while the generalization error changes. As such, we advocate that the invariance
properties of deep neural networks should be looked at in more detail when constructing
generalization bounds, and that the criteria for validating spectral complexity have to
be stated with more precision. In the second part of the chapter, we discuss how the
vacuity of the bounds can lead to counterintuitive results, if used to compare different
architectures, specifically locally connected and convolutional networks. These results

3



Introduction

prescribe caution when using vacuous measures of complexity to select classification
models. Finally, we review other criticisms of vacuous bounds.

In Chapter 2, motivated by the shortcomings of vacuous bounds, we turn to analyzing
bounding techniques that have resulted in non-vacuous complexity estimates. Specifically,
we focus on the PAC-Bayes framework (McAllester, 1999; Seeger, 2002; Catoni, 2007;
Alquier et al., 2016) which deals with randomized classifiers, and has been applied to
deep neural networks in Dziugaite and Roy (2017); Zhou et al. (2018). Here complexity
is modeled roughly as

KL(ρ̂||π) = (1/λ)||µρ̂ − µπ||22

with posterior and prior distributions over the weights of a deep neural network as
ρ̂ = N (µρ̂, λI) and π = N (µπ, λI). There are two factors in the complexity model. The
first, is the variance of the noise λ, the more noise that we can add (λ→ +∞) without
hurting accuracy, the more flat is the minimum of the classifier, and the better it will
generalize (at the same time the measurable complexity will tend to 0, KL(ρ̂||π)→ 0).
The second is the `2 distance between the deep neural network weights µρ̂ and the prior
mean µπ. As this approach yields non-vacuous bounds, we analyze the contribution of
each factor and find that most gains are the result of Dziugaite and Roy (2017) choosing
the prior mean to be the random initialization of the neural network such that ||µρ̂−µπ||2
is low. Regarding choosing the variance λ, we showcase how better approximations of the
curvature at the mimimum can result in adding more noise to weights without hurting
accuracy, resulting in tighter bounds.

Given that the distance between the prior and posterior means is empirically important,
in Chapter 3 we discuss techniques for computing informative prior means µπ, such that
||µρ̂ − µπ||2 ≤ ||µρ̂ − µinit||2, so that KL(ρ̂||π) is tightened further. A major bottleneck
in computing informative priors is that, in PAC-Bayes bounds, the prior cannot depend
on the training data, as having computed ρ̂, one could then set π = ρ̂ so that trivially
KL(ρ̂||π) = 0. However the prior can depend on the data distribution. We review
existing results (Dziugaite and Roy, 2018a) where one can learn valid prior means µπ
from training data by enforcing differential privacy (Dwork, 2011; Dwork et al., 2014;
Dwork, 2008) constraints. Intuitively, privacy constraints imply that every data point
has only contributed limited information to the mean µπ so that the mean is distribution
and not training set dependent. By using existing state of the art differential privacy
techniques of Abadi et al. (2016), we obtain even tighter non-vacuous bounds than the
ones in Chapter 2. We then discuss inherent tradeoffs in learning classifiers with both
low complexity (low mutual information between parameters and training data), and low
empirical risk.

Motivation for the analyzed techniques. We elaborate more on the motivation
behind analyzing the techniques from Chapters 2 and 3 and for considering them as
promising candidates for proving generalization. We will see that both approaches are
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based on conventional wisdom about deep neural network optimization. In fact they
consist of quantitative formulations of heuristic choices which have be shown empirically
to result in better generalization.

The PAC-Bayes approach of Chapter 2 is closely related to “flat minima”. There has
been a wealth of literature (Hochreiter and Schmidhuber, 1997b; Kleinberg et al., 2018;
Keskar et al., 2016; Li et al., 2018a; Jastrzębski et al., 2017) linking generalization and
flat minima going back to pioneering work by Hochreiter and Schmidhuber (1997a). Of
particular importance is the work of Keskar et al. (2016) where the authors, using detailed
experiments, show that flatness of minima correlates strongly with better generalization.
This corresponds to a popular heuristic which is widely used in practice: setting the
batch size of stochastic gradient descent to be small (You et al., 2017a; Masters and
Luschi, 2018; You et al., 2017b). To see why this heuristic is linked to flat minima
note that using a stochastic version of gradient descent introduces noise to the gradient
estimate. Adding noise to the gradient estimate results in turn to small “jumps” around
the optimization landscape, which should force the optimization procedure to end only
in regions of the loss that are flat. Empirically the above is often confirmed in practice
(Keskar et al., 2016), small batch sizes result in flat minima and better generalization.
There is however a significantly computation difficulty in estimating the curvature around
a given minimum explicitly (Neyshabur et al., 2017a). The PAC-Bayesian approach of
Chapter 2 can then be seen as i) providing an implicit measure of flatness (robustness of
the empirical risk to noise added to the parameters) that can be computed efficiently
using sampling and ii) a formal relation between this flatness measure and generalization
error.

Rather than looking at the geometry of favorable minima, on a more fundamental
level using Stochastic Gradient Descent as opposed to Gradient Descent limits the
ammount of information that each gradient update adds to the learned weights. In
fact, explicitly adding noise to the gradient updates oftain leads to better empirical
performance (Srivastava et al., 2014; Kingma et al., 2015; Neelakantan et al., 2015).
Dropout (Srivastava et al., 2014) is one such approach that has proven extremely popular,
and that has been introduced explicitly with the motivation to limit the information flow
to each neuron. At the same time measuring the information flow at Stochastic Gradient
Descent updates is difficult (Belghazi et al., 2018; Gabrié et al., 2018) and works such as
Srivastava et al. (2014) provide only qualitative arguments. The techniques discussed in
Chapter 3 deal with tightly measuring the information added by each gradient update
and relating this to a generalization bound.

We return now to the principal question: “why deep neural networks generalize well?”.
In short, the present thesis provides further evidence regarding the hypothesis that noise
added by stochastic gradient descent plays a crucial role in generalization, by limiting
the amount of information in the learned weights.

5



Introduction

What we can and can’t do. We note here that the techniques presented above are
not prescriptive for model construction, that is they are not informative to choosing
architectural biases that are important for good generalization. In fact our hypothesis
set throughout this thesis is not all deep neural networks. Rather, most comparisons
are with regards to a single deep neural network architecture, then different hypothesis
sets correspond to how many weight instantiations a complexity measure considers.
Thus, given a fixed architecture, traditional measures of complexity such as Rademacher
complexity and VC dimension consider a hypothesis set that consists of all different
instantiations of the weights using real numbers. The techniques of Chapters 1-3 consider
hypothesis sets that are greatly restricted. In Chapter 1 the hypothesis set is restricted
so that the norms of the weights of each layer are bounded. In Chapters 2 and 3
the hypothesis set is restricted by modeling a posterior Gaussian distribution over the
weights. Thus not all weight instantiations are equally probable, but by centering the
posterior mean to be a minimum of the loss landscape the hypothesis set is biased towards
instantiations that have low empirical risk.

In the context of deep neural networks finding appropriate architectures for a given task
automatically is called Neural Architecture Search (NAS) (Zoph and Le, 2016; Liu et al.,
2018; Pham et al., 2018; Elsken et al., 2018). To the best of the authors knowledge
there has been only one work that proposes a generalization bound explicitly for the task
of neural architecture search (Cortes et al., 2017) with applications only in small scale
experiments. More fundamentally, predicting architectural biases that correspond to the
symmetries of the training data and predicting the possible generalization performance
of such an architecture using a generalization bound would require incorporating in a
bound a model of the generating data distribution. Note how this is beyond the scope of
most current generalization bounds (Lyle et al., 2020; Sokolic et al., 2016; Achille and
Soatto, 2018), which only make the i.i.d assumption on the training and testing data.

Finally the results in this thesis, while more limited in scope than full NAS + parameter
optimization, could play a crucial role in practice and can be mainly used as a substitute
to validation sets. In fact typically one designs an architecture with some given biases
and then wants to estimate the optimal weights such as the empirical risk is low and the
network hasn’t overfitted. This is where the presented techniques can be applied.

What we are and are not trying to do. One can be tempted to optimize the proposed
bounds directly so as to reach a flatter minimum and obtain better generalization than
with a deterministic neural network obtained by vanilla SGD (Germain et al., 2016; Biggs
and Guedj, 2020; Dziugaite and Roy, 2017). Or can be motivated by Chapter 2 to simply
set a posterior distribution over the weights, centered at a network minimum, so as to
improve generalization by creating an implicit model ensemble (Maddox et al., 2019;
Ritter et al., 2018). Some of these approaches work better than others and assessing their
practicality in real problems is tricky. For example adding noise to already noisy SGD
updates, while in theory beneficial, can in practice force the SGD to diverge (Blundell
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et al., 2015; Wu et al., 2018). However improving generalization, training or testing
accuracy, is not the main goal of the thesis and indeed the goal of most of the relevant
literature cited. In fact the main goal is estimating the generalization error for different
weight instantiations of a single architecture. As this is difficult for single hypotheses
(Kawaguchi et al., 2017), the aim is to create a sufficiently small hypothesis class which
includes the original single hypothesis and for which proving generalization is tractable.

Relationship with other frameworks. There is a close link between PAC-Bayes and
Minimum Length Description (MLD) framework (Grunwald, 2004; Barron et al., 1998;
Rissanen, 1978). In brief the MLD principle seeks to decribe the training data in a
classification task using the least bits possible. Thus it separates two sources of cost: i)
the length, in bits, of the description of the classification model and ii) the length in bits
of the description of the data when encoded with the help of the model. The principle
states that the model that minimizes these two costs should be the one chosen for the
classification task. The complexity estimated by PAC-Bayes together with the empirical
risk at the given complexity level can be seen as a variational encoding of the deep neural
network weights under the MLD principle. The variance of the noise in the posterior
measures the level of precision used in the encoding (Blier and Ollivier, 2018; Daniely
and Granot, 2019). The variational code results in an explicit coding scheme thanks to a
bits-back argument (Honkela and Valpola, 2004; Hinton and van Camp, 1993).

The MLD can also be related to flatness of minima (Hochreiter and Schmidhuber, 1997a).
Thus a neural network with weights that corresponds to a flat minimum, will tolerate
significant noise to the parameters. Therefore the estimated codelength will be small for
the MLD framework. To see why this is the case we have already seen that intuitively
if parameters correspond to a flat minimum they can tolerate significant noise without
hurting accuracy. Therefore a consequence is that they can intuitively be removed or
compressed (stored with lower precision) which directly limits the codelength in the MLD
framework. When one has to choose among minima that have the same empirical risk,
choosing the flattest ensures that one chooses the model with the smallest codelength (in
bits) in accordance with the MLD principle.

The thesis in a single figure. The techniques in Chapter 1 correspond to a single
complexity estimate that depends on the norm of the deep neural network weights,
however the techniques in Chapters 2 and 3 actually provide a range of classifiers with
different complexity and empirical risk. For example a posterior ρ̂ = N (µρ̂, λI) will
correspond to different randomized classifiers for different λ, each with different empirical
risk and complexity.

Thus in Chapters 2 and 3 we introduce “Risk-Complexity” plots (Figure 1). On the x-axis
we plot the Empirical Risk L̂`X,Y (f), while on the y-axis we plot the estimated Complexity
KL(ρ̂||π) or the equivalent complexity metric. The plots have a number of advantages.
We can easily plot the region of non-vacuity and the location of the best possible bound
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(a)

Figure 1 – Risk-Complexity plot for MNIST 10: The area below the dashed
line corresponds to non-vacuous pairs of (complexity, empirical risk). The purple star
corresponds to the true risk implied by the validation set. “Spectral” corresponds to the
complexity measurement using spectral complexity. “PAC-B” corresponds to multiple
(empirical risk,complexity) pairs that we derive in Chapter 2 using the PAC-Bayesian
approach. “Diff-P” corresponds to multiple (empirical risk,complexity) pairs that we
obtain when learning an informative prior mean in Chapter 3. Throughout the thesis
we thus go from a single complexity estimate that is vacuous to multiple non-vacuous
(empirical risk,complexity) pairs that get progressively tighter. We also derive a number
of intuitions along the way.

implied by the validation set. For example, looking at Figure 1 and remembering that
the general form of the bounds is L`D(f) ≤ L̂`X,Y (f) + complexity, if the empirical risk
of a classifier is 20% we should estimate it’s complexity as at most 70%. Otherwise,
we would be bounding the true risk with an upper bound looser than L`D(f) ≤ 90%,
this would a bound worse than random for a 10 class classification problem, and would
be therefore vacuous. For any bounding method that provides multiple classifiers, we
can then derive multiple (complexity, empirical risk) estimates and plot a front of all
combinations. This results in an intuitive way for comparing bounding methods, where
one can simply inspect the fronts in relation to the best possible bound implied by the
validation set.

In Figure 1 we plot the empirical risk and complexity estimates from different techniques
from Chapters 1 to 3, for the case of MNIST-10 with 50000 training and 10000 validation
samples. We use a simple fully connected network with two hidden layers

input→ 300FC→ 300FC→ #classesFC→ output

where xFC denotes a fully connected layer with x neurons, the first two layers are
non-linear with a rectifier non-linearity, while the final one is followed by a softmax
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function. MNIST-10 is a simple classification problem, as such, both the empirical risk
and the true risk implied by the validation set are close to 0. We plot the implied best
possible (empirical risk,complexity) pair, using a purple star.

We then plot bounds for this problem, using techniques from Chapters 1-3. Spectral
complexity from Chapter 1, provides a single complexity estimate that is vacuous. A
simple PAC-Bayesian baseline ρ̂ = N (µρ̂, λI) and π = N (µinit, λI) from Chapter 2,
where the prior mean is the random neural network initialization, results in non-vacuous
bounds. Further learning an prior prior mean using differential privacy in Chapter 3,
results in even tighter bounds. The main takeaway is that we go from vacuous bounds to
non-vacuous ones, while at the same time we discuss a number related issues, such as
which of these bounds can be used for model selection, as well as what properties of the
loss landscape and the optimization procedure are relevant to good generalization.

Notation Bold uppercase letters (e.g. A) denote matrices, bold lowercase letters (e.g.
a) denote vectors, calligraphic letters (e.g. A) denote sets, Ea denotes the expectation
over the random variable a, D denotes the data distribution, for ρ̂ and π probability
measures over X , KL(ρ̂||π) is the KL divergence KL(ρ̂||π) =

∫
X log( dρ̂dπ )dρ̂.
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1 Spectral Complexity and Invari-
ance.

In the introduction we saw how, for deep neural networks, any measure of model
complexity which is uniform across all functions representable by a given architecture,
such as Rademacher complexity and VC dimension, is doomed to provide contradictory
measurements (Bartlett et al., 2017; Arora et al., 2018; Neyshabur et al., 2015). We also
described how this motivated researchers to consider measures of complexity that allow,
given a specific deep neural network architecture, for high complexity models for difficult
datasets (random labels) and low complexity models for easier datasets (real labels).

1.1 Introduction

In this chapter we focus on analyzing one such popular class of complexity measures,
spectral complexity (Bartlett et al., 2017) normalized by the margin. Spectral complexity
consists usually of the combinations of the spectral or other norms of the different
layer weight matrices. The average margin quantifies the confidence of the classifier:
it is the average difference between the first and second most probable class estimates
per sample. Given l neural network layers with weight matrices Wi, i ∈ {0, · · · , l},
so that θ = [vec(W0), vec(W1), . . . , vec(Wl)], the general form of spectral complexity
normalized by the margin γ is

(1/γ)Rθ := 1
γ

l∏
i=0
||Wi||A

(
l∑

i=0

||Wi||aB
||Wi||aA

)1/a

,

where A,B stand for a generic norm, and a is some constant.

Bounds on the true risk should have values ≤ 1 (in the introduction we used the even
stricter definition that they should be better than random), however bounds based on
spectral complexity, are larger than 1 by several orders of magnitude, making them
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vacuous. However, normalized spectral complexity itself has been shown to correlate
empirically with the generalization error, in a number of works (Neyshabur et al., 2017a;
Bartlett et al., 2017). Specifically it is shown to correlate empirically across training
epochs. As the generalization error increases or decreases during training, spectral
complexity appears to increase and decrease as well. At the same time, for the same
network, this measure of model complexity has high values when the network is trained
on data where the labels have been randomized and considerably lower values when the
real labels are reinstated. A number of different bounding techniques result in spectral
complexity measures, including robustness, PAC-Bayes and Rademacher complexity
(Sokolić et al., 2016; Bartlett et al., 2017; Neyshabur et al., 2017b, 2015; Golowich et al.,
2017). At the same time, a number of other vacuous complexity measures have been
proposed (Wang et al., 2018; Keskar et al., 2016; Thomas et al., 2019; Wei and Ma, 2019;
Jiang et al., 2018; Liang et al., 2019; Arora et al., 2018), with some correlating better
than others with generalization error.

On a fundamental level, simple correlation with generalization error is unsatisfying given
that deep neural networks are increasingly being deployed in critical environments such
as healthcare, finance and policing where they can potentially make life altering decisions.

Figure 1.1 – Spectral complexity analyses of generalization error are insensitive to the
known invariances of CNNs. We use 104 training and 104 testing images of Cifar-10 as our
Control dataset and create two additional datasets called Elastic Cifar and Translated
Cifar by removing half of the training and testing sets and replacing them, respectively,
with random elastic deformations and translations of the remaining images. Each data
point in the figure corresponds to a measurement at the end of each training epoch. We
observe that, for constant spectral complexity (gray vertical lines), trained networks
exhibit different generalization error for different datasets. At the same time spectral
complexity correlates empirical with the generalization error across epochs.
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The role of invariance. We also observe that spectral complexity-based measures
feature a sum of the B-stable rank of the weight matrices involved, which for a = 2 given
by

σB(Wi) = ‖Wi‖2B
‖Wi‖22

,

where B stands for a generic norm, such as the Frobenius norm in Rθ and the (2, 1)
norm in R′θ (see respectively (1.3) and (1.4)) (Arora et al., 2018). The stable rank gives
a robust estimate of the degrees of freedom of a matrix: roughly, an n1 × n2 matrix
W with constant stable rank has O(n1 + n2) degrees of freedom, instead of O(n1n2) as
usual. Similarly the second term in spectral complexity is ∏l

i=0 ||Wi||A which for A = 2
can be seen as an upper bound on the Lipschitz constant of the deep neural network.

This interpretation should give us a pause for thought: bounds based on spectral
complexity appear to be sophisticated parameter counting techniques, able to adapt to
different neural network realizations. As such, they should in principle not be able to
capture the complex interactions between data symmetries and CNN invariance to these
symmetries.

Invariances are widely considered to be crucial in deep neural network design (Bengio
et al., 2013). On the theoretical side, some CNNs have been proven to be invariant to
translations and stable to deformations (Mallat, 2016; Wiatowski and Bölcskei, 2018).
Also, CNNs, after training, empirically appear to be invariant to much more complex
transformations on the data, such as adding sunglasses to faces (Radford et al., 2015).

While it is generally agreed that invariance to symmetries in the image data is a key
property of modern deep convolutional neural networks, the role of invariances is generally
absent from the generalization literature. Achille and Soatto (2018) showed that low
information content in the network weights corresponds to learning invariant signal
representations to various nuisance latent parameters. Their work however results in a
vacuous generalization bound. Further, Sokolic et al. (2016) demonstrated that classifiers
that are invariant (to a set of discrete transformations of input signals) can potentially
have a much lower GE than non-invariant ones.

Similarly, due to the non-trivial correlations between filters, the generalization capacity
of deep CNNs has been rarely studied. Works such as Zhou and Feng (2018), Du et al.
(2017),Arora et al. (2018),Long and Sedghi (2019),Li et al. (2018b) are typically very
involved, analyze greatly restricted settings and do not seem to lead to non-vacuous
generalization bounds or to any new intuition apart from better parameter counting.

Research objectives. In this chapter we focus on the following question:

To what extent do existing bounds and complexity measures incorporate the invariance
properties induced by deep convolutional architectures?
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In trying to answer the above, we make the following contributions.

Contributions.

• We confirm empirically that spectral complexity bounds fail to capture the invari-
ance properties of CNNs to data symmetries, such as elastic deformations and
translations. As seen in Figure 1.1, CNNs with the same spectral complexity exhibit
different GE when we augment the dataset with perturbations to which the convo-
lutional architecture is inherently invariant. Our experiments suggest that these
conclusions are not unique to our approach, but apply to spectral complexity-based
generalization bounds in general (Bartlett and Mendelson, 2002; Sokolić et al.,
2016; Bartlett et al., 2017; Neyshabur et al., 2017b, 2015; Golowich et al., 2017).
We conclude that more research should be conducted in incorporating invariance
properties in deriving complexity measures. At the same time claims that spectral
complexity correlates empirically with generalization error should be stated with
more precision.

• We analyze the case of locally-connected layers, i.e., layers constructed to have
the same support as convolutional layers but which don’t employ weight sharing.
As such deep locally connected networks should not have the desired invariance
properties of stacked convolutions. Counter-intuitively, we arrive to the same
generalization error guarantees as convolutional architectures (up to negligible
factors that are artifacts of the derivation). Our experiments indicate that crucial
quantities in the bound are tight. Our theoretical result highlights potential
contradictions that one might face when comparing different architectures using
vacuous complexity measures such as spectral complexity.

While we empirically test only certain spectral complexity based bounds, our results
should be meaningful for a number of modern bounds. These typically hold for any data
generating distribution, and therefore should ignore the input data structure and the
corresponding invariance properties of modern CNNs.

1.2 Spectral complexity metrics

We denote the learning sample (X,Y ) = {(xi, yi)}ni=1 ∈ (X ×Y)n, that contains n input-
output pairs. Samples (X,Y ) are assumed to be sampled randomly from a distribution
D. Thus, we denote (X,Y ) ∼ Dn the i.i.d observation of n elements. We consider loss
functions ` : F×X×Y → R, where F is a set of predictors f : X → Y . We also denote the
empirical risk L̂`X,Y (f) = (1/n)∑i `(f,xi, yi) and the risk L`D(f) = E(x,y)∼D`(f,x, y).

A neural network transforms its inputs a0 = x to an output fθ(x) = al through a series
of l layers, each of which consists of a bank of units/neurons. The computation performed
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1.2. Spectral complexity metrics

by each layer i ∈ {1, ..., l} is given as follows

si = Wiai−1,

ai = φi(si),

where φi is an element-wise non-linear function and Wi is a weight matrix.

We will define θ = [vec(W0)vec(W0) · · · vec(Wl)], which is the vector consisting of all the
network’s parameters concatenated together, where vec is the operator which vectorizes
matrices by concatenating their rows horizontally.

We consider the specific case where fθ : Rd → Rk parameterized by θ is used to map
input vectors x ∈ X to a k-dimensional encoding of the integer y ∈ Y, encoding class
membership. Typically the neural network outputs are normalized to form a probability
distribution, using a softmax function, such that σ(fθ(x))[i] = efθ(x)[i]/

∑k
j=0 fθ(x)[j].

For the purposes of this section we will assume that we are dealing with the output
representations before applying a softmax function)

We may encode the confidence of the classifier by incorporating a dependence on a desired
margin γ > 0. Then, the γ-margin classification loss is defined as

`γ(fθ,x, y) := I(fθ(x)[y] ≤ γ + max
j 6=y

fθ(x)[j]).

Note that we easily recover the standard 01-loss definition by setting γ = 0, `0(fθ). Our
objective is to obtain bounds of the form

L`0D (fθ) ≤ L̂`γX,Y (fθ) + Complexity, (1.1)

where
L`0D (fθ) = E(x,y)∼D`0(f,x, y)

L̂`γX,Y (fθ) = (1/n)
∑
i

`γ(f,xi, yi)

are the 01-risk and the γ-empirical risk computed over a random training set of size n.

In spectral complexity based bounds the generalization error of a l layer neural network
with layer weights θ is expressed as

L`0D (fθ) ≤ L̂`γX,Y (fθ) +O
(ΨfRθ
γ
√
n

)
, (1.2)

with the term Ψf being architecture-dependent and only Rθ depending solely on the
network weights. The latter term is the one we will refer to as spectral complexity of a
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neural network. We will use two definitions. The first is

Rθ :=
l∏

i=0
||Wi||2

(
l∑

i=0

||Wi||2F
||Wi||22

)1/2

, (1.3)

this definition corresponds to the one derived in a PAC-Bayes framework (Neyshabur
et al., 2017b) together with Ψf = l

√
r where l is the number of layers and r is the number

of output dimensions per layer (we assume that each weight matrix has the same number
of neurons/output dimensions). The second is due to Bartlett et al. (2017)

R′θ :=
l∏

i=0
||Wi||2

 l∑
i=0

||W>
i ||

2/3
2,1

||Wi||
2/3
2

3/2

, (1.4)

with Ψf =
√
lr and is obtained using an involved covering argument. Here the Frobenius

norm is substituted by the (2, 1)-matrix norm defined as ‖X‖2,1 = ‖‖X:,1‖2, . . . , ‖X:,n2‖2‖1
for X ∈ Rn1×n2 . In the similar works of Bartlett and Mendelson (2002) and Neyshabur
et al. (2015), the authors use the || · ||1,∞ norm and the || · ||F norm, respectively.

1.2.1 Empirical investigation of insensitivity

We aim to test whether spectral complexity captures accurately the known invariance
properties of modern convolutional neural networks. To do this, we increase the relevance
of translations and elastic deformations to the image classification task, aiming to give
an advantage to invariant architectures.

Specifically, we created three different versions of the CIFAR-10 dataset: (a) The control
version consists of 10000 training images and 10000 test images sampled randomly from
the CIFAR-10 dataset. (b) The translated version is constructed by taking 5000 training
images and 5000 test images sampled randomly from the CIFAR-10 dataset. These “base”
sets are then augmented separately with another 5000 images each, that are random
translations of the originals. (c) Finally, the elastic version is constructed similarly to the
translated one, however the base sets are now augmented with images that are random
elastic deformations of the originals.

We train using SGD a deep convolutional neural network on each of the above datasets
and calculate the GE and the (normalized) spectral complexity metric Rθ?/γ defined
in (1.3) at the end of each epoch. Here θ? denotes the weights at a given iteration. In
all following experiments, we used the following architecture

input→ 32C3→ MP2
→ 64C3→ MP2→ 10FC→ output,

(1.5)

where iCj denotes a convolutional layer with i output channels and j × j filter support,
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(a) (b)

(c) (d)

Figure 1.2 – Varying the percentage of translations (a-b) and elastic deforma-
tions (c-d): We split Training and Testing datasets of constant size into two parts—the
first contains images that form a base space, whereas the rest of the dataset contains
images that are augmentations of the base space. The percentage values indicate the
percentage of the augmentations over the total dataset. (a/c) We plot the GE vs spectral
complexity. As we increase the number of translations/elastic deformations (equivalently
decrease the percentage of the base space) the slopes of the GE curves decrease and
we tend to have lower GE for the same spectral complexity metric values. (b/d) We
plot the GE vs % of augmentations for constant complexity values. The percentage of
augmentations correlates empirically with the GE indicating that spectral complexity
does not account for the architecture invariances.

iFC denotes a fully connected layer with i outputs, and MPi denotes the max-pooling
operator with pooling size of i. Our network has 42442 parameters in total. For γ we
compute the average margin over the training data.

Figure 1.1 depicts the GE as a function of the metric for all three datasets, with markers
corresponding to results for different epochs. It is important to compare GE values for
the same spectral complexity as based on previous literature we should expect no changes
to the GE. We see that for the same metric value the CNN exhibits different GE for the
different datasets. One explanation is that the network is able to exploit it’s architectural
translation invariance and deformation stability to obtain a lower GE compared to the
normal dataset. Intuitively, by replacing part of the variation in the data manifold with
variations to which the network is invariant, we are simplifying the manifold for the
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CNN improving the GE (even though the complexity of the classifier according to the
spectral complexity is the same). We furthermore observe that the CNN is more robust
to translations compared to elastic deformations, as it obtains improved GE for the
same metric values. Alternatively, the network might have lower GE due to invariances
learned through the augmentation. More experiments are needed to separate the two
effects, however for our purposes the fact that invariaces (learned or architectural) are
not captured in the bounds, is sufficient.

To confirm that our results are not specific to the Frobenius norm, but also representative
of other spectral complexity definitions, we repeated the experiment also with the (2,1)-
norm metric R′θ?/γ defined in (1.4). The results were consistent with those presented
here and are deferred to Appendix A.4.

1.2.2 Delving deeper into invariances

To explore further the insensitivity of spectral complexity to data symmetries, we create
datasets with constant size and varying percentage of augmentations. In particular,
we start from datasets composed entirely of “base” samples and gradually increase the
percentage of the dataset’s augmented images from 0% from to 50%. Once more, we
create two sets: one with translations and one featuring elastic deformations. We use
SGD to train a CNN on these datasets and calculate after each epoch the GE and the
spectral complexity metric. We use the same setup as the previous section, with 10000
training and 10000 testing samples from the CIFAR-10 dataset.

We plot the results in Figure 1.2. Specifically, Figures 1.2a and 1.2c show for the
translated and elastic datasets, respectively, that more augmentation results in GE curves
that have gradually smaller slopes. Thus, for the same metric, the GE decreases as the
number of augmentations increases. Alternatively, we can fix a metric value and plot
the GE vs the percentage of normal data-points. We plot the results in Figures 1.2b
and 1.2d. We see that, for fixed metric values, the percentage of augmented data-points,
i.e., ones that are translations or deformations of others, correlates empirically with the
GE. These findings illustrate how spectral complexity is insensitive to the well-known
invariances of CNNs and is therefore likely to lead to sub-optimal generalization bounds.

At the same time another interpretation of the results is that the neural networks learn
useful invariances due to data augmentation. While further experiments are required
to parse the effects of learned invariances and architectural invariances, our current
experiments are sufficient to posit that claims such that “spectral complexity correlates
empirically with generalization error” should be stated with more precision.
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1.3 Comparing convolutional and locally connected net-
works

This section aims to provide evidence of contradictions that arise when using spectral
complexity to estimate and compare the generalization error between different architec-
tures. To do so, in Sections 1.3.1 and 1.3.2, we derive respectively generalization bounds
for deep neural networks with convolutional and locally-connected layers—the latter
maintain the sparsity structure, but do not employ weight sharing. The tightness of our
derivation is investigated in Section 1.3.3. Interestingly, we find that both convolutional
and locally-connected bounds take, up to log factors, the same form. Our result suggests
that vacuous bounds with tightened constants should be viewed with caution, especially
when used to compare different architectures.

1.3.1 Convolutional networks

Being derived for fully-connected neural networks, norm-based generalization bounds
are not specifically adapted to convolutional architectures. Our first order of business is
thus to understand how much one may gain by explicitly considering the structure of
convolutions in the generalization error derivation.

To this end, we first aim to tighten the bound of Neyshabur et al. (2017b) and adapt it
to the convolutional case. Specifically we will improve upon the architecture dependent
constant Ψf . We show that for the case of convolutional layers the original value of
Ψf = l

√
r is unacceptably high.

We make the simplifying assumptions that each convolutional or locally connected layer
has equal number of input and ouput channels ai = bi, and that all filters have the same
support q2. We prove the following generalization bound

Theorem 1.3.1. (Generalization Bound). Let fθ : Rd → Rk be a l-layer network,
consisting of |C| convolutional layers, |F| fully-connected layers, and layer-wise ReLU
activations. For any γ, δ > 0, given weights θ? with probability at least 1 − δ over the
training set of size n we have

L`0D (fθ?) ≤ L̂
`γ
X,Y (fθ?) +O

(
BΨf Rθ?
γ
√
n

)
,

with ‖x‖2 ≤ B being a uniform bound on the input vectors, Rθ? is as in (1.3), and

Ψf = q
∑
i∈C

√
bi +

∑
i∈F

√
si.

Above, q2 and bi denote respectively the filter support and number of output channels
of the i-th convolutional layer, and si counts the number of non-zero entries of the i-th
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LeNet-5 AlexNet VGG-16

(Neyshabur et al., 2017b) 102.5
√
n

103.5
√
n

104
√
n

Ours 102
√
n

102.5
√
n

102.5
√
n

Table 1.1 – The value of the generalization error bound ((ΨfRθ?/(γ
√
n)) for common

feed-forward architectures. For simplicity, we consider a best-case scenario and assume
Rθ? ≈ γ ≈ 1.

fully-connected layer.

The theorem associates the generalization capacity of a deep convolutional neural network
to its weights, as well as to key aspects of its architecture. Interestingly, there is a sharp
contrast between convolutional and fully-connected layers, simply on account of computing
more tightly the architecture dependent constant Ψf .

Fully-connected layers When all layers are sparse with sparsity s, ignoring log factors
and factors B,Rθ? , γ our bound implies that n = O(sl2) samples suffice to attain good
generalization. For the same setting, the sample complexity was determined as n = O(rl2)
by Neyshabur et al. (2017b) (assuming that input and output layer dimensions are the
same across layers and equal to r).

Convolutional layers contribute much more mildly to the sample complexity with the
latter increasing linearly on the filter support q2 and channels bi, but being independent
on the layer input size. A case in point, in a fully convolutional network of l layers, each
with and bi = b output channels, ignoring log factors and factors B,Rθ? , γ, we would
need n = O(bq2l2), while previously we would have needed n = O(rl2). Clearly bq2 << r

as the first term depends on the convolutional filter support and the second (the ambient
dimensionality) would be r = bN2 with N2 being the dimensionality of the featuremap.

To illustrate these differences resulting from Ψf , we conduct an experiment on LeNet-5
for the MNIST dataset, and on AlexNet and VGG-16 for the Imagenet dataset. We omit
term Rθ? ≈ γ ≈ 1 assuming that ||Wi||F ≈ ||Wi||2 ≈ 1, ∀i ∈ {1, ..., l}. We plot the
results in Table 1.1. It can be seen that the proposed bounds are orders of magnitude
tighter than the previous PAC-Bayesian approach.

Clearly, the assumption Rθ? ≈ γ ≈ 1 is unrealistic in practice. For values obtained
by trained networks the bounds presented above are still vacuous by several orders of
magnitude. We will see that this looseness has consequences when comparing the bound
to the one for locally-connected architectures.

In the following we present an outline of the proof for Theorem 1.3.1. We defer the proof
to Appendix A.3. Both the outline and the complete proof are quite involved. For the
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1.3. Comparing convolutional and locally connected networks

reader that is not interested in the proof, the main chapter text continues in Section
1.3.2.

Proof outline of Theorem 1.3.1

We begin by presenting two prior results which will be useful later. The first relates
the noise robustness to perturbations of a classifier to the GE. The second quantifies
the perturbation robustness of general deep neural networks. We then outline how
these apply to the convolutional setting. Before proceeding, we recall that, given two
probability measures p and q over a set X, the Kullback-Leibler divergence is defined as
KL(p||q) :=

∫
X log dp

dqdp.

Useful previous results.Let fθ? be any deterministic predictor (not necessarily a
neural network). The following lemma from Neyshabur et al. (2017b) introduces the
condition Pu[maxx∈X |fθ?+u(x)−fθ?(x)|2 ≤ γ

4 ] as a probabilistic bound on the Lipschitz
constant of the predictor fθ? , and relates it to the generalization error:

Lemma 1.3.2 (Neyshabur et al. (2017b)). We assume a distribution D over X × Y,
a hypothesis set F parametrized by classifiers fθ with parameters θ, loss functions
`0, `γ : F × X × Y → [0, 1], a prior distribution π over θ, a real number δ ∈ (0, 1], a
real number γ > 0 and deterministic weights θ?. Then, for any random variable u s.t.
Pu[maxx∈X |fθ?+u(x)− fθ?(x)|2 ≤ γ

4 ] ≥ 1
2 , we have with probability at least 1− δ over

the choice of (X,Y ) ∼ Dn,

L`0D (fθ?) ≤ L̂
`γ
X,Y (fθ?) +O(

√
KL(ρ̂(θ? + u)||π) + ln6n

δ

n− 1 ) (1.6)

where n is the number of training samples.

A trade-off can be observed between the condition Pu[maxx∈X |fθ?+u(x)− fθ?(x)|2 ≤
γ
4 ] ≥ 1

2 and the KL term in the right hand side of the above inequality. The KL term is
inversely proportional to the variance of the noise u (intuitively if we increase jointly the
variance of the posterior and a suitably chosen prior, the two distributions become flatter
and more similar). Therefore one would want to maximize the variance of the noise,
however the distance maxx∈X |fθ?+u(x)− fθ?(x)|2 can potentially grow unbounded with
high probability for high enough values of the variance.

Characterizing the condition Pu[maxx∈X |fθ?+u(x) − fθ?(x)|2 ≤ γ
4 ] ≥ 1

2 entails under-
standing the sensitivity of our deep convolutional neural network classifier on random
perturbations u to the weights. To that end, we review here a useful perturbation bound
from Neyshabur et al. (2017b) on the output of a general deep neural network:

Lemma 1.3.3. [ Neyshabur et al. (2017b)] For any B, l > 0, let fθ : XB,d → Rk be a
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l-layer network with ReLU activations.. Then for any θ?, and x ∈ XB,d, and random
variable u = vec({Ui}li=0) such that ||Ui||2 ≤ 1

l ||Wi||2, the change in the output of the
network can be bounded as follows

|fθ?+u(x)− fθ?(x)|2 ≤ e2Bβ̃l−1∑
i

||Ui||2, (1.7)

where e, B and β̃l−1 are considered as constants after an appropriate normalization of
the layer weights.

We note that correctly estimating the spectral norm of the perturbation at each layer is
critical to obtaining a tight bound. Specifically, if we exploit the sparsity structure of
the perturbation we can increase significantly the variance of the added perturbation
for which Pu[maxx∈X |fθ?+u(x) − fθ?(x)|2 ≤ γ

4 ] ≥ 1
2 holds. With a slight abuse of

notation we also take this structure into account when forming u = vec({Ui}li=0), i.e.
the vectorization is performed only over non-zero elements of Ui.

The analysis for the convolutional case is difficult due to the fact that the noise per pixel
is not independent. We obtain the following lemma, where log parameters have been
omitted for clarity:

Lemma 1.3.4. Let U ∈ Rd2×d1 be the perturbation matrix of a 2d convolutional layer
with a input channels, b output channels, convolutional filters φ ∈ Rq×q and feature
maps F ∈ RN×N . We assume that elements Uij are non-zero only if they correspond to
non-zero locations in the sparsity pattern of the convolution operator. Let these elements
follow a Gaussian distribution Uij ∼ N (0, σ2). We have

||U||2 ≤ σ(q[
√
a+
√
b] +

√
2 log(2N2

δ
)), (1.8)

with probability at least 1− δ.

We see that the spectral norm of the noise is independent of the dimensions of the latent
feature maps, but it is a function of the root of the filter support q, the number of input
channels a and the number of output channels b.

With this in place, the following lemma identifies the maximum value of the variance
parameter σ2 that balances the noise sensitivity with the KL term dependence.

Lemma 1.3.5. (Perturbation Bound). For any B, l > 0, let fθ : XB,d → Rk be a l-layer
network with ReLU activations and we denote by C the set of convolutional layers and F
the set of fully connected layers. Then for any deterministic weights θ?, and x ∈ XB,d,
and a perturbation for u ∼ N (0, σ2I), for any γ > 0 with

σ = γ

42Bβ̃l−1[∑i∈CKi +∑
i∈F Ji]

(1.9)
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we have
Pu[max

x∈X
|fθ?+u(x)− fθ?(x)|2 ≤

γ

4 ] ≥ 1
2 ,

where e, B, β̃l−1 are considered as constants after an appropriate normalization of the
layer weights, Ki = qi{

√
ai +

√
bi +

√
2 log(4N2

i l)} and Ji = qi{2
√
si +

√
2 log(2l)}.

Theorem 1.3.1 follows directly from calculating the KL term in Lemma 1.3.2, by noting
that θ? + u ∼ N (θ?, σ2I), π ∼ N (0, σ2I), and that then KL(ρ̂(θ? + u)||π) ≤ |θ?|

2

2σ2 . We
also set ai = bi and qi = q for all layers.

1.3.2 Locally-connected networks

The improvement we attained by taking into account the structure of convolutional
layers, though significant, still falls short from explaining why deep CNNs are able to
generalize beyond the training set—the bounds are too pessimistic.

Locally-connected layers have a sparse banded structure similar to convolutions, with
the simplifying assumption that the weights of the translated filters are not shared. The
weight matrix is exemplified in Figure 1.4a for the case of one-dimensional convolutions.
While this type of layer is not used in practice, it enables us to isolate the effect of
sparsity on the generalization error. We prove the following:

Theorem 1.3.6. Let fθ? : Rd → Rk be a l-layer network, consisting of |L| locally-
connected layers, |F| fully-connected layers, and layer-wise ReLU activations. For any
γ, δ > 0, with probability at least 1− δ over the training set of size n we have

L`0D (fθ?) ≤ L̂
`γ
X,Y (fθ?) +O

(
BΨf Rθ?
γ
√
n

)
,

with ‖x‖2 ≤ B being a uniform bound on the input vectors, Rθ? is as in (1.3), and

Ψf = q
∑
i∈L

√
bi +

∑
i∈F

√
si.

Above, q2 and bi denote respectively the filter support and number of output channels of
the i-th locally-connected layer, and si counts the number of non-zero entries of the i-th
fully-connected layer.

Surprisingly for the given choice of spectral complexity the obtained bounds for convolu-
tional and locally connected layers are identical up to log factors that are artifacts of
the derivation. Implicitly, the hypothesis class H induced by spectral complexity is large
enough to include both convolutional and non-convolutional architectures. At the same
time, the bounds in both cases hold for any data distribution D. These two points stand
in stark contrast with common design practice where the hypothesis class H is assumed
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(a) (b) (c)

Figure 1.3 – Convolutional and Locally Connected Networks: In Figure 1.3a we
plot results for the original dataset. In Figures 1.3b and 1.3c we plot results for translations
and elastic deformations respectively. There are a number of visible inconsistencies. For
example in Figures 1.3a and 1.3c, the convolutional network has the highest training
accuracy and lowest estimated complexity, but has the highest generalization error.

to be convolutional architectures, with good generalization properties specifically for
data distributions D that represent natural images.

In hindsight, it might be clear that the upper bound on convolutional layers is not tight.
However, all of the above are not evident in previous analyses and consequently misleading
conclusions can be drawn when validating bounds through simple empirical correlation.
In fact a number of works have claimed to provide improvements to generalization bounds
by tightening constants such as the ones we analyzed here, while keeping the bound
values vacuous (Long and Sedghi, 2019; Li et al., 2018b). It is unknown to us to what
extent these results are applied beyond theoretical settings, however our results here
should give a pause for thought in that regard.

Experiments

We conduct some experiments which highlight some inconsistencies that occur when
comparing different architectures using spectral complexity. We use two architectures,
one convolutional neural network

input→ 32C3→ MP2
→ 64C3→ MP2→ 10FC→ output,

(1.10)

and one locally connected network

input→ 32LoC3→ MP2
→ 64LoC3→ MP2→ 10FC→ output,

(1.11)

where iLoCj is a locally connected layer with i output channels and j × j filter support.
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We train them on the original CIFAR-10, as well as two additional datasets. Specifically
as in Section 1.2.2 we split the original training and testing sets in two, we remove one part
and replace it with translations and elastic deformations from the other part. Specifically
we replace exactly 50% of the training and testing set as in the final experimental setup
of Section 1.2.2. We train the neural networks using stochastic gradient descent for 30
epochs in the convolutional case and 100 epochs in the locally connected case. Looking
at Theorems 1.3.1 1.3.6, as Ψf ,

√
n,B are the same for both networks, at the end of each

epoch we calculate the spectral complexity normalized by the margin Rθ?/γ with Rθ? as
in (1.3)

Rθ? :=
l∏

i=0
||Wi||2

(
l∑

i=0

||Wi||2F
||Wi||22

)1/2

and use it as a measure of complexity. For γ we compute the average margin over the
training data. We also calculate the training accuracy, testing accuracy and generalization
error. We plot the results in 1.3. Circles denote the convolutional network while triangles
denote the locally connected network. A number of inconsistencies are immediately
noticeable. In the original dataset (Figure 1.3a) and the dataset of elastic deformations
(Figure 1.3c), the convolutional network has both the highest training accuracy and the
lowest estimated complexity, however it has the largest generalization error. Furthermore
for a number of data points, across all figures, the generalization error is ≈ 0 and the
training and testing accuracies are non-trivial, however normalized spectral complexity is
significantly different between the two architectures. For example in Figure 1.3b, for 40%
training accuracy, spectral complexity for the convolutional network is several orders
of magnitude higher than for the locally connected network, but at the same time the
testing accuracy is approximately the same ≈ 40%, and the generalization error is for
both architectures ≈ 0.

Proof outline of Theorem 1.3.6

The analysis is similar to the case of convolutional layers, with the exception of how term
‖U‖2 is bounded. For locally connected layers we can derive the following

Lemma 1.3.7. Let U ∈ Rd2×d1 be the perturbation matrix of a 2d locally-connected layer
with a input channels, b output channels, filters φ ∈ Rq×q and feature maps F ∈ RN×N .
Then if non-zero elements follow Ui,j ∼ N (0, σ2), we have

||U||2 ≤ O(σ(q[
√
a+
√
b] +

√
2 log(1

δ
))), (1.12)

with probability at least 1− δ.

The rest of the proof technique is identical to that used for convolutional layers and is
deferred to Appendix A.2.
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(a) (b)

Figure 1.4 – (a) The weight matrix of a 1D locally-connected layer with two input
and two output channels. (b) We plot empirical and theoretical estimates of the mean
EU∼d||U||2. Our theoretical upper estimates (in green) closely follow the empirical
estimates for both the convolutional (in red) and the locally-connected (in blue) case.
Note that the theoretical estimate is identical for both cases, so we only plot it once.
For the empirical estimates, we also show one standard deviation confidence intervals.
The locally connected case is much more concentrated than the convolutional and the
corresponding confidence interval is not visible in the figure.

1.3.3 Empirical investigation of tightness

Theorems 1.3.1 and 1.3.6 depend on EU∼d||U||2, the expected spectral norm of the layer
noise (overloading the notation, d here denotes the distribution of U), as effectively we
have been proving concentration inequalities of the form P(||U||2 ≤ EU∼d||U||2) ≥ c.
We test our concentration bounds by computing analytically and empirically EU∼d||U||2
for synthetic data.

Our experiment considers 1D signals, filters φ ∈ R9, feature maps F ∈ R100, a input
channels, b output channels. We calculate the spectral norm ||U||2 while increasing the
number of input and output channels with ã := a = b. To obtain empirical estimates, we
average the results over N = 100 iterations for each choice of ã. As seen in Figure 1.4b,
the theoretical values closely match the empirical estimates.

As such we consider our analysis tight with respect to the constant Ψf .

1.4 Relationship with PAC-Bayes

We now discuss how Lemma 1.3.2 is related to a PAC-Bayes bound. PAC-Bayes bounds
deal with randomized classifiers with a posterior ρ̂ and a prior π distribution, and model
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the complexity of the classifier as roughly KL(ρ̂||π). The particular bound that was used
in the previous analysis is the one due to McAllester (1999)

Theorem 1.4.1. McAllester (1999) Given a distribution D over X ×Y, a hypothesis set
F , a loss function `′ : F × X × Y → [0, 1], a prior distribution π over F , a real number
δ ∈ (0, 1], and a real number β > 0, with probability at least 1 − δ over the choice of
(X,Y ) ∼ Dn, we have

∀ρ̂ on F : Ef∼ρ̂L`
′
D(f) ≤Ef∼ρ̂L̂`

′
X,Y (f) +

√
KL(ρ̂||π) + ln 2n

δ

2n− 1 . (1.13)

However typically in the context of deep neural networks we are interested in estimating
the complexity of a deterministic neural network with parameters θ?, which we have
computed using vanilla stochastic gradient descent. Thus the benefit of Lemma 1.3.2 is
that it is a particular derandomization of the PAC-Bayesian bound 1.13. First one models
the posterior over deep networks parametrized by f = fθ, as ρ̂(θ) = ρ̂(θ? + u), for some
random variable u. One then moves to a margin loss which quantifies the robustness of
the network to perturbations. Then the assumption Pu[maxx∈X |fθ?+u(x)− fθ?(x)|2 ≤
γ
4 ] ≥ 1

2 allows one to derandomize the bound, removing the expectations Ef∼ρ̂, assuming
that the random perturbations u do not result in violating the margin.

1.5 Further criticism of vacuous bounds

There has also been significant criticism of spectral complexity implicitly or explicitly
from a number of other angles.

Criticism of uniform convergence. In Nagarajan and Kolter (2019), the authors
posit that two sided uniform convergence bounds cannot produce non-vacuous estimates
for deep neural networks, even with aggressive pruning of the hypothesis space. The
result rests on the fact that uniform convergence establishes a bound as a supremum
over all hypotheses f ∈ H roughly such that

P(X,Y )∼Dn

[
sup
f∈H
|L01
D (f)− L̂01

X,Y (f)| ≤ εunif

]
≥ 1− δ.

The authors in Nagarajan and Kolter (2019) show empirically in the case of neural
networks that for any classifier f that has low risk L01

D (f) (estimated using a test set),
one can construct an adversarial training set (X,Y )′ ∼ Dn such that L̂01

(X,Y )′(f) ≈ 1.
Going a bit deeper the analysis depends on the empirical observation that deep neural
networks have macroscopically simple decision boundaries but “overfit” microscopically
around specific data samples, this in turn allows the adversarial training sets (X,Y )′ to
be constructed. In particular the criticism holds for derandomized PAC-Bayes bounds
such as the ones of Chapter 1 (Nagarajan and Kolter, 2019), where we strive for a bound

29



Chapter 1. Spectral Complexity and Invariance.

on a single derandomized network f trained with vanilla SGD. In the following we will be
dealing only with bounding the generalization error of stochastic classifiers, where we add
small noise to the parameters, which should remove the above microscopic overfitting.

Further empirical evaluation of vacuous bounds. In Jiang et al. (2019) the authors
conduct a detailed evaluation of spectral complexity based generalization bounds, among
others. For a given dataset they measure the correlation of spectral complexity with
the actual generalization error based on a validation set, as one varies the values of
hyperparameters such as learning rate, batch size, as well as width and depth of trained
architectures. They find that spectral complexity and other norm based complexity
measures are strongly negatively correlated with the generalization error.

1.6 Discussion and Summary

In this chapter we analyzed spectral complexity based generalization bounds, in the
context of deep convolutional neural networks. We showed empirically that one can
construct datasets with increasing numbers of translations and elastic deformations,
such that spectral complexity remains constant, while the generalization error of the
classifier changes. This, implies that claims such as that spectral complexity correlates
empirically with generalization need to be more carefully stated. Furthermore, it might
be worthwhile to consider measures of complexity that take into account the invariance
properties of deep neural networks, in order to tighten existing bounds. At the same time,
we compared bounds for convolutional neural networks to bounds for locally connected
networks (which have the same sparsity pattern but do not implement weight sharing).
We showed how, a particular well known bound, gives complexity estimates of the
same order of magnitude for both architectures highlighting the pitfalls of comparing
vacuous generalization bounds between different architectures. Together the above imply
a number of limitations in current generalization bounds. Locating the source of the
above problems (and possible misconceptions) as the vacuity of most current bounds, we
are motivated to look deeper at existing approaches that derive non-vacuous complexity
estimates.
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2 Stochastic Variational Inference
and PAC-Bayes.

In the previous chapter we highlighted some limitations of spectral complexity, and with
it, a number of modern vacuous generalization bounds. In particular, these bounds fail
to account for invariance properties of learned classifiers, and one can easily construct
datasets with different symmetries, such that spectral complexity doesn’t correlate
empirically with generalization error. Perhaps more importantly, when comparing the
estimates of the generalization error between different architectures (possibly trained on
the same dataset) we find that we can reach counterintuitive conclusions. Intuitively, for
different architectures, one derives upper bounds that are significantly loose and are thus
incomparable. We also reviewed a number of other criticisms of modern vacuous bounds.

Together all of the above paint a picture of vacuous complexity measures that fail to
predict generalization when scrutinized in a detailed manner, can lead to a false sense of
security when trying to compare predicted generalization across different architectures
and might have inherent difficulties in providing tight bounds.

2.1 Introduction

In this chapter we focus on the opposite end of this spectrum, where two works (Dziugaite
and Roy, 2017; Zhou et al., 2018) based on the PAC-Bayes framework (McAllester, 1999)
made steps towards non-vacuous and interpretable bounds. Recall from Chapter 1 that
PAC-Bayes bounds deal with randomized classifiers with posterior and prior distributions
ρ̂ and π respectively. Given that typically one wants to bound the risk of a deterministic
classifier f the posterior ρ̂ is chosen to be in some sense close to f(i.e. it is usually
centered at f). Then, PAC-Bayes theorems make statements that are roughly of the
form

EL(ρ̂) ≤ EL̂(ρ̂) + βKL(ρ̂||π), (2.1)
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(a)

Figure 2.1 – Risk-Complexity plot for MNIST 10: The area below the dashed
line corresponds to non-vacuous pairs of (complexity, empirical risk). The purple star
corresponds to the optimal bound implied by the testing set. We parametrize the PAC-
Bayes bound with different combinations of diagonal Gaussian priors and posteriors.
“Isotropic@” corresponds to isotropic priors and posteriors with the prior centered at 0
and at the deep neural network random initialization. Similarly for “Mean-Field VI@”
the posterior is diagonal but non-isotropic and we optimize it with variational inference.
Choosing the prior mean to be the random initialization improves the bounds greatly in
both cases. On the contrary when optimizing with mean-field variational inference there
is negligible improvement over the isotropic case.

where L(ρ̂) is the risk, L̂(ρ̂) is the empirical risk and the expectation is over the posterior.
The βKL(ρ̂||π) term between the prior and posterior acts as a measure of complexity for
the classifier.

The RHS of (3.1) corresponds to a variational encoding scheme of the deep neural network
weights, where the variance of the noise in the posterior measures the level of precision
used in the encoding (Blier and Ollivier, 2018). The weights need to be encoded with
a precision βKL(ρ̂||π) that is as low as possible, without increasing the empirical risk
EL̂(ρ̂). The procedure in Chapter 1 can be seen as trying to derive this level of precision
analytically. Given the highly non-linear nature of deep neural networks it is not easy to
analyze how noise applied to the weights affects subsequent layers. At the end, the bound
in Chapter 1 assumes that noise applied to a given layer is multiplied by the spectral
norms of the subsequent layers. This is a pessimistic assumption that results in vacuity.

By contrast, instead of trying to derive analytical results, in Dziugaite and Roy (2017),
the authors minimize this variational code directly using a differentiable surrogate, by
parameterizing the prior and posterior as diagonal Gaussians, and optimizing using
stochastic variational inference (Hoffman et al., 2013; Kingma and Welling, 2013), aiming
to balance the terms EL(ρ̂) and βKL(ρ̂||π). They obtain non-vacuous generalization
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bounds on a simplified MNIST(LeCun and Cortes, 2010) dataset, but are unable to scale
their result to larger problems.

The reason for failing to scale might lie in the way ρ̂ and π are modeled, or in the
optimization procedure. Stochastic variational inference in general is known to result
in poor weight encodings, but the reasons behind this are unclear (Blier and Ollivier,
2018). Variational inference, in the context of Bayesian neural networks, is thought to
suffer from high gradient variance (Kingma et al., 2015; Wu et al., 2018; Wen et al.,
2018). In addition, correlations between parameters are often omitted as in Dziugaite and
Roy (2017), as storing and manipulating the full covariance matrix is computationally
infeasible. This is known as the mean-field approximation and might be too restrictive in
deriving useful posteriors (Ritter et al., 2018; Mishkin et al., 2018), and therefore tight
codes.

Consequently, in Zhou et al. (2018) the authors first compress deep neural networks
by sparsifying them and deriving a variational code on the remaining parameters. Off
the shelf compression algorithms compress remarkably well and thus Zhou et al. (2018)
obtain non-vacuous but loose bounds for the much more complex Imagenet (Deng et al.,
2009). A significant drawback of this approach is that the bound is derived for a network
whose parameters are not similar even in expectation to the original ones (Suzuki, 2019).

Research objectives. We thus focus on analyzing the non-vacuous bounds of Dziugaite
and Roy (2017), where variational inference is applied directly on the original weight
space. Importantly, we lack meaningful comparison tools. The techniques in Dziugaite
and Roy (2017); Zhou et al. (2018) actually provide multiple bounds corresponding to
different levels of encoding precision of the weights, which is usually controlled by the the
parameter β in (3.1). However, results are presented in single (empirical risk, complexity)
pairs, making drawing conclusions difficult.

Our first contribution is thus to introduce “Risk-Complexity” plots 2.1 (which we first
presented in the introduction). On the x-axis we plot the Empirical Risk L̂(ρ̂), while
on the y-axis we plot the estimated Complexity βKL(ρ̂||π) or the equivalent complexity
metric. The plots have a number of advantages. We can easily plot the region of
non-vacuity and the location of the best possible bound implied by the testing set. For
an optimization based bound method we can then derive multiple (complexity, empirical
risk) estimates and plot a Pareto front of all combinations. This results in an intuitive
way for comparing bounding methods where one can simply inspect the Pareto fronts in
relation to the best possible pair implied by the testing set.

Armed with our new visualization tools we are ready to scrutinize the results of Dziugaite
and Roy (2017). The authors combine four elements in deriving non-vacuous bounds:
i) changing the prior to be centered at the random initialization instead of at zero ii)
optimizing the posterior covariance iii) optimizing the posterior mean iii) simplifying the

35



Chapter 2. Stochastic Variational Inference and PAC-Bayes.

classification problem by merging the 10 MNIST classes into 2 aggregate ones. In this
way it is unclear what is the contribution of each to obtaining non-vacuous bounds.

In particular, separating the effects of i,ii and iii is important. Flatness at the minimum
has been frequently cited as a desirable property for good generalization (Keskar et al.,
2016). However, current results show mainly empirical correlations with generalization
error (Keskar et al., 2016) and the exact effect of flatness is still debated (Dinh et al.,
2017). Point ii is related to flatness at the minimum, as increased posterior variance while
EL̂(ρ̂) remains small implies a flat minimum. Importantly, when relating PAC-Bayes to
flatness one needs to keep the mean of the posterior fixed. Optimizing the mean and
then the covariance corresponds to measuring the flatness of a different minimum.

Our contributions. Through detailed experiments we find that for diagonal Gaussian
priors and posteriors the dominant element which turns a vacuous bound to non-vacuous
is centering the prior at the random initialization instead of at 0. Optimizing the
covariance using stochastic variational inference results in negligible or no gains. In fact,
a simple isotropic Gaussian baseline in the prior and posterior results in nearly identical
bound values.

We are then motivated to investigate two common explanations for this ineffectiveness.
First it could be that stochastic variational inference has not properly converged. Secondly,
PAC-Bayes theory allows improved bounds by choosing priors that reflect prior knowledge
about the problem, as long as these priors don’t depend on the training set. Choosing
the random initialization to be the prior mean is already a good prior mean choice. It
might be that through a better choice of prior covariance the mean-field approximation
could yield meaningful improvements to the posterior covariance and hence the bound.

Through a simple theoretical analysis, we explore both of these explanations. Specifically,
we leverage the fact that the loss landscape around the minimum is empirically quadratic,
to derive closed form bound solutions with respect to both posterior and prior covariance.
The second result is invalid under the PAC-Bayes framework but is useful as a sanity check.
Our results imply both problems with optimization of VI as well as that significantly
better priors can in theory be found. At the same time, the closed form results are far
from optimal and point to intrinsic limitations of the mean-field approximation.

We then motivate modeling the curvature at the minimum through a simplified version
of K-FAC (Martens and Grosse, 2015). This allows us to efficiently sample (complexity,
empirical risk) pairs with improved curvature estimates. Using our Risk-Complexity
plots, we find that for randomized classifiers with medium to low empirical risk this
results in significant improvements in the generalization bound quality, compared to the
implied limits of the mean-field approximation.
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2.2 Preliminaries

We denote the learning sample (X,Y ) = {(xi, yi)}ni=1 ∈ (X ×Y)n, that contains n input-
output pairs. Samples (X,Y ) are assumed to be sampled randomly from a distribution
D. Thus, we denote (X,Y ) ∼ Dn the i.i.d observation of n elements. We consider loss
functions ` : F×X×Y → R, where F is a set of predictors f : X → Y . We also denote the
empirical risk L̂`X,Y (f) = (1/n)∑i `(f,xi, yi) and the risk L`D(f) = E(x,y)∼D`(f,x, y).

A neural network transforms its inputs a0 = x to an output fθ(x) = al through a series
of l layers, each of which consists of a bank of units/neurons. The computation performed
by each layer i ∈ {1, ..., l} is given as follows

si = Wiai−1,

ai = φi(si),

where φi is an element-wise non-linear function and Wi is a weight matrix.

We will define θ = [vec(W0)vec(W0) · · · vec(Wl)], which is the vector consisting of all the
network’s parameters concatenated together, where vec is the operator which vectorizes
matrices by concatenating their rows horizontally.

We will use the non-differentiable zero-one loss `01(f, x, y) = I(arg max(f(x)) = y), and
categorical cross-entropy, which is a commonly used differentiable surrogate `cat(f, x, y) =
−
∑
i I[i = y] log(f(x)i), where we assume that the outputs of f are normalized using a

softmax function to form a probability distribution.

We will also use the following PAC-Bayes formulation, by Catoni (2007). Note that this
is strictly tighter than the formulation of Chapter 1 1.4.1 (Zhou et al., 2018). We get

Theorem 2.2.1. Catoni (2007) Given a distribution D over X × Y, a hypothesis set
F , a loss function `′ : F × X × Y → [0, 1], a prior distribution π over F , a real number
δ ∈ (0, 1], and a real number β > 0, with probability at least 1 − δ over the choice of
(X,Y ) ∼ Dn, we have

∀ρ̂ on F : Ef∼ρ̂L`
′
D(f) ≤Φ−1

β (Ef∼ρ̂L̂`
′
X,Y (f)

+ 1
βn

(KL(ρ̂||π) + ln 1
δ

)),
(2.2)

where Φ−1
β (x) = 1−e−βx

1−e−β .

The above PAC-Bayes theorem works with bounded loss functions and as such is typically
evaluated with the zero-one loss `01. However, one might want to optimize the above
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(a) (b) (c)

(d) (e) (f)

Figure 2.2 – Detailed comparison of posterior and prior choices: The area below
the dashed line corresponds to non-vacuous pairs of (complexity, empirical risk). The
purple star corresponds to the optimal bound implied by the testing set. For the MNIST
case there is a significant improvement when changing from a prior centered at 0 to a prior
centered at the random initialization. The baseline isotropic bounds are non-vacuous
for a prior centered at 0. Optimizing the mean-field approximation using variational
inference provides no improvements over the baseline, regardless of prior choice. In the
CIFAR case all modeling choices result in vacuous bounds.

bound as proposed in Dziugaite and Roy (2017). One approach, is to then parametrize fθ
using diagonal Gaussians as ρ̂(θ) = N (µρ̂,σρ̂) and the prior as π(θ) = N (µπ, λI). Then,
one can use the reparametrization trick θ = µρ̂ + √σρ̂ � N (0, I) and the categorical
cross-entropy to optimize the surrogate

Eθ∼ρ̂(θ)L̂`cat
X,Y (fθ) + 1

βn
(KL(ρ̂(θ)||N (µπ, λI)) + ln 1

δ
), (2.3)

for µρ̂, σρ̂. In practice, one optimizes (2.3), but wants to evaluate (3.20). It’s also often
beneficial to fine tune λ and we want to approximate Ef∼ρ̂L̂`01

X,Y (f) with an empirical
estimate. We take a union bound over values of λ, and apply a Chernoff bound for the tail
of the empirical estimate of Ef∼ρ̂L̂`01

X,Y (f). Putting everything together, as proposed in
Dziugaite and Roy (2017), one can obtain valid PAC-Bayes bounds subject to a posterior
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distribution ρ̂∗(θ) that hold with probability at least 1− δ − δ′ and are of the form

Eθ∼ρ̂∗(θ)L`01
D (fθ) ≤Φ−1

β (L̃`01
X,Y (fθ) + 1

βn
KL(ρ̂∗(θ)||π)

+ 1
βn

ln(π
2b2 ln(c/λ)2

6δ ) +

√
ln 2

δ′

m
),

(2.4)

where Φ−1
β (x) = 1−e−βx

1−e−β . Also c, b are constants, m is the number of samples from ρ̂ for
approximating Ef∼ρ̂L̂`01

X,Y (f) and L̃`01
X,Y (fθ) the empirical estimate.

It is not difficult to see, that for a high enough number of samples n and m, the terms
in line 2 of (2.4) have a negligible effect on the bound. All proofs are deferred to the
Appendix B.1. A discussion on some fine points of PAC-Bayes bounds can be found in
Appendix B.6.

2.3 Empirical results

We tested 6 different datasets. These consist of the original MNIST-10 and CIFAR-10
(Krizhevsky and Hinton, 2010) datasets, as well as simplified versions, where we collapsed
the 10 classes into 5 and 2 aggregate classes, potentially simplifying the classification
problem. All had 50000 training samples. We test the architectures

input→ 300FC→ 300FC→ #classesFC→ output

on MNIST, and

input→ 200FC→ 200FC→ #classesFC→ output

on CIFAR, where xFC denotes a fully connected layer with x neurons.

We also tested four combinations of prior and posterior

1. ρ̂(θ) = N (µρ̂, λI) , π(θ) = N (0, λI)

2. ρ̂(θ) = N (µρ̂, λI) , π(θ) = N (µinit, λI)

3. ρ̂(θ) = N (µρ̂,σρ̂) , π(θ) = N (0, λI).

4. ρ̂(θ) = N (µρ̂,σρ̂) , π(θ) = N (µinit, λI).

Isotropic posterior. Isotropic combinations 1 and 2 differ only in the prior mean. The
first prior is centered at 0, while the second prior is centered at the random deep neural
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(a) (b)

Figure 2.3 – Empirical evaluation of the categorical cross-entropy loss: We
take normalized random directions vi, i ∈ {1, 2, 3, 4} and plot the deterministic cat-
egorical cross-entropy loss L̂`cat

X,Y (fθ) for MNIST2 and CIFAR2 and values on the line
θ = θ∗ + tvi, t ∈ [−200, 200]. We see that the loss closely reassembles a quadratic
around the minimum θ∗. High dimensional Gaussian vectors concentrate close to a
hypersphere centered on the mean. We find the radius of the hyperspheres and shade
the corresponding 1 dimensional cross sections in the plots. Posteriors relevant to our
experiments concentrate within an area well approximated by the quadratic.

network initialization. In practice, to derive multiple (complexity, empirical risk) pairs
we sample λ,β in the range λ ∈ [0.031, 0.3] and β ∈ [1, 5]. For these we compute L̂(ρ̂) and
KL(ρ̂||π). The second can be computed analytically, while we approximate the first using
Monte Carlo sampling with m = 1000 samples from ρ̂. We then plug the results into (2.4).
We set the estimated complexity as Complexity ≡ [Φ−1

β∗ (L̂(ρ̂∗) + 1
β∗nKL(ρ̂∗||π))− L̂(ρ̂∗)],

where β∗ is the optimal β.

Diagonal posterior (VI). Combinations 3 and 4 correspond to a posterior with diagonal
covariance and a non-informative prior centered at 0 and at the random initialization.
For MNIST we do a grid search over β ∈ [1, 5] and λ ∈ [0.03, 0.1] while for CIFAR we
search in β ∈ [1, 5] and λ ∈ [0.1, 0.3]. For each (β, λ) pair we optimize σρ̂ using the
surrogate (2.3). Specifically, we use the state of the art Flipout estimator (Wen et al.,
2018). We used 5 epochs of training using the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 1e− 1. Increasing the number of epochs didn’t affect the results.
We calculate the complexity and empirical risk as in the isotropic case.

We plot the Pareto fronts of all modeling choices in Figure 2.2. For the case of MNIST,
changing from the prior centered at 0 to the prior centered at the random initialization
resulted in a significant improvement of the bound. The resulting bounds with a prior
at the random initialization are non-vacuous, even for the simple isotropic posterior.
Optimizing the covariance with VI yields negligible or no improvements, regardless of
the prior choice.

40



2.4. Quadratic Approximation

For CIFAR, we do not see significant variation in the bounds. The Catoni bound has a
saturating effect above the line y = 1− x, s.t. x ∈ [0, 1]. All (complexity,empirical risk)
pairs fall into this saturating region. Specifically, mean-field VI fails to meaningfully
improve the bound. Looking at the optimal bound points (star shapes), one explanation
for the difference with MNIST, is that CIFAR DNNs have overfit the data significantly.

The full parameter choices for the experiments can be found in Appendix B.5.

2.4 Quadratic Approximation

The stochastic and non-convex objective (2.3) is difficult to analyze theoretically. As such
we first propose to approximate the cross-entropy loss at the mean of the posterior using
a second order Taylor expansion which will make the subsequent analysis tractable (this
corresponds to a Laplace approximation (Bishop, 2006) to the posterior). We introduce
the centered random variable η = θ −E[θ] so that η ∼ ρ̂′(θ), we get

Cβ(X,Y ; ρ̂, π) = Eθ∼ρ̂(θ)L̂`cat
X,Y (fθ) + βKL(ρ̂(θ)||π(θ))

≈ Eη∼ρ̂′(θ)[ηT∇L̂`cat
X,Y (fθ) + 1

2η
T∇2L̂`cat

X,Y (fθ)η] + βKL(ρ̂(θ)||π(θ))

≈ Eη∼ρ̂′(θ)[
1
2η

THη] + βKL(ρ̂(θ)||π(θ)).
(2.5)

where H ≡ ∇2L̂`cat
X,Y (fθ) is the Hessian and captures the curvature at the minimum.

In the above we made a number of assumptions. First, we assumed that the gradient
at the point of expansion is zero. For a well trained overparametrized DNN this is a
reasonable assumption. Secondly, we omit terms of the Taylor expansion of order ≥ 3.
This results in a quadratic approximation. We conduct experiments to see whether this
is reasonable. Specifically, we take random directions along the loss landscape and plot
along them the value of the loss. We see in Figure 2.3 that the loss is indeed approximately
quadratic around the minimum. At the same time, we note that approximating the loss
as quadratic has been used to obtain state of the art results in the DNN compression
literature (Dong et al., 2017; Wang et al., 2019; Peng et al., 2019; LeCun et al., 1990;
Hassibi and Stork, 1993).

For the expectation of the quadratic loss to be a good approximation of the expectation
of the categorical loss, the mass of the posterior has to be concentrated at locations
where the true loss is well approximated by a quadratic. We have thus far dealt with
Gaussian posteriors ρ̂(θ) = N (µρ̂,σρ̂), where ∀i, σρ̂i ≈ λ, 0.01 ≤ λ ≤ 1. It is well
know that Gaussians in high dimensions concentrate on a thin “bubble” away from the
origin. We can use this intuition and make a rough calculation of the radius of this
bubble (Vershynin, 2018). Specifically, assuming that ∀i, σρ̂i = λ, we can calculate
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Eη∼ρ̂′(θ)||η||22 = Eη∼N (0,σρ̂)[
∑d
i=0 η

2
i ] = ∑d

i=0 σρ̂i = λd. Finally we expect that the radius
of the “bubble” is Eη∼ρ̂′(θ)||η||2 ≈

√
λd. We plot these regions in Figure 2.3. We see that

posteriors concentrate within areas where the quadratic approximation is reasonable.

2.4.1 Optimal Posterior

Compared to the diagonal modeling of the previous section, we now make the slightly
more general modeling choices ρ̂(θ) = N (µρ̂,Σρ̂) and π(θ) = N (µπ, λΣπ). We can then
show that the optimal posterior covariance of the objective (2.5) for fixed prior and
posterior means has a closed form solution.

Lemma 2.4.1. The optimization problem minΣρ̂
Eη∼ρ̂′(θ)[1

2η
THη] + βKL(ρ̂(θ)||π(θ))

where ρ̂(θ) = N (µρ̂,Σρ̂) and π(θ) = N (µπ, λΣπ) is convex and is minimized at

Σ∗ρ̂ = β(H + β

λ
Σ−1
π )−1, (2.6)

where H ≡ ∇2L̂`cat
X,Y (fθ) captures the curvature at the minimum, while Σπ is the prior

covariance.

The full derivation is deferred to Appendix B.2.

2.4.2 Optimal Prior

We can relax the modeling choices further by noting that PAC-Bayesian theory allows
one to choose an informative prior, with the restriction that the prior can only depend on
the data generating distribution and not the training set. A number of previous works
(Parrado-Hernández et al., 2012; Catoni, 2003; Ambroladze et al., 2007) have used this
insight mainly on simpler linear settings and usually by training a classifier on a separate
training set and using the result as a prior. Recently, Dziugaite and Roy (2018a) have
proposed to use the original training set to derive valid priors by imposing differential
privacy constraints.

We ignore these concerns for the moment, and optimize the prior covariance directly. The
objective is non-convex, however for the case of diagonal prior and posterior covariances
we can find the global minimum.

Lemma 2.4.2. For minσρ̂,σπ Eη∼ρ̂′(θ)[1
2η

THη]+βKL(ρ̂(θ)||π(θ)) with ρ̂(θ) = N (µρ̂,σρ̂)
and π(θ) = N (µπ, λσπ), the optimal prior and posterior covariances have elements

(σ∗ρ̂i)−1 = 1
2β [hi +

√
h2
i + 4βhi

(µiρ̂ − µiπ)2 ], (2.7)
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(a) (b) (c)

(d) (e) (f)

Figure 2.4 – Closed form posterior and prior: We plot the results obtained by mean-
field variational inference, as well as the closed form bounds with optimized posterior
and jointly optimized posterior and prior covariances. For MNIST, we plot the empirical
risk in logarithmic scale for ease of exposition. Valid bounds where we only optimize the
posterior in closed form get significant benefits over VI of between 5-10%. Optimizing the
prior results in further improvements of 5-10%, implying that in theory better priors can
be found. The results are far from tight even when optimizing the prior and for CIFAR
all bounds are vacuous. This implies inherent limitations of the mean-field approximation,
as we typically don’t even have access to the optimal prior covariance.

(σ∗πi)−1 = λ

2β [
√
h2
i + 4βhi

(µiρ̂ − µiπ)2 − hi], (2.8)

where H ≡ ∇2L̂`cat
X,Y (fθ) captures the curvature at the minimum.

The full derivation is deferred to Appendix B.3. We cannot prove generalization using this
result. Rather we use it as a sanity check for what is achievable through the mean-field
approximation and an optimal informative prior covariance.

To approximate the Hessian we note that for the cross entropy loss and the softmax
activation function p(y = c|fθ) = exp(fθ(x)c)/

∑
i exp(fθ(x)i) the Fisher Information

matrix coincides with the generalized Gauss-Newton approximation of the Hessian
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(Kunstner et al., 2019). We sample one output ỹi from the model distribution p(yi|fθ(xi))
for each input xi, and approximate H ≈

∑n
i=0∇θ log p(ỹi|fθ(xi))∇θ log p(ỹi|fθ(xi))T,

retaining only the diagonal elements.

Keeping the posterior and prior means fixed, we optimize the posterior covariance, as
well as the posterior and prior covariance jointly in closed form. We plot the results
in Figure 2.4, using the same approach as section 2.3 with m = 1000 for (2.7),(2.8),
m = 100 for (2.6) and sampling over β and λ. For MNIST, valid bounds where we only
optimize the posterior in closed form get significant benefits over VI of between 5-10%.
Thus, even though Adam is very robust to hyperparameter selection, and the Flipout
estimator is state of the art, one might look to hyperparameter tuning for better results.
We present arguments in the next section, that hold also for the mean-field case, as
to why it should be beneficial to avoid hyperparameter tuning. Invalid bounds where
we optimize the prior and posterior jointly result in further improvements of 5-10%,
implying that in theory better priors can be found. The bounds are far from tight, even
when optimizing the prior, and for CIFAR all bounds are vacuous. This implies that the
mean-field approximation is limited in the bound improvements it can provide.

2.5 Beyond the mean-field approximation

2.5.1 Computational Issues

Given the implied shortcomings of the mean-field approximation it is interesting to
look at richer posterior distributions. A number of approximations exist to model such
posteriors. In Mishkin et al. (2018), the authors model the covariance as having a
low-rank + diagonal structure. In normalizing flows (Rezende and Mohamed, 2015) a
simple initial density is transformed into a more complex one, by applying a sequence
of invertible transformations, until a desired level of complexity is attained. In K-FAC
(Martens and Grosse, 2015), the Hessian can be approximated as a Khatri-Rao product
to construct a Laplace approximation of the posterior (Ritter et al., 2018). Considerable
effort has been placed into

Optimizing multiple variational objectives. To obtain Pareto fronts we will perform
a grid search over λ and β, corresponding to O(102) classifiers with different empirical
risk and complexity. Optimizing variational objectives is known to be unstable, to scale
badly and to require extensive hyperparameter tuning Wu et al. (2018). Optimizing each
posterior using SGD as in Mishkin et al. (2018); Rezende and Mohamed (2015), for even
a few minutes, can add several hours to obtaining the full grid. Hyperparameter tuning
objectives that do not converge can quickly make the task infeasible.

Sampling efficiently from the posterior. At the same time we will need to sample
efficiently between O(104) and O(105) posterior samples. This is because we will be
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(a) (b) (c)

Figure 2.5 – Beyond the mean field approximation: We compared the simplified
K-FAC curvature approximation to the closed form invalid mean-field inference. Invalid
results correspond to an optimal prior and posterior covariance to which we don’t typically
have access. For medium to low empirical risk the block diagonal curvature improves the
bound for MNIST10-5-2 by 8.2%, 7.5%, 4.4% respectively.

applying a Chernoff bound on the tail of the empirical risk. For flow based methods, the
KL term also has to be approximated with MC sampling.

In the non-flow based methods, one typically seeks to factor Σ = LLT . Then y = Lz,
where z is standard normal, has the appropriate distribution, and can be sampled
efficiently. While Mishkin et al. (2018) provide an efficient Cholesky factorization of their
low-rank + diagonal approximation, the Khatri-Rao product (Martens and Grosse, 2015)
has no obvious Cholesky factorization. Finally inference time in flow based methods will
be influenced by the number of mappings used in the flow.

Simplified K-FAC Laplace. We assume a multiclass classification problem with c

classes, and that the labels y are one-hot encoded. We then define the mean square
error loss `mse(f, x, y) = (1/c)∑c

i=0(f(x)i − yi)2. Assuming r neurons per layer, θ has
a form θ = [vec(W0,:

0 )vec(W1,:
0 ) · · · vec(Wr,:

l )]. We also denote for layer i and neuron j,
θij , µρ̂ij , Σρ̂ij , µπij the corresponding split variables. We can then motivate optimizing
the following surrogate upper bound

Lemma 2.5.1. Assuming negligible layerwise derivatives of order other than 2, the
differentiable surrogate objective

Eθ∼ρ̂(θ)L̂`mse
X,Y (fθ) + 1

βn
(KL(ρ̂(θ)||N (µπ, λI)) + ln 1

δ
), (2.9)

has the following upper bound

∑
i,j

[Eηij∼ρ̂′ij(θ)[
1
2η

T
ijHiηij ] + 1

βn
KL(ρ̂ij(θ)||πij(θ)]

+O(cl),
(2.10)
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where ρ̂ij(θ) = N (µρ̂ij ,Σρ̂ij), πij(θ) = N (µπij , λI), Hi = (1/n)∑n
k=0 aki aki

T , are neu-
ronwise posteriors, priors and Hessians.

The above corresponds to a greatly simplified version of K-FAC, where each layer has a
posterior with covariance Σi = Hi ⊗ I, i.e. we assume correlations only for parameters
in each neuron. While this approximation covers our needs, one could in principle
use the slightly more expressive Σi = Hi ⊗Gi, where Gi = E[gigTi ] and gi are the
backpropagated layerwise errors for layer i (Ritter et al., 2018), and we note that
optimizing more expressive versions of K-FAC efficiently is an active area of research
(Zhang et al., 2018; Bae et al., 2018). We’ve broken the original into many much smaller
subproblems. We can now compute the Hessian efficiently and in a stable way once, and
then sample the posterior efficiently in closed form at different variance levels λ. The full
derivation is deferred to Appendix B.4.

2.5.2 Empirical Results

We now present results on the MNIST datasets. We run a grid search over β and λ, with
20 samples each, for β ∈ [0.001, 0.02] and λ ∈ [0.001, 0.1]. We use m = 1000 samples for
estimating the empirical risk. For computing the Pareto fronts we optimize (2.10) with
(2.6) and evaluate (2.4) following the procedure of Section 2.3. The running time for
each experiment was 33h, 30h and 25h respectively.

We plot the results in Figure 2.5 where we compare with the case of jointly optimized
diagonal prior and posterior. At very low and very high empirical risk levels the
complexity estimates saturate. However, for medium empirical risk levels the block
diagonal covariance yields significant improvements to the bounds. The effect is more
pronounced on the more difficult MNIST10 and MNIST5 experiments, where using the
block diagonal posterior results in a decrease in the estimated complexity of ∼ 10%.

2.6 Discussion and Summary

In this chapter we moved from the analytically derived bounds of Chapter 1 to bounds
computed using an optimization procedure based on the work of Dziugaite and Roy
(2017). These present a significant improvement over bounds in Chapter 1, with estimates
becoming non-vacuous in a number of cases. Intuitively, this is because we make
significantly tighter estimates of the amount of noise that we can add to the deep neural
network weights before hurting accuracy. However, somewhat counterintuitively, we
have seen that the main empirical gains in bound tightness are the result of choosing
the prior mean to be centered at the random initialization, compared to at the origin.
Further optimizing the posterior covariance using mean-field variational inference results
in negligible gains. Thus taking the above into account we slightly relax the model so
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that the prior and posterior distributions are not diagonal but block diagonal resulting in
significant bound improvements. This illustrates the potential for improving bounds by
using more expressive priors and posteriors. At the same time, given the significant gains
from choosing the prior mean correctly, in the next chapter we will look at computational
approaches to deriving informative prior means.
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3 Differential Privacy based Gener-
alization Bounds.

In the previous chapter we saw how computing PAC-Bayes bounds numerically led to
significant improvements over computing them analytically. At the same time, we saw
that the actual source of tightness and non-vacuity included some subtleties. In particular,
modeling priors and posteriors with diagonal Gaussians appeared to be very restrictive,
while moving to more expressive posteriors resulted in significant gains. Finally, the most
important element in tightening the bounds was found to be choosing a good prior mean.
In this chapter we elaborate on this point and analyze methods through which one can
compute informative prior means, which significantly tighten bounds.

3.1 Introduction

Recall that PAC-Bayes bounds deal with randomized classifiers, with posterior and prior
distributions ρ̂ and π respectively and make statements that are roughly of the form

EL(ρ̂) ≤ EL̂(ρ̂) + βKL(ρ̂||π), (3.1)

where L(ρ̂) is the risk, L̂(ρ̂) is the empirical risk and the expectation is over the posterior.
The βKL(ρ̂||π) term between the prior and posterior acts as a measure of complexity for
the classifier.

The terms EL̂(ρ̂) and βKL(ρ̂||π) are typically inversely related. For example, with minor
modifications, one can model the posterior and prior as ρ̂ = N (µρ̂, λI) and π = N (µπ, λI)
so that βKL(ρ̂||π) = (β/2λ)||µρ̂ −µπ||22. Then, βKL(ρ̂||π)→ 0 as λ→ +∞, however for
such a choice value of the term EL̂(ρ̂) =

∫
Ω L̂(ω)dρ̂(ω) will increase significantly, as we

will average the classification loss over increasingly larger regions of the loss landscape.

In Chapter 1 we saw that finding analytically the value of the variance in the prior
and posterior distributions that balances the above terms results in vacuous bounds
(Neyshabur et al., 2017b). By contrast in Chapter 2, based on the works Dziugaite and
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Roy (2017) and Zhou et al. (2018) we saw how optimizing the posterior distribution using
an iterative algorithm so as to improve the bound as much as possible, led to significant
gains and non-vacuity.

In fact, as noted in Chapter 2 most of the gains in the literature up to now have been
due to decreasing the l2 distance between the prior and posterior means ||µρ̂ − µπ||22.
Specifically, simply by choosing the prior mean to be centered at the random neural
network initialization instead of at the origin improves the bounds significantly, as
||µρ̂ − µinit||22 � ||µρ̂ − 0||22.

One could look at richer covariance structures and the literature on the subject is steadily
growing (Mishkin et al., 2018; Lin et al., 2019b,a; Ritter et al., 2018; Zhang et al., 2018;
Bae et al., 2018; Sun et al., 2019; Louizos et al., 2019), together with new optimization
libraries (Dangel et al., 2019, 2020). However, significant problems still exist (Pitas,
2020) in i) optimizing deep neural networks in this manner efficiently ii) avoiding tedious
hyperparameter tuning iii) sampling efficiently from the result posteriors iv) estimating
the KL term efficiently in the case where closed form solutions do not exist.

Research objectives. We thus focus on learning better prior means µπ, potentially
decreasing further the term ||µρ̂ − µπ||22. Under the PAC-Bayesian assumptions, the
prior cannot depend on the training set however it can depend on the training data
distribution. Usually, this is exploited in the literature by training a prior using a set of
separate datapoints (Parrado-Hernández et al., 2012; Lever et al., 2013). In Dziugaite
and Roy (2018a) the authors propose a different approach based on differential privacy
(Dwork et al., 2014). One trains a prior on the original training set by adding noise to
the learning procedure. Thus, intuitively this ensures that the amount of information
from any specific data sample retained by a learned prior remains small and the prior is
provably only distribution dependent.

Unfortunately, this and a subsequent work Dziugaite and Roy (2018b) are plagued by
the use of Stochastic Gradient Langevine Dynamics (SGLD) (Welling and Teh, 2011) to
compute the required prior. One of the main assumptions for the bounds to be valid is
that SGLD has mixed properly, a condition that is difficult to assess in practice. At the
same time, SGLD does not provide the prior in closed form and the KL complexity term
has to be evaluated numerically, which introduces further looseness.

Contributions. We take a step back and reassess valid PAC-Bayes priors using differ-
ential privacy by opting for the state of the art differential privacy approach of Abadi
et al. (2016), instead of SGLD. Crucially, there are no assumptions on the mixing time of
the procedure, that are difficult to evaluate, and the privacy of the learned prior classifier
is evaluated numerically using an efficient and stable procedure (Mironov et al., 2019).

Our results can be summarized as follows
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1. With a slight modification, by setting the posterior ρ̂ equal to the distribution
dependent private prior π, we obtain a PAC-Bayes bound where the dominant
complexity term is the privacy parameter ε. This, coupled with the approach of
Abadi et al. (2016) results in state of the art results in a number of datasets.

2. Further optimizing the posterior mean gives mixed results. While for MNIST it
results in even tighter bounds, for CIFAR it loosens the bounds. In all cases the
required optimization procedure needs significant finetuning.

3. We illustrate using a simple theoretical model how the classification accuracy of
a differentially private classifier is affected by the intrinsic dimensionality of the
data distribution and the privacy parameter ε. We relate this analysis to the deep
neural network setting, and to limitations to the tightness of generalization bounds
based on differential privacy.

3.2 PAC-Bayes and differential privacy

We first provide a definition for differential privacy

Definition 3.2.1. A randomized algorithm P : Zn → T is (ε, δ)-differentially private
if, for all datasets Z,Z ′ ∈ Zn that differ at only one sample, and all measurable subsets
B ⊆ T , we have P{P(Z) ∈ B} ≤ eεP{P(Z ′) ∈ B}+ δ.

Differential privacy is therefore a notion of algorithmic stability. Roughly, it means that
a learning algorithm will have an output that doesn’t depend much on any specific data
sample. An important property of differential privacy is that the composition of two
differentially private algorithms is itself differentially private. In particular, a very simple
formulation of this property is

Theorem 3.2.1. For any ε > 0 and δ ∈ [0, 1] if g is a (εg, δg)-differentially private
mechanism and h is a (εh, δh)-differentially private mechanism then g◦h is (εg+εh, δg+δh)-
differentially private.

While this particular composition theorem is not optimal, it provides some easy intuition.
In particular processing the output of a differentially algorithm using a second one, can
only provide a limited further amount of information on any data sample. Importantly,
as we will see later this property can be used for studying the privacy of iterative
algorithms. In particular, differentially private Stochastic Gradient Descent (SGD) steps
can themselves be composed so that their final output is differentially private.

With regards to generalization bounds we will again be using PAC-Bayes bounds which
have proven to be tight empirically (Dziugaite and Roy, 2017; Zhou et al., 2018; Pitas,
2020). In particular, we will be again using a version due to Catoni Catoni (2007) which
is tighter than common alternatives (Zhou et al., 2018).
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We denote the learning sample (X,Y ) = {(xi, yi)}ni=1 ∈ (X ×Y)n, that contains n input-
output pairs. Samples (X,Y ) are assumed to be sampled randomly from a distribution
D. Thus, we denote (X,Y ) ∼ Dn the i.i.d observation of n elements. We consider loss
functions ` : F×X×Y → R, where F is a set of predictors f : X → Y . We also denote the
empirical risk L̂`X,Y (f) = (1/n)∑i `(f,xi, yi) and the risk L`D(f) = E(x,y)∼D`(f,x, y).

A neural network transforms its inputs a0 = x to an output fθ(x) = al through a series
of l layers, each of which consists of a bank of units/neurons. The computation performed
by each layer i ∈ {1, ..., l} is given as follows

si = Wiai−1,

ai = φi(si),

where φi is an element-wise non-linear function and Wi is a weight matrix.

We will define θ = [vec(W0)vec(W0) · · · vec(Wl)], which is the vector consisting of all the
network’s parameters concatenated together, where vec is the operator which vectorizes
matrices by concatenating their rows horizontally.

We will use the non-differentiable zero-one loss `01(f, x, y) = I(arg max(f(x)) = y),
and the categorical cross-entropy, which is a commonly used differentiable surrogate
`cat(f, x, y) = −∑i I[i = y] log(f(x)i), where we assume that the outputs of f are
normalized using a softmax function to form a probability distribution. Catoni (2007)
then get

Theorem 3.2.2. Catoni (2007) Given a distribution D over X × Y, a hypothesis set
F , a loss function `′ : F × X × Y → [0, 1], a prior distribution π over F , a real number
δ ∈ (0, 1], and a real number β > 0, with probability at least 1 − δ over the choice of
(X,Y ) ∼ Dn, we have

∀ρ̂ on F : Ef∼ρ̂L`
′
D(f) ≤Φ−1

β (Ef∼ρ̂L̂`
′
X,Y (f)

+ 1
βn

(KL(ρ̂||π) + ln 1
δ

)),
(3.2)

where Φ−1
β (x) = 1−e−βx

1−e−β .

PAC-Bayes bounds such as the above require that the prior distribution not depend on
the training set used to compute the posterior. As such, a common choice for the prior
is the non-informative centered Gaussian with identity covariance π(θ) = N (0, λI). As
one usually wants to estimate the generalization of a deterministic neural network, the
posterior is then commonly chosen to be ρ̂(θ) = N (µρ̂, I) where µρ̂ are weights of a
deterministic deep neural network.
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3.2.1 Differentially Private Priors

We now turn our attention to differentially private PAC-Bayes bounds. We will essentially
restate a result by Dziugaite and Roy (2018a) for the case of the Catoni bound. Assume
p = r × l number of parameters where r is the number of neurons per layer and l is the
number of layers.

Theorem 3.2.3. Given a distribution D over X ×Y, a hypothesis set F , a loss function
`′ : F × X × Y → [0, 1], P : (X × Y)n →M (Rp) an ε-differentially private mechanism
for choosing a data-dependent prior over F , a real number δ ∈ (0, 1], and a real number
β > 0, with probability at least 1− δ over the choice of (X,Y ) ∼ Dn, we have

∀ρ̂ ∈M (Rp) on F : Ef∼ρ̂L`
′
D(f) ≤ Φ−1

β (Ef∼ρ̂L̂`
′
X,Y (f)

+ 1
β

(
KL(ρ̂||P(X,Y )) + ln 2

δ

n
+ ε2

2 + ε

√
ln(4/δ)

2n ))

(3.3)

where Φ−1
β (x) = 1−e−βx

1−e−β .

We defer the full derivation to Appendix C.1, noting that it closely matches the one
presented in Dziugaite and Roy (2018a).

Bound with KL and privacy term

The main way of using differential privacy in the previous literature is to construct valid
priors for the PAC-Bayesian bound. Therefore we can run the mechanism to obtain a
valid prior mean µP and then construct a prior and posterior pair as ρ̂(θ) = N (µρ̂, λI)
and π(θ) = N (µP , λI). We also need to expand the bound slightly to account for the
λ parameter in the prior, however the effect is negligible, in particular δ is substituted
by 6δ

π2b2 ln(c/λ2) . Finally, we note that the Catoni bound is formulated for bounded loss
functions. As such, we will be stating here a specific application using the zero-one loss
`01. Taking everything into account, we get

Ef∼ρ̂L`01
D (f) ≤ Φ−1

β (Ef∼ρ̂L̂`01
X,Y (f) + 1

2βnλ ||µρ̂ − µP ||22

+ ε2

2β + ln((2π2b2 ln(c/λ2))/(6δ))
βn

+ ε

β

√
ln((4π2b2 ln(c/λ2))/(6δ))

2n ),
(3.4)

where we highlight the term that includes the distance between the prior and posterior
means. One then typically further optimizes the above so as to obtain a posterior mean
µρ̂ so that both Ef∼ρ̂L̂`01

X,Y (f) and 1
2βnλ ||µρ̂ − µP ||22 are low. We note that the zero-one
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loss `01 is not differentiable. As such, one can use the categorical cross-entropy loss `cat
to optimize a surrogate differentiable loss function. Gradients for the stochastic objective
can be derived using the reparametrization trick θ = µρ̂+√σρ̂�N (0, I). As our baseline
we take a slightly different approach and optimize a deterministic objective to obtain the
posterior mean. Putting everything together, one can optimize the surrogate objective

L̂`cat
X,Y (f(µρ̂)) + 1

2βnλ ||µρ̂ − µP ||22 + constant (3.5)

to obtain a posterior mean µρ̂. The term 1
2βnλ ||µρ̂ − µP ||22 here acts as a simple `2

regularizer on the norm of the learned weights. We can then evaluate a valid bound using
equation (3.4) and posterior and prior distributions ρ̂ = N (µρ̂, λI) and π = N (µP , λI)
and different values of λ.

Bound based only on privacy

It is not obligatory to use the differentially private classifier simply as a prior. In fact,
we can construct a prior and posterior pair as ρ̂(θ) = N (µP , λI) and π(θ) = N (µP , λI).
This results in a valid PAC-Bayes bound, where the KL-divergence is trivially zero. We
get

Ef∼ρ̂L`
′
D(f) ≤ Φ−1

β (Ef∼ρ̂L̂`
′
X,Y (f)

+ ε2

2β + ln((2π2b2 ln(c/λ2))/(6δ))
nβ

+ ε

β

√
ln((4π2b2 ln(c/λ2))/(6δ))

2n )
(3.6)

or simplifying by keeping only the dominant term ε2/2

Ef∼ρ̂L`
′
D(f) . Φ−1

β (Ef∼ρ̂L̂`
′
X,Y (f) +O( ε

2

2β ))

where Φ−1
β (x) = 1−e−βx

1−e−β . Notice that the above holds for any value of λ > 0, as such we
can choose a very small value so that the network becomes almost deterministic. The
dominant complexity term then becomes the privacy parameter ε.

3.2.2 Computing differentially private classifiers

We see that essentially one needs to train neural networks that have low empirical risk
and are at the same time ε-differentially private with a small ε constant. There are a
number of ways in which one can derive a differentially private classifier. One of the
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earliest and most common baselines is the output perturbation algorithm (Dwork, 2008).
Here, one trains a classifier and then adds noise to the learned parameters according to
the Gaussian or Laplace distribution. Unfortunately, this approach scales badly with the
parameter dimensionality. In objective perturbation (Chaudhuri et al., 2011) one adds
the noise as a regularization term to the objective and then trains the classifier. The
empirical results improve upon output perturbation, however the privacy guarantees hold
only for convex losses. Other works are only theoretical (Bassily et al., 2014), having
very pessimistic analyses.

Stochastic Gradient Langevin Dynamics

The approach used in Dziugaite and Roy (2018a) circumvents the above restrictions by
relying on Gibbs posteriors. We introduce some notation for Gibbs distributions: for a
measure P on Rp and a measurable function g : Rp → R, let P [g] denote the expectation∫
g(h)P (dh) and, provided P [g] < ∞, let Pg denote the probability measure on Rp,

absolutely continuous with respect to P, with Radon-Nikodym derivative dPg
dP (h) = g(h)

P [g] .
A distribution of the form Pexp(−τg) is generally referred to as a Gibbs distribution with
energy function g and inverse temperature τ . In the special case where P is a probability
measure, we call Pexp(−τL`′X,Y (f)) a “Gibbs posterior”. Then, one can state a result such as

Lemma 3.2.4. Let τ > 0 and let L`′X,Y (f) denote a surrogate risk function, taking values
in an interval of length ∆ and (X,Y ) ∈ (X × Y)n. One sample from the Gibbs posterior
Pexp(−τL`′X,Y (f)) is 2τ∆

n -differentially private.

Unfortunately, sampling exactly from Gibbs posteriors is intractable. Furthermore,
existing results that rely on sampling approximately from the posterior have conditions
of convergence that are difficult to verify in the non-asymptotic case. In particular,
Dziugaite and Roy (2018a) implements Stochastic Gradient Langevin Dynamics (SGLD)
to approximate the posterior. A single update of SGLD is given for k ∈ N by

θk+1 = θk − γ(
∑
i

∇L`′xi,yi(f(θk))) +
√

2γηk+1

where ηk+1 ∼ N (0, I) and when targeting a Gibbs posterior with inverse temperature
τ one sets γ = 1

τ . Note that the distribution of θk+1 is given by rk+1
SGLD(θ) = N (θk −

γ(∑i∇L`
′
xi,yi(f(θk))), 2γI).

Recall also that the p-Wasserstein distance between distributions µ and ν is given by
Wp(µ, ν) = (infγ∈Γ(µ,ν)

∫
Rp×Rp ||x − y||

p
2dγ(x, y))

1
p where Γ(µ, ν) denotes the collection

of all measures on Rp × Rp. Then, the assumption that needs to be fulfilled in Dziugaite
and Roy (2018a) so that the approximation error from SGLD remains small, is that for
every c > 0, there exists a step size γ > 0 and number of SGLD iterations k∗ ∈ O( 1

cc1 ),
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such that the k∗-th iterate produced by SGLD satisfies

W2(rk∗SGLD(θ), Pexp(−τL`′X,Y (f))) =

W2(N (θk∗−1 − γ(
∑
i

∇L`′xi,yi(f(θk∗−1))), 2γI), Pexp(−τL`′X,Y (f))) ≤ c.
(3.7)

The above corresponds to assuming that the distribution of θk∗ at the k∗ iteration of
SGLD is close to the Gibbs posterior in the 2-Wasserstein distance. This condition is
difficult to verify in practice. Consequently, bounds need to be presented with the caveat
that they are “optimistic” Dziugaite and Roy (2018b), which is unsatisfying. A number
of other problems with this approach exist, such as computing the KL-divergence of
two distributions, one of which is approximated by SGLD. One has to compute the KL
divergence numerically by sampling using SGLD, this entails further approximations and
looseness in the bound Dziugaite and Roy (2018a).

Analytical Moments Accountant

An alternative approach, when dealing with iterative optimization algorithms, is to
analyze the privacy loss induced by each iteration. One first assumes that each iteration
is an (ε, δ)-differentially private mechanism and then composes the privacy budgets of
all the iterations. We already introduced a composition theorem 3.2.1 in Section 3.2,
however this results in loose compositions. The main trick is to tightly compose the
loss in privacy from each iteration. In Abadi et al. (2016) the authors start by noting
that the definition of (ε, δ)-differential privacy is equivalent to a tail bound on a certain
random variable. In particular

Lemma 3.2.5. Let the random variable c(o; P, Z, Z ′) , log P{P(Z)=o}
P{P(Z′)=o} and the tail

bound
P{c(o; P, Z, Z ′) ≥ ε} ≤ δ (3.8)

then the following holds

P{P(Z) ∈ B} ≤ eεP{P(Z ′) ∈ B}+ δ (3.9)

where δ = minλ exp(maxZ,Z′ aP(λ;Z,Z ′)− λε) and

aP(λ;Z,Z ′) , logEo∼P(Z)[exp(λc(o; P, Z, Z ′))]

is the log λthmoment of the random variable.

The authors then proceed by noting that composing tail bounds directly results in
loose estimates. On the contrary, they propose to compose the moments of the random
variables c(oi; P, Z, Z ′) and then translate this into a tail bound. For this the following
lemma is required
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Lemma 3.2.6. Suppose that a mechanism P consists of a sequence of mechanisms
P0, . . . ,Pk where Pi : ∏i−1

j=0Wj × (X × Y)n →Wi. Then, for any λ

aP(λ;Z,Z ′) =
k∑
i=0

aPi
(λ;Z,Z ′). (3.10)

Note that from (3.9) one now needs to estimate maxZ,Z′ aP(λ;Z,Z ′). Crucially, the
required estimates maxZ,Z′ aPi

(λ;Z,Z ′) can be computed in a numerically stable and
efficient way for some cases of differentially private mechanisms Pi. To make the above
more formal, we will need the following definition.

Definition 3.2.2. (Sampled Gaussian Mechanism(SGM)). Let f be a function mapping
subsets of Z to Rp. We define the Sampled Gaussian Mechanism (SGM) parameterized
with the sampling rate 0 < q ≤ 1 and the noise σ > 0 as

SGq,σ(Z) , f({x : x ∈ Z is sampled with probability q}) +N (0, σ2I) (3.11)

where each element of Z is sampled independently at random with probability q, and
N (0, σ2I) is spherical p-dimensional Gaussian noise with per-coordinate variance σ2.

Note that, based on our previous discussion, one would like to relate the Sampled
Gaussian Mechanism Pi at ith iteration to the to the privacy variable log moments
aPi

(λ;Z,Z ′), and in particular compute upper bounds on these moments. As such, the
authors of Abadi et al. (2016) show the following

Lemma 3.2.7. Let SGq,σ be the Sampled Gaussian mechanism for some function f .
Then

aSGq,σ(λ;Z,Z ′) ≤ logEz∼µ0 [(µ(z)/µ0(z))λ+1] (3.12)

where µ0 = N (0, σ2), µ1 = N (1, σ2), µ , (1 − q)µ0 + qµ1 and assuming that ||f(Z) −
f(Z ′)||2 ≤ 1.

The terms Ez∼µ0 [(µ(z)/µ0(z))λ] can be computed efficiently, as µ0, µ1, µ are simple
distributions. We defer details to the Appendix C.6. Putting everything together Abadi
et al. (2016), provide the following algorithm 1.
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Algorithm 1: Analytical Moments Accountant
input : Samples (X,Y ) ∈ (X × Y)n, loss `′, classifier f(θ) parametrized by the

vectorized weights θ. Hyper-parameters: learning rate ηt, noise scale σ,
group size L, gradient norm bound c, number of iterations T .

output : θT
1 Initialize θ0 randomly;
2 for t ∈ [T ] do
3 Take random sample Lt with sampling probability q.
4 Compute gradient
5 For each i ∈ Lt compute gt(xi)← ∇L`

′
xi,yi(f(θk)))

6 Clip Gradient
7 gt(xi)← gt(xi)/max(1, ||gt(xi)||2c )
8 Add noise
9 g̃t(xi)← 1

L(∑i gt(xi) +N (0, σ2c2I))
10 Descend
11 θt+1 ← θt − ηtg̃t(xi)
12 end

The following facts are easy to check

Fact 3.2.8. The step g̃t(xi) ← 1
L(∑i gt(xi) + N (0, σ2c2I)) with c = 1 and where Lt

is sampled with probability q, is a sampled Gaussian mechanism SGq,σ with ||f(Z) −
f(Z ′)||2 ≤ 1.

Fact 3.2.9. The step θt+1 ← θt − ηtg̃t(xi) is a composition of private mechanisms
P = Pt−1 ◦Pt = SGt−1

q,σ (X,Y ) ◦ SGt
q,σ(X,Y ).

We note that the above algorithm is very similar to SGLD, with a few minor modifications
in scaling factors. However, the results and assumptions of both approaches are quite
different. In particular, in the Analytical Moments Accountant there are no assumptions
on the convergence of the stochastic gradient descend. Furthermore, the privacy terms
(ε, δ) are computed numerically. As obtaining lower privacy loss ε is directly related to
increasing the noise variance σ in both cases, we can expect that tightly estimating ε will
result in using a smaller variance σ and thus the iterates of the stochastic gradient descent
will have better convergence properties. This is particularly important, as objectives
where a high amount of noise is added to the gradients are difficult to optimize empirically.
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(a) (b) (c)

(d) (e) (f)

Figure 3.1 – Detailed comparison of the baseline and the differential privacy
bound: The area below the dashed line corresponds to non-vacuous pairs of (complexity,
empirical risk). The purple star corresponds to the optimal bound implied by the testing
set. The isotropic baseline “Isotropic@Init” provides non-vacuous, but loose bounds for
the MNIST datasets, but is vacuous in all cases of CIFAR. The differentially private
approach “DP-SGD Full”, results in significant improvements, and non-vacuous bounds
even for the CIFAR datasets, apart from CIFAR2.

3.2.3 Experiments

We tested 6 different datasets. These consist of the original MNIST-10 and CIFAR-10
(Krizhevsky and Hinton, 2010) datasets, as well as simplified versions, where we collapsed
the 10 classes into 5 and 2 aggregate classes, potentially simplifying the classification
problem. All had 50000 training samples and 10000 validation samples. We test the
architectures

input→ 300FC→ 300FC→ #classesFC→ output

on MNIST, and

input→ 200FC→ 200FC→ #classesFC→ output

on CIFAR, where xFC denotes a fully connected layer with x neurons. To evaluate
bounding techniques, whenever the differences are large we use Risk-Complexity plots
which where introduced in Pitas (2020).
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On the x−axis we plot Ef∼ρ̂L̂`01
X,Y (f) and on the y−axis we plot

Ef∼ρ̂L̂`01
X,Y (f)− Φ−1

β∗ (Ef∼ρ̂L̂`01
X,Y (f) + 1

2β∗nλ ||µρ̂ − µP ||22 + ε2

2β∗ + c)

where c = ln((2π2b2 ln(c/λ2))/(6δ))
β∗n + ε

β∗

√
ln((4π2b2 ln(c/λ2))/(6δ))

2n , for different choices of µρ̂,
µP , and λ. Note that β∗ is the optimal value of β > 0 which is a free parameter and
which we can evaluate using a grid search. Furthermore, in some cases we will need to

approximate Ef∼ρ̂L̂`01
X,Y (f) using m samples and the constant c becomes c̃ = c+

√
ln 2
δ′
m .

In the Risk complexity plots, we can also plot the area that corresponds to non-vacuous
complexity-empirical risk pairs. We shade the corresponding area with blue. At the
same time, for any specific classification problem, we can optimize a deterministic neural
network and using a validation set, estimate an “optimal” generalization error bound.
We plot the corresponding estimate using a purple star. The more Risk-Complexity
estimates are closer to this point the tighter the bound is.

As a baseline, we will use the posterior and prior choices ρ̂ = N (µρ̂, λI) and π =
N (µinit, λI), note that in this case ε = 0 (as the prior is uninformative) and we do not
need to compute it using a differentially private algorithm. We saw in Chapter 2 that
this simple choice has been shown to provide very tight results for simple datasets and
deep neural network architectures.

For all experiments we used the TensorFlow-Privacy package Andrew et al. (2019).

Posterior equal to Prior

We first test the case where the posterior mean is set to be equal to the differentially
private mean, µρ̂ = µP . Given a training set (X,Y ) ∈ (X ,Y)n, we obtain a differentially
private prior mean as µP = arg minθ L̂cat

X,Y (f(θ)), where we optimize using the Analytical
Moments Accountant Algorithm 1. For different values of group size L, gradient noise
scale σ, gradient norm bound c, and number of iterations T we can then compute the
privacy loss ε using equations (3.10) and (3.12) while setting δ to a small value. We then
set µρ̂ = µP and the KL-divergence is trivially equal to zero for any choice of λ > 0,
and then evaluate a bound using (3.6). In particular, the variance λ cannot be equal to
0 as then the Kl-divergence is undefined. However, we consider this point a technicality
as we can set λ to be very small and non-zero and both the classification accuracy of
a deep neural network remains unaffected and KL=0. We thus simply set λ = 0, and
ignore this technicality.

For all the MNIST cases the hyperparameters of the Analytical Moments Accountant
are: group size L = 250, gradient norm c = 1, and number of iterations T = 4 ∗ 200.
The noise scale σ controls the amount of differential privacy (ε, δ). In the particular
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implementation we used, we first set a target δ = 1e− 5 and then we choose σ ∈ [1, 20].
For all values σ we then compute numerically the corresponding values for ε.

For all the CIFAR cases the hyperparameters of the Analytical Moments Accountant are
identical to the ones for MNIST apart from the number of iterations T which we increase
to T = 10 ∗ 200 to compensate for the increased difficulty of the dataset.

For the baseline isotropic posteriors and priors we used λ ∈ [0.031, 0.3] in all cases. We
plot the results in Figure 3.1. We see that in all cases the differentially private bound
is significantly tighter than the baseline. For the MNIST case the approach manages
to tighten substantially the already non-vacuous bounds. In the more difficult CIFAR
case the baseline approach fails and results only in vacuous estimates. By contrast,
the approach based on differential privacy manages to obtain non-vacuous, albeit loose,
bounds. The only case where the bound remains vacuous is in the CIFAR-2 case.

Optimized Posterior

In this section we investigate whether further optimizing the posterior mean results in
bound improvements. On a high level, enforcing privacy constraints results in a prior
mean that has sub-optimal empirical risk. By optimizing the posterior mean we can
lower the empirical risk at a cost of a non-zero KL-divergence between the posterior and
prior distribution. Whether this trade-off is beneficial for our bounds depends on the
geometry of the optimization landscape and has to be evaluated empirically. In practice,
after obtaining a differentially private prior mean as in section 3.2.3 we find a posterior
mean as µ∗ρ̂ = arg minθ L̂`cat

X,Y (f(θ)) + β1||θ −µP ||22. Note that although this objective is
conceptually similar to (3.5) it is not necessarily stochastic and as such we can optimize
it using vanilla stochastic gradient descent. We can the evaluate bound (3.4) using

ρ̂ = N (µ∗ρ̂, λI), π = N (µP , λI)

, for different values of λ and the ε privacy loss required to obtain µP . Note that in this
case the value of λ contributes non-trivially to the complexity of the bound. This, also
implies that the term Ef∼ρ̂L̂`01

X,Y (f) needs to be bounded using a Chernoff bound with
m samples.

For each case„ we fine tune the regularization free parameter β1. In particular, for different
values of β1 we compute a grid over λ ∈ [0.031, 0.3] and compute the best Empirical
Risk - Complexity pair λ∗. This corresponds to the pair in the Risk-Complexity plot
that is closest to the origin. Each β1 choice corresponds to an optimal pair λ∗, and we
furthermore choose the best among this optimal pairs β∗1 for a final hyperparameter
choice of (λ∗, β∗1). We find µ∗ρ̂, in each case, using SGD with E = 10 epochs and η = 0.15
stepsize. We also use m = 1000 samples to compute the Chernoff bound. We defer the
complete Risk-Complexity plots to the Appendix C.7 as the bound improvements are
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10 Class 5 Class 2 Class
MNIST 20% (23%) 22% (25%) 16% (23%)
CIFAR 86% (81%) 73% (77%) 62% (59%)

Table 3.1 – Effect of optimizing the posterior: We present the bound values when
optimizing the posterior as resulting from Section 3.2.3. In parentheses we include the
best bound values when the posterior distribution is identical to the prior as in Section
3.2.3. The results are mixed. For MNIST there is some improvement, with particularly
significant improvement for the 2-class case. In the case of CIFAR the bound actually
loosens, apart from the case of CIFAR-5.

minimal. We summarize the results in table 3.1. We see that for the MNIST cases one is
able to improve upon the bounds by ∼ 3%− 7% percentage points. At the same time,
experiments on CIFAR result in no improvements. What is particularly notable is that
not only are the improvements small, but also for a wide range of β1 values the bounds
actually become more loose.

3.3 Lower bound for stable mechanisms

Given the significant improvements obtained by the above approach, it is natural to ask
how close one can get to the true generalization error, implied by the validation set. We
remind the reader that finding a good bound entails balancing the empirical risk and the
estimated complexity, and that the dominant factor of complexity in the previous analysis
is the privacy loss ε. There is a long line of literature relating privacy constraints to lower
bounds on the empirical risk that one can obtain from a given model (De, 2012; Jain
and Thakurta, 2014; Chaudhuri and Hsu, 2011; Bassily et al., 2014; Kasiviswanathan
et al., 2011). We use ideas from Hardt and Talwar (2010) to derive a simple lower bound
for learning the final linear classification layer of a deep neural network in a private way.
The benefit of this analysis is that it holds for any private mechanism, given that we use
a slightly relaxed notion of privacy.

We first define a simple generative model and relate it to the input data of the final deep
neural network layer. We model the class-conditional densities p(x|Ck), as well as the
class priors p(Ck), and then use these to compute posterior probabilities p(Ck|x) through
Bayes’ theorem. For a K>2 class classification problem, Bayes’ theorem gives

p(Ck|x) = p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

= exp(ak)∑
j exp(aj)

(3.13)

which is known as the normalized exponential or softmax function. Here we defined ak
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(a) (b)

Figure 3.2 – Visualizing the latent representations: We use pretrained deterministic
neural networks to visualize the latent representations at the input of the final softmax
layer. We compute the singular value decomposition of two classes and project the
datapoints along the first two principal directions. We also plot the contours of a
Gaussian kernel density estimator that we fit on the data. The samples concentrate
closely around a mean, validating partially our modeling choice to approximate the
distribution of latent representations as a mixture of Gaussians.

as
ak = ln(p(x|Ck)p(Ck)). (3.14)

One can then define a classifier as f(x) = arg maxk p(Ck|x).

3.3.1 Gaussian Mixture Model

Let us assume that the class-conditional densities are Gaussian and then explore the
resulting posterior probabilities. We shall assume that all classes share the same covariance
matrix. Thus, the density for class Ck is given by

p(x|Ck) = 1
(2π)D/2

1
|Σ|1/2

exp
{
−1

2(x− µk)>Σ−1(x− µk)
}

(3.15)

For this simple case it is well known that the posterior probabilities for classes Ck can be
found in closed form (Bishop, 2006).

Lemma 3.3.1. Assume a K-class classification problem where p(x|Ck) = N (µk,Σ), then
by applying Bayes’ theorem, the maximum likelihood solution to the generative classifier
is

p(Ck|x) = exp(ak(x))∑
j exp(aj(x)) , ak(x) = w>k x+ wk0 (3.16)
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10 Class 5 Class 2 Class
MNIST 5% (4%) 7% (5%) 24% (6%)
CIFAR 34% (23%) 31% (30%) 15% (14%)

Table 3.2 – Comparison of generative and discriminative classifier: We use the
latent representations of the penultimate layer of pretrained deterministic neural networks
to train two separate final layers. The first, is a generative classifier where we model the
class distributions as multivariate Gaussians and it’s solution is obtained in closed form.
The second (in parentheses), is a simple discriminative classifier where we optimize the
final deep neural network softmax layer on the latent representations of the pretrained
model, using stochastic gradient descent. We see that the empirical risk of the generative
classifier in all cases is close to the one of the discriminative classifier.

where we have defined

wk = Σ̃−1
µ̃k, wk0 = −1

2 µ̃
>
k Σ̃−1

µ̃k + ln p̃(Ck) (3.17)

and also we have p̃(Ck) = nk∑
i
ni
, µ̃k = 1

nk

∑
i∈C1 xi, Σ̃k = 1

nk

∑
i∈Ck(xi − µ̃k)(xi − µ̃k)>

and Σ̃ = ∑
i p̃(Ci)Σ̃i.

As noted in a number of works (Soudry et al., 2018), a discriminative version of the
above objective is optimized by the final layer of deep neural networks. Furthermore, the
latent representations of a deep neural network are known to become progressively more
linearly separable (Jacobsen et al., 2018), and one would hope that their distributions
become approximately Gaussian in the penultimate layer.

In Section 3.2.3 we used deterministic deep neural networks to compute an empirical
risk, a validation risk, and the implied true generalization error. We use the latent
representations at the input of the final layers of these networks to test the assumptions
of the generative model. Thus, we first visualize in Figure 3.2 these latent representations.
In particular, we remind that the neural networks we consider transform inputs a0 = x

to an output fθ(x) = al through a series of l layers, each of which consists of a bank
of units/neurons. The computation performed by each layer i ∈ {1, · · · , l} is given as
follows

si = Wiai−1,

ai = φi(si).
(3.18)

Thus, given a dataset (X,Y ) ∈ (X × Y)n we visualize the latent representations at the
input of the final layer for two classes a2(x) = φ2(W2φ1(W1x)), x ∈ X, y ∈ {0, 1}
for all architectures. Given that the representations are high dimensional, we visualize
them using PCA and project them along the 2 first principal components. We see that
the Gaussian modeling is plausible. In particular the latent representations appear
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3.3. Lower bound for stable mechanisms

concentrated around a mean, at least under this projection.

Furthermore, we calculate the accuracy of the generative classifier and we find that
it performs reasonably well in the classification task, on par with the discriminative
approach of the last neural network layer, despite the restriction on having a shared
covariance across classes. In particular, given a dataset (X,Y ) ∈ (X ×Y)n and pretrained
non-linear layer weights W∗

2, W∗
1 we use a2(x) = φ2(W∗

2φ1(W∗
1x)), x ∈ X to obtain the

parameters of the generative classifier wk, wk0, k ∈ {0, · · · ,K}, according to equations
(3.17). We present these results in Table 3.2. In most cases the empirical risk is almost
identical to optimizing the final layer directly using SGD, while in the cases where there
is an increase in empirical risk it remains non-vacuous.

3.3.2 Lower bound

Since the maximum likelihood solution presented above depends on the empirical estimates
for the mean and covariance of Gaussians, as the number of training samples increases
the estimate will converge to the true quantity. Using an simplified analysis we illustrate
how introducing stability notions such as differential privacy to the above procedure
alters significantly the resulting intuition. We first introduce a different definition of
privacy, ε-generalized privacy

Definition 3.3.1. A randomized algorithm P : Zn → T is ε-generalized private if, for
a dataset Z ∈ Zn and vectors x,y ∈ Rn such that ||x − y||1 ≤ k, and all measurable
subsets B ⊆ T , we have P{P(ZDiag(x)) ∈ B} ≤ eεkP{P(ZDiag(y)) ∈ B}.

We detail how this notion of privacy can be seen as a relaxation of ε-differential privacy
in Appendix C.3.

We present now a lower bound on the expected `2 distance between the maximum
likelihood estimate of the hyperplane wk for any class k, and the estimate of the same
hyperplane for any ε-generalized private mechanism.

Lemma 3.3.2. Let Xk ∈ Rd×nk , Xk = {x1, . . . ,xnk} ∼ p(x|Ck)nk following the Gaus-
sian mixture model with known fixed covariance Σ = I. Then for ε-generalized private
mechanisms P with (d/2nk) ≥ ε > 0, when d− (ln(0.05) + d(1−O(1)))/d ≤ nk we have

sup
P

E[||P(Xk)−wk||2] ≥ O(ε−1d
√

ln(2nk/d)) (3.19)

with probability ≥ 0.95 over the random draws of Xk, and the expectation is over the
randomness of P.

In particular, we see that, given a large enough number of samples nk, with high
probability, the expected error for any generalized private mechanism P is proportional
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Chapter 3. Differential Privacy based Generalization Bounds.

to the dimensionality of the dataset d and inversely proportional to the differential
privacy ε. We note here that the above holds up to a constant which hides dependencies
on the mean µk and the covariance Σ of the generating distribution. At the same time,
we would expect that for real data the above would hold for the intrinsic dimensionality
and not the ambient dimensionality which is often much higher. Furthermore, we have
presented a result in terms of the `2 distance and not the empirical risk. As such, the
result is more qualitative than quantitative, and furthermore it is an empirical question
as to whether it provides any useful intuition.

We provide a proof outline in Appendix C.3 and the complete proof in Appendix C.4. We
also clarify here, the role of supP in Lemma 3.3.2. In particular the exact formulation of
our proof is that for any P estimating wk belongs to a set of similar cases of which one
should have error at least O(ε−1d

√
ln(2nk/d)). We then assume that the worst case and

wk coincide for some P. Formally proving this assumption might be interesting in itself.

3.3.3 Experiments

We first test whether the above analysis is validated by synthetic data. For this, we
construct a binary classification problem where p(x|C0) = N (0, I) and p(x|C1) = N (4 ∗
1, I). We then sample Xk = {x1, · · · ,xnk} ∼ p(x|Ck)nk where nk = 1000, k ∈ {0, 1}, set
X = [X0; X1] and Y accordingly and optimize

min
θ
Lcat
X,Y (f(x;θ)), f(x;θ) = softmax(Wx)

using the Analytical Moments Accountant algorithm 1. In particular, we use the
hyperparameters: group size L = 250, gradient norm c = 1, and number of iterations
T = 10 ∗ 8. We plot the results in Figure 3.3. We see that the results agree qualitatively
with our theoretical analysis. For high values of d and small values of ε the accuracy of
the learned classifier becomes close to random, both in the training and testing set.

In particular, for real datasets this would imply that for more complex data where the
latent representations in the penultimate layer of a deep neural network would have
higher intrinsic dimensionality, the differentially private mechanism would have high
empirical risk even for high values of ε (small privacy).

Qualitative evaluation: We test the qualitative implications of the above for the deep
neural networks of section 3.2.3 by using the latent representations of the pretrained
non-private classifiers a2(x) = φ2(W∗

2φ1(W∗
1x)), x ∈ X. We train and compute a bound

on only the final deep neural network layer by minimizing

min
W
Lcat
X,Y (f(a2(x); W)), f(a2(x); W) = softmax(Wa2(x))

using the Analytical Moments Accountant. Using a procedure identical to the one
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(a) (b)

Figure 3.3 – Training and testing accuracy for synthetic data: We generate a
synthetic two class problem according to p(x|C0) = N (0, I) and p(x|C1) = N (c ∗ 1, I)
and use it to train a differentially private softmax classifier f defined by f(x;θ) =
softmax(Wx). We achieve differential privacy using the Analytical Moments Accountant,
and compute the training and testing accuracy for different values of differential privacy ε
and ambient dimensionality d. We observe that the accuracy exhibits a phase transition
beyond which it drops rapidly both when we increase the dimensionality d and decrease
the privacy loss ε.

in section 3.2.3, one can then use the computed parameter ε and the empirical risk
Ef∼ρ̂L`01

X,Y (f) for only this final layer to obtain generalization bounds. Note that these
bounds are invalid (we have implicitly learned the first and second layers in a non-
private way), however they are illustrative of how close we could possibly get to the true
generalization error implied by the validation set. One can argue that learning the final
softmax layer privately should be at least as hard as learning the entire network.

We plot the results alongside the bounds for the differentially private full networks in
Figure 3.4. We see that for the CIFAR dataset even if we only optimize the final softmax
layer in a differentially private way we remain quite far from the true generalization
error implied by the validation set. Furthermore, the more complex the dataset, from
CIFAR-2 to CIFAR-10, the greater the gap is between the differentially private final
layer and the generalization error implied by the validation set. For all MNIST datasets
the differentially private final layer bound is much closer to the true generalization error,
however again the more complex the dataset the greater the distance with the true
generalization error.

Quantitative evaluation: We will now try to use our Gaussian Mixture Model to
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(a) (b) (c)

(d) (e) (f)

Figure 3.4 – Optimizing only the final layer: We compute the accuracy and com-
plexity of only the final softmax deep neural network layer “DP-SGD Log”, assuming
that the privacy cost of previous layers is negligible. We compare with the complexity
and accuracy that we can estimate for the full network “DP-SGD Full”. We reason that
this serves as an optimistic but valid benchmark on how good of a bound we can obtain
in theory. We see that there is indeed a phase transition as below a certain classifier
complexity the empirical risk increases rapidly. Note that for CIFAR there is a gap
between what we can obtain even with this optimistic approach and the complexity
implied by the validation set. For MNIST there is virtually no such gap. Note also that
the non-linear distortions are due to the Catoni bound.

make predictions about the deep neural network. Specifically we will try to estimate the ε
for which the empirical risk of the deep neural network will increase significantly. For the
deep neural network experiments of Figure 3.4 we assume that the point where significant
degradation starts is the bound estimate closest to the origin, as further reducing the
complexity/privacy loss, will only result in a big reduction in classification accuracy. For
example for CIFAR-10 (Figure 3.4d), this would be the point Complexity ≈ 14% and
Empirical Risk ≈ 45%.

Our theoretical analysis depends crucially on the dimensionality d of the data at the
input of the final layer. We compute the dimensionality in the following way. We first
compute the singular value decomposition of the latent representations of the training
set in each dataset case, from the pretrained model. We can then train a linear classifier,
using the training representations svdc(a2(x)) = svdc(φ2(W∗

2φ1(W∗
1x))), x ∈ X, where
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Dimensions d Pred Complexity (ε/2) Bound Complexity
MNIST-2 2 0.99% 0.7%
MNIST-5 12 1.49% 1.57%
MNIST-10 13 1.49% 3.39%
CIFAR-2 80 3.25% 11.36%
CIFAR-5 100 3.25% 15.2%
CIFAR-10 170 4.49% 14.84%

Table 3.3 – Complexity predicted by the synthetic example and the Analytical
Moments Accountant: For the dimensionalities d of each dataset we calculate the
parameter ε for which the phase transition occurs between good classification accuracy and
trivial random predictions using our synthetic example Figure 3.3. Then we estimate using
Figure 3.4 the minimal complexity estimated by the Analytical Moments Accountant,
beyond which the empirical risk increases sharply. Although the estimates diverge they
are roughly within the same order of magnitude and follow the same ordering proving
some predictive power.

X is the training set and svdc(·) denotes a projection on the c most important singular
directions (we re-project back to the original space). We can use the same projection on
the validation set and we can then estimate d as the minimal value of c, such that the
validation accuracy of the linear classifier doesn’t degrade.

We can then estimate the privacy ε, for which the training accuracy of the private
classifier will degrade significantly in the following way. We go back to the synthetic
dataset and Figure 3.3 and set this ε to the value where the classifier has dropped to
75% accuracy, with 75% being the midpoint between the non-private 100% accuracy and
the trivial 50% accuracy.

We present the results in Table 3.3. The synthetic example that we used to make our
predictions has a number of shortcomings: i) we have not finetuned the covariance to
match the scaling of the real data and the synthetic problem is a binary classification
problem, while a number of the real datasets are multiclass classification problems. Given
the above, the predicted values are close to the empirical values, and our analysis therefore
captures approximately the correct dependencies on the intrinsic dimensionality d and
the privacy parameter ε.

3.4 Conclusion and Summary

In this chapter we have looked at PAC-Bayesian bounds in the case where the prior and
posterior distributions are modeled as Gaussians and where the prior mean is learned in a
differentially private way. By applying state of the art differentially private mechanisms,
we demonstrated that it is possible to obtain non-vacuous bounds which are significantly
tighter than the previous approaches in Chapters 1 and 2. In particular, setting the
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posterior to be equal to the prior resulted in significant improvements, while further
optimizing the posterior mean resulted in some small gains at the cost spending resources
on hyperparameter tuning. At the same time, we presented a simple theoretical analysis
which can be interpreted as a lower bound to how much empirical risk one can achieve for
a given privacy budget, and related this to the deep learning setting. Our results suggest
that properly accounting for the amount of information added to the learned weights by
each gradient step can be a promising direction in deriving non-vacuous generalization
bounds for more complex architectures and datasets.
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Summary and Discussion
Summary

In Chapter 1 we started off with a discussion of spectral complexity. We easily constructed
datasets with an increasing number of translations and elastic deformations, such that
spectral complexity doesn’t correlate empirically with generalization error. As such we
advocate that the invariance properties of deep neural networks should be looked at
in more detail when constructing generalization bounds. At the same time claims that
spectral complexity correlates empirically with generalization error have to be stated
with more precision. In the second part of the chapter we compared spectral complexity
estimates for convolutional neural networks and locally connected networks and found
that they are identical up to log factors that are artifacts of the derivations. We argued

(a)

Figure 3.5 – Risk-Complexity plot for MNIST 10: The area below the dashed
line corresponds to non-vacuous pairs of (complexity, empirical risk). The purple star
corresponds to the optimal bound implied by the validation set. “Spectral” corresponds
to the complexity measurement using spectral complexity from Chapter 1. “PAC-B”
corresponds to optimal bound combinations that we derive in Chapter 2 using the
PAC-Bayesian approach. “Diff-P” corresponds to optimal bound combinations that we
obtain when we learn an informative prior mean in Chapter 3.
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how this prescribes caution when using vacuous bounds to compare different architectures.

In Chapter 2 we looked at non-vacuous PAC-Bayesian bounds for randomized neural
networks. These take the form

Ef∼ρ̂L`
′
D(f) ≤Φ−1

β (Ef∼ρ̂L̂`
′
X,Y (f) + 1

βn
(KL(ρ̂||π) + ln 1

δ
)), (3.20)

where Φ−1
β (x) = 1−e−βx

1−e−β and the posterior and priors are Gaussian such that ρ̂ =
N (µρ̂,Σρ̂) and π = N (µπ,Σπ). We found that a baseline approach where the prior
mean was chosen to be the random deep neural network initialization, coupled with
isotropic covariances with a shared scaling factor λ in both prior and posterior

ρ̂ = N (µρ̂, λI),

π = N (µinit, λI),

resulted in many cases in non-vacuous estimates. We also saw how relaxing slightly from
the baseline, such that the posterior and prior covariances Σρ̂,Σπ would be diagonal
(known as the mean-field approximation) and then optimizing using variational inference,
resulted in negligible improvements. We then presented some experiments were the
covariance matrices where relaxed to being block-diagonal, which resulted in a significant
tightening of the bounds.

In Chapter 3 noting the importance of choosing the prior mean µπ in PAC-Bayes bounds
with Gaussian priors and posteriors, we reviewed existing results from Dziugaite and Roy
(2018a) in learning informative prior means from the training set by enforcing differential
privacy constraints. We detailed how moving from SGLD (Welling and Teh, 2011) as a
mechanism to enforce privacy, to a state of the art approach known as the Analytical
Moments Accountant (Abadi et al., 2016), resulted in alleviating a number of theoretical
concerns when using the former. We then noted how the posterior could be set to be
identical to the prior, circumventing the need to optimize further the posterior. This
simplified approach, where we set the posterior equal to the prior, resulted in even tighter
bounds than Chapter 2. Through experiments we showed how optimizing further the
posterior resulted in limited improvements to the bound. We then presented a theoretical
analysis and related it to limits to the tightness of generalization bounds that we can
achieve using differential privacy. In particular the intrinsic dimensionality of the dataset
in the penultimate layer of a deep neural network was found to contribute linearly to the
`2 error between the maximum likelihood solution of the final layer and any solution of a
suitably private algorithm. The privacy loss ε can be readily linked to an estimate of the
complexity of the learned classifier. As such any private algorithm with a low enough ε
(low model complexity) should also have a high empirical risk.

72



Summary and Discussion

In Figure 3.5 we plot again the main figure of the thesis.

Compared to proving generalization using a validation set we derived a number of
intuitions regarding why deep neural networks generalize well. In particular in Chapter 2
we saw that flatness of a minimum is related to good generalization, adding to previous
observations by Keskar et al. (2016); Neyshabur et al. (2015, 2017a). Researchers have
looked at ways to relate flatness of minima to the noise introduced by stochastic gradient
descend (Kleinberg et al., 2018), thus coming closer to painting a complete picture of the
solution to the generalization puzzle. At the same time we contribute the refined intuition
that the curvature at the minimum is quite complex and that our generalization bounds
should reflect this complexity with suitably expressive posteriors. Finally Chapter 3
implies that optimizing a deep neural network with stochastic gradient descent, severely
limits the amount of information that the deep neural network weights obtain from the
training set. Our results simply add to an already large literature relating algorithmic
stability (Kuzborskij and Lampert, 2017; Bousquet and Elisseeff, 2002; Hardt et al., 2016;
Chaudhari et al., 2019) and generalization, however we differ in providing non-vacuous
bounds.

Discussion

A number of interesting open problems exist.

In Chapter 1 we argued that incorporating invariances into generalization bounds might
tighten them and remove a number of inconsistencies. While there have been a few
works in this direction (Lyle et al., 2020; Sokolic et al., 2016; Achille and Soatto, 2018),
they have dealt mainly with greatly simplified cases, such as when a classifier learns
invariances using data augmentation (Lyle et al., 2020). Incorporating architectural
invariances, and reasoning about more complex invariances is still largely unexplored.
For example, well trained deep neural networks are invariant to complex transformations
of images, such as changes to color and texture.

In Chapter 2 we saw that using more expressive Gaussian posteriors with block diagonal
covariances, resulted in significantly tighter bounds. One could look at richer approxima-
tions of the true covariance, such as the complete K-FAC. The literature on the subject is
growing (Mishkin et al., 2018; Lin et al., 2019b,a; Ritter et al., 2018; Zhang et al., 2018;
Bae et al., 2018; Sun et al., 2019; Louizos et al., 2019), together with new optimization
libraries (Dangel et al., 2019, 2020), however problems persist and existing approaches
are limited to simple data distributions and small architectures. Sampling from such
Gaussians efficiently and optimizing the corresponding variational optimization problem
is a promising area of future research.

In Chapter 3 adding Gaussian noise to gradients resulted limiting the amount of informa-
tion that training samples conferred to the learned deep neural network weights, resulting
in a network that had provably not memorized the training data and therefore generalized
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well. However, one might argue that not all samples affect all weights equally. Taking
into account any latent structure in the gradient updates might allow us to decrease ε
(increase privacy) while retaining low empirical risk, thus further tightening our bounds.
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A Appendix

We denote vectors with bold lowercase letters and matrices with bold capital letters.
Given two probability measures p and q over a set X we define the Kullback-Leibler
divergence as KL(p||q) =

∫
X log dp

dqdp. We denote with ϕ(x) = 1√
2πe
− 1

2x
2 the Gaussian

kernel.

In the derivations below we will rely upon the following useful theorem for the concentra-
tion of the spectral norm of sparse random matrices

Theorem A.0.1. Bandeira et al. (2016) Let A be a d2 × d1 random rectangular matrix
with Aij = ξijψij where {ξij : 1 ≤ i ≤ d2, 1 ≤ j ≤ d1} are independent N (0, 1) random
variables and {ψij : 1 ≤ i ≤ d2, 1 ≤ j ≤ d1} are scalars. Then

P(||A||2 ≥ (1 + ε){σ1 + σ2 + 5√
log(1 + ε)

σ∗

√
log(max(d2, d1)) + t}) ≤ e−t2/2σ2

∗ (A.1)

for any 0 ≤ ε ≤ 1/2 and t ≥ 0 with

σ1 := max
i

√∑
j

ψ2
ij σ2 := max

i

√∑
j

ψ2
ij σ∗ := max

ij
|ψij |. (A.2)

In the following we will use the same numbering for Theorems and Lemmas as in the
main paper. Theorems and Lemmas unique to the appendix will be numbered with a
prefix corresponding to the section where the theorem is introduced and suffix with a
corresponding number.
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(a) σ1 := maxi

√∑
j ψ

2
ij (b) σ2 := maxj

√∑
i ψ

2
ij

Figure A.1 – σ1 and σ2: We plot here the structure of a matrix implementing a 1-d locally
connected layer with 2 input and 2 output channels. The matrix is a concatenation of 4
matrices that have the structure of 1-d convolutions without weight sharing. The purple
lines illustrate how for σ1 and σ2 are computed. Remembering that ψij = 1 only if the
matrix is non-zero at the location i, j, we see that σ1 can be seen as the maximal number
of non-zeros along the x-axis of the matrix and σ2 can be found as the maximal number
of non-zeros along the y-axis of the matrix. σ1 is related to the overlap between all input
filters for a given output channel and σ2 is related to the support of the 1-d filters.

A.1 Fully Connected Layers

Lemma A.1.1. Let U ∈ Rd2×d1 be the perturbation matrix of a fully connected layer with
with row and column sparsity equal to s. Then if non-zero elements follow Ui,j ∼ N (0, σ2),
with probability greater than 1− δ

||U||2 ≤ O(σ(2
√
s+

√
2 log(1

δ
))). (A.3)

Proof. For u ∼ N (0, I) we need define an index function that allows a Gaussian random
noise variable at the locations where the original dense layer is non-zero.

We assume that ψij = 1 when Uij 6= 0 and is zero otherwise, and get the result
trivially from Theorem A.0.1. We can extend the result to σ > 0 by considering that
||σUl||2 = σ||Ul||2.
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A.2 Locally Connected Layers

Lemma 1.3.7. Let U ∈ Rd2×d1 be the perturbation matrix of a 2d locally connected layer
with a input channels, b output channels, filters φ ∈ Rq×q and feature maps F ∈ Rm×m.
Then, if non-zero elements follow Ui,j ∼ N (0, σ2), we have

||U||2 ≤ O(σ(q[
√
a+
√
b] +

√
2 log(1

δ
))), (A.4)

with probability greater than 1− δ.

Proof. We will consider first the case u ∼ N (0, I). A convolutional layer is characterized
by it’s output channels. For each output channel each input channel is convolved with
an independent filter resulting in a set of feature maps. For each output channel these
feature maps are then summed together. We consider locally connected layers, i.e. the
layers are banded in the same way as convolutions but the entries are independent and
there is no weight sharing. For the case of one dimensional signals the implied structure
is plotted in Figure A.1.

Similar to Lemma A.1.1 we assume that ψij = 1 when Uij 6= 0 and is zero otherwise.
We need to evaluate σ1 := maxi

√∑
j ψ

2
ij , σ2 := maxj

√∑
i ψ

2
ij and σ∗ := maxij |ψij | for

a matrix like the one in Figure A.1.

We plot what these sums represent in Figures A.1a, A.1b. We are however working
typically with 2 dimensional signals. For σ1 we can find an upper bound, by considering
that the sum for a given filter and a given pixel location represents the maximum number
of overlaps for all 2d shifts. For the case of 2d this is q2, equal to the support of the
filters. We plot these shifts in Figure A.2. We also need to consider that there are a
input channels. We then get

σ1 := max
i

√∑
j

ψ2
ij = max

i

√ ∑
j:ψij=1

ψ2
ij =

√∑
a

∑
q2

12 =
√
aq2 = q

√
a. (A.5)

For σ2 each column in the matrix represents a concatenation of convolutional filters
f ∈ Rq×q. The support of the filters is q2 and there are b filters stacked on top of each
other, corresponding to the b output channels. Then it is straight forward to derive that

σ2 := max
j

√∑
i

ψ2
ij = max

j

√ ∑
i:ψij=1

ψ2
ij =

√∑
b

∑
q2

12 =
√
bq2 = q

√
b. (A.6)

Furthermore trivially σ∗ = 1 and when σ > 0 we can get the result by considering that
||σUl||2 = σ||Ul||2.
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Figure A.2 – Possible shifts with overlap: With blue we plot a 2d filter f ∈ R3×3 and
3 filters f ∈ R3×3 that overlap with it’s bottom right pixel. In purple we plot the box
denoting the boundaries of the set of all shifted filters that overlap with the bottom right
pixel.

A.3 Detailed proof of Theorem 1.3.1

A.3.1 Convolutional Layers proof of Lemma 1.3.4

Lemma 1.3.4. Let U ∈ Rd2×d1 be the perturbation matrix of a 2d convolutional layer
with a input channels, b output channels, convolutional filters φ ∈ Rq×q and feature
maps F ∈ Rm×m. We assume that elements Uij are non-zero only if they correspond to
non-zero locations in the sparsity pattern of the convolution operator. Let these elements
follow a Gaussian distribution Uij ∼ N (0, σ2). We have

||U||2 ≤ σ(q[
√
a+
√
b] +

√
2 log(2m2

δ
)), (A.7)

with probability greater than 1− δ.

Proof. We consider “noise” filters f ∈ Rq×q and feature maps F ∈ Rm×m. We define
the convolutional noise matrix from input channel j to output channel i in the spatial
domain as Aij ∈ Rm2×m2 and in the frequency domain as Ãij ∈ Cm2×m2 and we denote
the Fourier transform matrix as F ∈ Cm2×m2 . Each convolutional matrix corresponds
to one convolutional noise filter f ij ∈ Rq×q. We can now define the structure of the 2d
convolutional noise matrix U. Given a input channels and b output channels the noise
matrix U is structured as

U =


A00 ... A0a

... . . . ...
Ab0 ... Aba

 . (A.8)

For an output channel b the operation [A00 · · ·A0a]x = ∑a
i=0 A0ixi results in multiply-

ing each channel representation xi ∈ Rm2 of the complete signal x ∈ Ram2 with the
convolution filter matrix A0i, where in our case the filter is Gaussian noise.

By exploiting the unitary-invariance property of the spectral norm, we transform this
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(a) (b)

Figure A.3 – Concatenation of diagonal matrices: Matrix U can be transformed
to the frequency domain and can be written as a concatenation of diagonal frequency
matrices A.3a. We can rearrange the columns and rows of this concatenated matrix to
obtain a block diagonal matrix A.3b, which is easier to analyze theoretically. For example
we can create the top left block by moving column 5 to column 1 and then moving row 5
to row 1.

matrix into the Fourier domain to obtain

||U||2 = ||(Ib ⊗ FT )


Ã00

... Ã0a

... . . . ...
Ãb0

... Ãba

 (Ia ⊗ F)||2

= ||


Ã00

... Ã0a

... . . . ...
Ãb0

... Ãba

 ||2 = ||


B̃0 ... 0
... . . . ...
0 ... B̃m2

 ||2,
(A.9)

where we have used the fact that the matrices Ãij are diagonal and a concatenation of
diagonal matrices can always be rearranged into block diagonal form. We explain why
this the case schematically in Figure A.3. In our case, we have defined blocks

B̃n =


λ00
n . . . λ0a

n
... . . . . . .

λb0n . . . λban

 . (A.10)

Where n ∈ {0, · · · ,m2} denotes a frequency and can be mapped one to one with pairs
of 2-dimensional coordinates n1 ∈ {0, · · · ,m}, n2 ∈ {0, · · · ,m}. The entries λijn of this
matrix are
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λijn = λijn1,n2 =
q−1∑
k1=0

q−1∑
k2=0

e
−2πi( k1n1

q
+ k2n2

q
)
f ijk1,k2

=
q−1∑
k1=0

q−1∑
k2=0

cos(2π(k1n1
q

+ k2n2
q

))f ijk1,k2
+ i

q−1∑
k1=0

q−1∑
k2=0

sin(2π(k1n1
q

+ k2n2
q

))f ijk1,k2
,

(A.11)

where n1,n2 are the 2-dimensional frequency coordinates, i, j denote the i-th output and
j-th input channel.

In this way the n-th block B̃n corresponds to the n-th frequency components from the
Fourier transforms of all the filters of all the channels, f ij ∀i ∈ {1, ..., b},∀i ∈ {1, ..., a}.
We will also need the matrices Re(B̃n) and Im(B̃n)

Re(B̃n) =


Re(λ00

n ) . . . Re(λ0a
n )

... . . . . . .

Re(λb0n ) . . . Re(λban )

 , Im(B̃n) =


Im(λ00

n ) . . . Im(λ0a
n )

... . . . . . .

Im(λb0n ) . . . Im(λban )

 . (A.12)

Given that the elements of all the “noise” filters f ijk1,k2
have Gaussian distributions, the

entries Re(λijn ), Im(λijn ) of these matrices have the following distributions

Re(λijn ) ∼ N (0, σ2
re,n) = N (0,

q−1∑
k1=0

q−1∑
k2=0

cos2(2π(k1n1
q

+ k2n2
q

))

Im(λijn ) ∼ N (0, σ2
im,n) = N (0,

q−1∑
k1=0

q−1∑
k2=0

sin2(2π(k1n1
q

+ k2n2
q

)).
(A.13)

We have now turned our initial problem into a form that lends itself more easily to
a solution. Our original matrix has been turned into a block diagonal form and each
block can be split into real and imaginary parts that have independent Gaussian entries,
we note however that blocks are not independent of each other. We will now derive a
concentration bound on the original matrix by using the fact that the spectral norm of a
block diagonal matrix is equal to the maximum of the spectral norms of the individual
blocks.

We can write the following inequalities

P(||U||2 ≤ ε) = P(
⋂
n

{||B̃n||2 ≤ ε}) ≥ P(
⋂
n

{||Re(B̃n)||2 + ||Im(B̃n)||2 ≤ ε}). (A.14)
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By setting ε = maxn(εn) and εn arbitrary constants, we can furthermore write

P(||U||2 ≤ max
n

(εn))

≥ P(
⋂
n

{||Re(B̃n)||2 + ||Im(B̃n)||2 ≤ max
n

(εn)})

≥ P(
⋂
n

{||Re(B̃n)||2 + ||Im(B̃n)||2 ≤ εn})

≥ P(
⋂
n

[{||Re(B̃n)||2 ≤ εn,re} ∩ {||Im(B̃n)||2 ≤ εn,im}])

≥ 1−
m2∑
n=1

[δn,re + δn,re],

(A.15)

where in line 4 we set εn = εn,re + εn,im and in line 5 we used a union bound and assumed
that

P(||Re(B̃n)||2 ≥ εn,re) ≤ δn,re,

P(||Im(B̃n)||2 ≥ εn,im) ≤ δn,im,

for positive constants {εn,re, εn,im, δn,re, δn,im} ∈ R+.

We will now calculate concentration inequalities for the matrices Re(B̃n) and Im(B̃n), to
derive a specific instantiation of the above general formula, for our setting. To do that
we first apply the following concentration inequality by Vershynin (2010) on the matrices
Re(B̃n) and Im(B̃n).

Theorem A.3.1. Let A be an a × b matrix whose entries are independent Gaussian
random variables with variance σ2. Then for every t ≥ 0

P(||A||2 ≥ σ(
√
a+
√
b+

√
2 ln(1

δ
))) ≤ δ. (A.16)

We obtain the following concentration inequalities

P(||Re(B̃n)||2 ≥ σre,n(
√
a+
√
b+

√
2 ln( 1

δn,re
))) ≤ δn,re,

P(||Im(B̃n)||2 ≥ σim,n(
√
a+
√
b+

√
2 ln( 1

δn,im
))) ≤ δn,im.

(A.17)

We will use the fact that maxn[σre,n + σim,n] ≤ 1.5q and substitute δn,re = δn,im =
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δ/(2m2), ∀n ∈ {1, ...,m2} in equation (A.15). We get

P(||U||2 ≤ max
n

(εn))

= P(||U||2 ≤ max
n

[(σre,n + σim,n)(
√
a+
√
b+

√
2 ln(2m2

δ
))])

= P(||U||2 ≤ 1.5q(
√
a+
√
b+

√
2 ln(2m2

δ
)))

≥ 1−
m2∑
n=1

[δn,re + δn,im]

= 1−
m2∑
n=1

[ δ

2m2 + δ

2m2 ] = 1−
m2∑
n=1

δ

m2 = 1− δ,

(A.18)

which implies the desired result.

We now prove that maxn[σre,n + σim,n] ≤ 1.5q. First using the derivative test we will the
maxima of

√∑
l sin2(θl) +

√∑
l cos2(θl). We see that

∂

∂θl
(
√∑

l

sin2(θl) +
√∑

l

cos2(θl)) = 1
2

2 cos(θl) sin(θl)
| sin(θl)|

− 1
2

2 cos(θl) sin(θl)
| cos(θl)|

= sin(θl) cos(θl)
| sin(θl)|| cos(θl)|

(| cos(θl)| − | sin(θl)|) = 0,

(A.19)

which implies that at the maximum

cos(θl) = sin(θl) = ± 1√
2
. (A.20)

Then we can calculate

max
n

[σre,n + σim,n] = max
n

[

√√√√√ q−1∑
k1=0

q−1∑
k2=0

cos2(2π(k1n1
q

+ k2n2
q

)

+

√√√√√ q−1∑
k1=0

q−1∑
k2=0

sin2(2π(k1n1
q

+ k2n2
q

)]

≤

√√√√√ q−1∑
k1=0

q−1∑
k2=0

1
2 +

√√√√√ q−1∑
k1=0

q−1∑
k2=0

1
2 = 2√

2
q ≤ 1.5q.

(A.21)
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A.3.2 Putting everything together

We now restate the PAC-Bayes theorem of McAllester (1999).

Theorem 1.4.1. McAllester (1999) Given a distribution D over X ×Y, a hypothesis set
F , a loss function `′ : F × X × Y → [0, 1], a prior distribution π over F , a real number
δ ∈ (0, 1], and a real number β > 0, with probability at least 1 − δ over the choice of
(X,Y ) ∼ Dn, we have

∀ρ̂ on F : Ef∼ρ̂L`
′
D(f) ≤Ef∼ρ̂L̂`

′
X,Y (f) +

√
KL(ρ̂||π) + ln 2n

δ

2n− 1 . (A.22)

Notice that the above gives a generalization result over a distribution of predictors. We
now restate a useful lemma which can be used to give a generalization result for a single
predictor instance.

Lemma 1.3.2 (Neyshabur et al. (2017b)). We assume a distribution D over X × Y,
a hypothesis set F parametrized by classifiers fθ with parameters θ, loss functions
`0, `γ : F × X × Y → [0, 1], a prior distribution π over θ, a real number δ ∈ (0, 1], a
real number γ > 0 and deterministic weights θ?. Then, for any random variable u s.t.
Pu[maxx∈X |fθ?+u(x)− fθ?(x)|2 ≤ γ

4 ] ≥ 1
2 , we have with probability at least 1− δ over

the choice of (X,Y ) ∼ Dn,

L`0D (fθ?) ≤ L̂
`γ
X,Y (fθ?) +O(

√
KL(ρ̂(θ? + u)||π) + ln6n

δ

n− 1 ) (A.23)

where n is the number of training samples.

Contrary to Theorem 1.4.1, Lemma 1.3.2 links the empirical risk L̂`γX,Y (fθ?) of the
predictor to the true risk L`0D (fθ?), for a specific predictor and not a posterior distribution
of predictors. We have also moved to using a margin γ based loss. The perturbation
u quantifies quantifies the simplicity of the predictor. The more noise we can add
to the parameters without raising the empirical risk, the lower the precision with
which we can encode the parameters, and the simpler the classifier is. The condition
Pu[maxx∈X |fθ?+u(x) − fθ?(x)|2 ≤ γ

4 ] ≥ 1
2 can be interpreted as choosing a posterior

with small variance, sufficiently concentrated around the current empirical estimate θ?,
so that we can remove the randomness assumption with high confidence.

How small should we choose the the variance of u? The choice is complicated because
the KL term in the bound is inversely proportional to the variance of the perturbation
(Figure A.4). Therefore we need to find the largest possible variance for which our
stability condition holds.

Let β = (∏l
i=0 ||Wi||2)1/l and consider a network with the normalized weights W̃i =
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(a) σ = 2 (b) σ = 5

Figure A.4 – DKL(p||q) with p(x) = 1√
2πσ2 e

− x2
2σ2 and q(x) = 1√

2πσ2 e
− (x−4)2

2σ2 : By defini-
tion the KL divergence of the two distributions is the integral of the red curve. We see
that as the variance increases the KL divergence between the two distributions decreases.

β
||Wi||2 Wi. Due to the homogeneity of the ReLu and Max-Pooling, we have that for
feedforward neural networks with ReLu activations fθ̃? = fθ? and so the (empirical and
the expected) loss (including margin loss) is the same for θ̃? = θ?. We can also verify
that (∏l

i=0 ||Wi||2) = (∏l
i=0 ||W̃i||2) and ||Wi||F

||Wi||2 = ||W̃i||F
||W̃i||2

, and so the excess error in the
theorem statement is also invariant to this transformation. It is therefore sufficient to
prove the theorem only for normalized weights θ̃?, and hence we assume w.l.o.g. that
the spectral norm is equal across layers, i.e. for any layer i, ||Wi||2.

The prior cannot depend on the learned predictor θ? or it’s norm, we will set σ based
on an approximation β̃. For each value of β̃ on a pre-determined grid, we will compute
the PAC-Bayes bound, establishing the generalization guarantee for all θ? for which
|β − β̃| ≤ 1

dβ, and ensuring that each relevant value of β is covered by some β̃ on the
grid. We will then take a union bound over all β̃ on the grid. In the previous we have
considered a fixed β̃ and the θ? for which |β− β̃| ≤ 1

dβ, and hence 1
eβ

d−1 ≤ β̃d−1 ≤ eβd−1.

Characterizing the condition Pu[maxx∈X |fθ?+u(x) − fθ?(x)|2 ≤ γ
4 ] ≥ 1

2 entails under-
standing the sensitivity of our classifier on random perturbations. To that end, we review
here a useful perturbation bound from Neyshabur et al. (2017b) on the output of a DNN

Lemma 1.3.3. (Perturbation Bound). For any B, l > 0, let fθ? : XB,d → Rk be a d-
layer network with ReLU activations. Then, for any θ?, and x ∈ XB,d, and perturbation
u = vec({Ui}li=0) such that ||Ui||2 ≤ 1

l ||Wi||2, the change in the output of the network
can be bounded as follows

|fθ?+u(x)− fθ?(x)|2 ≤ e2Bβ̃l−1∑
i

||Ui||2, (A.24)

where e, B and β̃l−1 are considered as constants after an appropriate normalization of
the layer weights.
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We note that correctly estimating the spectral norm of the perturbation at each layer
is critical to obtaining a tight bound. Specifically if we exploit the structure of the
perturbation we can increase significantly the variance of the added perturbation for
which our stability condition holds.

We need to find the maximum variance for which

Pu[max
x∈X
|fθ?+u(x)− fθ?(x)|2 ≤

γ

4 ] ≥ 1
2 .

For this we will use Lemmas 1.3.4 and A.1.1 which bound the spectral norm of the noise
at each convolutional layer and sparse fully connected layer respectively.

Lemma 1.3.5. (Perturbation Bound). For any B, l > 0, let fθ? : XB,d → Rk be a l-layer
network with ReLU activations and we denote C the set of convolutional layers and F
the set of fully connected layers. Then for any θ?, and x ∈ XB,d, and a perturbation for
u ∼ N (0, σ2I), for any γ > 0 with

σ = γ

42Bβ̃l−1[∑i∈CKi +∑
i∈F Ji]

, (A.25)

we have

Pu[max
x∈X
|fθ?+u(x)− fθ?(x)|2 ≤

γ

4 ] ≥ 1
2 , (A.26)

where e, B, β̃l−1 are considered as constants after an appropriate normalization of the
layer weights

Ki = qi{
√
ai +

√
bi +

√
2 log(4m2

i l)}, (A.27)

and
Ji = qi{2

√
si +

√
2 log(2l)}. (A.28)

Proof. We denote C the set of convolutional layers, F the set of fully connected layers
and assume |C|+ |F| = l where l is the total number of layers. We define events ||Ui||2 ≤
2√si+

√
2 log(2l) for the fully connected layers and ||Ui||2 ≤ qi{

√
ai+
√
bi+

√
2 log(4m2

i l)}
for the convolutional layers. We then assume that the probability for each of the |F|
and |C| events is upper bounded by 1

2l . We set Ki = qi{
√
ai +

√
bi +

√
2 log(4m2

i l)} and
Ji = {2√si +

√
2 log(2l)} and take a union bound over the above events. After some

calculations we obtain

P(
∑
i

||Ui||2 ≤ σ[
∑
i∈C

Ki +
∑
i∈F

Ji]) ≥ 1− (
∑
i∈C

1
2l +

∑
i∈F

1
2l ) = 1− 1

2 = 1
2 . (A.29)
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We are then ready to apply our result directly to Lemma 1.3.3. We calculate that with
probability ≥ 1

2

|fθ?+u(x)− fθ?(x)|2 ≤ e2Bβ̃l−1∑
i

||Ui||2

≤ σe2Bβ̃l−1[
∑
i∈C

Ki +
∑
i∈F

Ji].
(A.30)

We have now found a bound on the perturbation at the final layer of the network as a
function of σ with probability ≥ 1

2 . What remains is to find the specific value of σ such
that |fθ?+u(x)− fθ?(x)|2 ≤ γ

4 . We calculate

|fθ?+u(x)− fθ?(x)|2 ≤
γ

4
⇒ σe2Bβ̃l−1[

∑
i∈C

Ki +
∑
i∈F

Ji] ≤
γ

4

⇒ σ ≤ γ

42Bβ̃l−1[∑i∈CKi +∑
i∈F Ji]

.

(A.31)

We can now calculate the KL term in Theorem 4.1. by noting that ρ̂(θ?+u) = N (θ?, σ2I),
π(θ) = N (0, σ2I), and that then KL(ρ̂(θ? + u)||π) ≤ |θ?|

2

2σ2 . We get that for any β̃, with
probability ≥ 1− δ and for all θ? such that, |β − β̃| ≤ 1

l β

L`0D (fθ?) ≤ L̂
`γ
X,Y (fθ?) +O

(
BΨf Rθ?
γ
√
n

)
,

with ‖x‖2 ≤ B being a uniform bound on the input vectors, Ψf = q
∑
i∈C
√
bi+

∑
i∈F
√
si,

and

Rθ? :=
l∏

i=0
||Wi||2

(
l∑

i=0

||Wi||2F
||Wi||22

)1
2

. (A.32)

Finally, we need to take a union bound over different choices of β̃. Let us see how many
choices of β̃ we need to ensure we always have β̃ in the grid s.t. |β − β̃| ≤ 1

l β. We only
need to consider values of β in the range ( γ

2B )1/l ≤ β ≤ (γ
√
n

2B )1/l. For β outside this range
the theorem statement holds trivially: Recall that the LHS of the theorem statement,
L`0D (fθ?) is always bounded by 1. If βl < γ

2B , then for any x, |fθ?(x)| ≤ βlB ≤ γ/2 and
therefore L̂`γX,Y (fθ?) = 1. Alternatively, if βl > γ

√
n

2B , then the second term in equation
A.22 is greater than one. Hence, we only need to consider values of β in the range
discussed above. Since we need β̃ to satisfy |β − β̃| ≤ 1

l β ≤
1
l (

γ
2B )1/l, the size of the

cover we need to consider is bounded by n 1
2l l. Taking a union bound over the choices of

β̃ in this cover and using the bound L`0D (fθ?) ≤ L̂
`γ
X,Y (fθ?) +O

(
BΨf Rθ?

γ
√
n

)
, gives us the
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theorem statement.

A.4 Additional experiments on the Bartlett Metric

We include a number of additional experiments on the metric by Bartlett et al. (2017).
The experimental setup is identical to the own used for the Neyshabur metric. We note
that the conclusions we can draw are similar in both cases. They indicate a limitations
of spectral complexity based generalization bounds in general.

(a) (b)

(c) (d)

Figure A.5 – Varying the percentage of translations (a-b) and elastic deforma-
tions (c-d): We split Training and Testing datasets of constant size into two parts—the
first contains images that form a base space, whereas the rest of the dataset contains
images that are augmentations of the base space. The percentage values indicate the
percentage of the augmentations over the total dataset. (a/c) We plot the GE vs spectral
complexity. As we increase the number of translations/elastic deformations (equivalently
decrease the percentage of the base space) the slopes of the GE curves decrease and
we tend to have lower GE for the same spectral complexity metric values. (b/d) We
plot the GE vs % of augmentations for constant complexity values. The percentage of
augmentations correlates empirically with the GE indicating that spectral complexity
does not account for the architecture invariances.
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B Appendix

B.1 Derivations for valid bound

We present again for clarity the PAC-Bayes bound by Catoni (2007).

Theorem 2.2.1. Catoni (2007) Given a distribution D over X × Y, a hypothesis set
F , a loss function `′ : F × X × Y → [0, 1], a prior distribution π over F , a real number
δ ∈ (0, 1], and a real number β > 0, with probability at least 1 − δ over the choice of
(X,Y ) ∼ Dn, we have

∀ρ̂ on F : Ef∼ρ̂L`
′
D(f) ≤Φ−1

β (Ef∼ρ̂L̂`
′
X,Y (f)

+ 1
βn

(KL(ρ̂||π) + ln 1
δ

)),
(B.1)

where Φ−1
β (x) = 1−e−βx

1−e−β .

Evaluating a valid PAC-Bayes bound, using empirical estimates, requires some care.

Optimizing λ. For a start, when modeling π(θ) = N (0, λI), it is often beneficial to
optimize the hyperparameter λ. As the PAC-Bayes theorem requires the prior to be
independent from the posterior, we need to take a union bound over an appropriately
chosen grid, representing different possible values of λ. Following Dziugaite and Roy
(2017), we can choose λ = c exp{−j/b} for j ∈ N and fixed b, c ≥ 0, where c corresponds
to the grid scale and b to it’s precision. Then, if the PAC-Bayes bound for each j ∈ N is
designed to hold with probability at least 1− 6δ

π2j2 , by union bound it will hold uniformly
for all j ∈ N with probability at least 1− ( 6δ

π2 )∑j∈N
1
j2 = 1− δ. We solve for j = b log c

λ

and substitute this value in the probability for each term in the union bound. We get
that any bound corresponding to j ∈ N holds with probability 1 − 6δ

π2b2 ln (c/λ2) . Thus
looking back to theorem 2.2.1 the term ln 1

δ becomes ln π2b2 ln (c/λ2)
6δ . In practice we see

that even for very large numbers c, b, δ when divided by the number of samples n the
term ln π2b2 ln (c/λ2)

6δ is negligible and we treat j as a continuous number.
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Empirical estimate of Eθ∼ρ̂∗(θ)L̂`
′
X,Y (fθ). Furthermore, assuming an optimized poste-

rior ρ̂∗(θ) directly evaluating Eθ∼ρ̂∗(θ)L̂`
′
X,Y (fθ) is intractable. Instead, since L̂`′X,Y (fθ) is

a bounded random variable, one can approximate the expectation using Monte Carlo sam-
pling and use a Chernoff bound to bound it’s tail. Let L̃`′X,Y (fθ) ≡ (1/m)∑m

i=0 L̂`
′
X,Y (fθi)

be the observed failure rate of m random hypotheses drawn according to ρ̂∗(θ). One can
then show the following (Langford and Caruana, 2002) (presented here without proof)

Theorem B.1.1. (Sample Convergence Bound) For all distributions, ρ̂∗(θ), for all
sample sets (X,Y ), assuming that L̂`′X,Y (fθ) ∈ [0, 1]

Prρ̂∗(θ)(Eθ∼ρ̂∗(θ)L̂`
′
X,Y (fθ) ≤ L̃`

′
X,Y (fθ) +

√
ln 2

δ′

m
)

≤ δ′,
(B.2)

where m is the number of evaluations of the stochastic hypothesis.

We take a union bound over values of λ, and apply the Chernoff bound for the tail of the
empirical estimate of Ef∼ρ̂L̂`

′
X,Y (f). Putting everything together, one can obtain valid

PAC-Bayes bounds subject to a posterior distribution ρ̂∗(θ) that hold with probability
at least 1− δ − δ′ and are of the form

Eθ∼ρ̂∗(θ)L`
′
D(fθ) ≤Φ−1

β (L̃`′X,Y (fθ) + 1
βn

KL(ρ̂∗(θ)||π)

+ 1
βn

ln(π
2b2 ln(c/λ)2

6δ ) +

√
ln 2

δ′

m
),

(B.3)

where Φ−1
β (x) = 1−e−βx

1−e−β . Also c, b are constants, m is the number of samples from ρ̂ for
approximating Ef∼ρ̂L̂`

′
X,Y (f) and L̃`′X,Y (fθ) the empirical estimate.

Number of samples for Chernoff bound. In our experiments we use m = 1000
for all experiments including VI experiments. We make a single exception due to time
constraints for the case of optimizing the posterior in closed form (Section 4.1 equation
6) where we use m = 100.

• For m = 1000 and δ′ = 0.05, this gives bounds with confidence
√

log (2/0.05)
1000 ≈ 0.06.

• For m = 100 and δ′ = 0.05, this gives bounds with confidence
√

log (2/0.05)
100 ≈ 0.19.

Importantly bounds with even higher confidence
√

log (2/0.05)
10000 ≈ 0.019 and sample size

m = O(104) are possible for all experiments with a computational time in the order of
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weeks. However we consider this point a technicality as the Chernoff bound is quite
pessimistic. Empirically the estimates in our experiments converge much faster than
implied by the bound analysis, exhibiting no significant difference between m = 1000,
m = 100 or even m = 10 in the isotropic cases. This is because this particular
Chernoff bound is an application of Hoeffding’s inequality for general bounded random
variables (Vershynin, 2018)[p. 25]. The only assumption is that the random variable is
bounded L̂`′X,Y (fθ) ∈ [0, 1] , and thus the variance of the random variable is significantly
overestimated.
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B.2 Proof of Lemma 2.4.1

Lemma 2.4.1. The optimization problem minΣρ̂
Eη∼ρ̂′(θ)[1

2η
THη] + βKL(ρ̂(θ)||π(θ))

where ρ̂(θ) = N (µρ̂,Σρ̂) and π(θ) = N (µπ, λΣπ) is convex and is minimized at

Σ∗ρ̂ = β(H + β

λ
Σ−1
π )−1, (B.4)

where H ≡ ∇2L̂`cat
X,Y (fθ) captures the curvature at the minimum, while Σπ is the prior

covariance.

Proof.

Cβ(X,Y ; ρ̂, π) = Eη∼ρ̂′(θ)[
1
2η

THη] + βKL(ρ̂(θ)||π(θ))

= Eη∼ρ̂′(θ)[
1
2tr(HηηT )] + βKL(ρ̂(θ)||π(θ))

= 1
2tr(HEη∼ρ̂′(θ)[ηηT ]) + βKL(ρ̂(θ)||π(θ))

= 1
2tr(HΣρ̂) + β

2 (tr( 1
λ

Σ−1
π Σρ̂)− k + 1

λ
(µρ̂ − µπ)TΣ−1

π (µρ̂ − µπ)

+ ln
(

detλΣπ

det Σρ̂

)
)

(B.5)

The gradient with respect to Σρ̂ is

∂Cβ(X,Y ; ρ̂, π)
∂Σρ̂

= [12H + β

2λΣ−1
π −

β

2 Σ−1
ρ̂ ]. (B.6)

Setting it to zero, we obtain the minimizer Σ∗ρ̂ = β(H + β
λΣ−1

π )−1.
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B.3 Proof of Lemma 2.4.2

Lemma 2.4.2. For minσρ̂,σπ Eη∼ρ̂′(θ)[1
2η

THη]+βKL(ρ̂(θ)||π(θ)) with ρ̂(θ) = N (µρ̂,σρ̂)
and π(θ) = N (µπ, λσπ) the optimal prior and posterior covariances have elements

(σ∗ρ̂i)−1 = 1
2β [hi +

√
h2
i + 4βhi

(µiρ̂ − µiπ)2 ], (B.7)

(σ∗πi)−1 = λ

2β [
√
h2
i + 4βhi

(µiρ̂ − µiπ)2 − hi], (B.8)

where H ≡ ∇2L̂`cat
X,Y (fθ) captures the curvature at the the minimum. Then

min
σρ̂,σπ

Cβ(X,Y ; ρ̂, π) ≥ 1
2(
∑
i

ai(µiρ̂ − µiπ)2

+ β
∑
i

ln(hi + ai
ai

)),
(B.9)

where ai , ai(β, µiρ̂, µiπ, hi) = 1
2 [
√
h2
i + 4βhi

(µiρ̂−µiπ)2 − hi].

Proof. The developed objective (B.5) is

Cβ(X,Y ; ρ̂, π) = 1
2tr(HΣρ̂)+

β

2 (tr( 1
λ

Σ−1
π Σρ̂)−k+ 1

λ
(µρ̂−µπ)TΣ−1

π (µρ̂−µπ)+ln
(

detλΣπ

det Σρ̂

)
)

(B.10)

We substitute the precision matrix Λπ = Σ−1
π and Σρ̂ with the minimizer Σ∗ρ̂ = β(H +
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β
λΛπ)−1 in (B.10), we obtain

Cβ(X,Y ; ρ̂, π)|Σρ̂=Σ∗ρ̂ = 1
2tr(Hβ(H + β

λ
Λπ)−1) + β

2 (tr( 1
λ

Λπβ(H + β

λ
Λπ)−1)

+ 1
λ

(µρ̂ − µπ)TΛπ(µρ̂ − µπ)− k + ln
(

detλΛ−1
π

detβ(H + β
λΛπ)−1

)
)

=β

2 tr(H(H + β

λ
Λπ)−1) + β2

2λ(tr(Λπ(H + β

λ
Λπ)−1))

+ β

2 (+ 1
λ

(µρ̂ − µπ)TΛπ(µρ̂ − µπ)− k + ln
(

detλΛ−1
π

detβ(H + β
λΛπ)−1

)
)

=β

2 (tr((H + β

λ
Λπ)(H + β

λ
Λπ)−1)

1
λ

(µρ̂ − µπ)TΛπ(µρ̂ − µπ)− k + ln
(

detλΛ−1
π

detβ(H + β
λΛπ)−1

)
)

=β

2 [+ 1
λ

(µρ̂ − µπ)TΛπ(µρ̂ − µπ) + ln
(

detλΛ−1
π

detβ(H + β
λΛπ)−1

)
].

(B.11)

Substituting Λπ = diag(Λ1π,Λ2π, ...,Λkπ) and H = diag(h1, h2, ..., hk) in the above
expression we get

Cβ(X,Y ; ρ̂, π)|Σρ̂=Σ∗ρ̂ = β

2 ( 1
λ

∑
i

Λiπ(µiρ̂ − µiπ)2 −
∑
i

ln(Λiπ
λ

) +
∑
i

ln(
hi + β

λΛiπ
β

))

(B.12)

The above expression is easy to optimize. We see that the sole stationary point exists at

Λ∗iπ = λ

2β [
√
h2
i + 4βhi

(µiρ̂ − µiπ)2 − hi]. (B.13)

We now need to calculate second derivatives so as to prove that the stationary point
is a local optimum. We go back to the developed objective (B.10), and substitute
Σρ̂ = diag(σρ̂) and Σπ = diag(σπ). For the diagonal approximation the objective turns
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into a sum of separable functions.

Cβ(X,Y ; ρ̂, π) =
∑
i

hi
2 σiρ̂ +

∑
i

β

2λ
σiρ̂
σiπ
−
∑
i

β

2 +
∑
i

β(µiρ̂ − µiπ)2

2λ
1
σiπ

+ β

2 [
∑
i

ln(λσiπ)−
∑
i

ln(σiρ̂)]

=
∑
i

Aiσiρ̂ +
∑
i

Bi
σiρ̂
σiπ
−
∑
i

β

2 +
∑
i

Ci
1
σiπ

+Di[
∑
i

ln(λσiπ)−
∑
i

ln(σiρ̂)]

=
∑
i

[Aiσiρ̂ +Bi
σiρ̂
σiπ
− β

2 + Ci
1
σiπ

+Di(ln(λσiπ)− ln(σiρ̂))]

(B.14)

where we have set Ai = hi
2 , Bi = β

2λ , Ci = β(µiρ̂−µiπ)2

2λ , Di = β
2 .

We take the derivatives of one of these functions with respect to σiρ̂, σiπ and drop the
indices i for clarity

∂Cβ(X,Y ; ρ̂, π)
∂σρ̂

= A+ B

σπ
− D

σρ̂
,

∂Cβ(X,Y ; ρ̂, π)
∂σπ

= −Bσρ̂
σ2
π

− C

σ2
π

+ D

σπ
(B.15)

and

∂Cβ(X,Y ; ρ̂, π)
∂2σρ̂

= D

σ2
ρ̂

,
∂Cβ(X,Y ; ρ̂, π)

∂2σπ
= 2(Bσρ̂ + C) 1

σ3
π

− D

σ2
π

(B.16)

∂Cβ(X,Y ; ρ̂, π)
∂σρ̂∂σπ

= − B
σ2
π

,
∂Cβ(X,Y ; ρ̂, π)

∂σπ∂σρ̂
= − B

σ2
π

(B.17)

We need to check whether the Hessian matrix is PSD so that the stationary point we
found is a local minimum and the function is convex. We do that by calculating whether
all principal minors of the Hessian are positive.

∇2Cβ(σρ̂, σπ) =

 D
σ2
ρ̂

− B
σ2
π

− B
σ2
π

2(Bσρ̂ + C) 1
σ3
π
− D

σ2
π

 (B.18)
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We see easily that det( D
σ2
ρ̂
) > 0. While

det(∇2Cβ(σρ̂, σπ)) = D

σ2
ρ̂

(
2(Bσρ̂ + C) 1

σ3
π

− D

σ2
π

)
− B2

σ4
π

= 1
σ2
ρ̂σ

4
π

(
2CDσπ − (Dσπ −Bσρ̂)2

)
=
(

1
σ2
ρ̂σ

4
π

β2

2

)(
(µρ̂ − µπ)2

λ
σπ −

1
2(σπ −

σρ̂
λ

)2
) (B.19)

The determinant is not always positive and the function is not convex. We now check
whether the sole stationary point is always a local minimum. We start by substituting
σ?ρ̂ = β(h+ β

λ
1
σπ

)−1 in the multiplicand of (B.19) as the multiplier is positive by definition

det(∇2Cβ(σ?ρ̂, σπ)) = 1
σ?ρ̂

2σ4
π

β2

2

(
(µρ̂ − µπ)2

λ
σπ −

1
2(σπ −

β

λ
(h+ β

λ

1
σπ

)−1)2
)

= 1
σ?ρ̂

2σ4
π

β2

2

(
(µρ̂ − µπ)2

λ
σπ −

1
2(σπ −

β

λ
( σπλ

hλσπ + β
))2
)

= 1
σ?ρ̂

2σ4
π

β2

2

(
(µρ̂ − µπ)2

λ
σπ −

σ2
π

2 (1− ( β

hλσπ + β
))2
)

= 1
σ?ρ̂

2σ3
π

β2

2

(
(µρ̂ − µπ)2

λ
− σπ

2 ( hλσπ
hλσπ + β

)2
)

= 1
σ?ρ̂

2σ3
π

β2

2

(
(µρ̂ − µπ)2

λ
− λ2h2σ3

π

2(hλσπ + β)2

)

= 1
σ?ρ̂

2σ3
π2λ(hλσπ + β)2 (2(µρ̂ − µπ)2(hλσπ + β)2 − λ3h2σ3

π)

= 1
σ?ρ̂

22λ(hλΛ−1
π + β)2 (2Λπ(µρ̂ − µπ)2(hλ+ Λπβ)2 − λ3h2)

(B.20)

Where we substituted σπ = Λ−1
π as this will make the calculations easier. We now show
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a useful identity for Λ?π = λ
2β [
√
h2 + 4βh

(µρ̂−µπ)2 − h]

(Λ?π)2 = λ2

4β2

(
h2 + 4βh

(µρ̂ − µπ)2 − 2h
√
h2 + 4βh

(µρ̂ − µπ)2 + h2
)

= λ2

4β2

(
2h
(
h−

√
h2 + 4βh

(µρ̂ − µπ)2

)
+ 4βh

(µρ̂ − µπ)2

)

= hλ

β

λ

2β

((
h−

√
h2 + 4βh

(µρ̂ − µπ)2

)
+ 2β

(µρ̂ − µπ)2

)

= hλ

β

(
λ

(µρ̂ − µπ)2 − Λ?π

)
(B.21)

We substitute Λπ = Λ?π in (B.20) and again develop only the multiplicand

det(∇2Cβ(σ?ρ̂, σ?π)) = 1
σ?ρ̂

22λ(hλΛ?π−1 + β)2 (2Λ?π(µρ̂ − µπ)2(hλ+ Λ?πβ)2 − λ3h2)

= A(2Λ?π(µρ̂ − µπ)2(hλ+ Λ?πβ)2 − λ3h2)
= A(2Λ?π(µρ̂ − µπ)2(h2λ2 + 2hλΛ?πβ + (Λ?π)2β2)− λ3h2)

= A(2Λ?π(µρ̂ − µπ)2(h2λ2 + 2hλΛ?πβ + hλ

β

(
λ

(µρ̂ − µπ)2 − Λ?π

)
β2)− λ3h2)

= A(2Λ?π(µρ̂ − µπ)2(h2λ2 + hλΛ?πβ + βλ2h

(µρ̂ − µπ)2 )− λ3h2)

= A(2Λ?π(µρ̂ − µπ)2(h2λ2 + βλ2h

(µρ̂ − µπ)2 ) + 2(Λ?π)2(µρ̂ − µπ)2hλβ − λ3h2)

= A(2Λ?π(µρ̂ − µπ)2(h2λ2 + βλ2h

(µρ̂ − µπ)2 )

+ 2hλ
β

(
λ

(µρ̂ − µπ)2 − Λ?π

)
(µρ̂ − µπ)2hλβ − λ3h2)

= A(2Λ?π(µρ̂ − µπ)2(h2λ2 + βλ2h

(µρ̂ − µπ)2 ) + 2λ3h2 − 2h2λ2(µρ̂ − µπ)2Λ?π − λ3h2)

= A(2Λ?π(µρ̂ − µπ)2(h2λ2 + βλ2h

(µρ̂ − µπ)2 ) + λ3h2 − 2h2λ2(µρ̂ − µπ)2Λ?π)

= A(2Λ?πβλ2h+ λ3h2)
> 0

(B.22)
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where we have set A = 1
σ?ρ̂

22λ(hλ(Λ?π)−1+β)2 > 0. We have used (B.21) in lines 4 and 7.

Indeed the stationary point is a local minimum. We now show that there are no other
local minima at the boundaries of the domain. From (B.14) we see that we only need
to evaluate expressions of the form f(σρ̂) = σρ̂ − ln(σρ̂) and g(σπ) = 1

σρ̂
+ ln(σρ̂). By

application of L’Hôpital’s rule it’s easy to show that

lim
σρ̂→0
σπ=ct

Cβ(σρ̂, σπ) = lim
σρ̂→+∞
σπ=ct

Cβ(σρ̂, σπ)

= lim
σρ̂=ct
σπ→0

Cβ(σρ̂, σπ) = lim
σρ̂=ct
σπ→+∞

Cβ(σρ̂, σπ) = +∞
(B.23)

B.4 Proof of Lemma 2.5.1

Preliminaries We remind that a neural network transforms it’s inputs a0 = x to an
output fθ(x) = al through a series of l layers, each of which consists of a bank of
units/neurons. The computation performed by each layer i ∈ {1, ..., l} is given as

si = Wiai−1,

ai = φi(si).

We also denote the vectorization of the weights as θ = [vec(W0,:
0 )vec(W1,:

0 ) · · · vec(Wr,:
0 )],

where vec(Wj,:
i ) are the weights corresponding to layer i and neuron j. We assume trained

vectorized weights µρ̂i and trained weights in matrix form Wρ̂i for layer i. We will be
adding bounded perturbations to the weights of each layer i so that ||Wi −Wρ̂i||F ≤ C.
We will want to quantify the effect of these perturbations on the latent representations
of the network.

We then define Ai = [a0
i , · · · ,ani ], where aji is the unperturbed latent representation

of sample j at layer i, where Ai is produced by the operation Ai = rect(Wρ̂iAi−1).
We perturb only layer i and define Âi, as the representations resulting from the new
perturbed matrix Wi, Âi = rect(WiAi−1). We then define Ãi as the representations
at layer i with accumulated error from layers ≤ i. Similarly we can define the same
quantities for the pre-activations sji , we denote the corresponding matrices as Ŝi and S̃i.
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We can then define the layerwise mean square error from perturbing only layer i

ê2
i = (1/n)||Ai − Âi||2F ,

Ê2
i = (1/n)||Si − Ŝi||2F ,

as well as the accumulated mean square error

ẽ2
i = (1/n)||Ai − Ãi||2F ,

Ẽ2
i = (1/n)||Si − S̃i||2F ,

where the true representations are considered as constants. We make a simplifying
assumption, assuming that the mean square error of our trained classifier is 0. In
this case we can set L̂`mse

X,Y (fθ) ≡ ẽ2
l = (1/n)||Al − Ãl||2F , as Al now correspond to the

ground truth vectors. We can easily extend to the non-zero error case using the triangle
inequality.

These errors are difficult to analyze theoretically. As such we will make the useful
assumption that they are well approximated by a quadratic, which will make the analysis
tractable. This assumption is quite strong and we do not claim that the approximation is
tight. Furthermore Figure 3 of the main text does not directly apply in this setting; we
will be dealing with the mean-square error instead of the categorical cross-entropy and
we will be analyzing layerwise errors instead of the error at the output. At the same time
our aim is only to derive a useful surrogate objective. The empirical results in Section
5 provide evidence that the surrogate we propose is indeed useful in providing tighter
bounds.

Useful Lemmata We prove the following Lemma which will be useful later. We
first show that the mean square error at the output of a deep neural network can be
decomposed as a sum of mean square errors for intermediate representations.

Lemma B.4.1. Assuming layerwise perturbations that are bounded by a constant ||Wi−
Wρ̂i||F ≤ C, the accumulated mean square error ẽ2

l at layer l can be bounded as

(1/n)||Al − Ãl||2F ≤
l∑

i=0
ci(1/n)||Ai − Âi||2F +O(cl) (B.24)

where ∀i < l, ci = ∏l
k=i+1 ||Wk||2F , cl = 1 and c is some constant.

Proof. We denote âi+1 a single element of âi+1 and wT
i the corresponding row of Wi

where we drop the indices for individual samples and neurons for clarity. One can easily
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see through the properties of the rectifier function that

âi+1 = rect(wT
i+1ãi + wT

i+1(ai − ãi))
≤ ãi+1 + rect(wT

i+1(ai − ãi))
≤ ãi+1 + |wT

i+1(ai − ãi)|
(B.25)

Similarly we can obtain ãi+1 ≤ âi+1 + |wT
i+1(ai − ãi)| and therefore we can write

|ãi+1 − âi+1| ≤ |wT
i+1(ai − ãi)|.

In matrix notation this becomes

||Ãi+1 − Âi+1||F ≤ ||Wi+1(Ai − Ãi)||F ≤ ||Wi+1||F ||Ãi −Ai||F

By the triangle inequality we can then write

ẽi+1 = (1/
√
n)||Ãi+1 −Ai+1||F ≤ (1/

√
n)||Ãi+1 − Âi+1||F + (1/

√
n)||Âi+1 −Ai+1||F

≤ (1/
√
n)||Wi+1||F ||Ãi −Ai||F + (1/

√
n)||Âi+1 −Ai+1||F

≤
i∑
t=0

(
i+1∏

k=t+1
||Wk||F ||Ât −At||F ) + (1/

√
n)||Âi+1 −Ai+1||F

=
i∑
t=0

(
i+1∏

k=t+1
||Wk||F êt) + êi+1

(B.26)

If ||Wi−Wρ̂i||F ≤ C, then the errors êt = ||At−Ât||F and also all terms∏i+1
k=t+1 ||Wk||F êt

are bounded. We raise both sides to the power of 2. We get the desired terms as well as
terms of the form ∏i+1

k=a+1 ||Wk||F
∏i+1
k=b+1 ||Wk||F êaêb assuming that ||Wi||F ≤

√
c we

see that these are of the order O((
√
c)2l) = O(cl) and we get the desired result.

In the following it will be useful to deal with the preactivations sji instead of the
representations aji so as to avoid taking derivatives of the rectifier non-linearity. We will
then find useful the following simple Lemma.

Lemma B.4.2. Given the true preactivations Si and representations Ai, as well as the
perturbed Ŝi and Âi for layer i the following holds

(1/n)||Ai − Âi||2F ≤ (1/n)||Si − Ŝi||2F . (B.27)

Proof. We assume (rect(x)− rect(y))2 ≤ (x− y)2 and check that it holds for different
signs of x, y.

We will now approximate the precativation error for each layer using a second order
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Taylor expansion. We prove the following.

Lemma B.4.3. We apply a Taylor expansion of the layerwise preactivation error Ê2
i (θ)

of layer i, around a point µ. Given j neurons and n training samples, Ê2
i (θ) can be

approximated as

Ê2
i (θ) = (1/n)||Si − Ŝi||2F =

∑
j

(θij − µij)THi(θij − µij) +O(||θi − µi||3). (B.28)

where Hi = (1/n)∑n
k=0 aki−1aki−1

T .

Proof. It will be easier to work with the vectorized weights per neuron θij directly. We
note that the unperturbed representations Si are considered as constants, and get

∂Ê2
i

∂θij
= ∂

∂θij
(1/n)||Ŝi − Si||2F

= ∂

∂θij
(1/n)||WiAi−1 − Si||2F

= ∂

∂θij
(1/n)

n∑
k=0
||Wiaki−1 − ski ||22

= ∂

∂θij
(1/n)

n∑
k=0

r∑
t=0
||θTitaki−1 − skit||22

= 1
n

n∑
k=0

r∑
t=0

∂

∂θij
||θTitaki−1 − skit||22 = 2

n

n∑
k=0

(θTijaki−1 − skij)aki−1
T

(B.29)

where in the third line we expand with respect to the samples and in the fourth line we
expand with respect to each neuron. Then we can calculate the second order derivatives.

∂2Ê2
i

∂2θij
= ∂

∂θij

2
n

n∑
k=0

(θTijaki−1 − skij)aki−1
T = 2

n

n∑
k=0

aki−1aki−1
T
. (B.30)

From the above, it is clear that the Hessian is block diagonal, with identical blocks for
each neuron j. We can the approximate the layerwise error ê2

i using a second order
Taylor expansion around a point µ as

Ê2
i = ∂Ê2

i

∂θi
(θi − µi)T + 1

2(θi − µi)T
∂2Ê2

i

∂2θi
(θi − µi) +O(||θi − µi||3)

=
∑
j

[(θij − µij)T
n∑
k=0

1
n

aki−1aki−1
T (θij − µij)] +O(||θi − µi||3)

(B.31)

where we assume that the derivatives with respect to the layer weights of order other
than two are negligible. This is a strong but useful assumption to make, and one that
will make the analysis tractable.
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We are now ready to prove our main lemma.

Lemma 2.5.1. The differentiable surrogate objective

Eθ∼ρ̂(θ)L̂`mse
X,Y (fθ) + 1

βn
(KL(ρ̂(θ)||N (µπ, λI)) + ln 1

δ
) (B.32)

, assuming that the layerwise derivatives of order other than 2 are negligible, has the
following upper bound

∑
i,j

[Eηij∼ρ̂′ij(θ)[
1
2η

T
ijHiηij ] + 1

βn
KL(ρ̂ij(θ)||πij(θ)]

+O(cl)
(B.33)

where ρ̂ij(θ) = N (µρ̂ij ,Σρ̂ij), πij(θ) = N (µπij , λI), Hi = (2/n)∑n
k=0 aki−1aki−1

T , are
neuronwise posteriors, priors and Hessians.

Proof. We assume that the prior π(θ) and posterior ρ̂(θ) are block diagonal, with blocks
corresponding to weights in each neuron.

Eθ∼ρ̂(θ)[L̂`mse
X,Y (fθ)] ≤ Eθ∼ρ̂(θ)[

l∑
i=0

ci(1/n)||Ai − Âi||2F +O(cl)]

≤ Eθ∼ρ̂(θ)[
l∑

i=0
ci(1/n)||Si − Ŝi||2F +O(cl)]

=
l∑

i=0
Eθ∼ρ̂(θ)[ci]Eθ∼ρ̂(θ)[(1/n)||Si − Ŝi||2F ] +O(cl)]

≤
l∑

i=0
c∗Eθ∼ρ̂(θ)[(1/n)||Si − Ŝi||2F ] +O(cl)

=
l∑

i=0
c∗Eηij∼ρ̂′ij(θ)[

∑
j

ηTijHiηij ] +O(cl)

=
∑
i,j

c∗Eηij∼ρ̂′ij(θ)[ηTijHiηij ] +O(cl).

(B.34)

In line 3 we used the fact that the constant ci for layer i depends only on layers
k ≥ i+ 1, thus the two random variables are independent and the expectation operator
is multiplicative. In line 4 we assume that the terms ci = ∏l

k=i+1 ||Wk||2F are upper
bounded by the constant c∗. This is reasonable as in practice we will be adding Gaussian
noise with bounded variance to the layer weights. In line 5 we approximate the error
Ê2
i = (1/n)||Si − Ŝi||2F using (B.28) at point µρ̂ which is the mean of the posterior ρ̂(θ),

then we use that ρ̂′(θ) is a centered version of ρ̂(θ). We finally assume that the term
O(cl) dominates the remainders from the Taylor expansion.
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We then absorb the constant c∗ in the hyperparameter β. By noting that the KL
divergence of block-diagonal Gaussians can be decomposed as KL(N (ρ̂(θ)||π(θ)) =∑
ij KL(N (ρ̂ij(θ)||πij(θ)) we get the desired result.

Importantly we don’t require that the deep neural network was trained using the
mean square error. Rather we can optimize (B.33) for any network and assume that it’s
representations remain close based on the mean square error. Our experiments however
show that optimizing (B.33) is also a good surrogate for keeping the 01-error small.

B.5 Experimental Setup

Experiments for Variational Inference were performed on NVIDIA Tesla K40c GPU. All
other experiments were performed on an NVIDIA GEFORCE GTX 1080 GPU. The
libraries used were Tensoflow 1.15.0 (Abadi et al., 2015), Keras 2.2.4 (Chollet et al., 2015)
and Tensorflow-Probability 0.8.0 (Dillon et al., 2017).

When training the original deterministic classifiers, for the MNIST architectures we used
the Keras implementation SGD with a learning rate of 0.01, momentum value of 0.9
and exponential decay with decay factor 0.001. For CIFAR architectures we used the
Keras implementation of Adam with a learning rate of 0.001, β1 = 0.9, β2 = 0.999, decay
value of 0.00005 and the default value for the epsilon parameter. We used the softmax
activation as well as the categorical cross-entropy in both cases. MNIST architectures
were trained for 10 epochs while CIFAR architectures where trained for 200 epochs,
which was sufficient for the training loss to stop decreasing.

When optimizing the posterior distributions centered at the deterministic classifier we
used a grid search over β and/or λ where appropriate, with limits specified in the following
tables. The computational time reported refers to the total time required to compute
the plots in the main text for each setup, including computing the posterior and/or
prior distributions as well as sampling m number of samples for estimating the expected
empirical risk of the stochastic classifier.

MNIST. We report the following values for the MNIST experiments.
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Experiment β λ Time
MNIST Is@0 - [0.031,0.3] 14h
MNIST
Is@Init

- [0.031,0.3] 14h

MNIST VI [1,5] [0.03,0.1] 11h
MNIST Post [0.001,0.07] [0.00005,0.01] 33h
MNIST
Post+Prior

[0.000007,0.001] - 10h

MNIST
sK-FAC

[0.001,0.02] [0.001,0.1] 33h

The β and λ ranges are identical for MNIST10, MNIST5, MNIST2 while computation
times are of the same order of magnitude.

CIFAR. We report the following values for the CIFAR experiments.

Experiment β λ Time
CIFAR Is@0 - [0.031,0.3] 15h
CIFAR Is@Init - [0.031,0.3] 15h
CIFAR VI [1,2] [0.1,0.3] 10h
CIFAR Post [0.001,0.1] [0.001,0.1] 32h
CIFAR
Post+Prior

[0.0001,0.001] - 11h

CIFAR
sK-FAC

- - -

The β and λ ranges are identical for CIFAR10, CIFAR5, CIFAR2 while computation
times are of the same order of magnitude.

For the Variational Inference experiments we used the Adam (Kingma and Ba, 2014)
optimizer with a learning rate of 1e− 1 for 5 epochs of training. For efficient inference
we used the Tensorflow-Probability (Dillon et al., 2017) implementation of the Flipout
(Wen et al., 2018) estimator.

B.6 Notes on PAC-Bayes

We note here some important differences between the PAC-Bayesian setting and the
standard Bayesian treatment of deep neural networks, as there are some important
overlaps in the terms used.

First, while PAC-Bayes refers to a “posterior” ρ̂ this distribution is not required to be a
posterior in the Bayesian sense. On the contrary it can be chosen to be any distribution.
As such we are free to model ρ̂ using different distributions centered on the deterministic
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neural networks, decoupled from how we trained the original deterministic network. In
particular in Section 5 we can minimize the mean square error surrogate from Lemma 5.1.
even though the deterministic networks are trained using the categorical cross-entropy
loss.

Second, as noted in the main text the prior π in PAC-Bayes has to be independent of
the training set but can depend on the data distribution.
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C Appendix

C.1 Proof of Theorem 3.2.3

Theorem 3.2.3. Given a distribution D over X ×Y, a hypothesis set F , a loss function
`′ : F × X × Y → [0, 1], P : (X × Y)n →M (Rp) an ε-differentially private mechanism
for choosing a data-dependent prior over F , a real number δ ∈ (0, 1], and a real number
β > 0, with probability at least 1− δ over the choice of (X,Y ) ∼ Dn, we have

∀ρ̂ ∈M (Rp) on F : Ef∼ρ̂L`
′
D(f) ≤ Φ−1

β (Ef∼ρ̂L`
′
X,Y (f)

+ 1
β

(
KL(ρ̂||P(X,Y )) + ln 2

δ

n
+ ε2

2 + ε

√
ln(4/δ)

2n ))

(C.1)

where Φ−1
β (x) = 1−e−βx

1−e−β .

Proof. The proof is identical to the one found in Dziugaite and Roy (2018a), but we
include all details for completeness. We first present some useful definitions of concepts
related to differential privacy

Definition C.1.1. Let β ≥ 0, let X and Y be random variables in arbitrary measurable
spaces and, let X ′ be independent of Y and equal in distribution to X. The β-approximate
max-information between X and Y , denoted Iβ∞(X;Y ), is the least value k such that,
for all product measurable events E,

P{(X,Y ) ∈ E} ≤ ekP{(X ′, Y ) ∈ E}+ β. (C.2)

Similarly the max-information I∞(X;Y ) is defined to be Iβ∞(X;Y ) for β = 0.

Given an ε-differentially private mechanism P : Zn →M (Rp) one can also define the
β-approximate max-information Iβ∞(Z; P(Z)) between the mechanism output P(Z)
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and the dataset Z. The following theorem shows how ε-differential privacy controls the
β-approximate max-information Iβ∞(Z; P(Z)) between these two random variables.

Theorem C.1.1. Let P be an ε-differentially private algorithm. For a distribution D
over Z, let Z be a random variable Z ∼ Dn. then for any β > 0

Iβ∞(Z; P(Z)) ≤ nε2

2 + ε

√
n ln(2/β)

2 (C.3)

For every distribution q ∈M (Rp), let

R(q) = {Z ∈ Zn : (∃ρ̂ on F)Ef∼ρ̂L`
′
D(f) ≥ Φ−1

β (Ef∼ρ̂L̂`
′
X,Y (f) + 1

βn
(KL(ρ̂||q) + ln 1

δ′
))}.

(C.4)
It follows from the Catoni bound 3.20 that PZ∼Dn{Z ∈ R(q)} ≤ δ′. Let β > 0. Then, by
the definition of approximate max-information, we have

PZ∼Dn{Z ∈ R(P(Z))} ≤ eI
β
∞(Z;P(Z))P(Z,Z′)∼D2n{Z ∈ R(P(Z ′))}+ β

≤ eI
β
∞(Z;P(Z))δ′ + β , δ.

(C.5)

We have δ′ = e−I
β
∞(Z;P(Z))(δ − β). Therefore with probability no more than δ over

Z ∼ Dn,

∃ρ̂ on F , Ef∼ρ̂L`
′
D(f) ≥ Φ−1

β (Ef∼ρ̂L̂`
′
X,Y (f)+ 1

βn
(KL(ρ̂||P(Z))+ln 2

√
n

δ − β
+Iβ∞(Z; P(Z)))).

(C.6)
The results follows by replacing the approximate max-information Iβ∞(Z; P(Z)) with
the bound provided by Theorem C.1.1, and setting β = δ/2 (β is a free parameter).

C.2 Proof of Lemma 3.3.1

Lemma 3.3.1. Assume a K-class classification problem where p(x|Ck) = N (µk,Σ), then
by applying Bayes’ theorem, the maximum likelihood solution to the generative classifier
is

p(Ck|x) = exp(ak(x))∑
j exp(aj(x)) , ak(x) = w>k x+ wk0 (C.7)

where we have defined

wk = Σ̃−1
µ̃k, wk0 = −1

2 µ̃
>
k Σ̃−1

µ̃k + ln p̃(Ck) (C.8)
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and also we have p̃(Ck) = nk∑
i
ni
, µ̃k = 1

nk

∑
i∈C1 xi, Σ̃k = 1

nk

∑
i∈Ck(xi − µ̃k)(xi − µ̃k)>

and Σ̃ = ∑
i p̃(Ci)Σ̃i.

Proof. Consider the case of two classes, each having a Gaussian class-conditional density
with a shared covariance matrix, and suppose we have a data set {xn, tn} where n =
1, ..., N . Here tn = 1 denotes class C1 and tn = 0 denotes class C2. We denote the prior
class probability p(C1) = β, so that p(C2) = 1− β. For a data point xn from class C1, we
have tn = 1 and hence

p(xn, C1) = p(xn|C1)p(C1) = N (xn|µ1,Σ)β (C.9)

Similarly for class C2, we have tn = 0 and hence

p(xn, C2) = p(xn|C2)p(C2) = N (xn|µ2,Σ)(1− β) (C.10)

Thus the likelihood function is given by

p(t,X|β,µ1,µ2,Σ) =
N∏
n=1

[N (xn|µ1,Σ)β]tn [N (xn|µ2,Σ)(1− β)]1−tn . (C.11)

We take the derivatives of the above with respect to β,µ1,µ2,Σ and set them to zero.
We thus obtain the following maximum likelihood estimates

β̃ = N1
N1 +N2

(C.12)

µ̃1 = 1
N1

∑
n∈C1

xn (C.13)

µ̃2 = 1
N2

∑
n∈C2

xn. (C.14)

For the empirical covariance Σ̃ we get

Σ̃ = N1
N
S̃1 + N2

N
S̃2 (C.15)

where
S̃1 = 1

N1

∑
n∈C1

(xn − µ̃1)(xn − µ̃1)> (C.16)

S̃2 = 1
N2

∑
n∈C2

(xn − µ̃2)(xn − µ̃2)>. (C.17)
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(a) (b)

(c)
(d)

Figure C.1 – ε-generalized privacy and overview of the proof.

We can then get the result by noting that for the Gaussian model that we consider

p(x|Ck) = 1
(2π)D/2

1
|Σ|1/2

exp
{
−1

2(x− µk)>Σ−1(x− µk)
}

(C.18)

and that

p(Ck|x) = exp(ak)∑
j exp(aj)

(C.19)

where we defined ak as
ak = ln(p(x|Ck)p(Ck)). (C.20)
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outline

C.3 Relating ε-generalized privacy and ε-differential pri-
vacy and proof outline

We first state the definition of ε-generalized privacy for dimensions Rn+1

Definition C.3.1. A randomized algorithm P : Zn+1 → T is ε-generalized private
if, for a dataset Z ∈ Zn+1 and vectors x,y ∈ Rn+1 such that ||x − y||1 ≤ k, and all
measurable subsets B ⊆ T , we have P{P(ZDiag(x)) ∈ B} ≤ eεkP{P(ZDiag(y)) ∈ B}.

Recall the definition of ε-differential privacy

Definition C.3.2. A randomized algorithm P : Zn → T is (ε, δ)-differentially private
if, for all datasets Z,Z ′ ∈ Zn that differ at only one sample, and all measurable subsets
B ⊆ T , we have P{P(Z) ∈ B} ≤ eεP{P(Z ′) ∈ B}+ δ.

one can reformulate this definition as

Definition C.3.3. A randomized algorithm P : Zn+1 → T is (ε, δ)-differentially
private if, for a dataset Z ∈ Zn+1 and all measurable subsets B ⊆ T , we have
P{P({ZDiag(x)}/{0}) ∈ B} ≤ eεP{P({ZDiag(y)}/{0}) ∈ B}+ δ, with ||x− y||0 = 2,
||x||0 = ||y||0 = n and x,y ∈ {0, 1}n+1.

and we can see that ε-generalized privacy is a relaxation of ε-differential privacy.

We will see now how measurable events can be related between both cases. We are
interested in events that are based on averages of the datasets. As an example we
define the measurable event B given by B(Z) = {θ : ||θ − (1/n)∑i,i 6=k1 zi|| ≤ c}
where k1 is the indice of one element of Z that we remove. Alternatively we can
write this event as B(Z;x) = {θ : ||θ − ZDiag(x)m|| ≤ c, ||x||0 = n,x ∈ {0, 1}n+1}
where m = [1/n, . . . , 1/n]> ∈ R(n+1)×1. In this way a pair of events B(Z), B(Z ′) can
be uniquely defined as B(Z;x), B(Z;y) with ||x − y||0 = 2, ||x||0 = ||y||0 = n and
x,y ∈ {0, 1}n+1.

One can rewrite a generalization of these events based on ε-generalized privacy as
B(Z;x) = {θ : ||θ − ZDiag(x)m|| ≤ c, x ∈ Rn+1} where m = [1/(n + 1), . . . , 1/(n +
1)]> ∈ R(n+1)×1, so that a pair of events B(Z), B(Z ′) can be defined as B(Z;x), B(Z;y)
such that ||x− y||1 ≤ k = 1.

Relating ε-differential privacy and generalized privacy though a visualization
We visualize the relationship between ε-differential privacy and ε-generalized privacy
in Figures C.1a,C.1b. We assume a dataset with two samples Z = [z1, z2] and vector
x = [x1, x2]> then Zx1x2 = ZDiag([x1, x2]). Let an 1-differentially private algorithm and
an 1/2-generalized private algorithm a dataset Z10 and Zper a perturbed dataset. For

111



Appendix C. Appendix

both the 1-differentially private algorithm and the 1/2-generalized private algorithm
one has P{P(Z10) ∈ B} ≤ eεP{P(Zper) ∈ B} but for different y. For differential
privacy y is the sparse vector y = [0, 1] C.1a. For generalized privacy it is the convex set
||[1, 0]− y||1 ≤ 2 C.1b that includes y = [0, 1] together with numerous other y.

Proof outline We will define a set ||x − 0||1 ≤ λ = d/2ε visualized in C.1c which
contains a number of perturbed datasets, and which for specific λ includes also the
complete dataset Z11. For each dataset Zx we aim to compute mean[Zx]. The image
of this operation for all Zx is visualized in C.1d. For all ||x||1 ≤ λ = d/2ε and an
ε-generalized private algorithm P if follows that

µ0(“close′′ to mean[Zx]) ≥ exp(−d/2)µx(“close′′ to mean[Zx]).

In effect if given a dataset Zx the algorithm is accurate for mean[Zx], it will also return
the same result with non-zero probability given the trivial dataset Z0.

We can formalize this “closeness” using the `2 norm, for a mechanism P we then set
the expected error for all mean[Zx] as E[||P(Zx) − mean(Zx)||2] and using Markov’s
inequality

P{||P(Zx)−mean(Zx)||2 ≤ 2E[error]} ≥ 1
2 .

Intuitively this implies that we are hypothesizing a mechanism that returns for all
mean(Zx) with probability ≥ 1

2 a result within an 2E[error]-ball around the correct
solution. Note also that due to ε-generalized privacy

µ0({||P(Zx)−mean(Zx)||2 ≤ 2E[error]}) ≥ exp(−d/2)1
2 ,

this means that we have a non-zero probability with mechanism P given the trivial
dataset Z0 to return an output within an 2E[error]-ball of mean(Zx). However as
visualized in C.1d there are a lot of means that the algorithm P returns with sufficient
accuracy using the trivial dataset Z0. We complete the proof by showing that for a low
enough error E[error] the corresponding error balls are disjoint, count them and using a
union bound show the contradiction

1 ≥ µ0(∪x∈X{||P(Zx)−mean(Zx)||2 ≤ 2E[error]}) > 1.

As such there is at least one dataset ||x||1 ≤ d/2ε such that the expected error is greater
than what we assumed in the proof. That the complete unperturbed dataset is Z11
results in a condition of the form n ≤ d/2ε⇒ ε ≤ d/2n, in effect the privacy needs to be
relatively high.
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C.4 Proof of Lemma 3.3.2

Lemma 3.3.2. Let Xk ∈ Rd×nk , Xk = {x1, . . . ,xnk} ∼ p(x|Ck)nk following the Gaus-
sian mixture model with known fixed covariance Σ = I. Then for ε-generalized private
mechanisms P with (d/2nk) ≥ ε > 0, when d− (ln(0.05) + d(1−O(1)))/d ≤ nk we have

sup
P

E[||P(Xk)−wk||2] ≥ O(ε−1d
√

ln(2nk/d)) (C.21)

with probability ≥ 0.95 over the random draws of Xk, and the expectation is over the
randomness of P.

Proof. We first restate the definition of a ε-generalized private algorithm.

Definition C.4.1. A randomized algorithm P : Zn → T is ε-generalized private if, for
a dataset Z ∈ Zn and vectors x,y ∈ Rn such that ||x − y||1 ≤ k, and all measurable
subsets B ⊆ T , we have P{P(ZDiag(x)) ∈ B} ≤ eεkP{P(ZDiag(y)) ∈ B}.

We have assumed that the covariance Σ̃ is known and fixed, therefore ε-generalized
private mechanism needs to target µ̃k, this can be seen by calculating ||P(Xk)−wk||2 =
||P(Xk)−Σ̃−1

µ̃k||2 = ||P(Xk)−I−1µ̃k||2 = ||P(Xk)−µ̃k||2 and taking the expectation
over the randomness of P for both sides.

Suppose F : Rn × Rd×n → Rd so that F (x; A) = ADiag(x)m = ADiag(m)x is a linear
map, with m = [(1/n), · · · , (1/n)] ∈ Rn×1. We now note that estimating the mean µ̃k
can be seen as estimating using a private mechanism the result of the linear map

F (1; Xk) = XkDiag(1)[ 1
nk
,

1
nk
, . . . ,

1
nk

]> = 1
nk

∑
i∈Ck

xi.

where Xk is the dataset and 1 ∈ Rn is a vector of ones.

We now recall that a set of points Y ⊆ Rd is called a r−packing if ||y − y′|| ≥ r for any
y, y′ ∈ Y, y 6= y′. The following fact will also be useful

Fact C.4.1. Let K ⊆ Rd such that R = vol(K) 1
d . Then, K contains an O(R

√
d)-packing

of size at least exp(d).

We now need the following lemma from Hardt and Talwar (2010)

Lemma C.4.2. Let ε > 0 and suppose F : Rn ×Rd×n → Rd, F (x; A) = ADiag(m)x is
a linear map and let K = F (Bn

1 ; A). Then for every ε-generalized private mechanism P,
∃x ∈ Rn : ||x||1 ≤ λ = d/2ε such that

E[||P(ADiag(x))− F (x; A)||2] ≥ O(ε−1d
√
d · vold(K)

1
d ) (C.22)
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where vold(·) denotes the n-dimensional Lebesque measure and the expectation is over
the randomness of M.

Proof. Let λ be some scalar and put R = vold(K) 1
d . By Fact C.4.1 and our assumption,

λK = λF (Bn
1 ; A) contains an O(λR

√
d)-packing Y of size at least exp(d). Let X ⊆ Rn

be a set of arbitrarily chosen preimages of y ∈ Y so that |X| = |Y | and F (X; A) = Y .
By linearity, λF (Bn

1 ; A) = F (λBn
1 ; A) = ADiag(m)(λBn

1 ) and hence we may assume
that every x ∈ X satisfies ||x||1 ≤ λ.

We will now assume that P = {µADiag(x) : x ∈ Rn} is an ε-generalized private mechanism
with expected error cd

√
dR/ε for all ||x||1 ≤ λ and lead this to a contradiction for small

enough c > 0. For this we set λ = d/2ε. By the assumption on the expected error,
Markov’s inequality

P{||P(ADiag(x))− F (x; A)||2 ≥ 2cd
√
dR/ε} ≤ E[||P(ADiag(x))− F (x; A)||2]

2cd
√
dR/ε

≤ cd
√
dR/ε

2cd
√
dR/ε

≤ 1
2

(C.23)

this implies that for all preimages x ∈ X, ||x||1 ≤ λ, we have µx(B(A;x)) ≥ 1
2 ,

where B(A;x) is a ball of radius 2cd
√
dR/ε = 4cλR

√
d centered at F (x; A). Since

Y = F (X; A) is an O(λR
√
d)-packing, the balls {B(A;x) : x ∈ X} are disjoint for small

enough constant c > 0.

Since ||x||1 ≤ λ, it follows from ε-generalized privacy with Fact C.4.1 that

µ0(B(A;x)) ≥ exp(−ελ)µx(B(A;x)) ≥ 1
2 exp(−d/2).

Since the balls B(A;x) are pairwise disjoint,

1 ≥ µ0(∪x∈XB(A;x)) =
∑
x∈X

µ0(B(A;x)) ≥ exp(d)1
2 exp(−d/2) > 1

Therefore ∃x ∈ Rn : ||x||1 ≤ λ, E[||P(ADiag(x))−F (x; A)||2] ≥ O(ε−1d
√
d·vold(K) 1

d ).

How we proceed, now becomes more clear. We assume that there exists a private algorithm
P for which the “worst case” point in C.22 coincides with x = 1 = [1, · · · , 1] ∈ Rnk .
We set A = Xk = {x1, . . . ,xnk} ∼ N (µk,Σ)nk and x = 1 = [1, · · · , 1] ∈ Rnk in C.22.
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Remember that K = F (Bn
1 ; A) = ADiag(m)Bn

1 , we then get

sup
P

E[||P(Xk)− µ̃k||2] ≥ O(ε−1d
√
d · vold((1/nk)XkB

nk
1 )

1
d ). (C.24)

and we note that for x = [1, · · · , 1] ∈ Rnk we have ||x||1 ≤ d/2ε ⇒ nk ≤ d/2ε ⇒ ε ≤
d/2nk.

We see that what’s needed is to estimate the volume of the random Gaussian polytope
K = (1/nk)XkB

nk
1 . This can also be seen as the absolute convex hull of (1/nk)Xk.

The small-ball probabilities for the volume of random convex sets has been extensively
studied. Note that typically constants such as (1/nk) do not alter the results in this sort of
analyses. In fact, results such as the following, are derived with minimal non-degeneracy
assumptions on the distribution of Xk. As such, we absorb (1/nk) into Xk. We will use
the following lemma from Paouris and Pivovarov (2013)

Lemma C.4.3. Let n ≥ d and let G = [g1, ..,gn] be an d × n matrix where gi ∼
N (µ,Σ) ∀i, µ ∈ Rd and Σ ∈ Sd+. Then let δ > 1, for d ≤ n ≤ deδ2, we have

P({vold(GBn
1 )

1
d ≤ c1

δe4

√
ln(2n/d)

d
}) ≤ e−d(n+1−o(1))+d2

. (C.25)

We then upper bound the probability of the above tail event

e−d(n+1−o(1))+d2 ≤ 0.05

⇒ d−
[ ln(0.05) + d(1−O(1))

d

]
≤ n

(C.26)

For d −
[

ln(0.05)+d(1−O(1))
d

]
≤ nk by applying Lemma C.4.3 over the random draws of

{x1, ...,xnk} ∼ p(x|Ck)nk on equation (C.24) we get

P({E[||P(Xk)− µ̃k||2] ≥ O(ε
−1dc1
δe4

√
ln(2nk/d))}) ≥ 1

2 . (C.27)

We can then absorb all constants in the O notation.
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C.5 Additional limitations for SGLD

Furthermore, SGLD does not provide a closed form solution. The SGLD procedure has
to be iterated to sample from the posterior, after some burn-in phase is completed. In
particular when estimating KL terms KL(ρ̂τ ||π) for a fixed prior π(θ) and τ ≥ 0 one can
set ρ̂τ = Pexp(−τL`′X,Y (f)) and Zτ = P [exp(−τL`′X,Y (f))]. Then they estimate

KL(ρ̂τ ||π) = ρ̂τ [ln dρ̂τ
dπ

]

= ρ̂τ [ln
exp(−τL`′X,Y (f))

Zτ
]

= ((((((((−τ ρ̂τ [L`′X,Y (f))] − lnZτ
≤ − lnP [exp(−τL`′X,Y (f))]

= − lnE[ 1
k

k∑
i=1

exp(−τL`′X,Y (f(θiπ)))]

≤ E[− ln 1
k

k∑
i=1

exp(−τL`′X,Y (f(θiπ)))]

(C.28)

In the third line Dziugaite and Roy (2018a) set the first term equal to 0, as it is difficult
to compute, and in the last line they use Jensen’s inequality. The final term in this
approximation will only provide meaningful results for data dependent priors, that
provide prior samples close to regions with low empirical loss. As noted in Dziugaite and
Roy (2018a), the numerical integration performed in the final term rapidly diminishes in
accuracy with increasing dimensionality of the parameter space. Furthermore, with high
probability samples from a high dimensional Gaussian lie far in terms of `2 norm from
the mean, and consequently in areas where the empirical loss might be high. As such,
the upper bound on the KL divergence is very loose. Furthermore, note that for small
values of τ the iterations of SGLD are often unstable and do not converge.
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C.6 Additional proofs for moments accountant

Simplifying to 1-dimensional integral

Lemma 3.2.7. Let SGq,σ be the Sampled Gaussian mechanism for some function f .
Then

aSGq,σ(λ;Z,Z ′) ≤ logEz∼µ0 [(µ(z)/µ0(z))λ+1] (C.29)

where µ0 = N (0, σ2), µ1 = N (1, σ2), µ , (1 − q)µ0 + qµ1 and assuming that ||f(Z) −
f(Z ′)||2 ≤ 1.

Proof. Let Z,Z ′ ∈ Ẑ ⊆ Zn be a pair of adjacent datasets such that Z ′ = Z ∪ {x}. We
will frame our derivations in terms of the Rényi divergence

Dλ(p||q) = 1
1− λ logEz∼q

(
p(z)
q(z)

)λ
.

We wish to bound the Rényi divergences Dλ(P(Z ′)||P(Z)) and Dλ(P(Z)||P(Z ′)),
where P is the sampled Gaussian mechanism for some function f with `2-sensitivity 1.

Let L denote a set-values random variable defined by taking a random subset of Zn,
where each Z ∈ Ẑ ⊆ Zn is independently placed in L with probability q. Conditioned
on L, the mechanism P(Z) samples from a Gaussian with mean f(L). Thus

P(Z) =
∑
L

pLN (f(L), σ2Id), (C.30)

where the sum here denotes mixing of the distributions with weights pL. Similarly,

P(Z ′) =
∑
L

pL
(
(1− q)N (f(L), σ2Id) + qN (f(L ∪ {x}), σ2Id)

)
. (C.31)

Rényi divergence is quasi-convex, allowing one to bound

Dλ(P(Z)||P(Z ′))

≤ sup
L

Dλ

(
N (f(L), σ2Id) || (1− q)N (f(L), σ2Id) + qN (f(L ∪ {x}), σ2Id)

)
≤ sup

L
Dλ

(
N (0, σ2Id) || (1− q)N (0, σ2Id) + qN (f(L ∪ {x})− f(L), σ2Id)

) (C.32)

where we have used the translation invariance of Rényi divergence. Since the covariances
are symmetric, we can, by applying a rotation, assume that f(L∪{x})−f(L) = cLe1 for
some constant cL ≤ 1. The two distributions at hand are then both product distributions
that are identical in all coordinates except the first. By additivity of Rényi divergence
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for product distributions, we have that

Dλ(P(Z)||P(Z ′)) ≤ sup
c≤1

Dλ

(
N (0, σ2) || (1− q)N (0, σ2) + qN (c, σ2)

)
= sup

c≤1
Dλ

(
N (0, (σ/c)2) || (1− q)N (0, (σ/c)2) + qN (c, (σ/c)2)

)
(C.33)

For any c ≤ 1, the noise N (0, (σ/c)2) can be obtained from N (0, σ2) by adding noise
from N (0, (σ/c)2−σ2), and the same operation allows us to obtain (1− q)N (0, (σ/c)2) +
qN (1, (σ/c)2) from (1− q)N (0, σ2) + qN (1, σ2). Thus by the data processing inequality
for Rényi divergence, we conclude

Dλ(P(Z)||P(Z ′)) ≤ Dλ

(
N (0, σ2) || (1− q)N (0, σ2) + qN (1, σ2)

)
= Aλ (C.34)

An identical argument implies that

Dλ(P(Z ′)||P(Z)) ≤ Dλ

(
(1− q)N (0, σ2) + qN (1, σ2) || N (0, σ2)

)
= Bλ. (C.35)

In effect we have derived an upper bound on Dλ(P(Z(·))||P(Z(·))) so that

Dλ(P(Z(·))||P(Z(·))) ≤ max(Aλ, Bλ).

We include also the following without proof

Lemma C.6.1. Given Aλ = Dλ

(
N (0, σ2) || (1− q)N (0, σ2) + qN (1, σ2)

)
and Bλ =

Dλ

(
(1− q)N (0, σ2) + qN (1, σ2) || N (0, σ2)

)
Bλ ≤ Aλ.

Lemma 3.2.7 follows by noting that

aSGq,σ(λ;Z,Z ′) = logEo∼P(Z)
[
expλc(o; P, Z, Z ′)

]
= logEo∼P(Z)

[
expλ log P{P(Z) = o}

P{P(Z ′) = o}

]
= logEo∼P(Z)

[( P{P(Z) = o}
P{P(Z ′) = o}

)λ]

= λ
1
λ

logEo∼P(Z′)

[( P{P(Z) = o}
P{P(Z ′) = o}

)λ+1]
= λDλ+1(P(Z ′)||P(Z))

(C.36)

Numerically Stable Computation
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Naively, Cλ = Ez∼µ0 [(µ(z)/µ0(z))λ] can be approximated as an integral using standard
numerical libraries. It however leads to the problem of computing an integral over
the whole real line of a quantity that can vary a lot. We sidestep this difficulty by
expressing Cλ as a finite sum (or a convergent series), swap the order of the integration
and summation operators, and compute the integrals analytically.

To compute Cλ = Ez∼µ0 [(µ(z)/µ0(z))λ], we write

(
µ(z)
µ0(z)

)λ
=
(

(1− q) + q
µ1(z)
µ0(z)

)λ
(C.37)

and consider two cases.

Case I: Integer λ. Applying a binomial expansion to C.37 we have

(
µ(z)
µ0(z)

)λ
=

λ∑
k=0

(
λ

k

)
(1− q)λ−kqk

(
µ1(z)
µ0(z)

)k

Thus it suffices to compute for k ∈ {0, · · · , λ} the expectation

Ez∼µ0

[(
µ1(z)
µ0(z)

)λ]

We observe that the terms of the form Ez∼µ0

[(
µ1(z)
µ0(z)

)λ]
have an analytical closed form

that can be obtained by integration. Indeed,

Ez∼µ0

[(
µ1(z)
µ0(z)

)λ]
= 1
σ
√

2π

∫ ∞
−∞

exp
{
− x2

2σ2 + k · x
2 − (x− 1)2

2σ2

}
dx

= 1
σ
√

2π

∫ ∞
−∞

exp
{
− x2

2σ2 + 2kx− k
2σ2

}
dx

= 1
σ
√

2π

∫ ∞
−∞

exp
{
−(x− k)2

2σ2 + k2 − k
2σ2

}
dx

= exp
(
k2 − k

2σ2

)
1

σ
√

2π

∫ ∞
−∞

exp
(
− y2

2σ2

)
dy (substituting y , x− k)

= exp
(
k2 − k

2σ2

)
.

(C.38)

Case II: Fractional λ. To rewrite C.37 as a convergent series, consider two cases
depending on how 1− q compares with qµ1(z)/µ0(z). The inflection point is z1 where
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the two quantities are equal:

(1− q)µ0(z1) = qµ1(z1)⇔ 1− q = qe
2z1−1

2σ2

⇔ z1 = 1
2 + σ2 ln(q−1 − 1)

Thus we can express

(
µ(z)
µ0(z)

)λ
=


∑∞
k=0(λk )(1− q)λ−kqk

(
µ1(z)
µ0(z)

)k
when z ≤ z1∑∞

k=0(λk )(1− q)kqλ−k
(
µ1(z)
µ0(z)

)k
when z > z1

. (C.39)

Analogously to the case of integer λ, we compute the expectations of both series under
z ∼ µ0, where the integrals are taken over the half lines (−∞, z1] and [z1,+∞):

∫ z1

−∞
µ0(x)

(
µ1(x)
µ0(x)

)k
dx = 1

σ
√

2π

∫ z1

−∞
exp

{
− x2

2σ2 + k · x
2 − (x− 1)2

2σ2

}
dx

= exp
(
k2 − k

2σ2

)
1

σ
√

2π

∫ z1−k

−∞
exp

(
− y2

2σ2

)
dx

= 1
2 exp

(
k2 − k

2σ2

)
erfc

(
k − z1√

2σ

)
,

∫ +∞

z1
µ0(x)

(
µ1(x)
µ0(x)

)k
dx = 1

2 exp
(
k2 − k

2σ2

)
erfc

(
z1 − k√

2σ

)
.

(C.40)

The computation done in the privacy accountant proceeds by plugging in these quantities
into the series (C.39), and carrying out the summation to convergence.
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C.7 Additional Figures

(a) (b) (c)

(d) (e) (f)

Figure C.2 – The effect of optimizing the posterior: We see that the change in
bounds is relatively small across the different datasets. Furthermore the results are mixed.
In MNIST cases there is a small improvement. At the same time for CIFAR there is a
loosening of the bounds.
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(a) (b) (c)

(d) (e) (f)

Figure C.3 –Visualizing the latent representations: We use pretrained deterministic
neural networks to visualize the latent representations at the input of the final softmax
layer. We compute the singular value decomposition of two classes and project the
datapoints along the first two principal directions. We also plot the contours of a
Gaussian kernel density estimator that we fit on the data. The samples concentrate
closely around a mean validating partially our modeling choice to approximate the
distribution of latent representations as a mixture of Gaussians.
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