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Abstract

Omnidirectional images are the spherical visual signals that provide a wide, 360◦, view of a scene

from a specific position. Such images are becoming increasingly popular in fields like virtual reality

and robotics. Compared to conventional 2D images, the storage and badwidth requirements of omni-

directional signals are much higher, due to the specific nature of them. Thus, there is a need for image

compression schemes to reduce the dedicated storage space of omnidirectional images.

Image compression algorithms can be broadly classified into two groups: lossless and lossy. Lossless

schemes are able to reconstruct the exact original data but they cannot reduce the size beyond a specific

criteria. Lossy methods are generally better solutions if they do not add a high visual distortion to the

reconstructed image, as long as they provide a decent compression rate.

If a planar, lossy image compression scheme is applied on omnidirectional images, some problems

show up. It is possible to apply a planar compression scheme on a projected version of a 360◦ image;

however, in these projection schemes (such as equirectangular projection) the sampling rate is different

in the poles and the center. Consequently, the filters of the planar compression schemes that do not

consider this difference ends in suboptimal result and distortions in the reconstructed images.

Recently, with the success of deep neural networks in many image processing tasks, researchers

began to use them for the image compression as well. In this study, we propose a deep learning-

based method for the compression of omnidirectional images by combining some state of the art

approaches from the deep learning-based image compression schemes and some special convolutional

layers that take into account the geometry of the omnidirectional image. In comparison to the available

methods, it is the first method that can be applied directly on the equirectangularly projected version

of omnidirectional images and considers the geometry in the scheme and the layers themselves.

To propose this method, different geometry-aware convolutional layers have been tried. We ex-

ploited various methods of downsampling and upsampling, such as spherical pooling layers, strided

or transposed convolutions, bilinear interpolation, and pixel shuffle. In the end, a method is proposed

that benefits from specific spherical convolutional layers which contain sampling methods considering

the geometry of omnidirectional images. The sampling positions differ in the different heights of the

image based on the nature of the projected omnidirectional image. Additionally, as it benefits from

an iterative training method that calculates the residual between the output and input and feeds it

again to the network as input of the next iteration, it can provide different compression rates with just

one pass of training. Finally, it benefits from a novel method of patching that is well-aligned with the

spherical convolution layers and helps the method to run efficiently without a need for a high compu-

tational power. The model was compared with a similar architecture without spherical convolutions

and spherical patching and showed some improvements. The architecture has been optimized and

improved and it has the potential to compete with popular image compression schemes such as JPEG

especially in terms of reconstructing the colors.
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1 Introduction

1.1 Omnidirectional Images

Omnidirectional images are the spherical image signals that provide a wide, 360◦ view and they are

mainly captured by specific type of cameras that use special lenses or multiple lenses, or by rotation of

a normal camera in a static scene. They are becoming more popular and gaining more traction due to

the growth of virtual reality goggles, robotics, and drones [1]. They provide a wide view of the scene

in front of them and they are efficient in terms of data storage, in comparison to taking normal planar

images in different directions. Companies like Samsung [2], Nikon [3], and Nokia [4] are active in the

production of the omnidirectional cameras and the hardware, and technology giants such as Google

[5] and Facebook [6] are developing the needed processing schemes.

In order to simplify processing tasks and for instance, reuse standard compression methods, a

projection method is commonly used on 360◦ images. There are different projection methods available.

In equirectangular projection, the coordinates of projected image show the longitude (φ) and latitude

(θ) of a sphere, which respectively change from 0 to 2π and −π2 to π
2 . In equal-area projection, the

vertical coordinates are multiplied by cos(θ) to reduce the shape distortion. Finally, in the cube-map

projection, a cube surrounds the image sphere and the omnidirectional content is projected on each

side of the box. Then the six generated surfaces can be arranged near each other in different ways [7].

The most popular method of projection is the equirectangular projection and it is used mainly in the

available datasets.

Figure 1: A schematic view of equirectangular projection of the map of world. The circles show the
deformations that happen in the surface area of different sections of image after the projection[8].

1.2 Image Compression

In signal processing, compression algorithms represent an encoded version of data which occupies less

bits in comparison to the original representation [9].

Lossless compression algorithms reduce the unwanted redundancy whereas lossy methods might

remove some of the information, which is less important, for the sake of occupied space reduction [10].

Compression algorithms can also be applied on image data. In image compression, a combination of

both methods —lossless and lossy— are currently in use. In fact, most of the available algorithms, try
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to provide the lowest possible bit-rate together with a low distortion that cannot be detected easily

by human visual system [11]. The goal of an image compression algorithm is to optimize this rate-

distortion trade-off. Distortion can be found using methods such as Mean Squared Error (MSE) and

the rate of image compression can be calculated by measuring the generated size on storage in terms

of bits per pixel (bpp) [12].

Lossy compression schemes were traditionally implemented using signal processing-based approaches,

but after booming and success of deep neural networks in various image processing tasks, researchers

developed lossy compression models based on them that are known as deep learning-based methods.

Both of these image compression frameworks benefit from the following steps [11]:

• Dividing into Blocks The first idea that comes to the mind in order to quantize an image, is to

perform the quantization for each pixel. This idea, however, will result in sub-optimal situation

as it does not take into account the correlation among neighboring image pixels and the rate will

become high. On the other hand, the compression can be done on block levels that take into

account the structures among neighboring pixels. By allocating a controlled amount of pixels to

each block, the rate can be selected more efficiently. The blocks can be non-overlapping (mostly

in classical, signal processing-based methods) or can have overlap areas (mostly in the deep

learning-based methods).

• Transform Coding A transformation is then applied on each block of data, in order to contain the

important information and features in a few coefficients. Such a transformation should be easy

to handle and efficient to use. In the classical methods, it is often based on Fourier Transform

and in novel, deep learning based methods, it is based on different neural network layers such

as convolutions.

• Quantization The core of lossy image compression is the quantization step and it is the place

that the loss of information happens. Generally, in quantization, the range of a signal is mapped

on a set of finite values. After this irreversible loss of data, a quantization error will be added to

the data that can be calculated using a simple equation like this:

e[n] = Q(x[n])− x[n] = x̂[n]− x[n] (1)

where x is the input image and x̂ is the reconstructed version of it. The method of quantization

can be implemented in a more complex and smart way, based on the visual impact of each block

on human vision.

• Entropy Coding The final, lossless step is to use methods based on special symbols to encode

the data. These symbols are made such that the frequent values have the shortest possible

symbols. In fact, the methods try to minimize the effort which is needed to encode a piece of

information [11].
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In the next two sections, the classical image compression based methods (which are used for com-

parison of the results) and deep learning based methods (which our model is one of them) are proposed

briefly with examples.

1.3 Classical Image Compression Methods

The term “classical” image compression indicates that these method are based on traditional signal

processing and most of them use approaches based on Fourier Transform for the transform coding step.

Two of the most successful of such classical methods are Joint Photographic Experts Group (JPEG)

that uses the Discrete Cosine Transform (DCT) [13] and JPEG 2000 (JP2) that benefits from Discrete

Wavelet Transform (DWT) [14]. Here, we will have a brief look on JPEG algorithm which most of the

new proposed methods are compared with it.

1.3.1 Joint Photographic Experts Group (JPEG)

JPEG was proposed on 1992 by Joint Photographic Experts Group. It has the ability to adjust the

compressed image quality and the rate-distortion trade-off by changing the number of allocated bits

for the quantization. Very few of the classical compression methods that were proposed afterwards

got the popularity of JPEG. Here, we will have a brief look on the 4 different steps of JPEG image

compression [15]:

• Dividing into Blocks JPEG performs the compression on 8× 8 image blocks without overlap. In

ultra-low compression rates, the so-called block-artifacts show-up. It is a type of distortion that

happens due to the independent block processing and makes the blocks visible. (Figure 2)

Figure 2: Blocking artifacts on an omnidirectional image from SUN360 dataset [16] processed by JPEG
method in low rate. Left: Original Image with 380.7 kilobytes size, Right: JPEG compressed version
of it with quality of 5 with 9.0 kilobytes size.

• Transform Coding JPEG applies 2D Discrete Cosine Transform on the image blocks. A set of

basis vectors for this transform has been shown in Figure 3.
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Figure 3: The 8 × 8 DCT blocks which are used by JPEG, from low frequency on top-left, to high
frequency on bottom-right[17].

• Quantization JPEG uses smart, psychovisually-tuned quantization coefficients. In fact, after

performing human experiments, the coefficients have been selected. Higher number of bits and

smaller quantization intervals have been dedicated to the important points.

• Entropy Coding JPEG benefits from prefix-free symbolizing method that can parse a bit-stream

sequentially without the need for look-ahead. Additionally, it benefits from Huffman algorithm

to make an optimal code for a set of symbol probabilities. For more information, have a look on

[18].

JPEG image compression scheme may also use sub-sampling methods to increase the rate of com-

pression. This sub-sampling is done in the YCbCr color space which is different from the normal Red-

Green-Blue (RGB) space that has three channels for these colors. YCbCr has one component for the

luminance (Y), and two for the chrominance (Cr and Cb) that represent the color. In these type of

sub-samplings, the chrominance sampling rate is lowered in comparison to luminance. These methods

are shown by a code like A : B : C where A shows the number of sampling for luminance in each row

and it is used as the reference. B shows the number of chrominance sampling in each row with refer-

ence to A. And C shows the number of changes in chrominance sampling between the first two rows

in comparison to A [19][20]. To clearly show it, Figure 4 shows a schematic view of 4 : 4 : 4 method

that uses the whole information and does not perform downsampling, and 4 : 2 : 0 that performs the

downsampling.

Figure 4: Left: a schematic view of 4 : 4 : 4 method. Right: A schematic view of 4 : 2 : 0 method that
benefits from chroma subsampling [19][20].
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1.3.2 Related Works

Omnidirectional image compression is a new and active research area. There are available methods

that modify the traditional signal processing schemes for new geometries. De Simone et al.[21], for

instance, showed that a shift happens in the frequency domain of equirectangularly projected images

in comparison to normal images. Consequently, they generate a modified version of quantization table

of JPEG scheme that considers this and they improved the quantized signal quality.

Rizkallah et al. [22] proposed a method based on a graph representation [23] that can be imposed

on the sphere. Based on that representation, they implemented a partitioning strategy for the graph in

order to make it efficiently running. Finally, they made a Graph Fourier Transform-based scheme for

their method and in general, their method provides better results in comparison to DCT-based JPEG.

The adaptation of classical schemes for images based on new geometries is still an active topic

and researchers are still working on it. For instance, one of the newest and impressive ones is a

Catadioptric image compression scheme using a special shape-adavptive discrete cosine transform by

Alouache et al. [24]. They mainly focused on reduction of block artifacts in methods like JPEG for

catadioptric images by dividing the catadioptric image to the object neighborhoods and then applying

the shape adaptive DCT on the these adapted neighborhood. Their results showed an improvement in

comparison to JPEG and H264 [25] in terms of PSNR[12] and MS-SSIM metrics[26].

1.4 Deep Learning-based Image compression methods

The image compression world was dominated by Fourier Transform-based methods until the emerging

and booming of neural networks. Convolutional Neural Networks (CNNs) brought a great achievement

in image processing and computer vision tasks. For example, Krizhevsky et al. [27] CNN won the image

classification challenge in 2012 with a pretty low error in comparison to the previous works and object

detection methods improved surprisingly by Girshick et al. [28] in 2014. After all these happenings,

researchers returned back to the old image compression problem and tried to use the deep learning as

a tool for it [12]. Since 2015, thanks to the powerful computation systems and GPUs, deep learning-

based compression methods demonstrated decent results and researchers validated the feasibility of

such approach. Nowadays, researchers are trying to improve the results, simplify the approaches, and

developing image compression methods for specific applications.

Currently, the deep learning image compression methods can be classified into two main groups:

deep tools and deep schemes (see Figure 5). In the deep tools, the deep learning blocks are used inside

a classical scheme in order to improve it. For example, intra-picture prediction can be used to find

some similar structures between the different blocks inside the image for traditional methods. Cross-

channel prediction can also be done using deep learning for color images. Additionally, some trained

filters can be used to improve the appearance of the quantized image. Recently, some new deep tools

work better even in comparison to the most powerful traditional schemes; however, we do not focus
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on these methods in this study [12].

Deep schemes contain completely new schemes, with new deep learning-based transform cod-

ing, that perform the image compression using an end-to-end approach. Most of these methods are

based on convolutional neural networks or recurrent networks. There are two main divisions in deep

schemes: pixel probability models and autoencoder-based models [12].

The lossless entropy coding methods try to decrease the probability of each symbol of the image

data down to Shannon’s criteria [29]. The pixel probability models try to provide a method to find this

probability. These methods’s goal is to train a deep model, that finds the probability of each symbol

(here the pixel), based on the context (the other pixels around) of that pixel [12]. There are methods

like PixelRNN and PixelCNN [30] in this group that are working decently on natural image. The pixel

probability methods are also not the main focus of this study.

The second division of image compression deep schemes are the famous autoencoders. Autoen-

coders are able to encode a piece of data to a latent space with lower dimension and reconstruct it

again by a decoder. They provide the possibility of training the models in an unsupervised manner [31]

and at first glance, they seem to be appealing for the image compression problem. However, as it has

been mentioned before, the main goal of image compression schemes is to optimize the result on the

rate-distortion trade-off and just providing an autoencoder that is able to reconstruct the image with

low distortion and deformation is not enough. Indeed, the rate parameter should also be added to the

autoencoder using some tricks. Additionally, it should be taken into account that the core step of image

compression, the quantization step, is generally non-differential and a method is needed to model it.

Almost all the different autoencoder image compression schemes are trying to provide, new and smart

approaches to solve these two issues. Two of the famous autoencoders that had a high impact on this

study will be reviewed on Chapter 2 [32].

Figure 5: An overview of the different divisions in deep learning-based image compression[12].

1.4.1 Related Works

Compression of omnidirectional images using deep learning-based methods is still an underexplored

topic, and most of the available methods for it are based on cube-map representation.
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For example, Khasanova et al. [33], proposed a method based on graph-based convolutional filters

that can be adopted to the geometry of the projected omnidirectional images. They have used the

deep learning based-model for planar images which is presented by Ballé et al.[32] and changed the

original convolutional layers to isotropic and anisotropic graph-based convolutional layers. They have

shown that the method that is implemented with anisotropic graph-based convolutions that takes

into account the geometry can provide similar PSNR quality in comparison to Ballé et al. model.

However, they only implemented their method on cube-map projection of the 360◦ images and in fact,

they did not apply it on the equirectangular projection. Additionally, although they substituted the

planar convolution filters of Ballé et al. model with their graph-based convolutions, the results did

not improve in comparison to their model. Finally, methods based on Ballé et al. model need to be

retrained for every different rates of compression which is hard to use.

Moreover, Wang et al. [34] proposed a deep learning based method based on densely connected

convolutional blocks to perform the image compression. They benefited from denseblock layers and

convolutional layers in both encoder and decoder and they used MaxPool layers for the downsampling

and depth to space layers for the upsampling. Although their method works well in comparison to the

traditional models such as JPEG and deep learning based models such as Toderici et al.[35], they do

not benefit from the layers that consider the omnidirectional nature of these images. In fact, they use

the cube-map projection of images to train the network which by itself already makes them better and

they just defined a specific loss for the cube-map projections in order to train. Additionally, although

they did not elaborate about the method of considering the rate in their article, it seems like there is a

need to retrain their model for every different rate.

Different from these two works, in this study, we propose a method that considers the geometry

of omnidirectional images inside the deep learning-scheme and the convolutional layers. It is directly

applied on the equirectangular representation of image, without the need to use projection methods

like cube map. Additionally, it is able to provide different compression rates, in just one pass without

the need of retraining it.

1.5 Objective

In this study, we develop a deep learning-based model that benefits from the unsupervised learning

approach of autoencoders, to compress a set of omnidirectional images. For the first time, the method

can be applied directly on the available equirectangularly projected images without a need for addi-

tional type of projections such as cube-map. The proposed method considers the specific geometry of

these images inside the scheme itself by applying a geometry-aware sampling in the convolution lay-

ers. It is able to provide the possibility of changing the compression rate without a need for retraining,

and should provide a low final distortion, based on the available metrics. Also, it should benefit from

methods like patching which are well-aligned with the spherical layers to provide the ability of training

it efficiently without a need for high computational power.
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1.6 Thesis structure

Chapter 2 presents the theoretical background and details previous studies in the fields of deep

learning-based planar image compression methods and methods spherical convolutions that have a

direct effect on our proposed method. Chapter 3 discusses all the modules and materials that we have

tried in the study. It contains the specific sampling and convolution layers, the loss functions and

metrics that we implemented. Afterwards, in Chapter 4, we design and build our model and the archi-

tecture of autoencoder and provide the reasoning for the modules that we used. We test each of these

versions, show the pros and cons, and then improve them step by step by modifying them. Finally,

we select the final model based on these preliminary results, train it on more number of images, and

compare it with JPEG method in Chapter 5 using different metrics. At the end, Chapter 7 proposes

possible improvements to this work.
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2 Theoretical Framework

In this chapter, the theoretical background that has been used in our proposed method is shown. First,

we show two methods of autoencoder-based image compression for normal, planar images and elab-

orate them with examples of available models. End-to-end autoencoders (Section 2.1) and Recurrent

neural network-based autoencoders (Section 2.2) use two different methods of considering the rate

inside the autencoder and they benefit from different modules that can be useful for our omnidirec-

tional model. Second, as we would like to implement specific convolutional layers that considers the

geometry of omnidirectional images in our model, we discuss about the available spherical convolution

approaches using specific available examples. In order to build our model (in Section 4), a selected

spherical convolution method will be combined with a planar autoencoder to make our geometery-

aware model for the compression of omnidirectional images.

2.1 E nd-to-end Autoencoder

The first type of autoencoder-based compression schemes are based on an end to end approach. These

models are mainly based on a specific type of loss function that not only considers the distortion

between the input and reconstructed images, but also takes into account the compression rate. In

these methods, there is generally a need for retraining the model for different rates.

J. Ballé et al. [32] propose an end-to-end autoencoder-based method that benefits from 3 strided

convolution layers in the encoder, and 3 transposed, output-strided convolution layers in the decoder.

In the encoder, after each convolutional transform, a Generalized Divisive Normalization (GDN) non-

linearity is implemented and they benefit from the inverse version of GDN for the decoder. This layer,

can be considered as a normalizaton similar to BatchNorm together with a nonlinearity and it has been

used for other problems such as Gaussianization of images before this study [36]. (Figure 6)

Figure 6: A schematic view of the main layers of Ballé et al. image compression scheme [32].

Ballé et al. [32] added a uniform noise instead of the usual quantization, in order to solve the non-

differentiability problem of this step in the training phase. For the testing phase, a normal quantization
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step has been exploited. It has been shown that this type of modeling for the quantization step can

work well, in terms of the final results, after training the autoencoder.

In order to optimize the model for the rate-distortion trade-off, they defined a specific type of loss

function that contains two different terms:

TotalLoss = −E(log2 Pq) + λ ·MSE(x, x̂) (2)

where the term on the left shows the rate, that is modeled by the entropy of the probability of

quantization and the the right term shows the distortion between the input image (x) and the recon-

structed image (x̂) by taking the mean squared error. λ, is a parameter that should be set every time

you want to train the model, and it controls the position of the result on the rate-distortion curve. With

higher λ values, the reconstructed image will have a higher rate and will use more number of bits.

Although Ballé et al. [32] method provides very good results in terms of rate and distortion, it has

some disadvantages as well. The training of the model is not easy since it should be performed for

every different rate separately. Additionally, the number of epochs should be high in order to make

sure that it learns all the different scale structures in different places of the image, due to the fact that

it performs random cropping in order to patch down the images, as it is trained on 256x256 patches

of image.

During some preliminary experiments, we tried to modify Ballé et al. model to be optimized

for omnidirectional images, but these problems prevented us from achieving decent results. we will

discuss more about it in the Chapter 4 and Appendix A1.

There are other available methods that can be trained once for all the needed rates. T. Dumas et

al. [37] proposed a quantization independent method based on Ballé et al. that can be trained once for

all the different rates. However, the method that we used for our omnidirectional compression model

is mainly based on Recurrent Neural Network-based Autoencoders that is shown in the next section. In

fact, although end-to-end autoencoder model could also be very useful in our proposal, in our point of

view, the recurrent neural network-based autoencoder, is more intuitive, at least in terms of coding.

2.2 Recurrent Neural Network-based Autoencoder

Recurrent neural network-based autoencoder is an iterative approach that generates the loss between

the input and the reconstructed images, and feed it again to the model as the input of the next iteration.

In this iterative model, this autoencoder is able to be trained in one pass, for different needed image

compression rates. In order to keep the information from previous iterations and propagate it to the

next iterations, they mainly use recurrent neural network blocks that save the information as hidden

states. One of the impressive examples of these models, are the work of Toderici et al.

Toderici et al. [35] proposed a deep learning based image compression method, that can issue

different image compression rates, without a need for re-training the network again. They benefit from
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an RNN-based enoder and decoder, and a binarizer for their method. They have tested different types

of RNN blocks such as Long Short Term Memory (LSTM) [38], Gated Recurrent Units (GRU) [39], and

associative LSTM [40] for their model and compared their results. In this study, we benefit from their

LSTM-based model. During the training phase, a few iterations of encoding and decoding is done and

each time, the residual between the input and and output is calculated using an L1 loss, defined as:

L1 Lossn = 1
B ×H ×W × C

∑
n

|rn| (3)

where rn shows the residual for each step that comes from output minus input for the first step and

output minus residuals for the next steps. H and W are respectively the size of height and weight, and

B and C are the batch size and the number of channels. From the back-propagation of the L1 loss, the

network that looks like the equations below is trained.

x̂n = Dn(B(En(rn−1))) (4)

Where En shows the encoder (analysis transform), B shows the binarizer, and Dn shows the de-

coder (synthesis transform). The residuals are initialized and calculated as:

rn = x− x̂n (5)

x̂0 can be initialized by 0 or a low value in the beginning. After each iteration, the model is allowed

to use more pixels and the rate is increased. By the aid of this trick, residual networks can provide

the ability of training just once for the different rates which is good from the usage point of view. The

architecture of the network looks like Figure 29:

Figure 7: A schematic view of the main layers of Toderici et al. image compression scheme [35].

They benefit from an asymmetric autoencoder with three residual blocks in the encoder and 4

residual blocks in the decoder. There is an “input” convolution layer to increase the channels and there

is a binarizer convolution layer to decrease the number of channels in order to decrease the rate of the
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encoded latent space and to improve the model on rate-distortion trade-off. On the other side, there

is a convolution layer to increase the number of channels before the decoder residual blocks and there

is a final convolution layer with 1× 1 kernel to decrease them again. There are just two non-linearity

layers before the binarizer and at the end of decoder in addition to the built-in nonlinearities of the

residual blocks. For the downsampling, they use strided convolutions and residual blocks but for the

upsampling, depth to space, pixel-shuffle units have been used [41]. Inside each of the residual blocks,

looks like the Figure 8:

Figure 8: A schematic view of the LSTM cell that can be used in deep learning based image compression
methods with inputs and outputs [42, 35].

In Figure 8, xn shows the new input, hn−1 is the hidden state of the previous step and cn−1 is the

cell state of the previous step. Sigmoid and Tanh non-linearities exist in the LSTM cell and the most

important job it does is to affect the state of the previous step on the current step which is needed

when you train a model based on the residuals[35].

The quantizer they use is a binarizer based on sign function. During the training phase, the forward

pass is computed as [43]:

s[n] = (En(xn−1))) (6)

s[(1− s[n])/2 <= P ] = 1, s[(1− s[n])/2 > P ] = −1 (7)

where P is a uniform noise probability function with the same size as s[n] and En shows the en-

coding transform. During the testing, the forward pass is just a normal sign function. In the backward

pass, the gradient of input simply is set to be equal to gradient of output and the sign function is

bypassed.

This model, is the base of our proposed model and we will come back to it in Chapter 4. In the next

section, the topic will be changed and we will have a look on the problems of applying a convolutional
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kernel on a spherical image and the available solutions.

2.3 Spherical Representation

2.3.1 Convolution on Sphere

The convolutional neural networks have had great achievements for the problems such as image classi-

fication and object detection related to the planar images. The main core of these architectures are the

convolution filters which benefit from weight sharing and provide the ability to capture specific struc-

tures in the images on different places and with different sizes. Figure 9 illustrates the convolution

operation.

Figure 9: A schematic view of a 3× 3 kernel applied on point [1,1] of a tensor.

As it is clear in Figure 9, a 3 × 3 kernel of planar convolution slides on input tensor and applies a

dot product between the value of the input and the weights of it and it provides the so-called weight-

sharing. For the color images, the convolution kernel usually has a depth equal to three as well. Now

if a simple 3 × 3 convolution kernel is applied on equirectangularly projected omnidirectional image,

the situation is illustrated in Figure 10.

Figure 10: Implementation of planar 3 × 3 kernel on an omniderectional image from SUN360[16]
dataset. The main problem happens when the kernel is applied on the lower parts or upper parts of
the image.
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As you can see in Figure 10, if the kernel is applied on the middle part of an equirectangularly

projected image, as the sampling rate is almost equal to the planar images, there will not be a signif-

icant problem for the weights of the kernel. However, when it is applied on the lower parts or higher

parts of a projected omnidirectional image, as it takes samples more than enough from a position that

has lower amount of information per area, the weights of the kernel will be affected more by these

parts after the back-propagation and this will degrade the quality of model and results in suboptimal

response.

Researchers implemented different methods to solve this issue. Khasanova et al. [33] proposed

a method based on the graph signal processing framework [23] and used a weighted graph for the

equirectangularly projected representation of the image. They selected the weights so that the effect

of filter is as similar as possible on the different positions. Cohen et al. [44] proposed a method called

spherical CNN that considers the rotation of the kernel in the model. They defined spherical cross-

correlation (convolution) as the inner product between the input and a filter kernel which is rotated

by R ∈ SO(3) where SO(3) is the set of rotations which can be shown as a 3 × 3 matrix in a three

dimensional space.

Although the methods proposed by Khasanova et al. [33] and Cohen et al. [44] provide impressive

results, in applied problems such as compression of omnidirectional images they might not be effective

enough. The graph-based method of Khasanova et al. works well in low image resolutions and little

graphs. For the images we have in our scope (e.g., the Sun360 dataset[16] which is a set of real scene

images) it might not be easy to implement from a computational power point of view. On the other

hand, the spherical CNNs of Cohen et al. benefits from a full rotational invariance; however, in real

omnidirectional images that are captured by omnidirectional cameras (such as Samsung Gear 360[2]

that benefits from two 8.4-megapixel image sensors) there is usually a main direction and a clear idea

of up (usually the sky) and down (usually the floor). Such images statistics should also be explored by

image compression methods.

In order to avoid these application-based problems, we have used a method which is called Spherenet

[45] in our proposal. The next section details this approach.

2.3.2 Spherenet Approach

Proposed by Coors et al. [45], Spherenet is based on projecting the position of sampling locations,

for a convolutional filter kernel. The model benefits from small batches tangent to the sphere (see

Figure 11), and it it is mainly based on distortion invariance instead of deformation invariance.
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Figure 11: A kernel which is tangent to the sphere, is projected on the sphere surface using θ and φ. θ
and φ are selected based on the height and weight of the input image [45].

In order to implement the Spherenet method, firstly, the increments for polar angle φ and the

azimuthal angle θ should be selected [46]:

φi = − (i+ 0.5) · π
h

+ π

2 (8)

θj = (j + 0.5) · 2 · π
w

− π (9)

where h is the height of the input image and w is the weight of it. i is the vertical increment and

j is the horizontal increment. The distance between two increments can be found simply from the

Equations 8 and 9 [46].

∆φ = π

h
(10)

∆θ = 2π
w

(11)

Afterwards, in order to find the projected coordinates of the kernel, gnomonic projection [47] based

on the middle point (that is the intersection point of the kernel and the sphere surface) is applied. The

matrix that is able to perform this transformation is:

Ix,yθ,φ =


(−tan(∆θ), (1/cos(∆θ)) · tan(∆φ)) (0, tan(∆φ)) (tan(∆θ), 1/cos(∆θ) · tan(∆φ))

(−tan(∆θ), 0) (0, 0) (tan(∆θ), 0)
(−tan(∆θ),−(1/cos(∆θ)) · tan(∆φ)) (0,−tan(∆φ)) (tan(∆θ),−(1/cos(∆θ)) · tan(∆φ))


(12)

This matrix shows the position of the 9 sampling points of kernel on the real, projected input image

for x and y of each point. The radius of the projected kernel can be found from the result of the above

transform using the next equation:
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ρ =
√
x2 + y2 (13)

And the φ and θ of each pixel of the image can be found using the inverse gnomonic transform

[47]:

φ(x, y) = sin−1(cos(tan−1(ρ) sin(φi) + y sin(tan−1(ρ)) cos(φi)
ρ

) (14)

θ(x, y) = θi + tan−1( x sin(tan−1(ρ))
ρ cos(φi) cos(tan−1(ρ))− y sin(φi) sin(tan−1(ρ))

) (15)

In addition to the projection of kernel sampling points using the above equations, Spherenet adds

another feature to the normal convolution. In the normal planar convolutions, when the kernel reaches

the boundaries of the image and a part of it may go outside, zero padding is the solution that is in use.

However, Spherenet exploits the fact that omnidirectional images cover the whole scene. Consequently,

if the kernel reaches the right boundary of the image, samples from the left boundary are used for the

kernel that cannot be covered completely inside the image. On the other hand, when the kernel goes

to the top or bottom, again it exploits features of 360◦ images and more samples are used from the top

or bottom instead of naive padding (Figure 12).

Figure 12: When the kernel reaches the boundaries, instead of naive zero-padding, Spherenet benefits
from the features of omnidirectional images and use the samples from the other side [45].

In general, we implement the effective sampling method of Spherenet in a recurrent neural net-

works to propose our own model. In fact, this model combines the power of training on residuals, with

the power geometry-aware sampling. In order to this, different layers of a recurrent neural network

such as LSTM cell and convolution should be changed by spherical version of them. The implementa-

tion of these spherical layers have some important points and details that will be discussed in the next

chapter. Additionally, the next chapter will cover the different modules that we tried, like the different

methods of upsampling, in order to make the autoencoder more optimized. Generally, it covers the

implementation of all modules and materials that have been used in our model.
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3 Implementation and the Materials

This chapter details the implementation of the layers and functions that we use in our method or

for performance evaluation. Firstly, it contains implementation details about the modules that have

been tried to build our own model containing spherical (Section 3.1) and LSTM (Section 3.2) layers,

and different upsampling methods (Section 3.3). The spherical convolution and LSTM modules are

important in our model since they provide the possibility of sampling on the sphere and taking into

account the geometry. About the upsampling methods, they help to reconstruct the image from the

compressed latent space and there are different types of them which are used in the state of art

autoencoders. We try them to find the best one with lowest distortion for our spherical model. Because

of this, the details about the implementation of some of the upsampling methods which have been tried

are described here.

After that, we show the evaluation methods that we tried as loss functions of our autoencoder, or as

the metrics to compare the results (Section 3.4). This part contains details about L1 and L2 functions

and the spherically weighted version of them which have been used as loss functions, and PSNR, SSIM,

and the weighted version of them that have been used as metrics. The spherical metrics, provide

the possibility of evaluating our reconstructed images considering the sampling rate difference in the

different positions of the equirectangularly projected image. Finally, we show the viewports method

that will also be used in our metrics (Section 3.5). This is a method that provides the possibility of

using the planar metrics, on omnidirectional images.

3.1 Spherical Layers

In this section we will have a look on the spherical layers that we have used in our model. The layers

are based on the SphereNet article by Coors et al. [45] and the “SphereNet-pytorch” implementation

by C. W. Hsiao [46].

3.1.1 SphereConv2d

The SphereConv2d layer has two different parts. First, there is a sampling part based on the gnomonic

projection [47] of Spherenet. In this part, for each pixel of the input image, a 3 × 3 tensor is created.

Then, the value of these generated points are found using the neighbor points. Nearest Neighbor (NN)

approach or the Bilinear [48] interpolation approach can be used to find these values. The NN ap-

proach works faster in comparison to the bilinear method, but the correct selection of the neighbor

point depends on the preciseness of the sampling positions that we selected. On the other hand, bilin-

ear approach needs more computational power and uses more points, but in the image compression

application, as it performs a type of weighted linear averaging on different signal points, it might result

in a blurred view of the reconstructed image (see Figure 15) [45][46]. We tested both methods and

show them in the Chapter 4.
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After performing the sampling and interpolation, the total size of the signal will be changed from

w × h to 3w × 3h. The next step is to perform a normal convolution that can be applied based

on the built-in neural network functions of Tensorflow [49] or PyTorch [50] API frameworks. The

point that should be noticed here is that the stride of this convolution should be equal to the size

of generated matrices by the Spherenet sampling (in our model, it is 3 × 3.). In fact, if a stride is

required in the model (which is actually the case in the image compression problem and generally

all the autoencoders.), it should be implemented in the sampling step. Here is the place that one of

the disadvantages of Spherenet method for this application shows up. If the stride is applied on the

sampling and before the convolution, there will be loss of the data and it might have effect in the

images which are reconstructed by the autoencoder. In fact, when a 3 × 3 kernel of a normal, planar

convolution is applied, if the stride is equal to or less than 3, there is still no loss of information and

all the pixels of the image are used. However, in the Spherenet implementation, due to the fact that

the stride is implemented before the convolution in the sampling step, there will be loss of data. We

will come back to this in the next chapters. The SphereConv2d layer has been tried in the different

versions of our model (see Chapter 4).

3.1.2 SphereMaxPool2d

MaxPool is a layer that finds the maximum value of the blocks which has the same size as its kernel.

(Figure 13). It has been reported that MaxPooling layer adds pseudo-invariance to deformation and

because of this, it is popular especially in image classification deep learning schemes [51].

Figure 13: 2x2 kernel Maxpool layer is applied with a stride equal to 2.

One of the other layers which is proposed by Coors et al.[45] is the SphereMaxPool2d. The idea is

the same. Firstly, a 3 × 3 grid is generated for each pixel. Then using a type of interpolation (Nearest

Neighbor or Bilinear) the value of those points will be found. Afterwards, a normal, planar MaxPool

layer will be applied with a kernel size and stride equal to the size of the generated grid (here 3× 3).

Again, if a different stride should be applied on the image, it will be implemented in the grid generation

step and there will be some loss of information. It is worth mentioning that as a 3w × 3h tensor is

generated here again and the MaxPool is applied on it, it is much slower in comparison to the normal,

planar MaxPool layers [45][46].
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3.2 LSTM Layers

This section is dedicated to the spherical Recurrent, LSTM cells that we have benefited from it in some

of our models. The implementation of this layer is based on the work of Toderici et al. and Coors et

al. [35] [45].

3.2.1 SphereConvLSTM

The LSTM layers are made mainly for the task of natural language processing. In the article of Toderici

et al., they have used ConvLSTM cells that are using convolution inside an LSTM. In the Pytorch

implementation of 1zb [43], the input state and hidden state are sent to different convolution layers

and they generate gate channels which have a number of channels equal to 4 times the input. Then,

the gate channels are separated into 4 chunks and, by applying nonlinearities, the new states are

generated according to [51][42]:

fn = sigmoid(W(x,f)xn +W(h,f)hn−1 + b(f)) (16)

in = sigmoid(W(x,i)xn +W(h,i)hn−1 + b(i)) (17)

gn = tanh(W(x,c)xn +W(h,c)hn−1 + b(c)) (18)

cn = fn � cn−1 + in � gn (19)

on = sigmoid(W(x,o)xn +W(h,i)hn−1 + b(o)) (20)

hn = on � tanh(cn) (21)

where h, c, and x show the hidden state, the cell state, and the input, respectively. F corresponds

to the forget-gate, i corresponds to input gate, and o corresponds to the output gate, all three are

generated by sigmoid nonlinearity after convolution. Each of the W s shows weight of a convolution

filter and bs show the biases. In fact, there are 8 different convolutions in each LSTM cell that makes

it computationally expensive. The most important point about LSTM cell is providing the effect of the

previous iterations to the current iteration which is important when you are training a network on

residuals.

The SphereConvLSTM cell is made when all these 8 convolutions are replaced by Spherical convo-

lutions. In our work, we used Spherenet convolutions with bias and 3× 3 kernel for the SphereConvL-

STM. This layer provides the power of previous iterations together with the power of sampling on the

sphere for our image compression model.

3.3 Upsampling Methods

In this project, we would like to propose a method based on the autoencoders for image compression.

In image compression autoencoders, (like the ones that have been showed in Section 2.1 and 2.2) the
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image is firstly mapped and downsampled to a latent space (using strided convolution or MaxPool)

in order to achieve a low rate for compression, and then it should be upsampled again in order to

reconstruct the omnidirectional image. From the available methods, we try to find the best ones for

our autoencoder. Here we show the methods we have tried for upsampling:

3.3.1 Strided SphereTransposedConv2d

In autoencoders for planar data, a method which is in use for upsampling is to perform Strided Trans-

posed Convolutions. Transposed convolutions are made by transposing the weight tensor and they can

be looked as weighted sum of transposed kernels. If there is an input image with a size W × H and

there is transposed convolution kernel with a size of w × h and finally a stride of sw × sh, the output

image will have a size of [sw(W − 1) + w]× [sh(H − 1) + h] [51] :

Figure 14: The result of transposed convolution on a 3×3 tensor by a 2×2 kernel with stride=1×1. The
color of the blocks in the output shows the number of times that the transposed convolution affected
them.

The main problem of the transposed covolution is clear on the Figure 14. Due to the fact that the

number of times that the kernel meets each point is different, if you apply a transposed convolution

on an image data, there will be grid-structure anomalies in the final reconstructed image. This grid

structute anomaly is more severe when a strided transposed convolution is implemented. This is

the main reason that the strided transposed convolutions are not popular in many of the state of

art reconstruction autoencoders [51]. They are more in use without stride and together with an

interpolation method. We come back to this in the next subsection.

When it comes to a spherical transposed convolution layer, new problems show up. In Section

3.1, there has been shown that in the spherical convolutions, firstly a sampling and an interpolation

are done and then a normal planar convolution will be applied there. The main trick was to apply the

normal planar convolution with a stride equal to the size of the generated grid in order to use fast, built

in convolutional functions of neural network coding API frameworks and to avoid the for loops which

are awfully slow. However, this trick cannot be applied in the transposed spherical convolutions. Here,

firstly a transposed planar convolution with a kernel equal to the size of the grid should be applied.

After that, the generated pixels should be sent to the correct places according to the omnidirectional

sampling. However, this second step cannot be done by simple tricks and it needs loops in the codes

which are slow. Our trials for this layer did not end up with satisfying speed and results and it made
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the training time long. At the end, we have decided not to put this layer inside our autoencoder and

to use the more popular methods that provide better results.

3.3.2 Bilinear Upsampling

Another method, that is considered as an alternative to strided transposed convoluvition is the bilinear

upsampling. Bilinear upsampling is a method to find the value of the points which are inside 4 other

points using a linear estimation[48]:

Figure 15: Bilinear upsampling method in order to find the value of point P [48].

When the value of points x11, x12, x21, and x22 of an image are known, the value of point P can be

found easily using the middle values of P1 and P2:

P = 1
(x2 − x1)(y2 − y1) [x2 − x, x− x1]

X1,1 X1,2

X2,1 X2,2

 y2 − y
y − y1

 (22)

It is better to apply bilinear upsampling after a covolution or a transposed convolution in the

decoder part of the autoencoder in order to decrease the blurring of the result. It is a well known

method that is used in some state of art autoencoders and the result looks less distorted in comparison

to the result from the transposed convolution[51].

3.3.3 Pixel Shuffle

Pixel Shuffle or Depth to Space, is another popular method of upsampling in deep autoencoders. It

simply increases the number of pixels for the output image by reducing the number of channels. If an

input from the size of [C ×H ×W ] is given to a pixel shuffle layer with an upsacle factor equal to R,

then the output will be from the size of [ CR2 ×RH ×RW ][52]. The figure below shows it visually:
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Figure 16: Pixel shuffle increases the height and weight by reducing the number of channels[52].

This method is also popular in the state of art autoencoders and we have tried to build our model

in Chapter 4.

3.4 Loss Functions and Metrics

The loss function is one of the most important parts of every deep learning model and it is where

the back-propagation begins. In unsupervised autoencoders for image compression, the loss function

shows the difference between the reconstructed image and the input image. It mainly stands for

the distortion on the rate-distortion trade-off. For omnidirectional images, specific loss functions are

available that contain the different rate of sampling on the poles and on the center.

3.4.1 Mean Squared Error

One of the most popular metrics, which has been used widely as the loss function which is friendly

with the deep neural networks [53], is Mean Squared Error or MSE. It is defined as the squared root

of the difference between the input and the result. In the image signal schemes, it is defined as:

MSE = ||x− x̄||
2

h× w
(23)

where x is the input image, x̄ here shows the reconstructed image after compression. w and h are the

number of columns and the number of rows in the image.

3.4.2 Weighted Mean Squared Error

In the omnidirectional framework, MSE can be weighted in a way that it contains the geometry of 360◦

images. The first step is to find these weights. We have used a method based on cosines and the work

of Sun et al. [54]. Firstly, the stretching relationship of an equirectangular projection should be found.

The latitude (θ) and longitude (φ) of a spherical surface are projected on the Cartesian coordinates

(x and y) on the planar surface. If we assume each points on the Cartesian coordinates is on the center

of a differential unit surface, the surface area of the unit is equal to dxdy. On the other hand, for the
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sphere surface, the unit is equal to dθdφ. According to [55], the Jacobian matrix can connect these

two differential surface areas:

dxdy = J(θ, φ)cos(φ)dφdθ = |

∂x
∂θ

∂x
∂φ

∂y
∂θ

∂y
∂φ

 | · cos(φ)dφdθ (24)

where “||” is the determinant. The stretching ratio, which indicates the weights we are looking for, can

be found by dividing the differential area on the sphere and the differential area of the equirectanularly

projected image:

Stretching Ratio = cos(φ)|dφdθ|
|dxdy|

= cos(φ)|dφdθ|
|J(θ, φ)||dφdθ| = cos(φ)

|J(θ, φ)| (25)

In an equirectanularly projected image, if w is the number of columns and h the number of rows,

the weights for each of the rows can be found using the following equation[54]:

w(j) = cos(
(j + 0.5− h

2 )π
h

) (26)

This value, should be multiplied to the MSE of the pixels for each row and then the whole number

should be devided by sum of the weights, in order to provide a correct loss function. It is called WMSE

or Weighted Mean Squared Error:

WMSEtotal =
∑h
j=1(w(j) ·

∑w
i=1(x̂i,j − xi,j)2)∑h

j=1 w(j)
(27)

We have tested this type of loss function for the deformation term of the loss in our preliminary

model (look at Section 4 and Appendix A1) and we have used it in our metrics (look at Section 3.4.5).

3.4.3 Weighted L1 Loss

The L1 loss function is another common loss in deep learning models. It uses the absolute value of

error instead of using the second order of it. In comparison to MSE, L1 loss has the advantage that it

is more robust to the outlier inputs as it does not use the squared value of the error, unintentionally

making the outlier anomalies important [53]. In our image compression problem, it is important to

consider that the omnidirectional image dataset that we use (SUN360 [16]) is not a clear dataset

and in some of the images, there are letters and watermarked characters, that they were added to

the image after taking it (look at the Section 5.2), so benefiting from a method that is more resistant

against the outliers, can be helpful.

The weighted L1 loss has the same structure as the WMSE loss and the same weight increments

have been used. The only difference is that the weights are applied on the first order residuals. The

effect of weights are higher here as they are in the same order as the residuals themselves:

Weighted L1total =
∑h
j=1(w(j) ·

∑w
i=1 |(x̂i,j − xi,j)|)∑h

j=1 w(j)
(28)
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3.4.4 Peak Signal to Noise Ratio (PSNR)

Peak Signal to Noise Ratio (PSNR) is one the most famous metrics that is used frequently to show the

quality of a reconstructed signal. It is defined by:

PSNR = 10 log10
max(S)2

MSE
(29)

where S is the maximum pixel value which is feasible. Using a binary representation, S is equal to

2B − 1 where B shows the number of available bits per sample. (S = 255 for 8 bits per sample). PSNR

has been used as one of our metrics for performance evaluation of our model (look at Chapter 5).

3.4.5 Weighted-to-Spherically-Uniform PSNR

Weighted to Spherically Uniform Peak Signal to Noise Ratio (WS-PSNR) is an evaluation method and

meteric that is made specifically for omnidirectional images [54]. It is made based on the definition of

PSNR by substitution of the MSE loss function with WMSE loss function (look at Section 3.4.2).

WS − PSNR = 10 log10
max(S)2

WMSE
(30)

where for the equirectangularly projected images with 8 bits per sample becomes:

WS − PSNR = 10 log10
2552∑h

j=1
(w(j)·

∑w

i=1
(x̂i,j−xi,j)2)∑h

j=1
w(j)

(31)

This method has been used frequently in our tests.

3.4.6 MS-SSIM

Structural Similarity, or SSIM, is an image quality metric or loss function based on the human visual

perception [56]. Researchers believe that human visual perception is based on recognizing specific

structures inside the image [57] and this metric is also focuses on similarity of structures. SSIM can

be calculated based on luminance, contrast, and structure components of two images:

l(x, x̂) = 2µxµx̂ + cl
µ2
x + µ2

x̂ + cl
(32)

c(x, x̂) = 2σxσx̂ + cc
σ2
x + σ2

x̂ + cc
(33)

s(x, x̂) = σx,x̂ + cs
σxσx̂ + cs

(34)

where σx is the standard deviation of x that can be considered as an estimation of contrast in image

signal, µx is the mean of x that can be looked as an estimation of luminance in the images, and σx,x̂

is the covariance and it can be interpreted as the tendency of the input image and the reconstructed
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image to vary together. cl, cc, and cs are the constants of each value and they can be found using the

following equations:

cl = k2
lB

2, cc = cs
2 = k2

cB
2 (35)

where B is the number of available bits per sample (B = 255 for 8 bits per sample), and kl and kc are

both scalar constants which are ultra low in comparison to 1. Then, the SSIM value can be computed

as [56]:

SSIM(x, x̂) = (l(x, x̂))α(c(x, x̂))β(s(x, x̂))γ (36)

By changing α, β, and γ the contribution of each of these parts can be selected. In case they are

equally important, the SSIM metric can be found using:

SSIM(x, x̂) = (2µxµx̂ + cl)(2σx,x̂ + cc)
(µ2
x + µ2

x̂ + cl)(σ2
x + σ2

x̂ + cc)
(37)

Wang et al. [26], proposed a type of SSIM metric that is able to compare structures in the image in

the different scales and they called it Multi Scale SSIM or MS-SSIM. In their method, the input image

and the reconstructed one are evaluated using a normal SSIM approach. After that, both are low-pass

filtered and downsampled by a factor of 2 and the SSIM is calculated again. They continue this up to

N times and the final metric is calculated using the following equation:

MS − SSIM(x, x̂) = lN (x, x̂))αN

N∏
n=1

(cn(x, x̂))βn(sn(x, x̂))γn (38)

where n is the iteration number. They have used a set of grayscale images and the distorted version of

them using white Gaussian noise. They trained the values of βn and γn using gradient decent that is

applied on MSE to find them for N=5. In order to make the problem simpler, they set βn = γn. Table 1

shows the values they found.

Table 1: The power values of MS-SSIM for 5 iterations found by Wang et al. [26].

Iteration (n) γn = βn

1 0.0448
2 0.2856
3 0.3001
4 0.2363
5 0.1333

They have shown that MS-SSIM can perform a better evaluation for the distortions which are visible

to human visual system in comparison to normal visual distortions. We have benefited from MS-SSIM

as a metric (look at Chapter 5).
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3.4.7 Weighted to Spherically Uniform SSIM

Similar to WS-MSE, to apply Multi Scale SSIM on an omnidirectional image, specific weights can be

used to take into account the geometry. Firstly, a pixel is selected on the equirectangular projected

version of the input image and the reconstructed image and it is mapped on the sphere using the

equations we showed in Section 2.3.2. On the sphere, for an area around this pixel, SSIM is calculated

using the local version of Equation 37 on the sphere domain [58]:

S − SSIM(i, j) = (2µxµx̂ + cl)(2σx,x̂ + cc)
(µ2
x + µ2

x̂ + cl)(σ2
x + σ2

x̂ + cc)
(39)

where i is the point from input image on spherical domain and j is the spherical domain representation

of the pixel on output image. In the implentation of Chen et al.[58], they made an 11 × 11 patch

around that specific pixel. For an equirectangular projection, this should be weighted with the weights

we showed in Equation 26 as:

WS − SSIM(i, j) =
∑h
j=1(

∑w
i=1(S − SSIM(i, j) · w(j))∑h

j=1 w(j)
(40)

3.5 Viewports

Figure 17: A schematic view of a viewport which is tangent to the sphere on point o with size h× w.

A viewport, is defined as a part of the spherical surface which is projected on a tangent plane.[21]

The center of it (point o in Figure 17), is the tangent point. The projected signal on the viewport can

be considered as almost non-omnidirectional, so the normal, planar metrics such as PSNR and SSIM

can be applied on it. We will use this method just for the performance evaluation of our results and

comparison (look at Chapter 5).

In this study, in order to find the positions of the viewports on the spherical domain (which is repre-

sented by centers of them), we benefited from the work of Xu et al.[59]. In their study, they proposed
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a method that considers the spherical geometery of omnidirectional images to find the centers of the

viewports that should be generated (Figure 18):

Figure 18: Position of the centers of the viewports when N0 = 8 [59].

The points which are shown are selected using the equations proposed by Xu et al. Firstly, the

number of points on the equator is selected as N0. Then Θ which is the angle between each two

neighboring points on the equator is selected as:

Θ = 360
N0

(41)

Then the number of point on the other orbits are selected as:

N1 = N0 ∗ dcos(Θ)e , N2 = N0 ∗ dcos(2Θ)e , ... (42)

After this, based on the size of viewports that should be selected and using gnomonic projection, the

planar image signals are made (look at Section 2.3.2 for information about this type of projection).
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4 Building the Model

In this chapter, we build our proposed model and we show, step by step, how we ended up with

current final architecture. They are important points in each step and experiment that resulted in

some of our conclusions we point out in Chapter 6. However, in case you would like to see the final

model, you can skip this chapter and go directly to Chapter 5.

First, we show how to make an omnidirectional image autoencoder that can get trained for one

specific rate. After that, we show the iterative method of training on residuals that provides the ability

to train for different rates in just one pass. This method that benefits from planar and spherical

recurrent neural networks blocks, is called Version 1. Then, we propose the method of patching the

image in spherical domain and we propose models that benefit from it to be computationally efficient

and better in terms of distortion which are called Version 2. Each of these versions include some

different sub-versions that show the effect of changing the details and modules of models.

It is worth mentioning that as the first step, we have performed a preliminary test based on end-to-

end autoencoder model that has been presented in Chapter 2. Due to the fact that training the model

was time consuming and computationally demanding, and it should be trained on every different

compression rate, we decided not to move forward and to propose our model based on another model

that can be modified and trained in a more feasible way. The results of these preliminary experiments

(which is called Version 0) and the details are provided in Appendix A1.

4.1 Version 1: Geometry Aware Recurrent Residual-based Trained Autoencoder

Generally, the main ideas for architectures and modules that we propose are based on the planer

image compression method of Toderici et al. [35]. and spherical methods of Coors et al. [45]. The first

model we made is a simple autoencoder that uses spherical convolutions and spherical MaxPooling in

the encoder, and benefits from bilinear interpolation for the upsampling in the decoder (see Figure 19).

Between each of the upsampling layers, there are transposed convolution layers to reduce the bluring

effect (as we discussed, we did not use spherical transposed layers as they could not be efficiently

implemented). We modeled the quantization step using a simple binarizer that uses a uniform noise

probability in the forward pass and it is bypassed in the backward pass similar to the implementation

of Toderici et al. that we showed in equations 6 and 7. It generates the compressed version of the input

image and the reconstruction of it. The compressed signal is sent to a lossless compression bottleneck

(in our project, we use NPZ format that uses the “gzip” lossless compression scheme[60]). Figure 19

shows the architecture of this model and the reconstructed version of image No. 936 from the test set

(look at Section 5.2 for original input image).
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Figure 19: Left: Image compression autoencoder architecture. Right: Reconstructed image.

The reconstructed image looks similar to the input, but the quality is clearly degraded. In fact,

this model is unable to control the dedicated number of bits for each pixel and it is not possible to

increase the rate that might increase the quality. In order to add the ability to provide the different

compression rates without the need to retrain the model for every different rate, we benefit from

training on residuals. We can perform the training and testing in an iterative way that is shown in

Figure 20 [35].

Figure 20: Training of our autoencoders in an iterative way based on the residuals[61]. It provides all
the needed compression rates with one pass of training.

Training: In every epoch, a few number of iterations are done. In the forward pass, the autoen-

coder works on input and reconstructs the output image. The residual of the output image with respect

to the input is calculated and it becomes the input of the next step. Also, the absolute value of it should
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be stored. Again the forward pass is performed on the residual and another output image is recon-

structed. Afterwards, the output is subtracted from the input (which, itself, is actually the residual of

the previous step). This process can be done on a few iterations and the sum of the absolute values

of the residuals should be calculated (L1 total loss). After that, this value is divided by the number

of iterations to produce the average loss. It is then backpropagated through the model to update the

weights and biases of all layers. The weights and biases are the same for the different iterations and

provide a huge gain in terms of training time and the required computational power in comparison to

the end-to-end autoencoders.

After performing the training on the dataset and finding the weights and biases, now it is time to

perform the testing in a similar iterative way. The process of testing is shown in Figure 21.

Figure 21: Testing phase of our autoencoders in an iterative way based on the residuals[61]. It provides
all the needed compression rates with one testing epoch and a rate distortion curve can be generated
easily afterwards.

Testing: The number of iterations in the testing phase should be the same of the ones in the

training phase. Each of the iterations stands for one of the rates, on the final rate-distortion curve.

In the testing phase, firstly, a tensor with the same size as the input image is generated. This tensor

should be initialized with a uniform value (for example, equal to 0 or 0.5 in our case as the model

runs on the values between -0.5 and 0.5. Indeed, the input images are firstly normalized from 0 to

255 interval to [−1, 1]. It is done due to the fact that we benefit from the Tanh nolinearities and they

generaly generates values between -1 and 1.). After that, the input image is given to the model and

the output of the first iteration is generated and should be added to the initialized tensor. It becomes
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the output image with the lowest rate. Then, the output of the next iteration is generated by giving

the residual of the previous step as input. Again, this should be added to the initialized tensor and it

becomes the reconstructed image with the next rate value. This process can be done again until the nth

iteration which generates the reconstructed image with the highest rate. The compressed version of

images with the different rates is generated from the output of the binarizer and it is then compressed

by a lossless scheme. If there is a need to generate the loss of testing, the same method as the training

can be used to store the losses and to perform averaging on them.

An important point about the image compression schemes which are trained on residuals is that

the statistics of the first iteration is differnet in comparison to the next iterations. Indded, the input

of the first iteration is the image itself, but in the next layers the input is residual and training the

same weights and biases based on these different inputs is theoretically wrong. In order to avoid this

problem and have the effects of the first iteration in the next ones, recurrent neural network blocks

should be used. Theses layers broadcast the effect of previous iterations to the next iteration and by

using them. In this study we benefit from the LSTM blocks and Spherical LSTM blocks (see Section

3.2.1).

So we propose the Version 1 of our model. This model is inspired by Toderici et al. autoencoder

(look at Figure 29). The ConvLSTM cells are replaced by SphericalConv LSTM cells and the model is

trained with these parameters:

Table 2: The parameters which are usedd for training of the model. These parameters are used for all
the models in this chapter.

Feature Value
Number of Epochs 200
Learning Rate 10−4

Weight Decay for L2 Penalty 10−6

Number of Iterations per Epoch 10
Dataset 256 Images Subset of SUN360

Figure 22 shows a schematic view of the Version 1.1 and Version 1.2 that we made. One of them

benefits from MaxPooling in the encoder for the downsampling and the other one benefits from strided

spherical LSTM cells:
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Figure 22: Left: Model version 1.1. Right: Model version 1.2. Both are autoencoders benefiting from
recurrent neural network blocks and trained on residuals.

Similar to the work of Toderici et al. we have convolutional filters before and after spherical layers.

We have exploited spherical LSTM layers in between and there are three hidden states in these models

for the three LSTM cells. In the decoder, we have used the pixel shuffle layer that is in use in the state

of art autoencoders and we did not use transposed convolutional layers that may add grid structure

anomaly (look at Section 3.3.1). The only difference between these two models are the method

of downsampling. Version 2.1 uses strided spherical LSTM and method 2.2 benefits from Spherical

Maxpool layer. Figures 23 and 24 show the reconstructed image No. 936 and the metric plots .

Figure 23: Reconstruction of image 936 from the test set. Up-left: Version 1.1 with rate=0.2442,
Up-right: Version 1.1 with rate=6.6878, Bottom-left: Version 1.2 with rate=0.2243, Bottom-right:
Version 1.2 with rate=5.8719 (all in bpp).
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Figure 24: WSPSNR and WS-SSIM metrics for image 936 reconstructed with version 1.1 and 1.2.

It has been shown that in the high rates, the reconstructed images are almost clear; however, in

the low rates, they are blurred. One of the reasons can be the downsampling method. In Version

1.1 and Version 1.2, we have used 2 downsampling methods that may not be completely effective.

As we mentioned in Section 3.1.1, in the strided Spherical convolution or LSTM layers, the stride is

performed on the grid, before doing the convolution. Indeed, even if the size of the convolution kernel

is bigger in comparison to the stride, there is still some loss of information and it may have effect in the

reconstructed images. Also about the MaxPool layer, some researchers [62] proposed that it is better

to avoid it for the downsampling in image reconstruction autoencoders. As it is clear in the plots, it

is even worse in comparison to the strided spherical convolution that does not benefit from the whole

available information.

To improve the model, we have made a few changes in Version 1.3. In this model, the downsam-

pling is done using regular strided convolutions instead of MaxPool or strided spherical layers. Also,

spherical LSTM cell has been moved to the first layer. Indeed, we thought it might be better to perform

the spherical sampling in the beginning before doing any other operations on the signal so the whole

model receives the correctly sampled input before any processes. This time, we have also made a

similar model without spherical layers in order to compare.

Figure 25: Left: Model version 1.3. Right: Similar model without spherical modules in order to
compare.
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Figure 26: Reconstruction of image 936 from the test set. Up-left: Version 1.3 with rate=0.4156,
Up-right: Version 1.3 with rate=7.5602, Bottom-left: Similar model without spherical modules with
rate=0.4031, Bottom-right: Similar model without spherical modules with rate=8.0800.

Figure 27: WSPSNR and WS-SSIM metrics for image 936 reconstructed with version 1.3 and a similar
model to it without spherical modules.

It is clear in the Figures 26 and 27 that this method generally performs a nice image compression

and the figures are improved. Additionally, the WS-PSNR and WS-SSIM plots show that performing the

spherical sampling at the beginning in a spherical LSTM layer helps to improve the model especially

for the high rates; however, in the low rates it is still a bit lower in comparison to the similar model

without spherical layers. Here, we decided to increase the number of filters or layers for both models

to see if it improves in comparison to the planar model. We had this intuition that as the spherical

model is more complex, using it with few number of filters degrades it more in comparison to normal

planar models.

In this position, we faced a problem related to computational power. When we ran the spherical
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LSTM cells with a higher number of filters, we ran out of GPU computational power; although we

were using an NVIDIA RTX Titan with 12 GB of memory. The main reason behind this problem is the

fact that in the omnidirectional models that benefit from spherical layers, it was not feasible for us

to perform the normal random crop patching on the images which is available in the deep learning

APIs. As a result, the size of the input images were much higher in comparison to the planar deep

learning-based methods (for instance, Toderici et al.[35] model uses just 32 × 32 size but our inputs

were from the size of 768 × 384.) Additionally, as it has been discussed in Section 3.1.1 , spherical

convolutional operations are practically done using a spherical grid generation and then a planar

convolution. A grid is generated for each of the points and then a planar convolution with a kernel

size equal to grid is used. Consequently, they are more demanding in terms of computational power at

least from an order of the kernel size (3× 3 here) in comparison to a planar conovolution. Moreover, a

SphereConvLSTM block that we have shown has 8 spherical convolutions inside that makes this effect

even more significant. In order to solve this problem, a method of batching for the omnidirectional

models have been proposed and it is used in the next version.

4.2 Version 2: Spherically Patched Geometery Aware Recurrent Residual-based
Trained Autoencoder

In this section, firstly we propose the spherical patching method and then we use it in the Version 2.1 of

our model. Also, in order to compare, we increase the number of spherical LSTM layers in Version 2.2

to see if it results in improvement. The methods are compared with similar models without spherical

LSTM layers and spherical patching.

4.2.1 SpherePatch: A Method to Perform Patching on the Omnidirectional Images.

Most of the novel, deep learning-based image compression schemes are benefiting from a type of input

image patching for the training phase. It helps the method to be less computationally demanding

and to run faster. Additionally, if patching is done randomly on different places of the training set, it

virtually increases the size of input dataset and it is the secret that these methods are able to work,

after they were being trained on few number of images.

If the simple, random patching is done on the methods that benefits from spherical layers, it signif-

icently decreases the accuracy of the result as these methods generate a projection grid based on the

size of input image. For example, if there is a patch on the higher parts of an image, as the polar angle

(φ) is higher, the sampling positions are significently different and using the naive method of applying

the same spherical sampling positions is wrong.

In our method, instead of using the RandomCrop built-in classes of deep learning API frameworks

that does not provide data about the position of patching, we made a cropping function that keeps the

position data of the generated random patch. It can be made by generating a random number based

on the size of the patch and the images. For instance, if the size of image is H ×W and the size of

39



Deep Learning-based Omnidirectional Image Compression Yamin Sepehri

patch is bH × bw a random number for the top-left position of patch can be selected in the interval of

yt ∈ [bh, B] and xl ∈ [0,W − bw].
After that, the top-left position of the patch, together with the total height and total weight of the

image should be sent to each of the spherical layers of the model. In order to find the distance between

every two neighbor increments of spherical grid, instead of the size of input image (which is bh × bw),

the total size should be used:

∆φ = π

H
∆θ = 2π

W
(43)

The increments of polar angle and spherical angle should also be selected based on the total weight

and the total height and [i, j] should be generated in the specific interval of the patch:

φi = − (i+ 0.5) · π
H

+ π

2 , i ∈ [yt − bh, yt] (44)

θj = (j + 0.5) · 2 · π
W

− π, j ∈ [xl, xl + bw] (45)

Then the rest of calculations would be the same as Equation 12 and the equations after it. It is worth

mentioning that as each of the patches are not a complete 360◦ image, the method has been used by

Coors et al. [45] to avoid padding on the sides by rotating around the image cannot be implemented

here. Instead, when the grid is generated, if it goes out of the patch, we simply use the available pixels

around.

4.2.2 Version 2.1 and 2.2.

In this section, we add the SpherePatch method that we proposed in the previous section to the Version

1.3. We implement a 32× 32 spherical patch. Consequently, the model can now easily be trained even

on an average NVIDIA GTX 1050 Ti with 4 Gb of GDDR5 memory. As a result, we were able to increase

the number of filters and we increased it to 64. Figure 28 shows the implemented architecture (Version

2.1):

Figure 28: Version 2.1 autoencoder that benefits from spherical patching and spherical LSTM block
and is trained on residuals.
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As it is shown in Figure 28, spherical LSTM cell performs the sampling on the sphere and applies

convolution. The number of filters are reduced just one layer before the binarizer in order to improve

the model in terms of the rate and it is increased again in the decoder. For the decoder, we have

implemented pixel shuffle upsampling. This method has been trained on two different sampling inter-

polation methods (nearest neighbor and bilinear) for the spherical grid and we compare them in terms

of WSPSNR and WS-SSIM. Also, in addition to the L1 loss function that we used for all the models

up to here and it is from the work of Toderici et al. (Equation 3), we also tried the WL1 loss as well

(Equation 28) to see if it provides an improvment for the model or not.

After that, a similar method without spherical patching and sampling has been implemented which

is based on the work of Toderici et al.[35]. This model exploits the popular RandomCrop approach for

the patching, We made this model in order to compare with our proposed model. Figure 29 shows this

model:

Figure 29: Autoencoder made without use of spherical patching and spherical layer with an architecc-
ture similar to V2.1 in order to compare.

Finally, we added a second spherical LSTM cell to see if it improves the model or not. Figure 30

shows this architecture that benefits from two spherical layers (Version 2.2):

Figure 30: Version 2.2 autoencoder that benefits from spherical patching and two spherical LSTM
block and is trained on residuals.

41



Deep Learning-based Omnidirectional Image Compression Yamin Sepehri

The reconstructed images and the results of WSPSNR and WS-SSIM metrics are shown in Figures

31, 32, and 33:

Figure 31: Reconstruction of image 936 from the test set in version 2. Up-left: Version 2.1 with
rate=0.6564, Up-right: Version 2.1 with rate=9.5075, Middle-left: Version 2.1 with bilinear sampling
with rate=0.6605, Middle-right: Version 2.1 with bilinear sampling with rate=9.5432, Bottom-left:
Version 2.2 with rate=0.6144, Bottom-right: Version 2.2 with and rate=9.1638 (all in bpp)

Figure 32: Reconstruction of image 936 from model similar to version 2 without spherical patching or
layers. Left: rate=0.6343 bpp, right: rate=9.5361 bpp
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Figure 33: WS-PSNR and WS-SSIM metrics test for Version 2.1 and 2.2

In Figure 39 it has been shown that after applying the spherical patching method, the reconstructed

images improved and now even in the low rates, the image structures are mainly clear (compare

them to Figure 26). In the WS-PSNR plot we can see that Version 2.1 model with nearest neighbor

interpolation performs a better job in comparison to the model that has the similar architecture without

the spherical modules. In the WS-SSIM metric, the results from Version 2.1 with bilinear interpolation

is slightly better; however, in the high rates model without the spherical modules passes it and performs

a better reconstruction. About this metric, it should be noticed that WS-SSIM parameters are not

trained for this omnidirectinal dataset and it might have some effects in the result. When we compare

the result from nearest neighbor sampling method and bilinear sampling, it has been shown that

nearest neighbor does a slightly better job in WS-PSNR, but for the WS-SSIM, bilinear is generally

better. The reason is that WS-PSNR is more sensitive to pixel-wise difference and as the bilinear

performs a type of linear averaging, it blurs down some parts which reduces the result from this

metric. On the other hand, WS-SSIM is more sensitive to the structures in the image and this linear

interpolation provides a better structure-wise view especially in the low rates. After that, as it is clear

in the Figure 33, adding a second spherical LSTM layer did not improve the model and we think

that it is due to the fact that it ignores the learned spherical structures from the first layer which

causes the degradation of the model. Indeed, the signal after the first spherical layer is not completely

spherical anymore and it is better not to use more than one spherical layer. Finally, the model with

WL1 loss does not show a significant improvement in comparison to other models that they benefit

from simple L1 loss. The reason is not compeletly clear but it may be because of the specific nature

of this recurrent neural network-based model and it cannot easily generalized to all possible solutions

for omnidirectional image compression autoencoders.

We selected Version 2.1 with nearest neighbor sampling and simple L1 loss as our final method and

in the next chapter, we increase the number of channels even more and we train it on the 776 images

subset we have from SUN360 dataset to compete with JPEG.
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5 Performance Evaluation

5.1 The Proposal

In this chapter, we show our proposal and compare it with JPEG standard, classical model. This model,

is an improved version of Version 2.1 (look at Section 4.2.2) that we selected as our proposal. As JPEG

rates are generally in the interval of (0, 5] bpp, another downsampling layer has been added to the

model to shift it more to the left on rate-distortion plot. Also, the number of filters has been increased

to 128.

This model, has one spherical LSTM cell layer in the beginning that performs the sampling on the

sphere and considers the geometry of the omnidirectional image (to see why just one spherical layer

has been used, look at 4.2.2). It benefits from spherical patching method that is well-aligned with this

spherical LSTM cell and makes it able to run more efficiently with lower computational power and

also improves the result (for more information, look at Section 4.2). It uses a simple averaged L1-loss

on the residuals as it is more robust to outliers and anomalies in comparison to MSE and it does not

use spherical weighted loss functions. (In our model, spherically weighted loss functions did not show

a significent improvement in the results, look at the experiment at Section 4.2.2). Finally, it benefits

from training on residuals that provides different compression rates with just one pass of training,

similar to the work of Toderici et al. (for details about this method of training, look at Section 4.1).

Figure 34 shows the proposed model architecture.

Figure 34: Final model which is made for performance evaluation based on Version 2.1.

The training is done using the parameters which are shown in Table 3.
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Table 3: The parameters which are used for training of the proposed model.

Feature Value
Number of Epochs 300
Size of Spherical Patching 32× 32
Learning Rate 10−4

Weight Decay for L2 Penalty 10−6

Number of Iterations per Epoch 10
Dataset 776 Images Subset of SUN360

As it is clear in Table 3, we have used 776 images from SUN360 dataset to train the model. In the

next section, we talk about the features of this dataset.

5.2 The Dataset

In the field of planar images, there are many different standard datasets available with different

resolutions; however, in the field of omnidirectional images, the situation is different and the num-

ber of available datasets is low. Some available omnidirectional datasets include 360-Indoor [63],

3D60[64], Salient 360[65], and SUN360[16]. In this study, our choice is the SUN360 datasets that

contains a high number of images, from outdoor and indoor. The images are complex and contain a lot

of details (Sometimes they contain human in the images too). Additionally, it has some varieties and

anomalies in some images that make our model more robust. First, The source images had different

resolutions (1024× 512 and 9104× 4552) and were possibly taken by different cameras. Second, some

of the images, like the images in Figure 35, contain some anomalies and some objects (like text) were

added to them afterwards. These additional objects are very common on the available omnidirectional

images on the Web and it is helpful to make our model more robust to them. In general, it seems

around 20 % of the images from the SUN360 dataset contain these type of anomalies.

Figure 35: Left:Texts and other unnatural objects that were added to the images after capturing. Right:
Unnatural anomaly in the lower part of image that might be from the method of capturing or added
to the image afterwards in order to keep the resolution uniform.

To prepare the dataset for training, firstly, the images were converted from the JPEG format to PNG

in order to show the uncompressed size and also to be able to compress it again to JPEG images with
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different qualities for comparison. Then, since we wanted to have the same resolution in all images

and to reduce the training size, all the images were downsampled to the size of 768× 384. After that,

three subsets were made from the dataset containing 24 (used in Appendix A1), 256 (used in Chapter

4 to build the model), and 776 images (used in this Chapter 5 for performance evaluation).

Three images were selected to test the results from the different methods. One image is from inside

of a building, the other one from the outside, and the third one is from a train station that contains a

part inside and a part outside, with some complex structures on the ceiling. The three test images are

shown in Figure 36.

Figure 36: The three test images that have been used. All three are downsampled to 768 × 384. One
indoor, one outdoor, and one in between from a train station [16]. Top-left: image No. 936, top-right:
image No. 528, and bottom: image No. 1231.

5.3 Results of Experiments

After training and the testing of the model, the test images were reconstructed. Here, the recon-

structed images are shown for the all three images of the test set. Different spherical metrics like

WSPSNR and WS-SSIM are plotted to help us compare the results. WSPSNR metric is applied on

the average of R, G, and B components to contain the effects of both luminance and color. The re-

constructed images from JPEG with 4 : 2 : 0 subsampeling method is shown and the metrics’ results

are also available for them to compare. The selected qualities of JPEG points are from the set of

Q = [5, 10, 20, 30, 40, 50, 60, 70, 80, 90].
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Figure 37: Reconstruction of image 528. Up-left: Proposed model with rate=0.2206, Up-right:
Proposed model with rate=2.4673, Middle-left: JPEG with rate=0.1490, Middle-right: JPEG with
rate=2.2800 (all in bpp) Bottom-left: WS-PSNR metric results, Bottom-right: WS-SSIM metric results

47



Deep Learning-based Omnidirectional Image Compression Yamin Sepehri

Figure 38: Reconstruction of image 936. Up-left: Proposed model with rate=0.1861, Up-right: Pro-
posed model with rate=2.4237, Middle-left: JPEG with rate=0.2200, Middle-right: JPEG with rate=
1.8514 (all in bpp), Bottom-left: WS-PSNR metric results, Bottom-right: WS-SSIM metric results
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Figure 39: Reconstruction of image 1231. Up-left: Proposed model with rate=0.1842, Up-right:
Proposed model with rate=2.4237, Middle-left: JPEG with rate= 0.2239, Middle-right: JPEG with
rate=2.5700 (all in bpp), Bottom-left: WS-PSNR metric results, Bottom-right: WS-SSIM metric results.

As it is clear in the images, although the rates are generally low, our model can perform a nice

reconstruction on the image and it shows the important structures. Especially in terms of showing the

colors, it works well. The model can come close to JPEG in the metrics and even pass it for 2 of the

images in the low rates, but in the high rates, it is still a bit lower. It is worth mentioning that due to

the problems regarding the available computational power, we could not increase the number of filters

more or to the train on the whole dataset. (As an example, the number of filters in the work of Toderici

et al. that provides better results in comparison to JPEG is from the order of 512 and they trained on 1

million epochs. Also, the number of layers and training images are higher [35].) We think if we have

access to higher compuational power and increase the number of filters, epochs, and the images in the

training set, this model has the potential to provide better results in comparison to JPEG even for the

higher rates. Meanwhile, it should be mentioned that JPEG benefits from a specific optimized lossless

entropy coder, but the entropy coder that we use is not optimize for our model (it is one the possible

further improvements), so it is not a completely fair comparison.
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To show the effect of Omnidirectional layers on the results and the possible improvement they bring

to the model, we performed an analysis based on the generated viewports from the test set. Viewports

with a grid sampling size of 45× 45 have been generated. N0 that sets the position of the centers and

number of viewports is selected to be equal to 8, so according to Equation 42, the total number of

viewports is 8 + 2× 5 + 2× 1 = 20. Planar meterics such as SSIM and PSNR have been implemented

on the generated viewports. The same process have been done on JPEG images in order to compare.

This time, in addition to JPEG 4 : 2 : 0, we also made results based on JPEG 4 : 4 : 4 which does not

perform chroma subsampling. In fact, we did this as we have seen that our method performed a better

job to find the colors in the low rates in comparison to JPEG and we wanted to see if it has an effect

on the results. Figure 40 shows the results:

Figure 40: Metrics results on the viewports for JPEG and the proposed method. Up-left: Image No.
528 PSNR, Up-right: Image No. 528 SSIM, Middle-left: Image No. 936 PSNR, Middle-right: Image
No. 936 SSIM, Bottom-left: Image No. 1231 PSNR, Bottom-right: Image No. 1231 SSIM

It is clear in Figure 40 that the gap of the PSNR and SSIM curves for the whole omnidirectional

image is wide between the results from the proposed method and JPEG. However, after generation
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of the view ports, the gap between these two curves reduces and it means that the proposed model

becomes closer (or even passes) JPEG in the plots. It is also clear from the significant difference

between the results of planer metrics on our proposed model when it is applied on the whole image

and when it is applied on the viewports. This big change does not happen in JPEG. These are signs that

this method considers the geometery of these specific images. Additionally, as we see in the results, our

method performs better in comparison to JPEG 4 : 4 : 4 rather than JPEG 4 : 2 : 0 as we expected. In

fact as JPEG is not perfect to find the color in low rates, when more samples are dedicated to chroma

components, its quality generally degrades in that rate.

6 Conclusion

In this study, a method has been presented that is able to consider the specific geometry of om-

nidirectional images in the image compression scheme. The method is based on autoencoders and it

can be trained easily for different rates in one pass in an unsupervised manner. As it benefits from

spherical patching that is well-aligned with spherical layers, it can be trained easier faster and more

efficiently. The model has the potential to compete with approaches like JPEG if it is trained on enough

number images with enough filter kernels. Additionally, the following points have been noticed during

the process of designing the model:

• Having one spherical convolution layer or spherical residual block that performs the sampling

on the correct positions is enough to improve the model. In fact, we think that performing the

correct sampling based on the type of projection at the beginning is enough to send the whole

model to spherical space and adding more spherical layers (such as spherical convolutions and

spherical LSTM cells) does not help. Indeed, after the first spherical layer, the signal is not

completely spherical anymore and our results did not not show improvement by adding more

spherical layers.

• Performing a precise spherical patching can help not only in reduction of the training time and

the required computational power, but also in the quality of the reconstructed images.

• The layers that are benefiting from a kind of averaging, like MaxPool or bilinear interpolation

modules are not good choices for the reconstruction of omnidirectional images. In fact, the

position of sampling is from high importance in 360◦ image schemes and averaging reduces the

preciseness of sampling and may cause blurring in the reconstructed image.

• Applying the weighted loss functions did not show a significant improvement in our model and

it does not exist in our final proposal. However, this result might be because of the specific

recurrent neural network method that we used and it cannot be easily generalized to all possible

solutions for omnidirectional image compression.
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• Pixel shuffle, depth to space is a decent model for upsampling in the decoder for omindirectional

image compression.

7 Further Improvements

Although this study has shown the potential of convolutional layers that consider the geometry

of the omnidirectional images and proposed a specific model of patching which is well aligned with

these models, it is just the first step. The whole arechitucture and parameters like number of filter and

layers, learning rate, weight decay, etc. can be fine-tuned to be completely optimized for the problem

of omnidirectional image compression in order to improve the model. Also, although our method did

not show a significant difference by using the weighted loss functions, this can also be studied more in

similar models.

Additionally, a specific entropy coder can be made and trained for this autoencoder to improve the

model. Moreover, instead of the simple binarizer that we used, learning for quantization algorithms

can also be implemented. There are interesting works in these field such as [66] and [67].

Finally, there are new ideas currently emerging in the field of planar image compression that can

be helpful in the field of 360◦ images as well. Region of Interset based image compression [68] and

saliency-based coding [69] can be added that dedicates more bits to the specific defined RoI which is

of high importance and less bits are allocated to the rest. For instance, there are novel approaches

that are performing object detection before the image compression and allocate more bits to these

positions[70]. Using an spherical object detection approach such as what is proposed on [45], these

methods can also be added to an omnidirectional image compression schemes and they may provide

improvements for the rate-distortion tradeoff.
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[32] Johannes Ballé, Valero Laparra, and Eero P. Simoncelli. End-to-end optimized image compres-

sion. CoRR, abs/1611.01704, 2016.

[33] Renata Khasanova and Pascal Frossard. Geometry aware convolutional filters for omnidirectional

images representation. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings

of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine

Learning Research, pages 3351–3359, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[34] Shengwei Wang, Hongkui Wang, Sen Xiang, and Li Yu. Densely connected convolutional network

block based autoencoder for panorama map compression. Signal Processing: Image Communica-

tion, 80:115678, 2020.

[35] George Toderici, Damien Vincent, Nick Johnston, Sung Jin Hwang, David Minnen, Joel Shor,

and Michele Covell. Full resolution image compression with recurrent neural networks. CoRR,

abs/1608.05148, 2016.
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10 Appendix A1: Version 0, Preliminary Study Based on end-to-
end Autoencoders

In this part, the preliminary experimants that have been done on Ballé et al.[32] model are pre-

sented. These experiments have been done as the first step in this study. Firstly, the Ballé et al. model

was trained on the Kodak planar image dataset[71] and a 24 images subset of SUN360[16] omnidi-

rectional dataset (look at Section 5.2). As this model should be trained for every different rate, to

save the training time and computational power, Tensorboard API has been used and the rates were

checked in terms of the number of training epochs. When the curves became almost flat, we finished

the training. After this, the model was tested on the test set (look at Section 5.2). The Figure 41 shows

the result of metrics on image No. 936:

Figure 41: The results of Ballé et al. model trained on 24 images from Kodak and SUN360 datasets in
comparison to JPEG.

As it is shown in the Figure 41, Ballé et al. method performs well in comparison to JPEG for low

rates. Training it on omnidirectional images shows a bit of improvement in the results. As the next

step, we changed the weight function of this model from the MSE to weighted-MSE (look at Section

3.4.2). As WMSE applies the weights based on the position of the specific pixel, it is better not to

implement it together with a method of patching, so the patching has been removed. Additionally, in

order to have a fair comparison between this model and the original Ballé et al. model, patching has

been removed from their model too. Figure 42 shows the results in terms of the metrics for one of the

images:
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Figure 42: The results of Ballé et al. model trained on 24 images with WMSE loss (and without
patching), in comparison to normal Ballé et al. model and normal Ballé et al. model without patching.

The above plots show that changing the loss function to WMSE just makes a little difference in

comparison to the original Ballé et al. without patching and as we expected, the change is not signif-

icent. In the next step, we tried to change the convolutional transforms in the Ballé et al. model to

spherical convolutions from Spherenet method[45] but due to the lack some of the important functions

such as nn.functional.grid sample in TensorFlow API, the code has some additional Python loops

and consequently it was ultra-slow. Indeed, we were not able to train it with our current available

computational power. So finally, due to this reason and the fact that we have to train this model for

every different rate which was not feasible for us in computational power point of view, we decided to

change the base model we used for our different versions to the work of Toderici et al.[35].
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