
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Analysis of the BIKE post-quantum cryptographic
protocols and the Legendre pseudorandom function

Dusan KOSTIC

Thèse n° 7212

2020

Présentée le 29 octobre 2020

Prof. O. N. A. Svensson, président du jury
Prof. A. Lenstra, directeur de thèse
Prof. S. Gueron, rapporteur
Dr J. Bos, rapporteur
Prof. S. Vaudenay, rapporteur

à la Faculté informatique et communications
Laboratoire de cryptologie algorithmique
Programme doctoral en informatique et communications

Tini. . .

Acknowledgements
First and foremost I would like to thank Arjen Lenstra for being a wonderful advisor. He gave

me freedom to explore a wide range of problems in our field and provided me with constant

support and useful advice.

I am also grateful that I had the opportunity to work in LACAL with many bright researchers.

Former PhD students and post-doctoral researchers Andrea Miele, Alina Dudeanu, Anja Becker,

Jens Zumbrägel, Thorsten Kleinjung, Benjamin Wesolowski, Rob Granger, and Marguerite

Delcourt warmly welcomed me to LACAL when I joined EPFL in 2015. I would also like to

thank the present PhD students of LACAL, Novak Kalud̄erović and Aymeric Genêt, with whom

I spent the last three years in LACAL. I very much enjoyed the numerous lunch and coffee

breaks we had over the years. Special thanks go to Thorsten and Novak for many insightful

and productive discussions we had and for their constructive and useful feedback throughout

the years. Also, many thanks go to Monique Amhof for making my life during the PhD easier

by helping with all the administrative issues I had.

My sincere thanks go to Shay Gueron and Nir Drucker. I am very happy that since our collabo-

ration started, during my visit to the University of Haifa in 2018, we have been continuously

working together. The experience I gained while working with them was invaluable to me.

Also, I am glad and excited to be joining Shay and Nir in AWS Cryptography group soon.

On a personal note, I am very grateful for all my friends, both the old friends from Serbia and

the new ones I met in Lausanne. They made my PhD journey memorable.

Finally, I am deeply and sincerely grateful to my family. Veliko hvala mojim roditeljima Vanji i

Saši na neizmernoj podršci tokom mog celokupnog školovanja i mojim sestrama Lani i Danici

za sve lepe trenutke. Na kraju, hvala Tini koja je sve vreme uz mene!

Lausanne, August 25, 2020 D. K.

i

Abstract
The field of post-quantum cryptography studies cryptographic systems that are secure against

an adversary in possession of a quantum computer. In 2017, the National Institute of Stan-

dards and Technology (NIST) initiated a process to standardize quantum-resistant public-key

cryptographic algorithms (NIST PQC Project). In this thesis we analyze the performance and

security of the Bit-Flipping Key Encapsulation Mechanism (BIKE) – one of the candidates in

the NIST PQC project which advanced to the second round of the standardization process.

BIKE is a code-based cryptographic system featuring three different variants of the protocol.

In the first round of the NIST PQC project BIKE offered security only against chosen-plaintext

attacks (CPA). In the second round, BIKE introduced three new variants that are claimed to be

secure also against chosen-ciphertext attacks (CCA). Firstly, we build a secure implementation

of the CCA protocol and show that its performance characteristics are only negligibly worse

than the CPA variant. In the key decapsulation phase of the protocol BIKE uses a decoding

algorithm which fails with some probability, called the Decoding Failure Rate (DFR). We

analyze the DFR of two decoders used in BIKE, Back-Flip and Black-Gray, and propose a

new decoder, called Black-Gray-Flip, that achieves the same DFR as the two previously used

decoders while being almost twice as fast. Finally, we propose an algorithm for inversion

of binary polynomials in a polynomial ring used in BIKE-2, the second variant of BIKE. Our

implementation of the inversion significantly outperforms previously used algorithms. With

this and the fact that the bandwidth requirement for BIKE-2 is the smallest among the three

variants, BIKE-2 is positioned as the preferable variant of BIKE.

The second part of this thesis studies the Legendre pseudorandom function (PRF) which is

proposed to be used in the context of blockchains. We present a new algorithm for cryptanaly-

sis of the Legendre PRF. The complexity of our algorithm is lower than the previous best known

algorithm. Moreover, we show the results of breaking three Legendre PRF challenges posed

by the Ethereum foundation. The most difficult challenge that we solved set the new record

which is not broken so far.

Keywords: post-quantum cryptography, BIKE, QC-MDPC codes, QC-MDPC decoders, constant-

time implementation, binary polynomial inversion, Legendre PRF, cryptanalysis

iii

Résumé
Le domaine de la cryptographie post-quantique étudie les systèmes cryptographiques qui sont

sécurisés contre un adversaire en possession d’un ordinateur quantique. En 2017, le National

Institute of Standards and Technology (NIST) a démarré un processus pour standardiser les

algorithmes à clé publique résistant au quantique (NIST PQC Project). Dans cette thèse, nous

analysons la performance et la sécurité de Bit-Flipping Key Encapsulation Mechanism (BIKE)

– un des candidats du NIST PQC Project qui a avancé au deuxième tour du processus de

standardisation.

BIKE est un système cryptographique à base de codes qui présente trois variantes différentes

du protocole. Au premier tour du NIST PQC Project, BIKE offrait une sécurité contre les at-

taques à texte clair connu (CPA). En premier lieu, nous construisons une implémentation

sécurisée du protocole CCA et montrons que les caractéristiques de ses performances sont

affectées seulement d’un ordre de grandeur négligeable par rapport à la variante CPA. Dans la

phase de décapsulation de la clé du protocole, BIKE utilise un algorithme de décodage qui

échoue avec une certaine probabilité, appelée la Decoding Failure Rate (DFR). Nous analysons

la DFR de deux décodeurs dans BIKE, Back-Flip et Black-Gray, puis propose un nouveau

décodeur, appelé Black-Gray-Flip, qui atteint la même DFR que les deux décodeurs utilisés

précédemment en doublant presque sa rapidité. Finalement, nous proposons un algorithme

pour l’inversion de polynômes binaires dans un anneau de polynômes utilisé dans BIKE-2, la

deuxième variante de BIKE. Notre implémentation de l’inversion surpasse les algorithmes uti-

lisés précédemment. Grâce à ceci et au fait que l’exigence sur la bande passante pour BIKE-2

est la plus petite parmi les trois variantes, BIKE-2 se place comme la variante préférable de

BIKE.

La deuxième partie de cette thèse étudie la fonction pseudo-aléatoire (PRF) de Legendre qui

est proposée dans le contexte de blockchains. Nous présentons un nouvel algorithme de

cryptanalyse de la PRF de Legendre. La complexité de notre algorithme est inférieure à celle

du précédent algorithme le plus connu. En outre, nous montrons les résultats de trois défis

de PRF de Legendre lancés par l’Ethereum Foundation que nous avons battus. Le défi le plus

difficile que nous avons résolu a établi un nouveau record qui, au jour de cette thèse, n’a pas

encore été battu.

Mots-clés : cryptographie post-quantique, BIKE, codes QC-MDPC, décodeurs QC-MDPC,

v

Résumé

implémentation à temps constant, inversion de polynômes binaires, PRF de Legendre, crypta-

nalyse

vi

Contents
Acknowledgements i

Abstract (English/Français/Deutsch) iii

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Background 9

2.1 BIKE . 9

2.1.1 Preliminaries . 10

2.1.2 QC-MDPC codes . 12

2.1.3 McEliece and Niederreiter cryptosystems 20

2.1.4 Key Encapsulation Mechanism . 22

2.1.5 IND-CPA and IND-CCA security notions 23

2.1.6 BIKE KEMs . 25

2.1.7 BIKE-1 . 26

2.1.8 BIKE-2 . 28

2.1.9 BIKE-3 . 31

2.2 Legendre PRF . 34

2.2.1 Legendre symbol . 34

2.2.2 Legendre pseudorandom function . 36

I BIKE 39

3 On constant-time QC-MDPC decoding with negligible failure rate 41

3.1 Preliminaries . 44

3.1.1 Bit Flipping Key Encapsulation (BIKE)-1 44

3.1.2 The IND-CCA transformation . 44

3.1.3 QC-MDPC Decoders . 45

3.2 Idealized schemes and concrete instantiations . 47

3.3 Implementing BackFlip+ in constant-time . 50

vii

Contents

3.4 Estimating the Decoding Failure Rate (DFR) of a decoder with a fixed number of

iterations . 53

3.5 Results . 55

3.5.1 Performance studies . 58

3.6 Weak keys: a gap for claiming IND-CCA security 59

3.6.1 Constructing weak keys . 60

3.7 Discussion . 64

3.7.1 Methodologies . 65

3.7.2 Practical considerations for BIKE . 65

4 QC-MDPC decoders with several shades of gray 69

4.1 Introduction . 69

4.2 Preliminaries . 70

4.3 New decoders with different shades of gray . 71

4.4 DFR evaluations for different decoders . 74

4.5 Constant-time implementation of the decoders 75

4.5.1 Optimizing the rotation of an array . 78

4.6 Performance studies . 81

4.6.1 Decoding and decapsulation: performance studies 82

4.7 Discussion . 83

5 Fast polynomial inversion for post quantum QC-MDPC cryptography 87

5.1 Preliminaries and notation . 88

5.2 Optimized polynomial inversion in F2[x]/(xr −1) 89

5.3 Our implementation . 92

5.3.1 Generating permutation map with SIMD instructions 95

5.3.2 Optimizing the permutation with SIMD instructions 97

5.3.3 Optimizing squaring and multiplication 102

5.3.4 Side-channel protection considerations 105

5.4 Results . 107

5.5 Discussion . 112

II Legendre PRF 115

6 Improved key recovery on the Legendre PRF 117

6.1 Background and notation . 119

6.2 Algorithm . 119

6.2.1 Sequence properties . 120

6.2.2 Precomputation stage . 122

6.2.3 Search stage . 122

6.3 Complexity of the algorithm . 124

6.3.1 Runtime hypothesis . 126

6.3.2 Optimal runtime . 126

viii

Contents

6.3.3 Runtime with a fixed M . 126

6.4 Implementation details . 127

6.4.1 Precomputation stage . 127

6.4.2 Search stage . 128

6.5 Results . 131

A Appendix 135

A.1 Additional information on the experiments and the results of Chapter 3 135

A.1.1 Achieving the same DFR bounds as in [1] 137

A.2 Additional information on the experiments and the results of Chapter 4 138

A.2.1 Optimized and secured implementation of syndrome rotation 142

A.3 Additional information on the experiments and the results of Chapter 5 143

A.3.1 Generating permutation map with AVX2 instructions 143

A.3.2 Squaring using PCLMUL and VPCLMUL 143

A.3.3 A 4×4 digits multiplication using VPCLMUL 144

A.3.4 Example of k-square versus series of k squares 145

A.3.5 Performance results . 145

Curriculum Vitae 155

ix

List of Figures
2.1 Encoding and decoding . 9

3.1 Approximating the BackFlip decoder threshold function. 52

3.2 Approximating the threshold function for fixed ē = 25. 52

3.3 BIKE-1 Level-1 extrapolations (see the text for details). 56

3.4 BIKE-1 Level-3 extrapolations (see the text for details). 57

3.5 Comparison of BIKE-CPA flows and BIKE-CCA flows, running with the Black-

Gray decoder and XBG = 3,4 for several values of r : r = 10163 the original

BIKE-1-CPA; r = 11779 the original BIKE-1-CCA; r values that correspond to

DFR of 2−23,2−64,2−128, according to Table A.1. The vertical axis measures latency. 59

3.6 Histograms showing on the vertical axis the proportion of the experiments that

end-up with the corresponding number of error bits on the horizontal axis, after

XBG = 1,2,3,4 iterations. The decoder is the Black-Gray decoder. Panels a, c,

e, g represents the results for r = 9803 and Panels b, d, f, h for r = 10163 with

f = 0,20,30,40. A lower error weight is better. Note that the blue line is present

in all the histograms, but in some of them it is covered by the green line. 62

3.7 Black-Gray decoder, r = 9803, with f = 0 and f = 30 in Panel (a) and Panel (b),

respectively. The horizontal-axis measures the number of decoding failures x

out of 10000 experiments with random error vectors. The vertical-axis counts

the number of keys that have a DFR of x/10000. 63

4.1 DFR comparison of BG with 3 iterations (9 steps) to BGF with: (Left panel) 7

iterations (9 steps); (Right panel) 5 iterations (7 steps). 75

4.2 “Small” rotation of two AVX512 registers containing consecutive elements of the

syndrome (refer to the text for details). 80

5.1 Conversion of a 32-bit value a3a2a1a0 consisting of four bytes from binary to

byte representation with AVX2 instructions. 100

5.2 VPCLMUL instruction. 102

5.3 Squaring eight consecutive 64-bit digits of a binary polynomial with VPCLMUL

instruction. 103

5.4 Multiplying four 64-bit digits of two binary polynomials using AVX512 and

VPCLMUL instructions. 106

xi

List of Figures

A.1 BIKE-1 Level-1 BackFlip+ different extrapolation methods. See the text for details.

The sub-captions detail the (DFR; r) for DFR values: 2−64, 2−128. 138

A.2 Extrapolations of BIKE-1 Level-1 using the Black-Gray (BG) decoder. 140

A.3 Extrapolations of BIKE-1 Level-1 using the Black-Gray-Black (BGB) decoder. . . 140

A.4 Extrapolations of BIKE-1 Level-1 using the Black-Gray-Flip (BGF) decoder. . . . 141

A.5 Extrapolations of BIKE-1 Level-1 using the Black (B) decoder. 141

xii

List of Tables
2.1 BIKE-1 IND-CPA/IND-CCA key generation flow. 27

2.2 BIKE-1 IND-CPA/IND-CCA key encapsulation flow. 27

2.3 BIKE-1 IND-CPA/IND-CCA key decapsulation flow. 29

2.4 BIKE-2 IND-CPA/IND-CCA key generation flow. 29

2.5 BIKE-2 IND-CPA/IND-CCA key encapsulation flow. 30

2.6 BIKE-2 IND-CPA/IND-CCA key decapsulation flow. 31

2.7 BIKE-3 IND-CPA/IND-CCA key generation flow. 32

2.8 BIKE-3 IND-CPA/IND-CCA key encapsulation flow. 32

2.9 BIKE-3 IND-CPA/IND-CCA key decapsulation flow. 33

3.1 BIKE-1 block size r (in bits) at security level 1, for which the Black-Gray decoder

achieves a target DFR with a specified number of iterations, and the decapsu-

lation performance (in cycles; the precise details of the platform are provided

in Section 3.5). A DFR of 2−128 is required for the IND-CCA KEM. The IND-CPA

used with ephemeral keys can settle for a higher DFR. 43

3.2 Validating the extrapolation results for the Black-Gray decoder with XBG = 3 over

two values of r . 58

3.3 A performance comparison of the Black-Gray and the BackFlip+ decoders for

BIKE-1 at NIST security level 1. 59

4.1 The DFR achieved by different decoders. Two extrapolation methods are shown:

“best linear fit” (as in [2]) and “two large r ’s fit” (as in [2, Appendix C]). The second

column shows the number of iterations for each decoder. The third column

shows the total number of (performance-wise identical) executed steps. 74

4.2 The EC2 server performance of BIKE-1 when using the BG decoder with 3 itera-

tions. The cycles (in columns 4, 5) are counted in millions. 82

4.3 BIKE-1 using the BG decoder with 3 iterations. Performance in cycles on Ice-

Lake using various instruction sets: (a) AVX512F; (b) AVX512F, AVX512-VBMI2,

VPCLMUL; (c) AVX512F, AVX512-VBMI2, VPCLMUL, VAES. 83

4.4 Rotation performance in cycles, comparison of the code snippet given in [3] and

our implementations: (a) Listing A.1 with AVX512F and (b) Listing. A.1 modified

to use AVX512-VBMI2 as explained in Section 4.5. 83

xiii

List of Tables

5.1 Performance of our implementations of inversion in F2[x]/(xr − 1) for a set

of r values with different wt(r − 2). The NTL and OSSL columns denote the

runtime of the inversion from the corresponding libraries ([4, 5]). The remaining

columns represent our implementation: (a) with AVX2; (b) with AVX512; (c) with

AVX512 and VPCLMUL; columns labeled with “*” denote implementations with

pre-computed permutation maps. The runtime is measured in millions of cycles. 110

5.2 Speedup of our implementations of inversion in F2[x]/(xr −1) compared to NTL

with GF2X [4]. Columns 3-8 represent the speedup over NTL of the following

implementation: (a) AVX2; (b) AVX512; (c) AVX512 and VPCLMUL; columns

labeled with “*” denote implementations with pre-computed permutation maps.

The speedup is measured for a set of r values with different wt(r −2). 111

5.3 BIKE-2 key generation performance, for four relevant r values, when our im-

plementation of the inversion algorithm is used (without precomputed maps).

Columns 2-4 represent the following implementations: (a) AVX2; (b) AVX512; (c)

AVX512 and VPCLMUL. The runtime is measured in thousands of cycles. 112

6.1 Number of clock cycles required to obtain a Legendre symbol by computation

and extraction, amortized. 130

6.2 Comparison of the complexity of our algorithm and those of [6] and [7]. The

complexity is given in terms of big-O number of operations onΘ(log p)-bit words.

The time of Legendre symbol evaluation is denoted by t 132

6.3 Legendre PRF challenges [8] with security levels estimated based on [6] and the

new security estimates. 132

6.4 Results and estimates for solving the Legendre PRF challenges. The expected

and actual number of core-hours for challenges #0 and #1 is based on measuring

the performance of the implementation on our desktop PC with Intel Xeon E5-

1650 at 3.5GHZ, while the numbers for the other three challenges are based on

performance of Intel Xeon E5-2680 v3 at 2.5GHz CPU available in the EPFL IC

cluster. 133

A.1 The linear and the quadratic extrapolation equations, and the computed r values

for a given DFR. The cases labeled with N/A are those where the value of r to

achieve a target DFR could not be found in the range [0.7r ′,1.3r ′], where r ′ is

the recommended value for IND-CCA security in [9] 136

A.2 The best linear and the two points extrapolation equations, and the estimated r

values for three target DFR. Level is abbreviated to Lvl, the number of iterations

is abbreviated to iter, linear is abbreviated to lin., equation is abbreviated to

eq. The Lin. start column indicates the index of the first value of r where the

linear fit starts. The 5 column (number of steps) is the indication for the overall

performance of the decoder (lower is better). 139

A.3 Squaring and k-squaring in R using our code (AVX512 and VPCLMUL). Columns

2 and 3 count cycles. The threshold is computed by kthr = k-square/square. The

r values correspond to the IND-CCA variants of BIKE for Level-1/3. 145

xiv

List of Tables

A.4 Performance of our implementations of inversion in F2[x]/(xr − 1) for a set

of r values with different wt(r − 2). The NTL and OSSL columns denote the

runtime of the inversion from the corresponding libraries ([4, 5]). The remaining

columns represent our implementation: (a) with AVX2; (b) with AVX512; (c) with

AVX512 and VPCLMUL; (d) fully portable implementation, independent of any

platform; (e) portable with PCLMUL instruction used for multiplication and

squaring; columns labeled with “*” denote implementations with pre-computed

permutation maps. The runtime is measured in millions of cycles. 146

A.5 Speedup of our implementations of inversion in F2[x]/(xr − 1) compared to

NTL with GF2X [4]. Columns 3-8 represent the speedup over NTL of the fol-

lowing implementation: (a) AVX2; (b) AVX512; (c) AVX512 and VPCLMUL; (d)

PORTABLE; (e) PCLMUL; columns labeled with “*” denote implementations

with pre-computed permutation maps. The speedup is measured for a set of r

values with different wt(r −2). 147

A.6 BIKE-2 key generation performance when our implementation of the inversion

algorithm is used. Columns represent the following implementations: (a) AVX2;

(b) AVX512; (c) AVX512 and VPCLMUL; (d) PORTABLE; (e) PCLMUL; columns

labeled with “*” denote implementations with pre-computed permutation maps.

The runtime is measured in thousands of cycles. 148

xv

1 Introduction

In the recent years we are witnessing significant shifts in topics of interest in the field of

cryptography. Until a few years ago the research focus of the crypto community were the long

established public-key cryptographic systems, such as the well known Rivest-Shamir-Adleman

(RSA) algorithm [10] and various algorithms based on the theory of elliptic curve cryptography

(ECC) originally proposed by Koblitz and Miller [11, 12].

The security of the RSA algorithm relies on the hardness of the integer factorization problem –

given a composite integer n that is a product of two different primes n = uv , find the factors u

and v of n. Although a very simple problem at first glance, integer factorization has turned out

to be a remarkably difficult problem to solve when n is large enough and its factors are properly

chosen. The fact that there is still no polynomial time factorization algorithm reinforces the

widely spread assumption that integer factorization is indeed a hard problem. The best known

algorithm so far is the Number Field Sieve (NFS) [13] that has a subexponential complexity

in the size of the number to be factored. The invention of the NFS algorithm was a major

breakthrough and had significant impact on the security analysis of the RSA cryptosystem.

Since then the cryptanalytic efforts invested in the factorization problem resulted in several

theoretical and practical improvements, but none of them had a major effect on the security

of RSA.

Shortly after the advent of the NFS method that weakened the security of RSA, another type

of public-key cryptographic algorithms emerged. Namely, the algorithms based on elliptic

curves promised smaller cryptographic key sizes than the RSA algorithm at the same level of

security. Thanks to this potential reduction in storage and transmission requirements, the ECC

based systems gained in popularity and started to slowly replace the RSA algorithm in practice.

The main reason for smaller key sizes is that the security of the ECC based systems relies

on the hardness of the discrete logarithm problem on elliptic curves (ECDLP). The discrete

logarithm problem is defined for a finite group G (written in multiplicative notation) and can

be stated as finding an integer a (if it exists) such that g a = h when given g ,h ∈G . In the case

of ECC, the group G is the set of points on an elliptic curve together with a binary operation,

called point addition, that sends two points to another point on the curve. The appeal of ECC

1

Chapter 1. Introduction

stems from the fact that the best known way to solve ECDLP is to use a generic algorithm that

has running time fully exponential in the size of the group of points on the elliptic curve G

(provided that G is properly chosen).

After decades of research on integer factorization and discrete logarithm, the two foundational

problems of public-key cryptography, a solution that is sufficiently efficient to threaten the

security of cryptographic systems based on these two problems is still not found. Therefore,

currently used systems are considered secure against the so-called classical algorithms. We

call these algorithms classical to distinguish them from quantum algorithms that are designed

to run on a quantum computer. Analyzing the security of classical cryptography in the context

of quantum computers paints a very different picture – namely, Shor’s algorithm [14] is a

quantum algorithm that solves the integer factorization and the discrete logarithm problem

in polynomial time. From this perspective the situation with currently used classical cryptog-

raphy seems pretty grim, provided that a sufficiently powerful quantum computer exists. The

prospects of a practical quantum computer being developed in the near future, or being devel-

oped at all, are unclear. Arguments and opinions from all around the spectrum can be found

in the literature: ranging from very optimistic on one side, i. e., quantum computers will be

available in the next few years, to those even doubting the feasibility of a large scale quantum

computer on the other side. Nevertheless, as a matter of precaution, from all this uncertainty

emerged the field of post-quantum cryptography and quickly grabbed the attention of many

researchers.

In 2017, the National Institute for Standards and Technology (NIST) apparently considered the

pace of advancement in quantum technology fast enough to initiate the process to standardize

quantum-resistant public-key cryptographic algorithms – the NIST Post-Quantum Cryptogra-

phy (PQC) project [15]. The call for proposals splits the submissions in two categories: key

encapsulation mechanisms (KEM) and digital signatures. A KEM is a mechanism to exchange

a shared secret key between two parties and it consists of three algorithms: key generation,

encapsulation and decapsulation. One party uses public-key cryptographic methods to gener-

ate a public and private key pair and publishes the public key. The public key is used by the

second party which generates the desired shared key, encapsulates it and transmits it to the

first party, which in turn uses its private key to decapsulate the received message and obtain

the shared secret key.

Initially, 69 proposals for KEM were accepted by NIST. After the first round of evaluation 17

submissions were deemed worthy by NIST to advance to the next round. In June 2020, NIST

stopped receiving comments and modifications for the Round-2 submissions and it is expected

to announce the start of the third round, with a further reduced number of candidates, by the

end of 2020. The KEM submissions that survived the first round and are being evaluated in

Round-2 can be categorized in three different types of cryptographic schemes: lattice-based,

code-based, and elliptic curve-based schemes with 9, 7, and 1 submissions, respectively. The

lattice-based schemes are further divided in those that use structured lattices and the others

that rely on unstructured lattices. Most of the KEMs involving structured lattices have a clear

2

edge in terms of performance and key size compared to the unstructured lattices, and to all

the other candidates for that matter. On the other hand, the fact that the lattices contain some

structural properties introduces uncertainties about the provable security of those schemes.

Nevertheless, the KEMs based on structured lattices are clear favorites for advancing to the

next round of the process. The second KEM category, code-based schemes, can be split in

two parts, analogously to the lattice schemes. The schemes that use linear codes without

any structure have a large disadvantage when it comes to both performance and key size,

but at the same time their security is (in part) based on the hardness of decoding a general

linear code which is an NP-hard problem [16]. The other code-based schemes introduce an

algebraic structure in the used linear code which allows them to represent the code much more

compactly and also to perform code operations more efficiently. Similarly to the lattice-based

schemes, the structure of the code potentially opens the schemes to new attacks that may

exploit the code structure, and therefore these schemes require a more complex and careful

security analysis. The final KEM category features only one submission which is based on

isogenies between supersingular elliptic curves. This submission offers by far the smallest key

size but on the other hand, its performance is not very competitive with (most of) the other

schemes. The report published by NIST [17] summarizes all the submitted cryptographic

schemes and gives further details on their advantages and disadvantages.

Bit Flipping Key Encapsulation (BIKE) [9] is one of the code-based cryptographic schemes in

Round-2 of the NIST PQC project. BIKE works on similar principles as all the other code-based

schemes. Namely, an error-correcting code is used to exchange a secret message between

two parties. A code is represented in two ways – by a generator matrix and by a parity-check

matrix. The generator matrix is used for encoding, i. e., it is used to generate a codeword from

a given plain message. The parity-check matrix is used in the other direction, to decode the

codeword to the message. Moreover, the properties of the parity-check matrix allow correction

of (some number of) errors that might occur in the codeword during transmission. In the

context of BIKE’s key encapsulation mechanism the code is used in the following way. In the

key generation algorithm, the first party chooses a specific error-correcting code, publishes

the generator matrix, and keeps the parity-check matrix of the code private. The other party

uses the generator to encapsulate the shared secret key by encoding it, obscures the resulting

codeword by inserting errors into it, and finally sends the noisy codeword to the first party.

Since the first party has the parity-check matrix it is able to correct the errors in the noisy

codeword and decode it to recover the original message, i. e., the shared secret key. The

security of such protocol relies on the assumption that for the chosen code it is hard to decode

a noisy codeword without the knowledge of the parity-check matrix.

The specific error-correcting codes employed in BIKE are binary quasi-cyclic moderate density

parity-check (QC-MDPC) codes. The QC part of the code’s name comes from the quasi-cyclic

property of its generator and parity-check matrices. A cyclic code has its two matrices repre-

sented by circular matrices which are matrices such that each row is a cyclic shift (rotation) of

its adjacent rows. Therefore, a circular matrix is fully determined by a single row. Moreover,

the rows can be equivalently viewed as polynomials in some polynomial ring defined by

3

Chapter 1. Introduction

the parameters of the code. The generator and the parity matrix of a quasi-cyclic code are

each composed of several (two in case of BIKE) circular matrices stacked horizontally. The

moderate density part of the name reflects the fact that the number of non-zero coefficients

in the parity-check matrix rows is moderate, i. e., it is about the square root of the row size.

The BIKE suite entered the NIST PQC project with three variants of the protocol, called BIKE-1,

BIKE-2 and BIKE-3. Each variant of the protocol is well suited for a different use case. BIKE-1

for example features a fast key generation procedure but at the cost of fairly large public key

and ciphertext size. BIKE-2 on the other hand involves a more costly key generation, while

halving the size of the key and ciphertext. BIKE-3 is designed as a middle ground with the

performance of the key generation competitive with BIKE-1, the size of the public key almost

as small as BIKE-2, and the ciphertext size the same as in BIKE-1. The third variant of BIKE

seems to be the most desirable option, however, because of potential patent issues attached to

its design it is considered as a less serious candidate. For this reason, only BIKE-1 and BIKE-2

are analyzed in this thesis. In Round-1 of the standardization effort all three variants of BIKE

were claimed to be secure against chosen plaintext attacks (CPA) which is considered as a

minimum level of security that a cryptographic scheme has to satisfy. The CPA security of

a scheme is considered to be sufficient for the ephemeral key use case where a new public

and private key pair is generated for every execution of the KEM protocol. In Round-2, BIKE

introduced the chosen ciphertext attack (CCA) secure versions of the three variants. The CCA

security is necessary if the scheme is to be used in the static key setting, i. e., a single key pair is

used for more than one KEM session.

The latest update of BIKE’s specification [18] is prepared for Round-3 of the NIST PQC project in

case BIKE advances to the next round. The changes between the Round-2 specification [9] and

Round-3 specification [18] are significant and in some part influenced by the work presented

in this thesis, which was a joint effort with Shay Gueron and Nir Drucker from the University

of Haifa, Israel, and Amazon Web Services, USA. The three chapters of the thesis related to

BIKE are based on the following papers:

• Chapter 3 is based on:

[2] N. Drucker, S. Gueron, and D. Kostic, “On constant-time QC-MDPC decoding with

negligible failure rate”.

This paper is accepted at the CBCrypto 2020 International Workshop on Code-Based

Cryptography and will be published in the proceedings. The preprint of the paper is

available at https://eprint.iacr.org/2019/1289.

• Chapter 4 is based on:

[19] N. Drucker, S. Gueron, and D. Kostic, “QC-MDPC Decoders with Several Shades of

Gray” in Post-Quantum Cryptography (J. Ding and J.-P. Tillich, eds.), (Cham), pp. 35-50,

Springer International Publishing 2020.

• Chapter 5 is based on:

[20] N. Drucker, S. Gueron, and D. Kostic, “Fast polynomial inversion for post quan-

4

https://eprint.iacr.org/2019/1289

tum QC-MDPC cryptography” in Cyber Security Cryptography and Machine Learning

(S. Dolev, V. Kolesnikov, S. Lodha, and G. Weiss, eds.), (Cham), pp. 110-127, Springer

International Publishing 2020.

In Chapter 3 we present the secure implementation of the CCA protocol flows added in BIKE

Round-2 and show that the performance overhead, introduced by additional operations

required to satisfy the CCA security, does not have a significant impact on the running time

of the protocol. Consequently, only the CCA version of BIKE is proposed in the Round-3

specification due to higher security assurances at a negligible performance cost. In addition

to the new CCA flows, BIKE has also defined a new decoder, called BackFlip, to be used in the

CCA versions of the protocol. This change was due to the increased security requirements.

Namely, decoders used for MDPC codes, based on the Bit-Flipping decoder proposed in [21],

are on one hand efficient but on the other hand there is some probability that they fail to

decode the given noisy codeword. This probability is called the Decoding Failure Rate (DFR).

The DFR of a decoder is an especially important property in the static key use case because

with every decoder failure the attacker may learn some information about the used private key

(as illustrated by the attacks in [22, 23, 24, 25]). Therefore, BackFlip decoder, which achieves

sufficiently low DFR, was introduced to be used in the CCA versions of BIKE. In Chapter 3 we

show how to build a secure constant-time implementation of BackFlip and analyze its DFR in

terms of BIKE’s parameters. Moreover, we compare BackFlip with the previously used Black-

Gray decoder and discuss some subtleties of the trade-off between performance and DFR

of both decoders. Finally, we identify a gap in the proof that CCA instantiations of BIKE are

indeed CCA secure. Namely, the proof assumes the equivalence of the DFR of a decoder and

the δ-correctness of the scheme and we show that those are not equivalent. We address this

gap in [26] and solve the issue by slightly modifying the protocol; subsequently, the solution

was applied to the definition of BIKE in Round-3 specification. However, in Chapter 3 we

point out that even closing the gap in the proof is not sufficient to claim that BIKE is CCA

secure – the remaining condition is that the used decoder has an appropriate DFR. The DFR

of the BIKE decoders is determined heuristically by estimating the DFR for small parameters,

for which we can run experiments, and then extrapolating from the obtained data points.

Therefore, even if the estimated DFR is as low as required, the method by which it is computed

does not constitute a proof. For this reason, the Round-3 BIKE specification does not claim

CCA security in general but only on the condition that a decoder with appropriately low DFR

is used, i. e., if a decoder with a provably low DFR (of the required magnitude) is given then

BIKE is CCA secure.

In Chapter 4 we propose three new decoders inspired by the Black-Gray decoder and our

observations of its error correcting properties. The goal of the work presented therein was to

find a more efficient decoder that can achieve the same DFR levels as the previously considered

decoders in BIKE. We identify one of the proposed decoders, called Black-Gray-Flip (BGF), as

the most efficient option currently. The BGF decoder is now used in BIKE, as defined in the

Round-3 specification [18]. Moreover, we study the performance of secure implementation

5

Chapter 1. Introduction

of the four decoders. Ever since cryptography entered the commercial waters and started to

be commonly used in various technological applications it was shown time and time again

that the main weaknesses of cryptographic algorithms usually do not arise from solving the

underlying hard mathematical problems but rather from insecure implementations. The

understanding of what constitutes a secure implementation has changed over time with the

evolution and ingenuity of practical attacks that can obtain secret keys without solving the

hard problems. There are two main criteria that have to be satisfied when implementing a

cryptographic algorithm in a secure manner. Firstly, the parts of the implementation that

handle secret data have to be constant-time, i. e., the running time (the number and order of

operations) must not depend on the value of the secrets. The second criterion, more easily and

commonly overlooked by implementors, is that the memory access patterns must not depend

on the secret data, e. g., accessing a memory location at an address specified by a secret value

is considered insecure and vulnerable to practical attacks. Therefore, in Chapter 4 we also

show how to securely implement the decoding algorithms without sacrificing too much of the

performance.

In Chapter 5 we propose an algorithm for computing an inverse of a polynomial in the

polynomial ring defined by BIKE (and used in other code-based schemes submitted to the

NIST PQC project). BIKE operates on polynomials in R = F2[x]/(xr −1) where parameter r is a

prime such that xr −1 is a product of x −1 and an irreducible polynomial of degree r −1. Our

inversion algorithm is an adaptation of the ITI algorithm [27]. The properties of R, such as

the irreducibility of (xr −1)/(x −1) and the fact that polynomial coefficients are in F2, allow us

to build a particularly efficient implementation of the inversion algorithm. Furthermore, we

explain how to leverage vectorized instruction sets available in modern processors to optimize

the implementation and gain considerable performance improvements. Our implementation

significantly outperforms the inversion methods from two popular open source libraries,

NTL [4] and OpenSSL [5], previously used in BIKE (and commonly used in cryptographic

applications). The polynomial inversion is used in the key generation algorithm in BIKE-2.

The polynomial being inverted is a part of the private key and therefore we show how to

implement the inversion in a secure manner. The running time of the inversion dominates the

running time of the key generation procedure in BIKE-2. The slow key generation algorithm

was the main reason that BIKE-1 was preferred to BIKE-2 despite the size of the public key and

the ciphertext in BIKE-2 being half of that in BIKE-1. The reduction of the running time of the

key generation, gained by using our inversion algorithm, alleviated the prohibitive cost of the

key generation and made BIKE-2 competitive with BIKE-1. Consequently, and as a result of

our work, the Round-3 BIKE specification [18] removes the definitions of BIKE-1 and BIKE-3

and proposes BIKE-2 as the only variant of the KEM (denoted simply by BIKE).

6

Another completely new field of research in cryptography emerged recently – blockchains are

distributed ledgers which are used to record transactions between parties in a verifiable and

immutable way by a series of interactions between distributed nodes responsible for main-

taining the ledger. The verifiability and the permanence of the records is (in part) ensured by

various cryptographic primitives. Blockchains have been used in an attempt to solve different

practical problems arising in decentralized systems, such as trust, privacy, anonymity, etc.

Because of the wide range of potential applications (not only in purely technological settings),

blockchains have attracted the attention of researchers from several different fields such as

cryptography, privacy, systems, and even some non-technical disciplines, most notably, the

field of economy. The inter-disciplinary nature of the field and the potential of practical use

(and abuse) of blockchain based systems has attracted a lot of investment. The usefulness of

blockchains is yet to be proven, but nevertheless, just as the field of post-quantum cryptogra-

phy, arguably even more so, the field of blockchains opened many interesting questions that

motivated the cryptographic community to get involved and tackle some of them.

As one of the largest blockchain platforms, Ethereum is actively working on several crypto-

graphic problems. In 2019, the Ethereum research team was exploring options for building a

“proof-of-custody” scheme for the next generation of the Ethereum protocol which requires a

pseudorandom function that can be efficiently evaluated by a group of parties. The authors

of [28] proposed the Legendre PRF as a particularly efficient primitive for multi-party com-

putation. The Legendre PRF is a pseudorandom function based on the Legendre symbol,

originally proposed by Damgård [29]. The function is modeled as an oracle parametrized with

a prime p and a secret key k that on input a ∈ Fp outputs the Legendre symbol
(k+a

p

)
, i. e.,

outputs a single bit determined by the quadratic residuosity of k +a in Fp . The attractiveness

of the Legendre PRF for multi-party applications comes from the multiplicative property of

the Legendre symbol, i. e.,
(a

p

)(b
p

)= (ab
p

)
. The hard problem associated with the Legendre PRF,

conjectured by Damgård, is that given query access to a Legendre PRF oracle it is hard to

recover the secret key. This allegedly hard problem coupled with the multiplicative property

of the Legendre symbol made the Legendre PRF a promising candidate for Ethereum’s new

protocol. Therefore, the Ethereum foundation announced several challenges and bounties for

breaking the Legendre PRF [8].

In Chapter 6 we present the best algorithm so far to recover the secret key of an instantia-

tion of the Legendre PRF. For a given p, our algorithm finds the secret key in O(
√

p loglog p)

operations with only 4
√

p log2 p loglog p queries of the oracle. This is an improvement com-

pared with the previous best algorithm [7] that achieves the key extraction with complexity

O(
p

pt log2 p) (where t is the complexity of computing a Legendre symbol). Moreover, when

the number of queries to the oracle is limited to M , we reduce the complexity of the key

recovery from O(pt log2 p
M 2) of the algorithm in [7] to O(p log p loglog p

M 2) of our algorithm. Further-

more, in Chapter 6 we give a detailed explanation of our implementation of the algorithm

and describe several techniques that improved the performance and lowered the memory

usage of the implementation. Finally, we present the solutions of the first three challenges

7

Chapter 1. Introduction

posed by the Ethereum foundation. The most difficult challenge among the three has so far

only been solved by our team. The results presented in Chapter 6 are a joint effort with Novak

Kalud̄erović and Thorsten Kleinjung from the Laboratory for Cryptologic Algorithms, EPFL,

Switzerland. The preprint of our report is available at:

[30] N. Kalud̄erović, T. Kleinjung, and D. Kostić, “Improved key recovery on the Legendre PRF”,

available at eprint.iacr.org/2020/098.

The algorithm presented in [30] is generalized and expanded in our subsequent paper which

was accepted at the ANTS 2020 conference (math.auckland.ac.nz/~sgal018/ANTS).

8

eprint.iacr.org/2020/098
math.auckland.ac.nz/~sgal018/ANTS

2 Background

2.1 BIKE

Bit Flipping Key Encapsulation (BIKE) is a coding-based cryptographic scheme where certain

concepts and algorithms from coding theory are employed to enable a secure cryptographic

key exchange [9]. Error correcting codes are commonly and widely used in communication

protocols for detecting and potentially correcting errors occurring in the transmitted data

while it travels over a noisy channel. The principle behind the ability to correct transmission

errors consists of introducing redundancy in the message so that on the receiving end the

original message can be recovered correctly even if it was corrupted during the transmission.

The typical scenario is depicted in Figure 2.1.

The original message m is encoded to the message c which is sent over the noisy channel.

The receiver receives the corrupted message c ⊕ e which is decoded by the decoder to the

message m′. Coding schemes are designed such that if the introduced error is reasonably

low, the recovered and the original messages are identical. The error correction capacity of a

system, i. e., the number of errors that can be corrected, depends on the specific scheme and

its parameters.

In cryptographic settings, the error is usually intentionally introduced in order to either

obfuscate the secret message being transmitted or as the secret information itself. In the

following section we present basic definitions and outline the necessary mathematical tools

which BIKE relies upon.

Sender Encoder Channel Decoder Receiverm mc c+e

Noise

Figure 2.1 – Encoding and decoding

9

Chapter 2. Background

2.1.1 Preliminaries

Let A = {a1, . . . , aq } be an alphabet where ai values are called symbols. A block code is a code

where the message is first decomposed in blocks of symbols of fixed length. Hereafter, we

assume that the message consists of a single block of length k, i. e., the message is a vector

m ∈ Ak . An encoding map is an injective map Ak −→ An for an integer n > k. A block code

C of length n over A is a subset of An . Vectors belonging to C are called codewords. When

A = {0,1}, the code is called a binary code. In the remaining part of the thesis, only binary

codes are studied, i. e., A ∼= F2, and the symbols are referred to as bits. Codes with ability to

detect if an encoded message contains errors are called error-detecting codes, while codes

which are able to correct certain number of errors are called error-correction codes.

The Hamming weight of a vector x = (x1, . . . , xn) is defined as the number of non-zero elements

of the vector, wH (x) = |{i |xi 6= 0}|. The Hamming distance between two vectors x and y is

defined as the Hamming weight of their difference, dH (x, y) = wH (x − y). The weight of a

code C is defined as the minimum weight of the codewords. The minimum distance of a

code C is defined as the minimum Hamming distance among all the possible pairs of vectors

(codewords) in C , d(C) = minx,y∈C ,x 6=y dH (x, y). The distance of a code is an important

parameter which determines the capacity for error detection and correction of the code.

Linear codes form a subset of error-correcting codes where each linear combination of two

codewords is also a codeword. Linear codes offer several advantages, of which the most

important ones are the following: a linear code can be compactly described using its basis

(contrary to the non-linear codes where the description may involve the list of all codewords),

encoding and decoding (a valid codeword) is straightforward, and the minimum distance of a

linear code is equal to the weight of the code.

Definition 1. A binary (n,k)-linear code C of length n, dimension k, and co-dimension

r = (n −k), with n ≥ k, is a k-dimensional vector subspace of Fn
2 and may be denoted C (n,k).

The dual code of C is the orthogonal complement of C in Fn
2 and it is denoted by C ⊥.

The proportion of the useful data in a codeword is called the code rate. For an (n,k)-linear

code the code rate is equal to k
n , i. e., a codeword carries an information about a message of

length k, while the size of the redundant information is n −k.

There are two ways to describe a binary linear code C (n,k), by its generator matrix or by

its parity-check matrix. These two different representations correspond to two manners to

describe a vector subspace of Fn
2 : either by providing its basis or by giving a system of linear

equations whose solution space is the code, corresponding to generator matrix and parity-

check matrix representation, respectively. A generator matrix G for a linear code C is a matrix

whose rows form a basis for C as a vector subspace of Fn
2 .

Definition 2. (Generator matrix). A matrix G ∈ Fk×n
2 is a generator matrix of a binary (n,k)-

linear code C if and only if

C = {mG | m ∈ Fk
2 }.

10

2.1. BIKE

A parity-check matrix defines a linear application with the code as its kernel.

Definition 3. (Parity-check matrix). A matrix H ∈ F(n−k)×n
2 is a parity-check matrix of a binary

(n,k)-linear code C if and only if

C = {c ∈ Fn
2 | HcT = 0}.

Direct consequence of the above stated definitions is that for a linear code C we have that:

HcT = H(mG)T = HGT mT = 0

for any message m, thus HGT = 0 or equivalently G H T = 0. In other words, G and H are

orthogonal and therefore H can be viewed as the generator matrix for the dual code C ⊥ of C .

A generator matrix G and parity-check matrix H are said to be in standard (systematic) form

if they are of the form G =
(
Ik P

)
and H =

(
Q In−k

)
, where Ik and In−k denote the k ×k

and (n −k)× (n −k) identity matrices, respectively, and P and Q matrices of size k × (n −k)

and (n −k)×k, respectively. A generator matrix G of a systematic code is a full-rank matrix,

or in other words, the first k columns of G are linearly independent. Hereafter, we discuss

only systematic codes and therefore, omit the prefix systematic for conciseness. Given the

generator matrix G of C (n,k) in its standard form with matrix P as defined above, the parity-

check matrix H for C can be easily determined by H =
(
−P T In−k

)
since G H T = 0, where

in the F2 case the minus sign in front of P T can be omitted since a =−a for a ∈ F2. We note

that, given a generator matrix G in non-standard form, one can always efficiently transform

the generator to standard form by computing its reduced row echelon form using ordinary

Gaussian elimination since the matrices are defined over a field.

Let C (n,k) be a code with a generator matrix G ∈ Fk×n
2 . The encoding map is defined as the

map:

φ :

Fk
2 −→ Fn

2

m 7−→ mG .

If G is in standard form, then φ(m) = mG = m
(
Ik P

)
=

(
m mP

)
. Therefore, computing the

original message m given φ(m) is as simple as taking the first k coordinates of φ(m). Error

detection is also efficiently done using the parity-check matrix because as noted above H

follows directly from G . Namely, let x = φ(m)+ e be the received message, then if H xT is

different from zero, the error vector e is also different from zero, indicating that an error

was introduced during transmission. However, recovering the original message from a noisy

codeword, or in other words correcting the error, is less straightforward.

11

Chapter 2. Background

There are several decoding problems with different hardness levels and space and time com-

plexities which are extensively studied in the literature. Here, we focus only on syndrome

decoding because it is the one relevant for BIKE.

Definition 4. (Syndrome). Let C be a binary (n,k)-linear code with parity-check matrix H .

For every x ∈ Fn
2 the syndrome s of x determined by H is defined as:

s = H xT ∈ Fn−k
2 .

In literature, the syndrome is sometimes defined as s = xH T , the definitions are equivalent

and used interchangeably throughout the text. Following Definition 3, the syndrome of any

codeword is a null vector. Note that the syndrome of x = c +e where c ∈C depends only on

the error vector since by Definitions 3 and 4:

s = H xT = H(c +e)T = HcT +HeT = HeT .

This property yields a natural algorithm for decoding, referred to as list decoding, that can be

defined in two steps: precomputation and search. In the precomputation stage generate a

list of syndromes HeT for all possible error vectors e and store the pairs (HeT ,e) in a hash

table. Then for any given x = c +e, compute the syndrome HeT and find the error e by a single

lookup in the hash table, and recover the codeword by computing c = x − e. This approach

obviously does not scale well with the maximum number of allowed errors t and the codeword

size n since the space complexity depends on the number
∑t

i=0

(n
i

)
of possible error patterns.

2.1.2 QC-MDPC codes

Quasi-cyclic (QC) codes form an important family of codes both in coding theory and practice.

They are interesting from a theoretical standpoint because of their rich algebraic structure,

while from a practical point of view they have several good properties among which the

compactness of their representation stands out as probably the most important one. A code is

said to be quasi-cyclic if any cyclic shift of a codeword by some number l of symbols is also a

codeword, where if l = 1 the code is said to be cyclic.

Definition 5. An (n,k) linear code C of length n = r n0 and dimension k = r k0 is a quasi-cyclic

code if the cyclic shift of any codeword by n0 symbols yields another codeword.

The generator and the parity-check matrix of the quasi-cyclic code C (r n0,r k0) is completely

defined by its first row because every other row is a cyclic shift by n0 symbols of the preceding

one. For example, consider the generator matrix G of the code C with n0 = 2 and k0 = 1,

12

2.1. BIKE

namely n = 2r and k = r :

G =

g0 g1 g2 g3 . . . gn−2 gn−1

gn−2 gn−1 g0 g1 . . . gn−4 gn−3
...

...
...

...
. . .

...
...

g2 g3 g4 g5 . . . go g1

 .

Thus G is an r ×2r matrix. By rearranging the columns of G by grouping together every other

n0-th column, i. e., forming two groups, one containing the even numbered columns and the

other with the odd numbered columns, the matrix G is transformed in the following matrix G ′:

G ′ =

g0 g2 . . . gn−2 g1 g3 . . . gn−1

gn−2 g0 . . . gn−4 gn−1 g1 . . . gn−3
...

...
. . .

...
...

...
. . .

...

g2 g4 . . . g0 g3 g5 . . . g1

 .

It is easy to see that G ′ is composed of two circulant r × r matrices.

Definition 6. A circulant matrix is a square matrix in which every row is a cyclic shift of the

adjacent row and every column is a cyclic shift of the adjacent column.

A circulant matrix A:

A =

a0 a1 . . . ar−1

ar−1 a0 . . . ar−2
...

...
. . .

...

a1 a2 . . . a0

is fully determined by its first row. The polynomial a(x) = ∑r−1

i=0 ai xi associated with the

row vector a = (a0, a1, . . . , ar−1) is called the defining polynomial of A. A cyclic shift of a

corresponds to multiplication of a(x) by x modulo xr −1. Therefore, there is a natural one-to-

one correspondence between circulant matrices of size r × r and ideals of the quotient ring

F2[x]/(xr −1). This algebraic structure of circulant matrices yields further useful properties.

Namely, the sum and product of two circulant matrices A and B is a circulant matrix, where if

AB =C , the defining polynomial of C is c(x) = a(x)b(x) mod xr −1. Furthermore, we have

that multiplication AB = B A is commutative since a(x)b(x) = b(x)a(x). The inverse of a

circulant matrix A exists if and only if a(x) is invertible modulo xr −1, i. e., a(x) is relatively

prime to xr −1, and the inverse A−1 is then defined by the inverse of the polynomial a−1(x)

mod xr −1. Given a circulant matrix A with a(x) = a0 + a1x +·· ·+ ar−1xr−1, the associated

polynomial of the transposed matrix AT is defined by aT (x) = a0 +ar−1x +·· ·+a1xr−1. We

denote the quotient polynomial ring R = F2[x]/(xr −1) hereafter.

The parameter r defining the ring R used in BIKE is chosen such that the polynomial defining

R factors as (xr −1) =Φr (x) · (x −1) ∈ F2[x], where the cyclotomic polynomial Φr (x) = (xr −
1)/(x −1) ∈ F2[x] is irreducible. One consequence of this property of the ring is that checking if

13

Chapter 2. Background

a polynomial in the ring is invertible is straightforward. If a polynomial a(x) ∈R of degree at

most r −1 is invertible both moduloΦr (x) and modulo (x −1) then it is invertible in R. Since

Φr (x) is an irreducible polynomial of degree r −1, the sufficient condition for polynomial

a(x) to be invertible moduloΦr (x) is that a(x) 6=Φr (x). On the other hand we have that x = 1

mod (x−1), and consequently that a(x) mod (x−1) is 0 if the number of terms of a(x) is even

and 1 if it is odd. Therefore, a(x) is invertible modulo x −1 if and only if it has an odd number

of non-zero terms, i. e., the weight of a(x) is odd. We note that the necessary and sufficient

condition for the irreducibility ofΦr (x) ∈ F2[x] is that r is a prime and that 2 is a primitive root

modulo r .

Sum of two binary polynomials that have weights of same parity results in a polynomial of

even weight, while summing two binary polynomials of even and odd weight gives an odd

weight polynomial. Furthermore, product of two binary polynomials of odd weight is an

odd weight polynomial and an even weight polynomial otherwise. For example, consider

a(x),b(x) ∈ F2[x], then:

• wt(a +b) is even if wt(a) and wt(b) are both even or both odd, otherwise wt(a +b) is

odd.

• wt(a ·b) is odd if wt(a) and wt(b) are odd, otherwise wt(a ·b) is even.

This is an important observation when dealing with cyclic and quasi-cyclic codes since their

generator matrices are defined by a single row. Consider the circulant matrix A as defined

above. If the defining polynomial a(x) has even weight, then the sum of all the columns of A is

the zero vector because every coordinate of the resulting vector is simply the sum of all the

terms of a(x), which is an even number, and therefore, zero modulo 2. This implies that the

matrix A is not a full-rank matrix because its columns are not linearly independent. Therefore,

A is not systematic and cannot be a generator matrix of a systematic code. Following this

observation, we conclude that the weight of the polynomial defining a generator matrix of

a systematic cyclic code has to be odd. In case of a quasi-cyclic code, this means that the

lefthand minor matrix of the generator has to be defined by an odd weight polynomial.

Consider a QC linear code C of length n = r n0 and dimension r k0. The generator and parity-

check matrix of the code can be represented by k0×n0 and (n0−k0)×n0 circulant r×r matrices,

respectively:

G =

G0,0 · · · G0,n0−1

...
...

Gk0−1,0 · · · Gk0−1,n0−1

 , H =

H0,0 · · · H0,n0−1

...
...

Hn0−k0−1,0 · · · Hn0−k0−1,n0−1

14

2.1. BIKE

with all Gi , j and Hi , j circulant matrices, or equivalently with defining polynomials:

G =

g0,0 · · · g0,n0−1

...
...

gk0−1,0 · · · gk0−1,n0−1

 , H =

h0,0 · · · h0,n0−1

...
...

hn0−k0−1,0 · · · hn0−k0−1,n0−1

where gi , j ,hi , j ∈R. The two representations are used interchangeably in the rest of the thesis,

in such a way that a circulant matrix is denoted by a capital letter and its defining polynomial

by the same letter in lower case. When a matrix is composed of several circulant matrices

concatenated horizontally, e. g., G =
(
G0 G1

)
, then it is denoted by a pair of polynomials

g = (g0, g1). A row vector and its associated polynomial are both denoted by the same lower

case letter.

Example. Let the code C be a binary QC code with the following parameters: r = 7,n = 2r,k =
r , and the generator and parity-check matrices G and H as defined below.

G =
(
G0 G1

)
=

0 0 0 0 1 0 0 | 0 1 1 0 0 0 1

0 0 0 0 0 1 0 | 1 0 1 1 0 0 0

0 0 0 0 0 0 1 | 0 1 0 1 1 0 0

1 0 0 0 0 0 0 | 0 0 1 0 1 1 0

0 1 0 0 0 0 0 | 0 0 0 1 0 1 1

0 0 1 0 0 0 0 | 1 0 0 0 1 0 1

0 0 0 1 0 0 0 | 1 1 0 0 0 1 0

,

H =
(
H0 H1

)
=

1 0 1 0 0 0 1 | 0 0 1 1 0 0 1

1 1 0 1 0 0 0 | 1 0 0 1 1 0 0

0 1 1 0 1 0 0 | 0 1 0 0 1 1 0

0 0 1 1 0 1 0 | 0 0 1 0 0 1 1

0 0 0 1 1 0 1 | 1 0 0 1 0 0 1

1 0 0 0 1 1 0 | 1 1 0 0 1 0 0

0 1 0 0 0 1 1 | 0 1 1 0 0 1 0

.

Alternatively, G and H can be compactly represented with two pairs of polynomials g ,h ∈R:

g = (g0, g1) = (x4, x +x2 +x6)

h = (h0,h1) = (1+x2 +x6, x2 +x3 +x6)

It is straightforward to check that G and H are indeed the generator and parity-check matrix

for the code by verifying that G H T =G0H T
0 +G1H T

1 = 0. One can check that the same holds

15

Chapter 2. Background

for the polynomials:

g hT = g0hT
0 + g1hT

1

= x4(1+x +x5)+ (x +x2 +x6)(x +x4 +x5)

= x4 +x5 +x9 +x2 +x5 +x6 +x3 +x6 +x7 +x7 +x10 +x11

= 0

where the transposition of a polynomial pair is done element wise and all the operations are

in R where x7 = 1.

A message m =
(
0 1 0 0 1 1 0

)
∈ F7

2 with the associated polynomial m(x) = x+x4+x5

is encoded to the codeword c by:

c = mG =
(
mG0 mG1

)
=

(
0 1 1 0 0 1 0 0 0 1 0 1 1 0

)
or

c = mg = (mg0,mg1) = (x +x2 +x5, x2 +x4 +x5).

The syndrome s corresponding to the codeword c is computed as:

s = HcT =
(
0 0 0 0 0 0 0

)T

or

s = hcT

= (h0,h1)(c0,c1)T

= h0cT
0 +h1cT

1

= (1+x2 +x6)(x2 +x5 +x6)+ (x2 +x3 +x6)(x2 +x3 +x5)

= 0.

As expected the syndrome of a valid codeword is zero.

QC-MDPC decoding

A binary Moderate Density Parity Check (MDPC) code is a binary linear code determined by a

relatively sparse parity-check matrix with typical density of O(1/
p

n).

Definition 7. An (n,k,r, w)-QC-MDPC code is a quasi-cyclic code of length n = n0r , dimen-

sion k = k0r , order r , and index n0 admitting a parity-check matrix with constant row weight

w =O(
p

n).

The sparsity of the parity-check matrix allows the use of relatively efficient iterative decoding

techniques, such as the bit-flipping algorithm proposed in [21]. Bit-flipping decoding is a

16

2.1. BIKE

method of choice in BIKE because it offers good properties while also being very simple.

Let C be a binary MDPC code and let s be the syndrome of a noisy codeword y = c +e with

c ∈C and e an error:
s0

s1
...

sr−1

= s = H xT = HeT =

h0,0 h0,1 . . . h0,n−1

h1,0 h1,1 . . . h1,n−1
...

...
. . .

...

hr−1,0 hr−1,1 . . . hr−1,n−1

 ·

e0

e1
...

en−1

=

=

h0,0e0 +h0,1e1 +·· ·+h0,n−1en−1

h1,0e0 +h1,1e1 +·· ·+h1,n−1en−1
...

hr−1,0e0 +hr−1,1e1 +·· ·+hr−1,n−1en−1

 .

Each coordinate of the syndrome vector s represents the value of one parity-check equation

which involves coordinates of the error vector e defined by the matrix H . If the parity-check

equation for si is not satisfied (si 6= 0), that implies that some of the coordinates of e involved

in the equation for si are different from zero. This observation leads to the bit-flipping method,

where the coordinates of the error vector are guessed based on the number of unsatisfied parity-

check equations they are involved in. The guessing of the error coordinates and syndrome

computation of the newly guessed error are done iteratively until a syndrome which is null

vector is found, i. e., the error is corrected.

Consider y,e, s and H as defined above and let p be the probability that a bit of the error

vector is set to one and (1−p) that it is set to zero. We assume that the error has Hamming

weight wt(e) = t and that it is uniformly distributed among the vectors of length n and weight

t . Coordinate si of the syndrome corresponds to the i -th parity-check equation given by the

coordinate-wise product 〈hi ,e〉, namely:

si = 〈hi ,e〉 = hi ,0e0 +hi ,1e1 +·· ·+hi ,n−1en−1.

Note that since we are working with binary codes, this dot product can be computed as:

〈hi ,e〉 =
n−1⊕
j=0

hi , j e j

where
⊕

denotes the “exclusive or” operation (addition modulo 2).

Let hi be a parity-check equation defined by the matrix H which involves j -th position of the

error, i. e., hi is such that hi , j = 1. To illustrate with an example, if we are interested in the

position j = 0 of the error and we have that h1,0 = 1 then h1 defines one equation:

s1 = h1,0e0 +h1,1e1 +·· ·+h1,n−1en−1

17

Chapter 2. Background

which involves e0. We define two conditional probabilities ρ0 and ρ1:

ρ0 =P[〈hi ,e〉 = 1 | e j = 0]

ρ1 =P[〈hi ,e〉 = 1 | e j = 1] = 1−ρ0.

Since

〈hi ,e〉 =
n−1⊕
j ′=0

hi , j ′e j ′ = hi , j e j ⊕
n−1⊕
j ′=0
j ′ 6= j

hi , j ′e
′
j

we have that when e j = 0 the parity-check equation 〈hi ,e〉 = 1 if and only if the number of

non-zero error positions that participate in the equation excluding the j -th position is odd.

Therefore,

P[〈hi ,e〉 = 1 | e j = 0] =
w−1∑
l=1

l odd

(
w −1

l

)
p l (1−p)w−1−l

=
w−1∑
l=0

(
w −1

l

)
1− (−1)l

2
p l (1−p)w−1−l

= 1

2

(w−1∑
l=0

(
w −1

l

)
p l (1−p)w−1−l −

w−1∑
l=0

(
w −1

l

)
(−p)l (1−p)w−1−l

)
= 1

2

((
p + (1−p)

)w−1 − (−p + (1−p)
)w−1

)
= 1− (1−2p)w−1

2
.

It follows that

ρ0 = 1−ε
2

and ρ1 = 1+ε
2

,

where ε = (1−2p)w−1. If probability p < 1
2 then ε > 0 and consequently, probability that a

parity-check equation involving the j -th position of the error is higher when e j = 1 than when

e j = 0, i. e., ρ1 > ρ0. Moreover, this bias ε in probability of the equation to evaluate to one

or zero depending on the value of e j depends also on the code density – smaller density w

leads to larger bias ε. This is exactly the reason why when working with MDPC codes, their

“moderate” density can be exploited to guess the error with high probability of success.

The strategy of the bit-flipping algorithm, given in Algorithm 1, is simple: count the number

of unsatisfied parity-check (UPC) equations for each bit of the error vector, flip those error

bits for which the UPC is higher than some threshold, compute the new syndrome derived

from the new error, and repeat these three steps until the error is corrected. The algorithm is

probabilistic and with some probability it does not find the right error and runs indefinitely.

Therefore, a maximum number of iterations is usually specified such that the decoder stops

after that many iterations even if the syndrome is not decoded. The probability of a decoder

to fail in finding the correct error is called Decoding Failure Rate (DFR).

18

2.1. BIKE

The DFR of the bit-flipping decoder and other iterative decoders derived from it depends

on several factors, such as the distribution of set bits in the parity-check matrix and in the

error vector, and the choice of the threshold. For example, in Section 3.6 we show that not all

parity-check matrices are equal in terms of decoding capability and in [22] the authors showed

that not all error vectors have the same probability to be corrected. It has been shown in [21]

that given a parity-check matrix and a syndrome which are chosen uniformly at random, the

probability that the decoder corrects a certain number of errors can be explicitly computed as

a function of code density, syndrome weight, and the threshold. However, already after the

first iteration of the algorithm the distribution of the set bits in the syndrome is not uniform

any more and the failure probability cannot be computed.

The threshold used for the decision to flip an error bit is an important parameter of the

algorithm. It determines the balance between the efficiency and the likelihood to fail of the

algorithm. In other words, the higher the threshold the algorithm is more “conservative” – it

flips fewer error bits per iteration and therefore needs more iterations to decode. On the other

hand, with higher threshold the algorithm is less likely to make a mistake, i. e., flip an error

bit which is not really an error, and therefore fail to decode. For example, one conservative

approach can be to set in each iteration the threshold to the maximum number of counted

UPCs. Choosing an optimal threshold is not straightforward because the threshold depends

on the error weight. Even if the exact weight of the error corresponding to the given syndrome

is fixed in the system and known, after flipping some of the bits in the first iteration, we cannot

know how many of the flipped bits are indeed the error bits and how many were mistakenly

flipped. Therefore, after the first iteration the number of the remaining error bits is not known

and the optimal threshold cannot be computed.

If several conditions are met, e. g., H is sparse enough, there exists an error e of small enough

weight which corresponds to the given syndrome s, and if the threshold τ is chosen such

that it is not too far from the optimal threshold, then with high probability the algorithm

stops, recovers the error e and returns the corrected codeword c , otherwise the algorithm runs

indefinitely. Since a closed formula to compute the exact DFR of a decoder is not known, the

DFR is usually determined experimentally, i. e., decoding is run many times with different

parity-check matrices and error vectors and the number of failures is counted.

In the BIKE proposal, two different decoders are used, “BackFlip” and “Black-Gray”. They

are both based on Algorithm 1, however, certain mechanisms are built into them so that the

algorithms can recover (to a degree) from making a mistake. Performance and DFR analysis

of those two decoders is presented in the subsequent chapters. Further details about the

threshold selection rules and the effect on the DFR of a decoder is available in the literature

[21, 1, 31, 32, 33].

19

Chapter 2. Background

Algorithm 1 e = BitFlipping(s, H) [21].

Input: Parity-check matrix H ∈ Fr×n
2 , y ∈ Fn

2 such that y = c +e.
Output: Codeword c ∈ Fn

2 .
1: procedure BITFLIPPING(y , H)
2: s ← y H T

3: s′ ← s
4: e ← 0
5: while s 6= 0 do
6: τ← compute threshold according to a predefined rule
7: for i = 0. . .n −1 do
8: if upci (s′, H) ≥ τ then
9: ei ← ei ⊕1

10: s′ ← s −eH T

11: return y −e

upci (s′, H) is a function that computes the number of unsatisfied parity-check equations
involving ei , the i -th position of the error vector e.
The parameter τ is the threshold for error bit flip decision, refer to the text for details.

2.1.3 McEliece and Niederreiter cryptosystems

Codes were introduced in public key cryptography by McEliece in his paper [34], where he

proposed a scheme based on Goppa codes. The secret key in the scheme is a generator matrix

of the selected error-correcting code. The secret generator is then transformed to a generator

of a general linear code and set as the public key. Encryption of a message in McEliece’s

cryptosystem is done by encoding the message with the public matrix and obscuring the

codeword by adding some error to it. Decryption of the ciphertext is done by decoding

the produced syndrome. The ciphertext is a syndrome of a general linear code for which

the decoding problem is known to be NP-hard. Although there is no proof that decoding

of a general linear code is hard on average, after many years of research, a subexponential

decoding algorithm that solves it still does not exist, even for quantum computers. Thus, it

is believed that relying on this problem for the security of a cryptosystem is safe. However,

with knowledge of the secret generator matrix and the transformation, it is possible to convert

the ciphertext to a syndrome of the chosen error-correcting code where decoding is easy. The

McEliece cryptosystem has an advantage in that the encryption and decryption functions

are fairly fast. Furthermore, the system is resistant to quantum computers in a sense that no

quantum polynomial time algorithm exists which could solve the decoding problem without

the knowledge of the secret information about the code. However, the big disadvantage of the

system is the size of the public key that is required for a reasonable security level.

McEliece cryptosystem

All parties involved in communication using McEliece encryption share a set of security

parameters n,k, t , where n and k determine the length and dimension of a code, respectively,

20

2.1. BIKE

and t is the maximum number of errors the code can correct. The public and secret key are

generated by the following procedure:

1. Select a random binary linear code C (n,k) with generator matrix G ,that allows efficient

decoding and correction of up to t errors.

2. Select a random k ×k non-singular matrix S called the scrambling matrix.

3. Select a random n ×n matrix P called the permutation matrix.

4. Compute matrix G ′ = SGP .

5. Output the public key G ′ and the secret key (G ,S,P).

Given a message m, the ciphertext is computed as c = mG ′+e, where e is a randomly generated

error vector of length n with Hamming weight t . The decryption process works in the following

three steps: compute c ′ = cP−1, then decode c ′ to m′, and finally recover the plaintext by

computing m = m′S−1.

Niederreiter cryptosystem

The next big development in coding-based cryptography was a paper by Niederreiter [35]

in which he proposed a variation of the McEliece cryptosystem. Both schemes admit the

same security, but Niederreiter’s cryptosystem offers much faster encryption, and furthermore

Niederreiter’s scheme can be used to create a digital signature scheme.

All the involved parties share the same set of security parameters n,k, t as in McEliece’s system.

The key generation in the Niederreiter cryptosystem is the following:

1. Select a random binary linear code C (n,k) with generator matrix G and parity-check

matrix H that allows efficient decoding and correction of up to t errors.

2. Select a random (n −k)× (n −k) non-singular matrix S called the scrambling matrix.

3. Select a random n ×n matrix P called the permutation matrix.

4. Compute matrix H ′ = SHP .

5. Output the public key H ′ and the secret key (H ,S,P).

To encrypt a given plaintext m, it is first mapped to an n-bit string e with Hamming weight t

(or several e’s if needed). The ciphertext is then computed by c = H ′eT . To decrypt a ciphertext,

the syndrome is computed s = S−1c which is then decoded and the value e ′ = PeT is recovered.

The n-bit string e is then recovered with eT = P−1e ′ and finally, the plaintext message m is

found by applying the inverse of the map done in the encryption algorithm, i. e., by mapping

21

Chapter 2. Background

the n-bit string e of weight t to a message m. Therefore, for this system we need an efficient

way to map random information (plaintext) to constant weight words (error) and also an

efficient inverse of this map. This problem is studied in [36].

We note that in a key encapsulation mechanism, contrary to a cryptosystem, the message

itself is not important in a sense that it carries “readable” information. Therefore, mapping

a message as an n-bit string with a certain weight can be replaced with generating an n-bit

string of the specified weight, thus, sidestepping the potential efficiency issues of the mapping.

2.1.4 Key Encapsulation Mechanism

Public key encryption (PKE) systems or asymmetric cryptosystems are a necessary ingredient

in any secure communication application in practice. However, they are not used for directly

encrypting the communication data for several reasons. One of the main disadvantages of

asymmetric cryptosystems is their performance which is usually rather poor compared to

secret key (symmetric) cryptosystems. Another important limitation of public key encryption

is that the message space is restricted which leads to various problems in designing secure

protocols. In practice, hybrid encryption schemes are used, which consist of a public key

encryption technique used to encrypt a key which is in turn used to encrypt the actual message

with a symmetric key encryption scheme. Secure transmission of the symmetric key is done

with a Key Encapsulation Mechanism (KEM), which consists of the following three algorithms:

• keygen(1λ) → (pk,sk): the key generation algorithm outputs the public and secret key

based on the security parameter λ.

• encaps(pk) → (ss,ct): the key encapsulation algorithm receives as input the public key pk

and outputs the generated shared secret ss which is a symmetric key, and the ciphertext

ct which represents the encapsulation of ss.

• decaps(sk,ct) → ss: the decapsulation algorithm on inputs sk and ct outputs either the

shared secret key ss or a failure.

Both keygen and encaps are probabilistic algorithms in a sense that they require a source of

entropy to properly generate the key pair and the shared secret, respectively. Since there is

a possibility that the decapsulation fails, we say that a KEM is δ-correct if for all (pk,sk) ←
keygen(1λ) and (ss,ct) ← encaps(pk) the failure probability satisfies the following condition:

P[decaps(sk,ct) 6= k] ≤ δ.

The scenario for a KEM where two parties (A and B) need to derive a shared key is the following:

1. A generates its public and secret key (pk,sk) by using the keygen function and sends the

public key to B.

22

2.1. BIKE

2. B generates the shared secret symmetric key ss and encapsulates it in ciphertext ct by

using the function encaps with the public key of A. Party B sends the ciphertext to A.

3. A decapsulates the shared key ss from the received ciphertext ct.

Therefore, in terms of performance it is important to note that one side in the communication

performs the key generation and decapsulation algorithms, while the other side performs only

the encapsulation algorithm. Regarding the communication bandwidth, in one direction a

public key is sent, and a ciphertext in the other one.

2.1.5 IND-CPA and IND-CCA security notions

Indistinguishability (IND-) is the established notion of security of cryptographic schemes. A

cryptographic system is modeled in terms of a game between a challenger and an adversary.

The challenger has its secret key and the adversary is able to interact with the challenger via

certain function calls which depend on the adversary’s capabilities. The goal of the adversary is

to play the game and break the system with some non-negligible probability, in which case the

system is not secure under the defined security notion. For a key encapsulation mechanism

the indistinguishability property means that an adversary is unable to distinguish between a

ciphertext ct of a shared secret key ss and a random ciphertext ct′.

Based on the capabilities of the adversary two different security levels are defined: indis-

tinguishability under chosen plaintext (IND-CPA) and indistinguishability under chosen

ciphertext (IND-CCA) attack. Here we give informal intuitive descriptions of these security

notions, full details with various games and adversaries are given in [9].

The IND-CPA notion, usually referred to as semantic security, is a basic requirement for any

cryptographic protocol. In an encryption scheme, the IND-CPA game is defined such that

the adversary chooses two messages (plaintexts) and provides them to the challenger which

then randomly chooses one of the two messages, encrypts it and returns the ciphertext to the

adversary. The goal of the adversary is to distinguish from which plaintext the ciphertext was

generated. In the KEM schemes the game is slightly modified, namely the IND-CPA game is

set up such that the adversary is given access to the encapsulation function, referred to as

oracle, of the challenger. Once the challenger generates its key pair and publishes the public

key, the adversary queries the encapsulation oracle and the challenger:

• Runs the encapsulation algorithm and generates a key ss and the ciphertext ct corre-

sponding to ss.

• Generates a random ss′.

• Returns the ciphertext ct and ss? which is one of ss and ss′ chosen randomly.

23

Chapter 2. Background

The goal of the adversary is then to distinguish if ct is indeed the ciphertext corresponding to

the received key ss? or not.

The IND-CCA is a stronger notion of security than IND-CPA in a sense that the adversary has

additional capabilities. More precisely, in IND-CCA games in addition to the encapsulation

oracle access, the adversary is given access to the decapsulation oracle as well. There are two

levels of IND-CCA security:

• IND-CCA1 where the adversary can query the decapsulation oracle only up until it

receives the challenge ciphertext.

• IND-CCA2 where the adversary is allowed to query the decapsulation oracle even after

receiving the challenge ciphertext, with an obvious limitation that it can ask the chal-

lenger to decapsulate any ciphertext except the received challenge ciphertext which

would make the game trivial to win for the adversary.

The first level of security, IND-CCA1, is also called the non-adaptive IND-CCA and it is a

weaker notion than the IND-CCA2 security which is referred to as adaptive IND-CCA.

Fujisaki-Okamoto (FO) transformation is a method for converting an IND-CPA secure PKE to

an IND-CCA secure KEM. The FO transformation is done in two phases, firstly, the IND-CPA

secure PKE is converted to an IND-CCA secure PKE which is then converted to an IND-CCA

secure KEM. Consider a simple probabilist PKE,e. g., McEliece cryptosystem, with encryption

and decryption functions defined as ct ← Epk(m, coi n) and m ← Dsk(ct), respectively. Note

that in the encryption algorithm in McEliece’s system the message is encoded to a codeword

using the public key and the coin providing the required entropy is used to generate a random

error vector which is added to the codeword to produce the ciphertext. Effectively, this means

that the attacker can freely choose the ciphertext to submit to the decryption oracle. To

upgrade the security of this PKE from CPA to CCA, in the first phase of the FO transformation

we add “de-randomization” and “plaintext checking” to the PKE. De-randomization means

that the random coin is transformed such that it is derived from the message. For this purpose,

a one-way function is introduced to the system, for example a hash function called H, and the

new encryption function is defined as ct ← Epk(m, H(m)). The second change, namely, the

plaintext checking is introduced in the decryption algorithm. The new decryption algorithm

D, after decrypting the ciphertext to a plaintext message m′, re-encrypts the plaintext by

applying the E algorithm to m′ and verifies if the received ciphertext indeed corresponds to

the obtained plaintext. In case it does, D outputs the message, otherwise it reports a failure

and does not output the resulting plaintext. In the context of McEliece’s cryptosystem these

two changes result in the inability of the attacker to freely choose the ciphertext because the

error vector is derived from a hash of the message during encryption, while the decryption

algorithm checks if this was properly done. Therefore, with these two changes applied to the

initial PKE, an IND-CCA secure PKE is obtained. The second phase of the FO transform, from

CCA secure PKE to CCA secure KEM, is done by introducing another one-way function which is

24

2.1. BIKE

used to derive a shared secret key from a plaintext message. This rather simplistic explanation

of the FO transform is meant only to give an intuition about the process of designing a secure

KEM, full details of the transformation and its application to various cryptographic schemes

in different security scenarios can be found in [37, 38, 39].

2.1.6 BIKE KEMs

The BIKE suite defines three different variants, each with separate definitions for IND-CPA

and IND-CCA security. All three versions, called BIKE-1, BIKE-2, and BIKE-3, are based

on the McEliece and Niederreiter frameworks and come with certain trade-offs in terms

of performance and required communication bandwidth. The CPA versions of BIKE are

secure only against a passive attacker which is able to monitor exchanged messages between

two parties. Therefore, it is used only in a scenario where the keys are ephemeral, i. e., any

particular set of public/secret key is used only once and a new key pair is generated for every

key exchange. On the other hand, the IND-CCA2 secure BIKE can be used in a static key setting

because it admits a certain level of security even against an active attacker which is able to

modify the messages being transmitted in a key exchange between the communicating parties.

In the rest of the text, the IND-CCA2 security of BIKE is referred to simply as IND-CCA.

There are several global parameters defined by BIKE which are used by the KEM algorithms.

The parameters are determined based on the desired security level λ and the error correction

capacity of a specific decoder used in the decapsulation method. The fundamental parameter

is a prime r which determines the polynomial ring R = F2[x]/(xr −1) over which the arithmetic

operations are done in BIKE. The prime r is such that the polynomial (xr −1)/(x −1) ∈ F2[x] is

irreducible, which is a property mandated by security requirements, i. e., there exist attacks

which can exploit the factorization of (xr − 1) into factors of smaller degree to break the

system (full details of the attack are given in [9]). The code used in BIKE is a QC-MDPC code

(Definition 7) with order r as defined above, index n0 = 2, length n = n0r = 2r and dimension

k = k0r = r . The parameter determining the density of the code is w , thus the parity-check

matrix is defined by a polynomial of Hamming weight w . The number of errors that can be

corrected by the decoder is denoted by t . The two hash functions used in encapsulation and

decapsulation are denoted by K and H. The first hash function K : {0,1}n → {0,1}l , where l is

the desired length of the shared secret symmetric key being encapsulated, is used in both CPA

and CCA versions. The second hash function H is used only in the CCA version due to the

additional requirements imposed by the CCA security, and it is defined separately for the three

variants of BIKE.

Notational conventions. In the next three sections, all the variants of BIKE are presented.

For each of the three BIKE versions three tables are presented explaining the key generation,

encapsulation and decapsulation procedures. The CPA and CCA versions of a procedure

for a variant of BIKE are shown together in a same table. The leftmost column of a table

denotes either the input arguments of the method (IN), a step in the algorithm, or one of

25

Chapter 2. Background

the algorithm outputs (PK - public key, SK - secret key, CT - ciphertext which encapsulates

the shared symmetric key, SS - the shared secret symmetric key). Uniform random sampling

from a set W is denoted by w
$←− W . In the explanatory text that accompanies the tables, a

block-circulant matrix represented by polynomials is denoted by the capitalization of the letter

of the corresponding polynomials. For example, a matrix G is a single block circulant matrix

with polynomial g as its first row. Another example is a matrix composed of two circulant

matrices F =
(
F0 F1

)
where F0 and F1 denote matrices with their first row determined by

polynomials f0 and f1, respectively. A vector and its corresponding polynomial are both

denoted by the same small letter, e. g., concatenation of two vectors
(
c0 c1

)
is represented by

a pair of polynomials (c0,c1).

2.1.7 BIKE-1

The first variant of BIKE is based on McEliece’s cryptosystem. The key generation flow is shown

in Table 2.1. The secret key is a block-circulant matrix composed of two circulant matrices

defined by two polynomials h0,h1 ∈R such that H T =
(

H0

H1

)
. The two polynomials are chosen

randomly from the set of polynomials in R with the specified Hamming weight d = w
2 . The

public key (f0, f1) is generated by scrambling the secret matrix with a random square matrix

G of size r represented by polynomial g ∈R, i. e., by multiplying both h0 and h1 by g . Note

that polynomials h0,h1, g are chosen such that they have odd Hamming weight to ensure that

the generator and parity-check matrices are systematic, as explained in Section 2.1.2. If we

consider the public key matrix F ' (f0, f1) to be the generator matrix of the code, it is easy to

see that the secret matrix H is the parity-check matrix of the code since F H T = 0:

F H T =
(
F0 F1

)(
H0

H1

)
=

(
G H1 G H0

)(
H0

H1

)
=G H1H0 +G H0H1 =G(H1H0 +H0H1) = 2G H0H1 = 0,

exploiting the commutativity mentioned in Section 2.1.1, and noting that we are working

over F2.

In the IND-CCA case two additional polynomials are sampled uniformly at random from R

and attached to the secret key (for a reason that is explained in the decapsulation phase).

Bandwidth requirement for BIKE-1, i. e., the size of the public key and the data (ciphertext), is

equal to the length of the code n = 2r in each direction of the communication.

Table 2.2 describes the encapsulation algorithm which receives a public key (f0, f1) as input. In

both CPA and CCA case a random message m is sampled from R, which is afterwards encoded

by computing its product with the public key. The ciphertext c is then generated by adding a

random error vector (e0,e1) to the encoded message, i. e., c = (c0,c1) = (m f0 +e0,m f1 +e1).

26

2.1. BIKE

BIKE-1 IND-CPA BIKE-1 IND-CCA

1. h0,h1
$←−R both of odd Hamming weight wt(h0) = wt(h1) = w/2

2. - σ0,σ1
$←−R

3. g
$←−R of odd weight

4. (f0, f1) = (g h1, g h0)
PK (f0, f1) (f0, f1)
SK (h0,h1) (h0,h1,σ0,σ1)

Table 2.1 – BIKE-1 IND-CPA/IND-CCA key generation flow.

The CPA and CCA versions differ in the way of generating the error vector (step 2) and gener-

ating the desired secret shared key (step SS). In the CPA case, the error is generated simply

by sampling two random vectors e0,e1 ∈R such that their combined Hamming weight is t

(the error correction capacity of the code), and the symmetric key is taken as the output of the

hash function of the error ss = K(e0,e1). Note that here, the information is actually conveyed

in the error vector (the key ss depends only on (e0,e1)), while the randomness used to obscure

this information is in the message m.

The CCA version is slightly more complex because of the higher security requirements. The

place of the information and randomness is the opposite of the CPA case. Namely, the in-

formation is in the message m itself and the randomness comes from the error vector. This

reversal of the roles of information and randomness is due to the FO transform required for

CCA security, as explained in the decapsulation algorithm below. Furthermore, the error

is not sampled independently but rather generated from m with a custom hash function

H : {0,1}n → {y ∈ {0,1}n |wt(y) = t }. This modification is done for two reasons (mentioned in

Section 2.1.5): firstly, to avoid reaction attacks by forcing a uniform distribution of the error,

and secondly, to enable plaintext checking necessary for the FO transform.

BIKE-1 IND-CPA BIKE-1 IND-CCA
IN Public key (f0, f1)

1. m
$←−R

2.
e0,e1

$←−R (e0,e1) = H(m f0,m f1)
where wt(e0)+wt(e1) = t

3. (c0,c1) = (m f0 +e0,m f1 +e1)
CT c = (c0,c1)
SS ss = K(e0,e1) ss = K(m f0,m f1,c)

Table 2.2 – BIKE-1 IND-CPA/IND-CCA key encapsulation flow.

The decapsulation algorithm is shown in Table 2.3. Inputs of the algorithm are the ciphertext

c and the secret key (h0,h1) in the CPA case and (h0,h1,σ0,σ1) in the CCA case. The syndrome

27

Chapter 2. Background

s is computed with the secret parity-check matrix:

s = cH T =
(
c0 c1

)(
H0

H1

)
= c0H0 + c1H1.

It is easy to verify that s is indeed a syndrome of the code and that it corresponds to the

message m and error vector (e0,e1) from the encapsulation phase:

s = c0H0 + c1H1

= mF0H0 +e0H0 +mF1H1 +e1H1

= m(F0H0 +F1H1)+ (e0H0 +e1H1)

= mF H T +
(
e0 e1

)
H T

=
(
e0 e1

)
H T .

Therefore, decoding the syndrome, if it succeeds, recovers the error vector (e ′0,e ′1) which is

equal to the original error (e0,e1).

In the CPA case, we check if the weight or the error is correct and if the decoder succeeded,

and either compute the shared secret key ss or return a failure symbol.

The CCA algorithm contains an additional check - the aforementioned plaintext check, where

it is verified that the error obtained by the decoder and the error computed by hashing the

plaintext are equal. Plaintext hash (Step 3), is computed in the same way as in encapsulation:

(e ′′0 ,e ′′1) = H(c0 +e ′0,c1 +e ′1). If the original error (e0,e1) and the error recovered by the decoder

(e ′0,e ′1) are the same then:

(e ′′0 ,e ′′1) = H(c0 +e ′0,c1 +e ′1)

= H(m f0 +e0 +e ′0,m f1 +e1 +e ′1)

= H(m f0,m f1)

= (e0,e1).

If this additional condition is satisfied, then the shared key is computed by ss = K(c0 +e ′0,c1 +
e ′1,c0,c1). In contrast to the CPA case where if any of the conditions in Step 4 is unsatisfied the

algorithm returns a failure, in the CCA decapsulation the algorithm returns a value for the

shared key computed with (σ0,σ1) values of the secret key: ss = K(σ0,σ1,c).

2.1.8 BIKE-2

The second variant of BIKE is based on Niederreiter framework and features a parity-check

matrix in standard form. The main advantage of BIKE-2 stems directly from this feature – the

size of the data being transmitted is halved compared to BIKE-1. On the other hand, the main

disadvantage of the scheme comes from the requirement to generate the standard form of the

28

2.1. BIKE

BIKE-1 IND-CPA BIKE-1 IND-CCA

IN
Ciphertext c = (c0,c1)

(h0,h1) (h0,h1,σ0,σ1)
1. Compute the syndrome s = c0h0 + c1h1

2. (e ′o ,e ′1) ← decode(s,h0,h1)
3. - (e ′′0 ,e ′′1) ← H(c0 +e ′0,c1 +e ′1)
4. if wt(e ′0)+wt(e ′1) 6= t or decoding failed or (e ′0,e ′1) 6= (e ′′0 ,e ′′1) then
SS return ⊥ ss = K(σ0,σ1,c)
5. else
SS ss = K(e ′0,e ′1) ss = K(c0 +e ′0,c1 +e ′1,c0,c1)

Table 2.3 – BIKE-1 IND-CPA/IND-CCA key decapsulation flow.

matrix in the key generation algorithm which involves a costly polynomial inversion. This is

not a big problem in a static key setup where the key pair is generated only once, but when

ephemeral keys are used the key generation might become prohibitively expensive due to the

cost of the inversion.

The key generation procedure of BIKE-2 is shown in Table 2.4. The first two steps, where the

secret parity-check matrix (h0,h1) is generated, are the same as in BIKE-1. The inverse H−1
0 of

matrix H0 plays the role of the scrambling matrix S from Niederreiter cryptosystem. Therefore

the public key is computed as:

F = H−1
0

(
H0 H1

)
=

(
Ir H1H−1

0

)
.

Obviously, F is in standard form since the first matrix block is the identity matrix of size r .

BIKE-2 IND-CPA BIKE-2 IND-CCA

1. h0,h1
$←−R both of odd Hamming weight wt(h0) = wt(h1) = w/2

2. - σ0,σ1
$←−R

3. (f0, f1) = (1,h1h−1
0)

PK (f0, f1) (f0, f1)
SK (h0,h1) (h0,h1,σ0,σ1)

Table 2.4 – BIKE-2 IND-CPA/IND-CCA key generation flow.

Table 2.5 presents the encapsulation flow of BIKE-2. Following Niederreiter’s algorithm the

message is first “encoded” as an n bit vector e =
(
e0 e1

)
of weight t . Note that there is no

actual message here, so e is chosen independently. The ciphertext is then computed by:

c = FeT =
(
Ir H1H−1

0

)(
e0

e1

)
= e0 +e1H1H−1

0 .

In the CPA case both e0 and e1 are randomly selected from R such that their combined weight

is t .

29

Chapter 2. Background

The BIKE-2 scheme transformation from IND-CPA to IND-CCA is different from BIKE-1. The

reason is that in BIKE-2 there are no message and randomness (plaintext and error) like

in BIKE-1 so that the roles of a message and randomness could be switched and uniform

distribution of the error enforced. Therefore, in the CCA case e is produced from a random

seed z with a custom hash function H : {0,1}lk → {y ∈ {0,1}n | wt(y) = t }.

The required plaintext checking for the FO transform performs the check on the seed instead

of on the plaintext as in BIKE-1. Therefore, an additional value needs to be sent with the

ciphertext which will allow recovering of the seed in the decapsulation phase. The seed is

masked with a simple one-time pad in Step 4 of the algorithm, and the pair of values (c,d)

sent as ciphertext.

The shared symmetric key is computed similarly as in BIKE-1: in the CPA version ss is a hash

of the error vector, while in the CCA case the input to the hash function is a concatenation of

the error and the ciphertext (c,d).

BIKE-2 IND-CPA BIKE-2 IND-CCA
IN Public key (f0, f1)

1. - z
$←− {0,1}lK

2.
e0,e1

$←−R2 (e0,e1) = H(z)
where wt(e0)+wt(e1) = t

3. c = e0 +e1 f1

4. - d = K(e0,e1)⊕ z
CT c (c,d)
SS ss = K(e0,e1) ss = K(e0,e1,c,d)

Table 2.5 – BIKE-2 IND-CPA/IND-CCA key encapsulation flow.

The decapsulation algorithm is shown in Table 2.6. As defined in Niederreiter’s cryptosystem,

the syndrome s is computed by multiplying the ciphertext c with the inverse of the scrambling

matrix (H−1
0)−1 = H0 (Step 1), and decoded to obtain the error vector (e ′0,e ′1) in Step 2. The

computed syndrome s is

s = H0c

= H0(e0 +e1F1)

= H0e0 +H0e1H1H−1
0

= H0e0 +H1e1

= HeT

and therefore it is indeed the syndrome corresponding to the error e and as such it is a valid

input for the decoder. Note that both the ciphertext and syndrome are regarded as column

vectors.

The CPA version continues in a straightforward manner, as in BIKE-1. Upon obtaining (e ′0,e ′1)

30

2.1. BIKE

it is checked if the combined weight of e ′0 and e ′1 is correct and either the key ss is computed or

failure is reported.

The additional plaintext checking in the CCA version is done by first computing the new seed as

the xor of the received d value and the hash of the obtained error (Step 3), and then comparing

it with the original seed. If all the conditions are satisfied the shared key is computed as

ss = K(e ′0,e ′1,c,d), otherwise the algorithm outputs a shared key created based on (σ0,σ1).

BIKE-2 IND-CPA BIKE-2 IND-CCA

IN
Ciphertext c Ciphertext (c,d) and seed z

(h0,h1) (h0,h1,σ0,σ1)
1. Compute the syndrome s = ch0

2. (e ′o ,e ′1) ← decode(s,h0,h1)
3. - z ′ = d ⊕K(e ′0,e ′1)
4. if wt(e0)+wt(e1) 6= t or decoding failed or z 6= z ′ then
SS return ⊥ ss = K(σ0,σ1,c,d)
5. else
SS ss = K(e ′0,e ′1) ss = K(e ′0,e ′1,c,d)

Table 2.6 – BIKE-2 IND-CPA/IND-CCA key decapsulation flow.

2.1.9 BIKE-3

The third variant of BIKE is different from the previous two variants. It is based on the

Ouroboros cryptographic protocol [40]. It features fast key generation, comparable with BIKE-

1, while in terms of bandwidth it can be easily modified such that the public key size is almost

halved, comparable with BIKE-2. Because of the differences in the design compared to BIKE-1

and BIKE-2 which are McEliece and Niederreiter based systems, it requires slightly larger

parameters to achieve the same level of security. But the main disadvantage of this variant is

that it comes with a patent attached to it, and although the patent owners declared that they

are willing to grant non-exclusive license for the purpose of implementing the standard, it is

still not regarded as completely safe to use from a legal point of view. As such, BIKE-3 is not

treated with the same level of attention as the other variants of BIKE and in the remaining part

of the thesis it is often omitted from our analysis. Nevertheless, it is presented here for the

sake of completeness.

The key generation algorithm is shown in Table 2.7. Analogously to BIKE-1, the secret key

is a parity-check matrix H represented by two polynomials h0,h1 ∈R each of weight d = w
2

such that H T =
(

H0

H1

)
. The public key (f0, f1) consists of two parts. The second part, f1, is

assigned the value of a randomly generated invertible polynomial g ∈ R. The value of the

first part of the key is then computed as f0 = h1 + g h0, which can be considered as a random

syndrome of the code defined by H . Note that here it is possible to reduce the size of the public

key by replacing f1 with a random seed which can be used in a pseudo-random function to

31

Chapter 2. Background

deterministically derive the actual value of f1.

BIKE-3 IND-CPA BIKE-3 IND-CCA

1. h0,h1
$←−R both of odd Hamming weight wt(h0) = wt(h1) = w/2

2. - σ0,σ1,σ2
$←−R

3. g
$←−R of odd Hamming weight

3. (f0, f1) = (h1 + g h0, g)
PK (f0, f1) (f0, f1)
SK (h0,h1) (h0,h1,σ0,σ1,σ2)

Table 2.7 – BIKE-3 IND-CPA/IND-CCA key generation flow.

Table 2.8 outlines the encapsulation flow. Here, three error vectors are sampled from R such

that the combined weight of e0 and e1 is t , as before, and the weight of the additional error

vector e is t
2 . The ciphertext in Step 3 is computed in two parts:

c0 = e +e1 f0 and c1 = e0 +e1 f1.

If the matrix defined by
(
1 F1

)
is considered as a parity-check matrix of some code, then c1 is

a random syndrome in this code. Even though F1 is public, it defines a general linear code, not

a moderate density code, and therefore, it cannot be used to efficiently decode c1 and recover

the secret error vector.

In the IND-CCA version of the key encapsulation, a seed z is introduced to the scheme, from

which the errors are generated with a hash function H to enable plaintext checking required

for the FO transform. Moreover, compared to the CPA version where the shared secret key is

derived from the error vectors only, in the CCA case, the shared secret depends also on the

ciphertext.

BIKE-3 IND-CPA BIKE-3 IND-CCA
IN Public key (f0, f1)

1. - z
$←− {0,1}lK

2.
(e,e0,e1)

$←−R3 (e,e0,e1) = H(z)
where wt(e0)+wt(e1) = t and wt(e) = t

2
3. (c0,c1) = (e +e1 f0,e0 +e1 f1)
4. - d = K(e0,e1,e)⊕ z

CT c = (c0,c1) (c,d) = ((c0,c1),d)
SS ss = K(e0,e1,e) ss = K(e0,e1,e,c,d)

Table 2.8 – BIKE-3 IND-CPA/IND-CCA key encapsulation flow.

The key decapsulation algorithm is presented in Table 2.9. Upon receiving the ciphertext, the

32

2.1. BIKE

syndrome s is computed with:

s = c0 + c1H0

= e +e1F0 + (e0 +e1G)H0

= e +e1G H0 +e1H1 +e0H0 +e1G H0

= e +e0H0 +e1H1

= e +
(
e0 e1

)(
H0

H1

)
= e +

(
e0 e1

)
H T .

The computed syndrome s is a noisy syndrome of the code defined by H corresponding to

the error (e0,e1) with additional noise introduced by vector e. Noisy syndrome decoding is a

variation of the syndrome decoding problem, and for MDPC codes, the bit flipping decoder is

only marginally affected by the added noise. However, the block size r of the code still needs

to be slightly increased to achieve the DFR equivalent to standard decoding. Further details

about decoding with noisy syndrome can be found in the BIKE specification [9].

Once the errors are recovered, it is checked if their weight is correct, and if it is then the shared

secret key is derived in the same way as in encapsulation. If the recovered error is not of the

required weight, the CPA protocol reports a failure, while the CCA protocol generates a random

shared secret with σ values which are part of the private key. The CCA version includes one

more condition, namely, the plaintext checking as defined by the FO transform. If all the

conditions are satisfied the CCA algorithm outputs the derived shared secret.

BIKE-3 IND-CPA BIKE-3 IND-CCA

IN
Ciphertext c = (c0,c1) Ciphertext (c,d) = ((c0,c1),d)

(h0,h1) (h0,h1,σ0,σ1)
1. Compute the syndrome s = c0 + c1h0

2. (e ′o ,e ′1,e ′) ← decode(s,h0,h1)
3. - z ′ = d ⊕K(e ′0,e ′1,e ′)
4. if wt(e ′0)+wt(e ′1) 6= t or wt(e) 6= t

2 or decoding failed or z 6= z ′ then
SS return ⊥ k = K(σ0,σ1,σ2,c,d)
5. else
SS ss = K(e ′0,e ′1) ss = K(e ′0,e ′1,e ′,c,d)

Table 2.9 – BIKE-3 IND-CPA/IND-CCA key decapsulation flow.

33

Chapter 2. Background

2.2 Legendre PRF

The Legendre PRF is a pseudorandom function based on the Legendre symbol. The use

of Legendre symbols in pseudorandom functions was initially proposed by Damgård [29].

Although very simple and effective, the Legendre PRF has not gained significant traction until

recently, the main reason being the existence of faster alternatives. However, in a recent work

on cryptographic primitives required for multi-party computation (MPC) [28], the authors

conclude that the Legendre PRF is a suitable candidate for pseudorandom generator in MPC

settings. This generated new interest in the Legendre PRF and its practical applications,

especially in the blockchain community. In the following section we give basic definitions

required for building the Legendre PRF and analyzing its security.

2.2.1 Legendre symbol

Let p be an odd prime and denote by Fp the field of cardinality p. The multiplicative group of

Fp is denoted by F∗p . We consider the elements of Fp as integers modulo p.

Definition 8 (Legendre symbol). We define the Legendre symbol by setting

(
a

p

)
=

1 if a ∈ F∗p is a square mod p

0 if a = 0 mod p

−1 if a ∈ F∗p is not a square mod p.

Note that some authors prefer to set
(0

p

) = 1, which makes the Legendre symbol a binary

function but breaks the multiplicative property (cf. below).

By definition, the Legendre symbol of a non-zero element of a field tells us if the element is

a quadratic residue or a quadratic nonresidue. By Euler’s criterion, we can determine if an

integer a coprime to p is a quadratic residue modulo p by computing

a
p−1

2 ≡
{

1 (mod p) if there is an integer b such that a ≡ b2(mod p)

−1 (mod p) if there is no such integer.

Therefore, a straightforward way to find the Legendre symbol of a ∈ Fp is to compute
(a

p

)= a
p−1

2

which requires O(log p) arithmetic operations in the field, or O(log3 p) bit operations when

using naive arithmetic. Note that there are more efficient methods for evaluating the Legendre

symbol – one method is described later in this section, while an even faster (asymptotically)

algorithm is proposed in [41].

We list here several useful properties of the Legendre symbol. Firstly, it follows directly from

the definition that it is a multiplicative function, namely:(
ab

p

)
=

(
a

p

)(
b

p

)
.

34

2.2. Legendre PRF

In other words, the product of two residues or two nonresidues is a residue, while the product

of a residue and a nonresidue is a nonresidue.

The law of quadratic reciprocity gives us the next three properties. Firstly, we have that(
−1

p

)
= (−1)

p−1
2 =

{
1 if p ≡ 1 mod 4

−1 if p ≡ 3 mod 4,

because if p ≡ 1 mod 4 then (p −1)/2 is even and if p ≡ 3 mod 4 then it is odd. Similarly, we

have that the Legendre symbol of 2 is:(
2

p

)
= (−1)

p2−1
8 =

{
1 if p ≡ 1 or 7 mod 8

−1 if p ≡ 3 or 5 mod 8.

Let q be a prime number different from p, then the quadratic reciprocity law states that(
q

p

)(
p

q

)
= (−1)

p−1
2

q−1
2 .

The final property is a useful tool for evaluating the Legendre symbol – it allows us to flip
(q

p

)
and replace it with ±(p

q

)
, reduce p modulo q , and compute the symbol with smaller entries.

These steps can be repeated until we get entries as small as desired. However, the problem lies

is the fact that p mod q may be a composite number meaning that it needs to be factored if

we were to continue with the procedure.

The Jacobi symbol is a generalization of the Legendre symbol which can be used to simplify

the computation of the Legendre symbol.

Definition 9 (Jacobi symbol). Let a be an integer and m an odd positive integer with prime

factorization m =∏
p ti

i . The Jacobi symbol
(a

m

)
is defined in terms of the factorization of m as

(
a

m

)
=∏(

a

pi

)ti

,

where
(a

pi

)
are Legendre symbols with

(a
1

)
= 1.

It follows directly from the definition that if a and m are not coprime then
(a

m

)= 0. The Jacobi

symbol is a completely multiplicative function, i. e., for m fixed(
ab

m

)
=

(
a

m

)(
b

m

)
,

and for a fixed a we have that (
a

mn

)
=

(
a

m

)(
a

n

)
.

Furthermore, when n and m are odd positive coprime integers the quadratic reciprocity law

35

Chapter 2. Background

applies (analogously to the Legendre symbol case):(
n

m

)(
m

n

)
= (−1)

m−1
2

n−1
2 ,

with its supplements: (
−1

m

)
= (−1)

m−1
2 ,(

2

m

)
= (−1)

m2−1
8 .

The stated properties allow efficient computation of the Jacobi symbol, but also of its special

case – the Legendre symbol. The algorithm to compute
(a

m

)
can be described in the following

way:

1. Reduce a modulo m.

2. Extract the 2’s from the factorization of a by using the multiplicative property of the

symbol and the formula for
(2

m

)
.

3. If a = 1 or gcd(a,m) 6= 1 we finish and output the result 1 or 0, respectively. Otherwise,

a and m are odd positive coprime integers with a < m, so we switch their places and

return to the first step.

This algorithm is analogous to Euclid’s algorithm for computing the greatest common divi-

sor of two numbers and therefore it has a complexity of O(log2 m) bit operations – a log p

improvement from the naive Legendre symbol computation algorithm.

2.2.2 Legendre pseudorandom function

In this section we define Legendre sequences and a pseudorandom function based on the

properties of the these sequences together with several hard problems associated with the

Legendre PRF.

Definition 10 (Legendre sequence). We define a Legendre sequence with starting point a and

length L to be the sequence of Legendre symbols evaluated at L consecutive elements starting

from a. We denote it with {a}L .

{a}L
..=

(
a

p

)
,

(
a +1

p

)
,

(
a +2

p

)
, . . . ,

(
a +L−1

p

)
.

Every sequence {a}L is fully determined by the starting value a. However, the statement is not

true in the opposite direction. Namely, a sequence of L symbols does not always uniquely

36

2.2. Legendre PRF

determine a starting point – depending on L it may or may not have a unique starting point.

For example, when L = 1 a given sequence provides only information on quadratic residuosity

of its starting point. Moreover, we know that the number of quadratic residues and nonresidues

in F∗p is equal, meaning that half of the potential starting points of a sequence, elements a ∈ Fp ,

give a Legendre symbol 1 and the other half give −1 (ignoring the case a = 0). Therefore, the

L = 1 sequences are well distributed. Similar properties can be attributed to sets of sequences

with larger L-values. Following a theorem of Davenport around one in 2L elements of Fp is a

starting point of a given sequence of length L.

Theorem 1 (Davenport, 1933 [42]). Let S be a finite sequence of +1 and −1 values of length L.

Then the number of elements of Fp whose sequence is equal to S satisfies

#
{

a ∈ Fp : {a}L = S
}= p

2L
+O(pε)

where 0 < ε< 1 is a constant depending only on L.

Intuitively, if we want L such that {a}L uniquely defines a, i. e., that the following holds

{a}L = {b}L if and only if a = b, (2.1)

then L should be of orderΩ(log p). However, the only provable bound so far comes from the

Weil bound [43] which lower bounds L by an exponential function in p, i. e., L =O(
p

p log p).

Despite this, there is an indication that on average over all sequences S of length L, there

are p
2L +O(1) elements a ∈ Fp whose Legendre sequences are {a}L = S. In other words for

a random sequence S and a random element a ∈ Fp we have {a}L = S with probability 1
2L .

This observation is based both on our computational results and other statistical data on the

distribution of Legendre sequences [29].

Definition 11 (Complete Legendre sequence). We define the complete Legendre sequence to

be the sequence of p Legendre symbols of all ordered elements of Fp up to rotation, i.e. {0}p

where the tail connects to the head(
0

p

)
,

(
1

p

)
,

(
2

p

)
, . . . ,

(
p −1

p

)/∼ .

The Legendre sequences {a}L for all a ∈ Fp and L ≥ 0 are subsequences of the complete

Legendre sequence.

Legendre PRF

Pseudorandom functions are deterministic functions of a key and an input that produce an

output which is indistinguishable from an output of a truly random function with the same

codomain.

37

Chapter 2. Background

Definition 12 (Pseudorandom functions). A pseudorandom function family {Fk }k is a set

of functions with the same domain and codomain indexed by the set of keys k such that a

function Fk chosen randomly over the set of k-values cannot be distinguished from a random

function with the same codomain.

Definition 13 (Legendre PRF). The Legendre pseudorandom functions are functions

Fk : Fp → {−1,0,1}

indexed by k ∈ Fp and defined as

Fk (a) =
(

k +a

p

)
.

There are three main problems conjectured to be hard and on which the security of the

Legendre PRF is based.

Definition 14 (Shifted Legendre Symbol Problem - SLSP). Let k be a uniformly random value

in Fp . Given access to an oracle F that on input a ∈ Fp computes F (a) = (k+a
p

)
, find k.

Definition 15 (Decisional Shifted Legendre Symbol Problem - DSLSP). Let k be a uniformly

random value in Fp . Let F0 be an oracle that on input a ∈ Fp computes F0(a) = (k+a
p

)
, and let

F1 be an oracle that on input a outputs a random value in {−1,+1}. Given access to Fb where

b is an unknown random bit, find b.

Definition 16 (Next Symbol Problem - NSP). Given a Legendre sequence {a}M of M = polylog(p)

symbols, find
(a+M

p

)
, or equivalently find {a}M+1.

It is easy to see that finding the secret shift of a Legendre symbol (SLSP) is at least as hard as

finding the next symbol given a sequence (NSP) or distinguishing an output of the Legendre

PRF from a truly random function (DSLSP). Moreover, following the result of Yao [44] on

general pseudorandom functions, predicting the next bit of a pseudorandom function is

equivalently hard as distinguishing it from a truly random one. Therefore, we have that, under

polynomial time reductions, NSP = DSLSP ≤ SLSP.

38

Part IBIKE

39

3 On constant-time QC-MDPC decoding
with negligible failure rate

Bit Flipping Key Encapsulation (BIKE) is a code-based Key Encapsulation Mechanism (KEM)

that uses Quasi-Cyclic Moderate Density Parity Check (QC-MDPC) codes. It is one of the

Round-2 candidates of the NIST PQC Standardization Project [15]. The BIKE submission

includes three variants (BIKE-1, BIKE-2, and BIKE-3) with three security levels for each one. In

this chapter, we focus mainly on BIKE-1, at its Category 1 (as defined by NIST) security level.

The decapsulation algorithm of BIKE invokes an algorithm that is called a decoder. The

decoder is an algorithm that, given prescribed inputs, outputs an error vector that can be

used to extract a message (or the message itself). There are various decoding algorithms and

different choices yield different efficiency and Decoding Failure Rate (DFR) properties.

QC-MDPC decoding algorithms. We briefly describe the evolution of several Quasi-Cyclic

Moderate-Density Parity-Check (QC-MDPC) decoding algorithms. All of them are derived

from the Bit-Flipping algorithm presented in Section 2.1. The Round-1 submission of BIKE de-

scribes the “One-Round” decoder. This decoder is indeed implemented in the accompanying

reference code [9]. The designers of the constant-time Additional implementation [45] of BIKE

Round-1 chose to use a different decoder named “Black-Gray”1, with rationale as explained in

[46]. The study presented in [1] explores two additional variants of the Bit-Flipping decoder: a)

a parallel algorithm similar to that of [21], which first calculates some thresholds for flipping

bits, and then flips the bits in all of the relevant positions, in parallel. We call this decoder

the “Simple-Parallel” decoder; b) a “Step-by-Step” decoder (an enhancement of the “in-place”

decoder described in [23]). It recalculates the threshold every time that a bit is flipped.

The Round-2 submission of BIKE uses the One-Round decoder (of Round-1) and a new variant

of the Simple-Parallel decoder called BackFlip decoder. The latter introduces a new trial-and-

error technique called Time-To-Live (TTL). It is positioned as a derivative of the decoders

in [1]. All of these decoders have some nonzero probability to fail in decoding a valid input.

The average of the failure probability over all the possible inputs (keys and messages) is

1This decoder appears in the pre-Round-1 submission “CAKE” (the BIKE-1 ancestor). It is due to N. Sendrier
and R. Misoczki. The decoder was adapted to use the improved thresholds published in [9].

41

Chapter 3. On constant-time QC-MDPC decoding with negligible failure rate

called DFR. The KEMs of Round-1 BIKE were designed to offer IND-CPA security and to be

used only with ephemeral keys. They had an estimated approximate DFR of 10−7, which is

apparently tolerable in real systems, according to [9]. As a result, they enjoyed acceptable

bandwidth and performance. Note that the DFR depends on the proportion of the number

of error bits in a codeword and the bit length of the codeword. Therefore, decreasing the

DFR can be achieved by increasing the code size while leaving the number of error bits the

same, which presents a trade-off between the bandwidth of the system and its DFR. The

Round-2 submission presented new variants of BIKE Key Encapsulation Mechanism (KEM)

that provide IND-CCA security. Such KEM can be used with static keys. The IND-CCA BIKE is

based on three changes over the IND-CPA version: a) Fujisaki-Okamoto FO 6⊥ transformation

(explained in Section 2.1.5) applied to the key generation, encapsulation, and decapsulation

of the original IND-CPA flows (see [9, Section 6.2.1]); b) adjusted parameters sizes; c) invoking

the BackFlip decoder in the decapsulation algorithm. Note that the requirements for the DFR

are different in the CPA and CCA case. Namely, CPA secure schemes are meant to be used

only with ephemeral keys and because of that the attacks on BIKE which exploit decoding

failures have little effect, in a sense that they need to observe a considerable number of failures

(certainly more than one) to recover the key. Therefore, in the CPA case the parameters are

chosen such that the DFR is tolerable in the context of system failures, i. e., the impact of

failures on the functionality of a network is insignificant. On the other hand, CCA secure

schemes are designed for static key use case where a single key is used many times. In this

context, decoding failures are important from the security standpoint and DFR of the scheme

is required to be negligible. Changes (b) and (c) from above are introduced specifically to

decrease the DFR to an acceptable level.

In this chapter, the following contributions are detailed:

• We define BackFlip+ decoder as the variant of BackFlip that operates with a fixed number

of iterations XBF (for some XBF). We also define the Black-Gray decoder that runs with

a given number of iterations XBG (for some XBG). Subsequently, we analyze the DFR of

these decoders as a function of XBF and XBG and the block size (which determines the

communication bandwidth of the KEM). The analysis results in a new set of parameters

where BackFlip+ with XBF = 8,9,10,11,12 and the Black-Gray decoder with XBG = 3,4,5

have an estimated average DFR of 2−128. This offers multiple IND-CCA proper BIKE

instantiation options.

• We build an optimized constant-time implementation of the new BIKE CCA flows

together with a constant-time implementation of the decoders. This facilitates a per-

formance comparison between the BackFlip+ and the Black-Gray decoders. All of our

performance numbers are based only on constant-time implementations. The com-

parison leads to interesting results. The BackFlip+ decoder has a better DFR than the

Black-Gray decoder if both of them are allowed to have very large (practically unlimited)

XBF and XBG values. These values do not lead to practical performance. However, for

small XBF and XBG values that make the performance practical and DFR acceptable,

42

Table 3.1 – BIKE-1 block size r (in bits) at security level 1, for which the Black-Gray decoder
achieves a target DFR with a specified number of iterations, and the decapsulation perfor-
mance (in cycles; the precise details of the platform are provided in Section 3.5). A DFR of
2−128 is required for the IND-CCA KEM. The IND-CPA used with ephemeral keys can settle for
a higher DFR.

DFR 3 iterations 4 iterations 5 iterations

2−23 ≈ 10−7 r 10259 10163 10141
cycles 3.50M 4.52M 5.53M

2−30 ≈ 10−9 r 10427 10331 10301
cycles 3.52M 4.56M 5.63M

2−40 ≈ 10−12 r 10667 10589 10501
cycles 3.55M 4.63M 5.69M

2−64 r 11261 11069 11003
cycles 3.76M 4.81M 5.96M

2−128 r 12781 12437 12373
cycles 4.06M 5.22M 6.47M

the Black-Gray decoder is faster (and therefore preferable).

• The BIKE CCA flows require higher bandwidth and more computations compared to

the original CPA flows, but the differences as measured on x86-64 architectures are

not very significant. Table 3.1 summarizes the trade-off between the BIKE-1 block size

(r), the estimated DFR and the performance of BIKE-1 decapsulation (with IND-CCA

flows) using the Black-Gray decoder. It provides several instantiation/implementation

choices. For example, with XBG = 4 iterations and targeting a DFR of 2−64 (with r = 11069

bits) the decapsulation with the Black-Gray decoder consumes 4.81M cycles. With a

slightly higher r = 11261 the decoder can be set to have only XBG = 3 iterations and the

decapsulation consumes 3.76M cycles.

• The FO 6⊥ transformation from QC-MDPC McEliece Public Key Encryption (PKE) to

BIKE-1 IND-CCA relies on the assumption that the underlying PKE is δ-correct [38] with

δ = 2−128. The relation between this assumption and the (average) DFR that is used

in [9] is not yet addressed. We identify this gap and illustrate some of the remaining

challenges.

This chapter is organized as follows. Section 3.1 offers background, notation and surveys

some QC-MDPC decoders. In Section 3.2 we define and clarify subtle differences between

schemes using idealized primitives and concrete instantiations of the schemes. In Section 3.3

we present the challenges and the techniques that we used for building a constant-time

implementation of IND-CCA BIKE. We explain the method used for estimating the DFR in

Section 3.4. Section 3.5 reports our results for the DFR and block size study, and also the

performance measurements of the constant-time implementations. The gap between the

estimated DFR and the δ-correctness needed for IND-CCA BIKE is discussed in Section 3.6.

43

Chapter 3. On constant-time QC-MDPC decoding with negligible failure rate

Section 3.7 concludes the chapter with several concrete proposals and open questions.

3.1 Preliminaries

Recall the notation defined in Chapter 2.1. The polynomial ring F2[x]/(xr −1) is denoted by

R. For every element v ∈R its Hamming weight is denoted by wt(v). The length of a vector

w is denoted by |w |. Polynomials in R are viewed interchangeably also as square circulant

matrices in Fr×r
2 . For a matrix H ∈ Fr×r

2 let h j denote its j -th column written as a row vector.

We denote null values and protocol failures by ⊥. Uniform random sampling from a set W is

denoted by w
$←−W . For an algorithm A, we denote its output by out = A() if A is deterministic,

and by out ← A() otherwise.

3.1.1 BIKE-1

The computations of BIKE-1-(CPA/CCA) are executed over R, where r is a given parameter.

Let w and t be the weights of (h0,h1) in the secret key h = (h0,h1,σ0,σ1) and the error vector

e = (e0,e1), respectively. Denote the public key, ciphertext, and shared secret by f = (f0, f1),

c = (c0,c1), and k, respectively. As in [9], we use H, K to denote hash functions. BIKE-1

parameters for Round 2 of the NIST Post-Quantum Cryptography Standardization project at

security level 1 are the following: for BIKE-1-CPA, r = 10163, | f | = |c| = 20326 and for BIKE-1-

CCA, r = 11779, | f | = |c| = 23558. In both cases, |ss| = 256, w = 142, d = w/2 = 71 and t = 134.

The key generation, encapsulation and decapsulation flows are presented in Section 2.1.7.

3.1.2 The IND-CCA transformation

Round-2 BIKE submission [9] uses the FO 6⊥ transformation described in [38] which is based

on Fujisaki-Okamoto transformation [37], to convert the QC-MDPC McEliece public-key

encryption scheme into an IND-CCA secure key encapsulation mechanism BIKE-1-CCA. The

submission claims that the proof results from [38][Theorems 3.1 and 3.42]. These theorems

use the term δ-correct PKE. For a finite message space M , a PKE is called δ-correct when the

expected value3

E

[
max
m∈M

Pr
[
Decrypt(sk,ct) 6= m | ct ← Encrypt(pk,m)

]]≤ δ (3.1)

and a KEM is δ-correct if

Pr
[
Decaps(sk,ct) 6= ss | (sk,pk) ← Gen(), (ct,ss) ← Encaps(pk)

]≤ δ (3.2)

2Theorems 3.1 and 3.4 appear only in the ePrint version [47] of [38]. In [38] they appear as Theorems 1 and 4,
respectively.

3In BIKE-1, the secret key (sk) and public key (pk) are h and f , respectively.

44

3.1. Preliminaries

3.1.3 QC-MDPC Decoders

The QC-MDPC decoders discussed in this chapter are variants of the Bit Flipping decoder [21]

presented in Algorithm 2. They receive a parity check matrix H ∈ Fr×n
2 (with column weight d)

and a vector c = m f +e as input4. Here, c,m f ,e ∈ Fn
2 , where the codeword m f is a product of

the message m and the public key f (thus, (m f)H T = 0) and e is an error vector with small

weight. The algorithm calculates the syndrome s = eH T and subsequently extracts e ′ from s.

The goal of the Bit Flipping algorithm is to find e ′ such that e ′ = e.

Algorithm 2 consists of four steps: I) calculate some static/dynamic threshold (τ) based on

the syndrome (s) and the error (e) weight; II) compute the number of unsatisfied parity check

equations (upci) for a given column i ∈ {0, . . . ,n −1}; III) flip the error bits in the positions

where there are more unsatisfied parity-check equations than the calculated threshold; IV)

recompute the syndrome. We refer to Algorithm 2 as the Simple-Parallel decoder. The Step-

By-Step decoder inserts Steps 4, 9 into the “for” loop (Step 5), i. e., it recalculates the threshold

and the syndrome for every bit. The One-Round decoder starts with one iteration of the

Simple-Parallel decoder, and then switches to the Step-by-Step decoder mode of operation.

Algorithm 2 e=BitFlipping(c, H)

Input: Parity-check matrix H ∈ Fr×n
2 , c ∈ Fn

2 , maxIter (maximal # of iterations)
Output: The error e ∈ Fn

2
Exception: “decoding failure” return ⊥

1: procedure BITFLIPPING(c, H)
2: s = HcT ,e = 0, itr = 0
3: while (wt(s) > 0) and (itr < maxIter) do
4: τ= computeThreshold(s,e) . Step I
5: for i in 0. . .n −1 do
6: Compute upci . Step II
7: if upci > τ then . Step III
8: e[i] = e[i]⊕1

9: s = H(cT +eT) . Step IV
10: itr = itr + 1
11: if (wt(s) > 0) then
12: return ⊥
13: else
14: return e

The Black-Gray decoder (in the additional code [45]) and the BackFlip decoder [9] use a more

complex approach. Similar to the Simple-Parallel decoder, they operate on the error bits in

parallel. However, they add a step that unflips the error bits according to some estimation.

Algorithm 3 illustrates the Black-Gray decoder. This Black-Gray variant runs in a fixed number

of iterations (XBG). The algorithm involves three main steps: 1) Perform one iteration of the

4In BIKE-1, n = 2r , the parity-check matrix H is formed by the two circulant blocks (h0,h1); the vectors c, e,
and f are defined as c = (c0,c1), e = (e0,e1), and m f = (m f0,m f1).

45

Chapter 3. On constant-time QC-MDPC decoding with negligible failure rate

Simple-Parallel decoder (Algorithm 2) and define some bit position candidates that should be

reconsidered (i. e., bits that were mistakenly flipped). Then, split them into two lists (black,

gray); 2) Reevaluate the bits in the black list, and flip them according to the evaluation; 3)

Reevaluate the gray error bits and unflip those that meet a certain threshold. Then, recalculate

the syndrome.

Algorithm 3 e=Black-Gray(c, H)

Input: Parity-check matrix H ∈ Fr×n
2 , c ∈ Fn

2 , XBG (maximal # of iterations)
Output: The error e ∈ Fn

2
Exception: “decoding failure” return ⊥

1: procedure BLACK-GRAY(c, H)
2: s = HcT , e = 0, δ= 4
3: B =;, G =; . Black and Gray position sets
4:

5: for i in 1. . . XBG do
6: τ = computeThreshold(s)
7: upc[n −1 : 0] = computeUPC(s, H)
8: for i in 0. . .n −1 do . Step I
9: if upc[i] ≥ τ then

10: e[i] = e[i]⊕1 . Flip an error bit
11: B = B ∪ i .Update the Black set
12: else if upc[i] > τ−δ then
13: G =G ∪ i .Update the Gray set

14: s = H(cT +eT) .Update the syndrome
15:

16: upc[n −1 : 0] = computeUPC(s, H) . Step II
17: for b ∈ B do
18: if upc[b] > ((d +1)/2) then
19: e[b] = e[b]⊕1 . Flip an error bit

20: s = H(cT +eT) .Update the syndrome
21:

22: upc[n −1 : 0] = computeUPC(s, H) . Step III
23: for g ∈G do
24: if upc[g] > ((d +1)/2) then
25: e[g] = e[g]⊕1 . Flip an error bit

26: s = H(cT +eT) .Update the syndrome
27:

28: if wt(s) > 0 then
29: return ⊥
30: else
31: return e

The BackFlip decoder shown in Algorithm 4 has the following steps: 1) Compute the threshold

based on the current syndrome and error values, and the number of unsatisfied parity-check

equations upc. Flip the error bits which correspond to the upc values greater or equal to the

46

3.2. Idealized schemes and concrete instantiations

threshold and for each flipped bit compute the time-to-live value ttl. 2) Check the ttl values of

all the bits and unflip those which reached the corresponding value.

Algorithm 4 e=BackFlip(c, H)

Input: Parity-check matrix H ∈ Fr×n
2 , c ∈ Fn

2 , maxIter (maximal # of iterations)
Output: The error e ∈ Fn

2
Exception: “decoding failure” return ⊥

1: procedure BACKFLIP(c, H)
2: s = HcT , e = 0, itr = 0
3: time = 1, ttl[n −1 : 0] = 0
4: while (wt(s) > 0) and (itr < maxIter) do
5: τ = computeThreshold(s,e)
6: upc[n −1 : 0] = computeUPC(s, H)
7: for i in 0. . .n −1 do . Step I
8: if upc[i] ≥ τ then
9: e[i] = e[i]⊕1 . Flip an error bit

10: ttl[i] = time + computeTTL(upc[i],τ)

11: for i in 0. . .n −1 do . Step II
12: if ttl[i] = time then
13: e[i] = e[i]⊕1 . Flip an error bit
14: ttl[i] = 0

15: s = H(cT +eT) .Update the syndrome
16: itr = itr+1
17: time = time+1
18: if wt(s) > 0 then
19: return ⊥
20: else
21: return e

The BackFlip+ is a variant of BackFlip that uses a fixed number of iterations as explained in the

introduction of this chapter. Technically, the difference is that the condition on the weight of s

is removed from the while loop in line 3. Therefore, the algorithm performs the appropriate

number of mock iterations.

Remark 1. The decoders use the term iterations differently. For example, the runtime of

one iteration of the Black-Gray decoder is approximately the same as the runtime of three

iterations of the Simple-Parallel decoder. The iteration of the One-Round decoder conssists

of multiple (not necessarily fixed) “internal” iterations. Comparison of the decoders needs

to take this information into account. For example, the performance is determined by the

number of iterations times the latency of an iteration, not just by the number of iterations.

3.2 Idealized schemes and concrete instantiations

We discuss some subtleties related to the requirements from a concrete algorithm in order to be

acceptable as substitute for an ideal primitive, and the relation to a concrete implementation.

47

Chapter 3. On constant-time QC-MDPC decoding with negligible failure rate

Cryptographic schemes are often analyzed in a framework where some of the components

are modeled as ideal primitives. An ideal primitive is a black-box algorithm that performs a

defined flow over some (secret) input and communicates the resulting output (and nothing

more). A concrete instantiation of the scheme is the result of substituting the ideal primitive(s)

with some specific algorithm(s). We require the following property from the instantiation to

consider it acceptable: it should be possible to implement the algorithm without communicat-

ing more information than the expected output. From the practical viewpoint, this implies that

the algorithm could be implemented in constant-time. Note that a specific implementation of

an acceptable instantiation of a provably secure scheme can still be insecure (e. g., due to side

channel leakage). Special care is needed for algorithms that run with a variable number of

steps.

Remark 2. A scheme can have provable security but this does not imply that every instan-

tiation inherits the security properties guaranteed by the proof, or that there even exists an

instantiation that inherits them. Furthermore, an insecure instantiation example does not

invalidate the proof of the idealized scheme. For example, an idealized KEM can have an

IND-CCA secure proof when using a "random oracle" ideal primitive. An instantiation that

replaces the random oracle with a non-cryptographic hash function does not inherit the

security proof, but it is commonly acceptable to believe that an instantiation with SHA256

does.

Algorithms with a variable number of steps. Let A be an algorithm that takes a secret input

in and executes a flow with a variable number of steps/iterations v(in) that depends on in. It

is not necessarily possible to implement A in constant-time. In case ("limited") that there

is a public parameter b such that v(in) ≤ b we can define an equivalent algorithm (A +) that

runs in exactly b iterations: A + executes the v(in) iterations of A and continues with b−v(in)

identical mock iterations, each of which requires the same execution time as a regular iteration.

With this definition, we can assume that it is possible to implement A + in constant-time.

Clearly, details must be provided, and such an implementation needs to be worked out. This

could be a challenging task.

Suppose that v(in) is unlimited, i. e., there is no (a-priori) parameter b such that v(in) ≤ b (we

call this case "unlimited"). It is possible to set a constant parameter b∗ and an algorithm A +

with exactly b∗ iterations, such that it emits a failure indication if the output is not obtained

after exhausting the b∗ iterations. It is possible to implement A + in constant-time, but it

is no longer equivalent to A , due to the nonzero failure probability. Thus, analysis of A +

needs to include the dependency of the failure probability on b∗, and consider the resulting

implications. Practical considerations would seek the smallest b∗ for which the upper bound

on the failure probability is satisfactory. Obviously, if A has originally some nonzero failure

probability, then A + has a larger failure probability.

Suppose that a cryptographic scheme relies on an ideal primitive. In the limited case an

instantiation that substitutes A (or A +) is acceptable. However, in the unlimited case, substi-

tuting the primitive A with A + is more delicate, due to the failure probability that is either

48

3.2. Idealized schemes and concrete instantiations

introduced or increased. We summarize the unlimited case as follows.

• To consider A as an acceptable ideal primitive substitute, v(in) needs to be considered

as part of A ’s output, and the security proof should take this information into consider-

ation. Equivalently, the incremental advantage that an adversary can gain from learning

v(in) needs to be included in the adversary advantage of the (original) proof.

• Considering A + as an acceptable ideal primitive substitute requires a proof that it has

all the properties of the ideal primitive used in the original proof (in particular, the

overall failure probability).

Application to BIKE. The IND-CCA security proof of BIKE relies on the existence of a decoder

primitive that has a negligible DFR. This is a critical property of a decoder that is used in the

proof. The concrete BIKE instantiation substitutes the idealized decoder with the BackFlip

decoding algorithm. BackFlip has the required negligible DFR. By its definition, BackFlip runs

in a variable number of steps (iterations) that depends on the input and on the secret key (this

property is built into the algorithm’s definition).

It is possible to use BackFlip in order to define a corresponding BackFlip+ decoder that has a

fixed number of steps: a) fix a number of iterations as a parameter XBF ; b) follow the original

BackFlip flow but always execute XBF iterations in such a way that if the error vector (e) is

extracted after Y < XBF iterations, an additional (XBF −Y) identical mock iterations are exe-

cuted that do not change e; c) after the XBF iterations are exhausted, output a success/failure

indication and e on success or a random vector of the expected length otherwise. The difficulty

is that the DFR of BackFlip+ is a function of XBF (and r) and it may be larger than the DFR of

BackFlip that is critical for the proof.

It is not clear from [9, 1] whether the BackFlip decoder is an example of the limited or the

unlimited case, but we choose to assume the limited case, based on the following indications.

BackFlip is defined in [9, Algorithm 4] and the definition is followed by the comment: “The

algorithm takes as input [...] and, if it stops, returns an error [...] with high probability, the

algorithm stops and returns e.”. This comment suggests the unlimited case because the “if

it stops” part implies that the algorithm might not stop. Here, it is difficult to accept it as a

substitution of the ideal primitive, and claim that the IND-CCA security proof applies to this

instantiation. In order to make BackFlip an ideal primitive substitute, the number of executed

steps needs to be considered as part of its output as well. As an analogy, consider a KEM where

the decapsulation has nonzero failure probability. Here, an IND-CCA security proof cannot

simply rely on the (original) Fujisaki-Okamoto transformation [37], because this would model

an ideal decapsulation with no failures. Instead, it is possible to use the FO 6⊥ transformation

suggested in [38] that accounts for failures. This is equivalent to saying that the modeled

decapsulation outputs a shared key and a success/fail indication. Indeed, this transformation

was used in the BIKE CCA proof.

On the other hand, we find locations in [9], that state: “In all variants of BIKE, we will consider

49

Chapter 3. On constant-time QC-MDPC decoding with negligible failure rate

the decoding as a black box running in bounded time” (Section 2.4.1) and “In addition, we will

bound the running time (as a function of the block size r) and stop with a failure when this

bound is exceeded” (Section 1.3). No bounds and dependency on r are provided. However,

if we inspect the reference code [9], we can find that the code sets a maximal number of

BackFlip iterations to 100 (no explanation for this number is provided and this constant is

independent of r). Therefore, we may choose to interpret the results of [1, 9] as if the 2−128 DFR

was obtained from simulations with this XBF = 100 bound5, although this is nowhere stated

and the simulation data and the derivation of the DFR are also not provided (the reference

code operates with XBF = 100). With this, it is reasonable to hope that if we take BackFlip+ and

set XBF = 100 we would get a DFR below 2−128. This makes BackFlip with XBF = 100 an

acceptable instantiation of an IND-CCA secure BIKE (for the studied r values).

The challenge with this interpretation is that the instantiation (BackFlip+ and XBF = 100)

would be impractical from the performance viewpoint. Our paper solves this by showing

acceptable instantiations with a much smaller values of XBF . Furthermore, it also shows that

there are decoders with a fixed number of iterations that have better performance at the same

DFR level.

Implementation. In order to be used in practice, an IND-CCA KEM should have a proper

instantiation and also a constant-time implementation that is secure against side-channel

attacks (e.g., [23]). Such attacks were demonstrated in the context of QC-MDPC schemes, e. g.,

the GJS reaction attack [22] and several subsequent attacks [23, 24, 25]. Other reaction attack

examples include [48] for LRPC codes and [49] for attacking the repetition code used by the

HQC KEM [50]. This problem is significantly aggravated when the KEM is used with static keys

(e. g., [51, 23]).

3.3 Implementing BackFlip+ in constant-time

In [46] the authors explained how to implement the Black-Gray decoder to run in constant-

time (i.e., to avoid leaking secret information through branching and memory access patterns).

In this chapter, we show how to define and implement a constant-time BackFlip+ decoder. To

this end, we use the techniques of [46] in addition to some new considerations.

The BackFlip+ decoder differs from the Black-Gray decoder in two aspects: it uses a new mech-

anism called Time-To-Live (TTL), and it uses new equations for calculating the thresholds.

The TTL mechanism is a “smart queue” where the decoder flips back some error bits when it

believes that they were mistakenly flipped in previous iterations. It does so unconditionally

and it can unflip bits even several iterations after they were flipped. The Black-Gray decoder

uses a different type of TTL, where the black and gray lists serve as the “smart queue”. However,

the error bits are flipped back after only a single iteration, conditionally, through checking

certain thresholds. Indeed, as we report below the differences are observed in cases where the

5See discussion with some extrapolation methodologies in Appendix A.1.1.

50

3.3. Implementing BackFlip+ in constant-time

Black-Gray decoder failed to decode after some number of iterations and then with high prob-

ability fails completely. The BackFlip decoder shows better recovery capabilities in such cases.

Implementing the new TTL queue in constant-time relies mostly on common constant-time

techniques.

Handling the new threshold function. The BackFlip decoder thresholds are a function of two

variables [9, Section 2.4.3]: the syndrome weight wt(s) as in the Black-Gray decoder and the

number of error bits that the decoder believes it flipped (denoted ē). Given the syndrome

weight and ē the threshold is computed as the smallest τ such that:

ē

(
d

τ

)
πτ1(1−π1)d−τ ≥ (n − ē)

(
d

τ

)
πτ0(1−π0)d−τ,

where

π0 = wt(s)w −X

(n − ē)d
and π1 = wt(s)+X

ēd
with X = ∑

l odd
(l −1)

r
(w

l

)(n−w
ē−l

)(n
ē

) .

This function outputs higher thresholds compared to the Black-Gray decoder. It is a more

conservative approach and by design, the BackFlip decoder, tends to avoid flipping the “wrong”

bits so that it would have better recovery capabilities and a lower DFR (assuming that it can

execute an un-bounded number of iterations). We point out that evaluating the function

involves computing logarithms, exponents, and function minimization, and it is not clear

how this can be implemented in constant-time (the reference code [9] is not implemented in

constant-time).

One way to address this issue is to pre-calculate the finite number of pairs (wt(s), ē) and

the resulting threshold for each pair, store them in a table, and read them from the table in

constant-time. Reading from a table in constant-time means that not only the reading has to

be executed in exactly the same number of operations every time, but also that the positions

of the table which are accessed must not be revealed, i. e., memory access patterns must not

depend on the secret input arguments. Therefore, such solution for the threshold function

involves very high latency and is not practical.

Another approach is, similarly to the Black-Gray decoder (in BIKE-CPA [9]), to approximate

the threshold function – which is here a function of two variables. A first attempt is shown in

Figure 3.1. We compute the function over all the valid/relevant inputs and then compute an

approximation by fitting it to a plane. Unfortunately, this approximation is not sufficiently

accurate. Experiments showed that the DFR of the decoder with threshold approximated in

this way is much higher than with exactly computed thresholds.

To improve the approximation we look at the threshold function for a fixed ē. An example for

ē = 25 is shown in Figure 3.2. For every valid 0 ≤ ē ≤ we compute the linear approximation of

the data points and obtain a function τ(x) = a +bx, where x is a variable representing wt(s),

as shown in Panel (a) of the figure. Given wt(s) and ē, the threshold is then computed by

51

Chapter 3. On constant-time QC-MDPC decoding with negligible failure rate

(a) The threshold function. (b) Approximating the function (blue) using a plane.

Figure 3.1 – Approximating the BackFlip decoder threshold function.

choosing the linear approximation τ(x) corresponding to ē and evaluating the function in

wt(s). This approach is obviously not good enough because, as it can be seen in Figure 3.2, the

threshold function does not have a linear shape.

A refinement can be obtained by partitioning the approximation into five regions, as shown in

Panel (b) of Figure 3.2, with three regions being constant and the remaining two regions having

a shape which we try to approximate with a linear function. For every valid ē we determine the

boundaries of the five regions [xi , x j]. The first and the third part of the function are constant,

admitting some value ēmi n , and boundaries [0, x0) and [x1, x2), respectively. The last region of

the function evaluates to some ēmax , and has boundaries [x3,r). The remaining two regions

with boundaries [x0, x1) and [x2, x3) are approximated by fitting the values to linear functions

a +bx and c +d x, respectively.

(a) Linear approximation for wt(s) ∈ [0,r −1]
(b) Five parts of the function depending on wt(s),
each with a different approximation .

Figure 3.2 – Approximating the threshold function for fixed ē = 25.

52

3.4. Estimating the DFR of a decoder with a fixed number of iterations

For all values of ē we precompute the boundaries of the five regions of the threshold function

alongside the τmi n ,τmax and a,b,c,d coefficients and store them in a table. Then for a given

pair (s,e) = (wt(s), ē) the threshold is computed by:

1 if (s < tab[e].x0) threshold = tab[e]. thr_min ;
2 elif (s < tab[e].x1) threshold = tab[e].a + tab[e].b * s;
3 elif (s < tab[e].x2) threshold = min;
4 elif (s < tab[e].x3) threshold = tab[e].c + tab[e].d * s;
5 else threshold = tab[e]. thr_max ;

To compute the threshold in constant-time we need to ensure that executed operations do

not depend on the input parameters. Therefore, we have to evaluate all the conditions listed

above and perform all the operations regardless of which condition is satisfied. Moreover, we

have to use a secure constant-time comparison to evaluate the conditions – secure_le_mask

compares two integers j ,k and returns the mask 0x0 if j < k and the mask consisting of all

ones otherwise. The threshold computation is now:

1 cond0 = secure_le_mask (tab[e].x0 , s);
2 cond1 = secure_le_mask (tab[e].x1 , s) & ~ secure_le_mask (tab[e].x0 , s);
3 cond2 = secure_le_mask (tab[e].x2 , s) & ~ secure_le_mask (tab[e].x1 , s);
4 cond3 = secure_le_mask (tab[e].x3 , s) & ~ secure_le_mask (tab[e].x2 , s);
5 cond4 = ~ secure_le_mask (tab[e].x3 ,s);
6
7 threshold = cond0 & tab[e]. thr_min ;
8 threshold += cond1 & round(tab[e].a + tab[e].b * s1);
9 threshold += cond2 & tab[e]. thr_min ;

10 threshold += cond3 & round(tab[e].c + tab[e].d * s1);
11 threshold += cond4 & tab[e]. thr_max ;

With this, and the methods described in [46] we can implement BackFlip+ in constant-time,

provided that we fix a-priori the number of iterations.

3.4 Estimating the DFR of a decoder with a fixed number of itera-

tions

The IND-CCA BIKE proof assumes a decapsulation algorithm that invokes an ideal decoding

primitive. Here, the necessary condition is that the decapsulation has a negligible DFR, e. g.,

2−128 [38, 9]. Therefore, a technique to estimate the DFR of a decoder is an essential tool.

The extrapolation method of [1]. An extrapolation method technique for estimating the

DFR is shown in [1]. It consists of the following steps: a) Simulate proper encapsulation and

decapsulation of random inputs for small block sizes (r values), where a sufficiently large

number of failures can be observed; b) Extrapolate the observed data points to estimate the

DFR for larger r values.

53

Chapter 3. On constant-time QC-MDPC decoding with negligible failure rate

The DFR analyses in [1] and [9] apply this methodology to decoders that have some maximum

number of iterations XBF (we choose to assume that XBF = 100 was used). In our experiments

BackFlip+ always succeeds/fails before reaching 100 iterations for the relevant values of

r . Practically, it means that setting XBF = 100 can be considered equivalent to setting an

unlimited number of iterations.

Our goal is to estimate the DFR of a decoder that is allowed to perform exactly X iterations

(where X is predefined). We start from small values of X (e.g., X = 2,3, . . .) and increase it until

we no longer see failures (in a large number of experiments) caused by exhausting X iterations.

Larger values of X lead to a smaller DFR.

For our study, we used a slightly different extrapolation method. For every combination

(scheme, level, decoder, r) we ran a sufficient number Nexp of experiments (sufficient in a

sense that at least several failures are observed) as follows:

1. Generate, uniformly at random, a secret key and an error vector (e), compute the public

key, and perform encapsulation-followed-by-decapsulation (with e).

2. Allow the decoder to run up to X = 100 iterations6.

3. Record the actual number of iterations that were required in order to recover e. If the

decoder exhausts the 100 iterations it stops and marks the experiment as a decoding

failure.

For every X < 100 we say that the X -DFR is the sum of the number of experiments that fail

(after 100 iterations) plus the number of experiments that required more than X iterations

divided by Nexp . Next, we fix the scheme, the level, the decoder, and X , and we end up with

an X -DFR value for every tested r . Subsequently, we perform linear/quadratic extrapolation

on the data and derive a curve. We use this curve to find the value r0 for which the X -DFR is

our target probability p0 and use the pair (r0, p0) as the BIKE scheme parameters.

We target three p0 values: a) p0 = 2−23 ≈ 10−7 that is reasonable for most practical use cases

(with IND-CPA schemes); b) p0 = 2−64 also for an IND-CPA scheme but with a much lower

DFR; c) p0 = 2−128, which is required for an IND-CCA Level-1 scheme. The linear/quadratic

functions and the resulting r0 values are given in Table A.1 in the appendix.

Our extrapolation methodology. In most cases, we were able to confirm the claim of [1] that

the evolution of the DFR as a function of r occurs in two phases: quadratic initially, and then

linear. As in [1], we are interested in extrapolating the linear part because it gives a more

conservative DFR approximation. We point out that the results are sensitive to the method

used for extrapolation (see details in Appendix A.1.1). Therefore, it is important to define

it precisely so that the results can be reproduced and verified. To this end, we determine

the starting point of the linear evolution as follows: going over the different starting points,

6Recall that different decoders have different definitions for the term “iterations”, see Section 3.1.3.

54

3.5. Results

computing the fitting line and picking the one for which we get the best fit to the data points.

Here, the merit of the experimental fit is measured by the root-mean-square deviation from

the data points, which is a good choice in our case, where we believe that the data may have a

few outliers.

3.5 Results

The experimentation platform. All the experiments were executed on an AWS EC2 m5.metal

instance with the 6th Intel®CoreT M Generation (Micro Architecture Codename Sky Lake [SKL])

Xeon®Platinum 8175M CPU 2.50GHz. It has 384 GB RAM, 32K L1d and L1i cache, 1MiB L2

cache, and 32MiB L3 cache, where the Intel® Turbo Boost Technology was turned off.

The code. The core functionality was written in x86−64 assembly and wrapped by assisting

C code. The code uses the PCLMULQDQ, AES-NI, and AVX512 instructions. The code was

compiled with gcc (version 7.4.0) in 64-bit mode, using the “O3” Optimization level, and run

on a Linux (Ubuntu 18.04.2 LTS) OS. It uses the NTL library [52] compiled with the GF2X

library [53].

Figures 3.3 and 3.4 shows the simulation results for BIKE-1, Level-1 and Level-3, using the

Black-Gray and BackFlip+ decoders. Note that we use the IND-CCA flows. The left panels

present linear extrapolations and the right panels present quadratic extrapolations. The

horizontal axis measures the block size r in bits, and the vertical axis shows the simulated

log10(DF R) values. Every panel displays several graphs associated with different X values

(number of iterations). The minimal X is chosen so that the extrapolated r value for DF R =
2−128 is still considered to be secure according to [9]. The maximal value of X is chosen to

allow a meaningful extrapolation. The raw data with equations for each of the performed

extrapolations is given in Table A.1 in the appendix.

The quadratic approximations shown in Figures 3.3 and 3.4 yield a nice fit to the data points.

However, we prefer to use the more pessimistic linear extrapolation in order to determine the

target r .

Validating the extrapolation. We validated the extrapolated results for every extrapolation

graph. We chose some r that is not a data point on the graph (but is sufficiently small to

allow direct simulations). We applied the extrapolation to obtain an estimated DFR value.

Then, we ran the simulation for this value of r and compared the results. Table 3.2 shows

this comparison for several values of r and the Black-Gray decoder with XBG = 3. We note

that for 10267 and 10301 we tested at least 960 million and 4.8 billion tests, respectively. In

case of 10301 decoding always succeeded after XBG = 4 iterations, while for 10267 there were

too few failures for meaningful computation of the DFR. Therefore, we use XBG = 3 in our

experimentation in order to observe enough failures. For example, the extrapolation for the

setting (BIKE-1, Level-1, Black-Gray, 10301) estimates 3-DFR= 10−7.55. This is very close to the

experimentally determined DFR of 10−7.56.

55

Chapter 3. On constant-time QC-MDPC decoding with negligible failure rate

(a) BIKE-1-L1, Black-Gray, lin. ext. (b) BIKE-1-L1, Black-Gray, quad. ext.

(c) BIKE-1-L1, BackFlip+, lin. ext. (d) BIKE-1-L1, BackFlip+, quad. ext.

Figure 3.3 – BIKE-1 Level-1 extrapolations (see the text for details).

56

3.5. Results

(a) BIKE-1-L3, Black-Gray, lin. ext. (b) BIKE-1-L3, Black-Gray, quad. ext.

(c) BIKE-1-L3, BackFlip+, lin. ext. (d) BIKE-1-L3, BackFlip+, quad. ext.

Figure 3.4 – BIKE-1 Level-3 extrapolations (see the text for details).

57

Chapter 3. On constant-time QC-MDPC decoding with negligible failure rate

Table 3.2 – Validating the extrapolation results for the Black-Gray decoder with XBG = 3 over
two values of r .

r Extrapolated DFR Experimented DFR Number of tests
10267 10−7.13 10−7.26 9.6e8
10301 10−7.55 10−7.56 4.8e9

Extensive experimentation. To observe that the Black-Gray decoder does not fail in practice

with r = 11779 (i. e., the recommended r for the BackFlip decoder) we ran extensive simula-

tions. We executed 1010 ≈ 233 tests that generate a random key, encapsulate a message and

decapsulate the resulting ciphertext. Indeed, we did not observe any decoding failure (as

expected).

3.5.1 Performance studies

The performance measurements reported hereafter are measured in processor cycles (per

single core), where lower count is better. All the results were obtained using the same measure-

ment methodology, as follows. Each measured function was isolated, run 25 times (warm-up),

followed by 100 iterations that were clocked (using the RDTSC instruction) and averaged.

To minimize the effect of background tasks running on the system, every experiment was

repeated 10 times, and the minimum result was recorded.

For every decoder, the performance depends on: a) X - the number of iterations; b) the

latency of one iteration. Recall that comparing just the number of iterations is meaningless.

Table 3.3 provides the latency (`decoder,r) of one iteration and the overall decoding latency

(ldecoder,r,i = Xdecoder ·`decoder,r) for the Black-Gray and the BackFlip+ decoders, for several

values of r . The first four rows of the table report for the value r = 10163 that corresponds

to the BIKE-CPA proposal, and for the value r = 11779 that corresponds to the BIKE-CCA

proposal. The subsequent rows report values of r for which the decoders achieve the same

DFR.

Clearly, the constant-time Black-Gray decoder is faster than the constant-time BackFlip+ de-

coder (when both are restricted to a given number of iterations).

We now compare the performance of the BIKE-CCA flows to the performance of the BIKE-CPA

flows, for given r values, using the Black-Gray decoder with XBG = 3,4. Note that values of r

that lead to DFR > 2−128 cannot give IND-CCA security. Furthermore, even with BIKE-CCA

flows and r such that DFR ≤ 2−128, IND-CCA security is not guaranteed (see the discussion

in Section 3.6). The results are shown in Figure 3.5. The bars show the total latency of the

key generation (blue), encapsulation (orange), and decapsulation (green) operations. The

slowdown imposed by using the BIKE-CCA flows compared to using the BIKE-CPA flows is

indicated (in percents) in the figure. We see that the additional cost of using BIKE-CCA flows

is only ∼ 6% in the worst case.

58

3.6. Weak keys: a gap for claiming IND-CCA security

Table 3.3 – A performance comparison of the Black-Gray and the BackFlip+ decoders for
BIKE-1 at NIST security level 1.

DFR Decoder r Xdecoder `decoder,r ldecoder,r,i

(cycles) (million cycles)
2−19 Black-Gray 10163 3 702785 2.11
2−17 BackFlip+ 10163 8 751246 6.01
2−101 Black-Gray 11779 4 784903 3.14
2−58 BackFlip+ 11779 9 841806 7.58

2−23 Black-Gray 10253 3 743168 2.23
2−23 Black-Gray 10163 4 702785 2.81
2−23 BackFlip+ 10499 8 777478 6.22
2−23 BackFlip+ 10253 9 764959 6.88
2−64 Black-Gray 11261 3 769212 2.31
2−64 Black-Gray 11003 4 769820 3.08
2−64 BackFlip+ 12781 8 907905 7.26
2−64 BackFlip+ 12011 9 856084 7.70
2−128 Black-Gray 12781 3 849182 2.55
2−128 Black-Gray 12347 4 841310 3.37
2−128 BackFlip+ 14797 9 1024798 9.22

(a) XBG = 3 (b) XBG = 4

Figure 3.5 – Comparison of BIKE-CPA flows and BIKE-CCA flows, running with the Black-Gray
decoder and XBG = 3,4 for several values of r : r = 10163 the original BIKE-1-CPA; r = 11779
the original BIKE-1-CCA; r values that correspond to DFR of 2−23,2−64,2−128, according to
Table A.1. The vertical axis measures latency.

3.6 Weak keys: a gap for claiming IND-CCA security

Our analysis of the decoders, the new parameters suggestion, and the constant-time imple-

mentation make significant progress towards a concrete instantiation and implementation of

IND-CCA BIKE. However, we believe that there is still a subtle missing gap that needs to be

addressed before IND-CCA security can be claimed.

The remaining challenge is that a claim for IND-CCA security depends on having an underlying

δ-correct PKE (for example with δ= 2−128 for Level-1) [38]. This notion is different from having

59

Chapter 3. On constant-time QC-MDPC decoding with negligible failure rate

a DFR of 2−128, and leads to the following problem. The specification [9] defines the DFR as

“the probability for the decoder to fail when the input (h0,h1,e0,e1) is distributed uniformly”.

The δ-correctness property of a PKE/KEM is defined through Equations (3.1), (3.2) above.

These equations imply that δ is the average of the maximum failure probability taken over all

the possible messages. By contrast, the DFR notion relates to the average probability.

Remark 3. We also suggest to fix a small inaccuracy in the statement of the BIKE proof [9]: “...

the resulting KEM will have the exact same DFR as the underlying cryptosystem ...”. Theorem

3.1 of [38] states that: “If PKE is δ-correct, then PKE1 is δ1-correct in the random oracle model

with δ1(qG) = qG ·δ.[...]”. Theorem 3.4 therein states that: “If PKE1 is δ1-correct then KEM6⊥ is

δ1-correct in the random oracle model [..]”7. Thus, even if DFR= δ, the statement should be

“the resulting KEM is (δ ·qG)-correct, where the underlying PKE is δ-correct”.

To illustrate the gap between the definitions, we give an example of what can go wrong.

Example 1. Let S be the set of valid secret keys and let |S | be its size. Assume that a group

of weak keys W exists, and that |W |
|S | = δ̄> 2−128. Suppose that for every key in W there exists

at least one message for which the probability in Eq. (3.1) equals 1. Then, we get that δ> δ̄>
2−128. By comparison the average DFR can still be upper bounded by 2−128. For instance, let

|S | = 2130, |W | = 24 and let the failure probability over all messages for every weak key be 2−10.

Let the failure probability of all other keys be 2−129. Then,

DF R =P(fail | k ∈W) ·Pr (k ∈W)+Pr (fail | k ∈S \W) ·Pr (k ∈S \W)

= |W |
|S | ·2−10 + |S |− |W |

|S | ·2−129

= 2−126 ·2−10 + (1−2−126) ·2−129

= 2−136 +2−129 −2−255 < 2−128.

3.6.1 Constructing weak keys

Currently, we are not aware of studies that classify weak keys for QC-MDPC codes or bound

the number of weak keys. To see why this issue cannot be ignored we designed a series of tests

that show the existence of a relatively large set of weak keys. Our examples are inspired by

the notion of “spectrum” used in [22, 23, 24]. To construct the keys we changed the BIKE key

generation. Instead of generating a random h0, we start by setting the first f = 0,20,30,40 bits

to one, and then select randomly the positions of the additional (d − f) bits. The generation of

h1 is unchanged.

Since it is difficult to observe failures and weak keys behavior when r is large, we study

r = 10163 (of BIKE-1 CPA) and also r = 9803 that amplify the phenomena.

Figure 3.6 shows the behavior of the Black-Gray decoder for r = 9803 and r = 10163 with

7Here, KEM6⊥ refers to a KEM with implicit rejection, and qG is the number of invocations of the random oracle
G (H in the case of BIKE).

60

3.6. Weak keys: a gap for claiming IND-CCA security

f = 0,20,30,40 after XBG = 1,2,3,4 iterations. In every case (Panel) we choose randomly 10000

keys. For every key we choose randomly 1000 error vectors. The histograms show on the

horizontal axis the weight of an “ideal” error vector e after the XBG iteration, i. e., the number

of bits in the error vector that are still not corrected after XBG iterations. The vertical axis of

the histogram represents the proportion of experiments that ended up with the corresponding

error weight on the x axis. For example, if we follow the blue line (f = 0) through panels (a),

(c), (e), and (g), we see that after each iteration a higher proportion of the experiments results

in smaller error weights. After one iteration approximately 4% of the experiments ended up

with 42 bits in the error that are not decoded. Already after the third iteration, most but not all

of the experiments completely decode the error, i. e., the weight of the error becomes zero.

Note that the number of bits in the error vector that are not corrected after one iteration can

actually increase because the decoder can mistakenly flip a bit which does not belong to the

error. This behavior becomes apparent if we follow the black line (f = 40) for r = 9803 after

3 and 4 iterations, panels (e) and (g), respectively. The line in panel (g) is shifted to the right

compared to the line in (e), meaning that the fourth iteration actually introduces new errors

instead of correcting the existing ones.

Furthermore, comparing the results of the experiments with different f values we notice that

as f increases, the proportion of the experiments that result in more than a given number

of un-decoded bits increases as well. This is most obvious after the first iteration, panels (a)

and (b) – as f increases the lines shift more to the right side of the histogram. For f ≤ 20, after

4 iterations decoding always succeeds in the case when r = 10163 and almost always when

r = 9803. However, for f > 30 the experiments show that the proportion of decoding failures

after 4 iterations is non-negligible in the case of f = 30, while for f = 40 the failures are even

more abundant, e. g., the failure rate when using a weak key with f = 40 and r = 9803 is almost

100%. This shows that for a given decoder the set of weak keys depends on r and X , and that

the issue with the weak keys needs to be properly analyzed when estimating the DFR of a

decoder.

Remark 4 (Other decoders). Figure 3.6 shows how the weak keys impact the decoding success

probability for chosen r and XBG with the Black-Gray decoder. Note that such results depend

on the specific decoder. To compare, BackFlip+ calculates the unsatisfied parity checks

threshold in a more conservative way, and therefore requires more iterations. Weak keys would

lead to a different behavior. On the other hand, when we repeat our experiment with the

Simple-Parallel decoder, we see that almost all tests fail even with f = 19.

Figure 3.7 shows additional results with the Black-Gray decoder and r = 9803. Panel (a) shows

the histogram for f = 0 (i. e., the standard h0 generation), and Panel (b) shows the histogram

for f = 30. The horizontal axis measures the number of failures x out of 10000 random

errors. The vertical axis counts the number of keys that had the corresponding x number of

failures, i. e., the number of keys with DFR of x/10000. For f = 0, the expected value and the

standard deviation are E(x) = 119.06 and σ(x) = 10.91, respectively. However, when f = 30, the

decoder fails much more often and we have E(x) = 9900.14, and σ(x) = 40.68. This shows the

61

Chapter 3. On constant-time QC-MDPC decoding with negligible failure rate

(a) r = 9803, iteration 1 (b) r = 10163, iteration 1

(c) r = 9803, iteration 2 (d) r = 10163, iteration 2

(e) r = 9803, iteration 3 (f) r = 10163, iteration 3

(g) r = 9803, iteration 4 (h) r = 10163, iteration 4

Figure 3.6 – Histograms showing on the vertical axis the proportion of the experiments that
end-up with the corresponding number of error bits on the horizontal axis, after XBG = 1,2,3,4
iterations. The decoder is the Black-Gray decoder. Panels a, c, e, g represents the results for
r = 9803 and Panels b, d, f, h for r = 10163 with f = 0,20,30,40. A lower error weight is better.
Note that the blue line is present in all the histograms, but in some of them it is covered by the
green line.

62

3.6. Weak keys: a gap for claiming IND-CCA security

difference between the weak keys and the “normal” randomized keys and that the DFR cannot

be predicted by the “average-case” model. It is also interesting to note that for f = 30 we do

not get a Gaussian like distribution (unlike the histogram with f = 0).

(a) (b)

Figure 3.7 – Black-Gray decoder, r = 9803, with f = 0 and f = 30 in Panel (a) and Panel (b),
respectively. The horizontal-axis measures the number of decoding failures x out of 10000
experiments with random error vectors. The vertical-axis counts the number of keys that have
a DFR of x/10000.

The remaining question is: what is the probability to hit a weak key when the keys are generated

randomly as required? Let W f be the set of weak keys that correspond to a given value of f .

Define zr, f as the relative size of W f . Then

zr, f =
|W f |
|S | =

(r− f
d− f

)
(r

d

) (3.3)

Note that if f2 < f1 then W f1 ⊂W f2 . Therefore, choosing a larger f decreases the size of W f . It is

easy to compute that

z9803,0 = z10163,0 = 1

z9803,10 = 2−72, z9803,20 = 2−146, z9803,30 = 2−223, z9803,40 = 2−304,

z10163,10 = 2−72, z10163,20 = 2−147, z10163,30 = 2−225, z10163,40 = 2−306

The conclusion is that while the set W f is large, its relative size (from the set of all keys) is still

below 2−128. Therefore, this construction does not show that BIKE-1 after our fix is necessarily

not IND-CCA secure. However, it clearly shows that the problem cannot be ignored, and

the claim that BIKE is IND-CCA secure requires further justification. In fact, there are other

patterns and combinations that give sets of weak keys with a higher relative size (e. g., setting

every other bit of h0, f times). We point out again that any analysis of weak keys should relate

to a specific decoder and a specific choice of r .

63

Chapter 3. On constant-time QC-MDPC decoding with negligible failure rate

3.7 Discussion

The Round-2 BIKE [9] represents significant progress in the scheme’s design, and offers an

IND-CCA version, on top of the IND-CPA KEM that was defined in Round-1. In this chapter

we address several difficulties and challenges and solve some of them.

• The BackFlip decoder runs in a variable number of steps that depends on the input and

the secret key. We fix this problem by defining a variant, BackFlip+, that, by definition,

runs XBF iterations for a parameter XBF . We carry out the analysis to determine the

values of XBF where BackFlip+ has DFR of 2−128, and provide all of the details that are

needed in order to repeat and reproduce our experiments. Furthermore, we show that

for the target DFR, the values of XBF are relatively small e. g., 12 (much less than 100 as

implied for BackFlip).

• Inspired by the extrapolation method suggested in [1], we studied the Black-Gray de-

coder (already used in Round-1 Additional code [45]) that we defined to have a fixed

number of steps (iterations) XBG . Our goal was to find values of XBG that guarantee

the target DFR for a given r . We found that the values of r required with Black-Gray

are smaller than the values with BackFlip+. It seems that achieving the low DFR (2−128)

should be attributed to increasing r , independently of the decoding algorithm. The

ability to prove this for some decoders is attributed to the extrapolation method.

• After the decoders are defined to run a fixed number of iterations, we could build

constant-time software implementations (with memory access patterns and branches

that reveal no secret information). This is nowadays the standard expectation from

cryptographic implementations. We measured the resulting performance (on a modern

x86-64 CPU) to find an optimal “decoder-X -r ” combination. Table 3.3 shows that for a

given DFR, the Black-Gray decoder is always faster than BackFlip+.

• The analysis in Section 3.6 identifies a gap that needs to be addressed in order to claim

IND-CCA security for BIKE. It relates to the difference between average DFR and the δ-

correctness definition [38]. A DFR of (at most) 2−128 is a necessary requirement for IND-

CCA security, which BIKE achieves. However, it is not necessarily sufficient. We show

how to construct a “large” set of weak keys, but also show that it is still not sufficiently

large to invalidate the necessary δ-correctness bound. This is a positive indication,

although there is no proof that the property is indeed satisfied. This gap remains as an

interesting research challenge to pursue. The problem of bounding (or eliminating) the

number of weak keys is not specific to BIKE. It is relevant for other schemes that claim

IND-CCA security and their decapsulation has nonzero failure probability. With this,

we can state that BIKE CCA, instantiated with Black-Gray (or BackFlip+) decoder with

the parameters that guarantee DFR of 2−128, and with the accompanying constant-time

implementation, is IND-CCA secure, under the assumption that its underlying PKE is

2−128-correct.

64

3.7. Discussion

3.7.1 Methodologies

Our performance measurements were carried out on an x86-64 architecture. Studies on

different architectures can give different results and therefore, we point to an interesting study

of the performance of other constant-time decoders on other platforms [54]. Note that [54]

targets schemes that use ephemeral keys with relatively large DFR and only IND-CPA security.

Differences in the DFR estimations. Our DFR prediction methodology may be (too) conser-

vative and therefore yields more pessimistic results than those of [9]. One example is the

combination (BIKE-1, Level-1, BackFlip+ decoder, r = 11779, XBF = 10). Here, [9] predicts a

100−DFR of 2−128 and our linear extrapolation for the 10-DFR predicts only 2−71(≈ 10−21). To

achieve a 10-DFR of 2−128 we need to set r = 13892 (> 11779). Although the BackFlip+ decoder

with XBF = 10 is not optimal, it is important to understand the effect of different extrapolations.

Comparing to [1, 9] is difficult because no information is provided that allows us to repeat

the experiments. Therefore,we attempt to provide some insight by acquiring data points for

BackFlip+ with XBF = 100 and applying our extrapolation methodology. Indeed, the results we

obtain are still more pessimistic, but if we apply a different extrapolation methodology (“two

larger r ’s fit”) we get closer to [9]. The details are given in Appendix A.1.1.

Another potential source of differences is that BackFlip has a recovery mechanism (TTL).

For BackFlip+ this mechanism is limited due to setting XBF ≤ 11. It may be possible to tune

BackFlip and BackFlip+ further by using some fine-grained TTL equations that depend on r .

Information on the equations that were used for [9] was not published, so we leave tuning for

further research.

3.7.2 Practical considerations for BIKE

Our decoder choice. We report our measurements only for Black-Gray and BackFlip+ because

other decoders that we are aware of either have a worse DFR (e. g., Parallel-Simple) or are

inherently slow (e. g., Step-by-Step). Our results suggest that instantiating BIKE with Black-

Gray is recommended. We note that the higher number of iterations required by BackFlip+ is

probably because it uses a more conservative threshold function than Black-Gray.

Recommendations for the BIKE flows. Currently, BIKE has two options for executing the key

generation, encapsulation, and decapsulation flows. One for an IND-CPA KEM, and another

(using the FO 6⊥ transformation [38]) for an IND-CCA scheme, to deny a chosen ciphertext

attack from the encapsulating party. It turns out that the performance difference is relatively

small. As shown in Figure 3.5 for BIKE-1, the overhead of the IND-CCA flows is less than 6%

(on x86-64 platforms). With such a low overhead, we believe that the BIKE proposal could

gain a great deal of simplification by using only the IND-CCA flows. This is true even for

applications that intend to use only ephemeral keys in order to achieve forward secrecy. Here,

IND-CCA security is not mandatory, and IND-CPA security suffices. However, using the FO 6⊥

transformation could be a way to reduce the risk of inadvertent repetition (“misuse”) of a

65

Chapter 3. On constant-time QC-MDPC decoding with negligible failure rate

supposedly ephemeral key, thus buying some multi-user-multi-key robustness. By applying

this approach, the scheme is completely controlled by choosing a single parameter r (with the

same implementation).

Choosing r . The choice of r and XBG gives an interesting trade-off between bandwidth and

performance. A larger value of r increases the bandwidth but reduces the DFR when XBG

is fixed. On the other hand, it allows to reduce XBG while maintaining the same DFR. This

could lead to better performance. We give one example. To achieve DFR= 2−23 the choice of

XBG = 4 and r = 10163 leads to decoding at 2.8M cycles. The choice XBG = 3 and a slightly

larger r = 10253 leads to decoding at 2.22M cycles. Complete details are given in Table 3.3.

General recommendations for the BIKE suite. Currently, BIKE [9] consists of 10 variants:

BIKE-1 (the simplest and fastest); BIKE-2 (offering bandwidth optimization at the high cost of

polynomial inversion); BIKE-3 (simpler security reduction with the highest bandwidth and

lowest performance). In addition, there are also BIKE-2-batch and BIKE-3 with bandwidth

optimization. Every version comes with two flavors, namely IND-CPA and IND-CCA. On top

of this, every option comes with three security levels (L1/L3/L5). Finally, the implementation

packages include generic code and optimization for AVX2 and AVX512.

We believe that this abundance of options involves too high complexity and reducing their

number would be useful. For Round-3 we recommend to define BIKE as follows: BIKE-1 CCA

instantiated with the Black-Gray decoder with XBG = 3 iterations. Offer Level-1 with r = 11261

targeting DFR= 2−64 and r = 12781 targeting DFR= 2−128, as the main variants. In all cases,

use ephemeral keys, for forward secrecy. For completeness, offer also a secondary variant for

Level-3 with r = 24659 targeting DFR= 2−128.

The code that implements these recommendations was contributed to (and already merged

into) the open-source library LibOQS [55]. It uses the choice of r = 11779, following the block

size of the current Round-2 specification (this choice of r leads to a DFR of 2−86).

Vetting keys. We recommend to use BIKE with ephemeral keys and forward secrecy. In this

case we do not need to rely on the full IND-CCA security properties of the KEM. However, there

may be use cases that prefer the design with static keys. Here, we recommend the following

way to narrow the DFR-δ-correctness gap described above by “vetting” the private key. For

static keys we can assume that the overall latency of the key generation phase is less significant.

Therefore, after generating a key, it would be still acceptable, from the practical viewpoint, to

vet it experimentally. This can be done by running encapsulation-followed-by-decapsulation

for some number of trials, in the hope to identify a case where the key is obviously weak. A

more efficient way is to generate random (and predefined) errors and invoke the decoder. We

point out that the vetting process can also be applied offline.

The new specification of BIKE [18], aimed at the Round-3 of the NIST PQC Project, introduced

several changes that are based on the results presented in this chapter. Firstly, the CPA versions

of the protocol are abandoned and the CCA versions are adopted as the only option because

66

3.7. Discussion

we showed that the CCA flows can be implemented with negligible performance overhead

compared to the CPA flows. Moreover, we identified a gap in the proof of CCA security between

theδ-correctness and the DFR of the used decoder which led to BIKE not claiming CCA security

in Round-3 specification per se. The DFR of the currently used MDPC decoders is determined

heuristically, i. e., not in a provable manner. Therefore the new claim is that the protocol is

CCA secure only if the used decoder has a DFR of the required level. Finally, the suggestion

that BIKE reduces the number of different options to a single one was also implemented in

the new specification, granted, the chosen option was not BIKE-1 as suggested in this chapter,

but rather BIKE-2 (as a result of the work presented in Chapter 5).

67

4 QC-MDPC decoders with several
shades of gray

4.1 Introduction

BIKE [9] is a key encapsulation mechanism based on QC-MDPC codes, and is one of the

Round-2 candidates of the NIST PQC Standardization Project [15]. The submission includes

several variants of the KEM and we focus in this chapter on BIKE-1-CCA Level-1 and Level-3.

We note that BIKE-2, the second variant of BIKE, has the same parameters as BIKE-1 and

therefore, analysis of the performance and the DFR of various decoders in this chapter equally

applies to BIKE-2.

The common QC-MDPC decoding algorithms are derived from the Bit-Flipping algorithm [21]

and come in two main variants.

• “Step-by-Step”: it recalculates the threshold every time that a bit is flipped. This is an

enhancement of the “in-place” decoder described in [23].

• “Simple-Parallel”: a parallel algorithm similar to that of [21]. It first calculates some

thresholds for flipping bits and then flips the bits in all of the relevant positions, in

parallel.

BIKE uses a decoder for the decapsulation phase. The specific decoding algorithm is a choice

shaped by the target DFR, security, and performance. The IND-CCA version of BIKE Round-2

[9] is specified with the “BackFlip” (BF) decoder, which is derived from Simple-Parallel. The

IND-CPA version is specified with the “One-Round” decoder, which combines the Simple-

Parallel and the Step-By-Step decoders. In the “additional implementation” [45] we chose to

use the “Black-Gray” decoder (BG) [46, 2], with the thresholds defined in [9]. This decoder

(with different thresholds) appears in the BIKE pre-Round-1 submission “CAKE” and is due to

N. Sendrier and R. Misoczki. We point out that the Backflip decoder that is defined and used

in [9] is not the same as the BackFlip+ decoder that is defined and studied in Chapter 3 (see

the discussion in Section 4.7 for details).

69

Chapter 4. QC-MDPC decoders with several shades of gray

In this chapter we explore a new family of decoders that combines the BG and the Bit-Flipping

algorithms in different ways. Some combinations achieve the same or even better DFR

compared to BG with the same block size, and at the same time also have better performance.

For better security we replace the mock-bits technique of the additional implementation [46]

with a constant-time implementation that applies rotation and bit-slice-adder as proposed in

[56] (and vectorized in [3]), and enhance it with further optimizations. We also report the first

measurements of BIKE-1 on the new Intel “Ice-Lake” micro-architecture, leveraging the new

AVX512-VBMI2, VAESENC and VPCLMUL instructions [57] (see also [58, 59]).

The chapter is organized as follows. Section 4.2 defines notation and recalls the definition

of the BG decoder from the previous chapter. In Section 4.3 we define new decoders (BGF,

B and BGB) and report our DFR per block size studies in Section 4.4. We discuss our new

constant-time QC-MDPC implementation in Section 4.5. Section 4.6 reports the resulting

performance. Section 4.7 concludes the chapter.

4.2 Preliminaries

In the previous chapter we described the BG decoder in Algorithm 3. This algorithm is

implemented in the “Additional optimized” package [45] of Round-2 BIKE. Every iteration of

BG involves three main steps which we extract and define as separate functions here.

The initial step performs a regular bit flipping based on the number of unsatisfied parity-check

equations (upc) and a given threshold τ. Moreover, in the first step, two additional sets of

bit positions are generated, black and gray arrays, based on the upc, the threshold τ and the

parameter δ. The bits that are flipped are added to the black list, while the bits that are just

below the threshold (upc is between τ and τ−δ) are added to the gray list. Algorithm 5 shows

the function which implements the described functionality.

The second and the third step of BG flip bits in the received error vector if the unsatisfied

parity-check value is at least the threshold and if the corresponding bit in the received mask is

set to one. In the second and third step the mask consists of the black and gray array computed

in the first step, respectively. The procedure which performs the required functionality for the

last two steps of BG is described in Algorithm 6.

70

4.3. New decoders with different shades of gray

Algorithm 5 BitFlipIter

Input: s ∈ Fr
2 (syndrome), e ∈ Fn

2 (error vector), τ (threshold), δ, H ∈ Fr×n
2 (parity-check

matrix)
Output: s ∈ Fr

2 (updated syndrome), e ∈ Fn
2 (updated error vector), black and gray arrays

1: procedure BITFLIPITER(s, e, τ, δ, H)
2: black[n −1 : 0] = gray[n −1 : 0] = 0
3: upc[n −1 : 0] = computeUPC(s, H)
4: for i in 0. . .n −1 do
5: if upc[i] ≥ τ then
6: e[i] = e[i]⊕1 . Flip an error bit
7: black[i] = 1 .Update the Black set
8: else if upc[i] ≥ τ−δ then
9: gray[i] = 1 .Update the Gray set

10: s = H(cT +eT) .Update the syndrome
11: return (s,e,black,gray)

Algorithm 6 BitFlipMaskedIter

Input: s ∈ Fr
2 (syndrome), e ∈ Fn

2 (error vector), mask, τ (threshold), H ∈ Fr×n
2 (parity-check

matrix)
Output: s ∈ Fr

2 (updated syndrome), e ∈ Fn
2 (updated error vector)

1: procedure BITFLIPMASKEDITER(s,e,mask,τ, H)
2: upc[n −1 : 0] = computeUPC(s, H)
3: for i in 0. . .n −1 do
4: if upc[i] ≥ τ then
5: e[i] = e[i]⊕mask[i] . Flip an error bit

6: s = H(cT +eT) .Update the syndrome
7: return (s,e)

4.3 New decoders with different shades of gray

In Algorithm 7, we present BG decoder redefined such that it uses the functions defined in the

previous section (Algorithms 5 and 6). In cases where Algorithm 7 can safely run without a

constant-time implementation, Step II and Step III are fast. The reason is that the unsatisfied

parity-check values can be calculated only for indices that are contained in the black and gray

arrays, and the number of these indices is at most the number of bits that were flipped in

Step I (certainly less than n). By contrast, if constant-time and constant memory-access are

required, the implementation needs to access all of the n positions uniformly. In that case the

performance of Step II and Step III is similar to the performance of Step I. Thus, the overall

decoding time of the BG decoder with XBG iterations, where each iteration is executing steps I,

II, and III, is approximately 3 ·XBG times the time required for a single step of the algorithm.

The decoders that are based on Bit-Flipping are not perfect - they can erroneously flip a bit

that is not an error bit. The probability to erroneously flip a “non-error” bit is an increasing

function of wt(e)/n and also depends on the threshold (note that wt(e) may change during

71

Chapter 4. QC-MDPC decoders with several shades of gray

Algorithm 7 e=BG(c, H , X)

Input: c ∈ Fn
2 (ciphertext), H ∈ Fr×n

2 (parity-check matrix), X (maximal number of itera-
tions)
Output: e ∈ Fn

2 (error vector)
Exception: A “decoding failure” returns ⊥

1: procedure BG(c, H)
2: s = HcT , e[n −1 : 0] = 0, δ= 4
3: for i in 1. . . X do
4: τ = computeThreshold(s)
5: (s, e, black, gray) = BitFlipIter(s,e,τ,δ, H) . Step I
6: (s,e) = BitFlipMaskedIter(s,e,black, (d +1)/2, H) . Step II
7: (s,e) = BitFlipMaskedIter(s,e,gray, (d +1)/2, H) . Step III

8: if (wt(s) 6= 0) then
9: return ⊥

10: else
11: return e

Note that d in steps 6 and 7 is the Hamming weight of the two defining polynomials of the
parity-check matrix H (as described in Section 2.1), i. e., d is half of the Hamming weight
of a row of H .

the execution). Step II and Step III of BG are designed to fix some erroneously flipped bits and

therefore decrease wt(e) compared to wt(e) after one iteration of Simple-Parallel (without the

black/gray masks). Recall from Algorithm 5 that the black list is populated by the bits which

are flipped, while the gray list contains the bits which are not flipped but their upc values

are just below the threshold. The idea of steps II and III is the following: if a bit which was

flipped (black) still has a high upc value then it is probably not an error bit and therefore it is

flipped back in Step II, while the bits in the gray list that are potentially error bits, because they

had high but not high enough upc, are flipped in Step III. Proper analysis of the Black-Gray

decoder and the merit of the black/gray technique does not exist in the literature. Therefore,

we propose several new variations of the Black-Gray decoder and present them together in the

pseudocode in Algorithm 8:

1. (BG) Black-Gray decoder: as defined in Algorithm 7.

2. (B) Black decoder: every iteration consists of only Steps I, II, i. e., there is no gray mask.

3. (BGF) Black-Gray-Flip decoder: it starts with one BG iteration and continues with several

Bit-Flipping iterations (without the black and gray masks).

4. (BGB) Black-Gray-Black decoder: it starts with one BG iteration and continues with

several B-iterations.

The rationale behind the B decoder is that the third step in BG may be unnecessary because in

the first step of the subsequent iteration we will compute the upc values again and flip the

72

4.3. New decoders with different shades of gray

appropriate bits. However, as presented in the next section, this variation of the decoder shows

poor DFR properties. Furthermore, we observed that when wt(e)/n becomes sufficiently small,

i. e., enough error bits are corrected, the black/gray technique is no longer needed because

erroneous flips have low probabilities. Since most of the error bits are corrected in the first

decoding iteration we propose the BGF and BGB variations. The BGF decoder is based on the

assumption that after the first iteration, few enough error bits are left that the probability is

very low that a bit which is not in the error has high upc value. The BGB decoder is meant as a

modification of BGF that may be slightly safer, because the “recovery” capability derived from

black steps is present in all iterations, as opposed to BGF where it figures only in the first one.

Algorithm 8 e=decoder(D , c, H)

Input: D (decoder type one of {B ,BG ,BGB ,BGF }), c ∈ Fn
2 (ciphertext), H ∈ Fr×n

2 (parity-
check matrix), X (maximal number of iterations)
Output: e ∈ Fn

2 (error vector)
Exception: A “decoding failure” returns ⊥

1: procedure DECODER(D , c, H)
2: s = HcT , e[n −1 : 0] = 0, δ= 4
3: for i in 1. . . X do
4: τ = computeThreshold(s)
5: (s, e, black, gray) = BitFlipIter(s,e,τ,δ, H) . Step I
6: if (D ∈ {B ,BG ,BGB}) or (D = BGF and i = 1) then
7: (s,e) = BitFlipMaskedIter(s,e,black, (d +1)/2, H) . Step II

8: if (D ∈ {BG ,BGB ,BGF } and i = 1) then
9: (s,e) = BitFlipMaskedIter(s,e,gray, (d +1)/2, H) . Step III

10: if (wt(s) 6= 0) then
11: return ⊥
12: else
13: return e

Example 2 (Counting the number of steps). Consider BG with 3 iterations. Here, every iteration

involves 3 steps (I, II, and III) which are practically identical from the performance point of

view. Thus, the total number of steps is 9. Consider, BGF with 3 iterations. Here, the first

iteration involves 3 steps (I, II, and III) and the rest of the iterations involve only one step.

The total number of steps is 3+1+1 = 5. This is an important observation for discussion on

performance of the decoders.

73

Chapter 4. QC-MDPC decoders with several shades of gray

4.4 DFR evaluations for different decoders

In this section we evaluate and compare the B, BG, BGB, and BGF decoders under two criteria:

1. The DFR for a given number of iterations and a given value of the block size r .

2. The value of r that is required to achieve a target DFR with a given number of iterations.

In order to approximate the DFR we use the extrapolation method [1], and apply two forms of

extrapolation: “best linear fit” [2] described in the previous section and “two large r ’s fit” as

in [2, Appendix C] and described in Appendix A.1.1. We point out that validity of the results

derived by the extrapolation method relies on the assumption that the dependence of the

DFR on the block size r is a concave function in the relevant range of r . We point out that this

relation between the block size and the DFR is supported by extensive simulations [1, 60, 2],

however, in the current state of the art, it is still only an assumption. Table 4.1 summarizes our

results. It shows the r -value required for achieving a DFR of 2−23(≈ 10−8), 2−64, and 2−128. It

also shows the approximated DFR for r = 11779 (which is the value used for BIKE-1 Level-1

CCA). Appendix A.2 provides the full information on the experiments and the extrapolation

analysis.

Table 4.1 – The DFR achieved by different decoders. Two extrapolation methods are shown:
“best linear fit” (as in [2]) and “two large r ’s fit” (as in [2, Appendix C]). The second column
shows the number of iterations for each decoder. The third column shows the total number of
(performance-wise identical) executed steps.

Best linear fit Two large r ’s fit
Decoder #I #S DFR = DFR at DFR = DFR at

2−23 2−64 2−128 11779 2−23 2−64 2−128 11779

BG
3 9 10253 11213 12739 2−88 10253 11171 12619 2−90

4 12 10163 11003 12347 2−100 10163 10909 12107 2−110

5 15 10133 10909 12107 2−111 10133 10853 11987 2−116

BGB
4 9 10253 11093 12491 2−95 10253 11083 12491 2−96

5 11 10163 10973 12227 2−105 10163 11027 12413 2−99

6 13 10133 10973 12269 2−104 10133 10949 12197 2−107

BGF
5 7 10301 11171 12539 2−92 10301 11131 12491 2−95

6 8 10253 11027 12277 2−102 10253 10973 12197 2−107

7 9 10181 10949 12149 2−108 10181 10949 12107 2−112

B
4 8 10259 11699 13901 2−67 10301 11813 14221 2−63

5 10 10133 11437 13229 2−79 10133 11437 13451 2−76

6 12 10067 11213 13037 2−84 10067 11437 13397 2−78

Interpreting the results of Table 4.1. Based on Table 4.1 we may conclude that it is possible

to trade BG with 3 iterations for BGF with 6 iterations. This achieves a better DFR and also

a 9
8 = 1.125-fold speedup. Moreover, if the required DFR is at most 2−64, it suffices to use

BGF with only 5 iterations (and get the same DFR as BG with 3 iterations). This achieves a

74

4.5. Constant-time implementation of the decoders

9
7 = 1.28-fold speedup. The situation is similar for BG with 4 iterations compared to BGB with

5 iterations: this achieves a 12
11 = 1.09-fold speedup. If a DFR of 2−128 is required it is possible

to trade BG with 4 iterations for BGF with 7 iterations and achieve a 12
9 = 1.33-fold speedup.

Another interesting trade off is available if we are willing to slightly increase the value of r .

Compare BG with 4 iterations (i. e., 12 steps) and BGF with 6 iterations (i. e., 8 steps). For a

DFR of 2−64 we have rBG = 11003 and rBGF = 11027. A very small relative increase in the block

size, namely (rBGF − rBG)/rBG = 0.0022, gives a 12
8 = 1.5-fold speedup.

Example 3 (BGF versus BG with 3 iterations). Figure 4.1 shows a qualitative comparison (the

precise details are provided in Appendix A.2). The left panel indicates that BGF has a better

DFR than BG for the same number of (9) steps when r > 9970. Similarly, the right panel shows

the same phenomenon even with a smaller number of BGF steps (7) when r > 10726 (with the

best linear fit method) and r > 10734 (with the two large r ’s method) that correspond to a DFR

of 2−43 and 2−45, respectively. Both panels show that the crossover point occurs for values of r

below the range that is relevant for BIKE.

Figure 4.1 – DFR comparison of BG with 3 iterations (9 steps) to BGF with: (Left panel) 7
iterations (9 steps); (Right panel) 5 iterations (7 steps).

4.5 Constant-time implementation of the decoders

Secure implementation of a cryptographic primitive is required to be side-channel resistant.

The two most common side-channel attacks are timing attacks and cache (memory) attacks.

An implementation is secure against side-channel timing attacks if the execution time, or

more precisely the number and order of executed instructions, does not depend on any secret

value. Furthermore, the implementation needs to be resistant to attacks that exploit memory

accesses of the program (cache attacks). An adversary performing a cache attack is considered

to have the ability to see some of the memory addresses that are accessed by the program.

Therefore, the memory access pattern of the implementation has to be independent of any

secret value as well.

Two functions that are required to implement the three steps in the decoder are described in

75

Chapter 4. QC-MDPC decoders with several shades of gray

Section 4.2, namely in Algorithms 5 and 6. Both functions perform bit flipping – an operation

which is inherently constant-time and constant-memory access because all the bits of the

error vector are accessed during the execution. Conditional execution of operations in both

functions, i. e., if/else conditions, can simply be converted to secure implementation by

performing both branches of a condition and appropriately masking the result.

The last procedure that has to be securely implemented is counting the number of unsatisfied

parity-check equations (computeUPC). Recall that the syndrome is s ∈ Fr
2, the error vector

e =
(
e(0) e(1)

)
∈ Fn

2 with e(0),e(1) ∈ Fr
2, and the parity matrix H =

(
H (0) H (1)

)
∈ Fr×n

2 is a quasi-

cyclic matrix composed of two circulant matrices H (0), H (1) ∈ Fr×r
2 which are fully determined

by their defining polynomials h(0),h(1) ∈ R, respectively. The syndrome is computed by

s = HeT :
s0

s1
...

sr−1

=

h(0)

0 e(0)
0 + ·· · + h(0)

r−1e(0)
r−1 + h(1)

0 e(1)
0 + ·· · + h(1)

r−1e(1)
r−1

h(0)
r−1e(0)

0 + ·· · + h(0)
r−2e(0)

r−1 + h(1)
r−1e(1)

0 + ·· · + h(1)
r−2e(1)

r−1
...

h(0)
1 e(0)

0 + ·· · + h(0)
0 e(0)

r−1 + h(1)
1 e(1)

0 + ·· · + h(1)
0 e(1)

r−1

The unsatisfied parity-check counters upc(0),upc(1) ∈Zr can be computed separately for the

two parts of the error vector e(0) and e(1). For the sake of clarity of the notation, we describe

algorithms for calculating one of the two upc arrays, and in that regard we denote the counters

simply by upc ∈Zr , the corresponding part of the error vector by e ∈ Fr
2, and the corresponding

part of the parity matrix by H ∈ Fr×r
2 . With the new notation in mind, we have that the r bits of

the syndrome correspond to the parity equations in the following way:
s0

s1
...

sr−1

!

h0e0 + h1e1 + ·· · + hr−1er−1

hr−1e0 + h0e1 + ·· · + hr−2er−1
...

h1e0 + h2e1 + ·· · + h0er−1

The upci value for the i -th bit of the error vector ei is defined as the number of the above

shown equations which involve the bit ei , i. e., the corresponding bit of h and the value of si

are both one. Given s and H , the upc value of the j -th error bit is defined as upc j =
∑r−1

i=0 Hi , j si .

Therefore, computing upc j can be done by computing the Hamming weight of the vector

calculated by bitwise-and of the syndrome s and the j -th column of H (denoted by H:, j), i. e.,

upc j = wt(s ?H:, j) where we denote the bitwise-and operation by the “?” symbol. Recall

that one of the main advantages of quasi-cyclic codes is their compact representation, and

therefore, H is represented by a single vector and never stored as a full matrix. This means

that for each of the r bits of the error vector the computation of its upc value requires a vector

rotation to obtain the right column of H . This solution is good for side-channel resistance,

however, it turns out that the performance penalty is too high.

The second approach to computing upc tries exploit the moderate density of the code, i. e., the

76

4.5. Constant-time implementation of the decoders

fact that the weight of the parity matrix rows is low. If we have the positions of the non-zero

bits of h (denoted by supp(h)), then we do not have to compute the bitwise-and of s and the

columns of H . We can rather compute upc j =
∑

i∈supp(H:, j) si , by accessing the bits of s only at

the positions corresponding to the non-zero bits of H:, j . This approach is much faster than the

previous one, but its memory access pattern makes it unsafe in terms of cache attacks – the

accessed positions in the syndrome are exactly the secret values that define the secret key H .

The mock-bits technique was introduced in [46] for side-channel protection in order to

obfuscate the secret supp(h). The idea is to introduce a new vector hm containing a number of

mock bits and compute the vector h = h +hm . Then the algorithm described in the previous

paragraph can be performed with the set of positions supp(H :, j) defined by the vector h

instead of positions supp(H:, j). In this way, even if the adversary recovers all the accessed

positions in the syndrome, namely supp(h), it is not able to distinguish between the mock-bits

and the real bits of the secret vector. Provided that the set supp(hm) is large enough the

adversary cannot recover the secret positions by simply guessing which positions are the

ones of the secret key. For example, the implementation of BIKE-1 Level-1 used 62 mock-bits

and thus wt(h) = 133. The probability to correctly guess the secret 71 bits of h if the whole

set supp(h) is given is
(133

71

)−1 ≈ 2−128. This technique was designed for ephemeral keys but

may leak information on the private key if it is used multiple times, i. e., if most of h can be

obtained by a cache attack. By knowing that supp(h) ⊂ supp(h), the adversary can learn that

all the other bits of h are zero. Subsequently, the adversary can generate the following system

of linear equations F H T = 0, where F is the public key, and set the relevant variables to zero. If

the number of zero positions of H that are discovered by the attack is high enough then the

adversary can solve the system and recover the remaining part of the secret h. To avoid this,

the number of mock bits combined with the number of real bits needs to be at least r /2 so the

system is sufficiently undetermined. However, using that many mock-bits makes this method

impractical in terms of performance (it was used as an optimization to begin with).

Therefore, a different approach is needed here, such as the solution presented in [56]. Let us

rearrange the summands in the parity equations in the following way:
s0

s1
...

sr−1

!

h0e0 + h1e1 + ·· · + hr−1er−1

h0e1 + h1e2 + ·· · + hr−1e0
...

h0er−1 + h1e0 + ·· · + hr−1er−2

 .

Then, for a fixed number j , consider a column vector generated by setting each row to the

value of the j -th summand of the corresponding equation. For example, for j = 1 we have the

following column vector:
s0

s1
...

sr−1

!

h1e1

h1e2
...

h1e0

 .

77

Chapter 4. QC-MDPC decoders with several shades of gray

This vector consists of the products of h j and the bits of the error vector rotated by j places. If

we now rotate simultaneously both vectors by j places in the opposite direction we obtain the

following correspondence:
sr−1

s0
...

sr−2

!

h1e0

h1e1
...

h1er−1

 .

Therefore, the upc ∈Zr array can be computed as upc =∑r−1
i=0 hi rot(s, i) where for each i vector

s is appropriately rotated and multiplied by a scalar representing the i -th bit of h. Obviously,

if hi is zero, then the i -th summand is the zero vector. Thus, upc =∑
i∈supp(h) hi rot(s, i). There-

fore, to compute the upc we need only wt(h) rotations of the syndrome and vector additions.

Moreover, the operation that performs the bitwise-and of two vectors is not required anymore

since the involved summands are vectors multiplied by one, i. e., the vectors themselves. Since

h is a sparse vector with weight much smaller than r , this algorithm is a promising candidate

for computing upc provided that the rotation can be implemented efficiently and securely.

4.5.1 Optimizing the rotation of an array

The algorithm for calculating the number of unsatisfied parity-check equations proposed

in [56] and described in the previous section requires a fast and side-channel resistant im-

plementation of the array rotation operation. In [56], the authors propose an optimization

based on the bit-slicing technique. Vectorized implementation with SIMD instructions of the

proposed optimization is described in [3]1.

Consider the rotation of the syndrome s which is stored in memory as a bitstring, i. e., an

array of memory words where each word is populated with bits of s. Given a number l

that is the number of bits to rotate the syndrome by, we first write it in the word size base

l = lhi ·word_size+ llo with 0 ≤ llo < word_size. The rotation of s is then done in two phases:

“big” rotation where s is rotated by the multiple of the word size lhi ·word_size and “small”

rotation where the bits inside the words are rotated by llo.

The “big” rotation is simple since it can be done by rearranging the words of s in a simple

manner. For example, let s′ be the memory representation of the syndrome, i. e., an array of

rsize words representing s. Rotation of s′ by lhi words is then:

rot(s′, lhi) =
rsize−1∑

i=0
s′j where j = (i − lhi) mod rsize.

However, straightforward implementation of this formula is not secure since we would be

reading memory locations that depend on the value of the secret lhi. Therefore, we write lhi

in binary and pad it to the size equal to the bit-size of the largest possible lhi (denoted by

1The paper [3] does not point to publicly available code.

78

4.5. Constant-time implementation of the decoders

rmax_rot). Then, for a given lhi we rotate the syndrome by 2i words for every i ∈ [0,rmax_rot]

and by appropriate masking take into account only the rotations by i for which the i -th bit of

lhi is set to one. With this, the implementation of the “big” rotation is both constant-time and

constant-memory access.

The “small” rotation is defined as the rotation of the syndrome by a number of places smaller

than the word size. Implementing the small rotation in case when the word size is one of

the standard sized of the processor architecture, e. g., 64-bit word on x86_64 architecture, is

straightforward. Namely, we need only shift and or operations. Let s′ be an array of rsize words

of size 64 bits, then the rotation by llo can be performed by the following code snippet:

1 for (int i = 0; i < r_size ; i++)
2 out[i] = (in[i] >> l_lo) | (in[i+1] << (word_size - l_lo));

where it is assumed that the input array contains s′ with s′0, the first word of s′, appended

to the end of the array. Note that the implementation shown in the code snippet above is

constant-time and memory access because we iterate over all the words of s′ and for each

word perform the same operations.

However, it is not so clear how to perform the “small” rotation when using SIMD registers, e. g.,

AVX2 and AVX512 instruction set extensions for x86_64 architectures [57]. The reason is that

even though, for example, an AVX512 register holds 512 bits of data, we can only operate on

the standard word size elements of the register. Therefore, there is no shift instruction which

would shift the 512-bit string inside the register in its entirety, rather the shift instruction shifts

each of the eight 64-bit elements of the register. In [3], the authors show a code snippet (for the

core functionality) for rotating by a number of positions that is less than the word size. Here,

we present our vectorized implementation which achieves better performance by exploiting

the _mm512_permutex2var_epi64 instruction supported by the AVX512 instruction set [57].

This instruction takes two input registers and produces the output register by shuffling the

64-bit elements in the registers using the values provided in the third input argument, as

shown in Listing 4.1.

1 __m512i _mm512_permutex2var_epi64 (__m512i a, __m512i idx , __m512i b) {
2 for (int i = 0; i < 8; i++) {
3 // Fourth bit of an element of idx serves as the selector
4 selector = idx[i] & 0x8;
5 // First 3 bits serve as the index of the element to output
6 elem_idx = idx[i] & 0x7;
7 // Select a or b and copy the appropriate element
8 out[i] = selector ? b[elem_idx] : a[elem_idx];
9 }

10 }

Listing 4.1 – AVX512 instruction _mm512_permutex2var_epi64

79

Chapter 4. QC-MDPC decoders with several shades of gray

The “small” rotation is performed, analogously to the whole rotation, in two parts. For example,

consider two AVX512 registers in0 and in1 holding consecutive words of the syndrome, and let

llo = 140 = 2 ·64+12. First we shuffle the elements of the AVX512 registers to obtain register

a0 containing the right shift by 2 ·64 of the input and additional register a1 corresponding to

the shift by (2+1) ·64, as shown in Figure 4.2. Then the elements in a0 and a1 are shifted to

the right by 12 places and to the left by 64−12 = 52 places, respectively. The result is obtained

by computing element-wise or of the two registers. The whole function that implements the

“small” rotation functionality is given in Listing A.1 in the appendix.

Shuffle the registers with AVX512 permute
instruction

0

0

0000000

0 0 0 0 0 0 0

Shift the upper 52 bits of the elements in
 (blue parts) to the right by 12

Shift the lower 12 bits of the elements in
 (red parts) to the left by 52

Element-wise or of the two vectors

Figure 4.2 – “Small” rotation of two AVX512 registers containing consecutive elements of the
syndrome (refer to the text for details).

The latest Intel micro-architecture “Ice-Lake” introduces a new _mm512_shrdv_epi64 in-

struction as part of the new AVX512-VBMI2 instruction extension set [57]. This instruction

receives two 512-bit registers (a,b) together with another 512-bit index register (c) and com-

putes the result as shown in Listing 4.2. It concatenates the corresponding 64-bit elements of

a and b to produce a 128-bit intermediate result, and then shifts the result to the right by the

value specified in the corresponding element of c, and finally stores the lower 64 bits in the

output register. It is easy to see that this instruction can be used directly in the “small” rotation

algorithm to replace the two shift and the final or instruction (lines 19-21 in Listing A.1).

80

4.6. Performance studies

1 __m512i _mm512_permutex2var_epi64 (__m512i a, __m512i idx , __m512i b) {
2 for (int i = 0; i < 8; i++) {
3 out[i] = concat (b[i], a[i]) >> (c[i] % 64);
4 }
5 }

Listing 4.2 – AVX512-VBMI2 instruction _mm512_shrdv_epi64

Using VPCLMUL and VAESENC

The Ice-Lake processors support the new vectorized PCLMUL and AESENC instructions,

VPCLMUL and VAESENC [57]. We used the multiplication code presented in [61, Figure

2], and the CTR DRBG code of [62, 59], in order to improve the performance of our BIKE

implementation. The results are given in Section 4.6.

4.6 Performance studies

We start with describing our experimentation platforms and measurements methodology. The

experiments were carried out on two platforms, (Intel® Turbo Boost Technology was turned

off on both):

• EC2 Server: An AWS EC2 m5.metal instance with the 6th Intel®CoreT M Generation

(Micro architecture Codename “Sky Lake”[SKL]) Xeon®Platinum 8175M CPU 2.50GHz.

This platform has 384 GB RAM, 32K L1d and L1i cache, 1MiB L2 cache, and 32MiB L3

cache.

• Ice-Lake: Dell XPS 13 7390 2-in-1 with the 10th Intel®CoreT M Generation (Micro ar-

chitecture Codename “Ice Lake”[ICL]) Intel®CoreT M i7-1065G7 CPU 1.30GHz. This

platform has 16 GB RAM, 48K L1d and 32K L1i cache, 512K L2 cache, and 8MiB L3 cache.

The code. The code is written in C and x86-64 assembly. The implementations use the

VPCLMUL, VAES, AVX2, AVX512 and AVX512-VBMI2 instructions when available. The code

was compiled with gcc (version 8.3.0) in 64-bit mode, using the “O3” Optimization level with

the “-funroll-all-loops” flag, and run on a Linux (Ubuntu 18.04.2 LTS) OS.

Measurements methodology. The performance measurements reported hereafter are mea-

sured in processor cycles (per single core), where lower count is better. All the results were

obtained using the same measurement methodology, as follows. Each measured function

was isolated, run 25 times (warm-up), followed by 100 iterations that were clocked (using the

RDTSC instruction) and averaged. To minimize the effect of background tasks running on the

system, every experiment was repeated 10 times, and the average result was recorded. Note

that each execution of a measured function is performed with different seeds. This however,

does not have any effect on the runtime since the whole code package is implemented in a

81

Chapter 4. QC-MDPC decoders with several shades of gray

constant-time manner.

4.6.1 Decoding and decapsulation: performance studies

Performance of BG. Table 4.2 shows the performance of our implementation which uses the

rotation and bit-slice-adder techniques of [56, 3], and compares the results to the additional

implementation of BIKE [45]. The results show a 3.75 to 6.03-fold speedup for the portable

(C code) of the decoder, 1.1-fold speedup for the AVX512 implementations but a 0.66-fold

slowdown for the AVX2 implementation. This slowdown can be explained by the fact that the

AVX512 implementation can leverage the masked store and load operations that do not exist

in the AVX2 architecture. Note that key generation is faster because generation of mock-bits is

no longer needed.

Table 4.2 – The EC2 server performance of BIKE-1 when using the BG decoder with 3 iterations.
The cycles (in columns 4, 5) are counted in millions.

Implementation Level Op Additional This Speedup
Impl. [45] paper

C-portable stand-alone
Level-1

Keygen 1.67 1.37 1.22
Decaps 60 15.99 3.75

Level-3
Keygen 4.75 4.03 1.18
Decaps 242.72 64.09 3.79

C-portable + OpenSSL
Level-1

Keygen 0.86 0.56 1.54
Decaps 52.38 8.68 6.03

Level-3
Keygen 2.71 1.98 1.37
Decaps 218.42 39.82 5.48

AVX2
Level-1

Keygen 0.27 0.15 1.81
Decaps 3.03 3.62 0.84

Level-3
Keygen 0.62 0.38 1.64
Decaps 10.46 15.84 0.66

AVX512
Level-1

Keygen 0.26 0.15 1.79
Decaps 2.59 1.83 1.42

Level-3
Keygen 0.57 0.37 1.57
Decaps 8.97 8.14 1.10

Table 4.3 compares our implementations with different instruction sets (AVX512F, AVX512-

VBMI2, VPCLMUL, and VAES). The results for BIKE-1 Level-1 show speedup factors of 1.47,

1.28, and 1.26 for key generation, encapsulation, and decapsulation, respectively. Even better

speedup factors of 1.58, 1.39, and 1.24, are achieved for BIKE-1 Level-3.

Consider the 6th column and the BIKE-1 Level-1 results. The 93521 cycles of the key gener-

ation consist of 13K, 13K, 1K, 1K, 5.5K, 26K, 26K cycles for generating h0,h1,σ0,σ1, g , f0, f1,

respectively (and some additional overheads). Compared to the 3rd column of this table (with

only AVX512F implementation): 13.6K, 13.6K, 2K, 2K, 6K, 46K, 46K, respectively. Indeed, as

82

4.7. Discussion

Table 4.3 – BIKE-1 using the BG decoder with 3 iterations. Performance in cycles on Ice-Lake
using various instruction sets: (a) AVX512F; (b) AVX512F, AVX512-VBMI2, VPCLMUL; (c)
AVX512F, AVX512-VBMI2, VPCLMUL, VAES.

Level Op (a) (b) Speedup (c) Speedup

1
Keygen 137095 95068 1.44 93521 1.47
Encaps 192123 150860 1.27 150612 1.28
Decaps 2192433 1711127 1.28 1737912 1.26

3
Keygen 375604 240350 1.56 238198 1.58
Encaps 432577 310908 1.39 310533 1.39
Decaps 9019103 7201222 1.25 7277357 1.24

reported in [61], the use of VPCLMUL doubles the speed of the polynomial multiplication.

Note that the vector-AES does not contribute much, because the bottleneck in generating

h0,h1 is the constant-time rejection sampling check and not the AES calculations.

Table 4.4 compares our right-rotation method to the snippet shown in [3]. To accurately

measure these “short” functionalities, we ported them into separate compilation units and

compiled them separately using the “-c” flag. In addition, the number of repetitions was

increased to 10000. This small change improves the rotation significantly (by a factor of 2.3)

and contributes ∼ 2% to the overall decoding performance.

Table 4.4 – Rotation performance in cycles, comparison of the code snippet given in [3]
and our implementations: (a) Listing A.1 with AVX512F and (b) Listing. A.1 modified to use
AVX512-VBMI2 as explained in Section 4.5.

Level r Platform [3] (a) (b) (a) (b)
Speedup Speedup

L1 11779 EC2 server 128 105 - 1.21 -
L1 11779 Ice-Lake 149 120 63.97 1.24 2.33
L3 24821 EC2 server 250 205 - 1.22 -
L3 24821 Ice-Lake 296 236 121.72 1.25 2.43
L5 40597 EC2 server 404 329 - 1.23 -
L5 40597 Ice-Lake 475 382 194.46 1.24 2.44

4.7 Discussion

Our study shows four shades-of-gray decoders based on combinations of the three steps

involved in the Black-Gray decoder. The results show that among the four decoders, BGF offers

the most favorable DFR-performance trade off. Indeed, as shown in Table 4.1, it is possible to

trade BG, which was our leading option so far, for another decoder and have the same or even

better DFR for the same block size. The advantage is either in performance (e. g., BGF with 6

iterations is 12
8 = 1.5 times faster than BG with 4 iterations) or in implementation simplicity

(e. g., the B decoder that does not involve gray steps).

83

Chapter 4. QC-MDPC decoders with several shades of gray

The Backflip decoder of [9] and the BackFlip+ decoder of [2]

We explain here why our search for efficient decoders does not include BackFlip+. Our recent

work [2] explains why the use of BackFlip, as it is defined in [9], cannot be part of an IND-CCA

KEM since, by its definition, it runs with a variable number of steps that depends on the input

(for BIKE, this input involves secret data). In this context, defining an algorithm (decoder)

that runs a secret-dependent number of steps, and building an IND-CCA claim on top, is

a fundamental flaw because the number of steps must be either: a) considered part of the

decoder’s output in the security proof; or b) a-priori fixed. In such case, the proposed DFR

analysis, that is the critical property of the decoder in this context, no longer holds.

To this end, [2] defines a variant (different) decoder, named therein BackFlip+ that pursues

option #b, and is parametrized by a number XBF of iterations. The difference between BackFlip

and BackFlip+ is explicitly defined in:

[2, Section 2.3], “The BackFlip+ is a variant of Backflip that uses a fixed number

of iterations as explained in Section 1. Technically, the difference is that the

condition on the weight of s is moved from the while loop to the if statement (line

10). This performs the appropriate number of mock iterations.”

Subsequently, [2] analyzes the resulting DFR (of several decoders, including BackFlip+) as a

function of XBF for values where the resulting version is practical (XBF = 9,10,11,12), and the

DFR is sufficiently low. It also checks for XBF = 100 which implicitly appears – only in the

reference code of BIKE, and as an arbitrary value with no explanation – in order to try and

validate the claims on the DFR estimations of [9] (because no sufficient details were given

in [9] and also in a preceding work [1]). We point out that by looking at the reference code

of [9], it is clear that Backflip executes as many (up to 100) secret-dependent iterations as are

needed to decode the syndrome, and is not designed to run exactly 100 iterations. In fact, the

reported performance of BIKE reflects this fact exactly. This is why [2, Section 3] states:

[2, Section 3], “Therefore, we may choose to interpret the results of [2,18] as if the

2−128 DFR was obtained from simulations with this XBF = 100 bound, although

this is nowhere stated and the simulation data and the derivation of the DFR are

also not provided.”

Only BackFlip+ (and not the original Backflip) can be used as a decoder which is part of a

(potentially) IND-CCA secure KEM, and practically, only for the small XBF values that are

possibly useful. Note that this consideration is completely orthogonal to subsequently building

a real constant time implementation and profiling its performance. This work is also done

in [2], and the findings are that another decoder, namely, BG has superior properties.

We point out that even with negligible DFR there is still another fundamental problem in

assuming that negligible (average) DFR suffices for an IND-CCA claim. The gap in the proof

84

4.7. Discussion

is shown in [2] by constructing a counterexample: a large set of “weak keys”, which is luckily

(for BIKE), still small compared to the total number of keys. Thus, determining CCA property

for QC-MDPC codes remains an open question. In any case, [2] concludes that the BIKE

parameters (block size) need to be increased in order to achieve a DFR of 2−128.

Responsible disclosure. Prior to uploading [2], we communicated it to the authors of BIKE [9].

In particular, we delayed the posting by a month, and engaged in a long discussion with the

authors of [1] about the problems in the definition of Backflip and the lacking information in

order to reproduce the claimed results. Some statements of the original version of [2] were

softened per request.

A comment on the performance of BackFlip+. We note that a BackFlip+ iteration is practi-

cally equivalent to Step I of BG with some additional overhead to handle the TTL values. It

is possible to improve the constant-time TTL handling with the bit-slicing techniques and

reduce this gap. However, we believe that this would not change the DFR-performance trends

reported here and in [2].

Parameter choice recommendations for BIKE. BIKE-1 Level-1 (IND-CCA) [9] uses r = 11779

with a target DFR of 2−128. We set aside the weak keys gap (identified in [2]) for now and

consider a non-weak key. If we limit the number of usages of this key to Q and choose r such

that Q ·DFR < 2−µ (for some target margin µ), then the probability that an adversary with

at most Q queries sees a decoding failure is at most 2−µ. We suggest that KEM should use

ephemeral keys (i. e., Q= 1) for forward secrecy, and this usage does not mandate IND-CCA

security (IND-CPA suffices). Here, from the practical viewpoint, we only need to target a

sufficiently small DFR such that decapsulation failures would be a significant operability

impediment. However, an important property that is desired, even with ephemeral keys, is

some guarantee that an inadvertent α times key reuse (where α is presumably not too large)

would not affect the security. This suggests the option for selecting r so that α ·DFR < 2−µ. For

example, taking µ= 32 and α= 232 (an extremely large number of "inadvertent" reuses), we

can target a DFR of 2−64. Using BGF with 5 iterations, we can use r = 11171, which is smaller

than 11779 that is currently used for BIKE.

Further optimizations. The performance of BIKE’s constant-time implementation is dom-

inated by three primitives: a) polynomial multiplication (it remains a significant portion of

the computations even when using the VPCLMUL instructions); b) polynomial rotation (that

requires extensive memory access); c) the rejection sampling (approximately 25% of the key

generation). This paper showed how some of the new Ice-Lake features can already be used

for performance improvement. Further optimizations are an interesting challenge.

We note that based on the results presented in this chapter, the new specification of BIKE [18],

aimed at Round-3 of the NIST PQC Project, is defined with the proposed BGF decoder because

we showed that it offers the best performance for the required DFR levels.

85

5 Fast polynomial inversion for post
quantum QC-MDPC cryptography

The BIKE suite submitted to the Round-2 of the NIST Post-Quantum standardization pro-

cess proposes three different key encapsulation mechanism (KEM) variants. The first one,

BIKE-1 described in Section 2.1.7, is based on McEliece’s framework and it offers very good

performance in terms of key generation and encapsulation. The consequence of the efficient

key generation process is that the public key size, and hence the required bandwidth for the

protocol, is fairly big, e. g., the parameters for the first level of security require a bandwidth of

about 3000 bytes per key exchange in both directions of the KEM protocol. The third BIKE

variant, BIKE-3 described in Section 2.1.9, is based on the Ouroboros cryptographic scheme,

and like BIKE-1, it features an efficient key generation procedure. Moreover, the BIKE-3 design

offers the possibility to slightly modify the scheme in such a way that the public key size is

reduced to almost half the size of the keys in BIKE-1. However, even with this modification the

size of the ciphertext stays the same as in BIKE-1, hence the reduction in the amount of data

exchanged is only in one direction. Furthermore, BIKE-3 employs a variation of the decoding

algorithm (used in the decapsulation phase) of the other two BIKE variants. Consequently, to

achieve the same level of security as BIKE-1 and BIKE-2 the size of the BIKE-3 parameters has

to be slightly increased. Lastly, the BIKE-2 variant of the KEM (described in Section 2.1.8) is

based on the Niederreiter framework and because of that is has one big advantage over the

other variants – namely, the required bandwidth in both directions is halved compared to

BIKE-1. Another advantage, due to the use of Niederreiter’s framework, is that BIKE-2 has a

tighter security reduction for the IND-CCA secure variant compared to BIKE-1 and BIKE-3.

However, BIKE-2 was not the popular variant, e. g., only BIKE-1 is integrated into LibOQS [55]

and s2n [63] libraries. The reason BIKE-2 was neglected so far is its performance. Namely, the

key generation algorithm of BIKE-2 involves inversion of a binary polynomial in a polynomial

ring. The computational cost of the inversion dominates even the cost of decapsulation which

is usually the most expensive part of a code-based scheme due to the decoding procedure.

This issue is especially prominent when protocols are designed to achieve forward-secrecy

by using ephemeral keys (i. e., where a key has to be generated for every communication

session). Considering that the main disadvantage of all the code-based schemes in the NIST

standardization process is the key and ciphertext size and that BIKE-2 excels exactly in that

87

Chapter 5. Fast polynomial inversion for post quantum QC-MDPC cryptography

sense, we believe that BIKE-2 deserves greater attention. Therefore, in this chapter we present

an attempt to reduce the runtime of the BIKE-2 key generation procedure to an acceptable

level.

Polynomial inversion over a finite field is a time-consuming operation in several post-quantum

cryptosystems (e. g., BIKE [9], HQC [50], ntruhrss701 [64], LEDAcrypt [65]). The literature

includes different approaches to the problem, depending on the degree of the polynomial and

the field/ring over which the polynomial is defined. For example, the Itoh-Tsuji inversion (ITI)

algorithm [27] is designed to be efficient for computing multiplicative inverses in a binary

field F2k . Since one possible way to represent the elements of F2k is by using the polynomial

representation, the ITI algorithm can be considered as an algorithm for inversion of binary

polynomials modulo some irreducible polynomial that defines the field. Another prominent

algorithm for inversion is Safegcd [66] which is based on the Extended GCD algorithm modified

such that its implementation is constant-time friendly while at the same time the performance

of the algorithm remains relatively satisfying. It is demonstrated in [66] as a means for speeding

up ntruhrss701 [64] and for elliptic curve cryptography with Curve25519. Furthermore, it is

used in the latest implementation of LEDAcrypt [65] which is another code-based submission

to the NIST process. Algorithms for inversion of sparse polynomials over binary fields are

discussed in [67, 68]. These algorithms are based on the division algorithm of [69].

There are (at least) two popular open-source libraries that provide inversion of polynomials

with coefficients in F2: NTL [4], compiled with the GF2X library [53] and OpenSSL [5] library.

We note that the Additional code of BIKE (BIKE-2) [45] can be compiled to use either NTL or

OpenSSL. Therefore, we use the performance of these two libraries as our comparison baseline

for BIKE-2 key generation. In this chapter, we propose and describe the implementation of a

variant of the ITI algorithm (see also [70]) for polynomial inversion that leverages the special

algebraic structure in our context. Moreover, we implement the algorithm such that it runs

in constant-time and constant-memory access, thus making this implementation a viable

option for secure implementation of the key generation procedure in BIKE-2.

The paper is organized as follows. Section 5.1 offers some background and notation. In

Section 5.2 we explain our polynomial inversion method. In Section 5.3 we give details of

our implementations. Finally, Section 5.4 provides the performance results and Section 5.5

concludes the chapter with several concrete proposals for the BIKE suite.

5.1 Preliminaries and notation

We briefly recall the notation from the previous chapters and the definition of the BIKE-2 KEM.

The polynomial ring R is defined as F2[x]/(xr −1), where r is the block size of the code that is

used as a basis for the BIKE-2 protocol. Moreover, r is chosen such that xr −1 = (x −1)Φr−1,

whereΦr−1 is irreducible cyclotomic polynomial of degree r −1. The set of invertible elements

in R is denoted by R∗. We treat polynomials in R, interchangeably, as vectors of bits. For every

element v ∈R its Hamming weight is denoted by wt(v) and its support (i. e., the positions of

88

5.2. Optimized polynomial inversion in F2[x]/(xr −1)

the non-zero bits) by supp(v). In other words, if an element v ∈R is defined by v =∑r−1
i=0 vi xi

then supp(v) is the set of positions of the non-zero bits, supp(v) = {i : vi = 1}. Uniform

random sampling from a set U is denoted by u
$←−U , while uniform random sampling of an

element with fixed Hamming weight w from a set U is denoted by u
w←−U .

The protocol level parameters of BIKE-2 are the block size r and the density of the secret key

w , i. e., the weight of a row of the secret parity-check matrix (note that w is such that d = w/2

is odd). The key generation procedure performs the following steps:

1. h0,h1
d←− R, where both h0 and h1 are sampled such that they have odd Hamming

weight d = w/2.

2. σ0,σ1
$←−R, only in the IND-CCA secure version of the scheme.

3. (f0, f1) = (1,h1h−1
0), where h−1

0 is the inverse of h0 ∈R.

4. Output the public key (f0, f1) and the secret key (h0,h1) or (h0,h1,σ0,σ1) in the CPA or

CCA case, respectively.

Note that the requirement for d to be odd (and < r) has as a consequence the fact that h0 and

h1 are invertible, h0,h1 ∈R∗, as explained in Section 2.1.2. Notably, in the second step of the

algorithm a polynomial inversion is performed. This is, relatively speaking, a time-consuming

operation that can deter adoption when targeting forward-secrecy via ephemeral keys. On

the other hand, BIKE-2 has half the communication cost compared to BIKE-1 (and ∼ 2/3 the

communication cost compared to the bandwidth-optimized version of BIKE-3). Specifically,

the initiator in BIKE KEM sends pk to the responder, i. e., f1 for BIKE-2 versus (f0, f1) for

BIKE-1. In the other direction, the responder sends a ciphertext to the initiator. The length

of BIKE-2’s ciphertext is half the length of BIKE-1’s ciphertext, as detailed in Section 2.1.8.

Therefore, reducing the computational cost of polynomial inversion can make BIKE-2 more

competitive.

5.2 Optimized polynomial inversion in F2[x]/(xr −1)

In this chapter, we propose to use an algorithm for inversion that is similar to the ITI algo-

rithm [27]. In both cases, the original ITI algorithm and our proposition, the essence is that

raising an element a to the power 2k (referred to as k-squaring hereafter), can be done effi-

ciently. The ITI algorithm inverts an element a ∈ F2k where the field elements are represented

in normal basis. With such representation computing the k-squaring operation, a2k
, consists

of k cyclic shifts of a’s vector representation. This results in fast implementation of k-squaring.

However, we note that the ITI algorithm can be generalized to other cases where k-squaring

is efficient. One example is the set of polynomial rings that are used in BIKE and in other

QC-MDPC based schemes.

89

Chapter 5. Fast polynomial inversion for post quantum QC-MDPC cryptography

In Algorithm 9 we present an algorithm that on input a, computes a2k−1 for some k which is

itself a power of 2, k = 2t . The algorithm exploits the following:

22t −1 = 22t −22t−1 +22t−1 −1 = 22t−1
(22t−1 −1)+ (22t−1 −1),

and therefore,

a22t −1 = (a22t−1−1)22t−1

a22t−1−1.

To simplify the expression, let St (a) = a22t −1. Then we have that

St (a) = (St−1(a))22t−1

St−1(a),

meaning that we can compute St (a) by recursively computing Si (a) for i ∈ [0, t − 1] and

multiplying and squaring appropriately, as shown in Algorithm 9.

This algorithm is analogous to [27, Algorithm 2] that computes a−1 ∈ F2` for `= 2t +1 through

Fermat’s Little Theorem as:

a−1 = a2`−2 = (a2`−1−1)2 = (a22t −1)2.

Algorithm 9 Computing a2k−1 where k = 2t

Input: a
Output: a2k−1

1: procedure CUSTOM_EXPONENTIATION(a)
2: f = a
3: for i = 0 to t −1 do
4: g = f 22i

5: f = f · g

6: return f

BIKE, on the other hand, operates in the polynomial ring R with a value r for which the binary

polynomial (xr −1) factors into two irreducible factors of degree 1 and r −1, namely, (x −1)

and the cyclotomic polynomialΦr−1 which we denote here by h. In this ring, ord(a) | 2r−1 −1

for every a ∈R∗, and therefore by Fermat’s theorem the inverse of a satisfies:

a−1 = a2r−1−2. (5.1)

However, to compute the inverse we cannot use the ITI algorithm directly because a2r−1−2 =
(a2r−2−1)2 and r −2 is not a power of 2 in our case. Therefore, we use the following decomposi-

tion.

Decomposition of 2r−1 −2. In order to be able to apply Algorithm 9, we write s = supp(r −2)

90

5.2. Optimized polynomial inversion in F2[x]/(xr −1)

and rewrite z = 2r−1 −2 in a convenient way:

z = 2 · (2r−2 −1) = 2 ·∑
i∈s

(
(22i −1) ·

(
2(r−2) mod 2i

))
. (5.2)

Example 4. For r = 11779 we have that 2r−1 −2 can be written as:

211778 −2 = 2 · (1+2(2512 −1)+2513(21024 −1)+
21537(22048 −1)+23585(28192 −1))

With this decomposition and Algorithm 9 we can build the algorithm for inverting an invertible

element of the ring R. In Algorithm 10 we present the method.

Algorithm 10 Inversion in R = F2[x]/((x −1)h) with an irreducible h

Input: a ∈R∗

Output: a−1

1: procedure INVERT(a)
2: f = a
3: res = a
4: for i = 1 to blog(r −2)c do

5: g = f 22(i−1)

. As in Alg. 9
6: f = f · g
7: if ((r −2)i = 1) then . i th bit of r −2

8: res = res · f 2(r−2) mod 2i

9: res = res2

10: return res

Algorithm 10 requires blog(r −2)c+wt(r −2)−1 multiplications plus blog(r −2)c+wt(r −2)−1

k-squarings and 1 squaring (all operations in R). Therefore, the performance of the inversion

depends on |r −2| and on wt(r −2), where, obviously, choices of r with smaller |r −2| and

wt(r −2) lead to faster execution. Following Example 4 given above, for r = 11779 we can

execute the algorithm with 17 polynomial multiplications, 17 k-squarings and 1 squaring.

Remark 5. By changing line 8 of Algorithm 10 into

res = res · f 21+(r−2) mod 2i

the last square, in line 9, can be removed. This optimization is omitted from the algorithm’s

description for clarity.

Efficient k-squaring. The straightforward way to implement the k-squaring routine is as a

series of k regular squares. The operation of squaring a binary polynomial is very efficient,

i. e., it can be done in r bit operations, whereas multiplication takes r 2 bit-operations if

implemented naively, or r log2 3 if the Karatsuba algorithm is used (note that the bit-operation

numbers are correct up to a multiplication by a constant). However, the size of k in our k-

91

Chapter 5. Fast polynomial inversion for post quantum QC-MDPC cryptography

squaring operations is O(r) which means that the k-squaring would require r 2 bit-operations.

Moreover, modern CPU architectures offer an instruction that multiplies two 64-bit words

that represent two binary polynomials in just a few cycles. With this instruction the runtime of

multiplication and squaring in R is actually (r /64)log2 3 and r /64 word-operations, respectively.

Note that this improvement does not fully translate to the k-squaring since the number k of

required consecutive squares stays the same, resulting in a total of r 2/64 word-operations.

Therefore, this approach does not yield an efficient algorithm. Furthermore, it underlines the

imbalance of the performance of the two operations required for the inversion – multiplication

and k-squaring.

Fortunately, in the context of QC-MDPC codes used in post-quantum cryptographic schemes

we can perform the k-squaring more efficiently by exploiting the following observation. Let

a =∑
j∈supp(a) x j ∈R∗. Then we have that

a2k =
(∑

j∈supp(a)
x j

)2k

= ∑
j∈supp(a)

(x j)2k
(5.3)

= ∑
j∈supp(a)

x j ·2k = ∑
j∈supp(a)

x j ·2k mod r .

The first step in Equation 5.3 is an identity for polynomials with binary coefficients. The

last step stems from the fact that the order of x ∈ R is ord(x) = r . Therefore, k-square of

an element in R can be computed as a permutation of the bits of the element. The only

remaining question is how performant can be a secure implementation of the permutation,

while at the same time the implementation admits the standard properties of side-channel

protection, i. e., it is constant-time and constant-memory access.

5.3 Our implementation

In this section we discuss our implementation of Algorithm 10 and optimizations that signifi-

cantly reduce the running time of the algorithm. Moreover, we describe an optimization of

the polynomial multiplication code used in the BIKE Additional code package [45].

Element of the ring R in the source code of BIKE is represented as an array of rsize = dr /8e bytes,

where each byte represents eight consecutive coefficients and consecutive bytes represent

consecutive blocks of eight bits. The first attempt to implement the k-squaring of a is the

naive implementation of the appropriate permutation, as shown in Algorithm 11. Namely,

the algorithm iterates over the bits of a and copies each bit to an appropriate position of the

output array c , where the position in c is computed as defined by Equation 5.3. The algorithm

can be divided into two parts – generating the permutation map (π(i) : i −→ i ·2k mod r) for

i ∈ [0,r −1] and applying the map to the input array.

“Inverted” permutation. Note that in Algorithm 11 for every byte of the result we perform

one memory read (in line 5) and eight memory writes (in line 9). Furthermore, with the

92

5.3. Our implementation

Algorithm 11 Computing k-square as permutation

Input: a as an array of rsize bytes, k
Output: c = a2k

as an array of rsize bytes
1: procedure K_SQUARE(a, k)
2: for i = 0 to r −1 do . Generate the permutation map
3: map[i] = (i ·2k) % r

4: for i = 0 to rsize −1 do . Apply the permutation map
5: byte = a[i]
6: for j = 0 to 7 do
7: bit = (byte >> j) & 1
8: pos = map[i ·8+ j]
9: c[pos/8] | = (bit << (pos%8))

10: return c

required memory reads we are accessing consecutive memory locations (a[i] for i from 0

to rsize), while the memory writes are to random locations determined by the value of pos

variable. However, we can turn things around by computing the “inverted” permutation of a’s

coefficients π−1(i) : i ·2−k mod r −→ i , as shown in Algorithm 12. In terms of implementation

we change the map generation such that each element of the map holds the position of the

bit of a that should be copied to c at position determined by the index of the map element.

This is achieved by simply switching the value and the index that it is written to in line 3 of the

algorithm. Then, we iterate over the bits of the output array and read the required values from

the appropriate positions in the input array. In this way, for every byte of the result we perform

one memory write and eight memory reads. This approach improves the performance of the

implementation in a noticeable way, so we choose to use it in the implementation.

Remark 6. Division of a value by 8 and reduction modulo 8 in Algorithms 11 and 12 are

implemented as right shift by 3 positions and bitwise and of the value with 7, respectively.

Efficient generation of a permutation map. Given k, the permutation map of the correspond-

ing k-square is computed by storing the value i ·2k mod r to map[i] for i ∈ [0,r −1] (hereafter,

for brevity we use map to denote the inverse_map from Algorithm 12). Firstly, we note that

the value l = 2k mod r can obviously be precomputed. Then for each map element we per-

form only two operations, multiplication and reduction modulo r , that are both costly CPU

instructions (especially the reduction). However, we can easily generate the map by using only

addition and subtraction. More precisely, the value at position i in the map, map[i], can be

computed as (map[i −1]+ l). If this sum is greater or equal than r we simply subtract r from

it and store it, otherwise, there is no need for subtraction since the value is already smaller

than r . Note that the same approach is possible for generating the map of the “inverted”

permutation. We compute l = 2−k mod r and apply the same algorithm – set map[i] to the

value (map[i −1]+ l) and subtract r if necessary. Furthermore, this algorithm can easily be

vectorized with SIMD instructions, as explained in Section 5.3.1.

Precomputed maps. The actual values of k in all the k-squarings of Algorithm 10 depend only

93

Chapter 5. Fast polynomial inversion for post quantum QC-MDPC cryptography

Algorithm 12 Computing k-square as “inverted” permutation

Input: a as an array of rsize bytes, k
Output: c = a2k

as an array of rsize bytes
1: procedure K_SQUARE(a, k)
2: for i = 0 to r −1 do . Generate the permutation map
3: inverse_map[(i ·2k) % r] = i

4: for i = 0 to rsize −1 do . Apply the permutation map
5: val = 0
6: for j = 0 to 7 do
7: pos = inverse_map[i ·8+ j]
8: byte = a[pos/8]
9: bit = (byte >> (pos%8)) & 1

10: val | = (bit << j)

11: c[i] = val

12: return c

on r , not on the input a. Since r is a fixed public parameter of the BIKE cryptosystem, all the

relevant values of k involved in the inversion algorithm can be precomputed. Moreover, for

each k we can precompute the whole permutation map. Using the precomputed maps instead

of generating them on the fly speeds up the implementation. However, this performance

improvement comes at a cost of storing all the maps in memory and accessing them frequienlty.

The required storage is blog(r −2)c+1+wt(r −2) tables where each one holds r values. The

trade-off between the performance and the memory footprint of the code is discussed in

Section 5.4.

k-square versus k squares. As already noted, squaring a polynomial in R is very efficient

and significantly faster than a k-squaring (see Appendix A.3.4). This observation leads to the

following optimization: for values of k smaller than a certain threshold kthr we compute a2k
as

a series of k regular squares instead of executing the k-square routine. The kthr value should

be chosen such that it gives the faster of the two options for a given k. The choice of kthr

obviously depends on the actual performance of the implementation of square and k-square

on a specific processor. To this end, in Table A.3 in the appendix we provide an example of the

optimal kthr .

The consequence of this optimization is that in addition to r −2 and wt(r −2), the efficiency

of inversion depends on the number of k-squares that can be replaced with a series of regular

squares. For example, consider r1 = 11779 and r2 = 12347. Here, inverting a polynomial

in R1 is expected to be faster than in R2, because wt(r1 −2) = 5 < 6 = wt(r2 −2), and the

number of required k-squares is smaller. However, from the binary representations r1 −2 =
0b10111000000001 and r2 − 2 = 0b11000000111001, we see that the set bits in r2 − 2 are

positioned close to the LSB, and the set bits in r1−2 are positioned close to the MSB. Therefore,

if kthr = 64, then for the inversion in R1 we can replace only one k-square with a chain of

squares, while in case of R2 we can replace 4 such k-squares. This is another consideration

94

5.3. Our implementation

that should be taken into account when choosing the r parameter for the scheme (as discussed

in Section 5.5).

5.3.1 Generating permutation map with SIMD instructions

The first target for optimization with SIMD instructions is the permutation map generation.

We have already explained in the previous section how to generate the map without using time

consuming instructions such as multiplication and modular reduction which are also very

inefficient in SIMD settings. We proceed by implementing this approach with AVX instructions.

In Listing 5.1, we present the implementation of the map generation function with the AVX512

instruction set which is quite straightforward. The function receives the l parameter as input,

where l = 2−k mod r , as previously explained. Note that the values of r that are relevant for

BIKE are r < 215. Therefore, the map can be represented by an array of length r of 16-bit

unsigned integers and a single AVX512 register can hold 32 map elements. Importantly, since

r < 215, a sum of two values smaller than r is less than 216, thus the sum fits in a 16-bit

register. In the first step we initialize one 512-bit register (prev) with values representing the

first 32 elements of the map and broadcast values l ∗32 mod r and r to registers inc and rval,

respectively (broadcasting a value to a vector register means setting the value in all elements

of the register). Then we proceed with generating the remaining part of the map, 32 map

values at a time. To obtain the currently processed map values in register curr we add the

increment inc to the previous vector prev. Then we compare the corresponding elements

of the two vectors curr and rval to generate the 32-bit mask where a bit is set to one if the

corresponding elements of curr and rval satisfy the condition, otherwise the bit is set to zero

(the condition being curr[i] ≥ rval[i]). Finally, by using a convenient masked version of the

AVX512 subtraction instruction and the generated mask we subtract r from the appropriate

elements of the vector and store the values in the map.

Remark 7. Note that all the AVX instructions operate on vectors element-wise. Also, AVX512

offers a masked version of almost every instruction, where a mask can be supplied to the

instruction to denote which vector elements the operation should or should not be applied to.

95

Chapter 5. Fast polynomial inversion for post quantum QC-MDPC cryptography

1 void gen_permutation_map (uint16_t map[R], uint16_t ell) {
2 __m512i curr , prev , inc , rval;
3 uint32_t mask;
4 // Initialization : compute the first 32 map elements
5 for (int i = 0; i < 32; i++)
6 map[i] = (i * ell) % R;
7 prev = LOAD(map); // Load the 32 values into the register
8 inc = BCAST_U16 ((ell * 32) % R);
9 rval = BCAST_U16 (R);

10
11 // Generate the rest of the map elements
12 for (int i = 1; i < ceil(R / 32); i++) {
13 curr = ADD_U16 (prev , inc);
14 mask = CMP_U16 (curr , rval , CMP_GEQ);
15 curr = SUB_U16 (curr , rval , mask);
16 STORE (& map[i * 32], curr);
17 }
18 }

Listing 5.1 – Permutation map generation with AVX512 instructions (the actual

names of AVX512 instructions are replaced with upper-case macro names for clarity)

We point out that in the case of AVX2, the older SIMD standard that uses 256-bit vectors, the

implementation requires a few modifications. The first reason is that AVX2 does not support

masked instructions. Moreover, the comparison of two vectors (element-wise) does not

produce a bitmask as in AVX512 but rather another vector with the corresponding elements

appropriately set to zero or all ones based on the supplied condition. Hence, the subtraction

has to be done with two instructions – first we and the mask vector and rval and then subtract

the result from curr vector. Another problem is that the comparison function compares

vector elements as signed integers, not as unsigned integers as in AVX512 case. This means

that, if r > 214, adding two values can result in a number greater than 215 which is actually a

negative number when interpreted as a signed 16-bit integer, and therefore, the comparison

(which works only on signed numbers) would not produce the desired result. To sidestep

this limitations we use the following trick: in the initialization phase we subtract r from the

elements of the increment vector; in the second phase, when we compute curr by adding inc

to prev we also produce a mask register by comparing the elements of curr with zero (i. e.,

checking which elements are negative) and finally add rval to the appropriate elements (by

using the and of mask and rval). The code implementing the described algorithm is given in

Appendix A.3.1.

We note that the implementations can be further optimized by processing two (or more) AVX

registers (containing map elements) at a time, i. e., if in Listing 5.1 we use several curr and

prev registers. This allows the processor to eliminate any latency coming from the sequential

nature of the instructions in the for loop by executing the instructions in a more favourable

order and thus filling the execution pipeline. Furthermore, vector processing units usually

have two input and output ports which allows them to execute some pairs of instructions

in parallel and achieve higher throughput (for example, simple arithmetic instructions such

96

5.3. Our implementation

as addition, subtraction, etc., can be executed concurrently). With this, our implementation

achieves further performance improvements.

To conclude, SIMD implementations of the function that generates a permutation map are

fairly efficient. In the AVX2 case we need an order of r /16 vector instructions to generate the

whole map, while the performance of the AVX512 implementation is even better since the

required number of instructions is an order of r /32.

5.3.2 Optimizing the permutation with SIMD instructions

The next optimization target is the second phase of the k-square algorithm (Algorithm 12) –

the application of a given permutation map. Recall that both the input polynomial and the

result of the algorithm are given in binary representation, i. e., a polynomial is represented

by a byte array of length rsize, each byte holding 8 bits of data. Because of that, applying the

permutation map to a single coefficient involves several instructions. Namely, given a position

pos of a bit we need to compute the byte position in the array that the bit belongs to (one shift

instruction), to extract the bit from the byte (one shift and two and instructions), and finally

write the extracted bit to the byte of the output (one shift and one or instruction). These are

all “light” operations, i. e., most processors perform them in a single cycle. However, they are

executed for each of the r coefficients of the polynomial, and therefore, eliminating even some

of them can significantly reduce the runtime of the algorithm.

We note that if a polynomial was given in byte representation as array of r bytes (instead

of rsize = dr /8e bytes) where each byte holds one binary coefficient of the polynomial, then

the application of the map would require a single memory transfer without any arithmetic

operation. To illustrate, given a map and the input and output polynomials stored as described,

the permutation is applied by the following procedure: out[i] = in[map[i]] for i ∈ [0,r −1]. In

this way we would be able achieve the goal of eliminating as many instructions as possible.

Unfortunately, in between calls to the k-square function in the inversion algorithm we perform

polynomial multiplication (and reduction) which operates on polynomials in binary represen-

tation and which would be very inefficient if it operated on polynomials in byte representation.

Because of this we can not perform the whole inversion with byte represented polynomials.

Hence, we are forced to convert the polynomials from one to the other representation and

back for each invocation of the k-square function. Fortunately, the required conversions can

be done very efficiently with SIMD instructions.

AVX512 implementation

To convert from binary to byte representation we use the _mm512_maskz_set1_epi8 instruc-

tion [57], as shown in Listing 5.2. This instruction accepts two parameters: a 64-bit mask and

an 8-bit val, and produces a vector register that contains 64 elements each of size 8 bits by

broadcasting val to all elements of the resulting vector using zeromask mask, i. e., element

97

Chapter 5. Fast polynomial inversion for post quantum QC-MDPC cryptography

of the vector is zeroed out when the corresponding bit of the mask is not set. Therefore, we

process the input polynomial 64 bits at a time, where we use the 64 bits as the mask and set

val = 1. In this way, when a bit of mask is set (i. e., the polynomial coefficient is one) then the

corresponding byte in the output vector is set to one, otherwise it is set to zero. With this, the

conversion is done.

1 void convert_bin_byte (uint8_t out[R], uint8_t in[R_SIZE]) {
2 // Consider the input as an array of 64- bit elements
3 uint64_t *in64 = (uint64_t *)in;
4
5 for (int i = 0; i < ceil(R / 64); i++) {
6 // Convert 64 bits to byte representation
7 __m512i t = _mm512_maskz_set1_epi8 (in64[i], 1);
8 STORE (& out[i * 64], t); // Store the resulting 64 bytes to the output
9 }

10 }

Listing 5.2 – Conversion of a polynomial from binary to byte representation using

AVX512 instructions.

The conversion in the opposite direction, byte to binary representation, can be done with

_mm512_cmp_epi8_mask instruction [57], as shown in Listing 5.5. Recall from the previous

section that the comparison instructions in AVX512 receive two vectors and produce the

output mask by comparing the corresponding elements of the vector. More precisely, the

specified instruction takes two vectors viewed as arrays of 64 bytes compares the bytes in the

corresponding positions and if they are equal sets the corresponding bit in the output mask to

one. To realize the conversion, we use this instruction and provided it with a vector register

containing bytes of the polynomial (each byte is zero or one) and a register where we set all

bytes to one.

1 void convert_byte_bin (uint8_t out[R_SIZE], uint8_t in[R]) {
2 // Consider the output as an array of 64- bit elements
3 uint64_t *out64 = (uint64_t *) out;
4 for (int i = 0; i < ceil(R / 64); i++) {
5 // Convert 64 bytes of the input
6 // and store the resulting 64 bits to the output
7 __m512i one = BCAST_U8 (1);
8 __m512i t = LOAD (&in[i * 64]);
9 out64[i] = _mm512_cmp_epi8_mask (t, one , CMP_EQ);

10 }
11 }

Listing 5.3 – Conversion of a polynomial from byte to binary representation using

AVX512 instructions.

98

5.3. Our implementation

AVX2 implementation

In the case when only AVX2 is available the conversion is slightly more complicated because

the two instructions we used for the AVX512 implementation are not available in the AVX2

specification. Therefore, we need to resort to various tricks to build an efficient implementa-

tion of the two conversion functions.

The register size in AVX2 extension is 256 bits, e. g., a register can be viewed as holding 32

byte-size elements or 8 elements of size 32 bits. We implement the conversion from binary

to byte representation by converting 32 bits of the input to 32 bytes of the output at a time.

The algorithm is depicted in Figure 5.1. Let val = a3a2a1a0 be the 32-bit value (consisting

of four bytes ai) that we convert to byte representation. We start by broadcasting val to the

eight elements of the vector register t . Ideally, we would then shuffle the byte-size elements in

t such that the i -th element contains the byte of val which contains the i -th bit of val, e. g.,

elements of t at positions 0 to 7 are set to a0, at positions 8 to 15 are set to a1, etc. Once we

have ai ’s ordered like this we can obtain the result by appropriately shifting each element

of t such that the desired bit is shifted to the most significant position of the element, e. g.,

shift i -th element of t to the left by (7− i) mod 8 bit positions. Unfortunately, AVX2 does not

support shift operations on byte-sized elements of a register, but only on 32-bit and 64-bit

sized elements.

Remark 8. Note that, contrary to the AVX512 implementation where each byte in the byte

representation holds the corresponding bit in the least significant bit position, here, we want

the bit to be in the most significant position. The reason for this change is that it allows simple

and efficient implementation of the conversion in the opposite direction, as explained later in

the text.

The above stated limitations of the AVX2 instruction set are overcome in the following way.

The explanation follows the procedure in Figure 5.1. Note that for clarity we depict only the

conversion of a0, the first 8 bits of val, however, the remaining part of val is simultaneously

processed. First, we shift the 32-bit elements of t by the values provided in register q , e. g.,

the first two elements, t [0] and t [1] are shifted to the left by 6 and 4 places, respectively. Note

that by shifting, for example, the 32-bit value t [0] = a3a2a1a0 to the left by 6 places, we obtain

t [0] = a′
3a′

2a′
1a′

0 where a′
i 6= ai << 6, but the most significant bit of a′

i is equal to the most

significant bit of ai << 6 (we denote this by the “∼” sign in Figure 5.1). Then we use the AVX2

shuffle instruction to reorder the byte-sized elements of t as shown in the figure. Thus, we

obtain register t with the bytes in odd positions exactly as we need them for the output – they

hold values with most significant bit set to the value of the corresponding bit in val, e. g., byte

at position 1 holds the value t0 ∼ (a0 << 6). The bytes of t in even positions have to be shifted

once more to the left by one place, to obtain register s that has even positioned elements

filled with the right values. The resulting register is then simply generated by blending t and s.

For this we use the AVX2 blend instruction which we provide with a mask such that it copies

elements at odd positions from t and at even positions from s.

99

Chapter 5. Fast polynomial inversion for post quantum QC-MDPC cryptography

...

64...

...

...

...

...

Shift left the 32-bit elements of by the values
provided in

Shuffle the 8-bit elements of

Shift left every 32-bit element of by 1

Blend and by taking the 8-bit elements at odd
positions from and at even positions from

Figure 5.1 – Conversion of a 32-bit value a3a2a1a0 consisting of four bytes from binary to byte
representation with AVX2 instructions.

Therefore, binary to byte conversion of a polynomial is performed by applying the described

algorithm to every 32 consecutive bits of the polynomial, as shown in Listing 5.4.

100

5.3. Our implementation

1 void convert_bin_byte (uint8_t out[R], uint8_t in[R_SIZE]) {
2 // shift values (q), shuffle mask (p), blend mask (w)
3 __m256i p, q, w, t;
4 q = SET_I32 (0, 2, 4, 6, 0, 2, 4, 6);
5 p = SET_I8 (15, 15, 11, 11, 7, 7, 3, 3, 14, 14, 10, 10, 6, 6, 2, 2
6 13, 13, 9, 9, 5, 5, 1, 1, 12, 12, 8, 8, 4, 4, 0, 0);
7 w = BCAST_I16 (0 x00ff);
8
9 // Consider the input as an array of 32- bit elements

10 uint32_t *in32 = (uint32_t *)in;
11 for (int i = 0; i < ceil(R / 32); i++) {
12 // Convert 32 bits to byte representation
13 t = BCAST_I32 (in32[i]);
14 t = _mm256_sllv_epi32 (t, q); // shift left elements of t by vals in q
15 t = _mm256_shuffle_epi8 (t, p);
16 s = _mm256_slli_epi32 (t, 1); // shift left each element of t by 1
17 t = _mm256_blendv_epi8 (t, s, w); // blend t and s
18 STORE (& out[i * 32], t); // Store the resulting 32 bytes to the output
19 }
20 }

Listing 5.4 – Conversion of a polynomial from binary to byte representation using

AVX2 instructions.

Conversion from byte to binary representation is straightforward thanks to the fact that, as pre-

viously noted, the byte representation is such that each byte holds the corresponding bit in the

most significant position. To convert 32 consecutive bytes we use _mm256_movemask_epi8

instruction available in the AVX2 instruction set [57]. The instruction takes a vector register as

input (consisting of 32 byte-sized elements) and creates a 32-bit mask from the most signifi-

cant bit of each element of the register. Since this is the exact functionality that we need for

the conversion, we simply iterate over the coefficients of the byte represented polynomial, 32

bytes at a time, and generate the desired 32 bits of output (the implementation is shown in

Listing 5.5).

1 void convert_byte_bin (uint8_t out[R_SIZE], uint8_t in[R]) {
2 // Consider the output as an array of 32- bit elements
3 uint32_t *out32 = (uint32_t *) out;
4 for (int i = 0; i < ceil(R / 32); i++) {
5 // Convert 32 bytes of the input
6 // and store the resulting 32 bits to the output
7 __m512i t = LOAD (&in[i * 32]);
8 out32[i] = _mm256_movemask_epi8 (t);
9 }

10 }

Listing 5.5 – Conversion of a polynomial from byte to binary representation using

AVX2 instructions.

101

Chapter 5. Fast polynomial inversion for post quantum QC-MDPC cryptography

5.3.3 Optimizing squaring and multiplication

Modern CPUs offer a fast carry-less multiplication instruction (PCLMUL) that can be used for

multiplying two elements of a field with characteristic 2. We note that PCLMUL multiplies two

64-bit inputs and produces a 128-bit result. Since AVX512 and AVX2 offer many instructions

that can operate on wider registers (512-bit and 256-bit, respectively), PCLMUL can be a bot-

tleneck when polynomial multiplication is implemented with one of these SIMD instruction

extension sets.

In the recent 10th generation CPUs (codename “Ice Lake”) Intel introduced a vectorized

version of the PCLMUL instruction, namely VPCLMUL, which can multiply simultaneously

four pairs of 64-bit inputs (in a SIMD manner). We leverage the new instruction to improve

the performance of the existing polynomial multiplication in BIKE and also to implement

polynomial squaring required for the inversion. Figure 5.2 shows how VPCLMUL instruction

works. It receives two 512-bit registers a and b, each containing eight 64-bit elements, and

a mask. The elements of a and b are grouped into four groups of two elements. The mask

determines which elements (lower or higher) of the corresponding groups will be multiplied,

as illustrated in the figure. Finally, the specified elements are multiplied and four 128-bit

products are stored in the output register.

VPCLMUL where

Figure 5.2 – VPCLMUL instruction.

Binary polynomial squaring with VPCLMUL

Squaring a polynomial with binary coefficients is particularly efficient. Let a ∈ R be the

polynomial a =∑r−1
i=0 ai xi . Then its square is a2 = (∑r−1

i=0 ai xi
)2 =∑r−1

i=0

(
ai xi

)2 since the coeffi-

cients of a are in F2. Therefore, squaring can be performed by squaring every term of the input

polynomial. We note that this can be implemented with the non-vectorized PCLMUL instruc-

tion in a straightforward manner. Consider the polynomial as consisting of sub-polynomials

with 64 terms, i. e., a =∑dr−1/64e
i=0 ai (x)xi ·64 where ai (x) ∈ F2[x] with degree at most 63. Here-

after, we refer to polynomials ai (x) as 64-bit digits of a. Squaring is then implemented by

iterating over the digits of a and squaring them with PCLMUL. The code that implements

this functionality is given in Appendix A.3.2. In this section we focus on using VPCLMUL

instruction for squaring.

102

5.3. Our implementation

In Figure 5.3 we show how to square a binary polynomial of 512 bits length to obtain the

1024-bit result with VPCLMUL instruction. We consider the polynomial as consisting of eight

64-bit digits which occupy AVX512 register a. To be able to get the digits in the resulting

registers in correct order, we first need to permute the elements of a, as shown in the figure.

Then we invoke VPCLMUL instruction twice, with mask 0x00 and 0x11, to square the lower

and the higher elements of the four 128-bits parts of a, respectively. In this way we obtain the

result in two registers clo and chi with their elements appropriately ordered such that we can

simply store them in memory. Squaring a polynomial of size r is done by iterating over it, 512

bits at a time, and applying the described algorithm (the source code of this function is given

in Listing A.4 in the appendix). After computing the square of a polynomial (or a product of

two polynomials) we need to reduce the result modulo xr −1. The implementation of the

reduction is not presented, but we note that since xr = 1 the reduction can be done by shifting

to the right by r places the higher part of the result (bits at positions ≥ r) and adding it to the

lower part of the result (bits at positions 0 to r −1).

Permute the elements of

 = VPCLMUL = VPCLMUL

Figure 5.3 – Squaring eight consecutive 64-bit digits of a binary polynomial with VPCLMUL
instruction.

Binary polynomial multiplication with VPCLMUL

The “Additional implementation” of BIKE [45], submitted to the second round of the NIST Post-

Quantum standardization project, implements polynomial multiplication with the recursive

Karatsuba algorithm. The recursion splits the input into two equally sized parts, proceeds

with multiplying the new parts individually in the same manner, and stops when inputs of size

four 64-bit digits are encountered. Then, the base case multiplication is performed with a 4×4

64-bit digits schoolbook multiplication algorithm (using the PCLMUL instruction). Since the

new VPCLMUL instruction operates on 512-bit registers, we replaced the existing base case

multiplication with the code described in [61] that multiplies two binary polynomials of size

eight 64-bit digits. This yields some improvements. However, we further optimize the code

103

Chapter 5. Fast polynomial inversion for post quantum QC-MDPC cryptography

by implementing the base case as 16×16 digits multiplication using the Karatsuba algorithm

with AVX512 and VPCLMUL instructions.

We start by making a function that multiplies four digits of a with four digits of b:

c = a3a2a1a0 ·b3b2b1b0.

Recall that in Karatsuba’s algorithm we would split the terms in half and compute the product

as c = x ·2256 + y ·2128 + z (first level of Karatsuba), with

x = a3a2 ·b3b2

y = (a3a2 +a1a0) · (b3b2 +b1b0)+x + z

z = a1a0 ·b1b0,

where each of the three products (in x, y, z) would be computed in the same way (second

level), i. e., by splitting the terms and computing three sub-products. Therefore, to compute c

we need in total nine single digit multiplications, which if done with VPCLMUL instruction

(which performs four single digit multiplications in parallel), we would need three calls to

VPCLMUL. This was our initial approach. However, since we are using VPCLMUL three times

it means that we can actually perform twelve single digit multiplications instead of nine at

the same cost. We use this fact to our advantage to implement a hybrid between Karatsuba

and schoolbook multiplication which simplifies the algorithm and removes some additions

(and register permutations). The idea is the following: replace the first level of Karatsuba by

schoolbook multiplication and compute the sub-products by Karatsuba. Namely, we compute:

c = (a3a2 ·b3b2) ·2256 + (a3a2 ·b1b0 +a1a0 ·b3b2) ·2128 +a1a0 ·b1b0.

To compute the four sub-products with Karatsuba we need to obtain the following twelve

products:

a3a2 ·b3b2 : a3a2 ·b1b0 : a1a0 ·b3b2 : a1a0 ·b1b0 :
(1) a2 ·b2 a2 ·b0 a0 ·b2 a0 ·b0

(2) a3 ·b3 a3 ·b1 a1 ·b3 a1 ·b1

(3) (a2 +a3)(b2 +b3) (a2 +a3)(b0 +b1) (a0 +a1)(b2 +b3) (a0 +a1)(b0 +b1)

After all the products are computed we have to perform several more additions. Firstly, since

we are using Karatsuba’s method to compute the four products ai a j ·bk bl , we need to add the

first two computed terms to the third one, and then shift the third term (multiply by 264) and

add it to the result. For example,

a1a0 ·b1b0 = a1 ·b1 ·2128 + ((a0 +a1)(b0 +b1)+a1 ·b1 +a0 ·b0)264 +a0 ·b0.

104

5.3. Our implementation

Finally, we need to sum the two middle ai a j ·bk bl products, and again, shift appropriately

and add to obtain the final result.

To illustrate how the whole procedure is done with AVX512 and VPCLMUL instructions we

present Figure 5.4. The plan is to compute the four products in each row, denoted by (1), (2), (3)

in the equations above, in parallel. Let the AVX512 registers a and b hold the corresponding

four 64-bit digits in the order as shown in the figure (this can be achieved with AVX512

permutation function). First, we obtain the sums that are required to compute the products

in the third row. This is done by shuffling the elements of a and b to get them ordered as

shown in sa and sb in the figure and then by simply adding the values of a and b to sa and sb,

respectively.

Now we can use the VPCLMUL instruction to compute all the required products and store

them in registers u, v , and w . Note that w holds the products of the third row which represent

the middle term in Karatsuba’s algorithm so we add both u and v to w . For example, the

lowest 128 bits of w hold two digits w1w0 = (a0 + a1)(b0 +b1)+ a1 ·b1 + a0 ·b0. Recall that

to compute (a1a0 ·b1b0) we need to add w1w0 ·264 to the sum (a1 ·b1 ·2128 + a0 ·b0). Since

w1w0 ·264 = w1 ·2128+w0 ·264 this means that we can add w0 ·264 to the a0 ·b0 product (basically

add w0 to the higher digit of a0 ·b0) and add w1 to the a1 ·b1 product. Products a0 ·b0 and a1 ·b1

are stored in u1u0 and v1v0, respectively. Therefore, we shuffle w to sw to obtain the elements

of w ordered as shown in the figure and perform two additions – we add the elements of sw

at odd positions to u, and the elements at even positions to v . With this the four Karatsuba

multiplications are done. The only thing left to do is to permute the elements of u and v in the

right order and store the result (this step is not shown in the figure).

The described algorithm to compute a 4×4 digits product is used as a function that is called

inside the 8×8 digits Karatsuba multiplication. The 8×8 multiplication function takes care

of providing correctly ordered input registers and also handles the output of the 4×4 mul-

tiplication. The source code which implements the 4×4 multiplication function is given in

Listing A.5 in the Appendix A.3.3.

5.3.4 Side-channel protection considerations

The proposed polynomial inversion algorithm (Algorithm 10) is used during the key generation

process in BIKE where a polynomial, which is a part of the secret key, has to be inverted.

Because we are dealing with secret data the inversion has to be implemented securely. On the

high level, the algorithm involves several polynomial multiplications and several k-squarings.

We note that the number of these operations and the order in which they are performed

depend only on the public parameter r (not on a given input). Therefore, the algorithm is

inherently constant-time and if the required subroutines are implemented securely, then the

algorithm itself is secure without any modification.

The subroutines used in the inversion algorithm are the following: multiplication, squaring,

105

Chapter 5. Fast polynomial inversion for post quantum QC-MDPC cryptography

XXXX

XXXX

Shuffle and to and

Shuffle to

Figure 5.4 – Multiplying four 64-bit digits of two binary polynomials using AVX512 and
VPCLMUL instructions.

and k-squaring. The Additional code of BIKE [45] already implements multiplication in

constant-time and the optimizations we introduce in this chapter follow the same secure

implementation practices. Likewise, our implementation of polynomial squaring is constant-

time and memory access. The k-squaring function is implemented as a permutation of the

coefficients of the input polynomial. During the permutation we scan every bit of the input

and update the appropriate bit in the output. Hence, k-squaring is constant-time. Memory

locations that are accessed when copying the bits of input to the output are fully determined

by the parameter k, which is itself derived solely from the public value r . Therefore, our

implementation of k-squaring is also secure against side-channel attacks which exploit the

knowledge of memory locations that are accessed by the program.

106

5.4. Results

5.4 Results

In this section we provide performance results of different implementations of the inversion

function. Namely, we implement and benchmark the following versions of the function:

1. PORTABLE – fully portable version of the code, implemented in C without any platform

specific instructions.

2. PCLMUL – the same as PORTABLE with the exception that the PCLMUL instruction is

used for polynomial multiplication and squaring.

3. AVX2 – implementation leveraging the instructions offered by the AVX2 instruction set.

4. AVX512 – implementation leveraging the instructions offered by the basic AVX512 in-

struction set, called AVX512F, which is supposed to be supported by any x86_64 platform

with 512-bit wide SIMD capabilities.

5. VPCLMUL – the same as AVX512 with the exception that the new VPCLMUL instruction

is used for polynomial multiplication and squaring.

For each of these implementation flavors we benchmark two variants of inversion based on the

k-squaring implementation – generating permutation maps on the fly or using precomputed

maps. Moreover, we measure and present the runtime of the BIKE-2 key generation algorithm

that uses the described implementations of inversion.

The comparison baseline. The performance of our implementations is compared with two

popular open-source libraries NTL (compiled with GF2X) [4, 53] and OpenSSL [5]. We do not

compare to [67, 68, 27, 69] because they are all slower than NTL: a) the inversion algorithm

of [68] is reported to be twice faster than [69] and 12 times faster than [27], but 1.7 times slower

than NTL; b) the implementation in [67] is reported to be 3 times slower than NTL. Another

reason for choosing NTL and OpenSSL for comparison is that the “Additional implementa-

tion” [45] of BIKE protocol submitted to the second round of the NIST standardization project

uses the inversions from these two libraries.

Remark 9. We also measured the inversion function of the LEDAcrypt optimized code [65]

that implements safegcd algorithm [66]. This code uses AVX2, so for fair comparison, we

compile our code with AVX2 instructions only and compare the runtime. The performance

of the LEDAcrypt inversion is: a) using gcc: 4.05 and 12.43 million cycles for Level-1 and 3,

respectively; b) using clang: 3.29 and 10.30 million cycles for Level-1 and 3, respectively. The

performance of our inversion on the same platform is: 0.57 and 2.08 million cycles for Level-1

and 3, respectively. The code of [65] runs in constant time and is faster than NTL. On the other

hand, it is significantly slower than our implementation even when we use only the AVX2 code.

Blinding a non-constant time inversion. Binary polynomial inversion does not operate in

constant-time in either NTL [4] or OpenSSL [5] because these libraries use the extended

107

Chapter 5. Fast polynomial inversion for post quantum QC-MDPC cryptography

GCD based algorithms to compute the inverse. To address this issue, a recent change in

OpenSSL (between version 1.0.2 to version 1.1.0) protects the implementation by blinding

the inversion as follows. The function BN_GF2m_mod_inv(a, s) computes a−1 mod s by the

following sequence: 1) choose a random b; 2) compute c = ab; 3) invert c); 4) multiply by b.

Unfortunately, this does not work in the general case, where s is not necessarily an irreducible

polynomial (see discussion in [71]). If s is reducible, c = ab may be non-invertible modulo s.

This is exactly the case of BIKE-2 where xr −1 is reducible. Although the OpenSSL function

BN_GF2m_mod_inv(a, xr −1) is called with invertible a, the internal blinding may select a

random non-invertible polynomial b and then inverting c = ab would fail. In the polynomial

ring R a randomly selected b has probability 1
2 to be non-invertible. For a fair comparison (of

constant-time implementations), we use the same blinding technique for NTL as well. For

correctness, we always choose b such that wt(b) is odd, and therefore b is invertible in R.

The platform. We carried out performance measurements on a platform which supports all

the required instructions for the five versions of the code specified above. The platform is

a Dell XPS 13 7390 2-in-1 laptop. It has the latest, 10th generation Intel®CoreT M processor

(microarchitecture codename “Ice Lake”[ICL]). The specifics are Intel®CoreT M i7-1065G7 CPU

1.30GHz. This platform has 16 GB RAM, 48K L1d cache, 32K L1i cache, 512K L2 cache, and

8MiB L3 cache and it supports AVX512 and VPCLMUL instructions. For the experiments, we

turned off the Intel® Turbo Boost Technology (in order to work with a fixed frequency and

measure performance in cycles).

Measurements methodology. The performance reported hereafter is measured in processor

cycles (per single core). We obtain the results using the following methodology. Every mea-

sured function was isolated, run 25 times (warm-up), followed by 100 iterations that were

clocked (using the RDTSC instruction) and averaged. To minimize the effect of background

tasks running on the system, every experiment was repeated 10 times, and the minimum

result was recorded.

The code. Our code is written in C with intrinsic functions [57] for AVX functionality. The code

is compiled with gcc (version 9.3.0), using the “-O3” optimization flag, and ran on a Linux OS

(Ubuntu 20.04).

Performance of inversion

The performance of the inversion algorithm depends on the Hamming weight of r −2 (recall

that r defines the polynomial ring R), as explained in Section 5.2. Therefore, we generate a set

of r values, with different wt(r −2), from the range of values relevant for BIKE. Then, we choose

one representative for every value of wt(r −2), and measure the runtime of the algorithm for

the chosen parameters. Note that only r values for BIKE level 1 and 3 are considered since

NIST announced that the highest level of security, Level-5, is not critical for standardization.

Tables that contain all the measurements that were performed and performance improve-

108

5.4. Results

ments over the NTL library, i. e., all the different implementation variants listed in the in-

troduction of this section, are given in the appendix (Table A.4 and A.5). Here, we present

only the most interesting and relevant data points. The AVX2 instruction set was introduced

with the Haswell lineup of Intel processors in 2013. We assume that most of the CPUs in use

today support at least AVX2, and therefore we present the performance numbers for AVX2 and

AVX512 implementations. The third option, AVX512 plus VPCLMUL, is included to showcase

the improvements that can be achieved on the latest generation of Intel CPUs and to get a

glimpse of what can be expected from future processor architectures.

In Table 5.1 we show the runtime of the two baseline implementations, NTL and OpenSSL,

together with our implementations. Firstly, we note that all the different variants of the

algorithm that we implemented significantly outperform the baseline. While NTL is an order

of magnitude faster than OpenSSL, our implementations are an order of magnitude faster

than NTL.

It is interesting to note that for the GCD based inversion algorithms the runtime increases

with the size of r , while this is not necessarily the case for our algorithm. For example, if we

take r1 = 12323 (first row) and r2 = 12157 (last row), both NTL and OpenSSL are faster for the

smaller r2, while our implementations show a better performance for the larger r1. This is due

to the fact that wt(r1 −2) < wt(r2 −2) and therefore, the algorithm proposed in this chapter

performs fewer operations for r1 than for r2. Note that this does not hold in general for r1 > r2,

especially when the corresponding weights wt(r1 −2) < wt(r2 −2) are close, because even

though with r1 we perform a smaller number of operations, the operations themselves are

more time consuming since the polynomial ring we work in is larger.

The use of pre-computed permutation maps for k-squaring provides an interesting trade-off.

It improves the overall performance at a cost of occupying some memory space. The maps

that we need to store hold r · (blog(r −2)c+1+wt(r −2)) entries of size r bits (for all security

levels of BIKE the entries can be stored in 2 bytes of memory). For example, BIKE-2 IND-CCA

version (as proposed to the Round-2 NIST project) requires 450KB and 1.1MB of memory

to store the maps for parameter sizes defined for Level-1 and Level-3 security, respectively.

However, the performance improvements when using the maps are not very impressive – the

difference in the runtime with and without precomputed maps is always around five percent.

For example, the AVX2 implementations for r = 11779 invert a polynomial in 560K and 590K

cycles with and without the precomputed maps, respectively, showing a difference of 30K

cycles. The small contribution of the precomputed maps to the performance of the inversion

can be attributed to the heavily optimized functions for generating permutation maps on the

fly (described in Section 5.3.1).

It is also interesting to note the differences in the performance of the three SIMD implementa-

tions. For example, consider the columns (a), (b), and (c) of Table 5.1. The jump from AVX2,

in (a), which operates on 256-bit wide registers to the AVX512 implementation, in (b), which

works with registers of twice the size, does not improve the performance as much as we would

109

Chapter 5. Fast polynomial inversion for post quantum QC-MDPC cryptography

Table 5.1 – Performance of our implementations of inversion in F2[x]/(xr − 1) for a set of
r values with different wt(r − 2). The NTL and OSSL columns denote the runtime of the
inversion from the corresponding libraries ([4, 5]). The remaining columns represent our
implementation: (a) with AVX2; (b) with AVX512; (c) with AVX512 and VPCLMUL; columns
labeled with “*” denote implementations with pre-computed permutation maps. The runtime
is measured in millions of cycles.

r wt(r −2) NTL OSSL (a) (a)* (b) (b)* (c) (c*)
12323 4 6.75 49.19 0.59 0.56 0.54 0.52 0.43 0.41
11779 5 5.86 42.61 0.57 0.54 0.54 0.51 0.44 0.41
12347 6 6.52 48.67 0.64 0.63 0.60 0.58 0.47 0.45
11789 7 6.10 43.83 0.62 0.59 0.58 0.55 0.45 0.44
11821 8 5.99 44.98 0.66 0.62 0.61 0.59 0.48 0.46
11933 9 6.22 43.31 0.69 0.65 0.64 0.63 0.52 0.49
12149 10 6.37 46.60 0.75 0.71 0.70 0.67 0.55 0.52
12157 11 6.30 47.00 0.78 0.74 0.72 0.70 0.58 0.55
25603 4 9.00 213.84 1.75 1.72 1.65 1.61 1.28 1.24
24659 5 8.67 188.42 1.77 1.71 1.66 1.61 1.30 1.24
24677 6 8.61 193.27 1.88 1.83 1.74 1.71 1.35 1.32
24733 7 8.77 204.55 1.93 1.89 1.79 1.77 1.40 1.35
24821 8 9.07 185.17 2.08 2.02 1.92 1.87 1.51 1.49
25453 9 8.86 197.20 2.26 2.20 2.09 2.06 1.61 1.54
24547 10 8.32 182.11 2.13 2.08 1.99 1.95 1.61 1.53
24533 11 8.79 175.41 2.21 2.14 2.08 2.00 1.67 1.60
24509 12 8.47 181.95 2.27 2.20 2.13 2.07 1.66 1.61

expect. The AVX512 is slightly faster than the AVX2 implementation with the difference in

performance around five percent. One possible reason for this is that the AVX512 instructions

that we use have higher latency compared to the used AVX2 instructions. Another likely culprit

for the unimpressive performance of AVX512 is the platform used for the experiments which

has a low-powered mobile processor designed for portable devices. Based on the previous

generations of Intel CPUs, one of the ways that the power demand is lowered is by crippling

the SIMD unit because it is one of the most power hungry parts of a processor. Unfortunately,

these are the only 10th generation IceLake Intel CPUs available on the market currently, but we

expect to see higher performance improvements on the desktop and server versions of IceLake

once they are released. Nevertheless, the contribution of the VPCLMUL instruction to the

reduction in the runtime is more noticeable. For example, inversion time for r = 11779 drops

by 100K cycles, from 540K to 440K, when VPCLMUL is used in addition to AVX512. The reason

for the ∼ 20 percent performance improvement here is that the bottleneck in the polynomial

multiplication function when implemented with basic AVX512 instruction set is the use of the

(non-vectorized) PCLMUL instruction for multiplying two 64-bit digits, while the remaining

part of the function is able to use the 512-bit vector registers offered by AVX512. The use

of VPCLMUL does improve the situation, but it is difficult to leverage its full power when

implementing the multiplication with Karatsuba’s method (as explained in Section 5.3.3).

110

5.4. Results

In Table 5.2 we show the relative speedups over the NTL inversion achieved by our various

implementations. Depending on the specific implementation the measurements show an

8-fold to 16-fold speedup for Level-1 parameter sizes, while the improvements for Level-3

parameters are more modest, exhibiting 3-fold to 7-fold speedup over NTL. The proposed

parameters in Round-2 of NIST project for CCA secure BIKE-2 are r = 11779 and r = 24821 for

the first two security levels. Our most efficient implementation (AVX512 with VPCLMUL) is

able to invert a polynomial 14.37 times faster than NTL when r = 11779, and 6.1 times faster

when r = 24821. It is interesting to note that the relative speedups for Level-1 parameter sizes

are much higher than those for Level-3, meaning that NTL’s implementation of the inversion

scales better with the polynomial size than our implementation. This may be attributed to the

fact that NTL’s implementation is a GCD based inversion with linear complexity in r of the

number of ring operations that are required, together with the fact that these ring operations

are fairly efficient. On the other hand, our implementation requires blog(r −2)c+1+wt(r −
2)−1 polynomial multiplications which themselves require an order of (r /64)log2 3 processor

instructions, and therefore might scale worse than NTL’s implementation. However, we leave

the investigation of this phenomenon for future research.

Table 5.2 – Speedup of our implementations of inversion in F2[x]/(xr −1) compared to NTL
with GF2X [4]. Columns 3-8 represent the speedup over NTL of the following implementation:
(a) AVX2; (b) AVX512; (c) AVX512 and VPCLMUL; columns labeled with “*” denote implemen-
tations with pre-computed permutation maps. The speedup is measured for a set of r values
with different wt(r −2).

r wt(r −2) (a) (a)* (b) (b)* (c) (c*)
12323 4 11.51 12.15 12.50 13.02 15.68 16.55
11779 5 10.26 10.80 10.85 11.45 13.32 14.37
12347 6 10.11 10.36 10.86 11.26 13.87 14.42
11789 7 9.85 10.37 10.44 11.03 13.44 13.96
11821 8 9.10 9.61 9.89 10.15 12.42 13.10
11933 9 8.97 9.55 9.67 9.93 12.03 12.70
12149 10 8.48 8.99 9.09 9.46 11.54 12.23
12157 11 8.10 8.48 8.72 9.04 10.91 11.46
25603 4 5.15 5.23 5.45 5.59 7.06 7.23
24659 5 4.89 5.06 5.22 5.40 6.66 6.98
24677 6 4.58 4.71 4.96 5.04 6.38 6.54
24733 7 4.54 4.65 4.91 4.97 6.25 6.48
24821 8 4.37 4.49 4.72 4.84 6.01 6.10
25453 9 3.92 4.03 4.23 4.31 5.51 5.74
24547 10 3.91 4.00 4.18 4.27 5.18 5.44
24533 11 3.97 4.11 4.23 4.39 5.28 5.49
24509 12 3.73 3.85 3.98 4.10 5.10 5.27

The speedups shown in the table highlight again the difference in the GCD based inversion

algorithm of NTL and ITI based algorithm proposed in this chapter. Namely, the performance

of the former one depends only on the size of the polynomials (determined by r), while the

111

Chapter 5. Fast polynomial inversion for post quantum QC-MDPC cryptography

performance of the latter depends also on the value of wt(r −2). This effect is embodied in the

fact that the relative speedups of our implementations decrease as the corresponding weight

of r increases.

Remark 10. We note that our implementations are two orders of magnitude faster than the

inversion from the OpenSSL library. The exact numbers can be found in Tables A.4 and A.5 in

the appendix.

Performance of BIKE key generation

In Table 5.3 we report the performance of BIKE key generation procedure that uses our

implementation of inversion. The table contains only data for those implementations that

during the inversion generate permutation maps, required for k-squaring, on the fly, i. e.,

implementations without precomputed maps. For details about all our implementations for

the full set of r values refer to Table A.6 in the appendix.

Table 5.3 present the numbers for r = 11779 and r = 24821 which are the parameters proposed

for security Levels 1 and 3, respectively, in BIKE submission to the second round of the NIST

PQ project. Additionally, we show the runtime of the inversion when r = 12323 and r = 24659.

With these two r values we can achieve an improvement in performance of the key generation

while maintaining the DFR at the level required for the corresponding security level.

Table 5.3 – BIKE-2 key generation performance, for four relevant r values, when our imple-
mentation of the inversion algorithm is used (without precomputed maps). Columns 2-4
represent the following implementations: (a) AVX2; (b) AVX512; (c) AVX512 and VPCLMUL.
The runtime is measured in thousands of cycles.

r (a) (b) (c)
11779 630 590 480
12323 644 587 473
24821 2222 2061 1607
24659 1913 1781 1408

It is evident from the data in Tables 5.1 and 5.3 that the cost of key generation is dominated

by the cost of inversion. For example, the AVX2 implementation for r = 11779 takes 570K

cycles to invert the secret key polynomial, while the rest of the operations performed during

the key generation take only 60K cycles, yielding in total 630K cycles to generate a key pair.

This signifies the importance of having an efficient inversion in the implementation of BIKE-2

protocol.

5.5 Discussion

In this chapter we proposed an algorithm for polynomial inversion in the context of code-

based cryptographic schemes submitted to the NIST Post-Quantum Cryptography Standard-

112

5.5. Discussion

ization Project. The algorithm is based on the ITI algorithm [27], with some modifications

that make it particularly efficient and applicable in the context of inverting elements of a

polynomial ring F2[x]/(xr −1) used for example in BIKE KEM. We also explain how this algo-

rithm can be implemented, and indeed implement the algorithm such that it offers a very

competitive performance. Moreover, our experiments show that it can substitute the NTL and

OpenSSL inversion, which is used in BIKE Round-2 NIST submission, and achieve significant

performance improvements.

In general, the parameter r determines the size of the public and private key and the ciphertext,

and thus the overall latency and bandwidth of BIKE. So far, r was chosen as the minimum

value that satisfies the security target [9] and the target DFR of the decoder [1, 19]. We propose

an additional consideration, namely wt(r −2) because the inversion Algorithm 10 is more

efficient when wt(r −2) is smaller. Tables X and Y in Appendix X list r values according to their

respective weight and their security levels 1 and 3. BIKE submission in the second round of

NIST project recommends r = 11779 for Level-1 security, for which wt(r −2) = 5. Interestingly,

a considerably larger r = 12323 has wt(r −2) = 4, and therefore offers faster key generation

than r = 11779. We also note that [19] shows that ∼ r = 12323 is needed and sufficient in order

to achieve the required DFR of 2−128 for the first level of security.

Before this, BIKE-1 seemed to be a more appealing option than BIKE-2. This was the result

of the prohibitive cost of BIKE-2 key generation that seemed to be an obstacle for adoption,

especially when ephemeral keys are desired. This left out BIKE-2’s main advantage – the

amount of data that needs to be exchanged between two parties in a single execution of

the key exchange protocol. BIKE specification [9] addresses this difficulty by using a “batch

inversion” approach that requires pre-computation of a batch of key pairs. Such solutions

require that other protocols are adapted to using batched key pairs, and this raises additional

complications.

Our improved inversion and hence faster key generation avoids the difficulty. For Level-1 (r =
11779) BIKE-2 has key generation / encapsulation / decapsulation at 480K/180K/1.2M cycles,

and requires 1.4KB of data to be sent in each direction. By comparison, BIKE-1 (after using

our latest multiplication implementation) has key generation / encapsulation / decapsulation

at 67K/230K/1.3M cycles, with 2.8KB of data sent in each direction. We believe that our results

position BIKE-2 as an appealing design choice among the BIKE variants.

Based on the results presented in this chapter, the new specification of BIKE [18], aimed at

Round-3 of the NIST PQC Project, adopts BIKE-2 as the only variant of BIKE.

113

Part IILegendre PRF

115

6 Improved key recovery on the
Legendre PRF

The Legendre PRF is a pseudorandom function (PRF) based on the properties of the Legendre

symbol proposed by Damgård [29]. More precisely, for a given prime p, we model the function

as an oracle Fk parametrized by the secret key k, which on input a ∈ Fp outputs the Legendre

symbol of k +a, Fk (a) = (k+a
p

)
. Damgård conjectured that given a sequence of Legendre sym-

bols of consecutive elements it is hard to predict the next one. Similar problems conjectured

to be hard were also proposed in [28], such as finding the secret key k while being given access

to Fk and distinguishing Fk from a random function. A polynomial time algorithm for solving

either of these problems is not yet found and it is believed that the problems are indeed hard.

Until recently practical applications of the Legendre PRF have been limited, primarily due to

availability of much faster alternatives.

Recent results on cryptographic primitives for multi-party computation (MPC) [28] positioned

the Legendre PRF as a promising candidate for randomness generation in MPC settings. The

main reasons the Legendre PRF is suitable for MPC are the multiplicative property of the

Legendre symbol and very efficient evaluation of the symbol which can be performed with

only three modular multiplications in arithmetic circuit multi-party computations. Motivated

by these results, the Ethereum blockchain developers are considering to use the Legendre

PRF in a construction for the Ethereum 2.0 protocol [8] (due to be launched in 2020). To

incentivize research in the security of the Legendre PRF the Ethereum foundation announced

a number of challenges where the goal is to recover the secret key given M = 220 consecutive

Legendre symbols, for primes of size varying from 64 to 148 bits [8].

Previous work on attacks on the Legendre PRF includes [6] and [7]. In [6] the authors give

an attack on the Legendre PRF that has complexity O(
p

p t log p), where t is the number of

operations needed to compute a Legendre symbol or query an oracle. Subsequently, a better

attack was published in [7]1 with complexity O(
p

p t log2 p).

1We note that the preprint of [7] was published (eprint.iacr.org/2019/1357) while we were independently
working on the algorithms presented in this chapter. Our report was posted online [30] after their preprint.
Subsequently, we wrote another paper where we generalize and expand the methods presented in [30]. This paper
was submitted and accepted at the ANTS 2020 conference (www.math.auckland.ac.nz/~sgal018/ANTS).

117

eprint.iacr.org/2019/1357
www.math.auckland.ac.nz/~sgal018/ANTS

Chapter 6. Improved key recovery on the Legendre PRF

Contributions. In this chapter we present an algorithm that recovers the secret key of the

Legendre PRF in O(
√

p loglog p) operations on aΘ(log p)-bit architecture and by using only
4
√

p log2 p loglog p queries of the PRF oracle. There are two advantages of our algorithm with

respect to the previous best algorithm [7]. Firstly, in [7] the runtime of the algorithm depends

linearly in the cost of Legendre symbol evaluations and queries, while in our algorithm this

cost can be ignored. Our algorithm lowers the key extraction effort from O(
p

p t log2 p) in [7]

to O(
√

p loglog p). Secondly, if the number of oracle calls is bounded by M , we reduce the

number of operations from O(p t log2 p
M 2) in [7] to O(p log p loglog p

M 2).

We give a rigorous analysis of the runtime of our algorithm. The main bottleneck is the

number of simple operations on log p-bit words, such as word comparisons, shifts, ANDs, ORs

and XORs. Therefore we analyze the total number of such operations and ignore the cost of

Legendre symbol computations as the amount of work spent on computing them is negligible

compared to the rest of the algorithm.

Furthermore, we explain the details of our implementation of the algorithm and various

optimizations that significantly improved the performance. Finally, we give the solutions of

challenges 0, 1 and 2 of the Ethereum foundation Legendre PRF challenge. Challenges 0, 1,

and 2 feature a prime of size 64, 74 and 84 bits , respectively. The most difficult challenge,

number 2, has so far only been solved by us.

Structure. In Section 6.1 we recall the notation and basic concepts about the Legendre symbol.

In Section 6.2 we present our algorithm for attacking the Legendre PRF. The algorithm is based

on the birthday attack and it is divided in two parts – the precomputation phase where a table

of sequences of Legendre symbols is generated and the search phase where random sequences

are generated until a collision is found. The similarity of the precomputation and the search

phase can lead to some problems which we address and show how to fix.

In Section 6.3 we analyze and give the complexity of the algorithm in terms of number of

operations on aΘ(log p)-bit word machine. The costs of Legendre symbol computation and

oracle queries are ignored as they are negligible with respect to the rest of the algorithm. The

precomputation and search stage are treated separately and the optimal runtime is given

under reasonable heuristic assumptions. We also show how the runtime changes if a limited

number of queries is available.

Section 6.4 presents the implementation details and outlines differences between theoretical

and practical considerations of the runtime. We also give some implementational tricks that

give very valuable constant performance improvements.

In Section 6.5 we give the results of the performed experiments and the secret keys that we

recovered for the first three challenges posted on the Ethereum website [8]. Moreover, we

discuss the difference between the expected and the observed runtime.

118

6.1. Background and notation

6.1 Background and notation

Throughout the paper we consider p to be an odd prime number, Fp the finite field of car-

dinality p with elements represented by integers modulo p. We denote by
(a

p

)
the Legendre

symbol: (
a

p

)
=

1 if a ∈ F∗p is a square mod p

0 if a = 0 mod p

−1 if a ∈ F∗p is not a square mod p.

A sequence of Legendre symbols of L consecutive elements with a starting point a is denoted

by:

{a}L
..=

(
a

p

)
,

(
a +1

p

)
,

(
a +2

p

)
, . . . ,

(
a +L−1

p

)
.

In this chapter we assume that L is such that a given Legendre sequence of length L uniquely

defines the starting point, i. e., that {a}L = {b}L iff a = b. As already explained in Section 2.2

the provable bound for such L is O(
p

p log p). However, for all practical purposes L can be

selected to beΩ(log p).

The Legendre PRF is a pseudorandom function parametrized with the prime p and the secret

key k that on input a outputs
(k+a

p

)
. Several problems related to the Legendre PRF are con-

jectured to be hard. In the Shifted Legendre Symbol Problem (SLSP) we are given access to a

Legendre PRF oracle Fk that we can query with arbitrary values and the goal is to recover the

secret k. Another supposedly hard problem, Decisional Shifted Legendre Symbol Problem

(DSLSP), is to distinguish between a Legendre PRF and a truly random oracle. The third

problem that is hard to solve is the Next Symbol Problem (NSP) where we are given a sequence

of M = polylog(p) symbols and the goal is to find the next Legendre symbol in the sequence.

6.2 Algorithm

We give our algorithm in the scenario of attacking the Shifted Legendre Symbol Problem. The

attack is easily generalized to the other two stated problems – DSLSP and NSP. The assumption

is that we are given access to an oracle F that computes
(k+a

p

)
on input a, and we want to

find k. Let M be the number of oracle calls that we make and L as defined in the previous

section. It is assumed that M is larger than L.

The general idea is to execute the algorithm in two phases – precomputation and search phase.

In the precomputation phase we invoke the oracle multiple times in order to obtain many

Legendre sequences {ki }L , such that if we recover ki we can easily compute k, and store these

sequences in a table. Then in the second phase we compute Legendre sequences of random

elements j until we find { j }L = {ki }L for some ki . By the assumption that L is large enough we

will have j = ki , and subsequently we can recover the secret k. This is a simple birthday attack

which has optimal runtime when the table contains
p

p sequences. However one needs to

119

Chapter 6. Improved key recovery on the Legendre PRF

take into account the cost of creating the table – which depends on the number of oracle calls,

the cost of computing { j }L – which depends on the cost of Legendre symbol computations,

and the cost of table lookups – which is a couple of operations on an L-bit word machine. The

naive way to populate the table with sequences is to generate each sequence individually by

performing L queries to the oracle. Likewise, in the second phase where we generate random

sequences to find a collision with those in the table, we can create every random sequence by

evaluating the Legendre symbol for L different values.

However we show that one can do much better. Firstly, we can reduce the cost of populating

the table to o(1) oracle calls per sequence. By doing this we decrease the number of necessary

oracle calls to create a table of a desired size, which is particularly important in the cases

where we are allowed to make a limited number of queries to the oracle. More precisely, we

show how to create a table of size O(M 2/L) with M oracle calls. For example, in the Legendre

PRF challenge we are given only the first M = 220 consecutive Legendre symbol starting from

the secret k. Secondly, we explain how to reduce the cost of generating random sequences in

the search phase to o(1) Legendre symbol computations per sequence. With this the bottleneck

of the algorithm becomes the cost of simple bit operations, such as sequence comparison,

which are much cheaper than Legendre symbol computations.

6.2.1 Sequence properties

Given a Legendre sequence {a}M of length M ≥ L, we can trivially extract {a}L from it by taking

only the first L elements. However, the following three properties allow us to extract additional

sequences from {a}M , and moreover, to have a special relation between the starting point a

and the extracted sequences.

Shifting property. Each subsequence of {a}M of L consecutive symbols corresponds to the

Legendre sequence of (a + i) for some shift i . As long as 0 ≤ i ≤ M − L, then {a + i }L is a

subsequence of {a}M :

{a + i }L = {a}M from i th to (L−1+ i)th element,

or equivalently,

{a + i }L = {a}L+i from i th to the last element.

This allows us to extract the sequences {a + i }L for i = 0,1, . . . , M −L from {a}M .

Multiplicative property. It is well known that the Legendre symbol is a totally multiplicative

function, or in other words
(a

p

)(d
p

) = (ad
p

)
. This relates to Legendre sequences of a and d in

the following way. The sequence of Legendre symbols of length L with starting point ad and

common difference d ≥ 1 between the “numerators” in the sequence:(
ad

p

)
,

(
ad +d

p

)
,

(
ad +2d

p

)
, . . . ,

(
ad + (L−1)d

p

)

120

6.2. Algorithm

is equal to the Legendre sequence of length L with starting point a and common difference 1,

multiplied by the Legendre symbol of d , i. e.,(
d

p

)
{a}L

..=
(

d

p

)(
a

p

)
,

(
d

p

)(
a +1

p

)
, . . . ,

(
d

p

)(
a + (L−1)

p

)
.

This property can be expressed in a different manner. Namely, that a sequence of L Legendre

symbols starting from a with common difference d is equal to the Legendre sequence of a/d

where every element is multiplied by
(d

p

)
:

(
d

p

)
{a/d}L =

(
a

p

)
,

(
a +d

p

)
,

(
a +2d

p

)
, . . . ,

(
a + (L−1)d

p

)
.

Note that a,d ∈ Fp and a/d refers to division in Fp , i. e., it is computed as ad−1 mod p.

The sequence
(d

p

)
{a/d}L is a subsequence of {a}M as long as (L−1)d ≤ M −1, or in other words

as long as d ≤ DM
..= ⌊ M−1

L−1

⌋
. This allows us to obtain {a/d}L for d = 1,2. . . ,DM by computing(d

p

)
for all d ’s, and extracting symbols from {a}M at positions 0,d ,2d , . . . , (L−1)d .

Reverse sequence property. Suppose that we have the following Legendre sequence:

{a}L =
(

a

p

)
,

(
a +1

p

)
,

(
a +2

p

)
, . . . ,

(
a +L−1

p

)
.

Then, the reverse sequence, after multiplying it element-wise by
(−1

p

)
, is the Legendre sequence

of −(a +L−1) =−a − (L−1):

{−a − (L−1)}L =
(
−a −L+1

p

)
,

(
−a −L+2

p

)
, . . . ,

(
−a −1

p

)
,

(
−a

p

)

We may think of this property as of a generalization of the homomorphic property to nega-

tive denominators. This observation allows us to obtain one extra sequence gratis for each

sequence that we have.

Combining all properties. The three properties can be combined to vastly increase the

number of Legendre sequences that can be extracted from {a}M . Consider an arithmetic

sequence of length L starting from a + i and of common difference d . Legendre symbols of

this sequence are: (
a + i

p

)
,

(
a + i +d

p

)
,

(
a + i +2d

p

)
, . . . ,

(
a + i + (L−1)d

p

)
,

which can all be obtained from {a}M if 0 ≤ i and i + (L − 1)d ≤ M − 1. Furthermore, this

121

Chapter 6. Improved key recovery on the Legendre PRF

sequence, multiplied (divided) by
(d

p

)
is equal to

{
a + i

d

}
L
=

(
a+i

d

p

)
,

(
a+i

d +1

p

)
,

(
a+i

d +2

p

)
, . . . ,

(
a+i

d +L−1

p

)
.

Therefore, from {a}M we can extract the Legendre sequences of a+i
d for d = 1,2, . . . ,DM = ⌊ M−1

L−1

⌋
and i = 0,1, . . . , M −1− (L−1)d . Furthermore, applying the reverse sequence property, we can

obtain the sequence of − a+i
d − (L−1). This increases the total number of Legendre sequences

that can be extracted from {a}M to

DM∑
d=1

M−1−(L−1)d∑
i=0

2 = 2MDM − (L−1)DM (DM +1) = M 2

(L−1)
−M +O(L)

where the constant in O(L) is at most 2. For all these sequences, if we know their starting

points, a+i
d or − a+i

d − (L−1), together with i and d , then we can compute a.

6.2.2 Precomputation stage

The first part of the algorithm is the precomputation stage which is itself done in two steps.

Firstly we query F (x) for x = 0,1, . . . , M −1 in order to obtain {k}M . Then we use the described

sequence properties to extract M 2

(L−1) +O(M) Legendre sequences out of {k}M . These sequences

are of the following two types:{
k + i

d

}
L

and

{
−k + i

d
− (L−1)

}
L

.

They are saved in a hash table, together with the corresponding i , d , and one extra bit to

differentiate k+i
d from −k+i

d − (L−1). With this the precomputation stage is finished.

6.2.3 Search stage

During the second phase of the algorithm we compute { j }L sequences for many random j ’s in

an attempt to find a collision with a sequence stored in the hash table. Once the collision is

found we have that { j }L = { k+i
d }L , and by the assumption that L is such that a given sequence

uniquely determines its starting point, it follows that j = k+i
d , which allows us to compute the

secret key by k = d j − i . The key can be recovered in the same way in the case of collision with

one of the reverse sequences −k+i
d − (L−1).

The table contains M 2

L−1 +O(M) sequences, and therefore, a collision is expected to happen

after p L−1
M 2 trials. Note that each trial involves generating a random sequence of L symbols.

If this was to be done in a naive manner we would need to compute L Legendre symbols for

each trial. However, by using the same sequence properties as in the precomputation phase

we can greatly reduce the number of required Legendre symbol evaluations.

122

6.2. Algorithm

Similarly as in the precomputation stage, we proceed by choosing a random j ∈ Fp and

computing the Legendre sequence of length N with starting point j . Once { j }N is obtained we

can extract N 2

L−1 +O(N) sequences of type j+a
b and − j+a

b −(L−1) from it, with a and b satisfying

similar constrains as i and d in the precomputation stage. However, here we need to be more

careful. The sequences that we extract from { j }N are highly correlated with the sequences

extracted from {k}M . Therefore, they may not be considered as sequences obtained from

uniformly random elements in Fp which is the assumption that the collision search runtime

is based on. To illustrate, if we extract two sequences from { j }N , which are correlated such

that if one of them is in the hash table then the other one is as well, then the trials performed

with these sequences cannot be considered as two trials but rather as a single trial, i. e., either

we get two collisions or none. Therefore, the goal is to extract as many sequences as possible

from { j }N which are not “correlated”.

There are three main types of correlation described below.

Reverse sequence correlation. If we have that

j +a

b
= k + i

d

then

− j +a

b
− (L−1) =−k + i

d
− (L−1)

and vice-versa. Therefore we avoid computing the reverse sequences of the ones we extract

from { j }L .

Shifting correlation. If we have that

j +a

b
= k + i

d

then
j +a +b

b
= k + i +d

d
.

In other words, if we generate the sequence from j+a
b and it does not produce a hash table

collision, then there is a lower chance for a collision for the sequence generated from j+a+b
b .

Therefore, we want to avoid wasting time on such sequences since they give lower probability

of a collision. To combat this issue we reduce the number of sequences that are extracted

from { j }N by only considering sequences for j+a
b with 0 ≤ a < b. In this way the sequence

starting from j+a+b
b is never tested. However, this reduces the number of sequences that can

be extracted to
DN∑
b=1

b−1∑
i=0

1 = N 2

2(L−1)2 +O

(
N

L−1

)
.

123

Chapter 6. Improved key recovery on the Legendre PRF

Multiplicative correlation. If we have that

j +a

b
= k + i

d

then
j +a

b/ f
= k + i

d/ f

for each divisor f of lcm(d ,b). Similarly as before, we want to avoid producing sequences

correlated in such way. Therefore, when extracting sequences from { j }N we do not allow any

common divisors between the denominators d and b. This can be done simply by choosing

b’s from a different set, i. e., instead of taking be in 1,2, . . . ,DN = bN−1
L−1 c we take

b ∈ {DM +1,DM +2, . . . ,DN }∩P

where P is the set of prime numbers, giving in total O
(N−M

L /log(N
L)

)
different b-values.

By putting all the pieces together we obtain the following algorithm: given the sequence

{ j }N , we extract from it all sequences of type
{

j+a
b

}
L

with b ∈ {DM +1,DM +2, . . . ,DN }∩P and

0 ≤ a < b. This gives rise to a total of

DN∑
b=DM+1
b prime

b =O

(
N 2

L3

)

Legendre sequences where we consider N > 2M and L = O(log N), which is our use case.

Therefore, by computing N Legendre symbols we are able to obtain O(N 2

L3) sequences, implying

that we compute O(L3

N) Legendre symbols per sequence. Since N is exponential in L, this cost

becomes negligible and most of the runtime is spent on extracting the sequences out of { j }N

and lookups in the hash table.

6.3 Complexity of the algorithm

In order to give a precise estimate of the complexity of our algorithm we measure the runtime

in number of operations on an L-bit word processor architecture. When L is slightly larger

than 64, for example as in the case of Ethereum challenges [8], the presented complexities are

fairly exact considering that 64-bit architectures are standard for a number of years already.

We assume that the following operations can be performed in O(1), i. e., in a constant number

of processor instructions: accessing a memory location; comparing strings of length L bits;

copying, shifting or writing a bit in an L-bit string; a single look up in a hash table. Moreover,

we assume that a hash table with n entries can be generated and stored in O(n) instructions.

Precomputation phase. In the precomputation phase we perform several operations. Firstly,

the Legendre PRF oracle is queried M times. We can either assume that every oracle query

124

6.3. Complexity of the algorithm

takes the time of a Legendre symbol computation or that the M symbols are given as in the

Ethereum challenges case. In both cases the cost of obtaining the M consecutive symbols

({k}M) is negligible compared to the rest of the algorithm.

Recall that during the precomputation, we extract from {k}M sequences of type
{

k+i
d

}
L

, where

d ranges from 1 to DM = ⌊ M−1
L−1

⌋
. To extract those sequences we need to compute the Legendre

symbol of all d-values. This computation also takes negligible time within the whole algorithm.

On the other hand, the number of sequences of length L that are extracted form {k}M is

O(M 2/L). If done naively, i. e., by taking L symbols from {k}M for each sequence, this extraction

takes O(M 2) instructions. However, we can do this in a more efficient way. For each value of

d we can extract
{

k+i
d

}
L

for 0 ≤ i < d by performing L instructions for each sequence. Then,

we note that for sequential values of i we need to extract only one extra bit per sequence

because
{

k+i+d
d

}
L
=

{
k+i

d +1
}

L
, and this can be obtained from

{
k+i

d

}
L

by one shift and one

extra symbol extraction. Therefore the total cost of sequence extraction part of the algorithm

is O((M 2/L2)L+M 2/L) =O(M 2/L). Finally, the hash table is made on the fly as the sequences

are extracted, so this cost is also O(M 2/L).

The total runtime of the precomputation stage is O(M) Legendre symbol computations and

O(M 2/L) instructions on L-bit words.

Search phase. In the search phase we select a random j ∈ Fp , compute the sequence { j }N ,

extract subsequences from { j }N and check if there is a collision in the hash table. If the

collision is not found, we generate a new j and repeat the steps. To obtain the { j }N sequence

we have to perform N Legendre symbol evaluations.

Recall that we extract from { j }N sequences of type
{

j+a
b

}
L

for prime b-values in the range

[DM +1,DM +2, . . . ,DN], where DM = ⌊ M−1
L−1

⌋
and DN = bN−1

L−1 c. Therefore, we sieve the required

range to obtain the prime denominators b, and finally, compute the Legendre symbol of each

b. A rough estimate of the sieving cost is O(N log N loglog N) instructions, which is negligible

compared to the last step of the algorithm. In total we need to compute O(N /(L log N /L)) =
O(N /L2) Legendre symbols.

The number of sequences that are extracted (and looked up in the hash table) from a single

{ j }N is O(N 2/L3). The required number of instructions to perform the whole extraction

procedure is O((N 2/L3) logL).

Once a collision is found we have that either j+a
b = k+i

d or j+a
b =−k+i

d − (L−1) from which we

compute k in O(1) modular operations.

Denoting by c the number of different j -values that are selected before the collision is found,

the total runtime of the search phase takes O(c(N 2/L3) logL) instructions on an L-bit word

machine.

125

Chapter 6. Improved key recovery on the Legendre PRF

6.3.1 Runtime hypothesis

We conjecture that each sequence extracted from { j }N has probability of (M 2/L)/p of being

inside the hash table, in other words we assume that the sequences extracted from { j }N behave

as if they were Legendre sequences of uniformly random elements of Fp . The heuristic results

indicate that this is indeed the case. Therefore, the number of trials required until a hit is

found is p/(M 2/L), and so if the following formula is satisfied

M 2

L

cN 2

L3 = p

we find a hit with constant probability.

6.3.2 Optimal runtime

The total runtime is the sum of runtimes for both stages of the algorithm:

M 2

L
+ cN 2

L3 logL,

under the hypothesis that
M 2

L

cN 2

L3 = p.

The optimal runtime can then be obtained for the following values of M and N :

M = 4
p

p
p

L 4
√

logL,

N = 4
p

p
L
p

Lp
c 4
√

logL
,

runtime =
√

p logL.

In this scenario we have to additionally compute O(M +M/L + cN +N /(log N)2) Legendre

symbols using either oracle calls or by directly computing them. However, the cost of this is

negligible with the above choices of M and N . We also note that the variable c can be chosen

freely as long as c < L2/logL.

6.3.3 Runtime with a fixed M

In the special case where we are allowed to make only a fixed number M of queries to the

oracle the runtime of the algorithm is a function of M . If M ≥ 4
p

p
p

L 4
√

logL, i. e., if M is larger

than the number of queries we need to achieve the optimal runtime of the algorithm, then

it is enough to do 4
p

p
p

L 4
√

logL queries, discard the rest, and achieve a
√

p logL runtime.

Otherwise, when M < 4
p

p
p

L 4
√

logL, the runtime is dominated by the search stage which has

126

6.4. Implementation details

complexity

O

(
cN 2

L3 logL

)
=O

(
pL

M 2 logL

)
=O

(
p log ploglog p

M 2

)
assuming L =O(log p). Therefore the runtime of the algorithm for a fixed M is

O

(
min

{
4
p

p
√

loglog p ,
p log ploglog p

M 2

})
.

6.4 Implementation details

In this section we explain the concrete implementation and some subtle optimizations of

the presented algorithm which we used to break the Legendre PRF challenges [8]. For each

challenge, a prime p and a sequence {k}M of M = 220 bits of output from the Legendre PRF

were given. The challenge was to find the correct secret key k.

The proposed algorithm works in two stages, the precomputation and the search stage. During

the precomputation stage a big hash table is generated, containing the short subsequences

extracted from the given sequence of M bits. Later in the search stage many random short

sequences are produced and checked against the entries in the hash table. Every collision that

is found gives the correct key with a certain probability.

6.4.1 Precomputation stage

Since we are given the same number M of Legendre PRF oracle calls for every challenge,

the precomputation stage is exactly the same for each instance of the challenge. In all the

cases we set the length L of the short subsequences to be L = 64. We note that the primes

in the challenges we solve have bit length larger than 64, and theoretically L should be set

to approximately the bit length of the prime (as explained in Section 6.1), but for practical

reasons we opt for L = 64 even for larger primes. The advantage of this decision is that we are

working with 64-bit processor architectures so naturally all the operations as well as memory

storage of the subsequences are much faster if their size is limited to the word size of the

architecture. On the other hand, the proportion of false-positive collisions is increased for

larger p’s. However, the additional cost of validating the fake collisions is negligible and heavily

outweighed by the memory and runtime savings obtained by choosing this trade-off.

From the given M bits we extract approximately M 2

L = 234 subsequences of length L, as ex-

plained in Section 6.2.2. We define the hash table with 32-bit keys (i.e., a hash table key is

an integer between 0 and 232 −1). The table is then generated by considering the 32 least

significant bits of each subsequence as the hash key and storing only the remaining 32 bits (the

most significant bits) in the hash entry with address determined by the key (this is simply done

by setting table[seq & (232 −1)] = seq » 32). By storing not the full sequence, but only

the last 32 bits we halve the space required for the hash table. Obviously, since the number of

sequences we have is larger than the number of keys in the hash table, some of the entries in

127

Chapter 6. Improved key recovery on the Legendre PRF

the table may hold more than one subsequence.

In order to minimise the memory usage we generate the table in two passes. In the first one,

we extract all the subsequences and only count and store the number of different values for

each hash key. After this, we get an array denoted by positions which for each key holds its

starting position in the table. Then in the second pass we allocate the required memory for

the table, extract the subsequences again and populate the table based on the positions array.

Each entry in the table contains one or more values that is compared with many random

values later in the search stage. Therefore, we have to either sort the values in each individual

entry and do a binary search among the sorted values in the search stage, or leave the values

as is in the table and perform a linear search with the guessed value in the search stage. We

decided to sort the values. However, we note that either way does not affect the performance

of the algorithm because in the concrete instances of the challenge we have that the average

number of values sharing the same hash key is 4, which is small enough that all the values get

stored in the CPU cache memory so both linear and binary search run in approximately the

same number of operations.

The positions array stores 232 pointers each pointing to a number in the range [0,234 −1]. The

i ’th pointer points to roughly 4 · i since each hash key holds 4 values on average. Therefore,

in order to reduce memory usage, we only store the last 32 bits of the pointer, and then we

choose the full 34 bit value that is closest to 4∗ i and has the last 32 bit equal to the ones saved.

This allows us to save the positions array in 16GB of memory instead of 32GB if we used 64-bit

values for pointers.

For the given parameter M = 220 and the chosen L = 64, the 234 extracted sequences are stored

in the hash table of size about 65GB, while the positions array occupies another 16GB. We

also note that contrary to the theoretical algorithm given in Section 6.2.2 where the i and d

of an extracted subsequence are stored in the hash table alongside the actual hash value, in

practice we do not store i and d to minimize the memory required for the program to run. In

the next section we explain how this is handled in the search stage. Additionally, if the amount

of available memory permits we generate another data structure during the precomputation

to further optimize memory accesses, namely a bitmap, as explained in the next section.

6.4.2 Search stage

In the search stage we generate random sequences of length L and query the hash table for

collisions. As already explained in Section 6.2.3, computation of a single short sequence of L

Legendre symbols is computationally expensive. Therefore, we apply the same technique for

sequence extraction as in the precomputation stage with some rather important differences,

vastly lowering the number of clock cycles per Legendre symbol.

Firstly, a random j ∈ Fp is selected and the Legendre symbols of N consecutive values starting

from j are computed. The number N of symbols to be computed is such that N > 2M , as

128

6.4. Implementation details

explained in Section 6.2.3. We proceed by extracting subsequences from the obtained { j }N

sequence. Recall that subsequences extracted from {k}M and { j }N are of the form:{
k + i

d

}
L

and

{
j +a

b

}
L

,

respectively, where d ∈ {1,2, . . . ,DM } for DM = bM−1
L−1 c. On the j side the denominators b are

chosen from the range [DM +1,DN] such that b is prime and DN = bN−1
L−1 c. To select prime

numbers in the relevant range we implemented a simple sieve. We note that there is no need

for a more sophisticated algorithm because the sieving range determined by M is rather small

and the sieving is done only once.

Given the { j }N list as an array of N
8 bytes and an (a,b) pair, the subsequence

{
j+a

b

}
L

is extracted

as shown in Algorithm 13, where we use 0 for quadratic residues, and 1 for non-residues. The

same algorithm is used for extracting the subsequences in the precomputation stage. However,

in the precomputation stage the extraction of multiple subsequences can be further optimized.

Recall from Section 6.2 that the i and a parameters used for computing the
{

k+i
d

}
L

and
{

j+a
b

}
L

sequences are such that i ∈ [0, . . . , M−1−(L−1)d] and a ∈ [0, . . . ,b−1]. Hence, when computing

for example the
{

k+i
d

}
L

and
{

k+i+d
d

}
L

, we note that those two sequences share L−1 Legendre

symbols. This allows us to amortize the cost of extraction of “consecutive” sequences by

basically extracting only one bit per sequence for each string of such “consecutive” sequences.

Algorithm 13 Extract the subsequence
{

j+a
b

}
L

from sequence { j }N

Input: Byte array j_list, pair (a,b), length L

Output: Sequence
{

j+a
b

}
L

1: procedure EXTRACT_SEQ(j_list, a, b, L)
2: seq = 0
3: for k = 0 to L−1 do
4: idx = a +k ∗b
5: byte_idx = idx >> 3
6: bit_idx = 7− (idx & 7)
7: bit = (j_list[byte_idx] >> bit_idx) & 1
8: seq = seq | (bit << j)

9: if Legendre(b) == 1 then
10: seq =∼seq

11: return seq

In Table 6.1 we show the performance results of our implementation for different sizes of

prime p. Obtaining a single Legendre symbol by computing it takes 460 to 2700 processor

cycles depending on the size of p. On the other hand, amortized cost of extracting a single

symbol from sequences {k}M and { j }N requires 0.25 and 5.95 cycles, respectively, regardless of

the size of p.

Each obtained subsequence is checked against the hash table for a potential collision. The

129

Chapter 6. Improved key recovery on the Legendre PRF

Table 6.1 – Number of clock cycles required to obtain a Legendre symbol by computation and
extraction, amortized.

Prime size [bits] 64 74 84 100 148
computing 460 650 780 950 2700
extracting from {k}M 0.25 0.25 0.25 0.25 0.25
extracting from { j }N 5.95 5.95 5.95 5.95 5.95

check is performed in the following three steps:

1. Compute the hash key of the sequence by taking only the 32 least significant bits, and

the hash value by taking the 32 most significant bits of the sequence.

2. Read two values from the positions array (generated in the precomputation stage) – value

corresponding to the computed hash key and the succeeding value. Recall that these

two values are the address of the hash table entry corresponding to the key and the

address of the next entry, respectively.

3. If the two addresses are different, it means that the table entry of the computed key is

not empty. This happens with probability 1−1/e4. In that case we perform a binary

search for the hash value in the range specified by the starting address of the entry and

the address of the succeeding entry.

4. In case of a collision, the subsequence and the variables that determine it (j , a, b) are

stored for later validation.

After all the subsequences, produced by a randomly selected j , are checked against the hash

table and all the collisions are saved, we proceed to the last step where the collisions are vali-

dated. Note that due to memory and performance optimizations described in Section 6.4.1 the

collisions may not result in key recovery (false-positive collisions). The hash table holds only

the actual sequences
{

k+i
d

}
L

without the (i ,d) values. On the other hand, for each collision

that happened in the search stage we save the following data: the sequence
{

j+a
b

}
L

, j and

(a,b). Furthermore, the data for all the collisions is sorted by the value of the sequence. Then

again, in the same way as in the precomputation stage, we sequentially produce the
{

k+i
d

}
L

and
{
−k+i

d − (L−1)
}

L
subsequences and compare them to the sorted colliding sequences.

Once a collision is obtained we can compute the guessed key with:

k = (j +a) ·d

b
− i or k =− (j +a) ·d

b
−d · (L−1)− i ,

and check if it is indeed the correct key by computing {k}192 and comparing to the first 192

symbols given in the challenge. If the key is not found, the algorithm simply chooses the next

random j and repeats all the steps above.

130

6.5. Results

Optimizing the algorithm with a bitmap

For each hash table lookup we perform two random memory accesses – one access to the

positions array and another one to the hash table. In order to decrease the number of random

memory accesses we generate a bitmap during the precomputation stage. Each bit in the

bitmap denotes if a sequence with a certain property appears in the hash table. More precisely,

the m least significant bits of the sequence form an address, and the bit at this address in the

bitmap signifies the existence of such a sequence in the table. Therefore, after Step 1 from the

above algorithm, we proceed by reading the appropriate bit in the bitmap and only if this bit

is set we continue with reading the positions array as before.

If we suppose that the size of the bitmap is 2m and the size of the hash table 2h , the probability

that a sequence produces a hit in the bitmap is 2h−m . Consequently, instead of accessing the

memory twice per trial we access the bitmap once per trial and with probability 2h−m proceed

with accessing the positions array twice more. As a result, the number of accesses per trial

is reduced from 2 to 1+ 2
2m−h . The size of the bitmap is determined based on the available

memory, for example in the solution for the 84-bit prime challenge, we have used a bitmap

consisting of 237 bits so in particular we had m = 37 and h = 34.

6.5 Results

In this section we compare our algorithm with the two previously published algorithms for

attacking the Legendre PRF and give the results of our attempt to break the Legendre PRF

challenges posed by the Ethereum foundation [8].

Table 6.2 presents the complexity of algorithms proposed in [6] and [7], and our algorithm. The

algorithm of Khovratovich [6] computes sequences with on-the-fly queries on one side, i. e.,

each sequence of length L is obtained by querying the oracle L times, and obtains sequences

on the other side by computing Legendre symbols. The advantage of this algorithm is that it

does not require memory for storing sequences. This approach was improved by Beullens et

al. [7] by extracting sequences instead of obtaining them by querying the oracle or computing

the symbols. In this way they produce O(M 2/L2) sequences from the given sequence of length

M (note that in the table we set L = log p). However, they extract sequences only for (i ,d)

pairs with i < d which results in a factor of L smaller yield than we obtain with our algorithm.

Moreover, with the approach described in Section 6.2.2 the extraction of all sequences in the

precomputation phase can be done in O(M 2/log p) operations. The difference in the number

of extracted sequences leads to the difference in the expected number of trials that need to be

performed in the search stage. However, because of the limitations imposed by the correlation

properties (Section 6.2.3), we are not able to fully exploit the L times bigger table, thus the

additional loglog p factor in the search stage complexity of our algorithm.

131

Chapter 6. Improved key recovery on the Legendre PRF

Table 6.2 – Comparison of the complexity of our algorithm and those of [6] and [7]. The
complexity is given in terms of big-O number of operations onΘ(log p)-bit words. The time of
Legendre symbol evaluation is denoted by t .

Algorithm Search Precomputation Memory Optimal runtime

Khovratovich [6] pt log2 p
M M log p

p
pt log p

Beullens et al. [7] p log2 p
M 2 M 2 M 2

log p
p

p log p

Our algorithm p log p loglog p
M 2

M 2

log p M 2
√

p loglog p

Ethereum challenge

In each challenge we are given a prime p and M = 220 bits of the sequence {k}M as defined in

Section 6.1, where k is the secret key. The challenge is to recover the key k. The five challenges

and their corresponding security levels are shown in Table 6.3. We note that security levels in

the table are computed based on the complexity of the attack by Khovratovich [6], and that

the algorithm presented in this chapter lowers those bounds. Finally, we successfully solved

the challenges #0, #1 and #2.

Table 6.3 – Legendre PRF challenges [8] with security levels estimated based on [6] and the
new security estimates.

Challenge Prime size Security old Security new
[bits] [bits] [bits]

0 64 44 32
1 74 54 40
2 84 64 50
3 100 80 66
4 148 128 114

Our algorithm was implemented in C and compiled with the gcc compiler. All the paral-

lelization was done with OpenMP primitives. Testing and experiments were conducted on a

desktop PC equipped with an Intel Xeon E5-1650 processor with 6 cores running at 3.5GHz,

and 128GB of RAM. The first two challenges (#0 and #1) were solved on this PC, while for the

third challenge (#2) we used 16 nodes of the EPFL IC cluster. Each node has two Intel Xeon

E5-2680 v3 processors with 12 cores each running at 2.5GHz, and 192GB of RAM.

The precomputation stage in all three cases took less than 20 minutes on the desktop PC.

During the precomputation we produce three files for each challenge:

• 65GB file containing the hash table,

• 16GB file containing the positions array,

• 16GB file containing the bitmap which we set at 237 bits.

132

6.5. Results

In the search stage, all three files are loaded in RAM so the program requires in total almost

100GB of memory.

In Table 6.4 we show the results of the experiment. The complexity of the search stage of our

attack expressed as the expected number of trials that need to be done before the solution

is found is p·L
M 2 , where by trial we denote a single hash table collision check with a random

subsequence generated as explained in 6.4.1. We show the expected number of trials for each

challenge in the second column of Table 6.4, while the third column shows the actual number

of trials performed by the algorithm before the solutions are found. For the first two challenges

we run the algorithm several times with different seeds in order to record the required number

of trials and validate the expected numbers given in the complexity analysis in Section 6.3.

The numbers shown in the third column are the average of all the conducted experiments

(230.78 and 239.81 for challenges #0 and #1 respectively). We note that the observed variance

is considerable, which can be explained by the fact that the expected number of trials for a

prime p is pL/M 2 and the variance is about p2L2/M 4.

Table 6.4 – Results and estimates for solving the Legendre PRF challenges. The expected and
actual number of core-hours for challenges #0 and #1 is based on measuring the performance
of the implementation on our desktop PC with Intel Xeon E5-1650 at 3.5GHZ, while the
numbers for the other three challenges are based on performance of Intel Xeon E5-2680 v3 at
2.5GHz CPU available in the EPFL IC cluster.

Expected Observed Expected Observed k
trials # trials core-hours core-hours

#0 230 230.78 0.08 0.14 650282827113560997
#1 240 239.53 82 59 16619470924565960259133
#2 250 246.97 1.4e5 1.72e4 187320452088744099523844
#3 266 - 9.1e9 - -
#4 2114 - 2.5e24 - -

The solution for challenge #2 was the first and so far the only one that is published. As

shown in Table 6.4, the actual number of trials that were done before the key was found is

246.97 = 1.38e14 which is far less than expected. This can be explained by the large variance

and by sheer luck. The implementation version that was used for challenge #2 can perform

2.2e6 trials per second on a single core of a processor in the EPFL IC cluster. The number

of trials per second is slightly higher on the desktop PC since its CPU is working at a higher

frequency. In Table 6.4 we also give estimates for the two most difficult challenges (#3 and #4),

which are out of reach with the proposed attack and its implementation.

133

A Appendix

A.1 Additional information on the experiments and the results of

Chapter 3

Table A.1 gives the equations for the linear and the quadratic extrapolation together with the

extrapolated values of r for a DFR of 2−23, 2−64, and 2−128. It covers the tuple (scheme, level,

decoder, X), where decoder ∈ {BG=Black-Gray, BF=BackFlip+}.

The BIKE specification [9] chooses r to be the minimum required for achieving a certain

security level, and the best bandwidth trade-off. It also indicates that it is possible to increase r

by “plus or minus 50%” (leaving w ,t fixed) without reducing the complexity of the best known

key/message attacks. This is an interesting observation. For example, increasing the BIKE-1

Level-3 r = 19853 by 50% gives r = 29779 which is already close to the BIKE-1 Level-5 that

has r = 32749 (of course with different w and t). We take a more conservative approach and

restrict r values to be at most 30% above their CCA values stated in [9]. Table A.1 labels values

beyond this limit as N/A.

135

Appendix A. Appendix

Ta
b

le
A

.1
–

T
h

e
li

n
ea

r
an

d
th

e
q

u
ad

ra
ti

c
ex

tr
ap

o
la

ti
o

n
eq

u
at

io
n

s,
an

d
th

e
co

m
p

u
te

d
r

va
lu

es
fo

r
a

gi
ve

n
D

F
R

.T
h

e
ca

se
s

la
b

el
ed

w
it

h
N

/A
ar

e
th

o
se

w
h

er
e

th
e

va
lu

e
o

fr
to

ac
h

ie
ve

a
ta

rg
et

D
F

R
co

u
ld

n
o

t
b

e
fo

u
n

d
in

th
e

ra
n

ge
[0

.7
r′

,1
.3

r′
],

w
h

er
e

r′
is

th
e

re
co

m
m

en
d

ed
va

lu
e

fo
r

IN
D

-C
C

A
se

cu
ri

ty
in

[9
]

K
E

M
Le

v.
D

ec
o

d
er

It
er

.
Li

n
.

Li
n

.e
q

.(
a,

b
)

s.
t.

Q
u

ad
.e

q
.(

a,
b,

c)
s.

t.
st

ar
t

lo
g 10

DF
R
=

a
r
+b

=
2−

23
2−

64
2−

12
8

lo
g 10

DF
R
=

a
r2

+b
r
+c

=
2−

23
2−

64
2−

12
8

B
IK

E
-1

1
B

G
3

10
(−

1.
25

e−
2,

12
1)

10
25

3
11

26
1

12
78

1
(−

1.
05

e−
5,

1.
97

e−
1,
−9

27
)

10
25

3
10

78
9

11
31

7
B

IK
E

-1
1

B
G

4
9

(−
1.

45
e−

2,
14

0)
10

16
3

11
00

3
12

34
7

(−
1.

16
e−

5,
2.

18
e−

1,
−1

02
0)

10
13

9
10

66
7

11
19

7
B

IK
E

-1
1

B
G

5
9

(−
1.

49
e−

2,
14

4)
10

13
3

10
97

3
12

25
1

(−
1.

18
e−

5,
2.

20
e−

1,
−1

03
0)

10
13

3
10

66
7

11
17

1
B

IK
E

-1
1

B
F

8
9

(−
5.

40
e−

3,
49

.8
)

10
49

9
12

78
1

N
/A

(−
6.

86
e−

7,
8.

11
e−

3,
−1

6.
8)

10
45

9
12

14
9

14
10

7
B

IK
E

-1
1

B
F

9
6

(−
6.

92
e−

3,
63

.8
)

10
25

3
12

01
1

14
79

7
(−

1.
16

e−
6,

1.
62

e−
2,
−5

0.
9)

10
25

3
11

57
9

13
10

9
B

IK
E

-1
1

B
F

10
8

(−
8.

40
e−

3,
77

.6
)

10
06

7
11

54
9

13
82

9
(−

1.
88

e−
6,

2.
90

e−
2,
−1

08
)

10
06

7
11

19
7

12
43

7
B

IK
E

-1
1

B
F

11
7

(−
1.

12
e−

2,
10

4)
99

49
11

06
9

12
78

1
(−

3.
41

e−
6,

5.
77

e−
2,
−2

43
)

99
49

10
88

3
11

86
7

B
IK

E
-1

3
B

G
3

10
(−

6.
97

e−
3,

13
3)

20
05

1
21

82
1

24
65

9
(−

2.
39

e−
6,

8.
64

e−
2,
−7

80
)

19
99

7
21

05
9

22
18

9
B

IK
E

-1
3

B
G

4
10

(−
8.

70
e−

3,
16

6)
19

85
3

21
26

9
23

45
9

(−
3.

34
e−

6,
1.

22
e−

1,
−1

11
0)

19
81

3
20

71
7

21
68

3
B

IK
E

-1
3

B
G

5
10

(−
9.

10
e−

3,
17

3)
19

81
3

21
13

9
23

25
1

(−
3.

67
e−

6,
1.

34
e−

1,
−1

22
0)

19
76

3
20

62
7

21
55

7
B

IK
E

-1
3

B
F

8
10

(−
5.

36
e−

3,
99

.7
)

19
86

7
22

17
1

25
77

1
(−

9.
08

e−
7,

3.
02

e−
2,
−2

48
)

19
85

3
21

52
3

23
33

9
B

IK
E

-1
3

B
F

9
9

(−
6.

14
e−

3,
11

4)
19

66
1

21
66

1
24

78
1

(−
1.

37
e−

6,
4.

71
e−

2,
−4

03
)

19
66

1
21

05
9

22
61

3
B

IK
E

-1
3

B
F

10
5

(−
6.

51
e−

3,
12

0)
19

46
9

21
37

9
24

37
1

(−
8.

64
e−

7,
2.

69
e−

2,
−2

04
)

19
46

9
21

01
1

22
78

7
B

IK
E

-1
3

B
F

11
6

(−
7.

05
e−

3,
13

0)
19

37
3

21
10

1
23

86
9

(−
1.

66
e−

6,
5.

69
e−

2,
−4

88
)

19
37

3
20

69
3

22
06

7

136

A.1. Additional information on the experiments and the results of Chapter 3

A.1.1 Achieving the same DFR bounds as in [1]

We ran experiments with BackFlip+ and XBF = 100 for BIKE-1 Level-1, scanning all the 34

legitimate r ∈ [8500,9340] (prime r values such that xr −1 is a primitive polynomial) with a

sufficient number of tests for every value (sufficient in a sense that at least several failures are

observed). Applying our extrapolation methodology (see Section 3.4) to the acquired data

leads to the results illustrated in Figure A.1 Panels (a) and (b). The figure highlights the pairs

(DFR; r) for DFR 2−64 and 2−128 with the smallest possible r . For example, with r = 12539

the linear extrapolation gives DFR of 2−128. Note that [9] claims a DFR of 2−128 for a smaller

r = 11779. For comparison, with r = 11779 our methodology gives a DFR of 2−104. We can

guess that either different TTL values were used for every r , or that other r values were used,

or that a different extrapolation methodology was applied.

We show one possible methodology (“two larger r ’s fit”) that gives a DFR of ∼ 2−128 with

r = 11779 when applied to the acquired data: a) Ignore the points from the data-set for which

100−DFR is too low to be calculated reliably (e. g., the five lower points in Figure A.1); b) Draw

a line through the last two remaining data points with the highest values of r . The rationale

is that the “linear regime” of the DFR evolution starts for values of r that are beyond those

that can be estimated in an experiment. Under a concavity assumption, a line drawn through

two data points where r is smaller than the starting point of the linear regime leads to an

extrapolation that is lower-bounded by the “real” linear evolution. With this approach, the

question is how to choose the two points for which experimental data is obtained and from

which the DFR is extrapolated.

This shows that different ways to acquire and interpret the data give different upper bounds

for the DFR. The gap between the values of r for which we get the DFR by performing the

experiments and the values of r for which we obtain the DFR by extrapolation is large. There-

fore, the extrapolated DFR results are sensitive to the chosen methodology. It is interesting

to note that if we take our data points for Black-Gray and XBG = 5 and use the two larger r ’s

fit extrapolation, we can find two points that would lead to 2−128 and r = 11779, while more

conservative methodology gives only 2−101.

137

Appendix A. Appendix

(a) lin. ext., our method. (DFR, r) =
(2−64;10589), (2−128;12539)

(b) lin. ext. two larger r ’s fit. (DFR, r) =
(2−64;10253), (2−128;11813)

Figure A.1 – BIKE-1 Level-1 BackFlip+ different extrapolation methods. See the text for details.
The sub-captions detail the (DFR; r) for DFR values: 2−64, 2−128.

A.2 Additional information on the experiments and the results of

Chapter 4

Table A.2 shows the DFR extrapolation results for BIKE-1 at security level 1 for different

decoders. The number of tests for every value of r is 3.84M for r ∈ [9349,9901] and 384M for

r ∈ [9907,10139]. For the “two larger r ’s fit” extrapolation method (see Appendix A.1.1) we

chose: r = 10141 running 384M tests, and r = 10259 running 7.296 billion tests.

Figures A.2, A.3, A.4, and A.5 present the experimental data points and the extrapolation lines

given in Table A.2.

138

A.2. Additional information on the experiments and the results of Chapter 4

Ta
b

le
A

.2
–

T
h

e
be

st
li

n
ea

r
an

d
th

e
tw

o
p

oi
n

ts
ex

tr
ap

ol
at

io
n

eq
u

at
io

n
s,

an
d

th
e

es
ti

m
at

ed
r

va
lu

es
fo

r
th

re
e

ta
rg

et
D

F
R

.L
ev

el
is

ab
b

re
vi

at
ed

to
Lv

l,
th

e
n

u
m

b
er

o
fi

te
ra

ti
o

n
s

is
ab

b
re

vi
at

ed
to

it
er

,l
in

ea
r

is
ab

b
re

vi
at

ed
to

lin
.,

eq
u

at
io

n
is

ab
b

re
vi

at
ed

to
eq

.T
h

e
Li

n
.s

ta
rt

co
lu

m
n

in
d

ic
at

es
th

e
in

d
ex

o
ft

h
e

fi
rs

tv
al

u
e

o
fr

w
h

er
e

th
e

lin
ea

r
fi

ts
ta

rt
s.

T
h

e
5

co
lu

m
n

(n
u

m
b

er
o

fs
te

p
s)

is
th

e
in

d
ic

at
io

n
fo

r
th

e
ov

er
al

lp
er

fo
rm

an
ce

o
ft

h
e

d
ec

o
d

er
(l

ow
er

is
b

et
te

r)
.

K
E

M
Lv

l
D

ec
o

d
er

It
er

St
ep

s
Li

n
.

B
es

tl
in

.fi
te

q
.s

.t
.

Tw
o

p
o

in
ts

li
n

e
eq

.(
a,

b
)

st
ar

t
lo

g 10
DF
R
=

a
r
+b

=
2−

23
2−

64
2−

12
8

lo
g 10

DF
R
=

a
r
+b

=
2−

23
2−

64
2−

12
8

B
IK

E
-1

1
B

G
3

9
15

(−
1.

27
e−

2,
12

4)
10

25
3

11
21

3
12

73
9

(−
1.

33
e−

2,
12

9)
10

25
3

11
17

1
12

61
9

B
IK

E
-1

1
B

G
4

12
8

(−
1.

45
e−

2,
14

0)
10

16
3

11
00

3
12

34
7

(−
1.

63
e−

2,
15

8)
10

16
3

10
90

9
12

10
7

B
IK

E
-1

1
B

G
5

15
13

(−
1.

61
e−

2,
15

6)
10

13
3

10
90

9
12

10
7

(−
1.

70
e−

2,
16

5)
10

13
3

10
85

3
11

98
7

B
IK

E
-1

1
B

G
B

4
9

13
(−

1.
38

e−
2,

13
4)

10
25

3
11

09
3

12
49

1
(−

1.
40

e−
2,

13
6)

10
25

3
11

08
3

12
49

1
B

IK
E

-1
1

B
G

B
5

11
13

(−
1.

52
e−

2,
14

7)
10

16
3

10
97

3
12

22
7

(−
1.

41
e−

2,
13

6)
10

16
3

11
02

7
12

41
3

B
IK

E
-1

1
B

G
B

6
13

7
(−

1.
48

e−
2,

14
3)

10
13

3
10

97
3

12
26

9
(−

1.
54

e−
2,

14
9)

10
13

3
10

94
9

12
19

7
B

IK
E

-1
1

B
G

F
5

7
14

(−
1.

40
e−

2,
13

7)
10

30
1

11
17

1
12

53
9

(−
1.

44
e−

2,
14

1)
10

30
1

11
13

1
12

49
1

B
IK

E
-1

1
B

G
F

6
8

13
(−

1.
53

e−
2,

14
9)

10
25

3
11

02
7

12
27

7
(−

1.
61

e−
2,

15
7)

10
25

3
10

97
3

12
19

7
B

IK
E

-1
1

B
G

F
7

9
13

(−
1.

61
e−

2,
15

7)
10

18
1

10
94

9
12

14
9

(−
1.

68
e−

2,
16

4)
10

18
1

10
94

9
12

10
7

B
IK

E
-1

1
B

4
8

15
(−

8.
69

e−
3,

82
.4

)
10

25
9

11
69

9
13

90
1

(−
8.

05
e−

3,
75

.8
)

10
30

1
11

81
3

14
22

1
B

IK
E

-1
1

B
5

10
15

(−
1.

02
e−

2,
96

.3
)

10
13

3
11

43
7

13
22

9
(−

9.
56

e−
3,

89
.9

)
10

13
3

11
43

7
13

45
1

B
IK

E
-1

1
B

6
12

14
(−

1.
08

e−
2,

10
1)

10
06

7
11

21
3

13
03

7
(−

9.
52

e−
3,

88
.8

)
10

06
7

11
43

7
13

39
7

139

Appendix A. Appendix

Figure A.2 – Extrapolations of BIKE-1 Level-1 using the Black-Gray (BG) decoder.

Figure A.3 – Extrapolations of BIKE-1 Level-1 using the Black-Gray-Black (BGB) decoder.

140

A.2. Additional information on the experiments and the results of Chapter 4

Figure A.4 – Extrapolations of BIKE-1 Level-1 using the Black-Gray-Flip (BGF) decoder.

Figure A.5 – Extrapolations of BIKE-1 Level-1 using the Black (B) decoder.

141

Appendix A. Appendix

A.2.1 Optimized and secured implementation of syndrome rotation

Listing A.1 presents the implementation of the “small” rotation function required for rotating a

syndrome (more details can be found in Section 4.5. The implementation is using the AVX512

instruction set.

1 __m512i curr , next , a0 , a1 , idx0 , idx1 , num_full_qw ;
2 uint64_t bitscount0 = bitscount / 64;
3 uint64_t bitscount1 = bitscount % 64;
4
5 num_full_qw = _mm512_set1_epi8 (bitscount0);
6 one = _mm512_set1_epi64 (1);
7 previous = _mm512_setzero_si512 ();
8 idx0 = _mm512_setr_epi64 (0, 1, 2, 3, 4, 5, 6, 7);
9 idx0 = _mm512_add_epi64 (idx0 , num_full_qw);

10 idx1 = _mm512_add_epi64 (idx0 , one);
11
12 next = _mm512_load_si512 (in [0]);
13
14 for(int i = 0; i < R_ZMM; i++) {
15 curr = next;
16 next = _mm512_load_si512 (in[i+1]);
17 a0 = _mm512_permutex2var_epi64 (curr , idx , next);
18 a1 = _mm512_permutex2var_epi64 (curr , one , next);
19 a0 = _mm512_srli_epi64 (a0 , bitscount1);
20 a1 = _mm512_slli_epi64 (a1 , 64 - bitscount1);
21 _mm512_store_si512 (out[i], _mm512_or_si512 (a0 , a1));
22 }

Listing A.1 – Right rotate of bits stored in R_ZMM input 512-bit registers by bitscount

places using AVX512 instructions.

142

A.3. Additional information on the experiments and the results of Chapter 5

A.3 Additional information on the experiments and the results of

Chapter 5

A.3.1 Generating permutation map with AVX2 instructions

In Listing A.2 we show the AVX2 implementation of a function that generates the permutation

map given the l parameter, as explained in Section 5.3.1.

1 void gen_permutation_map (uint16_t map[R], uint16_t l) {
2 __m512i curr , inc , rval , zero;
3 uint32_t mask;
4 // Initialization : compute the first 16 map elements
5 for (int i = 0; i < 16; i++)
6 map[i] = (i * l) % R;
7
8 rval = BCAST_I16 (R);
9 zero = BCAST_I16 (0);

10 inc = BCAST_I16 ((l * 16) % R);
11 inc = SUB_I16 (inc , rval);
12
13 // Load the initial 16 values into the register
14 curr = LOAD(map);
15
16 // Generate the rest of the map elements
17 for (int i = 0; i < ceil(R / 16); i++) {
18 curr = ADD_I16 (curr , inc);
19 mask = CMP_I16 (zero , curr , CMP_GT);
20 curr = ADD_I16 (curr , rval & mask);
21 STORE (& map[i * 16], curr);
22 }
23 }

Listing A.2 – Permutation map generation with AVX2 instructions (the actual names

of AVX2 instructions are replaced with upper-case macro names for clarity)

A.3.2 Squaring using PCLMUL and VPCLMUL

As explained in Section 5.3.3, squaring of a binary polynomial a can be performed by squaring

every digit of a. On platforms that offer the PCLMUL instruction, this instruction can be

used to multiply two 64-bit digits, and therefore, can be used to square a digit. The PCLMUL

instruction takes as an input two 128-bit values and an additional parameter denoting which

64-bit words of the input should be multiplied. For example, mask 0x00 instructs PCLMUL to

multiply the two lower 64-bit words of the inputs, while the mask 0x01 requests multiplication

of the lower word of the first input and the higher word of the second input. The code that

implements polynomial squaring with PCLMUL is shown in Listing A.3.

143

Appendix A. Appendix

1 void gf2x_sqr (uint64_t *c, const uint64_t *a) {
2 for (size_t i = 0; i < ceil(R / 128); i++) {
3 __m128i va = LOAD (&a[i*2]);
4 STORE (&c[i*4], PCLMUL (va , va , 0x00));
5 STORE (&c[i*4+2] , PCLMUL (va , va , 0x11));
6 }
7 }

Listing A.3 – Squaring a polynomial in R with PCLMUL instruction.

When VPCLMUL instruction is available, the vectorized version of PCLMUL, we can execute

four 64-bit multiplications in parallel. In Section 5.3.3, we explain how VPCLMUL works and

moreover, how to apply it to compute a square of a binary polynomial. In Listing A.4 we

present the described implementation.

1 void gf2x_sqr (uint64_t *c, const uint64_t *a) {
2
3 __m512i perm_mask = _mm512_set_epi64 (7, 3, 6, 2, 5, 1, 4, 0);
4
5 for (size_t i = 0; i < ceil(R / 512); i++) {
6 __m512i va = LOAD (&a[i*8]);
7 va = PERMUTE (va , perm_mask);
8 STORE (&c[i*16] , VPCLMUL (va , va , 0x00));
9 STORE (&c[i*16+8] , VPCLMUL (va , va , 0x11));

10 }
11 }

Listing A.4 – Squaring a polynomial in R with VPCLMUL instruction.

A.3.3 A 4×4 digits multiplication using VPCLMUL

Listing A.5 shows the implementation of the function that multiplies four by four 64-bit digits

of a binary polynomial. The algorithm is explained in details in Section 5.3.3 and Figure 5.4.

144

A.3. Additional information on the experiments and the results of Chapter 5

1 void mul4x4 (__m512i *h, __m512i *l, __m512i a, __m512i b) {
2
3 __m512i sa = PERM64 (a, _MM_SHUFFLE (2, 3, 0, 1));
4 __m512i sb = PERM64 (b, _MM_SHUFFLE (2, 3, 0, 1));
5
6 sa = sa ^ a;
7 sb = sb ^ b;
8
9 __m512i u = VPCLMUL (a, b, 0x00);

10 __m512i v = VPCLMUL (a, b, 0x11);
11 __m512i w = VPCLMUL (sa , sb , 0x00);
12
13 w = w ^ u ^ v;
14 w = PERM64 (w, _MM_SHUFFLE (2, 3, 0, 1));
15
16 *l = XOR_MASKED (u, w, 0xaa);
17 *h = XOR_MASKED (v, w, 0x55);
18 }

Listing A.5 – Multiplying four 64-bit digits of two binary polynomials using AVX512

and VPCLMUL instructions as explained in Section 5.3.3 and Figure 5.4

A.3.4 Example of k-square versus series of k squares

In Section 5.2 we explain that for values of k < kthr instead of performing k-squaring we

perform k regular squares. The threshold kthr depends on the implementation and the

platform. For example, in Table A.3 we compare the performance of squaring and k-squaring

in R using AVX512 and VPCLMUL instructions, and compute the thresholds.

Table A.3 – Squaring and k-squaring in R using our code (AVX512 and VPCLMUL). Columns
2 and 3 count cycles. The threshold is computed by kthr = k-square/square. The r values
correspond to the IND-CCA variants of BIKE for Level-1/3.

r k-square square kthr

11779 16000 230 69
24821 35000 510 68

A.3.5 Performance results

145

Appendix A. Appendix

Ta
b

le
A

.4
–

Pe
rf

o
rm

an
ce

o
fo

u
r

im
p

le
m

en
ta

ti
o

n
s

o
fi

n
ve

rs
io

n
in
F

2
[x

]/
(x

r
−1

)
fo

r
a

se
to

fr
va

lu
es

w
it

h
d

if
fe

re
n

tw
t(

r
−2

).
T

h
e

N
T

L
an

d
O

SS
L

co
lu

m
n

s
d

en
ot

e
th

e
ru

n
ti

m
e

of
th

e
in

ve
rs

io
n

fr
om

th
e

co
rr

es
p

on
d

in
g

lib
ra

ri
es

([
4,

5]
).

T
h

e
re

m
ai

n
in

g
co

lu
m

n
s

re
p

re
se

n
to

u
r

im
p

le
m

en
ta

ti
on

:
(a

)w
it

h
AV

X
2;

(b
)w

it
h

AV
X

51
2;

(c
)w

it
h

AV
X

51
2

an
d

V
P

C
L

M
U

L
;(

d
)f

u
lly

p
or

ta
b

le
im

p
le

m
en

ta
ti

on
,i

n
d

ep
en

d
en

to
fa

n
y

p
la

tf
or

m
;(

e)
p

or
ta

b
le

w
it

h
P

C
L

M
U

L
in

st
ru

ct
io

n
u

se
d

fo
r

m
u

lt
ip

li
ca

ti
o

n
an

d
sq

u
ar

in
g;

co
lu

m
n

s
la

b
el

ed
w

it
h

“*
”

d
en

o
te

im
p

le
m

en
ta

ti
o

n
s

w
it

h
p

re
-c

o
m

p
u

te
d

p
er

m
u

ta
ti

o
n

m
ap

s.
T

h
e

ru
n

ti
m

e
is

m
ea

su
re

d
in

m
il

li
o

n
s

o
fc

yc
le

s.

r
w

t(
r
−2

)
N

T
L

O
SS

L
(a

)
(a

)*
(b

)
(b

)*
(c

)
(c

*)
(d

)
(d

)*
(e

)
(e

)*
12

32
3

4
6.

75
49

.1
9

12
.7

9
0.

56
0.

54
0.

52
0.

43
0.

41
12

.6
4

0.
95

0.
78

0.
59

11
77

9
5

5.
86

42
.6

1
11

.8
1

0.
54

0.
54

0.
51

0.
44

0.
41

11
.4

2
1.

15
0.

79
0.

57
12

34
7

6
6.

52
48

.6
7

15
.0

3
0.

63
0.

60
0.

58
0.

47
0.

45
14

.6
7

1.
15

0.
86

0.
64

11
78

9
7

6.
10

43
.8

3
12

.9
5

0.
59

0.
58

0.
55

0.
45

0.
44

12
.7

4
1.

05
0.

84
0.

62
11

82
1

8
5.

99
44

.9
8

14
.0

4
0.

62
0.

61
0.

59
0.

48
0.

46
13

.9
8

1.
10

0.
89

0.
66

11
93

3
9

6.
22

43
.3

1
14

.5
0

0.
65

0.
64

0.
63

0.
52

0.
49

14
.2

8
1.

18
0.

94
0.

69
12

14
9

10
6.

37
46

.6
0

15
.6

0
0.

71
0.

70
0.

67
0.

55
0.

52
15

.3
1

1.
29

1.
02

0.
75

12
15

7
11

6.
30

47
.0

0
16

.5
7

0.
74

0.
72

0.
70

0.
58

0.
55

16
.2

3
1.

33
1.

06
0.

78
25

60
3

4
9.

00
21

3.
84

39
.1

0
1.

72
1.

65
1.

61
1.

28
1.

24
38

.6
2

2.
78

2.
33

1.
75

24
65

9
5

8.
67

18
8.

42
41

.7
5

1.
71

1.
66

1.
61

1.
30

1.
24

40
.9

4
3.

10
2.

35
1.

77
24

67
7

6
8.

61
19

3.
27

44
.4

1
1.

83
1.

74
1.

71
1.

35
1.

32
43

.5
3

3.
19

2.
48

1.
88

24
73

3
7

8.
77

20
4.

55
46

.4
7

1.
89

1.
79

1.
77

1.
40

1.
35

45
.6

5
3.

30
2.

56
1.

93
24

82
1

8
9.

07
18

5.
17

49
.1

6
2.

02
1.

92
1.

87
1.

51
1.

49
49

.0
0

3.
24

2.
73

2.
08

25
45

3
9

8.
86

19
7.

20
51

.4
2

2.
20

2.
09

2.
06

1.
61

1.
54

50
.8

6
3.

93
2.

97
2.

26
24

54
7

10
8.

32
18

2.
11

45
.8

1
2.

08
1.

99
1.

95
1.

61
1.

53
44

.4
6

4.
07

2.
88

2.
13

24
53

3
11

8.
79

17
5.

41
47

.1
0

2.
14

2.
08

2.
00

1.
67

1.
60

46
.1

4
4.

11
3.

00
2.

21
24

50
9

12
8.

47
18

1.
95

50
.2

4
2.

20
2.

13
2.

07
1.

66
1.

61
50

.0
6

3.
67

3.
05

2.
27

146

A.3. Additional information on the experiments and the results of Chapter 5

Ta
b

le
A

.5
–

Sp
ee

d
u

p
of

ou
r

im
p

le
m

en
ta

ti
on

s
of

in
ve

rs
io

n
in
F

2
[x

]/
(x

r
−1

)c
om

p
ar

ed
to

N
T

L
w

it
h

G
F2

X
[4

].
C

ol
u

m
n

s
3-

8
re

p
re

se
n

tt
h

e
sp

ee
d

u
p

ov
er

N
T

L
o

ft
h

e
fo

llo
w

in
g

im
p

le
m

en
ta

ti
o

n
:(

a)
AV

X
2;

(b
)

AV
X

51
2;

(c
)

AV
X

51
2

an
d

V
P

C
L

M
U

L
;(

d
)

P
O

R
TA

B
L

E
;(

e)
P

C
L

M
U

L
;c

o
lu

m
n

s
la

b
el

ed
w

it
h

“*
”

d
en

ot
e

im
p

le
m

en
ta

ti
on

s
w

it
h

p
re

-c
om

p
u

te
d

p
er

m
u

ta
ti

on
m

ap
s.

T
h

e
sp

ee
d

u
p

is
m

ea
su

re
d

fo
r

a
se

to
fr

va
lu

es
w

it
h

d
if

fe
re

n
tw

t(
r
−2

).

r
w

t(
r
−2

)
(a

)
(a

)*
(b

)
(b

)*
(c

)
(c

*)
(d

)
(d

)*
(e

)
(e

)*
12

32
3

4
11

.5
1

12
.1

5
12

.5
0

13
.0

2
15

.6
8

16
.5

5
0.

53
0.

53
7.

12
8.

68
11

77
9

5
10

.2
6

10
.8

0
10

.8
5

11
.4

5
13

.3
2

14
.3

7
0.

50
0.

51
5.

11
7.

46
12

34
7

6
10

.1
1

10
.3

6
10

.8
6

11
.2

6
13

.8
7

14
.4

2
0.

43
0.

44
5.

64
7.

61
11

78
9

7
9.

85
10

.3
7

10
.4

4
11

.0
3

13
.4

4
13

.9
6

0.
47

0.
48

5.
79

7.
26

11
82

1
8

9.
10

9.
61

9.
89

10
.1

5
12

.4
2

13
.1

0
0.

43
0.

43
5.

46
6.

75
11

93
3

9
8.

97
9.

55
9.

67
9.

93
12

.0
3

12
.7

0
0.

43
0.

44
5.

29
6.

59
12

14
9

10
8.

48
8.

99
9.

09
9.

46
11

.5
4

12
.2

3
0.

41
0.

42
4.

93
6.

23
12

15
7

11
8.

10
8.

48
8.

72
9.

04
10

.9
1

11
.4

6
0.

38
0.

39
4.

75
5.

94
25

60
3

4
5.

15
5.

23
5.

45
5.

59
7.

06
7.

23
0.

23
0.

23
3.

23
3.

87
24

65
9

5
4.

89
5.

06
5.

22
5.

40
6.

66
6.

98
0.

21
0.

21
2.

80
3.

69
24

67
7

6
4.

58
4.

71
4.

96
5.

04
6.

38
6.

54
0.

19
0.

20
2.

69
3.

47
24

73
3

7
4.

54
4.

65
4.

91
4.

97
6.

25
6.

48
0.

19
0.

19
2.

66
3.

43
24

82
1

8
4.

37
4.

49
4.

72
4.

84
6.

01
6.

10
0.

18
0.

19
2.

80
3.

32
25

45
3

9
3.

92
4.

03
4.

23
4.

31
5.

51
5.

74
0.

17
0.

17
2.

25
2.

98
24

54
7

10
3.

91
4.

00
4.

18
4.

27
5.

18
5.

44
0.

18
0.

19
2.

05
2.

88
24

53
3

11
3.

97
4.

11
4.

23
4.

39
5.

28
5.

49
0.

19
0.

19
2.

14
2.

93
24

50
9

12
3.

73
3.

85
3.

98
4.

10
5.

10
5.

27
0.

17
0.

17
2.

31
2.

78

147

Appendix A. Appendix

Ta
b

le
A

.6
–

B
IK

E
-2

ke
y

ge
n

er
at

io
n

p
er

fo
rm

an
ce

w
h

en
o

u
r

im
p

le
m

en
ta

ti
o

n
o

f
th

e
in

ve
rs

io
n

al
go

ri
th

m
is

u
se

d
.

C
o

lu
m

n
s

re
p

re
se

n
t

th
e

fo
llo

w
in

g
im

p
le

m
en

ta
ti

o
n

s:
(a

)
AV

X
2;

(b
)

AV
X

51
2;

(c
)

AV
X

51
2

an
d

V
P

C
L

M
U

L
;(

d
)

P
O

R
TA

B
LE

;(
e)

P
C

L
M

U
L

;c
o

lu
m

n
s

la
b

el
ed

w
it

h
“*

”
d

en
o

te
im

p
le

m
en

ta
ti

o
n

s
w

it
h

p
re

-c
o

m
p

u
te

d
p

er
m

u
ta

ti
o

n
m

ap
s.

T
h

e
ru

n
ti

m
e

is
m

ea
su

re
d

in
th

o
u

sa
n

d
s

o
fc

yc
le

s.

r
w

t(
r
−2

)
(a

)
(a

)*
(b

)
(b

)*
(c

)
(c

*)
(d

)
(d

)*
(e

)
(e

)*
12

32
3

4
64

2
64

4
58

1
58

7
47

0
47

3
13

82
9

13
57

4
13

44
11

21
11

77
9

5
62

5
63

0
58

5
59

1
47

7
47

9
12

65
1

12
53

0
14

54
13

04
12

34
7

6
70

9
70

8
64

2
65

0
51

2
51

6
15

88
2

15
77

3
14

31
13

32
11

78
9

7
67

2
67

4
62

3
62

9
50

0
51

0
13

95
9

13
63

5
15

16
12

26
11

82
1

8
70

9
71

5
65

6
65

8
52

0
52

9
15

10
1

14
78

6
15

56
12

72
11

93
3

9
74

3
75

1
69

2
69

6
55

1
56

1
15

55
2

15
22

6
16

59
13

34
12

14
9

10
80

6
80

6
74

3
74

8
59

4
59

3
16

74
6

16
29

1
18

18
14

51
12

15
7

11
82

9
84

2
76

9
77

2
61

6
62

1
17

65
9

17
28

8
18

65
14

93
25

60
3

4
19

07
19

06
17

73
17

62
14

40
13

91
42

18
6

41
51

5
39

10
32

41
24

65
9

5
19

44
19

13
17

77
17

81
14

06
14

08
44

48
5

44
13

1
38

81
35

50
24

67
7

6
20

24
19

94
18

65
18

92
14

74
14

54
47

23
6

46
78

8
39

79
36

59
24

73
3

7
21

26
20

97
19

18
19

08
15

09
15

04
49

14
1

48
94

2
41

07
37

69
24

82
1

8
22

46
22

22
20

64
20

61
16

48
16

07
52

21
6

51
64

2
43

92
36

97
25

45
3

9
24

20
24

14
22

41
22

30
17

32
17

03
54

72
6

53
95

7
47

86
43

88
24

54
7

10
23

24
22

99
21

59
21

72
17

00
17

06
48

21
1

47
72

5
50

01
44

93
24

53
3

11
23

67
23

48
22

13
21

90
17

63
17

33
49

63
8

49
29

2
50

37
45

87
24

50
9

12
24

54
24

32
22

71
22

39
17

81
17

65
53

14
5

52
37

2
50

04
41

15

148

Bibliography

[1] N. Sendrier and V. Vasseur, “On the Decoding Failure Rate of QC-MDPC Bit-Flipping

Decoders,” in Post-Quantum Cryptography (J. Ding and R. Steinwandt, eds.), vol. 2,

(Cham), pp. 404–416, Springer International Publishing, 2019.

[2] N. Drucker, S. Gueron, and D. Kostic, “On constant-time QC-MDPC decoding with

negligible failure rate.” Cryptology ePrint Archive, Report 2019/1289, 2019.

[3] A. Guimarães, D. F. Aranha, and E. Borin, “Optimized implementation of QC-MDPC

code-based cryptography,” vol. 31, no. 18, p. e5089, 2019.

[4] V. Shoup, “Number theory c++ library (ntl) version 11.3.2.” http://www.shoup.net/ntl,

November 2018.

[5] The OpenSSL Project, “OpenSSL 1.1.1: The open source toolkit for SSL/TLS.” https:

//github.com/openssl/openssl.

[6] D. Khovratovich, “Key recovery attacks on the Legendre PRFs within the birthday bound.”

Cryptology ePrint Archive, Report 2019/862, 2019. https://eprint.iacr.org/2019/862.

[7] W. Beullens, T. Beyne, A. Udovenko, and G. Vitto, “Cryptanalysis of the Legendre PRF and

Generalizations,” IACR Transactions on Symmetric Cryptology, vol. 2020, pp. 313–330,

May 2020.

[8] D. Feist, “Legendre pseudo-random function,” 2019. https://legendreprf.org.

[9] N. Aragon, P. S. L. M. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Gaborit,

S. Gueron, T. Güneysu, C. A. Melchor, R. Misoczki, E. Persichetti, N. Sendrier, J.-P. Tillich,

and G. Zémor, “BIKE: Bit Flipping Key Encapsulation,” 2019. Submission to the Round-2

of the NIST PQC Standardization Project,

https://bikesuite.org/files/round2/spec/BIKE-Spec-2019.06.30.1.pdf.

[10] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and

public-key cryptosystems,” Commun. ACM, vol. 21, p. 120–126, Feb. 1978.

[11] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation, vol. 48, pp. 203–

209, Jan. 1987.

149

http://www.shoup.net/ntl
https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://eprint.iacr.org/2019/862
https://bikesuite.org/files/round2/spec/BIKE-Spec-2019.06.30.1.pdf

Bibliography

[12] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in Cryptology, CRYPTO

’85, (Berlin, Heidelberg), p. 417–426, Springer-Verlag, 1985.

[13] A. K. Lenstra and H. W. Lenstra, The development of the number field sieve, vol. 1554 of

Lecture notes in mathematics. Berlin [etc.: Springer-Verlag, 1993.

[14] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms

on a quantum computer,” SIAM J. Comput., vol. 26, p. 1484–1509, Oct. 1997.

[15] NIST, “Post-Quantum Cryptography.” https://csrc.nist.gov/projects/

post-quantum-cryptography, 2019. Last accessed 20 Aug 2019.

[16] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent intractability of certain

coding problems (corresp.),” IEEE Transactions on Information Theory, vol. 24, no. 3,

pp. 384–386, 1978.

[17] NIST, “Status Report on the First Round of the NIST Post-Quantum Cryptography Stan-

dardization Process,” 2019. https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf.

[18] N. Aragon, P. S. L. M. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Gaborit,

S. Gueron, T. Güneysu, C. A. Melchor, R. Misoczki, E. Persichetti, N. Sendrier, J.-P. Tillich,

and G. Zémor, “BIKE: Bit Flipping Key Encapsulation,” 2020. Prospective submission to

the Round-3 of the NIST PQC Standardization Project,

https://bikesuite.org/files/v4.0/BIKE_Spec.2020.05.03.1.pdf.

[19] N. Drucker, S. Gueron, and D. Kostic, “QC-MDPC Decoders with Several Shades of Gray,”

in Post-Quantum Cryptography (J. Ding and J.-P. Tillich, eds.), (Cham), pp. 35–50, Springer

International Publishing, 2020.

[20] N. Drucker, S. Gueron, and D. Kostic, “Fast polynomial inversion for post quantum qc-

mdpc cryptography,” in Cyber Security Cryptography and Machine Learning (S. Dolev,

V. Kolesnikov, S. Lodha, and G. Weiss, eds.), (Cham), pp. 110–127, Springer International

Publishing, 2020.

[21] R. Gallager, “Low-density parity-check codes,” IRE Transactions on Information Theory,

vol. 8, pp. 21–28, January 1962.

[22] Q. Guo, T. Johansson, and P. Stankovski, A Key Recovery Attack on MDPC with CCA Security

Using Decoding Errors, pp. 789–815. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016.

[23] E. Eaton, M. Lequesne, A. Parent, and N. Sendrier, “QC-MDPC: A Timing Attack and a

CCA2 KEM,” in Post-Quantum Cryptography (T. Lange and R. Steinwandt, eds.), vol. 1,

(Cham), pp. 47–76, Springer International Publishing, 2018.

[24] A. Nilsson, T. Johansson, and P. Stankovski Wagner, “Error Amplification in Code-based

Cryptography,” IACR Transactions on Cryptographic Hardware and Embedded Systems,

no. 1, pp. 238–258, 2019.

150

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
https://bikesuite.org/files/v4.0/BIKE_Spec.2020.05.03.1.pdf

Bibliography

[25] P. Santini, M. Battaglioni, F. Chiaraluce, and M. Baldi, “Analysis of Reaction and Timing

Attacks Against Cryptosystems Based on Sparse Parity-Check Codes,” in Code-Based Cryp-

tography (M. Baldi, E. Persichetti, and P. Santini, eds.), (Cham), Springer International

Publishing, 2019.

[26] N. Drucker, S. Gueron, D. Kostic, and E. Persichetti, “On the Applicability of the Fujisaki-

Okamoto Transformation to the BIKE KEM.” Cryptology ePrint Archive, Report 2020/510,

2020.

[27] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative inverses in GF(2m)

using normal bases,” Information and Computation, vol. 78, no. 3, pp. 171–177, 1988.

[28] L. Grassi, C. Rechberger, D. Rotaru, P. Scholl, and N. P. Smart, “Mpc-friendly symmetric

key primitives,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and

Communications Security, CCS ’16, (New York, NY, USA), pp. 430–443, ACM, 2016.

[29] I. Damgård, “On the randomness of legendre and jacobi sequences,” in Proceedings of

the 8th Annual International Cryptology Conference on Advances in Cryptology, CRYPTO

’88, (London, UK, UK), pp. 163–172, Springer-Verlag, 1990.

[30] N. Kalud̄erović, T. Kleinjung, and D. Kostic, “Improved key recovery on the Legendre PRF.”

Cryptology ePrint Archive, Report 2020/098, 2020. https://eprint.iacr.org/2020/098.

[31] J. Chaulet and N. Sendrier, “Worst case QC-MDPC decoder for mceliece cryptosystem,”

in IEEE International Symposium on Information Theory, ISIT 2016, Barcelona, Spain,

July 10-15, 2016, pp. 1366–1370, IEEE, 2016.

[32] J. Chaulet, Etude de cryptosystèmes à clé publique basés sur les codes MDPC quasi-cycliques.

(Study of public key cryptosystems based on quasi-cyclic MDPC codes). PhD thesis, Pierre

and Marie Curie University, Paris, France, 2017.

[33] J. Tillich, “The decoding failure probability of mdpc codes,” in 2018 IEEE International

Symposium on Information Theory (ISIT), pp. 941–945, 2018.

[34] R. J. McEliece, “A Public-Key Cryptosystem Based On Algebraic Coding Theory,” Deep

Space Network Progress Report, vol. 44, pp. 114–116, Jan 1978.

[35] H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding theory,” Prob. Contr.

Inform. Theory, vol. 15, no. 2, pp. 157–166, 1986.

[36] N. Sendrier, “Encoding information into constant weight words,” in IEEE Conference, ISIT

2005, (Adelaide, Australia), pp. 435–438, Sept. 2005.

[37] E. Fujisaki and T. Okamoto, “Secure Integration of Asymmetric and Symmetric Encryption

Schemes,” in Advances in Cryptology – CRYPTO ’99 (M. Wiener, ed.), (Berlin, Heidelberg),

pp. 537–554, Springer Berlin Heidelberg, 1999.

151

https://eprint.iacr.org/2020/098

Bibliography

[38] D. Hofheinz, K. Hövelmanns, and E. Kiltz, “A Modular Analysis of the Fujisaki-Okamoto

Transformation,” in Theory of Cryptography (Y. Kalai and L. Reyzin, eds.), (Cham), pp. 341–

371, Springer International Publishing, 2017.

[39] V. Shoup, “Using hash functions as a hedge against chosen ciphertext attack,” in In-

ternational Conference on the Theory and Applications of Cryptographic Techniques,

pp. 275–288, Springer, 2000.

[40] J.-C. Deneuville, P. Gaborit, and G. Zémor, “Ouroboros: A simple, secure and efficient key

exchange protocol based on coding theory,” in Post-Quantum Cryptography (T. Lange

and T. Takagi, eds.), (Cham), pp. 18–34, Springer International Publishing, 2017.

[41] R. P. Brent and P. Zimmermann, “An o(m(n) logn) algorithm for the jacobi symbol,” in Al-

gorithmic Number Theory (G. Hanrot, F. Morain, and E. Thomé, eds.), (Berlin, Heidelberg),

pp. 83–95, Springer Berlin Heidelberg, 2010.

[42] H. Davenport, “On the distribution of quadratic residues (mod p),” Journal of the London

Mathematical Society, vol. s1-8, no. 1, pp. 46–52, 1933.

[43] A. Weil, “On some exponential sums,” Proceedings of the National Academy of Sciences,

vol. 34, no. 5, pp. 204–207, 1948.

[44] A. C. Yao, “Theory and applications of trapdoor functions,” in Proceedings of the 23rd

Annual Symposium on Foundations of Computer Science, pp. 80–91, IEEE Computer

Society, 1982.

[45] N. Drucker, S. Gueron, and D. Kostic, “Additional implementation of BIKE.” https://

bikesuite.org/additional.html, 2019.

[46] N. Drucker and S. Gueron, “A toolbox for software optimization of QC-MDPC code-based

cryptosystems,” Journal of Cryptographic Engineering, pp. 1–17, jan 2019.

[47] D. Hofheinz, K. Hövelmanns, and E. Kiltz, “A modular analysis of the fujisaki-okamoto

transformation.” Cryptology ePrint Archive, Report 2017/604, 2017.

[48] S. Samardjiska, P. Santini, E. Persichetti, and G. Banegas, “A Reaction Attack Against

Cryptosystems Based on LRPC Codes,” in Progress in Cryptology – LATINCRYPT 2019

(P. Schwabe and N. Thériault, eds.), (Cham), pp. 197–216, Springer International Publish-

ing, 2019.

[49] G. Wafo-Tapa, S. Bettaieb, L. Bidoux, and P. Gaborit, “A Practicable Timing Attack Against

HQC and its Countermeasure,” Tech. Rep. Report 2019/909, aug 2019.

[50] C. Aguilar Melchor, N. Aragon, S. Bettaieb, B. Lo ic, O. Blazy, J.-C. Deneuville, P. Gaborit,

E. Persichetti, and G. Zémor, “Hamming Quasi-Cyclic (HQC),” 2017.

152

https://bikesuite.org/additional.html
https://bikesuite.org/additional.html

Bibliography

[51] J. Chaulet and N. Sendrier, “Worst case QC-MDPC decoder for McEliece cryptosystem,”

in 2016 IEEE International Symposium on Information Theory (ISIT), pp. 1366–1370, July

2016.

[52] V. Shoup, “Number theory c++ library (ntl) version 11.3.4.” http://www.shoup.net/ntl,

September 2019.

[53] P. Z. Pierrick Gaudry, Richard Brent and E. Thome, “gf2x-1.2.” https://gforge.inria.fr/

projects/gf2x/, July 2017.

[54] I. V. Maurich, T. Oder, and T. Güneysu, “Implementing QC-MDPC McEliece encryption,”

ACM Trans. Embed. Comput. Syst., vol. 14, pp. 44:1–44:27, Apr. 2015.

[55] Open Quantum Safe Project, “liboqs.” https://github.com/open-quantum-safe/liboqs,

2020. Last accessed 16 Feb 2020.

[56] T. Chou, “QcBits: Constant-Time Small-Key Code-Based Cryptography,” in Cryptographic

Hardware and Embedded Systems – CHES 2016 (B. Gierlichs and A. Y. Poschmann, eds.),

(Berlin, Heidelberg), pp. 280–300, Springer Berlin Heidelberg, 2016.

[57] −, “Intel®64 and IA-32 architectures software developer’s manual,” combined volumes: 1,

2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4, November 2019.

[58] N. Drucker and S. Gueron, “Fast multiplication of binary polynomials with the forthcom-

ing vectorized VPCLMULQDQ instruction,” in 2018 IEEE 25th Symposium on Computer

Arithmetic (ARITH), June 2018.

[59] N. Drucker, S. Gueron, and V. Krasnov, “Making AES Great Again: The Forthcoming

Vectorized AES Instruction,” in 16th International Conference on Information Technology-

New Generations (ITNG 2019) (S. Latifi, ed.), pp. 37–41, Springer International Publishing,

2019.

[60] N. Sendrier and V. Vasseur, “About low DFR for QC-MDPC decoding,” in Post-Quantum

Cryptography - 11th International Conference, PQCrypto 2020, Paris, France, April 15-17,

2020, Proceedings (J. Ding and J. Tillich, eds.), vol. 12100 of Lecture Notes in Computer

Science, pp. 20–34, Springer, 2020.

[61] N. Drucker, S. Gueron, and V. Krasnov, “Fast multiplication of binary polynomials with

the forthcoming vectorized VPCLMULQDQ instruction,” in 2018 IEEE 25th Symposium

on Computer Arithmetic (ARITH), pp. 115–119, jun 2018.

[62] N. Drucker and S. Gueron, “Fast CTR DRBG for x86 platforms,” March 2019. https:

//github.com/aws-samples/ctr-drbg-with-vector-aes-ni.

[63] Amazon Web Services, “s2n.” https://github.com/awslabs/s2n, 2020. Last accessed 16

Feb 2020.

153

http://www.shoup.net/ntl
https://gforge.inria.fr/projects/gf2x/
https://gforge.inria.fr/projects/gf2x/
https://github.com/open-quantum-safe/liboqs
https://github.com/aws-samples/ctr-drbg-with-vector-aes-ni
https://github.com/aws-samples/ctr-drbg-with-vector-aes-ni
https://github.com/awslabs/s2n

Bibliography

[64] A. Hülsing, J. Rijneveld, J. Schanck, and P. Schwabe, “High-Speed Key Encapsulation from

NTRU,” in Cryptographic Hardware and Embedded Systems – CHES 2017 (Fischer, Wieland

and Homma, Naofumi, ed.), (Cham), pp. 232–252, Springer International Publishing,

2017.

[65] M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini, “LEDAcrypt,” 2019.

[66] D. J. Bernstein and B.-Y. Yang, “Fast constant-time gcd computation and modular inver-

sion,” IACR Transactions on Cryptographic Hardware and Embedded Systems, vol. 2019,

pp. 340–398, May 2019.

[67] A. Guimarães, D. F. Aranha, and E. Borin, “Optimized implementation of QC-MDPC code-

based cryptography,” Concurrency and Computation: Practice and Experience, vol. 31,

no. 18, p. e5089, 2019.

[68] A. Guimar, E. Borin, D. F. Aranha, A. Guimarães, E. Borin, and D. F. Aranha, “Introducing

Arithmetic Failures to Accelerate QC-MDPC Code-Based Cryptography,” Code-Based

Cryptography, vol. 2, pp. 44–68, 2019.

[69] Chien-Hsing Wu, Chien-Ming Wu, Ming-Der Shieh, and Yin-Tsung Hwang, “High-speed,

low-complexity systolic designs of novel iterative division algorithms in g f (2m),” IEEE

Transactions on Computers, vol. 53, pp. 375–380, March 2004.

[70] J. W. Bos, T. Kleinjung, R. Niederhagen, and P. Schwabe, “ECC2K-130 on Cell CPUs,” in

Progress in Cryptology – AFRICACRYPT 2010 (D. J. Bernstein and T. Lange, eds.), (Berlin,

Heidelberg), pp. 225–242, Springer Berlin Heidelberg, 2010.

[71] Gueron, Shay. https://github.com/open-quantum-safe/openssl/issues/42#

issuecomment-433452096, October 2018.

154

https://github.com/open-quantum-safe/openssl/issues/42#issuecomment-433452096
https://github.com/open-quantum-safe/openssl/issues/42#issuecomment-433452096

Dusan Kostic
(+41) 78-6733-606 | dkostic@protonmail.com

Education
PhD Thesis, École Polytechnique Fédérale de Lausanne
ADVISOR ARJEN LENSTRA, LABORATORY FOR CRYPTOLOGIC ALGORITHMS 2016 - PRESENT

• Analysis of the BIKE post-quantum cryptographic protocol and the Legendre pseudorandom function

Master’s degree, Computer Engineering and Informatics
SCHOOL OF ELECTRICAL ENGINEERING, UNIVERSITY OF BELGRADE 2013 - 2015

• Thesis title: OpenCL implementation of Parallel Pollard Rho algorithm for ECDLP targeting GPU architectures
• Implementation of parallel Pollard Rho algorithm for elliptic curve discrete logarithm problem in C++ and OpenCL.
• One and two orders of magnitude speedup achieved on integrated and dedicated GPUs respectively, in comparison
to a sequential implementation on CPU

Bachelor’s degree, Electrical Engineering and Computing
SCHOOL OF ELECTRICAL ENGINEERING, UNIVERSITY OF BELGRADE 2009 - 2013

• Thesis title: Analysis and implementation of asymmetric cryptography algorithms

Experience
Applied Scientist - intern
AMAZONWEB SERVICES, SEATTLE, USA May 2019 - Sep. 2019

• Work on two post-quantum cryptographic schemes Bit Flipping Key Encapsulation (BIKE) and Supersingular Isogeny
Based Key Exchange (SIKE) submitted to the NIST PQCrypto process

• Define andanalyze constant-timealgorithms for theNISTPQCryptoRound2 submissionofBIKE, specifically constant-
time QC-MDPC decoding

• Improving the performance of the Round 2 submission of SIKE by using the new Intel instruction set

Visiting researcher
UNIVERSITY OF HAIFA, ISRAEL Sep. 2018 - Dec. 2018

• Improving the performance of the key exchange mechanism (SIKE) by designing the finite field arithmetic functions
to use the new Intel processor VPMADD instructions

Teaching assistant
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Jan. 2016 - PRESENT

• CS-101: Advanced Information, Computation, Communication I (fall 2016, 2017, 2018, 2019)
• COM-402: Information Security and Privacy (spring 2017)
• Supervisor of student semester projects

Research assistant
SCHOOL OF ELECTRICAL ENGINEERING, BELGRADE Jan. 2015 - Sep. 2015

• Parallelization of existing implementations of routing algorithms in software router packages
• Implementation of routing protocols, security standards and quality of service methods

Software development engineer - intern
INTEL CORPORATION, BELGRADE Jan. 2014 - Oct. 2014

• Implementation of digital image processing algorithms on Intel Atom processor in C, using Intel Parallel Primitives
library and parallelization with Intel’s Cilk+

• Parallelization of digital image processing algorithms in C++ and OpenCL targeting Intel integrated GPUs architecture
• Exposing application through Android software stack, from Linux Device Driver to Camera Application, and enabling
usage on smartphone devices

155

Publications

BIKE CT DEC

N. Drucker, S. Gueron, and D. Kostic, “On constant-time QC-MDPC decoding with negligible failure
rate”. Accepted at the CBCrypto 2020 International Workshop on Code-Based Cryptography and
will be published in the proceedings. The preprint of the paper is available at
eprint.iacr.org/2019/1289.

BIKE DEC
N. Drucker, S. Gueron, and D. Kostic, “QC-MDPC Decoders with Several Shades of Gray” in
Post-Quantum Cryptography (J. Ding and J.-P. Tillich, eds.), (Cham), pp. 35-50, Springer
International Publishing 2020.

POLY INV
N. Drucker, S. Gueron, and D. Kostic, “Fast polynomial inversion for post quantum QC-MDPC
cryptography” in Cyber Security Cryptography and Machine Learning (S. Dolev, V. Kolesnikov, S.
Lodha, and G. Weiss, eds.), (Cham), pp. 110-127, Springer International Publishing 2020.

BIKE CCA
N. Drucker, S. Gueron, and D. Kostic, E. Persichetti “On the Applicability of the Fujisaki-Okamoto
Transformation to the BIKE KEM”, available at eprint.iacr.org/2020/510

Legedre PRF
N. Kaluđerović, T. Kleinjung, and D. Kostić, “Improved key recovery on the Legendre PRF”,
available at eprint.iacr.org/2020/098

SIKE VPMADD
D. Kostic and S. Gueron, ”Using the New VPMADD Instructions for the New Post Quantum Key
Encapsulation Mechanism SIKE,” 2019 IEEE 26th Symposium on Computer Arithmetic (ARITH),
Kyoto, Japan, 2019, pp. 215-218, doi: 10.1109/ARITH.2019.00050

Lattice sieve Speeding up lattice sieve with Xeon Phi coprocessor, available at eprint.iacr.org/2017/592

Network graphs
M. Vesović, A. Smiljanić, D. Kostić, “Performance of shortest path algorithms based on parallel
vertex traversal” in Serbian Journal of Electrical Engineering, Volume 13, pp. 31-43 (link)

Awards
2019 Teaching Assistant Reward for teaching excellence, EPFL
2017 Teaching Assistant Reward for teaching excellence, EPFL
2015 Doctoral EDIC Fellowship, EPFL

Skills
Programming Advanced knowledge of C, C++, Python, Sage, OpenCL, OpenMPI, CUDA, Assembly
Languages Serbian - first language, English - professional proficiency, French - basic knowledge

156

	Acknowledgements
	Abstract (English/Français/Deutsch)
	Contents
	List of Figures
	List of Tables
	Introduction
	Background
	BIKE
	Preliminaries
	QC-MDPC codes
	McEliece and Niederreiter cryptosystems
	Key Encapsulation Mechanism
	IND-CPA and IND-CCA security notions
	BIKE KEMs
	BIKE-1
	BIKE-2
	BIKE-3

	Legendre PRF
	Legendre symbol
	Legendre pseudorandom function

	I BIKE
	On constant-time QC-MDPC decoding with negligible failure rate
	Preliminaries
	BIKE-1
	The IND-CCA transformation
	QC-MDPC Decoders

	Idealized schemes and concrete instantiations
	Implementing BackFlip+ in constant-time
	Estimating the DFR of a decoder with a fixed number of iterations
	Results
	Performance studies

	Weak keys: a gap for claiming IND-CCA security
	Constructing weak keys

	Discussion
	Methodologies
	Practical considerations for BIKE

	QC-MDPC decoders with several shades of gray
	Introduction
	Preliminaries
	New decoders with different shades of gray
	DFR evaluations for different decoders
	Constant-time implementation of the decoders
	Optimizing the rotation of an array

	Performance studies
	Decoding and decapsulation: performance studies

	Discussion

	Fast polynomial inversion for post quantum QC-MDPC cryptography
	Preliminaries and notation
	Optimized polynomial inversion in F2[x]/(xr - 1)
	Our implementation
	Generating permutation map with SIMD instructions
	Optimizing the permutation with SIMD instructions
	Optimizing squaring and multiplication
	Side-channel protection considerations

	Results
	Discussion

	II Legendre PRF
	Improved key recovery on the Legendre PRF
	Background and notation
	Algorithm
	Sequence properties
	Precomputation stage
	Search stage

	Complexity of the algorithm
	Runtime hypothesis
	Optimal runtime
	Runtime with a fixed M

	Implementation details
	Precomputation stage
	Search stage

	Results

	Appendix
	Additional information on the experiments and the results of Chapter 3
	Achieving the same DFR bounds as in pqcrypto

	Additional information on the experiments and the results of Chapter 4
	Optimized and secured implementation of syndrome rotation

	Additional information on the experiments and the results of Chapter 5
	Generating permutation map with AVX2 instructions
	Squaring using PCLMUL and VPCLMUL
	A 4 4 digits multiplication using VPCLMUL
	Example of k-square versus series of k squares
	Performance results

	Curriculum Vitae

