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Abstract

Distributed photovoltaic (PV) generation is typically connected to power dis-
tribution grids, which are not designed to host a large amount of production
if it is significantly larger than their nominal electricity demand. Given the
prominent role of PV in energy transition pathways, modeling the existing
power distribution infrastructure’s constraints and limitations is key for its
reliable techno-economical analysis and expansion.

As countrywide models of the distribution grids are, in general, not avail-
able, this paper first tackles the problem of estimating medium voltage (MV)
distribution grids starting from publicly available datasets. It then proposes
a method to estimate the PV generation hosting capacity of such grids and
extend it through energy storage systems.

As a final contribution and ultimate objective, this paper proposes a
method to derive cost-optimal plans for countrywide deployment of PV gen-
eration and energy storage systems considering the MV power distribution
infrastructure’s technical limitations. The distributed PV generation poten-
tial is modeled with high-spatially resolved capacity factors. Results are
discussed using Switzerland as a case study.
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Acronyms

BESS Battery Energy Storage System
CDF Cumulative Distribution Function
DSO Distribution System Operator
EHV Extra High Voltage
ENTSOE European Network of Transmission System Operators for Electricity
GCP Grid Connection Point
GHI Global Horizontal Irradiance
GIS Geographical Information System
GW GigaWatt
GWh GigaWatthour
HV High Voltage
LV Low Voltage
kW KiloWatt
MVA MegaVoltAmpere
MV Medium Voltage
MW MegaWatt
OPF Optimal Power Flow
PV Photo-Voltaic
POA Plane of Array
SOE State-of-Energy
SD Standard Deviation
TSO Transmission System Operator
TWh TeraWatthours

1. Introduction

Photo-voltaic (PV) generation is experiencing a significant growth thanks
to the decreasing costs of the installations and reduced carbon footprint [1].
In the period 2010-2019, PV has been the most deployed power source among
renewables, with over 600 GW of newly connected generation capacity [2].

Assessing the generation potential of distributed PV has attracted signifi-
cant attention in the recent literature. For example, the work in [3] performs
rule-based estimations and [4] uses a GIS to assess it for a large part of Eu-
rope considering the land availability. The considered spatial scales go from
city to subcontinental levels, as in [5–10] and [11], respectively.
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The works discussed above focus on estimating the PV generation po-
tential without considering the impact on the power distribution systems.
Distributed PV generation, such as rooftop PV plants installed either on ur-
ban industry or rural environments, are typically connected to distribution
grids, which, however, are designed to primarily deliver power to consumers
and, as a matter of fact, can interface a limited amount of power genera-
tion. This limitation is due to the DSO’s requirements to satisfy the physical
constraints of the power grid assets. The amount of PV generation that a
distribution grid can connect without violations of the grid constraints is
called PV hosting capacity.

As power distribution systems are an important asset of the electrical
infrastructure and upgrade costs to increase their generation hosting ca-
pacity are substantial [12], a reliable techno-economical assessment of the
distributed PV generation potential should be done in conjunction with an
accurate assessment of the PV hosting capacity of the existing distribution
grids. Motivated by this reason, this paper considers the problem of estimat-
ing the PV generation potential at the scale of a country subject to the local
distribution grids’ limitations.

The PV hosting capacity of distribution grids is typically assessed for
MV and LV distribution systems with probabilistic load flows applying the
Monte Carlo method [13–16], or by less computationally intensive variations
[17], and OPF models [18, 19]. Load flow- and OPF-based analyses require
the knowledge of the grid topology, lines characteristics (length, physical
parameters, buried/aerial type), and demand and PV generation profiles.
Due to the large diversity of distribution grids in terms of topology and
demand patterns, it is generally not possible to extend the results from a few
known networks to the level of a country, which, depending on its size, might
have thousands of MV distribution grids with different features.

As grid data are generally confidential, obtaining detailed distribution
grid information for many networks to perform extensive load flows, is gen-
erally not an option. This challenge has inspired researchers to estimate
grid topologies and characteristics from public data sets. For example, the
works in [20–24] use data from existing grid models to estimate information
of unobserved grids (i.e., supervised learning). On the other hand, the works
[25–28] used socio-economic data, like population density map and electricity
demand, to generate distribution networks models without prior knowledge
on the power grids (i.e., unsupervised).

In this paper, we investigate the PV hosting capacity of MV distribution
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grids for a whole country, using Switzerland as a case study. We consider
MV networks because, according to [12], they account for the most signifi-
cant part of the total grid upgrade costs when extending the PV generation
hosting capacity. As grid data for the whole country are not available, we
first propose an unsupervised method to infer their topology and character-
istics starting from the publicly available locations of the EHV nodes and
georeferenced energy demand data at high spatial resolution. With respect
to existing unsupervised methods in [25–28] described above, our method
relies on less information, requiring only the location of the EHV substations
and the spatial distribution of the demand. Then, we proceed by identifying
the PV hosting capacity of each estimated grid with a tractable OPF based
on linearized grid models, including also how to optimally deploy BESSs to
increase the grids’ PV hosting capacity. Finally, we determine the coun-
trywide cost-optimal deployment of PV generation and BESSs to achieve a
target level of PV installed capacity accounting for the spatial information
on the capacity factor of PV generation.

Compared to the works in [1, 3] that report country-specific analyses
of the PV potential and works in [9, 10, 29–31] that specifically refer to
Switzerland, we estimate, for the first time in the literature, the PV genera-
tion potential for a whole country subject to the limitations of the existing
distribution networks infrastructure. Compared to the works in [13–16] that
evaluates the PV hosting capacity of small systems, we propose a method
that can be extended to large areas, that estimates grid data and includes
the deployment of BESSs to increase the PV hosting capacity.

In summary, the main contributions of this paper are:

• an unsupervised method to estimate MV grids starting from publicly
available data;

• a tractable convex OPF model to estimate the PV hosting capacity of
distribution grids, including cost-optimal BESSs siting and sizing to
increase it;

• a tractable convex optimization problem to determine countrywide
cost-efficient PV and BESS deployments plans to accommodate a target
PV generation level accounting for the capacity factor of PV genera-
tion;

• the assessment of the optimal deployment plan for PV systems and

4



BESSs in Switzerland to accommodate the PV generation target en-
visaged by the national energy strategy accounting for the constraints
of the distribution grids.

The rest of this paper is organized as follows. Section 2 describes the
methods to estimate the MV networks. We discuss the results of this pro-
cess already in Section 2 so that, in the following sections, we can resort to
these results for clarity and progress in the problem formulation. Section 3
describes the PV hosting capacity problem, including the sizing and siting of
the BESSs. Section 4 presents and discusses the results of the countrywide
optimal deployment of PV systems and BESSs Finally, Section 5 concludes
this paper.

2. Estimation of countrywide models of medium voltage power dis-
tribution networks
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Figure 1: Flow chart for the estimation of countrywide models of medium voltage power
distribution networks.

In this section, we describe the procedure to estimate the countrywide
models of MV distribution grids. The procedure is graphically represented
in Fig. 1 and summarized next. Starting from the locations of the EHV
substations, we approximate the geographical region that each substation
serves by partitioning the country with Voronoi diagrams (as described in
subsection 2.1). We call these partitions EHV areas. Then, for each EHV
area, we process the geographical distribution of the electricity demand to
infer the position of the HV substations (subsection 2.2.2). By re-applying
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these two steps using the HV substation positions as input, we first identify
the areas served by each HV substation, called HV areas. Finally, we find
the locations of the MV substations (subsection 2.3). Once the location of
the MV nodes are known, a routing scheme is used to estimate the topology
and cable parameters of the relevant MV grids (subsection 2.4).

In order to exemplify the description of the proposed algorithms, in the
following of this paper we specifically refer to the case of Switzerland.

2.1. Identification of EHV areas

EHV/HV substations adapt the power grid voltage level from a value suit-
able for transmission over long distances to a more practical value for short-
distance transmission and more suitable to be transformed by secondary and
tertiary substations to the final level at which electricity is consumed. As
opposed to secondary and tertiary substations, the locations of the primary
substation are available in public databases (e.g. [32]). We use them as the
first step to infer the rest of the network.

In total, we consider 148 georeferenced EHV substations. The locations
of the EHV nodes are from the dataset [33], that is derived from ENTSOE
information. It was verified by visual inspection from aerial images that not
all the locations from [33] correspond to the real ones, as also acknowledged
on the ENTSOE website1. The inaccurate locations were corrected, when
possible, by considering the locations reported in the collaborative dataset2,
which were found accurate after being verified one by one on aerial images.
The locations of the EHV nodes are shown in Fig. 2a.

Starting from the locations of the EHV substations, we apply Voronoi
diagrams to approximate the region that each EHV node serves. Given an
image and a collection of coordinates within that image, a Voronoi diagram
(one per set of coordinates) is the closest locus of points to those coordinates.
We use Voronoi diagrams because we reasonably assume that the electrical
demand in a certain area is served by the closest substation. This modeling
choice is also proposed in [26, 34–36]. The result of the Voronoi partitioning
is shown in Fig. 2b.

1https://www.entsoe.eu/data/map/
2https://en.wikipedia.org/wiki/List_of_EHV-substations_in_

Switzerland
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(a) (b)

Figure 2: Identification of EHV areas: (a) locations of the considered 148 EHVs substa-
tions in Switzerland and (b) approximated regions served by each substation after Voronoi
partitioning.

2.2. Identification of the locations of the HV/MV primary substations

2.2.1. Distribution of the electrical demand

Power distribution systems were designed to deliver electricity to end
customers. Therefore, we expect their topology and power ratings to reflect
the geographical distribution of the demand for electricity. We leverage this
notion and we start from the distribution of the electricity demand over the
country to infer the topology of distribution systems. First, we estimate the
distribution of the electricity demand as described next.

The work in [37] reports the statistics of the sectorial (industrial, commer-
cial and residential) electricity consumption for each canton in Switzerland.
This information gives already a comprehensive overview of the countrywide
distribution of the electricity demand. However, since power distribution
systems extend far deep into local regions, higher spatially resolved data are
needed to estimate their topology. The Swiss Federal Office for Topography3

has mapped the heat demand for space heating and cooling for industrial,
commercial, and residential buildings with a resolution of 100x100 meters.
Since the heat demand follows the building distribution and that buildings
are also large consumer of electricity (due to various electrical equipment,
besides the obvious case of electric space heating [38, 39], that reinforces

3http://map.geo.admin.ch/
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Table 1: Composition of electricity demand in different sectors for Switzerland for 2014
[37].

Sector Electricity demand (GWh)

Residential 18’333

Commercial 17’531

Industrial 19’028

the correlation among the two), we assume that the electricity and heat de-
mands follow the same spatial distribution. With this assumption, we model
the electricity demand map by rescaling heat demand map by appropriate co-
efficients such that its sum over space amounts to the total electricity demand
for each sector reported in Table 1. The estimated countrywide electricity
demand map is shown in Fig. 3a. Fig. 3b is an illustrative example of the
electrical demand distribution within a single Voronoi cell. The geographical
area each Voronoi cell is supplied by the substation corresponding to that
cell.

(a) (b)

Figure 3: Estimated electricity demand map of: (a) Switzerland and (b) a single EHV
area. The blue polygon refers to an EHV area obtained using Voronoi partition.

2.2.2. Identification of the HV/MV primary substations

The location of the HV/MV secondary substation is determined by an-
alyzing the electrical demand map within each EHV area according to the
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following procedure.

1. Identify clusters with contiguous demand. To do so, we first derive a
binary image from the electrical demand map, where Boolean true pix-
els denote non-zero electrical demand, and vice-versa. Then, to identify
clusters with contiguous demand, we apply binary image segmentation,
that partitions the input binary map into clusters containing pixels of
the same kind (true or false) only. For the binary image segmentation,
we use the bwboundaries Matlab function [40]. The result of this
process for the example EHV area of Fig. 3b) is shown in Fig. 4a;

2. On the one hand, clusters with total demand exceeding a pre-established
threshold are recursively partitioned into smaller clusters using Algo-
rithm 1. On the other hand, neighbour small clusters are aggregated
until their total power demand reaches the threshold and so as to jus-
tify the presence of a secondary substation. The result of this step is
illustrated in Fig. 4b. Threshold L in Algorithm 1 is an informed
estimated computed as

average power demand

number of EHV substation · 5
=

63 TWh/8760 h

148 · 5
≈ 10 MW, (1)

where 63 TWh is the total electricity demand in Switzerland in 2015
[41] and 5 is the estimated average number of HV/MV nodes served by
each EHV/HV substation.

3. The location of each secondary substation is chosen at the geographical
center of the convex envelope encompassing the respective aggregated
cluster, as shown in Fig. 4c.

Fig. 5a shows the distribution of the demand interfaced by the various
primary substations, and the first row of Table 2 reports its mean and max-
imum value. It can be observed that, even if a static threshold of 10 MW is
used to generate the clusters, the demand within each cluster is finally spread
around this value. On the one hand, larger values of the total demand hap-
pen because when merging multiple clusters, their aggregated demand might
exceed the threshold. On the other hand, smaller values are because certain
areas have low demand.

4Divide factor is chosen appropriately (≤ 0.5) to obtain polygons with demands smaller
than Lthres.
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(a) (b) (c)

Figure 4: Identification of the substations locations: (a) the EHV area is divided into
clusters, (b) large clusters are divided into smaller ones, (c) convex hull of the aggregated
clusters (in red) and final locations of the HV substations (in blue).

2.3. Identification of the HV areas and MV/LV secondary substations

Once the locations of the primary substations are found, we apply the
Voronoi partioning and cluster-aggregation procedures of subsections 2.1 and
2.2.2 to identify the HV areas and the MV/LV secondary substations. For the
latter step, we use a threshold value for the total power within each cluster
of 400 kW. This value has been chosen because it is the average power rating
of the nodes of the CIGRE benchmark grid for MV european systems [42].
The distribution of the demand interfaced by the secondary substation and
its statistics are reported in Fig. 5b and Table 2. Similarly to the previous
case, the demand within each cluster is spread around the static threshold.

Table 2: Statistics on HV and MV substations

Type Number Mean Demand Max Demand

HV substations 776 9.3 MW 24.7 MW

MV substations 17,844 0.41 MW 0.97 MW

Fig. 6a shows the identified locations of the substations for the example
EHV area of Fig. 3b, where 5 HV/MV and 142 MV/LV substations were
identified. This process is repeated for all EHV areas so as to estimate the
locations of HV/MV and MV/LV substations for the whole country. For
Switzerland, the model estimated 776 HV/MV nodes and 17’844 MV/LV,
whose locations are shown in Fig 6b.
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Algorithm 1 Partition cluster

Require: Polycluster:= original cluster, Lc := cluster’s total demand, demand
threshold L, µ := Divide factor (4)

1: if
(
Lc > L

)
then

2: n = ceil(L/L/µ), nx = ciel(
√
n), ny = ciel(n/nx), ñ = nxny

3: Find the bounding box of Polycluster defined
by (Polybbox = {(x, y) : x ≤ x ≤ x, y ≤ y ≤ y})

4: Partition: obtain [Poly1
div, . . . , Polyñdiv]

5: for (i = 1, . . . , nx) do

6: ai = x+ (i−1)(x−x)
nx

, ci = x+ (i)(x−x)
nx

,
7: for (j = 1, . . . , ny) do

8: bj = y +
(j−1)(y−y)

ny
, dj = y +

(j)(y−y)
ny

9: Polykdiv = {(x, y) : ai ≤ x ≤ ci, bj ≤ y ≤ dj}
10: Polykdiv = ← Polycluster ∩ Polykdiv . Intersection
11: k + 1← k
12: end for
13: end for
14: Compute the demand of each small polygon: [L1

div, . . . , L
ñ
div]

15: Save [Poly1
div, . . . , Polyñdiv], [L1

div, . . . , L
ñ
div]

16: end if

2.4. Routing of medium voltage networks

2.4.1. Routing algorithm

Once the locations of the MV substations are identified, we use a rout-
ing scheme to determine the connections and topologies of the corresponding
grids. Several routing methods were proposed in the literature, as discussed
in the review paper [43]. For example, the work in [44] uses a genetic al-
gorithm and minimum spanning tree, works in [45–47] apply evolutionary
algorithms such as simulated annealing and ant-colony. The work in [48, 49]
proposes the branch-exchange method, and the work in [50] applies dynamic
programming.

In this paper, we use the routing scheme based on the steepest gradient
descent proposed in [51, 52] because of the faster convergence and increased
tractability compared to the above-listed methods. The method accounts for
the grid operational constraints on voltage magnitudes and lines ampacities.
It enforces the radiality of the final system because the MV networks are
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(a) (b)

Figure 5: CDF plots of estimated electricity demands for (a) HV and (b) MV substations.

generally operated radially (as opposed to HV systems, that are typically
meshed and operated as such). Although some MV network might have a
meshed configuration (useful, e.g., for networks temporary operations in case
of outages), they are usually operated radially to enable the effective oper-
ations of protection systems [53]. The method works by finding the grid
topology that minimizes the capital cost of the grid, given by the invest-
ment cost for the power cables. In the routing scheme, we require voltage
deviations to be up to ±3% of the nominal voltage according to Swiss grid
code [54]) and line currents below 80% of the respective cable ampacity, to
reproduce a realistic scenario where grids operate with a safety margin from
physical limits. The electrical characteristics of the lines and transformer
used for the routing procedure are given in Tables 3 and 4, respectively. The
rating of transformer is assumed 150 % of the total nominal demand to re-
flect a planning scenario where operators allow equipments to operate with
a safety margin from their maximum ratings.

The routing scheme starts from a base topology where each substation
node is connected to the 6 nearest ones (a value inspired from the work in
[20] depicting an upper bound on the connections to/from a node in a typical
power grid). Then, the following steps are performed:

1. run the routing scheme in Algorithm 2 by selecting high-ampacity
type-4 cables (from Table 3) for all the lines;
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(a)

(b)

Figure 6: Identified HV/MV and MV/LV substations for (a) the example EHV area (5
and 142, respectively) and (b) Switzerland (776 and 17’844)
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2. replace the type-4 cables (since they are most expensive ones according
to their ampacity) with ones with lower ampacity according to the
criterion reported in Table 5. For example, if the maximum line current
in the first-stage routing is less than 10 % of the type-4 cable’s ampacity,
it is replaced with a type-1 cable. Once each single cable is replaced,
we perform a load flow to verify voltage and current conditions and, if
they are not satisfied, the original cable is restored.

Table 3: Cable ratings from a commercial source.

Cable Section Resistance Reactance Capacitance Ampacity

Type [mm2] [Ohm/km] [Ohm/km] [µF/km] [A]

1 50 0.495 0.13 0.19 228

2 70 0.344 0.13 0.21 284

3 95 0.248 0.12 0.23 346

4 120 0.198 0.12 0.25 399

Table 4: Transformer rating [42].

HV MV Short-circuit Power

voltage [kV] voltage [kV] impedance [Ohms] rating [MVA]

110 20 0.016 + j1.92 25

Table 5: Replacement scheme for lines.

Current range (pu) Cable type

0 < 0.1 1

0.1 ≤ 0.2 2

0.2 ≤ 0.4 3

Figure 7 shows the step-by-step routing results for an example EHV area.
Fig. 7b shows the initial routing, which is obtained by connecting each node
with the nearest 6 nodes. Fig 7c shows an intermediate stage of the routing,
where some of the redundant lines have been removed. The final topology
is shown in Fig. 7d, where the color of the lines denotes their ampacities.
Algorithm 2 works by iteratively removing the expensive (i.e., long) lines
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Algorithm 2 Routing

Require: Base topology, line parameters, lines set
1: while Routing is successful (the network is connected and feasible) do
2: Remove the most expensive line (by length) from the lines set
3: Proceed to step 4 if connected else go to step 7
4: Compute admittance matrix, perform load flow, proceed to step 5 if

converged else go to step 7
5: Proceed to step 6 if the voltage and currents are within bounds else

go to 7
6: Save the network, update the lines set and go to step 2
7: Keep the previous network, remove this line from the lines set, go to

step 2.
8: end while

to minimize the cost of grid routing. The routing cost, expressed in terms of
the total lines length, is shown in Fig. 7e for an example grid. It features a
decreasing value before reaching a steady value after 300 iterations. In this
example, the initial and final iterations correspond to 67 km and 10.5 km,
respectively, of deployed lines.

2.4.2. Re-routing unsuccessful networks

In certain cases, the routing by algorithm 2 might fail. This happens
when a subset of the nodes in the given region is very distant in space to the
rest of the nodes requiring very long cables. It either results in violations on
voltage and currents or convergence issues while solving load-flows or requires
a meshed topology with single or multiple rings to be feasible. These networks
are labelled as unsuccessful networks. To solve this issue, we propose a re-
routing procedure, where we divide the region further using a clustering
method. The steps are described in algorithm 3. An example is shown in
Fig. 8, where on the left figure, we see a meshed network to enable it to be
routed due to current and voltage violations, whereas the right figure shows
that the network is divided into two separate radial networks.

The final routing results for the example EHV region is shown in Fig. 9.
Statistics on the routed networks for the whole Switzerland are listed in
the Table 6. The distributions of the nodal voltages and the lines currents
are shown in Fig. 10 and denote that design requirements are met. More
discussion on the validation of the estimated MV networks is presented in

15



(a) (b)

(c) (d)

(e)

Figure 7: Routing procedure:(a) example EHV area with HV and MV substations, (b)
highly-connected base topology, (c) meshed grid topology at an intermediate stage of the
procedure, (d) final topology highlighting the current levels in the cables, and (e) total
capital cost (expressed in km for length of cables used) as a function of the iteration.
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Algorithm 3 Re-routing

Require: Substations’ geographical locations
1: while The network is connected and feasible do
2: Split the unsuccessful networks into two areas using k-means

clustering with locations as features
3: Place HV substations at the centroid of two areas, re-route both

the areas using algorithm 2
4: Proceed to step 5 if network routing is successful else go to 2
5: Save the networks.
6: end while

(a) (b)

Figure 8: Re-routing: (a) routed network using algorithm 1 resulting in a meshed network,
(b) routed network using algorithm 2 which divides it into two radial networks.

Appendix B.

3. PV hosting capacity and energy storage requirements for power
distribution networks

The PV hosting capacity of a distribution grid is the maximum amount
of PV generation that the grid can accommodate without violations of the its
operational constraints. In this section, we describe the PV hosting capacity
problem for distribution grids and, then, how to increase it with distributed
energy storage systems [55]. Finally, we discuss the optimal deployment
of PV power plants and BESSs to achieve the largest production at the
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Figure 9: Routed MV networks for the example EHV area.

Table 6: Number of identified grid components.

Equipment Number of elements

HV-MV transformers 776

MV-LV transformers 17’844 x 2 (for redundancy)

MV cables and overhead lines 1342.2 km

minimum cost for the whole country. We first discuss the input data that
are used in the problem formulation.

3.1. Input data

3.1.1. Capacity factor of PV production

PV capacity factors (total actual generation to the total generation at
the nominal plant capacity over one year) for all locations across the country
are used to compare the suitability for hosting PV generation. Capacity
factors are from the PVGIS database [56] considering optimal panel locations
(south-facing and 38◦ tilt for the case of Switzerland). They are are based
on satellite information at a 3x3 km (at Nadir) resolution and are corrected
for the shading induced by topographical features on the horizon. We query
this information for the whole Switzerland with a resolution of 1.5x1.5 km.
Figure 12a shows the distribution of the capacity factors across the country.
It denotes variable values that can vary up to a factor of 3.

18



(a) (b)

Figure 10: CDF plots (a) nodal voltages and (b) lines currents of estimated networks
shown in different colors.

3.1.2. Land-use constraints for PV generation

We evaluate land allocation to identify suitable locations for PV power
plants. We use a 100x100 m resolution land-use map5 from the Swiss Federal
Office for Topography, shown in Fig. 11, reporting settlement (residential,
commercial, industrial and recreational) and agricultural areas. For the area
corresponding to each MV grid, we consider that 10% of the settlement areas
can host PV generation, for a total surface of 210 km2 for the whole country.
Considering this available surface, the yearly capacity factors from PVGIS
[56], and an average PV conversion efficiency of 15 % in standard conditions
[57], the yearly total PV generation for Switzerland with these assumption is
of 33 TWh. Both the available area for PV deployment and total generation
are in-line with the estimates reported in the existing literature [29–31, 58]
as summarized in Table 7. Differences among the various estimations (more
remarkably for PV generation) can be explained by different input data sets
and methods, however they all seem to agree on the same order of magnitude.
Fig. 12b shows the distribution of the PV installed capacity potential (solely
based on land availability) across all the MV grids of the country. Its mean
and maximum values are 2 and 13.1 MW. The total PV installed capacity

5https://map.geo.admin.ch/?layers=ch.bfs.arealstatistik-hintergrund&
lang=en&topic=ech&bgLayer=ch.swisstopo.pixelkarte-farbe
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Table 7: A comparison of the PV generation potential.

Reference Area [km2] Estimated PV generation [TWh]

[29] 328 17.86

[30] 252 16.29

[58] 485 41.32

[31] 267 24 ± 9

This work 210 33

potential with the above assumptions is of 30 GW. It is worth noting that
larger capacity values are possible with higher usage of available land and
PV conversion efficiency.

Figure 11: Simplified land-use map of Switzerland.

3.1.3. Time series of the PV generation and demand

Solving the PV hosting capacity problem does require time series of PV
generation and demand to model the loading conditions of the grid. We con-
sider a scenario with high PV generation and low demand to reproduce cases
where excess PV generation might cause violations of the grid constraints.
In this respect, PV generation is modelled considering uniform clear-sky con-
ditions over the whole power distribution network and considering the day
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(a) (b)

Figure 12: Distribution of (a) capacity factor and (b) maximum PV capacity per MV node
due to land constraint.

of the year with the largest PV generation. We use a clear-sky model to
compute the global-horizontal irradiance (GHI) as a function of the location,
that we denote by n. The plane-of-array (POA) irradiance It,n (kW/m2) is
determined by transposing the GHI as a function of the plant tilt and az-
imuth, and time of the day. The POA irradiance is finally converted to PV
generation for a plant with P pv capacity (in kW) with the following model
g(t, n, P pv):

ppvt,n = g(t, n, P pv) = It,n
(
1 + α(T air

t,n + βIt,n − 25)
)
P pv (2)

where T air
t is the air temperature (◦C), α = −0.0043 and β = 0.038 are

empirical parameters as in [59] for open-rack PV plants.
Demand profiles are obtained by scaling the residential, commercial and

industrial demand profiles specified in the CIGRE benchmark grid for MV
systems [42], shown in Fig. 13a, for the coefficients extracted from the de-
mand map computed in subsection 2.2. To reproduce a scenarios with dom-
inant PV generation over the demand, we halve the nominal demand profile
to reflect a day with low electricity consumption. We assume ideal correla-
tion among the loads. Being the focus of the paper on modeling the impact
of PV generation on the grid hosting capacity, modeling spatial diversity
of the loads is not of special interest. We consider voltage- and frequency-
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independent loads. Figure 13b shows the PV and the load profiles considered
for the PV and battery sizing.

(a) (b)

Figure 13: Demand and PV scenarios: (a) standard load profiles for different sector from
[42], (b) scenario considered for the PV and battery sizing problem.

3.2. The PV hosting capacity problem

The objective of this problem is determining the maximum PV installed
capacity that a grid can host at its nodes without violations of grid con-
straints. We consider a generic distribution grid with Nbus nodes and L lines
with index n ∈ N = {1, . . . , Nbus} and l ∈ L = {1, . . . , L}, respectively.
The installed PV capacity at node n, that is an unknown of the problem,
is denoted by P pv

n (6). As discussed in Section 3.1.2, the installed capac-

ity is limited by the land availability, so we say that P pv
n ≤ P pv

n , where the
right-hand-side upper-bound is derived from the land availability map.

3.2.1. Grid model

In the following, bold-typeface notation refers to vectors. Active and re-
active nodal injections at the various nodes of the grid are collected in vectors
pt,qt. They are given by the difference between the nodal PV generation
ppv
t ,q

pv
t and demand pload

t ,qload
t , when available. We assume that PV plants

6For generality, if a node cannot host PV generation, we can add in the following
formulation a constraint of the kind P pv

n = 0.
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operate at unitary power factor, so qpv
t = 0, as typical for small/medium size

PV plants. PV generation is computed by applying the model g(·) in (2).
Vectors vt and it collect the magnitudes of the nodal voltage and line cur-
rent, respectively. These quantities, and the corresponding complex power
at the grid connection point, are modelled as linear functions of the nodal
injections and the voltage at the slack bus with a model based on sensitivity
coefficients and described in 3.2.1. In the following, we denote the voltage
and current linear model with the general notation vt = v(pt,qt, ṽ0) and
it = c(pt,qt, ṽ0), where ṽ0 is the set of nodal voltage phasors for power-flow
linearization. We model the grid with sensitivity coefficients which express
the linearized dependency of nodal voltages, lines currents and grid losses as
function of the nodal active and reactive power injections. The linear grid
models for voltage, current and total grid losses are

vt = v(ṽ0,pt,qt) = Av
t

[
pt
qt

]
+ bv

t (3)

it = c(ṽ0,pt,qt) = Ai
t

[
pt
qt

]
+ bi

t (4)[
pgcpt

qgcpt

]
= s(pt,qt, s̃0) = Agcp

t

[
pt
qt

]
+ bgcp

t (5)

where A and b are the linear mapping parameters obtained using the method
in [60]. They are iteratively updated with newly sized battery and PV injec-
tions. An accuracy analysis of the modeled linear power flow is included in
Appendix A. The symbols pgcpt , qgcpt denotes the active and reactive power at
the GCP. The nodal voltage magnitudes and line currents should be within
allowed voltage limits, denoted by v,v, and respect cable ampacities i. Sim-
ilarly, the apparent power at the substation transformer is denoted by the
model s(pt,qt, s̃0) and should be less than substation transformer rating S,
where s̃0 is the operating complex apparent power used for the power-flow
linearization.

The problem consists in maximizing the installed capacity of PV gener-
ation while subject to grid constraints. To foster the deployment of the PV
plants in nodes with the highest irradiance availability, the installed capacity
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is weighted by the local capacity factor γn (7). The problem formulation is:

maximize
{Ppv

n ∈R+,n∈N}

{∑
n∈N

γnP
pv
n

}
(6a)

subject to nodal injections model and grid constraints

pt = ppv
t − pload

t t ∈ T (6b)

qt = ppv
t − qload

t t ∈ T (6c)

v ≤ v(ṽ0,pt,qt) ≤ v t ∈ T (6d)

0 ≤ c(ṽ0,pt,qt) ≤ i t ∈ T , (6e)

0 ≤ s(pt,qt, s̃0) ≤ S t ∈ T , (6f)

and PV generation model and land-availability constraint P pv
n :

ppvn,t = g(t, n, P pv
n ) t ∈ T , n ∈ N (6g)

P pv
n ≤ P pv

n n ∈ N . (6h)

3.3. Increasing PV hosting capacity with BESSs

3.3.1. Problem formulation

The objective of this problem is to determine the optimal location of PV
plants to host a target level of total PV generation capacity, that we denote
by P ?. However, values of P ? above the grid’s PV hosting capacity cannot
be accommodated because they would lead to violations of grid constraints.
For this reason, this problem also determines an optimal configuration of
BESSs (location, converter power ratings, and energy capacities) to relieve
grid constraints and enabling the further integration of PV generation in the
grid. The results of this process are discussed at the end of this section.

It is worth highlighting that, even if we consider BESSs, the formulation
can be extended to other forms of energy storage systems or other resources

7We include the capacity factor because, even if derived from satellite estimations with
coarser resolution that the grid nodes, the topographical shading is at a higher resolution
and could impact on the suitability of certain nodes.
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capable of providing grid support, like flexible demand [61, 62]. It is also
worth highlighting the parallel with PV self-consumption strategies, which
can indirectly mitigate the impact of excess PV generation on grid constraints
thanks to promoting the direct consumption of locally generated electricity,
see e.g. [63, 64]. PV self-consumption is typically provided on a best-effort
basis by end consumers and is typically unaware of global grid conditions,
thus without offering reliable performance guarantees. Compared to PV self-
consumption, we provide robust guarantees on grid control performance and
optimized energy storage requirements considering the whole grid and not a
single consumer.

BESSs model. BESSs’ active power is denoted by pbessn,t , and reactive by qbessn,t .
We model the evolution of the BESS state-of-energy (SOE) with

SOEn,t = SOEn,t−1 − pbessn,t ∆t, (7)

where ∆t is the sampling time. Charging and discharging efficiency is ac-
counted for by integrating the BESS equivalent resistance in the load flow
problem as proposed in [65]. If load flow equations are linearized, this mod-
eling choice retains the convexity of the problem without requiring the use
of additional variables as, for example, in [66]. Since battery sizes are the
decision variables, the optimization problem is solved multiple times taking
account of the updated equivalent resistances in proportion to their converter
ratings. To implement a safety margin from zero-SOE and full charge, we
implement the following constraint

aEbess
n ≤ SOEn,t ≤ (1− a)Ebess

n (8)

where 0 ≤ a ≤ 0.5 is a design parameter and Ebess
n is the BESS energy

capacity. BESS injections should respect the capability curve of its four
quadrant power converter. This reads as:

0 ≤ (pbessn,t )2 + (qbessn,t )2 ≤ (P bess
n )2. (9)

Capital investment for BESSs and PV plants. The capital investment for
installing a PV plant with generation capacity P pv, and a BESS with energy
capacity Eb

n and power rating P b
n at node n is:

25



J
(
P pv
n , P bess

n , Ebess
n

)
= Cpvn P pv

n + CPP bess
n + CEEbess

n , (10)

where Cpv, CP, and CE are the unitary costs for PV, power converter rating,
and energy capacity, respectively. Costs are reported in Table 8. They are
derived from current market figures.

Table 8: Costs of PV and BESSs.

Component Unit Value

Turn-key PV system (Cpv) USD($)/kWp 1020

BESS converter rating (CP) USD($)/kVA 200

BESS energy capacity (CE) USD($)/kWh 300

Formulation of the decision problem. The decision variables of the prob-
lem are the installed PV capacity, the BESS power rating and the BESS
energy capacity at all the nodes of the grid, which we collect in the set
χ =

{
P pv
n , P bess

n , Ebess
n ∈ R+,∀n ∈ N

}
. Without losing generality, nodes that

cannot host PV generation or BESS can be excluded by properly subsetting
the nodes index. The problem consists in locating and sizing BESS to accom-
modate a target level P ? of installed PV generation capacity while minimizing
the total capital investment (10) for all the nodes of the grid. The BESSs’
optimal location is determined by the battery nodal injections that are differ-
ent than zeros at certain nodes. Similarly to before, to favour the locations
with large PV capacity factors, we weight the installed PV capacity at each
node with the factor γ/γn, where γ is the average among all the capacity
factors γn, n ∈ N in the network. Finally, the problem is:

minimize
χ

{∑
n∈N

J
(
γ/γn · P pv

n , P bess
n , Ebess

n

)}
(11a)

subject to nodal injections (now with BESSs demand too) and grid con-
straints

pt = ppv
t − pload

t − pbess
t t ∈ T (11b)

qt = ppv
t − qload

t − qbess
t t ∈ T (11c)

(6d)− (6f), (11d)
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BESS model and constraints

SOEn,t = SOEn,t−1 − pbessn,t ∆t t ∈ T , n ∈ N (11e)

0 ≤ (pbessn,t )2 + (qbessn,t )2 ≤ (P bess
n )2 t ∈ T , n ∈ N (11f)

aEbess
n ≤ SOEn,t ≤ (1− a)Ebess

n t ∈ T , n ∈ N (11g)

and PV model and target PV capacity P ? to install in the grid:

(6g)− (6h) (11h)∑
n∈N

P pv
n = P ?. (11i)

3.3.2. Results

For each estimated MV grid, first, we solve the PV problem (6) to ob-
tain the PV hosting capacity, then, we solve the BESS sizing problem (11)
by varying P ? in (11i) from 25% to 300% (with increments of 25%) of the
grid PV hosting capacity. It should be noted that both the problems (6)
and (11) are solved multiple times for correcting the grid linearization (by
updating the injections of newly sized PV and battery installations) and up-
dating battery equivalent resistances (for the battery loss model as previously
mentioned). With this procedure, we determine the BESSs requirements for
PV configurations below (25-100%) and above (125-300%) the grid hosting
capacity. The results of this process for are shown in Fig. 14 and are now
discussed. Figures 14a and 14b show the cost curves for 10 randomly chosen
distribution networks, whereas Figures 14c and 14d show the distribution
along the grids with symmetric quantiles. Figure 14a shows the total invest-
ment for PV systems and BESSs as a function of the installed PV generation
capacity. We can observe two elements. Networks reach a different level
of maximum PV installed capacity. This is due to the different values of
land availability. Second, the total investment grows at two different rates
because the investment, below the hosting capacity, is given by PV panels
only, whereas above it, by BESSs too. Figure 14b shows the marginal cost
of increasing the level of installed PV generation capacity. We define the
marginal cost of each grid as the total cost of the PV-BESS system over the
total PV yearly production accounting for the capacity factor as:

Marginal cost =
∑
n∈N

J
(
P̂ pv
n , P̂ bess

n , Êbess
n

)
P̂ pv
n · 365 · 24 · γn

, (12)
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where P̂ pv
n , P̂ bess

n , Êbess
n denote the solution of problem (11). It can be seen

from Fig. 14a and 14b that, below the hosting capacity, the marginal cost
is constant because it corresponds to the unitary cost of PV, whereas above,
it increases because progressively larger BESSs are required. Figure 14c
and 14d shows the density plot of the cost curves derived for all estimated
MV networks in Switzerland. They show the distribution of the total and
marginal costs among different networks. As it can be seen in Fig. 14a and
14b, different networks have different PV hosting capacities, therefore the
marginal costs of the various systems have different patterns.

(a) (b)

(c) (d)

Figure 14: Investments to achieve a target level of installed PV generation capacity: (a, c)
total cost, and (b, d) marginal cost. Top: for randomly chosen 10 MV networks, bottom:
for all estimated MV networks in Switzerland (distribution with symmetric quantiles).
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3.4. Optimal allocation of PV and BESSs

In the former subsection, we have discussed a method to determine the
optimal deployment of PV installations and BESSs within a network to ac-
commodate a target level of installed PV capacity. We have applied it to all
identified grids of Section 2 and derived, for each of them, marginal costs for
installing increasing levels of installed PV capacity. The estimated marginal
costs are key results as they allow us to compare the costs of installing PV
generation in various networks across the country, and they will be the fun-
damental input of the problem discussed in this section. The objective of this
problem is to determine the installed PV capacity in each network in order to
achieve a countrywide objective for total PV generation at the lowest capital
cost.

We denote the curves of Fig. 14b with the function fm(P ?
m), where m ∈

M = {1, . . . ,M} is the index for the identified MV networks and P ?
m is the

installed capacity in grid m. We approximate the curves fm with a piece-wise
linear function. The domain of fm is [P ?

m, P
?

m], derived from Fig. 14b. The
problem consists in finding the variables P ?

1 , . . . , P
?
M at the minimum total

cost and such that the total installed capacity equals the countrywide PV
installation target P target. The problem is:

minimize
{P ?

m∈R+,m∈M}

{∑
m∈M

Ppv
m fm(Ppv

m )

}
(13a)

subject to the domains of the variables and the PV installation target:

P ?
m ≤ P ?

m ≤ P
?

m m ∈M (13b)∑
m∈M

P ?
m = P target. (13c)

The results are discussed in the next section.

4. Results and Discussion

4.1. Case study

In the previous sections, we have presented a modeling toolchain that
determines an economically optimal deployment of PV plants and BESSs to
achieve a target level of installed PV generation while accounting for the
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capacity factor spatial distribution, grids constraints and how they can be
relieved by BESSs when the PV generation capacity exceeds the grid’s PV
hosting capacity. It is worth highlighting that the problem’s essence is not
only about achieving an optimal deployment of PV generation based on its
countrywide potential but also extending with distributed energy storage the
PV hosting capacity of grids with large PV generation potential if this leads
to more economically convenient configurations. For example, as shown in
this section, it is more convenient to invest in BESSs to extend the hosting
capacity of a grid with a large generation potential and installing here addi-
tional PV generation rather than in grids with lower generation potential.

In this section, we compare this approach (that we call Case 1) against
the case where the same level of installed PV generation capacity is deployed
uniformly in the distribution grids (Case 0). For an illustrative comparison
between Case 0 and 1, we refer to Fig. 14d: for a given value of total PV
generation capacity, Case 0 involves selecting, for each network, an installed
PV generation capacity (x-axis) that is proportional to the grid area and
regardless of its cost (y-axis). Case 1 involves placing PV generation start-
ing from the grid with the lowest cost (y-axis), and saturating its potential
(sweeping the x-axis) before moving to the second cheapest grid.

4.2. Deployment of PV plants

Figure 15 shows the distribution of installed PV generation capacity
across Switzerland for increasing (from top to bottom) levels of total installed
capacity and for Case 0 (left column) and Case 1 (right). The difference be-
tween the two deployment policies is evident by comparing the plots in the
first row: in the left plot (Case 0), PV plants are installed uniformly in the
grids8, whereas in the right plot (Case 1) PV is installed prioritizing regions
with higher irradiance availability, which appear to be Ticino, Leman and
Neuchatel regions, and west Valais.

For increasing values of installed PV capacity (second and third rows of
Fig. 15), it can be observed that Case 0 and Case 1 feature increasingly similar
geographical distribution patterns. This is due to land-use limitations, and
the activation of the associated constraint in (6h). In other words, once
Case 1 saturates the available locations for PV deployment in regions with

8Non-uniform spatial distribution over the country of PV generation is because grids
are not uniformly distributed.
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Installed PV generation capacity (in MW) across Switzerland for scenario A
in (a) and (b), scenario B in (c) and (d), and scenario C in (e) and (f), for Case 0 and
Case 1, respectively. Scenarios refer to the installed capacity of PV generation and are
defined in Table 9.

31



high irradiance potential, it starts installing PV generation in second-choice
grids. The distribution of the BESS follows the same pattern as of PV.

4.3. Deployment of PV plants and BESSs for Case 0 and Case 1

Table 9 shows the PV installed capacity, the yearly production, the BESS
power rating and energy capacity, and the total cost (i.e., investments for PV
plants and BESSs) for 10 scenarios (A-J) of PV generation deployment for
Case 0 and Case 1. Scenarios A, B, C to J correspond to allocating PV
generation in 5, 10, 20 to 90% (with increments of 10%), respectively, of the
available surface. We remind that the available surface for PV is 10% of the
settlement areas, as discussed in section 3.1.2. The energy transition scenario
for Switzerland reported in [67] estimates a yearly PV production potential
from roof-top PV around 25 TWh, that corresponds to our scenarios H-J.

From Table 9 we can make the following observations.

• Case 1/Scenario A achieves a 0.21 TWh increase in yearly production
compared to the same scenario of Case 0 thanks to installing PV gen-
eration in distribution grids with larger PV generation potential first.
For increasing values of installed capacity (scenarios from B to J), the
yearly production of the two cases converges to the same values due to
land-use limitations, as discussed in 4.2;

• Case 0 requires BESSs starting from Scenario C, whereas Case 1 has
mild needs in Scenario B already. This denotes that it is more cost
effective to invest in BESS to increase the hosting capacity of high
PV-generation-potential grids rather than connecting that same PV
capacity in other grids with less PV generation potential.

• Connecting PV generation above Scenario C in Case 0 requires pro-
gressively larger values of energy storage capacity and power rating.
For example, doubling its installed capacity (from 6.85 to 13.70 GW)
requires nearly 40 times the energy storage capacity (from 0.14 to 5.73
GWh). It is worth noting that the needs for BESSs increases sharper
for Case 0 than Case 1. This is because the latter problem optimizes
the locations of BESSs and PV across all the grids attaining a minimum
costs, whereas Case 0 scales PV capacity regardless of grid properties
and irradiance potential. Costs are discussed next.
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Table 9: Deployment of PV and BESS in the two cases.

Scenario

PV installed PV production BESS Power BESS Capacity Total cost

capacity (TWh/y) (GW) (GWh) Billions $

(GWp) Case 0 Case 1 Case 0 Case 1 Case 0 Case 1 Case 0 Case 1

A 1.71 1.90 2.11 0.00 0.00 0.00 0.00 1.76 1.77

B 3.43 3.81 4.09 0.00 0.00 0.00 0.01 3.53 3.53

C 6.85 7.62 7.87 0.03 0.01 0.14 0.01 7.11 7.07

D 10.28 11.42 11.46 0.46 0.04 1.31 0.05 11.07 10.61

E 13.70 15.23 15.25 1.74 0.51 5.73 0.68 16.18 14.42

F 17.02 18.92 18.99 3.64 3.08 14.74 7.88 22.68 20.51

G 20.11 22.36 22.43 5.87 5.67 26.83 21.26 29.94 28.23

H 22.89 25.44 25.46 8.10 7.94 39.90 36.20 37.17 36.03

I 25.42 28.24 28.25 10.18 10.08 53.41 51.00 44.25 43.50

J 27.57 30.61 30.61 12.07 12.00 65.87 65.04 50.57 50.31

4.4. Cost comparison

Figure 16 compares the marginal cost (i.e., total cost divided by the PV
yearly production for the respective scenarios) of the two cases using results
from Table 9. Case 1 (optimal allocation) always achieves a lower unitary

Figure 16: Cost per TWh of PV energy production for the two cases.

cost compared to Case 0. This is because the optimal allocation problem
places the PV plants at locations with the higher irradiance potential first,
whereas Case 0 (uniform PV allocation) places the PV plants proportionally
to the available area. This shows the effectiveness of the optimal allocation
algorithm. However, for higher values of installed PV generation capacity,
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the costs converge to the same value due to land-use limitations in most
PV-favourable grids.

Fig. 17a shows the BESS energy capacity and power rating requirements
for the optimal case as a function of the installed PV generation capacity
using the results from Table 9. The energy storage requirements are mild,
before increasing sharply after 14 GW(9). It can be noted that mitigat-
ing with BESSs the impact of excess PV generation on distribution grids is
an energy-intensive application, with power-rating-to-energy-capacity ratios
(i.e., C-rates) around 1/5. As current BESSs technologies can safely oper-
ate up to 2-3C, the spare power rating can be conveniently used to provide
additional ancillary services, such as primary frequency control and grid syn-
chronization services, that are mostly power-intensive [68]. Fig. 17b shows
the corresponding system cost and cost breakdown and shows that the cost
of the PV panels is largely dominant.

(a) (b)

Figure 17: (a) BESS cost and size: (a) BESSs power rating and energy capacity and (b)
system cost breakdown for Case 1 for different levels of installed PV generation capacity.

9This value of hosting capacity is in-line with the countrywide hosting capacity obtained
by solving the problem in Section 3.2.
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5. Conclusions

PV generation will be key in achieving the energy transition targets, in
Switzerland and other countries. As PV plants are connected to the power
distribution system, it is important to consider the generation hosting ca-
pacity of existing distribution grids, which is typically limited due to grid
operators’ requirements to keep voltage levels within statutory limits, re-
spect the cable ampacities and rating of the substation transformer.

The main obstacle to analyzing the PV hosting capacity of existing dis-
tribution grids is that their topology and line characteristics are confidential
information owned by different DSOs. For this reason, we have first devel-
oped a method to estimate likely distribution grids starting from publicly
available georeferenced data. Relying on the fact that existing distribution
grids interface electrical demand, we use the countrywide geographical dis-
tribution of the electrical demand to infer the HV and MV electrical nodes’
locations and connect them with a routing procedure from the existing lit-
erature. We then present a computationally tractable method based on a
linearized OPF problem to compute the PV hosting capacity of distribution
grids, including how to host PV generation beyond prescribed limits with
adequately located and sized distributed energy storage systems for relieving
grid constraints violations.

Finally, we propose a specific planning problem that determines a cost-
efficient allocation of PV power across the whole country, accounting for
the technical limitations of the distribution grids (including adding energy
storage, if conducive to lower system costs) and the distributed potential of
PV generation, modeled with highly resolved PV capacity factors from the
PVGIS database. We also consider land-use constraints to identify the sites
where it is possible to install PV generation. The ”cost-efficiency” notion for
installing PV and energy storage systems includes two factors. First, cost
efficiency is higher when installing PV plants where their capacity factor is
larger. Second, it may be more cost-efficient to invest in distributed energy
storage to extend the PV hosting capacity of highly insulated distribution
grids rather than installing PV plants where their capacity factor is low.

The impact of this paper is twofold. On the one hand, it provides to
distribution system operator a mathematically tractable and interpretable
method to assess the PV generation hosting capacity of distribution grids,
including how to cost optimally extend it with energy storage systems. On
the other hand, developed methods provide actionable indications to national
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policymakers on the level of PV generation that a country can host and, on
its techno-economical optimal deployment.

Appendix A. Verification of optimal power flow results

We compare the voltage and current magnitudes computed by the lin-
earized OPF model of Sec. 3.2 and 3.3 against ground-truth values from an
AC load flow. The analysis is done for one of the synthetically generated
network for which, the topology (with line parameters) and the nominal in-
jections are shown in Fig. A.18 and Table A.10 respectively. As mentioned in
Sec 3.3.2, the OPFs are solved by successively linearizing the model account-
ing for the updated BESS and PV injections to correct the linearization error
until the cost of the problem converges. Fig. A.19a and Fig. A.19b show the
power and energy ratings and the respective costs determined by the OPF
of Sec. 3.3, respectively. Results settle in 7 iterations. After convergence is
reached, we check the accuracy of the linear grid model against non-linear AC
power flow using the BESS and PV injections from OPF problem. Fig. A.20
shows the CDF plots of error of the nodal voltage magnitude and currents
modeled by the linear OPF and the AC power flow. Table A.11 shows the
maximum, absolute mean and mean error for the voltage and current model-
ing. They show that the voltage and current modeling errors are below 0.5 %
and 1.75 % respectively. This proves that the voltage and current constraints
modeling using sensitivity-based linear grid model is close to the non-linear
AC power flow.

Table A.10: Nominal Load and PV per node

Node Load [MW] PV [MWp] Node Load [MW] PV [MWp]

N1 - - N14 0.17 -

N2 - 1.05 N15 0.18 0.35

N3 0.22 - N16 0.19 -

N4 0.15 - N17 0.17 0.44

N5 0.14 - N18 0.20 -

N6 0.21 1.75 N19 0.21 -

N7 0.17 1.90 N20 0.22 -

N8 0.19 0.87 N21 0.16 -

N9 0.20 1.16 N22 0.18 1.00

N10 0.19 0.70 N23 0.26 1.81

N11 0.14 - N24 0.23 1.17

N12 0.17 - N25 0.02 -

N13 0.17 -
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Figure A.18: One of synthetically generated network as test case for the verification of
linear grid model.

(a) (b)

Figure A.19: Plots showing convergence of the BESS sizes and the objective by correcting
the linear power flow coefficients with newest battery injections from previous iteration:
(a) BESS power and energy size and (b) Cost of the PV-BESS system.

Appendix B. Validation of synthetically generated MV networks

We compare two estimated grids from our model with a real distribution
network in Aigle, Switzerland, for which it was possible to access the topol-
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Table A.11: Accuracy of the linear power flow.

Max SD Mean

Nodal voltage error 4.2e-3 1.8e-3 1.1e-3

Lines currents error 1.75e-2 4.1e-3 4.8e-4

(a) (b)

Figure A.20: CDF plots (a) nodal voltages error and (b) branch current error.

ogy and grid data. It is a three-phase 21 kV/6 MVA, a 55-bus network. The
two synthetically generated networks are picked from a region near Aigle.
The validation refers to comparing the “loadability” of the network, namely
evaluating the CDFs of the voltage and line current magnitudes at differ-
ent load conditions. For the comparison, we use the load profiles shown in
Fig. 13a. Fig. B.21 shows the CDFs of the voltage and current magnitudes
of the original and estimated networks. The maximum, mean and the mini-
mum values are reported in the Table B.12. The numerical comparison and
the CDFs show a good match among the networks. In particular, it emerges
that the voltage and current magnitudes of the estimated networks fall in
the same ranges as the one of the real grid.
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(a) (b)

Figure B.21: CDF plots: (a) nodal voltages and (b) lines currents of original network and
the estimated networks shown in different colors.

Table B.12: Comparison of actual and estimated networks.

Networks Nodal voltage magnitudes Lines current magnitudes

Max SD Mean Max SD Mean

Actual 1.0006 0.0025 0.9978 0.3974 0.0420 0.0237

Estimated case 1 1.0000 0.0013 0.9985 0.3181 0.0570 0.0593

Estimated case 2 1.0000 0.0022 0.9970 0.4346 0.0782 0.0732
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