
Supplementary for: UCLID-Net: Single View
Reconstruction in Object Space

Anonymous Author(s)
Affiliation
Address
email

1 Metrics1

This section defines the metrics and loss functions used in the main paper.2

1.1 Chamfer-L13

The Chamfer-L1 (CD–L1) pseudo distance dCD1
between point clouds X =4 {

xi|1 ≤ i ≤ N, xi ∈ R3
}

and Y =
{
yj |1 ≤ j ≤M,yj ∈ R3

}
is the following:5

dCD1
(X,Y ) =

1

|X|
·
∑
x∈X

miny∈Y ‖x− y‖2 +
1

|Y |
·
∑
y∈Y

minx∈X ‖x− y‖2 , (1)

where ‖.‖2 is the Euclidean distance. We use CD–L1 as a validation metric on the Pix3D dataset,6

according to the original procedure. It is applied on shapes normalized to bounding box [−0.5, 0.5]3,7

and sampled with 1024 points.8

1.2 Chamfer-L29

The Chamfer-L2 (CD–L2) pseudo distance dCD2
between point clouds X and Y is the following:10

dCD2
(X,Y ) =

1

|X|
·
∑
x∈X

miny∈Y ‖x− y‖22 +
1

|Y |
·
∑
y∈Y

minx∈X ‖x− y‖22 (2)

i.e. CD–L2 is the average of the squares of closest neighbors matching distances. We use CD–L2 as11

a validation metric on the ShapeNet dataset. It is applied on shapes normalized to unit radius sphere,12

and sampled with 2048 points.13

1.3 Earth Mover’s distance14

The Earth Mover’s Distance (EMD) is a distance that can be used to compare point clouds as well:15

dEMD(X,Y ) = min
T∈℘(N,M)

∑
1≤i≤N,1≤j≤M

Ti,j × ‖xi − yj‖2 (3)

where ℘(N,M) is the set of all possible uniform transport plans from a point cloud of N points to16

one of M points, i.e. ℘(N,M) is the set of all N ×M matrices with real coefficients larger than or17

equal to 0, such that the sum of each line equals 1/N and the sum of each column equals 1/M .18

The high computational cost of EMD implies that it is mostly used for validation only, and in an19

approximated form. On ShapeNet, we use the implementation from [5] on point clouds normalized20
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to unit radius sphere, and sampled with 2048 points. On Pix3D, we use the implementation from [6]21

on point clouds normalized to bounding box [−0.5, 0.5]3, and sampled with 1024 points.22

1.4 F-score23

The F-Score is introduced in [7], as an evaluation of distance between two object surfaces sampled24

as point clouds. Given a ground truth and a reconstructed surface, the F-Score at a given threshold25

distance d is the harmonic mean of precision and recall, with:26

• precision being the percentage of reconstructed points lying within distance d to a point of27

the ground truth;28

• recall being the percentage of ground truth points lying within distance d to a point of the29

reconstructed surface.30

We use the F-Score as a validation metric on the ShapeNet dataset. It is applied on shapes normalized31

to unit radius sphere, and sampled with 10000 points. The distance threshold is fixed at 5% side-length32

of bounding box [−1, 1]3, i.e. d = 0.1 .33

1.5 Shell Intersection over Union34

We introduce shell-Intersection over Union (sIoU). It is the intersection over union computed on35

voxelized surfaces, obtained as the binary occupancy grids of reconstructed and ground truth shapes.36

As opposed to volumetric-IoU which is dominated by the interior parts of the objects, sIoU accounts37

only for the overlap between object surfaces instead of volumes.38

We use the sIoU as a validation metric on the ShapeNet dataset. The occupancy grid divides the39

[−1, 1]3 bounding box at resolution 50 × 50 × 50, and is populated by shapes normalized to unit40

radius sphere.41

2 Network details42

We here present some details of the architecture and training procedure for UCLID-Net. We will43

make our entire code base publicly available.44

3D CNN UCLID-Net uses S = 4 scales, and feature map Fs is the output of the s-th residual layer45

of the ResNet18 [4] encoder, passed through a 2D convolution with kernel size 1 to reduce its feature46

channel dimension before being back-projected. In the 3D CNN, layer4, layer3, and layer2 are47

composed of 3D convolutional blocks, mirroring the composition of a residual layer in the ResNet1848

image encoder, with:49

• 2D convolutions replaced by 3D convolutions;50

• 2D downsampling layers replaced by 3D transposed convolutions.51

Final layer1 is a single 3D convolution. Each concat operation repeats depth grids twice along their52

single binary feature dimension before concatenating them to feature grids. Tab. 1 summarizes the53

size of feature maps and grids appearing on Fig. 1 of the main paper.54

Local shape regressors The last feature grid H0 produced byt the 3D CNN is passed to two55

downstream Multi Layer Perceptrons (MLPs). First, a coarse voxel shape is predicted by MLP occ.56

Then, within each predicted occupied voxel, a local patch is folded in the manner of AtlasNet [3], by57

MLP fold. Both MLPs locally process each voxel of H0 independently.58

First, MLP occ outputs a surface occupancy grid Õ such that59

Õxyz = occ((H0)xyz) (4)

at every voxel location (x, y, z). Õ is compared against ground truth occupancy grid O using binary60

cross-entropy:61

LBCE(Õ, O) = −
∑
xyz

[
Oxyz · log(Õxyz) + (1−Oxyz) · log(1− Õxyz)

]
(5)
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Table 1: UCLID-Net architecture: tensor sizes, names according to Fig. 1 of the main paper.

Nature Name Spatial resolution Number of features
input image I 224×224 3

2D feature maps

F1 56×56 30
F2 28×28 30
F3 14×14 30
F4 7×7 290

2D feature grids

GF1 28×28×28 30
GF2 28×28×28 30
GF3 14×14×14 30
GF4 7×7×7 290

3D depth grids

GD1 28×28×28

1 (binary)GD2 28×28×28
GD3 14×14×14
GD4 7×7×7

3D CNN outputs

H0 28×28×28 40
H1 28×28×28 73
H2 28×28×28 73
H3 14×14×14 146

LBCE provides supervision for training the 2D image encoder convolutions, the 3D decoder convolu-62

tions and MLP occ.63

Then fold, the second MLP learns a 2D parametrization of 3D surfaces within voxels whose predicted64

occupancy is larger than a threshold τ . As in [3, 10], such learned parametrization is physically65

explained by folding a flat sheet of paper (or a patch) in space. It continuously maps a discrete set66

of 2D parameters (u, v) ∈ Λ to 3D points in space. A patch can be sampled at arbitrary resolution.67

In our case, we use a single MLP whose input is locally conditioned on the value of (H0)xyz . The68

predicted point cloud X̃ is defined as the union of all point samples over all folded patches:69

X̃ =
⋃
xyz

Õxyz>τ

{(
x
y
z

)
+ fold(u, v|(H0)xyz) | (u, v) ∈ Λ

}
(6)

Notice that 3D points are expressed relatively to the coordinate of their voxel. As a result, we can70

explicitly restrict the spatial extent of a patch to the voxel it belongs to. We use the Chamfer-L271

pseudo-distance to compare X̃ to a ground truth point cloud sampling of the shapeX: LCD(X̃,X) =72

dCD2(X̃,X).73

LCD provides supervision for training the 2D image encoder convolutions, the 3D decoder convo-74

lutions and MLP fold. The total loss function is a weighted combination of the two losses LBCE75

and LCD. Practically, for training each patch of X̃ is sampled with |Λ| = 10 uniformly sampled76

parameters, and X is composed of 5000 points.77

Pre-training UCLID-Net is first trained for one epoch using the occupancy loss LBCE only.78

Normalization layers In the ResNet18 that serves as our image encoder, we replace the batch-79

normalization layers by instance normalization ones. We empirically found out this provides greater80

stability during training, and improves final performance.81

Regressing depth maps We slightly adapt the off-the-shelf network architecture used for regressing82

depth maps [1]. We modify the backbone CNN to be a ResNet18 with instance normalization layers.83

Additionally, we perform less down-sampling by removing the initial pooling layer. As a result the84

input size is 224× 224 and the output size is 112× 112.85
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Regressing cameras We similarly adapt the off-the-shelf network architecture used for regressing86

cameras in [9]: the backbone VGG is replaced by a ResNet18 with instance normalization layers.87

3 Per-category results on ShapeNet88

We here report per-category validation metrics for UCLID-Net and baseline methods: AtlasNet [3]89

(AN), Pixel2Mesh+ and Mesh R-CNN [8, 2] (P2M+ and MRC), DISN [9] and UCLID-Net (ours).90

Tab. 2 reports Chamfer-L2 validation metric, Tab. 3 the Earth Mover’s Distance, Tab. 4 the Shell91

Intersection over Union and Tab. 5 the F-Score at 5% distance threshold (ie. d = 0.1).92

Table 2: Chamfer-L2 Distance (CD, ×103) for single view reconstructions on ShapeNet Core, with
various methods, computed on shapes scaled to fit unit radius sphere, sampled with 2048 points. The
lower the better.

category

method

pl
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di
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m
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ea

ke
r

ri
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ta
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e

ph
on

e

bo
at mean

AN 10.6 15.0 30.7 10.0 11.6 17.3 17.0 22.0 6.4 11.9 12.3 12.2 10.7 13.0
P2M+ 11.0 4.6 6.8 5.3 6.1 8.0 11.4 10.3 4.3 6.5 6.3 5.0 7.2 7.0
MRC 12.1 7.5 9.7 6.5 8.9 9.3 14.0 13.5 5.7 7.7 8.1 6.9 8.6 9.0
DISN 6.3 6.6 11.3 5.3 9.6 8.6 23.6 14.5 4.4 6.0 12.5 5.2 7.8 9.7
Ours 5.3 4.2 7.4 4.1 4.7 6.9 10.9 13.8 5.8 5.7 6.9 6.0 5.0 6.3

Table 3: Earth Mover’s Distance (EMD, ×102) for single view reconstructions on ShapeNet Core,
with various methods, computed on shapes scaled to fit unit radius sphere, sampled with 2048 points.
The lower the better.

category

method
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AN 6.3 7.9 9.5 8.3 7.8 8.8 9.8 10.2 6.6 8.2 7.8 9.9 7.1 8.0
P2M+ 4.4 3.2 3.4 3.4 3.7 3.7 5.5 4.2 3.5 3.4 3.8 2.7 3.4 3.8
MRC 5.0 4.1 5.1 4.1 4.7 4.9 5.6 5.7 4.1 4.6 4.5 4.6 4.2 4.7
DISN 2.2 2.3 3.2 2.4 2.8 2.5 3.9 3.1 1.9 2.3 2.9 1.9 2.3 2.6
Ours 2.5 2.2 3.0 2.2 2.3 2.5 3.2 3.4 2.0 2.4 2.7 2.2 2.2 2.5

Table 4: Shell-Intersection over Union (IoU, %) for single view reconstructions on ShapeNet Core,
with various methods, computed on voxelized surfaces scaled to fit unit radius sphere. The higher the
better.

category

method
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AN 20 13 7 16 13 12 14 8 28 11 15 14 17 15
P2M+ 31 34 23 26 28 28 28 20 42 24 33 35 34 30
MRC 24 26 18 22 21 23 21 16 33 19 27 28 27 24
DISN 40 33 20 31 25 33 21 19 60 29 25 44 34 30
Ours 41 41 29 34 36 33 37 24 51 31 38 43 37 37
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Table 5: F-Score (%) at threshold d = 0.1 for single view reconstructions on ShapeNet Core, with
various methods, computed on shapes scaled to fit unit radius sphere, sampled with 10000 points.
The higher the better.

category

method
pl
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AN 91.2 85.9 73.8 94.4 90.5 84.3 81.4 79.7 95.6 91.1 90.8 90.4 90.3 89.3
P2M+ 90.3 97.1 96.0 97.9 95.7 93.1 90.2 91.3 96.8 96.5 95.8 97.6 94.4 95.0
MRC 88.4 93.3 92.1 96.4 92.0 91.4 85.8 88.3 94.9 95.0 93.9 95.9 92.8 92.5
DISN 94.4 94.3 88.8 96.2 90.2 91.8 77.9 85.4 96.3 95.7 86.6 96.4 93.0 90.7
Ours 96.1 97.5 94.3 98.5 97.4 95.8 92.7 90.6 98.0 97.0 95.5 96.4 97.1 96.2
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