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Abstract: The dye regeneration in dye-sensitized solar cells (DSSCs) is improved by optimizing the
charge separation at the level of the sensitized semiconductor treatment of the mesoporous electrode
by TiCl4 that passivates the surface for back electron transfer reactions. The dye-regeneration
kinetics is analyzed for DN216- and D358-sensitized porous TiO2 electrodes with and without
a TiCl4 treatment by means of scanning electrochemical microscopy (SECM). Different mass transport
limitation of the [Co(bpy)3]3+ mediator through the porous electrode is found for the comparison of
the structurally similar dyes but cannot be detected for the thin layer introduced by the TiCl4 treatment.
Phototransient measurements are conducted directly in the SECM cell without any intermediated
sample manipulation. The results from those measurements corroborate the findings from steady
state SECM measurements.
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1. Introduction

The dye-sensitized solar cells (DSSCs) were originally developed by O’Regan and Grätzel in
1991 [1]. TiO2-based devices were reported to have photoconversion efficiencies of up to 12.7% [2],
a value halfway of the theoretical maximum estimated to be around 30% [3,4]. The mechanism
of photon-conversion into electrons takes place at the sensitized semiconductor [5]. The coupled
processes are depicted and numbered in Figure 1. A dye molecule (D) absorbs solar light (1) and injects
an electron in the conduction band (CB) of the TiO2 film (2), on which it is adsorbed [5,6]. Inside
the semiconductor, the electron is transported by a diffusion process (3) to the back contact, during
which the conduction band electrons eCB temporarily reside in traps near to the CB edge, from which
they can be thermally activated [7,8]. The photo-oxidized dye is thereafter regenerated by a mediator
(4) in the electrolyte [9]. Due to space requirements, the redox mediator [Co(bpy)3]2+/3+, in its reduced
and oxidized form is represented either by R/O or
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1991 [1]. TiO2-based devices were reported to have photoconversion efficiencies of up to 12.7% 
[2], a value halfway of the theoretical maximum estimated to be around 30% [3,4]. The 
mechanism of photon-conversion into electrons takes place at the sensitized semiconductor [5]. The 
coupled processes are depicted and numbered in Figure 1. A dye molecule (D) absorbs solar light (1) 
and injects an electron in the conduction band (CB) of the TiO2 film (2), on which it is adsorbed [5,6]. 
Inside the semiconductor, the electron is transported by a diffusion process (3) to the back contact, 
during which the conduction band electrons eCB temporarily reside in traps near to the CB edge, from 
which they can be thermally activated [7,8]. The photo-oxidized dye is thereafter regenerated by a 
mediator (4) in the electrolyte [9]. Due to space requirements, the redox mediator [Co(bpy)3]2+/3+, 
in its reduced and oxidized form is represented either by R/O or , in Figure 1. In an 
illuminated photoanode, the photo-oxidized dye (D+) and the eCB can be considered as an electron-
hole pair that can either recombine (5) or separate [10]. In general, the high dielectric 
permittivity of TiO2 supports the charge separation [11,12]. During the transport to the back 
contact (3), eCB can be lost by “back electron transfer reaction” which are the heterogeneous electron 
transfer (ET) reactions of eCB to the oxidized mediator (6) in the electrolyte or, less frequently, to D
+ (5) [12]. These processes are 

/- in Figure 1. In an illuminated photoanode,
the photo-oxidized dye (D+) and the eCB can be considered as an electron-hole pair that can either
recombine (5) or separate [10]. In general, the high dielectric permittivity of TiO2 supports the charge
separation [11,12]. During the transport to the back contact (3), eCB can be lost by “back electron transfer
reaction” which are the heterogeneous electron transfer (ET) reactions of eCB to the oxidized mediator
(6) in the electrolyte or, less frequently, to D+ (5) [12]. These processes are also called “recombination”
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because they restore the electronic state before the photo-excitation. The unwanted loss processes 5
and 6 limit the effective life time of eCB [13,14]. If electrons are retained in trap states located near the
TiO2|solution interface, the probabilities for an ET to the oxidized form of the mediator (6′) or to D+ (5′)
are dramatically increased and may limit the overall device performance [6]. A common approach to
increase the device performance consists in diminishing the trap concentration near the inner surface
of the nanoporous photoanodes.
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Figure 1. Schematic structure and electron loss processes in dye sensitized photoanodes without and
with TiCl4-treament. Desired (forward) processes are in blue, unwanted (backward) processes are
in red; (1) Light absorption by the dye; (2) electron injection of photo-excited dye into the conduction
band of TiO2, (3) electron transport by trap-diffusion process, (4) dye regeneration by electron transfer
from reduced form of the mediator, (5) back electron transfer from TiO2 conduction band to the oxidized
form of the mediator, (6) back electron transfer from TiO2 conduction band to the photo-oxidized dye
molecule; (7) electron transfer from the back contact to the oxidized form of the mediator; (8) electron
transfer from the back contact to a photo-oxidized dye molecule. The processes 5′ and 6′ denote
corresponding processes starting from a trap state near the surface. Abbreviations; BL, blocking layer;
TCO, transparent conducting oxide (back contact); D/D*D*, dye/ photo-excited dye/ photo-oxidized
dye; R/O, reduced/oxidized form of the redox mediator (also as
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hole pair that can either recombine (5) or separate [10]. In general, the high dielectric 
permittivity of TiO2 supports the charge separation [11,12]. During the transport to the back 
contact (3), eCB can be lost by “back electron transfer reaction” which are the heterogeneous electron 
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sketch, the lower row and simplified energy diagram of the solid|liquid interface.

In this work, the dye-regeneration kinetics of TiO2-based photoanodes were analyzed for two
different nanoporous TiO2 electrodes and two all-organic dyes as sensitizers. The aim was to quantify
the influence of reduced back electron transfer reactions from near-surface trap states on the overall
dye-regeneration efficiency, which is expected to enhance the overall photovoltaic performances.
Mesoporous TiO2 films are commonly treated by an aqueous TiCl4 solution in order to improve the
efficiency of dye-sensitized solar cells [15]. This treatment covers the surface of mesoporous TiO2 film
by rutile TiO2 and increases the light scattering property of the film [16]. Several studies have been
reported to explain the effects of the post-TiCl4 treatment. The particle size of TiO2 increased from
13 nm for the primary TiO2 nanoparticles to ca. 15 nm by the covering layer [17]. Impurities at the
surface of the initial mesoporous TiO2 film are cleaned during the process and a pure TiO2 surface is
obtained [15]. Although the surface area of the mesoporous TiO2 film (as measured by gas adsorption)
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decreased by this treatment, the dye loading increases since the area accessible to the dye molecules
and the cleanness of the particles are improved [18,19]. A shift of the CB to a lower potential was also
observed and it leads to an enhanced electron injection from the excited dye [17,20]. At last, a stronger
bond was observed between the adsorbed dye and TiO2 from infrared absorption spectroscopy [21].
Such a strengthen bonding and a better surface coverage of the TiO2 particles by dye molecules inhibit
the ET of eCB oxidized mediator in the electrolyte solution. This effect is measured as an enhanced
open-circuit photovoltage [22]. Due to those positive effects, the post-TiCl4 treatment is commonly
applied for the fabrication of dye-sensitized solar cells [22,23] and its effect has been summarized as
passivation against losses of eCB.

Variation of the thickness of photoanodes can increase the light absorption. However, this effect
may be counteracted and even overcompensated by increased possibilities for loss processes at a larger
inner surface [24] and mediator mass transport limitation inside the porous network [25,26] as was
found from the analysis of films with thicknesses below 6 µm [24,27,28]. There are indications that,
on the one hand, thicker photoanodes produce high open-circuit photovoltages resulting in enhanced
photoconversion efficiency [28,29] and on the other hand exhibit a higher area for back electron transfer
reactions [30]. It has been reported that the use of thin films leads to a more effective dye-regeneration
kinetics favored by the limited back electron transfer reaction and faster mediator diffusion through
the porous film [29].

Despite extensive work to improve photovoltaic characteristics of the TiO2 photoanode, little
information has been obtained about the quantitative effect of post-TiCl4 treatment and sensitization
processes on the dye-regeneration kinetics (process (4) in Figure 1). In this regard, scanning
electrochemical microscopy (SECM) provides an evaluation of the dye regeneration rate constant
(kox) for process 4 in Figure 1, that measures the ability of the mediator to reduce the photo-oxidized
dye adsorbed on the photoanode [29,31,32]. In this work, SECM analysis is applied to passivated
TiO2 photoanodes sensitized with the all-organic dye molecules D358 or DN216 (Figure 2) [33,34].
These molecules have an aliphatic chain terminated by a carboxylic group that attaches it to the
semiconductor surface. A long anchoring chain prevents dye-aggregation [35] and reduces ET of eCB to
the oxidized form O of the mediator [36,37] by limiting the proximal approach of O, e.g., [Co(bpy)3]3+,
to the semiconductor surface [2,38]. However, sterically demanding dyes can hinder the diffusion of
the mediator in the pore space (internal diffusion), a trend that is expected to become more relevant
for sterically demanding mediators like [Co(bpy)3]2+/3+ and photoanodes with smaller pores [39].
This would result in less effective dye-regeneration kinetics. The steady-state approach curves in the
SECM feedback modes combined with a kinetic model introduced before for the evaluation of the
dye regeneration in sensitized TiO2-based photoanodes by cobalt-based mediators [32] provides a rate
constant kox that is again an effective constant bearing a relation to structural features that influence
the internal diffusion of the mediator in the porous photoanode.
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In addition, the SECM approach has been expanded by performing transient photocurrent
measurements inside the SECM cell on TiO2 photoanodes with and without post-TiCl4 treatment to
qualitatively investigate the influence of the structural modification as well as the effect of the dye steric
hindrance on the transient profile shape. The photocurrent recorded in on-off light cycles is indeed
influenced by the mediator mass transport from the inner layers of the photoanodes towards the counter
electrode [40], the porosity of the electrode [41], the eventual passivation with nanostructures [22],
and the thickness of the porous film [39].

2. Materials and Methods

2.1. Materials and Chemicals

Tris-(2,2′-bipyridine)cobalt(III) tri(hexafluorophosphate) [Co(bpy)3](PF6)3 (Dyenamo, Stockholm
Sweden), dye 5-[3-(carboxymethyl)-5-[[4-[4-(2,2-biphenylethenyl) phenyl] -1, 2, 3, 3a,
4, 8b-hexahydrocyclopent [b]indol-7-yl] methylene]-4-oxo-2-thiazolidinylidene]-4-oxo-2-thioxo-3-
thiazolidine-hexanoic acid (DN216) and dodecanoic acid (D358) (Dyenamo), the co-adsorbant
lithocholic acid (>95%, Sigma-Aldrich, Steinheim, Germany), tert-butanol (≥99.5%, Sigma-Aldrich);
tetrabutylammonium hexafluorophosphate (TBAPF6, Sigma-Aldrich), acetonitrile (≥99.5%,
Sigma-Aldrich), gold wire (99.999%, Goodfellow, Friedberg, Germany) were used as received.

2.2. TiO2 Film Production

The TiO2 films were prepared according to the procedure detailed before [34]. Shortly, a ca.
20 nm-TiO2 paste was screen-printed on an FTO slide already covered with a compact TiO2 layer of
circa 0.6 µm. The resulting porous layers had thicknesses of 3, 4, and 6 µm. Two specimens for each
thickness were sensitized by D358 or DN216 without post-TiCl4 treatment and two specimens were
subjected to a post-TiCl4 treatment and later sensitized by D358 or DN216. The post-TiCl4 treatment
involved the exposure of the porous TiO2 film to an aqueous solution of 53 mM TiCl4 for 30 min.
As a result, the internal surface of the porous TiO2 film was covered by a layer of TiO2 nanoparticles,
that form a passivation layer. The thickness of the porous films was determined by profilometry
(Alpha-Step 10-00020, Tencor Instruments, Milpitas, CA, USA).

2.3. Sensitization of the Photoanodes

The electrodes were sensitized in 2 mL of a solution of a 0.5 mM DN216 or D358 and 1 mM
lithocholic acid in 1:1 (v:v) acetonitrile:tert-butanol for 1 h at room temperature. The amount of dye
molecule loaded on a porous semiconductor film ΓD was calculated by measuring the attenuation of the
absorption of the sensitized films at 455 nm according to the Lambert-Beer equation with the decadic
molar extinction coefficient of 77,600 L mol−1 cm−1 for the dye DN216 and 67,000 L mol−1 cm−1 for
D358 dye [33]. The complete details of samples A to E are summarized in Table S1. That includes
samples of 3, 4, and 6 µm thickness with and without passivation and sensitized with either DN216
or D358.

2.4. SECM Instrumentation

The setup for scanning electrochemical microscopy has been detailed before [32,34,42] and was
run by the program SECMx [43]. The setup is shown in Figure 3 and included a piezoelectric actuator
and the control electronics (P780.20 and E665, Physik Instrumente, Karlsruhe, Germany) for vertical
approach, a digital potentiostat (Ref600, Gamry Instruments, Warminster, PA, USA), three SPI motors
(SPI Robot, Oppenheim, Germany) to coarsely move the microelectrode (ME) relative to the sample
and the light beam, and a two-dimensional positioning system (Nexcact N661.21A with controller
E681, Physik Instrumente) for moving the sample horizontally at a fixed relative position between the
microelectrode and the light beam. The samples were illuminated on an area of 1.5 mm2 by a blue LED
(455 nm) at photon flux Jhv ranging from 0 to circa 2 × 10−7 mol cm−2 s−1. The illuminated area was
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selected far off the edge of the photoanode. The precise location of the analyzed area did not influence
the measurements because possible local variations of properties are average on the length scale of the
used microelectrode. The LED was powered by an XPOT potentiostat with a photodiode (both Zahner
Elektrik, Kronach, Germany) in the beam to measure and control the actual light intensity. The light
intensity was calibrated with a power meter (Gigahertz-Optik, Türkenfeld, Germany). The light beam
is focused with a lens on the sample (10×, Carl Zeiss, Jena, Germany). A schematic of the setup is
provided in Figure 3.
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An in-house designed electrochemical cell was used. It was custom-made to work in Ar atmosphere
and allowed the simple localization of the illuminated area. A soft latex finger-cot was used to close
the cell against the ambient atmosphere and insert the microelectrode while allowing its translation in
the three-dimensions. The cell contained 1 mL redox electrolyte solution and facilitated the exchange
of the redox electrolyte and the microelectrode.

The SECM working electrodes were Au microdisk electrodes with a radius rT ≈ 25 µm and
RG = rglass/rT = 14. The exact radius was determined from approach curves to a glass slide and
fitting the obtained curve to an analytical model [44] The specific rT value is given in the figure
captions. The auxiliary electrode and the quasi-reference electrodes were Pt wires. The mediator
[Co(bpy)3](PF6)3 was used in a concentration of 0.1 mM for the approach curves and 0.2 mM for the
transient measurements. The redox mediator was dissolved in acetonitrile with 0.1 M TBAPF6 as
supporting electrolytes. The approach curves were recorded at a translation rate of vT = 0.5 µm s−1.
The transient measurements were recorded on the sample in the SECM setup short-circuited to the
redox electrolyte solution. The selected area was illuminated intermittently with 10 s on–off light
cycles with a photon flux in units of 10−8 mol cm−2 s−1 of 0.76, 1.51, 2.26, 3.01, 3.77, 6.02, and 7.52.
This corresponds to a flux in units of 1015 photons cm−2 s−1 of 4.58, 9.09, 13.6, 18.1, 22.7, 26.3 and 45.3.
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During the transient measurements the microelectrode was positioned in a distance of 10 µm from the
sample and reduced [Co(bpy)3]3+ under diffusion-controlled condition to [Co(bpy)3]2+.

3. Result

3.1. SECM Approach Curves

SECM approach curves were recorded in the feedback mode on TiO2 photoanodes with and without
passivation to determine the dye (D) regeneration rate constant kox of D358- and DN216-sensitized
TiO2 film by [Co(bpy)3]3+ mediator. The passivation layer obtained by post-TiCl4 treatment is expected
to improve the charge separation by inhibiting ET to the oxidized mediator (which would diminish
the ME current) and decreasing the probability of ET from eCB to D+ so that interfacial concentration
of D+ available for reaction with the reduced form of the mediator is increased compared to the
non-passivated electrodes with the same dye. The variation of the kox was also tested on TiO2

photoanodes of variable thickness to expand the considerations on the effect of mediator mass transport
through the porous film.

3.1.1. Treatment of the Approach Curves

The photoanodes were positioned in an adapted sample-holder in the SECM setup, which
enabled the illumination of a selected area of 1.5 mm2 of the electrode through the transparent
back contact. The samples were short-circuited to the solution by a Pt wire. Initially, the working
solution contains only the oxidized form of the mediator [Co(bpy)3]3+ which is continuously reduced
under a diffusion-controlled condition at the ME. A suitable ME potential was found from a cyclic
voltammogram in the working solution. The current was controlled by the hindered diffusion of the
mediator to the ME. During illumination, the dye molecules were photo-excited and injected electrons
in the CB of the semiconductor. The photo-oxidized dye molecules were regenerated according to
Equation (1) by the redox reaction with the reduced form of the mediator.

D+ + [Co(bpy)3]
2+ kox
→ D0 + [Co(bpy)3]

3+ (1)

The electrolysis current iT at the ME is increased compared to the situation in the dark due
to the additional flux of [Co(bpy)3]3+ caused by reaction (1) from the TiO2 photoanode to the ME.
During an approach curve, the distance d between the ME and the photoanode is steadily decreasing,
thus changing the relative contributions of the hindered diffusion of [Co(bpy)3]3+ form the bulk
phase and the flux generated by the dye regeneration in reaction (1). This changing contribution
of hindered mediator diffusion and dye regeneration reaction at the sample is well described by
continuum simulation of the reaction-diffusion problem. Such simulation results have been condensed
to an analytical approximation for an irreversible first-order reaction [45], which we used in this work.
Details are provided in our notation as Supporting Material SM-2. The approach curves were plotted in
normalized coordinates IT vs. L, in Figure 4, where the normalized microelectrode current IT = iT/iT,∞

is the microelectrode current iT(d) at a specific distance d normalized by the microelectrode current
iT,∞ in the bulk (i.e., quasi-infinite distance). The normalized distance L = d/rT was obtained from the
working distance d and the microelectrode radius rT. A fit of the experimental curve to the analytical
approximation yields a dimensionless pseudo-first-order rate constant κ, from which an effective
heterogeneous rate constant keff [cm s−1] for the overall dye regeneration process was obtained from
Equation (2)

keff = κD/rT, (2)

where D is the diffusion coefficient of the mediator [Co(bpy)3]3+ in the bulk solution and rT is the
radius of the ME. The diffusion coefficient D for the [Co(bpy)3]3+ in the bulk was calculated as
8.3 × 10−6 cm2 s−1 from the diffusion-limited steady-state current of the reaction at the ME (Figure S4).
The keff values are further related to the parameters of the photoanode in Section 4.1.
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treatment; in 0.1 mM [Co(bpy)3](PF6)3 + 0.1 M TBAPF6 in acetonitrile. Lines are fitted curves according
to the model described in SM-2 [45]; dfilm = 4 µm; Au microelectrode rT = 28.85 µm, ET = −0.15 V,
vT = 1 µm s−1; illumination at 455 nm with Jhv in 10−7 mol cm−2 s−1 of (0) dark, (1) 0.05, (2) 0.12, (3)
0.19, (4) 0.24, (5) 0.32, (6) 0.51, (7) 0.64, (8) 1.93. The intensities in 1015 cm−2 s−1 are 3.0, 7.2, 11, 14, 19, 31,
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3.1.2. Effect of Post-TiCl4 Treatment

Each TiO2 photoanode was investigated under eight different light intensities Jhv by SECM
approach curves in the feedback mode. Figure 4 shows the exemplary approach curves over a 4 µm
thick TiO2 photoanodes C-DN216, D-DN216, C-D358, and D-D358, which will be further discussed in
detail. The approach curves for samples with other thicknesses are reported in the Supporting Material
(SM) in Figures S1 and S2.

The approach curves recorded in the dark overlapped with the hindered-diffusion behavior
(Supporting Material (SM), SM-2 with k = 0). This led to the calculation of keff values very close to zero
because no photo-driven reaction took place. The very small keff results from the mediator diffusion
through the porous film that hinders the diffusion slightly less than an impermeable flat sample surface.
However, this contribution is very small and does not affect the applicability of the model. The negligible
current enhancement also proves the effectiveness of the blocking layer between the thin conducting
glass and the porous TiO2 electrode. If there were significant density of defect in the blocking layer
processes 7 and 8 of Figure 1 would cause enhanced ME currents as demonstrated before [46].

The approach curves were fitted with the model for first order, finite and irreversible kinetic
mediator regeneration by Cornut and Lefrou [45]. Details are provided in SM-2. The effective rate
constant keff for the mediator redox reaction with the dye at the photoanode for each Jhv was calculated
from κ (obtained by fitting the approach curve) and D (from Figure S3) according to Equation (2).
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All rate constants are collected in Tables S2 and S3. The approach curves recorded during illumination
reach higher normalized currents on samples with post-TiCl4 treatment which translates to higher keff

values for an identical photon flux.
Naturally, the keff values increase with the photon flux until they reached a saturation behavior

at a photon flux of Jhv > 0.5×10−7 mol cm−2 s−1 (Figure 5). Similar data are reported for all TiO2

photoanodes of different thicknesses and sensitized with D358 or DN216 dye molecules in Figure S5.
An enhancement of keff was detected every time that a photoanode with post-TiCl4 treatment was used
(compared to the corresponding non-treated counterpart). The enhancement was particularly strong
when the dye DN216 with the small anchoring chain had been used for the sensitization. The increase
of keff will be related to the structure of the photoanode in Section 4.1.
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Abstract: The dye regeneration in dye-sensitized solar cells (DSSCs) is improved by optimizing the 
charge separation at the level of the sensitized semiconductor treatment of the mesoporous 
electrode by TiCl4 that passivates the surface for back electron transfer reactions. The dye-
regeneration kinetics is analyzed for DN216- and D358-sensitized porous TiO2 electrodes with and 
without a TiCl4 treatment by means of scanning electrochemical microscopy (SECM). Different mass 
transport limitation of the [Co(bpy)3]3+ mediator through the porous electrode is found for the 
comparison of the structurally similar dyes but cannot be detected for the thin layer introduced by 
the TiCl4 treatment. Phototransient measurements are conducted directly in the SECM cell without 
any intermediated sample manipulation. The results from those measurements corroborate the 
findings from steady state SECM measurements. 

Keywords: porous semiconductor; dye-sensitized solar cells; regeneration; titania; diffusion; charge 
separation; scanning electrochemical microscopy 

1. Introduction

The dye-sensitized solar cells (DSSCs) were originally developed by O’Regan and Grätzel in 
1991 [1]. TiO2-based devices were reported to have photoconversion efficiencies of up to 12.7% 
[2], a value halfway of the theoretical maximum estimated to be around 30% [3,4]. The 
mechanism of photon-conversion into electrons takes place at the sensitized semiconductor [5]. The 
coupled processes are depicted and numbered in Figure 1. A dye molecule (D) absorbs solar light (1) 
and injects an electron in the conduction band (CB) of the TiO2 film (2), on which it is adsorbed [5,6]. 
Inside the semiconductor, the electron is transported by a diffusion process (3) to the back contact, 
during which the conduction band electrons eCB temporarily reside in traps near to the CB edge, from 
which they can be thermally activated [7,8]. The photo-oxidized dye is thereafter regenerated by a 
mediator (4) in the electrolyte [9]. Due to space requirements, the redox mediator [Co(bpy)3]2+/3+, 
in its reduced and oxidized form is represented either by R/O or , in Figure 1. In an 
illuminated photoanode, the photo-oxidized dye (D+) and the eCB can be considered as an electron-
hole pair that can either recombine (5) or separate [10]. In general, the high dielectric 
permittivity of TiO2 supports the charge separation [11,12]. During the transport to the back 
contact (3), eCB can be lost by “back electron transfer reaction” which are the heterogeneous electron 
transfer (ET) reactions of eCB to the oxidized mediator (6) in the electrolyte or, less frequently, to D
+ (5) [12]. These processes are 

) D358/TiO2 4 µm with post-TiCl4
treatment, (3 8) DN216/TiO2 6 µm, and (4 7) like DN216/TiO2 6 µm but with post-TiCl4 treatment.
Solution 0.1 mM [Co(bpy)3](PF6)3 + 0.1 M TBAPF6 in acetonitrile. The keff values were derived from
the fitting of the approach curves in Figures S2 and S3 to the model in SM-2. The solid lines in Figure 5
were derived from Equation (3) and fitting parameters are detailed in SM-4.

3.2. Transient Photocurrents

Photoinduced processes at sensitized porous semiconductor|electrolyte interface were investigated
in literature with transient photocurrents and photovoltages [8,22–24,47,48]. For the experiments
described below, region of the identical samples from Table S1 (3 and 4 µm thickness) were investigated
directly in the SECM cell that had not been used before for approach curves. A similar solution was
used as for the SECM approach curves. The photocurrents at the sample are recorded according to the
scheme in Figure 3, while the microelectrode is constantly generating [Co(bpy)3]2+ for dye regeneration.

Figure 6 shows the photocurrent transient recorded at a D358- and DN216-TiO2 photoanodes with
and without post-TiCl4 treatment. When the light is switched on, the photocurrent rises. The slope
is determined by filling the trap states in TiO2. As the trap occupancy is successively increased,
the transport processes of eCB in the interconnected TiO2 particles accelerate because the density of
unoccupied trap states decreases relative to that of mobile eCB. Higher light intensity also shortens
the time until a significant fraction of the traps is filled. This can be qualitatively seen from both
traces in Figure 6. The post-TiCl4 treatment is assumed to reduce the density of near-surface trap
states. In agreement, the current rise is faster for the sample TiCl4-treated sample at each light intensity.
Effects of limited mediator availability have to be considered as well, especially at high light intensity,
narrow porous channels, sterically demanding mediator, and low mediator concentrations as used
in these experiments [49]. These effects can contribute to a decline after an initial photocurrent
spike, which is detected for the TiCl4-treated sample at high light intensities [50,51]. Eventually,
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the photocurrents reach steady-state values iss under constant illumination. These iss values will be
discussed in Section 4.3.

Electrochem 2020, 2, FOR PEER REVIEW 9 

photocurrents reach steady-state values iss under constant illumination. These iss values will be 
discussed in Section 4.3. 

 
Figure 6. Transient photocurrents recorded at (1) 4 µm thick DN216/TiO2 electrode without and (2) 
with post-TiCl4 treatment; in 0.2 mM [Co(bpy)3](PF6)3 + 0.1 M TBAPF6 in acetonitrile under on-off light 
cycles of light intensity in 10−8 mol cm−2 s−1 of (L1) 0.76, (L2) 1.51, (L3) 2.26, (L4) 3.01, (L5) 3.77, (L6) 
6.02 and (L7) 7.52. The intensity in 1015 cm−2 s−1 are 4.58, 9.09, 13.6, 18.1, 22.7, 36.3 and 45.3. Further 
details in SM-6. 

4. Discussion 

4.1. Determination of Regeneration Rate Constant 

A very simplified model that relates structural properties of DSSC photoanodes to their SECM 
response has been derived before and is summarized by equation (3) [32]. 

 
(3) 

Here kox [cm3 mol−1 s−1] is the (heterogeneous) bimolecular regeneration rate constant for the 
reaction in Equation (1), ΓD [mol cm−2] is the dye loading per geometric area evaluated from 

independent measurements, c* [mol cm−3] is the [Co(bpy)3]3+ mediator bulk concentration, Jhν [mol 
cm−2 s−1] is the photon flux used to illuminate the samples, and φhv [cm2 mol−1] is the dye excitation 
cross-section. Fitting the keff-Jhv values to Equation (3) yielded estimates of kox and φhv. The rate constant 
kox is not an elementary rate constant because individual dye molecules in the porous electrode of 
finite thickness are potentially exposed to different photon fluxes and different diffusional fluxes of 
the mediator. For this reason, kox decreased with increasing thickness, because Equation (3) corrects 
for the higher dye loading with thicker samples but does not correct for the less efficient mediator 
diffusion to the dye molecules in different depth of the photoanode. 

Figure 7 shows the kox values for each photoanodes as a function of the thickness of the porous 
photoanode. The detailed data set is reported in Table S4 and S5. The data suggests that the kox 
steadily decreases as the thickness of the photoanodes increases, as highlighted by the linear fit of the 
semilogarithmic plot. In this case, the mass transport limitation in thick electrodes [4,5] becomes 
dominant over the dye-regeneration kinetics and can be particularly strong when the sterically 
demanding mediator such as [Co(bpy)3]3+ mediator was used [49]. In addition to the porous layer 
thickness, also the nature of the dye molecule appears to consistently influence the dye-regeneration 
kinetics. The samples sensitized with the DN216 dye molecule showed a regeneration rate constant 
kox that was up to 2.4 times higher than the ones recorded over D358-sensitized electrodes despite an 
almost identical chromophore in DN216 and D358. This was due to the smaller anchoring chain of 
DN216 which reduces its steric hindrance towards the mediator diffusion inside the porous 

0 50 100 150 200

0

50

100

0 50 100 150 200

0

50

100

(1)
i S

 / 
nA

t / s

(2)

L1 L2 L3 L4 L7L6L5

D ox
ef f

ox*
h h

h h

J k
k

c k J
ν ν

ν ν

φ
φ

Γ
=

+

Figure 6. Transient photocurrents recorded at (1) 4 µm thick DN216/TiO2 electrode without and (2) with
post-TiCl4 treatment; in 0.2 mM [Co(bpy)3](PF6)3 + 0.1 M TBAPF6 in acetonitrile under on-off light
cycles of light intensity in 10−8 mol cm−2 s−1 of (L1) 0.76, (L2) 1.51, (L3) 2.26, (L4) 3.01, (L5) 3.77, (L6)
6.02 and (L7) 7.52. The intensity in 1015 cm−2 s−1 are 4.58, 9.09, 13.6, 18.1, 22.7, 36.3 and 45.3. Further
details in SM-6.

4. Discussion

4.1. Determination of Regeneration Rate Constant

A very simplified model that relates structural properties of DSSC photoanodes to their SECM
response has been derived before and is summarized by Equation (3) [32].

keff =
ΓDφhv Jhvkox

c ∗ kox + φhv Jhv
(3)

Here kox [cm3 mol−1 s−1] is the (heterogeneous) bimolecular regeneration rate constant for the
reaction in Equation (1), ΓD [mol cm−2] is the dye loading per geometric area evaluated from independent
measurements, c* [mol cm−3] is the [Co(bpy)3]3+ mediator bulk concentration, Jhν [mol cm−2 s−1] is
the photon flux used to illuminate the samples, and ϕhv [cm2 mol−1] is the dye excitation cross-section.
Fitting the keff-Jhv values to Equation (3) yielded estimates of kox and ϕhv. The rate constant kox is not an
elementary rate constant because individual dye molecules in the porous electrode of finite thickness
are potentially exposed to different photon fluxes and different diffusional fluxes of the mediator. For
this reason, kox decreased with increasing thickness, because Equation (3) corrects for the higher dye
loading with thicker samples but does not correct for the less efficient mediator diffusion to the dye
molecules in different depth of the photoanode.

Figure ?? shows the kox values for each photoanodes as a function of the thickness of the porous
photoanode. The detailed data set is reported in Tables S4 and S5. The data suggests that the
kox steadily decreases as the thickness of the photoanodes increases, as highlighted by the linear
fit of the semilogarithmic plot. In this case, the mass transport limitation in thick electrodes [4,5]
becomes dominant over the dye-regeneration kinetics and can be particularly strong when the sterically
demanding mediator such as [Co(bpy)3]3+ mediator was used [49]. In addition to the porous layer
thickness, also the nature of the dye molecule appears to consistently influence the dye-regeneration
kinetics. The samples sensitized with the DN216 dye molecule showed a regeneration rate constant
kox that was up to 2.4 times higher than the ones recorded over D358-sensitized electrodes despite an
almost identical chromophore in DN216 and D358. This was due to the smaller anchoring chain of
DN216 which reduces its steric hindrance towards the mediator diffusion inside the porous photoanode.
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This information covers the role played by the steric hindrance of the dye structural features on the
dye regeneration efficiency [9,10].
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1. Introduction

The dye-sensitized solar cells (DSSCs) were originally developed by O’Regan and Grätzel in 
1991 [1]. TiO2-based devices were reported to have photoconversion efficiencies of up to 12.7% 
[2], a value halfway of the theoretical maximum estimated to be around 30% [3,4]. The 
mechanism of photon-conversion into electrons takes place at the sensitized semiconductor [5]. The 
coupled processes are depicted and numbered in Figure 1. A dye molecule (D) absorbs solar light (1) 
and injects an electron in the conduction band (CB) of the TiO2 film (2), on which it is adsorbed [5,6]. 
Inside the semiconductor, the electron is transported by a diffusion process (3) to the back contact, 
during which the conduction band electrons eCB temporarily reside in traps near to the CB edge, from 
which they can be thermally activated [7,8]. The photo-oxidized dye is thereafter regenerated by a 
mediator (4) in the electrolyte [9]. Due to space requirements, the redox mediator [Co(bpy)3]2+/3+, 
in its reduced and oxidized form is represented either by R/O or , in Figure 1. In an 
illuminated photoanode, the photo-oxidized dye (D+) and the eCB can be considered as an electron-
hole pair that can either recombine (5) or separate [10]. In general, the high dielectric 
permittivity of TiO2 supports the charge separation [11,12]. During the transport to the back 
contact (3), eCB can be lost by “back electron transfer reaction” which are the heterogeneous electron 
transfer (ET) reactions of eCB to the oxidized mediator (6) in the electrolyte or, less frequently, to D
+ (5) [12]. These processes are 

) DN216-TiO2

photoanodes with post-TiCl4 treatment of variable thicknesses in 0.1 mM [Co(bpy)3](PF6)3 + 0.1 M
TBAPF6 in acetonitrile. The kox values were obtained from fitting of Equation (3), which is further
detailed in SM-6.

The post-TiCl4 treatment of TiO2 photoanodes strongly enhanced the dye regeneration rate
constant of both, D358- and DN216-sensitized samples, and [Co(bpy)3]3+ as mediator. This effect is
due to the inhibition of the ET of eCB to the oxidized form of the mediator and the photo-oxidized dye
D+ probably be decreasing the number of near-surface defects that act as traps from which such ET
processes can start. The enhanced dye regeneration efficiency as measured by SECM for passivated
photoanodes is in line with the results of other working groups that passivate the TiO2 photoanodes
for enhancing the DSSCs photovoltaic features [11,12].

4.2. Light-Harvesting Efficiency

The dye absorption cross-section Φhv is obtained from the fitting of Equation (3) and is used for the
calculation of the light-harvesting efficiency according to Lambert-Beer law. All the TiO2 samples show
an LHE of 100% which is in agreement with what is commonly reported for TiO2-based photoanodes
in literature [52].

4.3. Transient Photocurrent

Different processes shape the photocurrent transients at different time scales. The rate of the
trapping-detrapping transport of eCB in the semiconductor [7,48,53], back electron transfer processes
and mediator mass transport from counter electrode to the inner layers of the photoanodes [25] have
been reported to influence the current transients in different time regimes. Consequently, the porosity
of the electrode [26], the thickness of the porous film [10], and the passivation of the electrode
with nanostructures [11] were all reported to exert an influence the photocurrent behavior [38,44].
The transport effects in the electrolyte will become more important when the mediator concentration
is lower as it is the case for SECM experiments and the photocurrent transients measured under
those conditions.

The data shown in Figure 8 suggested that photoanodes with post-TiCl4 treatment strongly
enhance the steady-state photocurrents iss by decreasing the rat of back electron transfer processes
compared to untreated TiO2 porous film in agreement with Ref. [20]. These findings are also in
agreement with the enhanced dye-regeneration rate constant kox obtained DN216-sensitized TiO2

photoanodes post-TiCl4 treatment from SECM approach curves in the feedback mode.
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1991 [1]. TiO2-based devices were reported to have photoconversion efficiencies of up to 12.7% 
[2], a value halfway of the theoretical maximum estimated to be around 30% [3,4]. The 
mechanism of photon-conversion into electrons takes place at the sensitized semiconductor [5]. The 
coupled processes are depicted and numbered in Figure 1. A dye molecule (D) absorbs solar light (1) 
and injects an electron in the conduction band (CB) of the TiO2 film (2), on which it is adsorbed [5,6]. 
Inside the semiconductor, the electron is transported by a diffusion process (3) to the back contact, 
during which the conduction band electrons eCB temporarily reside in traps near to the CB edge, from 
which they can be thermally activated [7,8]. The photo-oxidized dye is thereafter regenerated by a 
mediator (4) in the electrolyte [9]. Due to space requirements, the redox mediator [Co(bpy)3]2+/3+, 
in its reduced and oxidized form is represented either by R/O or , in Figure 1. In an 
illuminated photoanode, the photo-oxidized dye (D+) and the eCB can be considered as an electron-
hole pair that can either recombine (5) or separate [10]. In general, the high dielectric 
permittivity of TiO2 supports the charge separation [11,12]. During the transport to the back 
contact (3), eCB can be lost by “back electron transfer reaction” which are the heterogeneous electron 
transfer (ET) reactions of eCB to the oxidized mediator (6) in the electrolyte or, less frequently, to D
+ (5) [12]. These processes are 
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linear fits.

Figure 9 shows iss as a function of the photoanode thickness and passivation. It appears that
the steady-state photocurrent is negligibly affected by the sample thickness at low light intensities.
However, iss strongly decreases at high light intensities and in thicker photoanodes as a result of
processes 5 and 6 and mediator mass transport limitation compared to thin samples. The mediator
diffusion plays a dominant role also in thicker passivated photoanodes, where iss is smaller than the
values recorded on thinner samples. Overall, the highest iss values are recorded on 3 µm passivated
TiO2 photoanodes. These results are in agreement with a decrease of kox values as a function of
increased thickness as reported in Figure ??.
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5. Conclusions

This work reports a SECM investigation of the dye regeneration kinetic optimized by passivating
the TiO2 photoanodes by the post-TiCl4 treatment as commonly used in dye-sensitized solar cells.
The passivation layer is known to improve the charge separation by reducing the density of near-surface
trap states, from which back electron transfer processes may commence to the oxidized mediator or
the photo-oxidized dye. Therefore, this SECM investigation of the dye-regeneration reaction rate adds
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valuable information on the overall characterization of the DSSCs. The use of dye molecule with variable
steric demand, the structure of which is a source of a hindrance for the mediator diffusion through
the porous sensitized film, identify mediator mass transport limitations as a factor influencing the
dye-regeneration kinetic. This is also supported by the comparison of several photoanode thicknesses.
The analysis of photocurrent transients recorded directly in the SECM cell at sensitized TiO2 photoanodes
with and without post-TiCl4 treatment supports the SECM data. In addition to the known effects,
the post-TiCl4 treatment decreases the pore diameters slightly. It could be expected that this increases
the diffusional hindrance for mediator transport in the mesoporous electrode. However, this effect,
if present at all, is overcompensated by the improved charge separation. The SECM method can detect
effects on mediator regeneration invoked by small changes in the spacer length such as between the
dyes D358 and DN216, where the dye with the shorter spacer and thus less constriction of diffusion
path yields higher kox values that contain a contribution from the internal mass transport.

Supplementary Materials: The following are available online at http://www.mdpi.com/2673-3293/1/3/21/s1,
SM-1: Experimental details with more parameters of the TiO2-sensitized photoanodes of different thickness,
Table S1: TiO2-sensitized photoanodes with variable porous layer thickness, compact blocking layer, passivation by
TiO2-NPs, and average dye loading ΓD, SM-2: Details of Fitting the SECM approach curves with approach curves
of all D358/TiO2 photoanodes, Figure S1: Approach curves of D358/TiO2 photoanodes with different thicknesses,
Figure S2: Approach curves of DN216/TiO2 photoanodes with different thicknesses, SM-3: Determination of
the mediator diffusion coefficient from microelectrode cyclic voltammetry, Figure S3: Cyclic voltammogram of
[Co(bpy)3](PF6)3+ at the Au microelectrode, SM-4: Details of fitting of SECM approach curves, Table S2: Fitted k
and calculated keff per Jhv for the D358/TiO2 electrodes of various thicknesses, Table S3: Fitted k and calculated
keff per Jhv for the DN216/TiO2 electrodes of various thicknesses, SM-5: Fitting of the dependce of keff on light
intensity, Figure S4: Non-linear fit of keff as function of Jhv, Table S4: Fitting parameters for D358/TiO2 photoanodes,
Table S5: Fitting parameters for DN216/TiO2 photoanodes, SM-6: Transient photocurrents, Figure S5: Transient
photocurrents recorded at the (a) D358/TiO2, passivated D358/TiO2, DN216/ TiO2, passivated DN216/ TiO2.
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