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Abstract

Estimation of muscle forces in over-actuated musculoskeletal models involves
optimal distributions of net joint moments among muscles by a standard load-
sharing scheme (SLS). Given that co-contractions of antagonistic muscles are
counterproductive in the net joints moments, SLS might underestimate the co-
contractions. Muscle co-contractions play crucial roles in stability of the gleno-
humeral (GH) joint. The aim of this study was to improve estimations of muscle
co-contractions by incorporating electromyography (EMG) data into a shoulder
musculoskeletal model. To this end, the model SLS was modified to develop an
EMG-assisted load-sharing scheme (EALS). EMG of fifteen muscles were mea-
sured during arm flexion and abduction on a healthy subject and fed into the
model. EALS was compared to SLS in terms of muscle forces, GH joint reaction
force, and a stability ratio defined to quantify the GH joint stability. The results
confirmed that EALS estimated higher muscle co-contractions comparing to the
SLS (e.g. above 50 N higher forces for both triceps long and biceps long during
arm flexion).

Keywords: muscle over-actuations, inverse dynamics, muscle force
estimations, antagonistic muscle co-contractions, Hill-type models

1. Introduction

Noninvasive measurement of muscle forces remains an elusive goal [1]. How-
ever, estimations of these forces can be obtained using musculoskeletal models.
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In the available musculoskeletal models, equilibrium equations are obtained for
net joint moments using inverse dynamics [2-4]. There are more muscles than
the number of the equilibrium equations (over-actuation). Therefore, a stan-
dard load-sharing scheme (SLS) is used to distribute the net joint moments
among muscles [5—7]. The SLS estimates muscle forces by optimizing a phys-
iological cost function subject to constraints. The constraints are associated
with the equilibrium equations, muscle forces upper/lower bounds, and joints
stability [8]. Antagonistic muscles are counterproductive in the net joint mo-
ments. Therefore, SLS might underestimate forces produced by antagonistic
muscles (co-contractions) [9-12], consequently underestimating joint reaction
forces [13-15]. Estimations of muscle and joint forces could be improved by
considering co-contractions [16-18].

For the upper extremity, few studies investigated muscle co-contractions.
Co-contractions were enforced either by tailoring the optimization of SLS [8,
19, 20] or by explicit use of measured EMG data [10, 15, 21-23].

Negative weighting factors were introduced to enforce co-contraction by allevi-
ating the SLS cost function growth [19, 20]. The choice of weighting factors
required a priori knowledge of antagonistic muscles. However, this was not
straightforward to achieve, given that muscles could act simultaneously as ag-
onistic and antagonistic. A stability constraint replicating the stabilizing and
proprioceptive effects of musculotendinous structures was introduced for the
GH joint [2, 3, 8]. It constrained SLS solutions such that the resulting GH joint
reaction force (JRF) always pointed toward inside of the glenoid fossa.

On the other hand, explicit use of measured EMG data could provide rather
straightforward estimations of co-contractions [10, 15, 21-23]. The relation-
ship between EMG data and muscle forces is crucial to ensure reliable EMG-
based muscle force estimation. However, the EMG-force relationship was often
over-simplified [10, 21-23| deviating from nonlinear dynamical behavior of mus-
culotendon units [24]. Besides, there was no guarantee that the net moments
reproduced by EMG-based muscle forces would satisfy the equilibrium equations
[10, 21, 22|. Therefore, the estimated co-contractions might lack a physiological
correspondence. EMG-based muscle forces could shrink feasible sets of SLS.
Therefore, co-contractions could be better estimated, if EMG data were mea-
sured for more muscles. EMG data were measured for fourteen muscles [15],
but only a subset of the measurements could be used simultaneously, otherwise
“the model crashed”.

The aim of this study was to improve estimations of muscle co-contractions
by incorporating muscle EMG data into a shoulder musculoskeletal model.
Three main improvements were considered with respect to the state-of-the-art.
First, a validated nonlinear dynamical model was used for the EMG-force re-
lationship. Second, the model SLS was modified to develop an EMG-assisted
load-sharing (EALS) guarantying that the EMG-based forces would satisfy the
equilibrium equations. Third, EMG data of fifteen muscles were measured on a
healthy subject during arm flexion and abduction and simultaneously fed into
the EALS. Muscle and joint force estimations by EALS were compared with
those of the SLS.
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2. Methods

EMG and motion data were measured (Section 2.1). A shoulder and elbow
musculoskeletal model was developed (Section 2.2). The measured motions were
reconstructed (Section 2.3). A musculotendon model was developed (Section
2.4). The EALS was detailed (Section 2.5). The developed EALS was evaluated
and compared to the SLS (Section 2.6).

2.1. Measurements

EMG and motion data were recorded on a healthy male subject (29 year,
186 cm, and 85.5 kg) during forward flexion in the sagittal plane and abduction
in the frontal plane, both with 2 kg weight in hand and with a fully extended
elbow (Fig 1). Both activities were repeated for ten trials.

EMG signals of fifteen superficial muscles were measured at 1500 Hz sam-
pling frequency using AgCl Kendall surface button EMG electrodes and recorded
by a 16 channel Desktop DTS system (Noraxon, Arizona, USA). The muscles
were deltoid clavicular/acromial /scapular, trapezius C7/T1/T2-T7, pectoralis
major sternal, infraspinatus, teres major, triceps brachii long/lateral, biceps
brachii short/long, brachialis, and flexor carpi ulnaris. Maximum EMG values
were also recorded by performing maximum voluntary contractions (MVC).

A common approach in the literature [25, 26] was used in order to transform
the measured EMG signals to muscle excitations. It consisted of high-pass
filtering, rectifying, and consequently low-pass filtering the EMG signals. The
resulting EMG signals were normalized for each muscle using the maximum of
its associated MVC signal. Means and standard deviations (ogma) of the parted
signals associating to the ten trials were obtained.

Trajectories of eleven palpable bony landmarks were measured by tracking
their associated skin-fixed markers using an 8 camera VICON videogrammetry
system (VICON, UK) at 100 Hz sampling frequency. The bony landmarks in-
cluded incisura jugularis (I1J), processus xiphoideus (PX), 7th cervical vertebra
(C7), 8th thoracic vertebra (T8), sternoclavicular (SC), acromioclavicular (AC),
angulus acromialis (AA), medial epicondyle (EM), lateral epicondyle (EL), ra-
dial styloid (RS), and ulnar styloid (US).

The recorded trajectories were low-passed filtered. Then, means of the
parted trajectories corresponding to the ten trials were obtained.

2.2. Upper extremity musculoskeletal model

2.2.1. Kinematic model

A shoulder and elbow musculoskeletal model was developed from MRI scans
of the same subject (Fig 2a) [3, 27, 28|. It consisted of six rigid bodies includ-
ing thorax, clavicle, scapula, humerus, ulna, and radius. It had nine degrees
of freedom (DOF) attributing to three ball-and-socket joints associating with
sternoclavicular (SC), acromioclavicular (AC), and glenohumeral (GH) joints
and two hinge joints for humeroulnar (HU) and radioulnar (RU) joints and two
holonomic constraints (Fig 2b). Two constraints namely ®pg and @ o1 restricted
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trigonum scapulae (TS) and angulus inferior (AI) respectively on the scapula
medial boarder to glide over two ellipsoids approximating the thorax and the
underlying soft tissues. The ISB recommendations [29] were followed to define
six bone-fixed frames. A generalized coordinate vector (q = [q1 ... ¢11]7) was
considered to define the upper extremity configuration. The forward kinematic
map (£) was developed to define the inertial coordinate of the j** bony landmark
(x;) associated with the generalized coordinates at time ¢ (Appendix A.1).

2.2.2. Dynamic model

Mass and inertial properties were attributed to the bone segments accord-
ing to [2]. The upper extremity equations of motion were derived using the
Lagrange’s equations (Appendix A.2).

The origins/insertions, via points, and wrapping objects of 42 muscles span-
ning the upper extremity joints were defined from the MRI scans, including sub-
clavius, serratus anterior upper/middle/lower, trapezius C1-C6,/C7/T1/T2-T7,
levator scapulae, rhomboid minor/major T1-T2/major T3-T4, pectoralis mi-

nor /major clavicular /major sternal/major ribs, latisimuss dorsi thoracic/lumbar/Iliac,

deltoid clavicular/acromial/scapular, supraspinatus, infraspinatus, subscapu-
laris, teres minor/major, coracobrachialis, triceps brachii long/medial/lateral,
biceps brachii short /long, brachialis, brachioradialis, supinator, pronator Teres,
flexor carpi radialis/ulnaris, and extensor carpi radiali long /radialis bervis/ulnaris
[27]. Each muscle group of the model can be represented by up to 20 strings
(Fig 3). Three strings per muscle were considered for simulations of this study.

2.8. Multi-segment optimization

The measured motion was reconstructed in terms of the generalized coor-
dinates using multi-segment optimization. Given that GH was not a palpable
bony landmark, it was missing from the measurements. Both TS and Al were
also missing. Because, TS and Al were masked with thick layers of soft tissues
and were not effectively trackable [30]. Therefore, a novel method developed
in [28] was applied to estimate GH, TS, and Al trajectories without requiring
an additional scapula tracking device. Then, multi-segment optimization was
used to define the generalized coordinates (g;) for each frame of the measured
motions (i) such that the overall distance between the measured markers ()
and their corresponding bony landmarks (z,,) was minimized, while satisfying
the forward kinematics map (Eq. 1).
n}]iin . Zj(wmj,i (ql) - wej,i)TW(mmj,i (ql) - wej,i)

s.t. @Ts(qi) =0 (1)
Par(gi) =0

Where, W is a weighting matrix.



2.4. Musculotendon model

A Hill-type musculotendon model was used to estimate the muscle forces as-
sociating to the measured EMG signals. It provided estimations of tendon force
(Fr(t)) for given muscle excitations (u(t)) and muscuoltendon lengths (IM7(¢))
(Fig 4) [31]. It consisted of two unidirectional coupled dynamics, namely activa-
tion dynamics and contraction dynamics. The activation dynamics associated
u(t) to muscle activation (a(t)). The contraction dynamics accounted for the
force reproductions for a given a(t) and I™M7T () (Appendix A.3). A novel method
developed in [28] was used to solve the contraction dynamics such that the re-
sulting tendon force estimations were devoid of artificial transients. In addition,
the musculotendon model was validated by reproducing experimentally mea-
sured forces on maximally excited rat Soleus [28].

2.5. EMG-assisted load-sharing (FALS)

The equations of motion (Eq. A.2) provided eleven second order differ-
ential equations for the resulting generalized coordinates g obtained from the
multi-segment optimization (Eq. 1). There were more unknowns (42 muscles
times number of strings per muscle) than the number of equations. There-
fore, we casted the following EALS to find an augmented muscle force vector
Fi = [fF Ars;, Aan]T for each frame of the measured motions i. As per Ap-
pendix A.2, f; is a vector consisting of the magnitudes of all the muscle forces at
1. The Apg and At are Lagrange multipliers associating to the scapula-thorax
constraints.

min  fIPf;
fi

d (0L oL o) brg ®
o A2 [yt

fi

04;]  0q; |04 O0q; Oq

(1 — €>FTk,i < fk < (1 + €)FTk,i ke Denva
0 S fk S fmaxk else

¥(qi, g, i, fi) <0
Where, P is a diagonal matrix including the inverse squared of muscles physi-
ological cross section areas (PCSA). The numerical values for PCSAs were set
according to the same data set as for the musculotendon parameters [32]. The
cost function ( fZT P fZ) is the sum of squared muscle stresses. The first set of con-
straints is the equations of motion (Eq. A.2) whose right-hand side is written in
a vectorial form. The second set of constraints is the muscle forces upper/lower
bounds. The set Dgyg includes muscles with measured EMG signals. If the
k™™ muscle segment belongs to Dgng, its tendon force estimated by the mus-
culotendon model (Fr, ;) from the measured EMG is used as its upper/lower
bounds. The positive coefficient e defines the portion of Fr, , that is considered.
The smallest € that results in feasible solutions is considered for both activities
(0.05 and 0.07 for flexion and abduction, respectively). For muscles without



measured EMG signals, 0 and fmaxk = K PCSA, are used as their lower and
upper bounds, respectively. The Fick constant K was set to 33.011 Nm™2 [33].
The third constraint represents the stability constraint and denoted by 1 [27].
The stability constraint 1 restricted the solution such that the resulting GH
joint reaction force always pointed toward inside of an elliptic cone that approx-
imated the glenoid fossa. Mathematically, 9> was defined as the scalar product
between the normal vectors of the cone surface at the cone base and the GH
joint reaction force (Eq. 3).

P = N(Z my(&r —g) — Df) <0, k= {Humerus, Ulna, Radius} (3)
k

Where, N is the matrix containing the normal vectors, my is the mass, & is
the linear acceleration of center of mass, g is the gravitational acceleration, and
D is a matrix containing the muscle force direction vectors. We considered
40 normal vectors to adequately discretize the boundaries of the glenoid fossa
which resulted in 40 inequality constraints representing the stability constraint.

Equation 2 was solved to define f such that the sum of squared muscle
stresses were minimized, while the constraints were satisfied. The resulting g
from the multi-segment optimization was fed into the musculoskeletal model
to obtain {MT for the full span of the measured motion. The musculotendon
dynamics (Eq. A.3 and Eq. A.4) could be then solved upfront for the full
span of the measured motion to define F7r,. Having provided Fr,, the net
joints moments, and the moment arms with a given resolution, the optimization
problem of Eq. 2 was carried out separately for each frame of the measured
motion (7). The equivalent SLS corresponds to Drnva = {}-

2.6. Results analysis
The two measured activities were simulated using both SLS and EALS (Fig
4).
The stability ratio (SR) was defined for the glenohumeral joint based on
the intersection of the JRF and an ellipse approximating the fossa (Eq. 4). It
quantified the concentricity of the JRF with respect to the glenoid fossa. It
is well-known that co-contractions increase the glenohumeral joint stability by
centralizing the JRF within the fossa [17]. Therefore, the SR is linked to the
GH joint stability obtained by co-contractions.

2 2
SR, =1 (dIS> _ (de-) )
ars apA

Where, apa and arg are posterior-anterior and inferior-superior radii of an ellipse
that approximates the glenoid fossa. dpa; and dig; are intersections of JRF and
the glenoid fossa ellipse in posterior-anterior and inferior-superior directions for
the it of the measured kinematics, respectively. The stability ratio lies within
[0 1] with SR = 0 being marginal stability (intersection occurred on boundaries
of the glenoid fossa ellipse), and SR=1 being a perfectly centered intersection.
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The sensitivities of the resulting muscle forces and JRF with respect to
+1logma variations of the normalized EMG signals around EMG means were
also defined. To this end, a first order approximation [34] of the sensitivity of
Eq. 2 with respect to u(t) was calculated [28].

Muscle forces, GH joint reaction force, and stability ratio were presented for
the measured flexion and abduction. The sensitivities of the muscle forces and
the JRF were also presented. The results were illustrated along the arm flexion
and abduction angles corresponding to the flexion and abduction, respectively.
The associated results from the SLS were also presented. For the JRF, the
corresponding in vivo measurements from [35] were also presented. Due to space
limits, the complete set of muscle force estimations were left for the Appendix
B and only a subset of them were presented.

3. Results

8.1. Muscle forces

Forward flexion in the sagittal plane: While SLS estimated no force
for deltoid clavicular and scapular (except between 60° to 80° flexion), EALS
estimated forces (higher than 52 N) for the entire movement (Fig 5a). Deltoid
acromial force followed similar patterns in EALS and SLS, but it was 30% higher
initially in EALS. Deltoid acromial had the highest sensitivity (around 25%) to
variations of the normalized EMG.

The supraspinatus and subscapularis forces were 390% and 90% higher in EALS
than SLS, respectively. The infraspinatus and teres minor forces were similar
in EALS and SLS (less than 10% difference in their maximums).
EALS estimated more than 50 N force for triceps long and biceps long (Fig
Appendix B.1). However, SLS estimated only almost zero forces.

Abduction in the fontal plane: EALS estimated above 55 N force for
deltoid clavicular, whereas SLS estimated almost zero force (Fig 5b). Almost
145% higher force estimated by EALS for deltoid acromial in the beginning, al-
though SLS estimation was 60% higher at the end of the motion. Both methods
estimated very similar forces for deltoid scapular after 50° abduction (normal-
ized root mean squared error > 0.024 and p < 0.0001). Deltoid acromial also
had the highest sensitivity to variations of the normalized EMG.

Higher maximum forces estimated by EALS for supraspinatus, infraspinatus,
subscapularis, and teres minor comparing to SLS. For instance, the maximum
subscapularis force was 22% higher in EALS.

EALS estimated above 90 N and 40 N forces for triceps long and biceps long,
respectively (Fig Appendix B.2). However, SLS estimated zero forces.

38.2. JRF

The maximum JRF estimations by EALS were 58% and 46% higher com-
paring to SLS for both flexion and abduction motions, respectively (Fig 6a and
Fig 6b). They were 172% and 167% of body weight (855 N) and occurred at 68°
flexion and 98° abduction, respectively. The resulting JRFs had around 22%
sensitivity to the variations of the normalized EMG signals.
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8.3. SR and intersection foci

The SR was higher for EALS than SLS (more stable GH joint) and reached
0.87 (vs 0.56 for SLS) till the end of flexion (Fig 7a). The maximum SR was
46% less in abduction than in flexion according to EALS (Fig 7b).

4. Discussion

The aim of this study was to improve estimations of muscle co-contractions
by simultaneously incorporating EMG data of fifteen muscles into a shoulder
musculoskeletal model. To this end, the EALS was developed by modifying the
SLS of a shoulder and elbow musculoskeletal model. The EALS was evaluated
by comparing its muscles forces, JRF, and SR with those of the equivalent SLS.
The developed EALS estimated higher muscle co-contractions comparing to the
SLS. The JRF was consequently higher comparing to SLS.

During forward flexion, the higher force estimated for deltoid clavicular by
EALS coincided with a higher force from deltoid scapular. This was consistent
with the previous findings regarding the antagonistic role of deltoid scapular
during arm flexion [36]. Their co-contractions resulted in counterproductive
moments around the GH joint. Also, higher forces estimated for triceps long
and biceps long as antagonistic muscles. Their antagonistic role for the GH joint
movements was reported [37].

During abduction, similar co-contractions as those of flexion were estimated

by EALS. Furthermore, pectoralis major sternal and teres major had higher
forces in EALS, indicating their higher co-contractions. This co-contraction
around the GH joint was consistent with previous studies [38].
Comparison of the EALS and the SLS muscle force estimations also illustrated
role exchanges among muscle groups with similar roles. For instance, trapez-
ius and rhomboid muscles could contribute in the scapular upward/downward
rotation during flexion. EALS estimated more contributions from rhomboid
minor/major T1-T2 and less from trapezius C7/T2-T7. The SLS estimations
were contrary. Indeed, the use of subject’s EMG data in terms of upper/lower
bounds in EALS caused these role exchanges. Therefore, this could illustrate the
potential of EALS in replicating inter-individual muscle recruitment patterns.

The JRF of EALS for both flexion and abduction activities lied within mea-
surements from different patients with instrumented prosthesis (IP) [35]. How-
ever, SLS in general underestimated the JRF in both activities. The IP mea-
surements were averaged per activity among different patients with IP to draw
a quantitative comparison between the JRF of EALS and SLS and the IP mea-
surements. Indeed, more patients with the IP measurements as well as more
patients/activities simulated by the model were required for the comparison to
be statistically relevant. Nevertheless, for flexion motion, the peak JRF was 3
% higher for EALS and 34 % lower for SLS comparing to the peak JRF of the
averaged IP1 and IP3 measurements. For abduction motion, the peak JRF was
12 % higher for EALS and 24 % lower for SLS comparing to the peak JRF of
the averaged IP1, IP2, and IP3 measurements. The EALS in general overes-
timated the JRF for the beginning of motions comparing to the averaged IP



measurements (23 % and 69 % higher for flexion and abduction, respectively).
The trends of the estimated JRF by EALS were in general consistent with the
IP measurements. It is worth noting that the IP measurements as means of
validation should be used with cautious. The post-surgery patients with IP had
impaired musculotendons, and their motions were also compromised due to pain
[39]. Therefore, their GH joint functions were expected to be different from our
healthy subject.

The SR illustrated the effects of higher co-contractions of EALS on the GH

joint stability. The higher co-contractions acted toward stabilizing the GH joint
by centralizing the JRF within the glenoid ellipse. For the beginning of both
activities the SR was low, indicating that the GH joint stability constraint was
active. This was consistent with the previous studies regarding stability of the
GH joint [17, 40]. However, in EALS the SR started increasing at lower flexion
and abduction angles.
In addition, the stability constraint could oscillate between active and inactive
states even for negligible deviations of JRF direction from the stability cone.
This was due to the incorporation of the stability constraint as a hard con-
straint into EALS. However, a soft constraint formulation could avoid these
oscillatory behaviors without compromising the physiological correspondence of
the stability constraint [41].

The positive coefficient ¢ was used to define the upper/lower bounds from
EMG-based muscle forces in EALS. The choice of € could therefore alter the
optimal force estimation by changing the feasible set. Smaller values of € could
further shrink the feasible set of the EALS comparing to larger values of e.
Consequently, higher co-contractions could be estimated. We considered the
smallest € resulting in feasible solutions for both activities. This provided the
highest estimations of muscle co-contractions using our model and allowed per-
forming an adequately fare comparison between the force estimations of the two
simulated activities. However, a sensitivity analysis could quantify the effects
of € on the force estimations.

Number of muscle strings considered for each muscle could also affect the
final optimal force estimation by altering the dimension (degrees of freedom)
of the EALS. However, small effects were reported for the variations in muscle
string numbers [42]. We used three strings per muscle to adequately replicate
muscles with large attachment sites.

A major limitation of this study was that only one subject was recorded.
More subjects would be required to more thoroughly evaluate the model, spe-
cially its performance in replicating inter-individual muscle recruitment pat-
terns. Three patients with instrumented prosthesis were considered to find the
best combination of EMG signals during forward flexion and abduction [15].
The second limitation was about the musculotendon parameters. The realism
of the reproduced forces could be enhanced if these parameters were person-
alized to our subject. However, it is not yet straightforward to obtain these
parameters. The third limitation was that only two activities were considered.
This imposed certain limitations ahead of generalizing our results. Future ap-
plications of the model should consider more activities, including activities of
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daily living (ADL).

In conclusion, we verified the potentials of EALS in better estimating muscle
co-contractions in a shoulder and elbow musculoskeletal model comparing to
SLS. The EALS estimated co-contractions by incorporating fifteen EMG-based
muscle forces obtained from a musculotendon model. The incorporation of the
EMG-based muscle forces shrank the feasible set of the EALS and therefore more
co-contractions could be estimated comparing to the SLS. The JRF estimations
better matched in vivo measurements, although EALS tended to overestimate
JRF. This conclusion should be confirmed by simulating more patients during
more movements including activities of daily living.
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Appendix A. Mathematical representations

Appendiz A.1. Forward kinematic map (§):
The forward kinematic map (¢) defined the inertial coordinate of the j*®
bony landmark (x;) associated with the generalized coordinates at time ¢.

E:C,CRY = W, CR3

€(q(t)) ==z;(t), j={C7, ..., RS},

Ors(q(t)) = (;TS(t) — te0)T Ers(;TS(t) — teg) —1=0
Par(q(t)) = (LAI(t) —1e0)" Ear(tAI(t) —1e0) —1=0

(A1)

Where, Cs and W, are the coordinate space and work space of the model [43].
Two holonomic constraints (&g = 0 and ®pg = 0) replicated the kinematic re-
lationships between the scapula and the thorax (scapulothoracic contact). The
left-hand side subscript ¢ specifies that the landmarks are in the thorax (inertial)
frame. The ellipsoids center is ;eq, and Erg and Ear are the ellipsoids matrices.
The use of two separate ellipsoids to replicate the scapulothoracic contact re-
duced the computational complexity of £ [27] comparing to the previous models
where only one ellipsoid was used [2, 8, 15]. The use of one ellipsoid required
computing the projections of the TS and AI onto the ellipsoid.

Appendiz A.2. Equations of motion:
The upper extremity equations of motion were derived using the Lagrange’s
equations (Eq. A.2).

d (0L oL 00 D N
— = - === M 4+ Apg—" 4 Ma——r A2
7 (&1) 9q 94 + ATs q + AAr g (A.2)

10



Where, L is the Lagrangian of the model obtained by adding all the bone seg-
ments Lagrangians [27, 44]. The g—{;M is the generalized force vector. The
is a horizontal matrix including the angular velocities of all the bone segments.
The vertical matrix M consists of the muscle resultant moments around each
one of the five joints. The Arg and Ay are Lagrange multipliers associating to
the scapula-thorax constraints. The generalized moment arms of the constraints
are obtained by their jacobians (%‘IS and %—/j;) [45].

The matrix M could be written as M = Bf, where B is the moment arm
matrix, and f is a vector consisting of the magnitudes of all the muscle forces.
The B was obtained using its geometric definition based on the obstacle set

method [46].

Appendiz A.3. Musculotendon model:

The means of normalized EMG signals were used as u(t) for each muscle.
The a(t) represented the relative amount of calcium release to troponin in muscle
fibers. It was obtained from a first order dynamic as follows [24].

- L
da(t) _ u(t) — a(t)  ralt),u(t) = 0.5+ 1.5a(t) (A.3)
dt rla(t),u(®)) (1) > alt)
0.5 + Lba(t)

Where, T,.ct and 74ac¢ are time constants corresponding to muscle activation and
deactivation, respectively. Both u(t) and a(t) lie within [0 1].

The contraction dynamics consisted of three elements replicating the force
production of the musculotendon, including a contractile element (CE), a pas-
sive elastic element (PE), and an elastic element (EE) [24]. The contraction
dynamics were derived from a force equilibrium between the muscle fiber and
tendon. The following ordinary differential equation is an implicit form of the
contraction dynamics [28].

Fo [alt) /(P Y () + 72(@0)] (/1 - (mae)”

_ FOfT( IMT 1M/ M2 _gin aog)

Is

(A4)

Where, f&(.), fV(.), fF(.), and fT(.) are normalized functions associating to
muscle force-length, muscle force-velocity, muscle passive force, and tendon
force-length relationships. The normalized functions were obtained by fitting
smooth curves (C*) to experimental data [28]. The maximum (optimum) mus-
cle fiber force is denoted by Fo. The normalized muscle fiber length (M) is
obtained as % in which (M and ¥ are the muscle fiber length and its optimum,
respectively. “The optimum muscle fiber velocity and the tendon slack length
are denoted by v%\)/l and lg, respectively. The ll(\)/[ and vlc\)/[ correspond to the situ-
ations when the muscle force-length and muscle force-velocity relationships are

11



at maximum and zero force, respectively. Also, ap is the pennation angle at
.

Equation A.4 could be solved for M to consequently provide the tendon force
Fr(t) = Fof™(.). To this end, a(t), IMT(t), the five musculotendon parameters
(Fo, 1Y, v¥, I, and ap), and an initial condition ZM(tO) were required. The
a(t) was readily obtained from Eq. A.3. The IMT(¢) was calculated for each
muscle using the musculoskeletal model. More specifically, the resulting g from
the multi-segment optimization was fed into the model. The model defined
the paths and consequently the lengths of musculotendons. We set the five
musculotendon parameters according to [32].

Appendix B. Muscles forces

12
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Figure 1: EMG data of fifteen superficial muscles and trajectories of eleven skin-fixed markers
were recorded during arm flexion and extension with 2 kg weight in hand.
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humerus scapula .
clavicle

radius

Figure 2: (a) MRI scans of a healthy subject were used to develop the model. (b) The
kinematic model; fifteen bony landmarks were used, including 1J, PX, C7, T8, SC, AC, AA,
TS, Al, GH, EM, EL, and the middle point of EM and EL (HU), RS, and US. The bone-
fixed frames were: thorax frame {IJ,&¢, ¢, 2t }, clavicle frame {SC, &, Jc, 2 }, scapula frame
{AC, is,Ys, 25}, humerus frame {GH, &y, Jp, 2, }, ulna frame {HU, &y, §u, 2u }, and radius
frame {EL, &y, Jr,2-}. The generalized coordinates consisted of ¢;: SC axial rotation, ga:
SC depression/elevation, g3: SC protraction/retroaction, g4: AC posterior/anterior tilt, gs:
AC downward /upward rotation, gs: AC protraction/retroaction, g7: GH axial rotation, gs:
GH addcution/abduction, gqg: GH flexion/extension, gi9: HU extension/flexion, gi11: RU
pronation/supination. The humerus frame was shifted for better visualizations.
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Figure 3: The developed shoulder and elbow musculoskeletal model included 42 muscles that
each could be replicated by up to 20 strings (three strings were considred in this illustration).
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Figure 4: Markers trajectories were fed into the GH estimator.

musculoskeletal
model (Eq. A.1, A.2)
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The resulting completed

trajectories (a:ej ) were used in the multi-segment optimization to find g. The musculoskeletal

model defined the net joints moments, moment arms, and IMT. The muscle initialization
provided l}\g for the contraction dynamics. The contraction dynamics reproduced the muscle

forces associated to muscles with measured EMG ({Fr, Vk € Dgma}) for given l}\g, a(t), and
IMT " The resulting Fr, were used together with the net joints moments and moment arms

in the EALS to estimate f.
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Figure 5: Muscle forces estimated by EALS (— ) and SLS ( ) for (a) flexion and (b)
abduction with 2 kg weight in hand. The sensitivities to variations of normalized EMG
signals were depicted by gray shaded areas. Bold fonts were used to distinguish the muscles
with measured EMG data. The muscle force estimations for all the 42 muscles were presented

in the Appendix.
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Figure 6: JRF estimated by EALS and SLS for (a) flexion, (b) abduction with 2 kg weight in
hand along the corresponding in vivo measurements from [35]. The sensitivities to variations
of normalized EMG signals were depicted by the gray shaded areas.
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Figure 7: SR from EALS and SLS for (a) flexion and (b) abduction with 2 kg weight in
hand. The sensitivities to variations of normalized EMG signals were also depicted by the
gray shaded areas.
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