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Abstract

Estimation of muscle forces in over-actuated musculoskeletal models involves
optimal distributions of net joint moments among muscles by a standard load-
sharing scheme (SLS). Given that co-contractions of antagonistic muscles are
counterproductive in the net joints moments, SLS might underestimate the co-
contractions. Muscle co-contractions play crucial roles in stability of the gleno-
humeral (GH) joint. The aim of this study was to improve estimations of muscle
co-contractions by incorporating electromyography (EMG) data into a shoulder
musculoskeletal model. To this end, the model SLS was modified to develop an
EMG-assisted load-sharing scheme (EALS). EMG of fifteen muscles were mea-
sured during arm flexion and abduction on a healthy subject and fed into the
model. EALS was compared to SLS in terms of muscle forces, GH joint reaction
force, and a stability ratio defined to quantify the GH joint stability. The results
confirmed that EALS estimated higher muscle co-contractions comparing to the
SLS (e.g. above 50 N higher forces for both triceps long and biceps long during
arm flexion).

Keywords: muscle over-actuations, inverse dynamics, muscle force
estimations, antagonistic muscle co-contractions, Hill-type models

1. Introduction1

Noninvasive measurement of muscle forces remains an elusive goal [1]. How-2

ever, estimations of these forces can be obtained using musculoskeletal models.3
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In the available musculoskeletal models, equilibrium equations are obtained for4

net joint moments using inverse dynamics [2–4]. There are more muscles than5

the number of the equilibrium equations (over-actuation). Therefore, a stan-6

dard load-sharing scheme (SLS) is used to distribute the net joint moments7

among muscles [5–7]. The SLS estimates muscle forces by optimizing a phys-8

iological cost function subject to constraints. The constraints are associated9

with the equilibrium equations, muscle forces upper/lower bounds, and joints10

stability [8]. Antagonistic muscles are counterproductive in the net joint mo-11

ments. Therefore, SLS might underestimate forces produced by antagonistic12

muscles (co-contractions) [9–12], consequently underestimating joint reaction13

forces [13–15]. Estimations of muscle and joint forces could be improved by14

considering co-contractions [16–18].15

For the upper extremity, few studies investigated muscle co-contractions.16

Co-contractions were enforced either by tailoring the optimization of SLS [8,17

19, 20] or by explicit use of measured EMG data [10, 15, 21–23].18

Negative weighting factors were introduced to enforce co-contraction by allevi-19

ating the SLS cost function growth [19, 20]. The choice of weighting factors20

required a priori knowledge of antagonistic muscles. However, this was not21

straightforward to achieve, given that muscles could act simultaneously as ag-22

onistic and antagonistic. A stability constraint replicating the stabilizing and23

proprioceptive effects of musculotendinous structures was introduced for the24

GH joint [2, 3, 8]. It constrained SLS solutions such that the resulting GH joint25

reaction force (JRF) always pointed toward inside of the glenoid fossa.26

On the other hand, explicit use of measured EMG data could provide rather27

straightforward estimations of co-contractions [10, 15, 21–23]. The relation-28

ship between EMG data and muscle forces is crucial to ensure reliable EMG-29

based muscle force estimation. However, the EMG-force relationship was often30

over-simplified [10, 21–23] deviating from nonlinear dynamical behavior of mus-31

culotendon units [24]. Besides, there was no guarantee that the net moments32

reproduced by EMG-based muscle forces would satisfy the equilibrium equations33

[10, 21, 22]. Therefore, the estimated co-contractions might lack a physiological34

correspondence. EMG-based muscle forces could shrink feasible sets of SLS.35

Therefore, co-contractions could be better estimated, if EMG data were mea-36

sured for more muscles. EMG data were measured for fourteen muscles [15],37

but only a subset of the measurements could be used simultaneously, otherwise38

“the model crashed”.39

The aim of this study was to improve estimations of muscle co-contractions40

by incorporating muscle EMG data into a shoulder musculoskeletal model.41

Three main improvements were considered with respect to the state-of-the-art.42

First, a validated nonlinear dynamical model was used for the EMG-force re-43

lationship. Second, the model SLS was modified to develop an EMG-assisted44

load-sharing (EALS) guarantying that the EMG-based forces would satisfy the45

equilibrium equations. Third, EMG data of fifteen muscles were measured on a46

healthy subject during arm flexion and abduction and simultaneously fed into47

the EALS. Muscle and joint force estimations by EALS were compared with48

those of the SLS.49
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2. Methods50

EMG and motion data were measured (Section 2.1). A shoulder and elbow51

musculoskeletal model was developed (Section 2.2). The measured motions were52

reconstructed (Section 2.3). A musculotendon model was developed (Section53

2.4). The EALS was detailed (Section 2.5). The developed EALS was evaluated54

and compared to the SLS (Section 2.6).55

2.1. Measurements56

EMG and motion data were recorded on a healthy male subject (29 year,57

186 cm, and 85.5 kg) during forward flexion in the sagittal plane and abduction58

in the frontal plane, both with 2 kg weight in hand and with a fully extended59

elbow (Fig 1). Both activities were repeated for ten trials.60

EMG signals of fifteen superficial muscles were measured at 1500 Hz sam-61

pling frequency using AgCl Kendall surface button EMG electrodes and recorded62

by a 16 channel Desktop DTS system (Noraxon, Arizona, USA). The muscles63

were deltoid clavicular/acromial/scapular, trapezius C7/T1/T2-T7, pectoralis64

major sternal, infraspinatus, teres major, triceps brachii long/lateral, biceps65

brachii short/long, brachialis, and flexor carpi ulnaris. Maximum EMG values66

were also recorded by performing maximum voluntary contractions (MVC).67

A common approach in the literature [25, 26] was used in order to transform68

the measured EMG signals to muscle excitations. It consisted of high-pass69

filtering, rectifying, and consequently low-pass filtering the EMG signals. The70

resulting EMG signals were normalized for each muscle using the maximum of71

its associated MVC signal. Means and standard deviations (σEMG) of the parted72

signals associating to the ten trials were obtained.73

Trajectories of eleven palpable bony landmarks were measured by tracking74

their associated skin-fixed markers using an 8 camera VICON videogrammetry75

system (VICON, UK) at 100 Hz sampling frequency. The bony landmarks in-76

cluded incisura jugularis (IJ), processus xiphoideus (PX), 7th cervical vertebra77

(C7), 8th thoracic vertebra (T8), sternoclavicular (SC), acromioclavicular (AC),78

angulus acromialis (AA), medial epicondyle (EM), lateral epicondyle (EL), ra-79

dial styloid (RS), and ulnar styloid (US).80

The recorded trajectories were low-passed filtered. Then, means of the81

parted trajectories corresponding to the ten trials were obtained.82

2.2. Upper extremity musculoskeletal model83

2.2.1. Kinematic model84

A shoulder and elbow musculoskeletal model was developed from MRI scans85

of the same subject (Fig 2a) [3, 27, 28]. It consisted of six rigid bodies includ-86

ing thorax, clavicle, scapula, humerus, ulna, and radius. It had nine degrees87

of freedom (DOF) attributing to three ball-and-socket joints associating with88

sternoclavicular (SC), acromioclavicular (AC), and glenohumeral (GH) joints89

and two hinge joints for humeroulnar (HU) and radioulnar (RU) joints and two90

holonomic constraints (Fig 2b). Two constraints namely ΦTS and ΦAI restricted91
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trigonum scapulae (TS) and angulus inferior (AI) respectively on the scapula92

medial boarder to glide over two ellipsoids approximating the thorax and the93

underlying soft tissues. The ISB recommendations [29] were followed to define94

six bone-fixed frames. A generalized coordinate vector (q = [q1 . . . q11]T ) was95

considered to define the upper extremity configuration. The forward kinematic96

map (ξ) was developed to define the inertial coordinate of the jth bony landmark97

(xj) associated with the generalized coordinates at time t (Appendix A.1).98

2.2.2. Dynamic model99

Mass and inertial properties were attributed to the bone segments accord-100

ing to [2]. The upper extremity equations of motion were derived using the101

Lagrange’s equations (Appendix A.2).102

The origins/insertions, via points, and wrapping objects of 42 muscles span-103

ning the upper extremity joints were defined from the MRI scans, including sub-104

clavius, serratus anterior upper/middle/lower, trapezius C1-C6/C7/T1/T2-T7,105

levator scapulae, rhomboid minor/major T1-T2/major T3-T4, pectoralis mi-106

nor/major clavicular/major sternal/major ribs, latisimuss dorsi thoracic/lumbar/Iliac,107

deltoid clavicular/acromial/scapular, supraspinatus, infraspinatus, subscapu-108

laris, teres minor/major, coracobrachialis, triceps brachii long/medial/lateral,109

biceps brachii short/long, brachialis, brachioradialis, supinator, pronator Teres,110

flexor carpi radialis/ulnaris, and extensor carpi radiali long/radialis bervis/ulnaris111

[27]. Each muscle group of the model can be represented by up to 20 strings112

(Fig 3). Three strings per muscle were considered for simulations of this study.113

2.3. Multi-segment optimization114

The measured motion was reconstructed in terms of the generalized coor-115

dinates using multi-segment optimization. Given that GH was not a palpable116

bony landmark, it was missing from the measurements. Both TS and AI were117

also missing. Because, TS and AI were masked with thick layers of soft tissues118

and were not effectively trackable [30]. Therefore, a novel method developed119

in [28] was applied to estimate GH, TS, and AI trajectories without requiring120

an additional scapula tracking device. Then, multi-segment optimization was121

used to define the generalized coordinates (qi) for each frame of the measured122

motions (i) such that the overall distance between the measured markers (xej )123

and their corresponding bony landmarks (xmj ) was minimized, while satisfying124

the forward kinematics map (Eq. 1).125

min
qi

.
∑
j(xmj,i

(qi)− xej,i)TW (xmj,i
(qi)− xej,i)

s.t. ΦTS(qi) = 0

ΦAI(qi) = 0

(1)

Where, W is a weighting matrix.126
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2.4. Musculotendon model127

A Hill-type musculotendon model was used to estimate the muscle forces as-128

sociating to the measured EMG signals. It provided estimations of tendon force129

(FT(t)) for given muscle excitations (u(t)) and muscuoltendon lengths (lMT(t))130

(Fig 4) [31]. It consisted of two unidirectional coupled dynamics, namely activa-131

tion dynamics and contraction dynamics. The activation dynamics associated132

u(t) to muscle activation (a(t)). The contraction dynamics accounted for the133

force reproductions for a given a(t) and lMT(t) (Appendix A.3). A novel method134

developed in [28] was used to solve the contraction dynamics such that the re-135

sulting tendon force estimations were devoid of artificial transients. In addition,136

the musculotendon model was validated by reproducing experimentally mea-137

sured forces on maximally excited rat Soleus [28].138

2.5. EMG-assisted load-sharing (EALS)139

The equations of motion (Eq. A.2) provided eleven second order differ-140

ential equations for the resulting generalized coordinates q obtained from the141

multi-segment optimization (Eq. 1). There were more unknowns (42 muscles142

times number of strings per muscle) than the number of equations. There-143

fore, we casted the following EALS to find an augmented muscle force vector144

f̃i ≡ [fTi λTSi
λAIi ]

T for each frame of the measured motions i. As per Ap-145

pendix A.2, fi is a vector consisting of the magnitudes of all the muscle forces at146

i. The λTS and λAI are Lagrange multipliers associating to the scapula-thorax147

constraints.148

min
f̃i

f̃Ti P f̃i

s.t.
d

dt

(
∂L
∂q̇i

)
−
∂L
∂qi

=

[
∂Ω

∂q̇i
B

ΦTS

∂qi

ΦAI

∂qi

]
f̃i

{
(1− ε)FTk,i

≤ f̃k ≤ (1 + ε)FTk,i
k ∈ DEMG

0 ≤ f̃k ≤ f̃maxk
else

ψ(qi, q̇i, q̈i, f̃i) ≤ 0

(2)

Where, P is a diagonal matrix including the inverse squared of muscles physi-149

ological cross section areas (PCSA). The numerical values for PCSAs were set150

according to the same data set as for the musculotendon parameters [32]. The151

cost function (f̃Ti P f̃i) is the sum of squared muscle stresses. The first set of con-152

straints is the equations of motion (Eq. A.2) whose right-hand side is written in153

a vectorial form. The second set of constraints is the muscle forces upper/lower154

bounds. The set DEMG includes muscles with measured EMG signals. If the155

kth muscle segment belongs to DEMG, its tendon force estimated by the mus-156

culotendon model (FTk,i
) from the measured EMG is used as its upper/lower157

bounds. The positive coefficient ε defines the portion of FTk,i
that is considered.158

The smallest ε that results in feasible solutions is considered for both activities159

(0.05 and 0.07 for flexion and abduction, respectively). For muscles without160
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measured EMG signals, 0 and f̃maxk
= K PCSAk are used as their lower and161

upper bounds, respectively. The Fick constant K was set to 33.011 Nm-2 [33].162

The third constraint represents the stability constraint and denoted by ψ [27].163

The stability constraint ψ restricted the solution such that the resulting GH164

joint reaction force always pointed toward inside of an elliptic cone that approx-165

imated the glenoid fossa. Mathematically, ψ was defined as the scalar product166

between the normal vectors of the cone surface at the cone base and the GH167

joint reaction force (Eq. 3).168

169

ψ = N.(
∑
k

mk(ẍk − g)−Df) ≤ 0, k = {Humerus, Ulna, Radius} (3)

170

Where, N is the matrix containing the normal vectors, mk is the mass, ẍ is171

the linear acceleration of center of mass, g is the gravitational acceleration, and172

D is a matrix containing the muscle force direction vectors. We considered173

40 normal vectors to adequately discretize the boundaries of the glenoid fossa174

which resulted in 40 inequality constraints representing the stability constraint.175

Equation 2 was solved to define f̃ such that the sum of squared muscle176

stresses were minimized, while the constraints were satisfied. The resulting q177

from the multi-segment optimization was fed into the musculoskeletal model178

to obtain lMT for the full span of the measured motion. The musculotendon179

dynamics (Eq. A.3 and Eq. A.4) could be then solved upfront for the full180

span of the measured motion to define FTk
. Having provided FTk

, the net181

joints moments, and the moment arms with a given resolution, the optimization182

problem of Eq. 2 was carried out separately for each frame of the measured183

motion (i). The equivalent SLS corresponds to DEMG = {}.184

2.6. Results analysis185

The two measured activities were simulated using both SLS and EALS (Fig186

4).187

The stability ratio (SR) was defined for the glenohumeral joint based on188

the intersection of the JRF and an ellipse approximating the fossa (Eq. 4). It189

quantified the concentricity of the JRF with respect to the glenoid fossa. It190

is well-known that co-contractions increase the glenohumeral joint stability by191

centralizing the JRF within the fossa [17]. Therefore, the SR is linked to the192

GH joint stability obtained by co-contractions.193

SRi = 1−
(
dISi

aIS

)2

−
(
dPAi

aPA

)2

(4)

Where, aPA and aIS are posterior-anterior and inferior-superior radii of an ellipse194

that approximates the glenoid fossa. dPAi and dISi are intersections of JRF and195

the glenoid fossa ellipse in posterior-anterior and inferior-superior directions for196

the ith of the measured kinematics, respectively. The stability ratio lies within197

[0 1] with SR = 0 being marginal stability (intersection occurred on boundaries198

of the glenoid fossa ellipse), and SR=1 being a perfectly centered intersection.199
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The sensitivities of the resulting muscle forces and JRF with respect to200

±1σEMG variations of the normalized EMG signals around EMG means were201

also defined. To this end, a first order approximation [34] of the sensitivity of202

Eq. 2 with respect to u(t) was calculated [28].203

Muscle forces, GH joint reaction force, and stability ratio were presented for204

the measured flexion and abduction. The sensitivities of the muscle forces and205

the JRF were also presented. The results were illustrated along the arm flexion206

and abduction angles corresponding to the flexion and abduction, respectively.207

The associated results from the SLS were also presented. For the JRF, the208

corresponding in vivo measurements from [35] were also presented. Due to space209

limits, the complete set of muscle force estimations were left for the Appendix210

B and only a subset of them were presented.211

3. Results212

3.1. Muscle forces213

Forward flexion in the sagittal plane: While SLS estimated no force214

for deltoid clavicular and scapular (except between 60o to 80o flexion), EALS215

estimated forces (higher than 52 N) for the entire movement (Fig 5a). Deltoid216

acromial force followed similar patterns in EALS and SLS, but it was 30% higher217

initially in EALS. Deltoid acromial had the highest sensitivity (around 25%) to218

variations of the normalized EMG.219

The supraspinatus and subscapularis forces were 390% and 90% higher in EALS220

than SLS, respectively. The infraspinatus and teres minor forces were similar221

in EALS and SLS (less than 10% difference in their maximums).222

EALS estimated more than 50 N force for triceps long and biceps long (Fig223

Appendix B.1). However, SLS estimated only almost zero forces.224

Abduction in the fontal plane: EALS estimated above 55 N force for225

deltoid clavicular, whereas SLS estimated almost zero force (Fig 5b). Almost226

145% higher force estimated by EALS for deltoid acromial in the beginning, al-227

though SLS estimation was 60% higher at the end of the motion. Both methods228

estimated very similar forces for deltoid scapular after 50o abduction (normal-229

ized root mean squared error > 0.024 and p < 0.0001). Deltoid acromial also230

had the highest sensitivity to variations of the normalized EMG.231

Higher maximum forces estimated by EALS for supraspinatus, infraspinatus,232

subscapularis, and teres minor comparing to SLS. For instance, the maximum233

subscapularis force was 22% higher in EALS.234

EALS estimated above 90 N and 40 N forces for triceps long and biceps long,235

respectively (Fig Appendix B.2). However, SLS estimated zero forces.236

3.2. JRF237

The maximum JRF estimations by EALS were 58% and 46% higher com-238

paring to SLS for both flexion and abduction motions, respectively (Fig 6a and239

Fig 6b). They were 172% and 167% of body weight (855 N) and occurred at 68o
240

flexion and 98o abduction, respectively. The resulting JRFs had around 22%241

sensitivity to the variations of the normalized EMG signals.242
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3.3. SR and intersection foci243

The SR was higher for EALS than SLS (more stable GH joint) and reached244

0.87 (vs 0.56 for SLS) till the end of flexion (Fig 7a). The maximum SR was245

46% less in abduction than in flexion according to EALS (Fig 7b).246

4. Discussion247

The aim of this study was to improve estimations of muscle co-contractions248

by simultaneously incorporating EMG data of fifteen muscles into a shoulder249

musculoskeletal model. To this end, the EALS was developed by modifying the250

SLS of a shoulder and elbow musculoskeletal model. The EALS was evaluated251

by comparing its muscles forces, JRF, and SR with those of the equivalent SLS.252

The developed EALS estimated higher muscle co-contractions comparing to the253

SLS. The JRF was consequently higher comparing to SLS.254

During forward flexion, the higher force estimated for deltoid clavicular by255

EALS coincided with a higher force from deltoid scapular. This was consistent256

with the previous findings regarding the antagonistic role of deltoid scapular257

during arm flexion [36]. Their co-contractions resulted in counterproductive258

moments around the GH joint. Also, higher forces estimated for triceps long259

and biceps long as antagonistic muscles. Their antagonistic role for the GH joint260

movements was reported [37].261

During abduction, similar co-contractions as those of flexion were estimated262

by EALS. Furthermore, pectoralis major sternal and teres major had higher263

forces in EALS, indicating their higher co-contractions. This co-contraction264

around the GH joint was consistent with previous studies [38].265

Comparison of the EALS and the SLS muscle force estimations also illustrated266

role exchanges among muscle groups with similar roles. For instance, trapez-267

ius and rhomboid muscles could contribute in the scapular upward/downward268

rotation during flexion. EALS estimated more contributions from rhomboid269

minor/major T1-T2 and less from trapezius C7/T2-T7. The SLS estimations270

were contrary. Indeed, the use of subject’s EMG data in terms of upper/lower271

bounds in EALS caused these role exchanges. Therefore, this could illustrate the272

potential of EALS in replicating inter-individual muscle recruitment patterns.273

The JRF of EALS for both flexion and abduction activities lied within mea-274

surements from different patients with instrumented prosthesis (IP) [35]. How-275

ever, SLS in general underestimated the JRF in both activities. The IP mea-276

surements were averaged per activity among different patients with IP to draw277

a quantitative comparison between the JRF of EALS and SLS and the IP mea-278

surements. Indeed, more patients with the IP measurements as well as more279

patients/activities simulated by the model were required for the comparison to280

be statistically relevant. Nevertheless, for flexion motion, the peak JRF was 3281

% higher for EALS and 34 % lower for SLS comparing to the peak JRF of the282

averaged IP1 and IP3 measurements. For abduction motion, the peak JRF was283

12 % higher for EALS and 24 % lower for SLS comparing to the peak JRF of284

the averaged IP1, IP2, and IP3 measurements. The EALS in general overes-285

timated the JRF for the beginning of motions comparing to the averaged IP286
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measurements (23 % and 69 % higher for flexion and abduction, respectively).287

The trends of the estimated JRF by EALS were in general consistent with the288

IP measurements. It is worth noting that the IP measurements as means of289

validation should be used with cautious. The post-surgery patients with IP had290

impaired musculotendons, and their motions were also compromised due to pain291

[39]. Therefore, their GH joint functions were expected to be different from our292

healthy subject.293

The SR illustrated the effects of higher co-contractions of EALS on the GH294

joint stability. The higher co-contractions acted toward stabilizing the GH joint295

by centralizing the JRF within the glenoid ellipse. For the beginning of both296

activities the SR was low, indicating that the GH joint stability constraint was297

active. This was consistent with the previous studies regarding stability of the298

GH joint [17, 40]. However, in EALS the SR started increasing at lower flexion299

and abduction angles.300

In addition, the stability constraint could oscillate between active and inactive301

states even for negligible deviations of JRF direction from the stability cone.302

This was due to the incorporation of the stability constraint as a hard con-303

straint into EALS. However, a soft constraint formulation could avoid these304

oscillatory behaviors without compromising the physiological correspondence of305

the stability constraint [41].306

The positive coefficient ε was used to define the upper/lower bounds from307

EMG-based muscle forces in EALS. The choice of ε could therefore alter the308

optimal force estimation by changing the feasible set. Smaller values of ε could309

further shrink the feasible set of the EALS comparing to larger values of ε.310

Consequently, higher co-contractions could be estimated. We considered the311

smallest ε resulting in feasible solutions for both activities. This provided the312

highest estimations of muscle co-contractions using our model and allowed per-313

forming an adequately fare comparison between the force estimations of the two314

simulated activities. However, a sensitivity analysis could quantify the effects315

of ε on the force estimations.316

Number of muscle strings considered for each muscle could also affect the317

final optimal force estimation by altering the dimension (degrees of freedom)318

of the EALS. However, small effects were reported for the variations in muscle319

string numbers [42]. We used three strings per muscle to adequately replicate320

muscles with large attachment sites.321

A major limitation of this study was that only one subject was recorded.322

More subjects would be required to more thoroughly evaluate the model, spe-323

cially its performance in replicating inter-individual muscle recruitment pat-324

terns. Three patients with instrumented prosthesis were considered to find the325

best combination of EMG signals during forward flexion and abduction [15].326

The second limitation was about the musculotendon parameters. The realism327

of the reproduced forces could be enhanced if these parameters were person-328

alized to our subject. However, it is not yet straightforward to obtain these329

parameters. The third limitation was that only two activities were considered.330

This imposed certain limitations ahead of generalizing our results. Future ap-331

plications of the model should consider more activities, including activities of332
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daily living (ADL).333

In conclusion, we verified the potentials of EALS in better estimating muscle334

co-contractions in a shoulder and elbow musculoskeletal model comparing to335

SLS. The EALS estimated co-contractions by incorporating fifteen EMG-based336

muscle forces obtained from a musculotendon model. The incorporation of the337

EMG-based muscle forces shrank the feasible set of the EALS and therefore more338

co-contractions could be estimated comparing to the SLS. The JRF estimations339

better matched in vivo measurements, although EALS tended to overestimate340

JRF. This conclusion should be confirmed by simulating more patients during341

more movements including activities of daily living.342
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Appendix A. Mathematical representations348

Appendix A.1. Forward kinematic map (ξ):349

The forward kinematic map (ξ) defined the inertial coordinate of the jth350

bony landmark (xj) associated with the generalized coordinates at time t.351

ξ : Cs ⊂ R11 7→Ws ⊂ R3

ξ(q(t)) = xj(t), j = {C7, . . . , RS}1×14

ΦTS(q(t)) = (tTS(t)− te0)TETS(tTS(t)− te0)− 1 = 0

ΦAI(q(t)) = (tAI(t)− te0)TEAI(tAI(t)− te0) − 1 = 0

(A.1)

Where, Cs and Ws are the coordinate space and work space of the model [43].352

Two holonomic constraints (ΦTS = 0 and ΦTS = 0) replicated the kinematic re-353

lationships between the scapula and the thorax (scapulothoracic contact). The354

left-hand side subscript t specifies that the landmarks are in the thorax (inertial)355

frame. The ellipsoids center is te0, and ETS and EAI are the ellipsoids matrices.356

The use of two separate ellipsoids to replicate the scapulothoracic contact re-357

duced the computational complexity of ξ [27] comparing to the previous models358

where only one ellipsoid was used [2, 8, 15]. The use of one ellipsoid required359

computing the projections of the TS and AI onto the ellipsoid.360

Appendix A.2. Equations of motion:361

The upper extremity equations of motion were derived using the Lagrange’s362

equations (Eq. A.2).363

d

dt

(
∂L
∂q̇

)
−
∂L
∂q

=
∂Ω

∂q̇
M + λTS

ΦTS

∂q
+ λAI

ΦAI

∂q
(A.2)
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Where, L is the Lagrangian of the model obtained by adding all the bone seg-364

ments Lagrangians [27, 44]. The ∂Ω
∂q̇M is the generalized force vector. The Ω365

is a horizontal matrix including the angular velocities of all the bone segments.366

The vertical matrix M consists of the muscle resultant moments around each367

one of the five joints. The λTS and λAI are Lagrange multipliers associating to368

the scapula-thorax constraints. The generalized moment arms of the constraints369

are obtained by their jacobians (ΦTS
∂q and ΦAI

∂q ) [45].370

The matrix M could be written as M = Bf , where B is the moment arm371

matrix, and f is a vector consisting of the magnitudes of all the muscle forces.372

The B was obtained using its geometric definition based on the obstacle set373

method [46].374

Appendix A.3. Musculotendon model:375

The means of normalized EMG signals were used as u(t) for each muscle.376

The a(t) represented the relative amount of calcium release to troponin in muscle377

fibers. It was obtained from a first order dynamic as follows [24].378

da(t)

dt
=

u(t)− a(t)

τ(a(t), u(t))
, τ(a(t), u(t)) =


τact

0.5 + 1.5a(t)
u(t) ≤ a(t)

τdact

0.5 + 1.5a(t)
u(t) > a(t)

(A.3)

Where, τact and τdact are time constants corresponding to muscle activation and379

deactivation, respectively. Both u(t) and a(t) lie within [0 1].380

The contraction dynamics consisted of three elements replicating the force381

production of the musculotendon, including a contractile element (CE), a pas-382

sive elastic element (PE), and an elastic element (EE) [24]. The contraction383

dynamics were derived from a force equilibrium between the muscle fiber and384

tendon. The following ordinary differential equation is an implicit form of the385

contraction dynamics [28].386

FO

[
a(t)fL(l̃M)fV(

lMO
vMO

˙̃
lM) + fP(l̃M)

]√
1−

(
sinαO
l̃M

)2

= FOf
T(

lMT−lMO
√
l̃M2−sinαO2

lTS
)

(A.4)

Where, fL(.), fV(.), fP(.), and fT(.) are normalized functions associating to387

muscle force-length, muscle force-velocity, muscle passive force, and tendon388

force-length relationships. The normalized functions were obtained by fitting389

smooth curves (C∞) to experimental data [28]. The maximum (optimum) mus-390

cle fiber force is denoted by FO. The normalized muscle fiber length (l̃M) is391

obtained as lM

lMO
in which lM and lMO are the muscle fiber length and its optimum,392

respectively. The optimum muscle fiber velocity and the tendon slack length393

are denoted by vM
O and lTS , respectively. The l

M
O and vM

O correspond to the situ-394

ations when the muscle force-length and muscle force-velocity relationships are395

11



at maximum and zero force, respectively. Also, αO is the pennation angle at396

lMO .397

Equation A.4 could be solved for l̃M to consequently provide the tendon force398

FT(t) = FOf
T(.). To this end, a(t), lMT(t), the five musculotendon parameters399

(FO, lMO , vM
O , lTS , and αO), and an initial condition l̃M(t0) were required. The400

a(t) was readily obtained from Eq. A.3. The lMT(t) was calculated for each401

muscle using the musculoskeletal model. More specifically, the resulting q from402

the multi-segment optimization was fed into the model. The model defined403

the paths and consequently the lengths of musculotendons. We set the five404

musculotendon parameters according to [32].405

Appendix B. Muscles forces406
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Figure 1: EMG data of fifteen superficial muscles and trajectories of eleven skin-fixed markers
were recorded during arm flexion and extension with 2 kg weight in hand.

17



clavicle
scapulahumerus

ulna

radius

hand

IJ

SC

PX

T8

C7

ŷt
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Figure 2: (a) MRI scans of a healthy subject were used to develop the model. (b) The
kinematic model; fifteen bony landmarks were used, including IJ, PX, C7, T8, SC, AC, AA,
TS, AI, GH, EM, EL, and the middle point of EM and EL (HU), RS, and US. The bone-
fixed frames were: thorax frame {IJ , x̂t, ŷt, ẑt}, clavicle frame {SC, x̂c, ŷc, ẑc}, scapula frame
{AC, x̂s, ŷs, ẑs}, humerus frame {GH, x̂h, ŷh, ẑh}, ulna frame {HU , x̂u, ŷu, ẑu}, and radius
frame {EL, x̂r, ŷr, ẑr}. The generalized coordinates consisted of q1: SC axial rotation, q2:
SC depression/elevation, q3: SC protraction/retroaction, q4: AC posterior/anterior tilt, q5:
AC downward/upward rotation, q6: AC protraction/retroaction, q7: GH axial rotation, q8:
GH addcution/abduction, q9: GH flexion/extension, q10: HU extension/flexion, q11: RU
pronation/supination. The humerus frame was shifted for better visualizations.
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Figure 3: The developed shoulder and elbow musculoskeletal model included 42 muscles that
each could be replicated by up to 20 strings (three strings were considred in this illustration).
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Figure 4: Markers trajectories were fed into the GH estimator. The resulting completed
trajectories (xej ) were used in the multi-segment optimization to find q. The musculoskeletal
model defined the net joints moments, moment arms, and lMT. The muscle initialization
provided l̃Mt0 for the contraction dynamics. The contraction dynamics reproduced the muscle
forces associated to muscles with measured EMG ({FTk

∀k ∈ DEMG}) for given l̃Mt0 , a(t), and
lMT. The resulting FTk

were used together with the net joints moments and moment arms
in the EALS to estimate f̃ .
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Figure 5: Muscle forces estimated by EALS ( ) and SLS ( ) for (a) flexion and (b)
abduction with 2 kg weight in hand. The sensitivities to variations of normalized EMG
signals were depicted by gray shaded areas. Bold fonts were used to distinguish the muscles
with measured EMG data. The muscle force estimations for all the 42 muscles were presented
in the Appendix.
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Figure 6: JRF estimated by EALS and SLS for (a) flexion, (b) abduction with 2 kg weight in
hand along the corresponding in vivo measurements from [35]. The sensitivities to variations
of normalized EMG signals were depicted by the gray shaded areas.
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Figure 7: SR from EALS and SLS for (a) flexion and (b) abduction with 2 kg weight in
hand. The sensitivities to variations of normalized EMG signals were also depicted by the
gray shaded areas.
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