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The sum of all of the interactions between single bacteria and

host cells determines if an infection is cleared, controlled, or

progresses at the whole host-organism level. These individual

interactions have independent trajectories defined by diverse

and dynamic host-cell and bacterial responses. Focusing on

Mycobacterium tuberculosis infection, we discuss how

advances in single-cell technologies allow investigation of

heterogeneity in host-pathogen interactions and how different

layers of heterogeneity in the host affect disease outcome. At

late stages of infection, many single interactions co-exist and

different outcomes depend on inter-granuloma and intra-

granuloma heterogeneity. However, during bottleneck events

involving small numbers of bacteria, random events, such as

chance interactions with more or less permissive host cells,

play a decisive role and may explain why some exposed

individuals never develop the disease.
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Introduction
A Mycobacterium tuberculosis (Mtb) infection starts when

airborne droplets containing single bacteria enter an

individual’s lungs and reach the alveoli. There, alveolar

macrophages act as the first line of defense against lung

pathogens by phagocytosing and killing the invading bacteria.

However, Mtb has evolved mechanisms to survive and even

replicate inside these immune cells, thus avoiding clearance

andpropagatingthe infection.As thediseaseprogresses,other

cell types are recruited to the site of infection, inducing the

formation of granulomas, multi-cellular structures that can

limit Mtb propagation (Figure 1). Over time, diverse infection

outcomes can occur, ranging from sterilization of the bacteria,

persistence of bacteria in a latent stage, to active infectious
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tuberculosis [1]. These heterogeneous outcomes can depend

on diversity in granuloma maturation at later stages of infec-

tion[2].Forexample, secondarygranulomasoriginating inthe

upper lungs from bacteria re-seeded from the vascular or

lymphatic systems are more likely to undergo caseation and

disseminate bacteria than lesions originating from the primary

infection in the lower lungs [3].

Interestingly, some highly exposed individuals never

develop any lesion or adaptive immune response to

Mtb, suggesting that sterilization is possible even before

granuloma formation [4]. At earlier stages, diverse disease

outcomes may thus be explained by differences in the

host cells first encountered by the bacteria. Elucidating

diversity in these ‘first contacts’ requires advanced tech-

nologies, such as single-cell RNAseq and time-lapse

microscopy, which have become widely available only

recently. In this review, we will discuss emerging evi-

dence suggesting that exposure of Mtb to random or

programmed heterogeneous host environments during

different stages of the infection could contribute to diver-

sity in disease progression (Figure 2).

Heterogeneous granulomas
Each granuloma is formed from a single initiating bacte-

rium and progresses independently from others in the

lungs, with outcomes ranging from sterilization to cavita-

tion and dissemination of bacteria [2,5�]. Inter-granuloma

heterogeneity not only plays a role in determining the

outcome of a lesion but can also affect the efficacy of anti-

tuberculosis drug treatment. MALDI mass spectrometry

imaging of lung slices and PET-scans of human lungs

indeed showed that drug penetration varies from granu-

loma to granuloma and that some drugs preferentially

accumulate in specific areas within a granuloma. For

example, fluoroquinolones penetrate more easily in

regions with a high density of macrophages, while pyr-

azynamide and isoniazid accumulate in the central

caseum of granulomas [6,7,8�]. Thus, in some local envir-

onments, subpopulations of bacteria could be subopti-

mally exposed to drugs and have a better chance to

survive.

Heterogeneous environments are not only observed

between different granulomas, but also within the same

lesion. By using mass spectrometry or in-situ hybridiza-

tion on human, mouse, and rabbit lungs, it was observed

that protein expression varies significantly in different

regions of the granulomas, and that pro-inflammatory

and anti-inflammatory proteins are preferentially
www.sciencedirect.com
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Tuberculosis disease progression.

An infection with Mtb starts when droplets containing bacteria enter the host’s lungs. Mtb has a minimal infective dose of one bacterium; thus,

even a single bacterium internalized by a single host cell is enough to initiate an infection. The outcomes of an Mtb infection are highly variable,

with some individuals sterilizing the infection, others containing the bacteria inside granulomas (latent tuberculosis), and yet others falling sick and

developing symptoms (active tuberculosis). Individuals with latent tuberculosis may eventually sterilize the infection, continue to harbor bacteria

without developing active disease, or develop symptoms years after having their first contact with Mtb (reactivation tuberculosis).
expressed in the center or periphery of certain lesions,

respectively (Figure 3) [9–11].

These studies provide valuable information on spatial

heterogeneity in vivo, but the techniques used lack the
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ability to study the dynamics of the infection with a high

spatiotemporal resolution. To address this caveat, in vitro
models of granulomas have been developed recently

[12,13,14�,15]. These models do not recapitulate complex

lung physiology, but can be used to address basic
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Structures of TB granulomas.

TB granulomas are solid organized aggregates of immune cells recruited to the site of infection to circumscribe bacteria and limit their spreading.

The core of granulomas consists of macrophages that can fuse into multinucleated giant cells (MGCs) or differentiate into other specialized cell

types, such as foamy or epithelioid macrophages. The macrophage-rich center is surrounded by a lymphocytic cuff composed of B and T cells.

Many other cell types populate granulomas, including neutrophils, dendritic cells, natural killer (NK) cells, and fibroblasts. All of these cell types

can be potentially infected by Mtb; however, bacteria are most commonly observed in the macrophage core. Spatial distribution of pro-

inflammatory and anti-inflammatory signatures in different granuloma compartments can define a local balance ensuring bacterial control.

However, during disease progression, host cell death events can lead to the formation of a caseating center comprising necrotizing cellular

material and extracellular bacteria. Caseum liquefaction can result in granuloma cavitation and disruption, thereby facilitating bacterial

dissemination or release into the airways.
questions about formation and maturation of granulomas,

and offer great promise for studying heterogeneity.

Heterogeneous host cells
Granulomas are composed of different types of cells, such

as macrophages, lymphocytes, and fibroblasts, which

could all potentially be infected by Mtb [1] (Figure 3).

Since all of these cells display different inflammatory

signatures and exert different control on intracellular

bacteria, random heterogeneity in their distribution and

infection could influence the progression of a lesion

[5�,16]. Furthermore, recent studies showed that during

the course of infection, Mtb can also infect other non-

immune cells, such as endothelial and epithelial cells, and

that these cell types are more permissive to bacterial

growth than macrophages [17,18].

Diversity can also be observed within a single class of

immune cells. This is for instance the case for macro-

phages, which are probably the most common cell type

infected by Mtb. Over the course of the disease, bacteria

come in contact with different types of macrophages,

including alveolar macrophages at the beginning of the

infection and interstitial macrophages at later time points

[19]. Interestingly, interstitial macrophages control
Current Opinion in Microbiology 2021, 59:72–78 
bacterial growth better than alveolar macrophages and

express higher levels of proteins related to hypoxia and

inflammation [20��,21].

Finally, differences can exist even within populations of

alveolar or interstitial macrophages, further increasing the

diversity of environments to which Mtb is exposed. At

least two distinct subpopulations of alveolar macrophages

are simultaneously present in the lungs of mice, and their

distribution may affect disease progression [22]. Even

amongst interstitial macrophages, different subpopula-

tions displaying either pro-inflammatory or anti-inflam-

matory characteristics co-exist [23]. It will be interesting

to determine whether these subpopulations of macro-

phages interact with Mtb differently, thereby contributing

to heterogeneity in disease progression.

Heterogeneous intracellular localization
Single-cell approaches have revealed a fascinating diver-

sity of host-pathogen interactions in different tissues and

cell types. However, bacteria can be exposed to hetero-

geneous environments even within a single host cell. By

using single-cell fluorescence and electron microscopy of

infected macrophages, Mtb was observed within different

membrane-bound compartments, including permissive
www.sciencedirect.com
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phagosomes and less permissive phagolysosomes and

autophagosomes [16]. Mtb-containing phagosomes are

dynamic structures able to fuse with other compartments,

mature, and acquire different markers [24�]. Moreover,

mycobacteria can use the ESX-1 type VII secretion

system to damage the membranes of these compartments

and escape to the cytosol, which may be a more permis-

sive environment for Mtb growth [25,26]. These observa-

tions call attention to two interesting points. First, the

subcellular localization of Mtb can be heterogeneous not

only in space but also over time. Second, dynamic sub-

cellular localization of Mtb may depend on a fine balance

between cellular defence mechanisms and bacterial viru-

lence factors.

Mtb fluorescent reporter strains for stress responses, bac-

terial growth, or metabolic activity have revealed that

subpopulations of bacteria sensing different stresses and

adopting heterogeneous growth dynamics can co-exist

within the same host cells [27]. Moreover, combination

of a fluorescent biosensor for mycothiol redox potential in

Mtb with markers for host-cell intracellular compartments

highlighted that autophagosomes and endosomes are

enriched for bacteria with an oxidized or reduced signa-

ture, respectively [28]. These studies suggest that het-

erogeneous intracellular localization of Mtb could induce

or select phenotypically divergent subpopulations of bac-

teria, which could be differently controlled by the host.

Mtb subpopulations with an oxidized or reduced signature

are differently killed by antibiotics [28], suggesting that

bacterial subpopulations within heterogeneous subcellu-

lar microenvironments could be relevant in the context of

persistence to drugs. Moreover, differential killing of

bacteria in selected cellular microenvironments may also

depend on different local drug accumulation. For exam-

ple, correlative electron and ion microscopy showed that

bedaquiline preferentially accumulates in host cell lipid

droplets and selectively depletes a subpopulation of

droplet-associated Mtb [29�].

Phenotypic heterogeneity of host cells and
bacteria
As discussed, differences between host cells may be

programmed and depend on external environments and

signals or different cell ontologies [30]. However, even

cell populations cultivated under homogeneous condi-

tions in vitro can display heterogeneous phenotypes,

likely due to differential gene expression [31]. Based

on results of single-cell RNAseq, unstimulated human

monocyte-derived macrophages can be clustered into

distinct subpopulations, confirming the existence of a

basal phenotypic heterogeneity in this cell population

[31]. Infection with Mtb induces different shifts in gene

expression within each cluster, suggesting that basal

cellular heterogeneity may influence responses to infec-

tion [31]. It will be interesting to determine whether
www.sciencedirect.com 
random encounters of bacteria with host cells from these

different clusters may lead to diverse infection outcomes.

Subpopulations of human monocyte-derived macrophages

that are restrictive or permissive for intracellularMtbgrowth
can be discriminated by GM-CSF signalling. Heteroge-

neous GM-CSF signalling in the cells is not pre-existent

and is differently stimulated by growing and non-growing

intracellular bacteria upon infection [32��]. Similarly, het-

erogeneous growth of intracellular Salmonella correlates

with M1 or M2 polarization in macrophages [33]. From

these examples, it is not possible to unambiguously assess

whether the observed heterogeneous host-cell response to

the infection is the cause or the consequence of fast and

slow bacterial growth. However, in other studies, stochastic

heterogeneous expression of Salmonella virulence factors

has been shown to be sufficient to drive different responses

in individual infected host cells [34,35]. We are not aware of

similar studies on Mtb, but results obtained with mutant

strains suggest that heterogeneous expression of virulence

factors may influence not only the host response to the

infection, but also the intracellular localization of the

bacteria [36,37].

Discussion
Intracellular pathogens such as Mtb are exposed to several

layers of heterogeneity in the host, ranging from different

intracellular microenvironments to inter-lesion diversity.

At the level of single cells, this phenotypic heterogeneity

can either predate the interaction with the bacteria or be

triggered by it [21,32��]. Similar phenotypic diversity is

also observed in bacteria and can be further amplified by

exposure to host stresses [38]. These observations high-

light that control of bacteria by the host is a dynamic and

spatially heterogeneous process that continuously evolves

as a balance between host responses to the infection and

bacterial virulence mechanisms. According to this view,

global progression of an infection is thus the sum of all of

the outcomes of the single heterogeneous host-pathogen

interactions that co-exist in the same host organism.

After having been obscured by decades of studies based

on bulk average readouts, diversity in host-pathogen

interactions is now increasingly appreciated thanks to

recent advances in single-cell techniques, such as RNA-

seq and proteomics of single cells. Dual single-cell RNA-

seq can quantify the expression of thousands of host and

pathogen genes in parallel in single infected host cells.

However, current protocols allow the analysis only of

highly expressed bacterial genes due to the low abun-

dance of bacterial RNA within a single infected host cell

[39,40]. Moreover, single-cell ‘omics techniques provide

only a static snapshot of phenotypic heterogeneity in host

and pathogen cells at any given time, whereas most of

these phenotypes are highly dynamic. Conversely, time-

lapse microscopy with fluorescent reporters can reveal

dynamic changes in host and pathogen gene expression
Current Opinion in Microbiology 2021, 59:72–78
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over time, but with a limited throughput. Technical

improvements and the combination of time-lapse micros-

copy with live cytoplasmic pico-sampling [41] or endpoint

dual single-cell RNAseq would push the boundaries of

each technique and provide the temporal resolution

needed to understand how heterogeneity originates,

evolves, and shapes the outcome of host-pathogen

interactions.

Dynamic studies would be useful not only to define the

causality of the observed heterogeneity, but also to inves-

tigate the role of chance in host-pathogen interactions.

Chance is an understudied phenomenon in infection

biology; however, some of the studies discussed in this
Figure 4
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review suggest that individual bacteria could encounter,

by chance, a more or less permissive host-cell environ-

ment, resulting in different infection outcomes

(Figure 4a). For example, a bacterium encountering an

aggressive macrophage or a more permissive epithelial

cell may be killed or may replicate, respectively [18]. At

late stages of infection, when large numbers of bacteria

and host cells interact, the net outcome presumably

corresponds to the average of all of the individual inter-

actions. In this case, heterogeneity and chance may have a

less decisive role in defining the outcome of the infection

(Figure 4b and c). However, whenever small numbers of

bacteria interact with small numbers of host cells, het-

erogeneity in the host could play a major role in defining
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the outcome of the interaction because, due to the ‘finite-

number effect’, extreme events are not averaged out

(Figure 4b and c). This condition occurs during bottle-

neck events, such as transmission of an infectious agent

from one host to another. We speculate that when num-

bers are sufficiently low, even small differences, such as

basal phenotypic heterogeneity in gene expression or

diverse intracellular localization of bacteria in host cells,

could be significant in determining the course of disease

progression. The potential role of programmed or sto-

chastic phenotypic heterogeneity in the outcome of hos-

t-pathogen interactions has received relatively little

attention so far. However, especially in the context of

infections initiated by very small numbers of bacteria,

such as tuberculosis, chance encounters between indi-

vidual bacteria and host cells with a more-permissive or

less-permissive phenotype could potentially play a deci-

sive role in determining whether the bacteria will grow,

persist in a non-replicating state, or be eliminated by the

host.
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