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A B S T R A C T   

Before this study, no analytical models had been made available for describing the behaviour of plane geos
tructures subjected to thermal and mechanical actions. This knowledge gap notably represented a limitation for 
investigations about the behaviour of so-called energy geostructures, which are subjected to the considered 
actions due to their geothermal heat exchanger and structural support roles. In this study, the first analytical 
model that allows describing the behaviour of plane geostructures subjected to thermal and mechanical actions 
is presented. This model extends Winkler’s solution to non-isothermal conditions for quantifying the effects of 
temperature variations, axial loads, transversal loads and bending moments applied to plane geostructures 
resting on an elastic soil mass. The model is applied to the analysis of an elementary unit represented by a single 
beam as well as to more complex plane geostructures using the superposition principle. The obtained results are 
compared with predictions deriving from more rigorous yet time-consuming numerical analyses, showing close 
agreement. This result makes the developed analytical model a useful tool for scientific and engineering pur
poses, paving the way for future developments in this scope.   

1. Introduction 

The behaviour of geostructures critically depends on their interac
tion with the ground. Conventionally, interactions between geos
tructures and the ground have mainly been associated with mechanical 
actions. Currently, a rising number of situations involve geostructures 
that are subjected to a variety of multiphysical actions. When dealing 
with so-called energy geostructures, which involve dual structural 
support and geothermal heat exchanger role, thermal and mechanical 
actions (that must be considered for analysis and design purposes) are 
typically encountered (Laloui and Rotta Loria, 2019). 

A variety of modelling approaches can be employed to address the 
interaction occurring between geostructures and the ground. Examples 
of these approaches include analytical and numerical models, with the 
former being preferred to the latter especially at early stages of analysis 
and design (e.g., geotechnical and structural) due to their simplified yet 
representative description of reality. 

Since the 18th century, Coulomb (1776) and Winkler (1867) have 
addressed the analytical modelling of the interaction between geos
tructures and the surrounding ground. Winkler’s theory of subgrade 

reaction has been developed resorting to the previous investigations and 
employed for analysing problems related to horizontal footings  
(Terzaghi, 1955), retaining walls (Ménard and Bourdon, 1965) and 
piles (Coyle and Reese, 1966; Galin,1943). The analytical solution as
sociated with Winkler’s theory describes a beam foundation resting on a 
soil mass composed by a series of closely spaced, linear elastic and 
independent springs, whose stiffness (called modulus of subgrade re
action) governs the relationship between the pressure exerted by the 
soil to the foundation and the deflection. Winkler’s solution can be 
applied to describe the behaviour of plates and beams, although lim
itations in the resulting predictions are typically observed due to the 
lack of continuity at the foundation edges. A variety of models have 
been proposed to improve Winkler’s solution with respect to the lim
itations above. In these models, in addition to the parameter associated 
with the stiffness of the spring, the soil is described using one or two 
parameters that include the effects of additional flexural elements, 
virtual shear layers, pre-tensioned membranes, etc. (Hétenyi, 1946, 
1950; Kerr, 1965; Reissner, 1937). A description of such models has 
been proposed by Hétenyi (1946) and Selvadurai (1979). Models based 
on Winkler's solution can thus include one, two, or three parameters. In 
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general, the subgrade reaction modulus included in Winkler’s solution 
can be related in a straightforward manner to the elastic properties of 
soils. In contrast, the second and third parameters included in the 
models above are sometimes difficult to estimate because they do not 
necessarily have a physical meaning. For this reason, the basic for
mulation of Winkler’s solution is often employed for practical purposes 
to provide approximate yet representative information. 

Applications of analytical models based on Winkler’s solution typi
cally address horizontal footings and vertical retaining structures. 
Substantial differences among the previous two applications reside in 
the determination and calibration of the Winkler’s subgrade reaction 
modulus. For horizontal footings, several theoretical, semi-empirical 
and empirical definitions are available in the literature (e.g., Terzaghi, 
1955; Selvadurai, 1979; Barden, 1962, 1963; Biot, 1937; Galin, 1943; 
Vesic, 1961a, 1961b, Vesic and Johnson, 1963; Meyerhof and Baikie, 
1963). For vertical retaining structures, the complexities of the problem 
geometry make theoretical estimations complicated and extensive va
lidations of semi-empirical and empirical procedures against field 
testing are often necessary (e.g., Terzaghi, 1955; Ménard and Bourdon, 
1965; Balay, 1984; Fages and Bouyat, 1971; Monnet, 1994; Schmitt, 
1995). 

Before this study, all of the available analytical models for de
scribing the interaction between plane geostructures and the ground 
allowed a description of the influence of only mechanical actions. In 
other words, no analytical soil-structure interaction models for plane 
geostructures have been made available for capturing the influence of 
thermal actions, potentially applied in conjunction with mechanical 
actions. To address this knowledge gap, the present paper proposes the 
formulation and application of an analytical model based on an ex
tension of Winkler’s solution to non-isothermal conditions for de
scribing the behaviour of plane geostructures subjected to thermal and 
mechanical actions. This model is developed with particular reference 
to energy geostructures, although it may be employed for the analysis 
of other relevant problems that are increasingly encountered in science 
and engineering where earth-contact structures are subjected to 
thermal and mechanical actions. The analytical model proposed in this 
study could be employed as an effective alternative to more rigorous yet 
computationally expensive numerical approaches (Bourne-Webb et al., 
2016; Sterpi et al., 2017; Rui and Yin, 2018; Sailer et al., 2019). 

In the following, the proposed analytical model is derived and dis
cussed first. Then, the model is applied to the analysis of problems of 
increasing complexity and the obtained results are compared with those 
of more rigorous yet time-consuming numerical analyses. Finally, 
concluding remarks that can be drawn from this work are summarised. 

2. Analytical model for plane geostructures subjected to thermal 
and mechanical actions 

2.1. Fundamentals 

In this study, a beam is defined as a structural element having one 
dimension (length, L) that is much greater than the other two (breadth, 
b, and height, h). Winkler’s solution is employed to describe the be
haviour of beams resting on an elastic soil mass. Winkler’s solution is 
based on the widely known Euler-Bernoulli theory of beams (circa 
1750, as appears in Truesdell (1960). Such a theory allows writing the 
relationship between the deflection and the loads applied to any beam 
and obtaining the fourth-order differential equation that governs the 
problem. In small deformations, Euler-Bernoulli theory involves that 
straight lines or planes normal to the neutral axis of the beam remain 
straight and normal to the considered axis after deformation. This 
feature allows expressing the bending moment proportionally to the 
second derivative of the deflection. 

Based on the previous premises, Winker’s solution resorts to the 
three following hypotheses: (i) The subgrade reaction modulus, ks, is 
independent of the pressure and involves the same response for both 

loading and unloading; (ii) The value of ks does not vary in space; (iii) 
The springs work unidirectionally and independently of each other. The 
previous hypotheses involve the following practical considerations: (i) 
The soil follows a linear elastic behaviour, which makes the solution 
representative and suitable for the analysis of limited deformation le
vels (so-called serviceability conditions); (ii) The soil reaction is uni
formly distributed among the springs, which makes the solution un
suitable to describe rigid beams but particularly appropriate to model 
flexible beams; (iii) Any influence caused by actions in the soil outside 
the beam length cannot be captured, which makes the solution suitable 
to provide accurate estimates of action effects along the beam only. 

In the following, the adopted sign convention is that of structural 
mechanics. Positive deflections and rotations are directed downwards 
and clockwise, respectively, and tensile forces are considered as posi
tive. Unless otherwise specified, reference is made to one-dimensional 
conditions. 

2.2. Influence of thermal and mechanical actions on plane geostructures 

Thermal and mechanical actions applied to geostructures result in a 
variety of effects for the structure and the ground. Thermal actions are 
typically associated with temperature variations within and around 
geostructures. Mechanical actions are typically associated with axial 
loads, transversal loads and bending moments. 

The temperature variations caused by thermal actions are generally 
non-uniform and can be idealised as composed of two contributions 
(Fig. 1): a constant distribution of temperature variation over the cross- 
section of the structure, Ta, inducing an axial effect, and a linear dis
tribution of temperature variation over the cross-section of the struc
ture, Tc, inducing a bending effect. These uniform and linear tem
perature variations can be evaluated as: 

= +T T T
2a

2 1
(1)  

=T T T
2c

2 1
(2)  

The axial and bending effects resulting from the previous tem
perature variations can be associated with a thermally induced axial 
strain and curvature, respectively. Prevention of these effects results in 
the development of axial loads and bending moments, respectively. The 
effects of generally distributed mechanical loads are axial and trans
versal displacements, rotations of the neutral axis, axial and shear 
forces, as well as bending moments. 

2.3. Degree of freedom: definition for axial and flexural actions 

The concept of degree of freedom is a powerful means to address the 
effects caused by temperature variations applied to geostructures (Rotta 
Loria and Laloui, 2019): it expresses the development of a relevant 
physical quantity to its value under free thermal deformation condi
tions. Before this study, the degree of freedom was applied to describe 
axial effects caused by thermal actions applied to geostructures (Laloui 
et al., 2003); in contrast, no applications of this parameter were re
ported to address flexural effects caused by thermal actions applied to 
geostructures. In the following, the degree of freedom is defined and 
employed to address both axial and flexural effects caused by constant 
and linear distributions of temperature variations applied to geos
tructures. 

A constant distribution of temperature variation, Ta, applied along 
a geostructure free to move at its ends causes the development of a free 
thermally induced axial strain, f

th, as 

= Tf
th

th a (3) 

where th is the linear thermal expansion coefficient of the material. A 
linear distribution of temperature variation applied along a 

J. Zannin, et al.   Computers and Geotechnics 128 (2020) 103618

2



geostructure free to move at its ends causes the development of a free 
thermally induced curvature, f

th, as 

= =
I

y T
h

dA T
h

2 2
f
th th

A h
c th c

(4) 

where I is the moment of inertia of the cross-section, A, and yh is the 
coordinate along the geostructure height, h. 

A partial restraint applied to a geostructure by any given boundary 
condition (e.g., the presence of the ground and a connected structure) 
yields to the development of an observed axial deformation and cur
vature that are a fraction of the ones under free thermal deformation 
conditions. The previous consideration involves that only a portion of 
axial deformation and curvature is developed with respect to those 
under free deformation conditions, while a portion of axial deformation 
and curvature is blocked. 

The previous considerations inherently lead to the definition of 
degree of freedom. The degree of freedom associated with axial effects, 
DOFa, can be defined as: 

=DOF DOF0 1a
o
th

f
th a

(5) 

where o
th represents the observed thermally induced axial strain. The 

degree of freedom associated with flexural effects, DOFc, can be defined 
as: 

=DOF DOF0 1c
o
th

f
th c

(6) 

where o
th represents the observed thermally induced curvature. 

Internal actions develop consequently to the blocked portion of 
deformations. The restraint of a constant distribution of temperature 
variation causes a thermally induced axial force. The restraint of linear 
distribution of temperature variation causes a thermally induced 
bending moment (which explicates a tensile action at one side of the 
cross-section and a compressive action at the other side). The observed 
thermally induced axial force, No

th, and bending moment, Mo
th, caused 

by the previous temperature variations can be quantified as 

= =N N E T DOF NA (1 )o
th th

th a a b
th (7)  

= =M M EI T
h

DOF M2 (1 )th th th c
c b

th
o (8) 

where Nb
th and Mb

th are the axial force and bending moment under 
completely blocked deformation conditions, respectively. 

Fig. 2 shows parallelism between the axial and flexural effects 
caused by constant and linear distributions of temperature variations in 
a geostructure, highlighting the link between the relevant degree of 
freedom and the development of deformations and internal actions. The 
cases of a structure free to deform, completely restrained (i.e., blocked), 
and partly restrained by varying magnitudes of constraints are con
sidered. 

2.4. The analytical model 

From Euler-Bernoulli theory, the rotation, x( ), the bending mo
ment, M x( ) and the shear force, V x( ), characterising any infinitely 
small element of a beam as a consequence of the application of thermal 
and mechanical actions inducing flexural effects (e.g., non-uniform 
distribution of temperature variations or distributed loads perpendi
cular to the beam axis) respectively read 

=x x dy x
dx

( ) tan ( ) ( )
(9)  

=M x EI d y x
dx

EI( ) ( )
f
th

2

2 (10)  

=V x dM x
dx

( ) ( )
(11) 

where x is the relevant coordinate axis and y is the deflection. In ad
dition to the previous actions, axial forces, N , can characterise any 
element of a beam due to the application of thermal and mechanical 
actions (e.g., uniform distributions of temperature variations or me
chanical forces applied normal to the beam transversal cross-section). 
Consideration of one-dimensional conditions involves neglecting any 
extension or contraction of the beam within its cross-section due to the 
considered actions. 

Based on the previous considerations, the present model can be 
formulated by analysing the equilibrium of a beam element resting on 
an elastic soil of length dx in its deformed configuration (Fig. 3(a)). 
Vertical equilibrium gives 

Fig. 1. Idealised schematic of the temperature variation within the cross-section of a plane geostructure interfacing, from one side, the air, and from the other side, 
the ground. The considered schematic can refer to a slab resting on the ground or to the exposed portion of a retaining wall. T1 and T2 refer to the temperature 
variations at the geostructure-air and geostructure-soil interfaces, respectively. 
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=dV
dx

y x k( )v
s (12) 

where Vv is the vertical shear force, which can be correlated to the 
normal shear force, Vn (Fig. 3(b)): 

=V V N V N dy
dx

cos sinn v v (13)  

The generalised shear action is evaluated by modifying Eq. (11) to 
account for the two components of the shear force. The following ex
pression is obtained 

= +V x EI d y x
dx

EI
d
dx

N dy x
dx

( ) ( ) ( )f
th3

3 (14)  

The moment equilibrium around point A, divided by dx , can be 
written as follows (neglecting second-order terms): 

=dM
dx

V N dy
dxv (15)  

Substituting Eqs. (10) into (15), differentiating with respect to x and 
considering Eq. (12), the differential equation of the elastic line is ob
tained for this problem: 

+ + =EI d y
dx

d x
dx

N d y x
dx

k y x( ) ( ) ( ) 0
th

s
4

4

2

2

2

2 (16)  

Eq. (13) has a solution of the type: 

= + + +y x C e C e x C e C e x( ) ( )cos ( )sinx x x x
1 2 3 4 (17) 

with: 

= + N
EI4

2
(18)  

= N
EI4

2
(19) 

where is called the characteristic of the system. The term 1/ is called 
the characteristic length, as defined by Hétenyi (1946), and it is a useful 
parameter to express the problem solution as a function of the non- 
dimensional parameter , called relative stiffness of the beam. The 
parameter reads 

= k
EI4

s4
(20)  

The integration constants, C C C, ,1 2 3 and C4 can be defined by im
posing the boundary conditions and solving the system of Eqs. (9), (10) 
and (17). The resolution of this system extends the classical Winkler’s 
solution to non-isothermal conditions. In this work, a computer code 
has been developed to solve this system using the software Wolfram 
Mathematica 11 (Wolfram Research, 2019). 

2.5. Analysis of simple plane geometries 

The obtained analytical model can straightforwardly address the 
effects caused by arbitrary thermal and mechanical actions applied to 
simple plane geometries: geostructures (e.g., beams) of finite dimensions 
resting on a Winkler-type soil mass that are arbitrarily restrained by 
boundary conditions and subjected to loading (Fig. 4). This capability 
resorts to the superposition principle (i.e., an essential constituent of 
the elastic theory employed herein). Based on this principle, the effects 

Fig. 2. Qualitative development of deformations and internal actions caused by (a) constant and (b) linear distribution of temperature variations in a geostructure: 
(A) free case, (B) completely restrained case, (C) partly restrained case with significant prevention of deformations, and (D) less restrained case with less significant 
prevention of deformations. 

Fig. 3. Schematic of (a) the equilibrium of a beam element of length dx and (b) 
the geometric decomposition of shear actions. 
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caused by arbitrary combinations of loading actions can be considered 
as the sum of the effects caused by single actions solved separately. 
Accordingly, in a situation where one thermal action and one me
chanical action are applied, the deflection, rotation, bending moment, 
shear force and normal force can be considered as made of two con
tributions: one component caused by the thermal action and another 
component caused by the mechanical action. The generalised axial 
force resulting from a thermal and mechanical action can hence be 

defined for any element of a beam as: 

= +N N Nth m (21) 

where the superscripts th and m stand for “thermal” and “mechanical”, 
respectively. 

From the previous considerations, it results 

= +y x y x y x( ) ( ) ( )th m (22)  

= +x x x( ) ( ) ( )th m (23)  

= +M x M x M x( ) ( ) ( )th m (24)  

= +V x V x V x( ) ( ) ( )th m (25)  

The influence of any thermal loading configuration (e.g., a constant 
or a linear distribution of temperature variation) along the beam can be 
quantified by imposing the boundary conditions and, consequently, by 
determining the four integration constants from Eq. (17). The influence 
of any mechanical loading configuration (e.g., a concentrated me
chanical force) can be addressed by employing the method of initial 
conditions as detailed in Appendix A. 

2.6. Analysis of complex plane geometries 

The obtained analytical model can also effectively address the ef
fects of arbitrary combinations of thermal and mechanical actions on 
complex plane geometries: geostructures composed by multiple elements 
mutually connected one another (e.g., cut-and-cover structures, struc
tures involving wall-slab and wall-anchors intersections, mat founda
tions and multi-floored structures) that are partly or entirely sur
rounded by a Winkler-type soil mass and subjected to loading (Fig. 5). 
In the present context, this capability is again related to the super
position principle. Relevant simple plane geometries can be considered 
as an elementary unit for more complex plane geometries. The effects of 
thermal and mechanical actions applied to these geometries can be 
addressed straightforwardly. Once such action effects are obtained, 
they can be considered as boundary loads for the other unit(s) com
posing the complex plane geometry. From this perspective, general 
combinations of thermal and mechanical actions can be solved for all 
the elementary units constituting any complex geometry, thus yielding 
a complete procedure for addressing the related response. 

Fig. 4. Examples of simple plane geometries characterised by different 
boundary conditions: (a) hinged, (b) fixed and (c) partly restrained. 

Fig. 5. Example of (a) a complex plane geometry (i.e., a cut-and-cover tunnel) and (b) a related geometrical decomposition approach into four simple plane 
geometries. 
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2.7. Boundary conditions 

Three possible conditions can characterize the boundaries of beams, 
such as general geostructures: completely free conditions, completely 
restrained conditions, or partly restrained conditions (Fig. 4). The most 
common condition encountered in practice corresponds to a situation 
wherein beams are partly restrained at their ends (transversal (k k,v l v r, , ) 
and rotational (k k,r l r r, , ) springs are considered at each end of the 
structure in such case). In some cases, the restraint characterising 
beams could be so high that completely restrained conditions may be 
representative of reality. 

A summary of the mathematical formulations allowing to consider 
the discussed boundary conditions is detailed in Table 1. Consideration 
of these formulations allows resolving the problems addressed by the 
obtained analytical model. 

2.8. Modulus of subgrade reaction 

The modulus of subgrade reaction, ks, is a crucial parameter to 
address the response of geostructures. This parameter does not re
present an intrinsic characteristic of soils, but it depends on the soil 
properties, geostructure dimensions, geometry and rigidity, and the 
spatial distribution of the applied loads (Terzaghi, 1955; Selvadurai, 
1979; Delattre, 2001). While Terzaghi (1955) proposed charts for the 
determination of ks based on the results of an experimental campaign, 
other authors proposed empirical relations linking ks to parameters 
such as the Young’s modulus of soils, Es, the Poisson’s ratio, s, or the 
foundation breadth, B (Barden, 1962, 1963; Biot, 1937; Galin, 1943; 
Vesic, 1961a, 1961b; Vesic and Johnson, 1963). Table 2 summarises 
some widely established empirical formulations to estimate ks. A 
practical application of these expressions to determine ks is presented in  
Appendix B. 

3. Application and validation of the analytical model – simple 
plane geometries 

3.1. General 

The literature is rich in investigations addressing with the classical 

Winkler’s solution the effects of mechanical actions (e.g., concentrated 
and variably distributed forces and moments) on the behaviour of plane 
geostructures (Hétenyi, 1946; Selvadurai, 1979). In contrast, no in
vestigations addressing the effects of thermal actions have ever been 
made available before this study. Looking at such a challenge, the 
proposed extension of Winkler’s solution is employed in this section to 
address the effects of thermal actions (e.g., a unitary linear distribution 
of temperature variation) on the behaviour of a geostructure char
acterised by a simple plane geometry. Complementary comments about 
the effects of thermal (and mechanical) actions on the behaviour of 
geostructures are eventually reported. 

3.2. The problem 

In the following, beams characterised by hinged and partly re
strained boundary conditions are considered. Perfectly fixed conditions 
are not treated as they represent a trivial case: displacements are en
tirely blocked and internal actions are constant everywhere. In other 
words, the deflection and rotation are equal to zero, and the internal 
actions reach their constant maximum values by definition of entirely 
blocked conditions. 

Hinged conditions aim at representing the behaviour of beams 
characterised by connections with an infinite transversal stiffness and 
zero rotational stiffness at their ends. Such conditions are not usually 
encountered in practical problems similar to those addressed in this 
work. Partly restrained conditions aim at representing the behaviour of 
beams connected with other structural elements that are common in 
practice (e.g., wall-slab connections, such as for cut-and-cover struc
tures). In the following, when considering partly restrained conditions, 
symmetric boundary conditions at the ends of the beam are considered: 

= =k k kv l v r v, , and = =k k kr l r r r, , . For both of the considered boundary 
conditions, the subgrade reaction modulus reads = ÷k 10 10s

6 8 N/m3, 
aiming at encompassing soft to stiff soils, respectively (Terzaghi, 1955; 
Selvadurai, 1979). Complementary input parameters characterising the 
considered problem are presented in Table 3. The rationale of con
sidering a linear distribution of temperature variation of =Tc 1.0 °C is 
that it provides a unitary response of the modelled problem. In parti
cular, as long as the hypothesis of a reversible response of the soil (and 
structure) holds, temperature variations of =Tc 10.0 °C and =Tc
−1.0 °C, for example, yield to results that are ten times higher and 
opposite compared to those discussed here, respectively. 

To validate the capabilities of the present analytical model in ad
dressing the considered problem, comparisons with the results of nu
merical models have been made (the details of the numerical models 
are highlighted in Appendix C). In this context, two problems have been 
numerically simulated: (i) a beam resting on a spring foundation and 
(ii) a beam resting on a continuum medium. In the first case, the 

Table 1 
Boundary conditions for selected cases.        

Fixed Hinged Free Partly restrained  

Conditions = =y y L(0) ( ) 0 = =y y L(0) ( ) 0 = =M M L(0) ( ) 0 =y (0) V
kv l

(0)
,

= =L(0) ( ) 0 = =M M L(0) ( ) 0 = =V V L(0) ( ) 0 =(0) M
kr l

(0)
,

=y L( ) V L
kv r

( )
,

=L( ) M L
kr r

( )
,

Table 2 
Determination of ks from empirical formulations.    

Formula Reference  

=ks
Es

B s

0.65
(1 2)

Barden (1962, 1963) 

=ks
Es

B s
L
B

2 (1 2)ln
Galin (1943), recalled in Selvadurai (1979) 

=k 0.65s B
EsB

EI
Es

s

1 412
1 2

Vesic (1961a, 1961b), Vesic and Johnson (1963) 

=ks
Es

B s(1 2)
Meyerhof and Baikie (1963) 

=ks
Es

B s

EsB

s EI
0.95
(1 2)

4

(1 2)

0.108 Biot (1937) 

Table 3 
Input parameters for the modelling of the considered problem.         

L[m] h[m] B[m] Tc[°C] E[Pa] kr[Nm/rad] kv[N/m]  

10.0 0.5 1.0. 1.0 ×25.0 109 ×1.0 109 ×1.0 108
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Fig. 6. Thermo-mechanical response of a geostructure resting on different soil conditions and subjected to a linear distribution of temperature variation: comparison 
between analytical and numerical models. 
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analytical and numerical modelling results perfectly match (error of 
0%): this result fully validates the capability of the proposed extension 
of Winkler’s solution in capturing the effects of thermal actions with 
respect to a numerical modelling technique considering the same pro
blem (this capability is also observed for mechanical actions). In the 
second case, differences between the analytical and numerical model
ling results are observed: these differences are discussed in the fol
lowing. 

3.3. Comparison between analytical and numerical modelling results 

The comparison between analytical and numerical modelling results 
is reported in Fig. 6. In the following, considerations related to de
flections, rotations and internal actions are reported, and a discussion 
resorting to the concept of degree of freedom is eventually proposed. 

3.3.1. Deflection and rotation 
The following considerations apply irrespective of the considered 

static scheme. For very stiff soils (e.g., =k 10s
8 N/m3), the relative 

Table 4 
Steps for resolving the cut-and-cover structure employing the proposed analytical model.      

Step number Beam number Input parameters Output parameters  

1 Base beam (1) q T; c y x( )1,1 ; x( )1,1 ; M x( )1,1 ; V x( )1,1
2 Right vertical beam (2) = L(0) ( )2 1 y x( )2 ; x( )2 ; M x( )2 ; V x( )2

=N Q L( )2 1
3 Left vertical beam (3) =(0) (0)3 1 y x( )3 ; x( )3 ; M x( )3 ; V x( )3

=N Q (0)3 1
4 Base beam (1) q T; c y x( )1,2 ; x( )1,2 ; M x( )1,2 ; V x( )1,2

= =N Q Q L(0) ( )1 2 3
5 Top beam (4) = H(0) ( )4 3 y x( )4 ; x( )4 ; M x( )4 ; V x( )4

=L H( ) ( )4 2
=y y(0) (0)4 1,2
=y L y L( ) ( )4 1,2

Fig. 7. Determination of the structural rotational stiffness: (a) fixed case, (b) hinged case, (c) partly restrained case. Determination of the soil-structure interaction 
rotational stiffness: (d) first estimation and (e) final estimation. 
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stiffness L is significant and thus the deflection is concentrated in the 
vicinity of the boundaries. It follows that the conditions at one end of 
the beam do not affect the results at the other end of the beam and the 
deflection at the mid-span is nearly zero. As suggested by Hétenyi 
(1946), the solution of this problem can be simplified by a super
position of two semi-infinite beams. For soft soils (e.g., =k 10s

6 N/m3), 
the relative stiffness L is minimal. The maximum deflection takes 
place at the midpoint of the beam. Following the classification proposed 
by Hétenyi (1946), the solution of this problem can be found by con
sidering the beam as finite. The maximum values of rotation are re
corded at the beam ends. Zero rotation is evaluated at the mid-span of 
the beam, showing an anti-symmetric distribution. 

The following considerations apply with reference to the static 
scheme. Hinged conditions allow for free rotation at the boundaries and 
null vertical deflection. Under these conditions, the beam displaces 
downwards showing a maximum at its mid-span and zero deflection at 
the boundaries. Rotation is maximum (in absolute value) at the 
boundaries and becomes equal to zero at the mid-span. At the con
sidered location, the deflection presents a minimum. Partly restrained 
conditions affect the magnitude of the deflection and rotation. The 
deformed shape is the same as for hinged conditions, but characterised 
by a lower magnitude. 

By comparing the analytical and numerical modelling results, some 
remarks can be highlighted. The analytical model suffers from a lack of 
continuity between the springs and at the sides of the beam. This fea
ture does not characterise the employed numerical model. Therefore, 
deflection and rotation are generally underestimated by the analytical 
modelling results compared to the numerical modelling results. Such 
discrepancies in the results could be partly recovered by employing a 
two-parameter model such as that reported by Pasternak (1954). The 

differences between the analytical and numerical modelling results are 
higher for lower rotational boundary constraints. If there is some ro
tational stiffness at the boundaries, the results of the analytical model 
approach the numerical ones. 

3.3.2. Internal actions 
The following considerations apply irrespective of the considered 

static scheme. Bending moment and shear forces develop because of the 
applied loads as well as the presence and significance of constraints. In 
free deformation conditions, a beam subjected to a linear thermal load 
would deflect downwards and be subjected to zero thermally induced 
internal actions. In partly or fully restrained conditions, a constraint to 
the beam bending causes a tensile force in the upper part of the cross- 
section as a consequence of cooling thermal loading, while a com
pressive force in the lower part as a consequence of heating thermal 
loading. The correspondent bending moment shape is towards the beam 
extrados. 

The following considerations apply with reference to the static 
scheme. By definition of hinged conditions, bending moment is equal to 
zero at the boundaries of the beam and presents a maximum at the mid- 
span of the beam. In these conditions, bending is only restrained by the 
soil reaction. In partly restrained conditions, the observed bending 
moment follows Eq. (8). The higher the boundary rotational stiffness, 
the flatter the bending moment distribution. Because of the definition of 
the shear force (Eq. (11)), shear actions are maximum when high 
bending moment variations develop along the beam. For flatter bending 
moment distributions, the shear force approaches zero. It follows that 
maximum values are recorded at the beam ends for hinged conditions, 
showing an anti-symmetric distribution. 

By comparing the analytical and numerical modelling results, some 

Fig. 8. Relationship between the dimensionless rotational boundary stiffness and the beam geometry.  
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remarks can be highlighted. While the obtained formulation of 
Winkler’s solution underestimates deflections and rotations compared 
to numerical results considering a continuum soil mass, it overestimates 
internal actions. The smaller the rotational boundary constraint, the 
higher the discrepancy among the analytical and numerical modelling 
results. For partly restrained conditions, the results match satisfactorily. 

3.3.3. Interpretation of the results using the concept of degree of freedom 
Hinged conditions represent a lower bound of the flexural effects 

that are likely to characterise plane geostructures. The reason for this is 
because the rotational stiffness is given only by the presence of the soil. 
It follows that the soil stiffness plays a paramount role in the definition 
of flexural behaviour. The stiffer the soil, the lower the deflection and 
the rotation, the higher the internal actions and the smaller the DOFc. 
The softer the soil, the higher the deflection and the rotation, and the 
lower the internal actions: DOF 1c when k 0s . 

Fully blocked conditions represent an upper bound of the flexural 
effects that are likely to characterise plane geostructures. In such con
ditions, rotational and transversal stiffness are blocked by the definition 
of the boundary conditions (i.e., =DOF 0c ). As the deformation is 
completely blocked for whatever soil stiffness, bending moment reaches 
its maximum constant value along the beam length as shown in Eq. (8) 
for =DOF 0c . 

Partly restrained conditions represent an intermediate case among 
hinged and fixed conditions. Consequently, the associated DOFc lays 
between the values that characterise beams under fixed and hinged 
conditions. The definition of DOFc depends on both the soil and the 
boundary stiffness. A softer soil allows for higher deflection and rota
tion, and a flatter distribution of internal actions with respect to a stiffer 
soil. Regarding the rotational boundary stiffness, the higher kr , the 

smaller the deflection and the rotation, and the flatter the distribution 
of the internal action reaching a constant value while approaching to 
fixed conditions (DOF 0)c . 

3.4. Considerations about axial and flexural effects caused by thermal 
actions 

This section aims at providing insights about the modelling of a 
beam on a Winkler-type soil mass subjected to transversal (i.e., flexural) 
and axial loads. Transversal loads can be associated, for example, with 
transversally distributed or concentrated mechanical forces as well as 
with linear distributions of temperature variations. Axial loads can be 
associated with axial mechanical forces or constant distributions of 
temperature variations. Linear distributions of temperature variation 
induce a transversal action along beams. Constant distributions of 
temperature variations induce a variation of the deflected shape. The 
effect of a positive (e.g., tensile) axial load, coming from thermal or 
mechanical actions reduces the deflection. Conversely, a negative (e.g., 
compressive) axial load increases the transversal displacement. The 
limitation of the proposed analytical model is that it is not able to 
thoroughly quantify axial displacements because of the unidirectional 
definition (transversal only) of the springs with respect to the beam 
neutral axis. 

4. Application and validation of the analytical model – complex 
plane geometries 

4.1. General 

In this section, the proposed extension of Winkler’s solution is used 

Fig. 9. (a) Components to be considered for the evaluation of the transversal stiffness boundary condition. Determination of the structural transversal stiffness at the 
connections: (b) fixed case, (c) hinged case, (d) partly restrained case. Determination of the soil-structure interaction transversal stiffness: (e) first estimation and (f) 
final estimation. 
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to investigate the effects of thermal and mechanical actions (e.g., linear 
distribution of temperature variation and transversal distribution of 
mechanical load) on the behaviour of a geostructure characterised by a 
complex plane geometry. While applying the proposed decomposition 
procedure to the analysis of the considered structure, the main objec
tive of the following developments is to highlight the redistribution of 
loading conditions within complex plane geometries. 

4.2. The problem 

A cut-and-cover tunnel with an aspect ratio =L H/ 1, with 
= =H L 10.0 m, which is embedded in a uniform soil mass, represents 

the considered complex plane geometry (Fig. 5). Each beam composing 
the considered geostructure presents a cross-section of = =h B 1.0 m. 
The spring foundation representing the soil mass is characterised by a 
subgrade reaction modulus of = ×k 1.8 10 N/ms

7 3. For simplicity, the 
same value of ks is considered for the beams lying horizontally and 
vertically. A detailed treatment of the validity of this assumption is 
reported elsewhere (Terzaghi, 1955; Balay, 1984; Fages and Bouyat, 
1971; Monnet, 1994). The boundary conditions of each beam involve 
rotational springs of = = ×k EI H5.0 / 10.4 10 Nm/radr

8 , and trans
versal springs for horizontal and vertical elements of 

= = ×k EI L30.0 / 6.25 10 N/mv H,
3 7 and = =k EA L2.0 /v V,

×5.0 10 N/m9 , respectively. Details on the boundary conditions cali
bration are reported in Section 4.4. 

To address the capabilities of the present analytical model in solving 
the considered problem, comparisons with the results of numerical 
models have been made (the details of the numerical models are 
highlighted in Appendix C). In this context, two problems have been 
numerically simulated: (i) a cut and cover structure whose response is 
modelled through beam elements, and a soil whose response is re
produced through spring elements; (ii) a structure whose response is 
modelled using beam elements and a soil that is modelled as a 

continuum elastic medium with the elastic parameters calibrated fol
lowing the formulation proposed by Selvadurai (1979) and Vesic 
(1961a). 

The material constituting the geostructure is reinforced concrete 
with Young’s modulus =E 25.0 GPa, Poisson’s ratio = 0.2 and linear 
thermal expansion coefficient of =th 10−5 1/K. The numerical models 
employing the continuum medium idealisation present the following 
parameters: = ×E 2.5 10 N/ms

7 2 and = ×E 3.5 10 N/ms
7 2 for the one 

calibrated following (Selvadurai, 1979; Vesic, 1961a), respectively. 
Poisson’s ratio is set to = 0.3s . The applied loading conditions are a 
linear distribution of temperature variation of =Tc 1.0 °C and a dis
tributed load, downwards directed, acting on the bottom beam of 
magnitude =q 1.0 kN/m. The rationale of considering a linear dis
tribution of temperature variation of =Tc 1.0 °C applies to the con
sideration of a distributed mechanical load of =q 1.0 kN/m. 

4.3. Analysis approach 

This section expands on the steps allowing to model complex plane 
geometries such as a cut-and-cover tunnel using the proposed analytical 
model and the decomposition analysis approach. The considered cut- 
and-cover structure can be decomposed in four single beams. Boundary 
conditions and loading conditions for each beam have to be detailed to 
ensure continuity and a correct redistribution of actions throughout the 
structure. 

The solution method is based on five steps (Table 4). Step 1: the 
equilibrium of the bottom beam (1) is solved considering q and Tc. 
Step (2): the equilibrium of beam (2) is solved by imposing the rotation 
and the shear force coming from beam (1) at one boundary (the shear 
force for beam (2) represents the axial force for beam (1)). Step 3: the 
same procedure considered in Step 2 is applied to resolve the equili
brium of beam (3). Step 4: the equilibrium of beam (1) is re-assessed by 

Fig. 10. Relationship between the dimensionless transversal boundary stiffness and the beam geometry.  
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adding the axial action coming from the shear force distribution in 
beams (2) and (3). Step 5: the upper beam (4) is solved by imposing 
rotations coming from beams (2) and (3) and transversal displacements 
coming from beam (1) (assuming that beams (2) and (3) settle/heave as 
rigid bodies). Such boundary conditions lead to a discontinuity in 
bending moment between beams (2), (3) and (4), , but this discrepancy 
tends to zero, ensuring a suitable calibration of the boundary conditions 
(rotational and transversal stiffness). For this reason, in the following, a 
procedure for estimating and calibrating the boundary conditions is 
proposed. 

It is worth noting that the foregoing analysis approach could be 
applied to any arbitrary loading scenario and plane geometry. For ex
ample, a slightly more complex problem than the one considered here 
could consist in a cut-and-cover structure with more than one beam 
subjected to thermal actions. Such a problem may be adequately 

addressed following a similar procedure than the one described above. 

4.4. Calibration of boundary conditions 

In this section, a procedure for calibrating the rotational and 
transversal stiffness to be employed in boundary conditions is pre
sented. Such a procedure aims to be as general as possible, so that it 
may be used to tackle frequent problems in engineering when different 
variably connected elements are present (e.g., perpendicular and vari
ably inclined connections, wall-anchors, etc). In the following, two 
components of stiffness are considered: the structural (subscript “SS”) 
and the soil-structure interaction (subscript “SSI”). 

4.4.1. Rotational stiffness 
The structural stiffness, kr SS, , is related to the frame rigidity and can 

Fig. 11. Response of a cut-and-cover structure with L/H = 1 subjected to thermal and mechanical loading to the bottom beam only: deflection.  
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be determined by employing the so-called displacement method, as 
described in Connor and Faraji (2016). This method is employed here 
with reference to the structure shown in Fig. 7(a)–(c). The value of kr SS,
is bounded by an upper bound (fixed condition) and a lower bound 
(hinged condition). The upper bound relates to a case where the rota
tion is blocked by the presence of a fixed end. The bending moment M
applied at the frame angle induces a rotation of M EI L(4 / ) 1 radians. 
The stiffness of the equivalent rotational spring is therefore EI L4.0 /
Nm/rad (Fig. 7(a)). The lower bound is characterised by the beam 
hinged at its ends (Fig. 7(b)). The equivalent rotational stiffness is thus 

EI L3.0 / Nm/rad. It follows that if the rotation is partly restrained, the 
spring structural stiffness reads (Fig. 7(c)) 

= = ÷k m EI
L

mwith 3.0 4.0r SS, (26)  

The whole structure is also constrained by the presence of soil all 

around, which is partly restraining the rotations. The rotational stiff
ness kr SSI, is the one exerted by the soil-structure interaction in the 
portions not accounting for the beam of interest. This contribution can 
be estimated by applying a unit moment, M , to a beam that is fixed at 
one end and supported by the spring foundation along its length 
(Fig. 7(d) and (e)). A first estimation of kr SSI, , kr,1, can be obtained by 
dividing the unit moment M by the rotation 1 and subtracting the 
structural flexural stiffness, equal to EI L/ for this case (Fig. 7(d)). The 
final evaluation of kr SSI, is done by applying the same method to the 
structure with a replacement of the fixed end with a rotational spring of 
stiffness +k kr r SS,1 , (Fig. 7(e)). 

The equivalent rotational spring, kr , can be estimated by summing 
the two components previously highlighted: 

= +k k kr r SS r SSI, , (27)  

Fig. 12. Response of a cut-and-cover structure with L/H = 1 subjected to thermal and mechanical loading to the bottom beam only: rotation.  

J. Zannin, et al.   Computers and Geotechnics 128 (2020) 103618

13



Fig. 8 shows the relationship between the dimensionless rotational 
stiffness and the beam geometry. Each line in the plot contains the sum 
of the evaluations described in Fig. 7, providing upper and lower 
bounds for different soils. In all cases, the soil subgrade reaction 
modulus, ks, is multiplied by the beam height, h, to give results that are 
independent to the beam height. The results depicted for =k h 0s N/m2 

include the stiffness given by the structure only. The difference between 
these results and those obtained for k hs 0 N/m2 denotes the con
tribution of the soil-structure interaction. 

4.4.2. Transversal stiffness 
The evaluation of the transversal stiffness has to account for four 

components (Fig. 9(a)): the bottom connection, kv c, 1, the axial stiffness 

of the structural element, kv a, , the top connection, kv c, 2, and the soil- 
structure interaction, kv SSI, . Such components can be represented by 
four springs in series. This approach yields to the following formulation 
of the equivalent transversal stiffness, kv: 

=
+ + +

k 1
v

k k k k
1 1 1 1
v a v C v C v SSI, , 1 , 2 , (28)  

As Winkler’s solution does not consider any friction between the soil 
and the structure, this aspect is neglected. kv a, relates to the axial 
stiffness of a beam as follows: 

=k EA
Lv a, (29)  

Fig. 13. Response of a cut-and-cover structure with L/H = 1 subjected to thermal and mechanical loading to the bottom beam only: bending moment.  
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In many cases, kv a, is considerably higher with respect to the other 
components, hence it can often be neglected in Eq. (28): depending on 
the geometry details, such element may behave as a rigid body that is 
not deforming axially, but it only transfers the loads to the surrounding 
structures. kv c, 1 and kv c, 2 can be determined by considering the fol
lowing upper and lower bound cases (Fig. 9(b)–(d)). The upper bound is 
represented by the stiffer case (fixed ends, Fig. 9(b)), while the lower 
bound involves free rotation at the ends (hinged ends, Fig. 9(c)). Fol
lowing the same methodology shown for the rotational spring, it fol
lows that the connection stiffness, kv ci, , can be evaluated as (Fig. 9(d)): 

= = = ÷k v EI
L

i vwith 1, 2 and 1.5 7.5v ci, 3 (30)  

For the determination of the soil-structure interaction vertical 
stiffness, different methodologies should be employed for the analysis 
of (i) the horizontal beams and of (ii) the vertical walls. For horizontal 
beams, kv SSI, is estimated by considering the static scheme shown in  
Fig. 9(e) and (f). The first step is to consider a beam fixed at one end 
and subjected to a unit transversal load, P . kv,1 is evaluated by dividing 
P by the correspondent vertical displacement, y1, and subtracting the 
structural transversal stiffness, EI L3.0 / 3. The second and final step is to 
consider the same beam solved by replacing the fixed boundary with 
kv,1and kr , (Fig. 9(f)). The vertical stiffness for the second step, kv,2 can 
be similarly evaluated. It follows that 

=k kv SSI v, ,2 (31)  

Fig. 14. Response of a cut-and-cover structure with L/H = 1 subjected to thermal and mechanical loading to the bottom beam only: shear force.  
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For vertical beams, the determination of their transversal boundary 
stiffness is based on their mechanical response. In the considered pro
blem, the two vertical beams behave symmetrically. Their transversal 
boundary stiffness can therefore be estimated as the axial stiffness of a 
half of a horizontal beam. 

=k EA
L/2v vertical, (32)  

Fig. 10 shows the estimation of kv through the relationship between 
the transversal stiffness and the geometry details. This chart includes 
the steps described in Fig. 9(b)–(e). Only the case =k kv c v c, 1 , 2 is in
cluded in the charts. The soil subgrade reaction modulus, ks, is multi
plied by the beam height, h, to give results that are independent to the 
beam height. 

The results depicted for =k h 0s N/m2 include the stiffness given by 
the structure only. The difference between these results and those ob
tained for k h 0s N/m2 denotes the contribution of the soil-structure 
interaction. 

4.5. Comparison between analytical and numerical modelling results 

In the following, the response of the modelled cut-and-cover struc
ture is addressed with reference to the considered action effects (de
picted for each portion of the structure), by distinguishing the influence 
of thermal and mechanical actions. 

Deflections are shown in Fig. 11. A close correspondence between 
the analytical and numerical modelling results is observed when ad
dressing the influence of the thermal load. The predicted structural 
response is in fact very similar in all cases, highlighting a slight un
derestimation of the deflections only when considering the spring 
foundation models (numerical and analytical). Due to the end stiffness 
definition, the deflections of the lower beam are minimal (lower than 
0.1 mm). Due to the downward bending of the lower beam, the two 
walls displace towards the inner part of the structure, while the upper 
beam moves upward. The whole structure slightly moves upward due to 
the soil reaction against the lower beam. A more significant difference 
between the analytical and numerical modelling results is observed 
when addressing the influence of the mechanical load. The spring 
foundation models considerably underestimate the horizontal beam 
displacements. The shape of the deflection is similar, thus confirming 
that Winkler’s solution can be used to estimate the differential settle
ments of footings, but is unsuitable to thoroughly capture actual set
tlements, especially when dealing with particularly rigid structures. 

Rotations are shown in Fig. 12. A close correspondence between the 
analytical and numerical modelling results is observed when addressing 
the influence of both the thermal and mechanical load. The analytical 
and numerical modelling results with spring foundation slightly un
derestimate rotations. The thermal load affects rotations in the whole 
structure, thus inducing much higher rotations at the edges of the cut- 
and-cover with respect to the distributed mechanical load. The dis
tributed mechanical load induces a flatter displacement profile, hence 
involving rotations that are very small compared to those caused by 
thermal loading. 

Bending moments are shown in Fig. 13. A close correspondence 
between the analytical and numerical modelling results is observed 
when addressing the influence of both the thermal and mechanical 
loads. The thermal load induced a rotation that is notably restrained at 
the boundaries, while a bending moment distribution that is flatter but 

high in magnitude, with values higher compared to the distributed load. 
Models with spring foundation slightly overestimate internal actions in 
the bottom beam. The mechanical load induces a bending moment that 
is nearly-zero, hence the thermal load is determining significant effects 
in the structure. 

Shear forces are detailed in Fig. 14. A satisfactory correspondence 
among the analytical and numerical modelling results is recorded for 
thermal and mechanical loads. The thermal load causes shear actions in 
the entire structure, consequently to the bending moment distribution. 
The distributed load induces shear forces only in the horizontal beams 
due to the nature of the applied load (transversal to horizontal beams). 
The sign of shear action induced by Tc is opposite to that of q. It fol
lows that they delete each other. However, if the thermal load takes the 
opposite sign, the total shear force would sum the two. 

5. Concluding remarks 

This study aims at taking a step forward towards a detailed assess
ment of the thermo-mechanical behaviour of plane geostructures sub
jected to thermal and mechanical actions by proposing an analytical 
model for capturing the effects of the considered perturbations. The 
proposed model extends Winkler’s solution to non-isothermal condi
tions for quantifying the effects of actions that include, without being 
limited to, temperature variations, axial loads, transversal loads and 
bending moments applied to plane geostructures resting on an elastic 
soil mass. The model formulation resorts to a theoretical analysis of the 
influence of thermal and mechanical actions applied to geostructures, 
as well as to a new definition of degree of freedom for capturing the 
influence of axial and flexural effects caused by thermal actions. 

By resorting to novel charts and mathematical procedures that can 
be employed to calibrate appropriate boundary conditions for the 
analysis of simple and complex plane geostructures, the work highlights 
aspects of paramount importance for the modelling of plane earth- 
contact structures. A comparison between analytical and numerical 
modelling results highlights that the proposed extension of Winkler’s 
solution can capture with accuracy problems of varying complexity as 
long as similar hypotheses are employed in the analyses. This work 
provides a tool based on sound principles of mechanics for both sci
entific and engineering investigations, enabling a novel approach to 
tackle the analysis of plane geostructures subjected to thermal and 
mechanical actions. 
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Appendix A 

This appendix expands on critical features of the method of initial conditions, as remarked by Hétenyi (1946) and Selvadurai (1979). The method 
of initial conditions is powerful for solving the case of generally loaded beams. This method consists in replacing the integration constants with the 
four conditions at the origin of the beam ( =x 0): y0, 0, M0 and V0. The general solution of the elastic line, in the case with axial load, is presented 
here. The fourth-order differential equation to be solved is: 

J. Zannin, et al.   Computers and Geotechnics 128 (2020) 103618

16



+ =EI d y x
dx

N dy x
dx

k y x( ) ( ) ( ) 0s
4

4 (A.1)  

The general solution of the deflection is: 

= + + +y x C e C e x C e C e x( ) ( )cos ( )sinx x x x
1 2 3 4 (A.2) 

where 

= + = +k
EI

N
EI

N
EI4 4

2
(A.3)  

= =k
EI

N
EI

N
EI4 4

2
(A.4)  

The values of y x( ) and its derivatives at =x 0 are: 

= = +y y C C(0) 0 1 2 (A.5)  

= = + +dy
dx

C C C C(0) ( ) ( )0 1 2 3 4 (A.6)  

= = + +EI d y
dx

M EI C C C C C C(0) [ ( ) ( ) 2 ( )]
2

2 0
2

1 2
2

1 2 3 4 (A.7)  

= = + + + +EI d y
dx

V EI C C C C C C C C(0) [ ( ) ( ) 3 ( ) 3 ( )]
3
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3

3 4
3

1 2
2

1 2
2

3 4 (A.8)  

The unknowns C1 to C4 become: 
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+
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+
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The general equation for the deflection, following the method of initial conditions (Hétenyi, 1946) becomes: 

= +y x y F x F x
EI

M F x
EI

V F x( ) ( ) ( ) 1 ( ) 1 ( )0 1 0 2 0 3 0 4 (A.13) 

with: 

= +F x cosh xcos x x x( ) sinh sin
21

2 2

(A.14)  

=
+

F x cosh x x x x( ) 1
2( )

sin 3 sinh cos 3
2 2 2

2 2 2 2

(A.15)  

=F x x x( ) 1
2

[sinh sin ]3 (A.16)  

=
+

F x cosh x x x x( ) 1
2( )

sin sinh cos
4 2 2 (A.17)  

Appendix B 

This appendix expands on key features of methods for determining the modulus of subgrade reaction. The evaluation of ks is presented referring 
to a practical application for a horizontal geostructure made of reinforced concrete with Young’s modulus of =E 25.0 GPa, a cross-section height of 

=h 0.5 m, breadth of =B 1.0 m and length of =L 10.0 m. Results are presented in Fig. 15. The geostructure is assumed to rest on a uniform soil with 
Poisson’s ratio of = 0.3s and a varying Young’s modulus between = ÷E 10 10 N/ms

6 8 2. A sensitivity analysis on s indicates that this parameter 
induces minimal differences in the estimates of ks. 
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Appendix C 

This appendix expands on key features of the numerical analyses and models employed in this paper to validate the proposed analytical models. 
The numerical models employing spring foundations are a numerical resolution of the analytical model presented here. 

The numerical models employing a linear elastic soil mass are described here. Two-dimensional (2D) plane strain thermo-mechanical finite 
element models are built using Comsol Multiphysics for the considered purpose. In these models, the soil is modelled as a linear elastic medium. This 
approach involves considering the soil as an infinite heat reservoir that remains at a fixed constant temperature. While approximate, this assumption 
agrees with the hypotheses and features of the Winkler’s solution extended in this work and finds due justification in the works of (Rotta Loria and 
Laloui, 2016, 2017; Rotta Loria et al., 2018). In this model, the geostructure is modelled with beam elements that follow Euler-Bernoulli theory while 
the soil mass follows continuum mechanics. 

The behavior of the beam elements is described through structural mechanics’ theory, by employing the Euler-Bernoulli theory of beams. The 
beam is considered to be isotropic and homogeneous and the mechanical behavior is described through Navier formulation for bending of beams: 

= +y N
A

M
I

y( )n n n (C.1) 

where y( )n n represents the bending stress and yn the distance to the neutral axis. 
Following linear elasticity, the axial, bending moment and shear force can be written as: 

=N x EA du
dx

( ) (C.2)  

=M x EI y
x

( )
2

2 (C.3)  

=V x EI y
x

( )
3

3 (C.4) 

where u represents the axial displacement. 
A linear distribution of temperature variation can be applied by imposing a thermal curvature to the beam: 

= T
h

2th th c
(C.5)  

A mechanical load can be applied as a boundary load transversal to the beam’s neutral axis. 
The soil is modelled as a linear-elastic continuum, allowing for considering the portion of soil surrounding the beam. Winkler’s solution (e.g., the 

analytical model proposed in this study) models the soil as unidirectional independent springs that present a linear elastic relation among load and 
displacement. Consequently, Winkler solution is not capable of capturing the behaviour of the materials surrounding the studied structural element. 
No heat transfer in the soil is considered in the numerical models. The mechanical behaviour of the continuum media is described by the following 

Fig. 15. Evaluation of the subgrade reaction modulus based on empirical formulations.  
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equations. The equilibrium equation reads: 

+ =div g 0ij i (C.6) 

where div denotes the divergence operator, ij is the total stress tensor, the bulk density of the material and gi is the gravity acceleration vector. 
The constitutive law, in the incremental form reads: 

=d C dij ijkl kl (C.7) 

in which Cijkl is the constitutive tensor and kl is the total strain tensor. 
At the beam-soil interface, continuity of displacement is imposed: 

=u u onS i B i S B, , (C.8) 

where uS i, and uB i, represent the soil and beam displacement vector, respectively. S and B are the edges of soil and beam domains. The numerical 
models are detailed in Fig. 16.  

Fig. 16. Features of the numerical models: (a) a beam on an elastic continuum material and (b) a cut-and-cover tunnel in an elastic continuum material.  
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