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Abstract
Coding techniques have been well studied and used for improving communication quality

by combating noise and mitigating interference. Recently, it has been shown that the same

coding techniques can also be exploited to further improve communication performance and

provide specific communication features even when the communication channel is ideal. In

this thesis, we study two problems where coding techniques are used for improving communi-

cations in distributed systems and protecting the privacy of the client from untrusted servers,

respectively.

The first part of this thesis studies the cooperative data exchange problem for fully connected

networks. While many previous studies have shown that the problem can be solved by algo-

rithms based on submodular function minimization, we tackle this problem via a concept we

refer to as "conditioning basis", which is closely linked to linear coding schemes with particu-

lar additional properties. We show that such special linear coding schemes are optimal for the

cooperative data exchange problem. Hence, by searching the existence of such a conditioning

basis and special linear coding schemes, we can solve this problem with lower complexity.

We propose a deterministic algorithm for this problem and briefly show how to construct the

optimal linear coding schemes starting from a Vandermonde matrix. Moreover, we show that

our new method can be used to solve two generalized problems, which are cooperative data

exchange with weighted cost and successive local omniscience problems.

The second part of this thesis investigates the problem of private information retrieval with

side information. Specifically, three different extensions are studied: multi-message, multi-

server, and multi-user, respectively. For each problem, we provide a proof of the converse

for the download rate as well as propose efficient approaches to construct optimal coding

schemes. For multi-message and multi-server cases, we give closed-form expressions for

the download rates and introduce two useful tools, conditioning answer string and virtual

private information, to analyze the problem. For multi-user cases, we show that the optimal

download rate can be obtained by solving an optimization problem over all partitions of the

total number of messages and propose a novel algorithm based on dynamic programming to

solve the optimization problem.

Keywords: cooperative data exchange, maximum distance separable codes, linear codes,

private information retrieval, information-theoretic privacy, multi-message, multi-server,
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multi-user.
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Résumé
Les techniques de codage ont été bien étudiées et utilisées pour améliorer la qualité de la

communication en luttant contre le bruit et en atténuant les interférences. Récemment, il a

été démontré que les mêmes techniques de codage peuvent également être exploitées pour

améliorer encore les performances de communication et fournir des fonctionnalités de com-

munication spécifiques même lorsque le canal de communication est idéal. Dans cette thèse,

nous étudions deux problèmes où les techniques de codage sont utilisées pour améliorer les

communications dans les systèmes distribués et protéger la confidentialité du client contre

les serveurs non fiables, respectivement.

La première partie de cette thèse étudie le problème de l’échange coopératif de données

pour des réseaux entièrement connectés. Alors que de nombreuses études précédentes ont

montré que le problème peut être résolu par des algorithmes basés sur la minimisation de la

fonction submodulaire, nous abordons ce problème via un concept que nous appelons "base

de conditionnement", qui est étroitement lié aux schémas de codage linéaire avec des proprié-

tés supplémentaires particulières. Nous montrons que de tels schémas spéciaux de codage

linéaire sont optimaux pour le problème d’échange de données coopératif. Par conséquent, en

recherchant l’existence d’une telle base de conditionnement et de schémas de codage linéaire

spéciaux, nous pouvons résoudre ce problème avec une complexité moindre. Nous proposons

un algorithme déterministe pour ce problème et montrons brièvement comment construire

les schémas de codage linéaire optimaux à partir d’une matrice de Vandermonde. De plus,

nous montrons que notre nouvelle méthode peut être utilisée pour résoudre deux problèmes

généralisés, qui sont l’échange de données coopératif à coût pondéré et les problèmes d’omni-

science locale successifs.

La deuxième partie de cette thèse examine le problème de la recherche d’informations pri-

vées avec des informations secondaires. Plus précisément, trois extensions différentes sont

étudiées : multi-message, multi-serveur et multi-utilisateur, respectivement. Pour chaque

problème, nous fournissons une preuve de l’inverse du taux de téléchargement et proposons

des approches efficaces pour construire des schémas de codage optimaux. Pour les cas multi-

messages et multi-serveurs, nous donnons des expressions de forme fermée pour les taux de

téléchargement et introduisons deux outils utiles, it conditioning answer string et it virtual

private information, pour analyser le problème. Pour les cas multi-utilisateurs, nous montrons

que le taux de téléchargement optimal peut être obtenu en résolvant un problème d’optimisa-
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Résumé

tion sur toutes les partitions du nombre total de messages et proposons un nouvel algorithme

basé sur une programmation dynamique pour résoudre le problème d’optimisation.

Mots clefs: échange de données coopératif, codes séparables à distance maximale, codes

linéaires, récupération d’informations privées, confidentialité de la théorie de l’information,

multi-message, multi-serveur, multi-utilisateur.
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1 Introduction

After the fundamental limits of the point-to-point communication were established by Shan-

non [1], over the last seven decades, communication technologies have developed expedi-

tiously and changed our daily life comprehensively. We have witnessed a proliferation of

researches and studies about making communication faster (higher data rate) and more reli-

able (better noise tolerance). As the number of participants in communication is increasing in

many applications, the potential of cooperative communications has attracted hefty attention.

In particular, for distributed storage systems, the servers have to periodically synchronize their

local data with each other. An efficient communication protocol for such synchronization

requires the servers to generate transmissions cooperatively. And this is the first problem we

study in this thesis, Cooperative Data Exchange. Besides the speed and reliability of communi-

cation, safety and privacy in communication have become increasingly important than ever

before. In the current data era, many data analysis techniques are invented and improved,

which conversely grows the demand for secure and private communication. The second

problem investigated in this thesis, Private Information Retrieval, is about protecting the

privacy of the client(s) from the untrusted servers.

1.1 Cooperative Data Exchange

Consider a fully connected network composed of N nodes that all want to recover a file

consisting of K packets. Each node initially only has a subset of the packets. Each node can

generate coded packets by using its locally available packets and transmit them to other nodes

through a lossless broadcast channel, i.e. all other nodes receive the coded packets. The goal is

for each node to assemble the full file. The key questions are: (1) What is the minimum number

of required transmissions? (2) What should individual nodes transmit? This problem was

introduced by El Rouayheb et al. in [2] and is referred to as Cooperative Data Exchange (CDE)

for the fully connected network. The data exchange problem is also related to the problem of

secret key generation introduced by Csiszár et al. in [3]. Concerning the minimum number

of required transmissions, upper and lower bounds were established in [2]. A deterministic

algorithm was proposed to produce a coding scheme which achieves universal recovery
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Introduction

using at most twice the minimum number of required transmissions. The CDE problem can

be formulated as an Integer Linear Program (ILP) with the Slepian-Wolf constraints on all

proper subsets of the nodes’ available packet information. A randomized algorithm [4] and

a deterministic algorithm [5] were proposed to give an approximate solution and optimal

solution to the CDE problem. We note that the number of constraints in the ILP at hand grows

exponentially with the problem size. Nevertheless, exact polynomial-time algorithms were

found in [5, 6, 7, 8] based on minimizing submodular functions and subgradient optimization.

It was also shown that the total number of transmissions can be reduced if each packet is

split into sub-packets (resulting in non-integer rates), but that splitting into N −1 sub-packets

is sufficient to attain optimal performance [7, 9]. Therefore, we may simply consider the

sub-packets to be our packets and it is unnecessary to explicitly discuss the case of split

packets.

The CDE problem was extended to general network topologies, and it was shown that linear

codes are sufficient to optimally solve the CDE problem in [7, 10]. However, the same work

also revealed that for arbitrarily connected networks, the CDE problem is NP-hard and cannot

be solved exactly with polynomial-time algorithms. Many extensions of the CDE problem

have also been studied. In [11], the nodes are divided into two classes, high and low priority.

The resulting CDE problem with priorities was formulated as a multi-objective integer linear

program. Assuming a uniformly random packet distribution and restricting to the limit as

the number of packets tends to infinity, a closed-form expression for the minimal number of

required transmissions was derived. In [12], successive omniscience is studied, where subsets

of users first recover packets within each subset and then recover packets of users in other

subsets. In [6, 13], transmissions sent by different nodes are considered to have different costs.

Instead of minimizing the total number of transmissions, the goal becomes minimizing the

total cost, i.e., a weighted sum of the transmissions. To solve the CDE problem with weighted

cost, a deterministic polynomial algorithm based on submodular function minimization

was proposed in [6], while a randomized greedy algorithm was proposed in [13]. In [7, 9], it

is assumed that each packet can be split into the same number of smaller chunks and the

optimization goal is minimizing the normalized total number of transmissions. Intuitively,

the larger the number of chunks we split each packet into, the smaller the normalized total

number of transmissions that can be achieved, and it has been proved that it is sufficient to

split each packet into N −1 chunks. In [14], the nodes are divided into two classes, reliable and

unreliable. For unreliable nodes, the initially available packets are unknown (but it is known

how many packets they have) and the packet transmissions are subject to arbitrary erasures. A

closed-form expression for the minimal number of transmissions for the case of only a single

unreliable node was derived with probability approaching 1 as the number of packets tends to

infinity. For more than one unreliable node, an approximate solution was provided.

The CDE problem for the fully connected network is also related to the secret key generation

problem, which was introduced in [3] and was formulated as a maximization problem over all

partitions of the set of nodes. Tyagi et al. [15] leveraged this to derive an algorithm that achieves

local omniscience in each step and outputs a solution for secret key generation. Courtade et

2
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al. studied the CDE problem with the goal of generating secret key in [16]. The weakly secure

data exchange problem was introduced in [17, 18]. The goal is to achieve universal recovery

while revealing as little information as possible. In contrast to the coding scheme in [17] in

which each transmission is a linear combination of as many packets as possible, our scheme

considers a fixed number of packets for every transmission.

Contributions

In the cooperative data exchange part of this thesis, we study the CDE problem for the fully

connected network from a new perspective. Our main contributions can be summarized as

follows:

1. We present a new deterministic algorithm to compute the minimal number of required

transmissions. It is based on searching for the existence of certain conditional bases

of the packet distribution matrix. The complexity is bounded by O (N 3K 3 log(K )), sig-

nificantly lower than the complexity of the best known existing algorithms proposed

in [6] based on minimizing submodular functions O ((N 6K 3 +N 7) log(K )) and based on

subgradient methods O ((N 4 log(N )+N 4K 3)K 2 log(K )).

2. We establish the existence of coding schemes with the special property that each trans-

mission is a linear combination of exactly d +1 packets, for any 0 ≤ d < K . The scheme

involves a total of K −d transmissions and enables all nodes with at least d packets to

recover their missing packets (irrespective of which d packets they had to begin with).

The proposed scheme works if coding occurs over a finite field of large enough size, and

is related to distributed Reed-Solomon codes. Using a standard approach, we briefly

show that the scheme can be constructed deterministically from Vandermonde matrices.

Note that the equally important question concerning the existence of coding schemes

restricted to computations over small finite fields is left open.

3. We extend our approach to the CDE problem with a weighted cost objective function

and to the successive local omniscience problem. For the former, the minimal number

of required transmissions can be found in complexity no larger than O (N 3K 3 log(K )),

which is the same as the CDE problem without weighted cost in Item (1) above. For

the successive local omniscience problem with M priority groups, our method has

complexity bounded by O (N 3K 3 log(K )). For both problems, the coding schemes are

constructed by analogy to the basic CDE problem, and the consideration is again limited

to the case of computations over sufficiently large finite fields.

1.2 Private Information Retrieval

In the original Privet Information Retrieval (PIR) problem, one user wants to download one

message from a database which is stored at a single server, while keeping the index of the

3
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desired message private from the server. The user generates and sends queries to the server

and the server replies coded messages as the user requests. PIR requires that the server is

not able to infer any information about the index of the message which the user wants to

download. To find the optimal solutions to the PIR problem, we need to find the minimum

number of required download bits which should be sent to the user by the server and construct

the optimal coding schemes which can be used by the user to decode the demand message

and reveal no information about the index of demand message to the servers.

The PIR problem was first introduced from the perspective of computational complexity [19,

20]. In recent years, we have witnessed an escalation of studies of the PIR problem from

an information-theoretic point of view [21, 22, 23]. To achieve information-theoretic pri-

vacy in the original PIR problem, the user has to download all messages of the database.

If one assumes that the database is stored in multiple servers, the problem becomes more

interesting and has attracted considerable attention. By exploiting the advantages of repli-

cations of the database in multiple non-colluding servers, private information retrieval can

be achieved without downloading all messages and the information-theoretic capacity of

this problem is characterized in [22]. Many variations of PIR have been studied by ensuing

work, including databases coded by erasure codes [24, 25, 26, 27, 28, 29, 30, 31, 32], partially

colluding or adversarial servers [23, 24, 33, 34, 35, 36, 37, 38], symmetric PIR [39, 40, 41], side

information messages available at users [42, 43, 44, 45, 46, 47, 48, 49], cache aided side infor-

mation [50, 51, 52], multiple messages [53, 54, 55, 56], multi-user [44, 57], and private function

computation [58, 59].

The problem of PIR with side information was first studied in [42], where the user wants

to download one message from a single server while it already has some messages as side

information. Two types of privacy were defined: (i) W -Privacy: only the index of demand

message should be private and (ii) (W,S)-Privacy: both indices of demand and side infor-

mation messages should be private, which is also referred to as private side information in

other works [43, 45]. The minimum number of required transmissions and the optimal coding

scheme for single-server cases for both W -Privacy and (W,S)-Privacy were found in [42]. For

the multi-server extension of PIR with side information, (W,S)-Privacy problem was solved

in [43, 60]. For the W -Privacy problem, a novel PIR coding scheme based on super-messages

was proposed in [42], though without proof of optimality. In PIR with side information, the

user is assumed to have complete messages as side information, which was later extended

to the cases where linearly coded messages can be the side information [46, 60]. Recently,

the single-server PIR with side information has been shown to be closely related to locally

recoverable codes [61].

In [53], Banawan and Ulukus consider the problem that the user wants to download multiple

messages from multiple servers, but there is no side information at the user. In [54], Shariat-

panahi et al. study the multi-message PIR problem with side information and the user wants

to protect both the privacy of the indices of demand messages and of the side information

messages. In our problem, the user is only interested in protecting the privacy of the indices of

4
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the demand messages, which is a more challenging problem than protecting both the indices

of the demand and side information messages. The single-server multi-message PIR with side

information problem is studied concurrently in [56].

Contributions

In the private information retrieval part of this thesis, we study three different extensions of PIR

with side information, which are single-server multi-message, multi-server single-message,

and single-server multi-user. Our main contributions can be summarized as follows:

1. Single-server Multi-message PIR with Side Information: We present a closed-form

expression for the minimum number of required download bits and propose a novel

method to construct optimal coding schemes. Hence, we establish the capacity for the

single-server multi-message PIR with side information problem. We also show that the

trivial MDS coding scheme with K −M normalized number of download bits is optimal

when N > M or N 2+N ≥ K −M 1. We introduced a novel conception, conditional answer

string, which captures the special property of PIR with side information and is used in

deriving the converse bound.

2. Multi-server Single-message PIR with Side Information: We prove an information-

theoretic converse bound for the capacity of multi-server single-message PIR with

side information and W -Privacy. The coding scheme proposed in [42] matches our

converse bound. Thus, our work establishes the capacity of this problem. When the

number of servers equals 1, our result matches the capacity of single-server PIR with side

information and W -Privacy characterized in [42]. When the number of side information

message equals 0, our result matches the capacity of multi-server PIR without side

information characterized in [22]. We introduce a novel conception that we refer to

as virtual side information, which represent the multi-server effect in PIR with side

information and is used in the proof of the converse bound.

3. Single-server Multi-user PIR with Side Information: We derive necessary conditions

for linear coding schemes that satisfy the privacy condition of the PIR problem for

the single-server multi-user cases. Based on these necessary conditions, we give an

achievable lower bound on the number of required transmissions for generating linear

coding schemes. We present a novel method to construct linear coding schemes that

satisfy the requirements of PIR and use the minimal number of transmissions. Our proof

method has two steps: we first partition the messages into several subsets and then

generate linear combinations of messages within each subset. We show that the search

over all message partitions can be carried out via a dynamic programming algorithm of

complexity O (K 2).

1K is the total number of messages, M is the number of side information messages, and N is the number of
demand messages.
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Introduction

1.3 Notations

For any vector X , the i -th entry of X is denoted as Xi . For two integer i < j , the notation

i : j denotes the integer set {i , i +1, . . . , j }. We denote random variables and their realizations

by bold-face and regular letters, respectively. We denote probability, conditional probability,

(Shannon) Entropy, conditional entropy and mutual information by Pr(·), Pr(·|·), H(·), H(·|·)
and I (·|·). For any integer i ≤ j , let W j

i =⋃ j
l=i {Wl }. The ceiling and floor operator are denoted

by d·e and b·c, respectively. More definitions for locally used notations are given in each section.
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2 Preliminaries

Cooperative data exchange and private information retrieval are very fresh topics in network

information theory. To solve them, we require knowledge from both information theory and

coding theory. In this chapter, we give some necessary background information on both

topics as well as the maximum distance separable codes, which are closely related to both

cooperative data exchange and private information retrieval.

2.1 Maximum Distance Separable Matrix

In coding theory, the Singleton bound [62] indicates that for any linear code C over a finite

field Fq , with block length n, dimension k and minimum distance d , the maximum number of

codewords satisfies

qk ≤ qn−d+1. (2.1)

Equivalently, the minimum distance d satisfies

d ≤ n −k +1. (2.2)

The linear codes which achieve equality in Equation (2.2) are referred to as the Maximum

Distance Separable (MDS) codes. The most widely used examples of MDS codes are the Reed-

Solomon codes. Let G denote the generator matrix of any MDS code. Then one of the many use-

ful properties of G is that any k columns are linear independent. Let X = [X1, X2, . . . , Xk ]T ∈ Fk
q

denote the message and the codewords for X , denoted by C (X ) = [C (X )1,C (X )2, . . . ,C (X )n]T,

7



Chapter 2. Preliminaries

can be expressed as follows

C (X )1

C (X )2
...

C (X )n−1

C (X )n

=


G1,1 G1,2 . . . G1,k . . . G1,n

G2,1 G2,2 . . . G2,k . . . G2,n
...

...
. . .

...
. . .

...

Gk,1 Gk,2 . . . Gk,k . . . Gk,n


T

︸ ︷︷ ︸
G


X1

X2
...

Xk

 . (2.3)

If we know any n −k symbols in the message X , then the other symbols can be fully recovered

from the codeword C (X ). The matrix G is also called the MDS matrix, which will be used in

both cooperative data exchange and private information retrieval problems.

2.2 CDE based on Submodular Function Minimization

In the cooperative data exchange for the fully connected network problem, the N clients want

to cooperatively recover a common file consisting of K packets. Each client initially has some

packets as side information, and generates coded messages and sends them to other clients

by ideal broadcast channel. At the end of the communication, all clients should successfully

recover the file, which is referred to as universal recovery. For any i ∈ {1, . . . , N }, let Xi denote

the set of packets locally available at client i . Let r = [r1,r2, . . . ,rN ] denote the rate vector.

Then for any subset of clients, I ⊆ {1, . . . , N }, the number of collectively available packets is

|∪i∈I Xi |. Hence for clients in I to fully recover the common file, they should receive at least

K −|∪i∈I Xi | packets from the other clients. A sufficient and necessary condition for universal

recovery is ∀I ( {1, . . . , N }: ∑
i∈{1,...,N }\I

ri ≥ K −|∪i∈I Xi | = |∪i∈I Xc
i | (2.4)

Since for I = ; and I = {1, . . . , N }, the numbers of required transmissions are K and 0,

respectively, the number of constraints is actually 2N −2.

Definition 2.1 (Submodular Function). A set of function f : 2N →Z is submodular if ∀U ,V ⊆
{1, . . . , N }s.t .U ∩V 6= ; :

f (U )+ f (V ) ≥ f (U ∪V )+ f (U ∩V ) (2.5)

Let fβ(I ) =β−|∪i∈I Xc
i |. It can be verified that the function fβ(I ) is submodular. In [6], it has

been shown that by using the Submodular Function Minimization (SFM), it is not necessary

to check all 2N −2 constraints. The algorithm based on SFM can be used to check whether

any sum rate R = r1 +·· ·+ rN is feasible for universal recovery. Hence, the complexity of such

an approach depends on the complexity of SFM. The complexity of the currently best SFM

algorithm proposed by Orlin in [63] is O (N 5K 3 +N 6). As the SFM needs to be used for all

clients and the binary searching method is used for finding the optimal sum rate, the overall
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2.3. Private Information Retrieval

complexity of the algorithm proposed in [6] is O (N (N 5K 3 + N 6) log(K )). Our (d ,K )-Basis

method does not rely on SFM and has low complexity since we exploit the special structure

of the linear codes. We also note that the SFM is also an ongoing research topic, whose

complexity may be further reduced in the future.

2.3 Private Information Retrieval

While computational PIR can be achieved for single server scenarios by utilizing one-way

functions, the information-theoretical PIR for single server cases requires the download of

the full database. To make the problem nontrivial, two directions are considered: multiple

non-colluding or partially colluding servers PIR and single-server PIR with side information.

The notations widely used in PIR are not very trivial. Normally, we use Q [W ] and A[W ] to

denote the query and answer string generated for demand index W , respectively. Similarly,

in PIR with side information, we use Q [W,S] and A[W,S] to denote the query and answer string

generated for demand index W and side information indices S, respectively. Since Q [W ] (or

Q [W,S]) is typically a stochastic function of W (or W,S), given W (or W,S), the user has to

randomly choose one query from multiple candidate queries. Thus, given W (or W,S), we

usually use Q[W ] (or Q[W,S]) to denote the random variable of the query. Meanwhile, the answer

string A[W ] (or A[W,S]) is a deterministic function of query Q [W ] (or Q [W,S]) and all messages

X1, . . . , XK . Since the messages are also random variables, denoted by X1, . . . ,XK , only given

the query Q[W ] =Q [W ] (or Q[W,S] =Q [W,S]), the answer string is still a random variable, which

is denoted by A[W ] (or A[W,S]).

The multi-server PIR requires each server individually should not be able to infer any informa-

tion about the demand index from the query and answer string. In multi-server PIR, for Server

j , the query Q [W ]
j answer string A[W ]

j generated for W should also be possible generated for

another index W ′. Hence, Q [W ]
j and Q [W ′]

j are actually indistinguishable from the Server j ’s

perspective. Hence, in the derivation of the converse bounds for the capacity, the key step

is to replace Q [W ]
j and A[W ]

j with Q [W ′]
j and A[W ′]

j , respectively. Therefore, Q[W ] and A[W ] are

identically distributed as Q[W ′] and A[W ′], respectively.

The single-server PIR with side information requires the server should not be able to infer any

information about the demand index. But the joint distribution of W and S is not needed to be

private. Hence, for any query Q [W,S] generated for W and S, for any other index W ′, there must

exist a corresponding S′ such that Q [W ′,S′] is indistinguishable from the server’s perspective.

The key step in the derivation of the converse bounds for the capacity for single-server PIR is

to replace Q [W,S] and A[W,S] with Q [W ′,S′] and A[W ′,S′], respectively. Unlike the multi-server PIR

without side information cases, we note that Q[W,S] and A[W,S] are not necessarily identically

distributed as Q[W ′,S′] and A[W ′,S′], which is the main difference between the multi-server PIR

without side information and single-server PIR with side information.

In [49], the authors proved the converse for the capacity of single-server single-message PIR
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with side information by using the maximum acyclic induced graph, which is very clear and

nice. However, we want to mention that the converse can also be proved by using a similar

approach which is used in Chapter 4. For any specific query realization Q, suppose given XS0 ,

message XW0 can be decoded from the answer string generated according to Q and additionally

messages in set XU0 can also be decoded, i.e.,

H(XW0∪U0 |A,Q =Q,XS0 ) = 0. (2.6)

We use the notation W0 ∪U0 to denote the union set {W0}∪U0 for ease of notations. The

number of download bits (D) can be computed as follows.

D =H(A|Q =Q) (2.7)

=H(XW0∪U0∪S0 ,A|Q =Q)−H(XW0∪U0∪S0 |A,Q =Q) (2.8)

=H(XW0∪U0∪S0 |Q =Q)+H(A|Q =Q,XW0∪U0∪S0 )−H(XW0∪U0∪S0 |A,Q =Q) (2.9)

=H(XW0∪U0∪S0 )+H(A|Q =Q,XW0∪U0∪S0 )−H(XS0 |A,Q =Q) (2.10)

According to the privacy condition, the server should not be able to infer the information

of the demand index. Hence for any index W1 ∈ {1, . . . ,K } \ (W0 ∪U0 ∪S0), there must exist

S1 ⊆ {1, . . . ,K } \ {W1} such that H(XW1 |A,Q =Q,XS1 ) = 0, otherwise the server knows W1 is not

the demand index, which violates the privacy condition [49, Proposition 1]. Thus, we can find

corresponding W1, U1 and S1 such that the download bits can be expressed as follows.

D =H(XW0∪U0∪S0 )−H(XS0 |A,Q =Q)

+H(XW1∪U1∪S1 ,A|Q =Q,XW0∪U0∪S0 )−H(XW1∪U1∪S1 |A,Q =Q,XW0∪U0∪S0 ) (2.11)

=H(XW0∪U0∪S0 )−H(XS0 |A,Q =Q)

+H(XW1∪U1∪S1 |XW0∪U0∪S0 )−H(XS1 |A,Q =Q,XW 1
0 ∪U 1

0∪S0
)

+H(A|Q =Q,XW 1
0 ∪U 1

0∪S1
0
) (2.12)

Similarly, we can find Wi , Ui and Si such that after T iterations, we have

W T
0 ∪U T

0 ∪ST
0 = {1, . . . ,K }, (2.13)

which implies that

H(A|Q =Q,XW T
0 ∪U T

0 ∪ST
0

) = H(A|Q =Q,X1,...,K ) = 0. (2.14)
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Then, the number of download bits now can be written as

D =H(XW0∪U0∪S0 )−H(XS0 |A,Q =Q)

+H(XW1∪U1∪S1 |XW0∪U0∪S0 )−H(XS1 |A,Q =Q,XW 1
0 ∪U 1

0∪S0
)

+ . . . ,

+H(XWT ∪UT ∪ST |XW T−1
0 ∪U T−1

0 ∪ST−1
0

)−H(XST |A,Q =Q,XW T
0 ∪U T

0 ∪ST−1
0

)

+H(A|Q =Q,XW T
0 ∪U T

0 ∪ST
0

) (2.15)

=H(XW T
0 ∪U T

0 ∪ST
0

)−
T∑

i=0
H(XSi |A,Q =Q,XW i

0 ∪U i
0∪Si−1

0
) (2.16)

=K L−
T∑

i=0
H(XSi |A,Q =Q,XW i

0 ∪U i
0∪Si−1

0
) (2.17)

By taking minimization over all choices of U T
0 and ST

0 , we can get

D ≥ min
U T

0 ,ST
0

K L−
T∑

i=0
H(XSi |A,Q =Q,XW i

0 ∪U i
0∪Si−1

0
) (2.18)

=K L− max
U T

0 ,ST
0

T∑
i=0

H(XSi |A,Q =Q,XW i
0 ∪U i

0∪Si−1
0

) (2.19)

Apparently, the optimal choices for U T
0 is ;1. This gives us that

D ≥K L−max
ST

0

T∑
i=0

H(XSi |A,Q =Q,XW i
0 ∪Si−1

0
) (2.20)

≥K L−max
ST

0

T∑
i=0

H(XSi ) (2.21)

Each |Si | for i ∈ {1, . . . ,T } is upper bounded by the number of side information M . According

to Equation (2.13), we have

K =
T∑

i=0
|Wi |+ |Si | = T +1+

T∑
i=0

|Si |, (2.22)

In order to maximize
∑T

i=0 H(XSi ), one of the optimal choices could be

T +1 =
⌈

K

M +1

⌉
, (2.23)

|S0| =|S1| = · · · = |ST−1| = M , (2.24)

|ST | =K − (T −1)(M +1)−1. (2.25)

1This is only true for single-message cases. For multi-message cases, the optimal choices for U T
0 is not ;.
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The number of download bits can be lower-bounded by

D ≥K L− ((T −1)M +K − (T −1)(M +1)−1)L (2.26)

=(T −1)L (2.27)

=
⌈

K

M +1

⌉
L (2.28)

which is the same as the converse bound derived by the maximum acyclic induced graph

in [49].
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3 Cooperative Data Exchange based on
MDS Codes

In the cooperative data exchange problem, multiple nodes want to recover a common file by

communicating with each other. Each node is assumed to initially possess some part of the

common file as side information. In this chapter, we study the cooperative data exchange

problem for the fully connected network. We prove that the cooperative data exchange prob-

lem for the fully connected network can be solved by searching the existence of a conditional

basis. We also proposed a novel algorithm to solve the problem with polynomial-time com-

plexity. We present an approach to generate the optimal coding scheme, which has a particular

feature that each of the transmission is a linear combination of the same number of packets.

When coding occurs over a sufficiently large finite field, we also show how the coefficient of

these linear combinations can be chosen by leveraging a connection to maximum distance

separable codes. Moreover, we show that our method can be used to solve two extended

versions of cooperative data exchange problems, which are cooperative data exchange with

weighted cost and the so-called successive local omniscience problem.

3.1 Problem Statement

Consider a fully connected network which has N nodes and one file composed of K inde-

pendent packets. Let N = {1, . . . , N } and P = {P1, . . . ,PK } denote the set of nodes and set of

packets, respectively. We assume that each packet Pi ∈ F, where F is some finite field with large

enough size. Without loss of generality, we assume that every packet is initially available at

least at two nodes and at most at N −1 nodes1. The set of the packets initially available at

node i (i ∈N ) is denoted by Xi (Xi ⊆P ). The union set of the packets initially available at a

subset of nodes I ⊆N is denoted by XI =⋃
i∈I Xi . We assume that all the nodes collectively

have all packets, which means XN =P . The notation Xc
I
=P \XI denotes the jointly missing

packets at nodes in set I . Let M = mini∈N |Xi | be the minimum number of initially available

packets at any single node.

1If there is a packet that is only initially available at one node, the optimal strategy is just letting that node send
the uncoded packet to the others. If there is a packet that is available at all nodes, then no one needs to recover it.
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Definition 3.1. Define the packet distribution matrix E as the N ×K matrix with entry at i th

row j th column:

Ei j =
{

1, P j ∈ Xi ,

0, otherwise.
(3.1)

We refer to the K -dimensional binary (row) vector ei , the i th row of E, as the Packet Distribution

Vector (PDV) of node i .

Let T = {T1, . . . ,TR } denote a linear2 coding scheme with R transmissions, which means that

each transmission Ti is a linear combination of packets available at the sender node. Let

r = [r1, . . . ,rN ]T denote the rate vector where each ri is the number of transmissions made by

node i . Hence, the total number of transmissions can be expressed as

R =
N∑

i=1
ri . (3.2)

Let R∗ denote the minimum number of required transmissions.

Define the coefficient matrix A with entries ai j (∀i ∈ {1, . . . ,R}, j ∈ {1, . . . ,K }), and denote by

αi = [ai 1, . . . , ai K ] andβ j = [a1 j , . . . , aR j ]T the i th row and j th column vectors of A, respectively.

Then we have: 
T1

T2
...

TR

=


a11 a12 . . . a1K

a21 a22 . . . a2K
...

...
. . .

...

aR1 aR2 . . . aRK




P1

P2
...

PK

 (3.3)

=


α1

α2
...

αR




P1

P2
...

PK

 (3.4)

=
[
β1 β2 . . . βK

]


P1

P2
...

PK

 (3.5)

It has been shown that any rate vector r which achieves universal recovery should satisfy the

2Only linear coding schemes are considered since it has been proved that they are sufficient to optimally solve
the cooperative data exchange problem [7, 10].
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following Slepian-Wolf constraints [3, 64]:∑
i∈{1,...,N }\I

ri ≥
∣∣Xc

I

∣∣ ,∀I ( {1, . . . , N } (3.6)

LetΩ= {r = [r1, . . . ,rN ]T :
∑

i∈N \I ri ≥
∣∣Xc

I

∣∣ ,∀I (N } denote the set of all rate vectors r which

satisfy (3.6). The minimum number of required transmissions for achieving universal recovery

can be computed by solving the following integer linear program:

R∗ = min
r∈Ω

N∑
i=1

ri . (3.7)

Example 3.1. Consider a cooperative data exchange problem for the fully connected network

with N = 4 nodes and K = 9 packets. The packet distribution matrix is as follows:

E =


1 1 1 1 1 1 0 0 0

1 1 1 0 0 0 1 1 1

0 0 0 1 1 1 1 1 1

1 0 1 0 0 1 0 1 0

 (3.8)

The number of non-empty proper subsets of nodes is 14. Thus, we can write down 14 linear

constraints and solve the inequalities. For example, for I = {1}, the constraint for total number

of transmissions made by nodes {2,3,4} is∑
i={2,3,4}

ri ≥ |Xc
1| = 3. (3.9)

By using the methods proposed in [6, 7], based on minimizing submodular functions, the

integer linear program can be solved in polynomial time and the minimum number of required

transmissions should be 5. After knowing the minimal number of transmissions, generating

the coding scheme is a multicast network code construction problem and can be solved by

polynomial-time algorithms proposed in [65]. One feasible coding scheme could be:

• Node 1 sends T1 = P1 +P5 and T2 = P2 +P6.

• Node 2 sends T3 = P3 +P7.

• Node 3 sends T4 = P4 +P8 and T5 = P9.

In general, there are multiple different optimal coding schemes that achieve universal recovery.

Although not all nodes have to make transmissions, the existing algorithms which solve the

integer linear program (3.7) have to consider constraints introduced by all non-empty proper

subset of nodes. In Example 3.1, the optimal coding scheme does not require node 4 to make

any transmission, but the algorithms still have to consider the constraints related to node 4.

However, we will show that without knowing the exact packet distribution information at some
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nodes (in this example, node 4), but only knowing the number of initially available packets

at them, it is still possible to compute the minimum number of required transmissions and

construct the optimal coding scheme which achieves universal recovery with the minimum

number of transmissions.

Definition 3.2 (Hamming Weight). For any vector v, define the Hamming Weight wH (v) as the

number of non-zero entries of v.

For subset of vectors S ⊆ V, let vS denote the entry-wise OR result of all vectors in S.

Definition 3.3 ((d ,K )-Basis). Let 0 ≤ d ≤ K −1. A set of K -dimensional binary linearly inde-

pendent vectors (V = {vi : i ∈ {1, . . . ,K −d}}) is called a (d ,K )-Basis if

wH (vS) ≥ |S|+d , ∀; 6= S ⊆ V. (3.10)

Definition 3.4 (Balanced (d ,K )-Basis). A (d ,K )-Basis (V = {vi : i ∈ {1, . . . ,K −d}},0 ≤ d ≤ K −1)

is called a balanced (d ,K )-Basis if

wH (vi ) = d +1, ∀i ∈ {1, . . . ,K −d}. (3.11)

Condition (3.10) requires that wH (vS), the number of dimensions spanned by vectors in S, is

no less than the number of vectors plus d . Hence, the number of vectors in each subspace of

the K -dimensional space is limited.

Definition 3.5. A binary vector (u) can generate another binary vector (v) if u and v have the

same dimension and

{m : vm = 1} ⊆ {n : un = 1}. (3.12)

Moreover, let G (u) denote the set of all binary vectors that can be generated by u. Define

G (S) =∪u∈SG (u) and G (u,d) = {v : v ∈G (u), wH (v) = d +1}.

Definition 3.6. A set of K -dimensional binary vectors U = {u1, . . . ,uN } is able to generate a

(d ,K )-Basis {vi : i ∈ {1, . . . ,K −d}} if ∀i ∈ {1, . . . ,K −d}, vi ∈ G (U). Let d∗(U) denote the maxi-

mum value of d such that a (d ,K )-Basis can be generated by U. For ease of notation, we use d∗

instead of d∗(U) when no ambiguity exists.

Lemma 3.1. If a set of K -dimensional binary vectors is able to generate a (d1,K )-Basis, then it

is also able to generate a (d2,K )-Basis for any d2 ≤ d1.

Proof. Consider a set of binary vectors {u1, . . . ,uN } that is able to generate a (d1,K )-Basis

V = {v1, . . . , vK−d1 }. Then

∀i ∈ {1, . . . ,K −d1},∃ j ∈ {1, . . . , N } : {m : vi m} ⊆ {n : u j n} (3.13)

Hence any vector generated by vi should also be able to be generated by the corresponding

u j . Thus, to prove this lemma, it suffices to show that ∀d2 ≤ d1, there exists a (d2,K )-Basis
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Q = {q1, . . . , qK−d2 } that can be generated by {v1, . . . , vK−d1 }. Since V is a (d1,K )-Basis and

d2 ≤ d1, ∀S ⊆ V, we have

wH (vS) ≥ |S|+d1 ≥ |S|+d2 (3.14)

Thus all vectors in {v1, . . . , vK−d1 } satisfy the constraints for vectors of (d2,K )-Basis. We can

choose qi = vi , ∀i = {1, . . . ,K −d1}. Moreover, ∀ j ∈ {K −d1 +1, . . . ,K −d2}, we choose q j = v1

to be the repeated vector. Then, ∀Ŝ ⊆ Q:

wH (qŜ) ≥ |Ŝ|+d1 − c ≥ |Ŝ|+d2 (3.15)

where c = |Ŝ∩ {q j : j ∈ {K −d1 +1, . . . ,K −d2}}| ≤ d1 −d2 is the number of the repeated vectors.

Hence Q = {q1, . . . , qK−d2 } is a (d2,K )-Basis.

3.2 Cooperative Data Exchange and (d ,K )-Basis

In this section, we present the relationship between a (d ,K )-Basis and a coding scheme that

can enable nodes with at least d packets to recover all missing packets, which is revealed by

the following theorem.

Theorem 3.1. If for some subset of nodes I ⊆N there exists a (d ,K )-Basis V ⊆G ({ei , i ∈I },d),

then the nodes of I can generate a coding scheme T = {T1, . . . ,TR } with R = K −d such that

∀i ∈N , wH (ei ) ≥ d, node i can recover all packets.

Proof. In our coding scheme, each transmission Ti is a linear combination (with appropriate

coefficients) of the packets indexed by the non-zero entries in vi . Since the vectors vi ’s are a

subset of the vectors generated by the PDVs of the nodes in I , there is one node in I for each

vi that can locally produce and transmit said linear combination. The overall code can thus

be characterized by a matrix A as in Equation (3.3) where in row i , only the elements indexed

by vi are non-zero.

For any C ⊂ {1, . . . ,K } with |C | = R, let A(C ) denote the submatrix of A consisting of the R

columns indexed by C . Due to constraint (3.10), ∀; 6= S ⊆ V, we have

wH (vS) ≥ |S|+d . (3.16)

Denote the i th of row of A(C ) by αi (C ). Then ∀Ŝ ⊆ {α1(C ), · · · ,αR (C )}, we have

wH (αŜ(C )) ≥ wH (vŜ)−d ≥ |Ŝ|. (3.17)

LetG(A(C )) denote the bipartite graph corresponding to A(C ), where there is an edge between

i th left vertex and j th right vertex if and only if A(C )i j 6= 0. Since Equation (3.17) satisfies

the condition of Hall’s marriage theorem[66], there exists a perfect matching in G(A(C )).

According to Edmond’s Theorem [67], the existence of perfect matching in bipartite graph
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G(A(C )) implies that det(A(C )) 6≡ 0.

The product of determinants of all submatrices with R columns, denoted by
∏

C det(A(C )), is

a multivariate polynomial of non-zero entries of A. For a large enough finite field, there always

exists a good choice of non-zero entries of A such that
∏

C det(A(C )) 6≡ 0 [68]. For such choices,

any R columns of A can be linearly independent at the same time. In other words, given any d

packets, the other R missing packets can be recovered from our coding scheme.

Remark 3.1. In Theorem 3.1, we proved that if the PDVs of nodes are able to generate a (d ,K )-

Basis, they can also generate a coding scheme such that nodes with at least d packets can recover

all missing packets from the coding scheme. The coefficient matrix used in the proposed coding

scheme can be associated with a constrained generator matrix for an MDS code [69, 70]. We

will introduce an efficient way to construct it in sufficiently large finite fields by performing

elementary row operations on a Vandermonde matrix in Section 3.4.

Theorem 3.1 characterizes a certain class of coding schemes. Their common feature is that

each transmission is a (judiciously chosen) linear combination of exactly the same number

of pure packets, namely, d +1. Initially, this last feature may appear to be too restrictive to

attain optimal performance. However, in the sequel, we will establish in two steps that there

always exists an optimal scheme with this special property. Nonetheless, let us recall that

in general, the optimal data exchange scheme is not unique, so there may be alternative

schemes attaining the same (optimal) number of transmissions while not satisfying the special

property. To establish the existence of an optimal scheme with the special property, we will

next establish that if a (linear) scheme enabling universal recovery exists, then the nodes are

also able to generate a corresponding basis (and hence, by Theorem 3.1, a scheme with the

special property must exist). More precisely, we have the following theorem:

Theorem 3.2. If a subset of nodes is able to generate a linear coding scheme with R (R = K −d)

transmissions which achieves universal recovery, then the PDVs of the nodes can generate a

(d ,K )-Basis V = {v1 . . . , vR }.

Proof. We assume that a subset of nodes I can generate R linearly independent transmissions

T̂ = {T̂1, . . . , T̂R } which achieves universal recovery. The code can be characterized by a matrix

Â as in Equation (3.3) with rows α̂i ’s and columns β̂ j ’s. Let V̂ = {v̂1, . . . , v̂R } where each vi =
supp(α̂i ). That means in row i of Â, only the elements indexed by v̂i are non-zero. We would

like to show that if V̂ = {v̂1, . . . , v̂R } does not satisfy Constraint (3.10) of the (d ,K )-Basis, then

the nodes which generate the corresponding transmissions are able to add more packets into

the linear combinations until the Constraint (3.10) is satisfied.

For each non-empty subset S ⊆ {α̂1, . . . , α̂R } such that wH (α̂S) < |S|+d , we have

K −wH (α̂S) > K −|S|−d ≥ R −|S|+1 (3.18)
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For the row vectors in S, at least R −|S|+1 columns are all zeros. Hence, there must exist a

subset of columns C ⊂ {1, . . . ,K } and corresponding subset of column vectors C ⊆ {β̂1, . . . , β̂K }

such that

|C | = |C| = R −|S|+1 (3.19)

R −wH (β̂C) ≥ |S|⇒ wH (β̂C) ≤ R −|S| < |C| (3.20)

Let Â(C ) denote the submatrix which is composed of the columns indicated by the subset

of column vectors C . Then submatrix Â(C ) is rank deficient. Let PC
.= {Pi : i ∈C } denote the

set of packets indexed by C . If the set N ′ of nodes that generate transmissions {T̂i :αi ∈ S}

cannot add any more packets into the linear combination for their transmissions, they have

no more extra available packets in PC and each transmission is a linear combination of all

its sender node’s available packets. This assumption leads to a contradiction that nodes in

N ′ cannot recover all missing packets. Thus, nodes in N ′ must have more packets in PC

and can add them into the linear combination to generate new transmissions {Ti : αi ∈ S}

such that wH (αS) = |S| +d , where αi denotes the coefficient vector of transmission Ti . By

replacing {T̂i :αi ∈ S} with {Ti :αi ∈ S}, we have a new coding scheme T such that the set of

corresponding support vectors V = {vi , . . . , vR } forms a (d ,K )-Basis. For each transmission Ti

and the corresponding T̂i , we have v̂i ∈G (vi ). Given that T̂ can achieve universal recovery, T

can also achieve universal recovery.

Lemma 3.2. If a subset of nodes can generate a linear coding scheme based on a (d ,K )-Basis

which enables nodes with at least d packets to recover all packets, they also can generate an

equivalent linear coding scheme based on a balanced (d ,K )-Basis.

Proof. For any linear coding scheme T = {T1, . . . ,TK−d } based on a (d ,K )-Basis V = {v1, . . . , vK−d },

let A denote the coefficient matrix of T and αi denote the i th row of A. For each Ti with

wH (αi ) > d + 1, we show that it can be reduced to a linear combination of d + 1 packets.

∀S̃ ⊆ {α j : j 6= i }, wH (αS̃) ≥ |S̃|+d . The linear combination of {T j : j 6= i } can provide K −d −1

degrees of freedom among the used packets. Hence, by subtracting a proper linear combina-

tion of {T j : j 6= i } from Ti , we can get T̄i with wH (ᾱi ) = d +1. Thus the corresponding V̄ is a

balanced (d ,K )-Basis.

Example 3.2. For CDE problem in Example 3.1, we already know a coding scheme with 5

transmissions that can achieve universal recovery. But each coded packet for transmission is

a linear combination of two packets or just one pure packet. According to Theorem 3.2 and

Lemma 3.2, there must exist another coding scheme in which every coded packet for transmission

is a linear combination of 5 packets. It is easy to verify that the coding scheme with the following

coefficient matrix (over finite field GF (24) with primitive polynomial α4 +α+1) also achieves
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universal recovery.

A =


5 4 4 1 1 0 0 0 0

15 11 14 14 0 1 0 0 0

3 6 13 0 0 0 15 14 0

9 12 7 0 0 0 15 0 14

0 0 0 10 14 6 9 8 0

 (3.21)

Each transmission is a linear combination of 5 packets. Define binary matrix V such that

Vi j =
{

1, Ai j 6= 0,

0, Ai j = 0.
(3.22)

Then we have

V =


v1

v2

v3

v4

v5

=


1 1 1 1 1 0 0 0 0

1 1 1 1 0 1 0 0 0

1 1 1 0 0 0 1 1 0

1 1 1 0 0 0 1 0 1

0 0 0 1 1 1 1 1 0

 . (3.23)

The row vectors of V actually form a balanced (4,9)-Basis. As mentioned in Theorem 3.1,

given any 4 packets, the other 5 packets can be recovered from the coding scheme based on the

coefficient matrix A. Hence, in this example, the detailed information of available packets at

node 4 is not necessary. As long as it initially has 4 packets, it can always recover the other

packets by receiving these coded packets.

Now we have the connection between the optimal coding schemes with the minimum number

of required transmissions and the balanced (d ,K )-Bases. Thus, we can search balanced (d ,K )-

Bases to get achievable (upper) bounds on the minimum number of required transmissions.

Extending the search over all values of d (and using Theorem 3.2 and Lemma 3.2) then

establishes optimal performance. More precisely, we have the following theorem:

Theorem 3.3. For the cooperative data exchange in the fully connected network, the minimal

number of required transmissions R∗ satisfies:

R∗ = K −min{M ,d∗} (3.24)

where the (d∗,K )-Basis is the largest (d ,K )-Basis that can be generated by the PDVs of nodes

and M = mini∈N |Xi | is the minimum number of initially available packets at any single node.

Proof. By assumption, d∗ is the largest value of d for which a (d ,K )-Basis can be generated by

the PDVs. But then, by Theorem 3.2, there does not exist any linear coding scheme that can

achieve universal recovery by using fewer than K −d∗ transmissions.

Suppose that M ≥ d∗. Then every node has at least d∗ packets. Since a (d∗,K )-Basis can be

generated by the PDVs, according to Theorem 3.1, there is a linear coding scheme with K −d∗
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transmissions such that every node with at least d∗ packets can recover all missing packets.

Now suppose that M < d∗. According to Lemma 3.1, the PDVs can also generate a (d ,K )-

Basis with d = M . According to Theorem 3.1, there is a linear coding scheme with K −M

transmissions such that every node with at least M packets can recover all missing packets.

Hence, the minimum number of required transmissions satisfies R∗ = K −min{M ,d∗}.

3.3 Algorithms

According to Theorem 3.3, to solve the cooperative data exchange problem for the fully

connected network, we need to find the largest value of d such that a balanced (d ,K )-Basis

that can be generated by the PDVs of nodes. We denote this optimal value of d by d∗. This

problem can be decomposed into two subproblems:

(1) Given a fixed d , determine whether any balanced (d ,K )-Basis can be generated by the

PDVs of nodes or not.

(2) Find the maximum value of d such that the PDVs of nodes can generate one balanced

(d ,K )-Basis.

In this section, we propose two algorithms to solve the two subproblems, respectively.

3.3.1 Existence of (d ,K )-Basis

Given the packet distribution matrix E and a specific parameter d , we propose Algorithm 1 to

check whether any balanced (d ,K )-Basis can be generated by the PDVs of nodes or not. Due

to constraint (3.10), only nodes with at least d +1 packets can generate the (d ,K )-Basis vectors.

Hence, it is sufficient that we only consider the PDVs with wH (ei ) > d as the candidates to

generate basis vectors.

Definition 3.7. For any binary vector u with wH (u) > d, let J (u) = { j1, . . . , jwH (u)} denote the

set of indices of the non-zero entries of u. Define the set B(u,d) = {bi : supp(bi ) = { j1, . . . , jd }∪
{ jd+i },∀i ∈ 1, . . . , wH (u)−d}.

The set B(u,d) is a particular set of binary vectors that are generated by u. Specifically,

each of the vectors in the set has weight d +1 and it can be verified that the vectors satisfy

the Constraint (3.10) in the definition of the (d ,K )-Basis. Therefore, they are basis vector

candidates for the balanced (d ,K )-Basis.

Example 3.3. Given e1 = [1,1,1,1,1,1,0,0,0], we can assign the B(e1,4) = {b1,b2} with

b1 = [1,1,1,1,1,0,0,0,0], (3.25)

b2 = [1,1,1,1,0,1,0,0,0]. (3.26)
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Lemma 3.3. For any binary vector v ∈G (u,d)\B(u,d), let S =B(u,d)∪{v}. We have wH (bS) <
|S|+d.

Proof. Since B(u,d) ⊂ G (u,d), wH (bB(u,d)) ≤ wH (u). Also, according to the definition of

B(u,d), we have

wH (bB(u,d)) ≥ |B(u,d)|+d = wH (u). (3.27)

Hence, wH (bB(u,d)) = wH (u). For any v ∈G (u,d) \B(u,d), |S| = |B|+1 = wH (u)−d +1, thus

wH (bS) = wH (u) < wH (u)−d +1+d = |S|+d . (3.28)

Thus, any vector v ∈ G (u,d) \ B(u,d) is not compatible with B(u,d) in terms of the Con-

straint (3.10).

Corollary 3.1. For each PDV ei , it is sufficient to check vectors of B(ei ,d) instead of all vectors

of G (ei ,d).

Proof. Suppose that all vectors in B(ei ,d) are selected to be the (d ,K )-Basis vectors, then

according to Lemma 3.3, the vectors in G (ei ,d) \B(ei ,d) are not compatible with B(ei ,d).

If not all vectors in B(ei ,d) are selected to be the (d ,K )-Basis vectors, for the PDV e j which is

in B(ei ,d) but not selected as one of the (d ,K )-Basis vectors, there must exist a binary vector

(denoted by q) in Q that can generate e j according to the 6-th line of Algorithm 1. As q is the

bitwise OR result of a subset of the basis vectors generated by previous PDVs, which satisfy

Inequality (3.34), the number of (d ,K )-Basis vectors that can be generated by q achieves the

maximum. Hence, any other vectors which can be generated by q are not compatible with

those already selected basis vectors. Furthermore, since e j can be generated by q and e j has

d ones at the common positions with other vectors in B(ei ,d), q must have d ones at the

common positions with other vectors in B(ei ,d). Therefore, the other vectors which are in

B(ei ,d) and have been selected to be the (d ,K )-Basis vectors should be merged with q . Let us

denote the merged vector by q ′. And vectors in G (ei ,d) \B(ei ,d) can all be generated by q

and are not compatible with the basis vectors already selected before.

Hence, it is sufficient to check vectors in B(ei ,d) and ignore vectors in G (ei ,d) \B(ei ,d).

Although for each PDV ei , there are as many as
(wH (ei )

d+1

)
balanced (d ,K )-Basis vectors that can

be generated, we can select any B(ei ,d) and only consider them as the candidate basis vectors.

Any other v ∈G (ei ,d) \B(ei ,d) can be ignored.

Lemma 3.4. Let S = {v1, . . . , v|S|} denote a set of binary vectors with weight wH (vi ) = d+1,∀vi ∈
S and vS denote the bitwise OR result of all vectors in S. For any vector v ∈ G (vS,d) \ S, let
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Ŝ = S∪ {v}, we have wH (vŜ) < |Ŝ|+d if

wH (vS) ≤ ∑
i∈S

wH (vi )− (|S|−1)d . (3.29)

Proof. Since v and all vectors in S can be generated by vS, we have

wH (vŜ) = wH (vS) ≤ ∑
i∈S

wH (vi )− (|S|−1)d (3.30)

= ∑
i∈S

(wH (vi )−d)+d (3.31)

= |S|+d (3.32)

< |Ŝ|+d . (3.33)

Thus, any vector v ∈G (vS,d) \ S is not compatible with S in terms of the Constraint (3.10) if

Inequality (3.29) holds. Hence, once we find any set of basis vectors which satisfy Inequal-

ity (3.29), any vector that can be generated by the merged vector should not be considered.

Remark 3.2. Binary vector vm which has weight larger than d +1 can be treated as a merged

vector of B(vm ,d). Therefore, wH (vm)−d = |B(vm ,d)|. Inequality (3.29) also works for the

cases where some of the vectors have weights larger than d +1.

We use set V to store the balanced (d ,K )-Basis vectors that have been generated by checked

PDVs. We use set Q to store merged (d ,K )-Basis vectors. Any set of vectors which satisfy

Inequality (3.29) will be merged as one vector and stored in Q. Only b ∈B(ei ,d) that cannot be

generated by any vector in Q can be selected as the basis vectors. After all vectors in B(ei ,d)

have been checked, there must exist ei or a vector that can generate ei in Q.

In the subspace spanned by any two vectors in Q, there must exist at least one vector that

should be added to form the (d ,K )-Basis. Instead of checking every subset of Q for merging, it

is sufficient to only check the newly added vector with any subset S ⊆ Q with |S| ≤ 2 and treat

the merged vector as the newly added vector for further merging until no merging possibility.

In the end, if K −d such vectors are found, the PDVs of nodes are able to generate a (d ,K )-Basis

which is stored by V and the algorithm returns True and the corresponding basis V. Otherwise,

return False.

Theorem 3.4 (Correctness of Algorithm 1). Algorithm 1 can output the valid (d ,K )-Basis if

there exists.

Proof. We first prove that a set of vectors, V = {v1, . . . , vR } with R = K −d , output by Algorithm 1

is always a balanced (d ,K )-Basis. Since all vectors v ∈ V are binary vectors belonging to

23



Chapter 3. Cooperative Data Exchange based on MDS Codes

Algorithm 1 Search balanced (d ,K )-Basis (SdB)

1: Input: E = [e1, . . . ,eN ]T and d .
2: Output: True, r, V or False.
3: Initialization: Q =;, V =;, r = [r1, . . . ,rN ]T = 01×N .
4: for i : i ∈ {1, . . . , N } do
5: for b ∈B(ei ,d) do
6: if b 6∈G (Q,d) then
7: ri = ri +1
8: V = V∪ {b}
9: while ∃S ⊆ Q, |S| ≤ 2 : (3.34) holds do

wH (qS ∨b) ≤ ∑
qi∈S

wH (qi )+wH (b)−|S|d (3.34)

10: b = b ∨qS, Q = Q \ S
11: end while
12: Q = Q∪ {b}
13: end if
14: if |V| = K −d then
15: return True, r and V
16: end if
17: end for
18: end for
19: return False

B(ei ,d), each vector has exactly d +1 ones. And each newly added vector is compatible with

all previously selected vectors in terms of the condition (3.10) according to Lemma 3.4. Thus,

V = {v1, . . . , vR } is a valid (d ,K )-Basis.

Secondly, we prove that Algorithm 1 is always able to find one (d ,K )-Basis if there exists some

(d ,K )-Basis which can be generated by PDVs of nodes. Since every valid balanced (d ,K )-Basis

is a subset of binary vectors with d +1 ones which can be generated by all PDVs of nodes.

According to Corollary 3.1, it is sufficient to only check B(ei ,d) for all i ∈ {1, . . . , N }. Hence,

Algorithm 1 searches (d ,K )-Basis from all possible candidates and can output a (d ,K )-Basis if

there exists one.

3.3.2 Searching for d∗

We propose Algorithm 2 which uses binary search method to find the (d∗,K )-Basis that can be

generated by PDVs of nodes. Let e∗ be the PDV of the node which has the largest number of

available packets initially, i.e.,

e∗ = argmax
ei

wH (ei ). (3.35)
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According to Theorem 3.3, if the PDVs of nodes can generate any (d ,K )-Basis such that

d ≥ M , we do not have to check for any larger d . Also, the (d ,K )-Basis with the largest d

that can be generated should always be no larger than wH (e∗)−1. Therefore, we start from

dmax = min{M , wH (e∗)−1} instead of K .

Algorithm 2 Minimal Number of Required Transmissions and d-Basis

1: Input: EN×K = [e1, . . . ,eN ]T.
2: Output: R∗, V∗

3: Initialization: dmi n = 1, dmax = min{M , wH (e∗)−1}.
4: (F,r,V) = SdB(E ,dmax )
5: if F is True then
6: d∗ = dmax , V∗ = V
7: else
8: (F,r,V) = SdB(E ,dmi n)
9: if ¬F then

10: d∗ = 0, V∗ = IK

11: else
12: while dmax −dmi n > 1 do
13: d = bdmi n+dmax

2 c
14: (F,r,V) = SdB(E ,d)
15: if F then
16: dmi n = d , V∗ = V
17: else
18: dmax = d
19: end if
20: end while
21: d∗ = dmi n

22: end if
23: end if
24: R∗ = K −d∗

3.3.3 Complexity

In Algorithm 2, the binary search method is used to find the (d∗,K )-Basis that can be generated

by the PDVs of nodes. The complexity of the algorithm is bounded by log(K ). For each specific

d , Algorithm 1 is used to search the existence of (d ,K )-Basis. Let M(d) denote the number

of nodes that have at least d +1 packets. The first For loop has at most M(d) iterations. For

the i th candidate PDV ei , the size of set B(ei ,d) satisfies |B(ei ,d)| = wH (ei )−d . Hence, the

second For loop has at most wH (ei )−d iterations. The number of subsets of vectors in Q

with size 1 and 2 are |Q| and
(|Q|

2

)
, respectively. For the i th checked node, |Q| ≤ i , because

basis vectors generated by the same PDV can always be merged to one vector and basis

vectors generated by different PDVs may still be merged. The number of possible merging

iteration for each candidate basis vector is less than the size of (d ,K )-Basis vector which is

K −d . Then, the While loop has at most (i + (i
2

)
)(K −d) iterations for the i th PDV. Hence the
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complexity3 of Algorithm 1 is bounded by
∑M(d)

i=1 (i +(i
2

)
)(wH (ei )−d)(K −d)K . Since M(d) ≤ N

and wH (ei ) ≤ K , we have the overall complexity is bounded by O (N 3K 3 log(K )), which is

much lower than the complexity of existing algorithms proposed in [6] based on minimizing a

submodular function O ((N 6K 3 +N 7) log(K )) and algorithm based on subgradient methods

O ((N 4 log(N )+N 4K 3)K 2 log(K )).

Example 3.4. Apply our algorithms on Example 3.1. Node 4 and node 1 initially have the

smallest and the largest number of packets respectively, which means M = 4 and wH (e∗) = 6.

Therefore we have dmax = 4. Algorithm 1 will first check whether it is possible to generate any

(4,9)-Basis from {e1,e2,e3} by SdB(E ,4). The PDV of the 4th node, e4, will not be considered as

the candidate since wH (e4) = 4 and it can not generate any binary vector with 5 ones. In this

example, SdB(E ,4) returns True. The minimum number of required transmissions is 5. For the

general case, if a (dmax ,K )-Basis cannot be generated, a binary search methods would be used

to find d∗.

Now we investigate the detail of algorithm Sdb(E ,4). The first For loop only runs for {e1,e2,e3}.

• For e1, B(e1,4) = {b11,b12} where b11 = [1,1,1,1,1,0,0,0,0] and b12 = [1,1,1,1,0,1,0,0,0].

• For e2, B(e2,4) = {b21,b22} where b21 = [1,1,1,0,0,0,1,1,0] and b22 = [1,1,1,0,0,0,1,0,1].

• For e3, B(e3,4) = {b31,b32} where b31 = [0,0,0,1,1,1,1,1,0] and b32 = [0,0,0,1,1,1,1,0,1].

The second For loop runs for each bi j ∈B(ei ,4) for all i ∈ {1,2,3}.

• For b11, since currently Q =;, b11 will be added into V as v1 and Q as q1 directly.

• For b12, since it cannot be generated by q1, b12 will be added into V as v2. Now, Q is not

empty anymore and has q1. We have to check whether b12 should be merged with q1 as

one vector or not. Since wH (b12 ∨q1) ≤ wH (b12)+wH (q1)−d satisfies Inequality (3.34).

We should merge them and update as q1 = [1,1,1,1,1,1,0,0,0] 4.

• For b21, since it cannot be generated by q1, b21 will be added into V as v3. The merging

possibility between b21 and q1 will be checked and it turns out that they should not be

merged. Hence b21 will be added into Q as q2.

• For b22, since it cannot be generated by q1 or q2, b22 will be added into V as v4. It can

be verified that b22 should be merged with q2 but not with q1. Hence q2 is updated as

q2 = [1,1,1,0,0,0,1,1,1].

3Computing bitwise AND or OR of two K -dimensional binary vector has complexity of K basic operations. In
step 6 of Algorithm 1, we compute bitwise OR between b and each vector in Q and this results are also used in
merging checking. Hence complexity of step 6 is not considered.

4In fact, b12 and q1 can be merged without checking Condition (3.34), since q1 = b11 and b12 are generated by
the same PDV, e1.
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3.4. Code Construction

• For b31, since it cannot be generated by q1 or q2, b31 will be added into V as v5. Now we

have enough (4,9)-Basis vectors. The algorithm SdB(E ,4) will return True and corre-

sponding V shown as Equation (3.23).

Actually, if we check the merging possibility between b31 and {q1, q2}, we will find that b31

should not be merged with q1 or q2 individually, but should be merged with them together. And

when we have the complete (d ,K )-Basis, we can always merge all vectors in Q into one vector

with K ones. Although b32 is in B(e3,4), it is not used, because we have found enough basis

vectors before its iteration.

3.4 Code Construction

In previous sections, we presented one algorithm to compute the minimum number of re-

quired transmissions. To completely solve the cooperative data exchange problem, we still

need to construct the coding scheme which achieves universal recovery by using the minimum

number of transmissions. In this section, we briefly show how to deterministically construct

the optimal coding scheme in sufficiently large finite fields. For exponentially large enough

finite field, it is well known that it is possible to deterministically set the coefficients. It has

been shown in [71] that the [n,k] generalized Reed-Solomon codes with sparsest and balanced

generator matrices exist over finite field q ≥ n +dk(k−1)
n e. For finite fields with small size, it

is not known how to deterministically set the coefficients and a randomized method was

presented in [18].

After knowing the number of transmissions which should be made by each node, designing the

coding scheme can be formulated as a multicast network code construction problem. Methods

based on the mixed matrix completion algorithm [72] and the Jaggi et al. algorithm [65] are

presented in [6]. However, those methods have to take all packet distribution information into

consideration and generate a coding scheme that may only work for this particular setting.

As Theorem 3.1 points out, it is possible to construct a coding scheme that enables universal

recovery at all nodes with at least K −R∗ packets. Packet distribution information of nodes

that do not send anything is not necessary for constructing the code and can be ignored. This

class of codes is based on MDS codes. It is well-known that the existence of such MDS codes

with constrained generator matrices in finite fields with small size is an open problem and a

corresponding conjecture was proposed in [70]. A randomized method was presented in [18]

for finite fields with small size. If the size of the finite field is allowed to be (exponentially) large

enough, the coefficient matrix of the coding scheme for cooperative data exchange problem

can be efficiently constructed by starting from Vandermonde matrices.
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Consider an R ×K Vandermonde matrix over a finite field Fq , where R = K −d :

V =


1 1 1 . . . 1 1

θ1 θ2 θ3 . . . θK−1 θK
...

...
...

. . .
...

...

θR−1
1 θR−1

2 θR−1
3 . . . θR−1

K−1 θR−1
K

 (3.36)

For large enough q , there exist {θ1, . . . ,θK } (e.g., {0, . . . ,K −1}) such that any m (m ≤ R) columns

of V are linearly independent. Hence, V is the generator matrix of an MDS code. However, the

coefficient matrix A cannot simply be set equal to V , since the number of non-zero entries of

each row cannot be larger than the number of available packets at the node which generates

this transmission. Nevertheless, by performing elementary transformations on V , we can

transform it into a coefficient matrix A with the property that each row has K −R +1 non-zero

entries.

Lemma 3.5. For any R ×K (R ≤ K ) Vandermonde matrix V , by performing elementary row

operations on V , it is possible to get a matrix A with row vectors {α1, . . . ,αR } such that

wH (αi ) = K −R +1 ∀i ∈ {1, . . . ,K −R} (3.37)

wH (αS) ≥ |S|+K −R ; 6= S ⊆ {α1, . . . ,αR } (3.38)

Proof. Suppose we have a R ×K Vandermonde matrix depicted as Equation (3.36). We use

Vl and Vr to denote the first R columns submatrix and the last K −R columns submatrix of

V , respectively. Then, V =
[
Vl Vr

]
. Since any R columns of V are linearly independent, Vl

is always a full rank matrix and invertible. Performing elementary row operations on V is

equivalent to left multiplying a R ×R matrix to V . Let D denote a R ×R matrix and D = V −1
l .

DV = D
[
Vl Vr

]
=

[
IR DVr

]
, (3.39)

where IR is the R ×R identity matrix. Since D is invertible and is a full rank matrix, we have

rank(DVr ) = rank(Vr ) = min{R,K −R}. (3.40)

If R ≥ K
2 , equivalently R ≥ K −R, we have rank(DVr ) = K −R. Then, DVr is a column full rank

matrix and each row can have K −R non-zero entries. If R < K
2 , equivalently R < K −R, we

have rank(DVr ) = R. Then DVr is a row full rank matrix. However, since any R columns of Vr

are linearly independent, we can further divide Vr into submatrices Vr1 ,Vr2 , . . . ,Vrt such that

the number of columns of each submatrix is no more than R. Thus, DVr can be expressed as

follows.

DVr =
[

DVr1 DVr2 . . . DVrt

]
(3.41)

For i ∈ {1, . . . , t }, each submatrix DVri is a column full rank matrix and total number of non-zero
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entries in each row of DVr can be K −R . Let A = DV , then we have row vectors of A that satisfy

wH (αi ) = 1+K −R ∀i ∈ {1, . . . ,K −R} (3.42)

wH (αS) ≥ |S|+K −R ; 6= S ⊆ {α1, . . . ,αR } (3.43)

The matrix DV with D = V −1
l satisfies both conditions of the balanced (d ,K )-Basis with

d = K −R. Hence it can be a coefficient matrix for the coding scheme based on the (d ,K )-

Basis. Normally, the places of non-zero entries of the (d ,K )-Basis generated by the PDVs of

nodes are different from matrix DV . However, since any row vector with d +1 ones is in the

space spanned by row vectors of DV , further elementary row operations can be performed on

DV to get the coefficient matrix with non-zero entries at the same places as the (d ,K )-Basis

generated by the PDVs of nodes.

Example 3.5. Now we show how to use a Vandermonde matrix to construct the linear coding

scheme for Example 3.1. We know that R∗ = 5 and there exists a (4,9)-Basis V . Consider the

Vandermonde matrix V over the finite field GF (24) with primitive polynomial α4 +α+1.

V =


1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9

1 4 5 3 2 7 6 12 13

1 8 15 12 10 1 1 10 15

1 3 2 5 4 6 7 15 14

 (3.44)

By elementary row transformations and Gaussian eliminations, we can get the coefficient matrix

A shown as (3.21). Given any four packets, the other packets can be recovered from transmissions

based on A. Suppose there is another node with PDV e5 = [1,0,1,0,1,0,0,1,0]. It can also recover

all its missing packets by receiving transmissions based on A. The detail of its packet distribution

information is not used for either computing the minimal number of required transmissions or

designing the coding scheme. Although in this example the coefficient matrix of our method

looks more complicated than that of methods based on Jaggi et al.’s algorithm, in general cases,

the complexity of constructing the coefficient matrix via our method is much lower.

3.5 Cooperative Data Exchange with Weight Cost

In the basic cooperative data exchange problem, every transmission incurs the same cost,

irrespective of the transmitting node. However, in more general cases, it is intuitive to consider

that the (transmit) costs for different nodes are different. Let w = [w1, . . . , wN ]T denote the

weight vector where each wi is the cost for node i to make one transmission. For any coding
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scheme with rate vector r = [r1, . . . ,rN ]T, the weighted cost is defined by

C (r) = wT · r =
N∑

i=1
wi ri . (3.45)

Instead of minimizing the total number of transmissions (sum rate), the goal of the cooperative

data exchange problem with weighted cost is to achieve universal recovery by a coding scheme

with a rate vector which has the minimum weighted cost. We note that once the optimal rate

vector is found, a corresponding optimal transmission scheme can be developed exactly along

the lines of the unweighted case discussed in previous sections.

The minimum weighted cost for the cooperative data exchange problem with weighted cost

can be computed as

C ∗ = min
r∈Ω

C (r) = min
r∈Ω

N∑
i=1

wi ri . (3.46)

Although the optimization should be taken over all vectors inΩ, we can actually decompose

this optimization problem into two sub-optimization problems.

• We first find the optimal rate vector under the condition that the sum rate is fixed.

• Then, further optimization should only be over the optimal rate vectors for different

fixed sum rates.

Definition 3.8. Let K (R) denote the minimum weighted cost of all rate vectors that can achieve

universal recovery and has sum-rate equal to R.

K (R) = min
r∈Ω,S (r)=R

C (r) = min
r∈Ω,S (r)=R

N∑
i=1

wi ri , (3.47)

where S (r) =∑N
i=1 ri is the sum-rate.

Let Rmi n denote the minimum sum rate such that a corresponding rate vector can achieve

universal recovery5. Only rate vectors with sum rate between Rmi n and K should be considered.

The minimum weighted cost can also be computed as

C ∗ = min
R∈{Rmi n ,...,K }

K (R)

= min
R∈{Rmi n ,...,K }

min
r∈Ω,S (r)=R

N∑
i=1

wi ri . (3.48)

Example 3.6. Consider a cooperative data exchange problem for the fully connected network

with 5 nodes and 9 packets with the goal of minimizing the weighted cost of transmissions. The

5In previous sections, for the basic cooperative data exchange problem, we use R∗ to denote the minimum sum
rate such that universal recovery can be achieved. However, in cooperative data exchange problems with weighted
cost, the optimal rate vector may not have minimum sum rate.
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packet distribution matrix (PDM) is as follows:

E =


0 1 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 1

0 1 1 0 0 1 0 1 1

1 0 1 0 1 1 0 1 0

1 1 0 1 1 0 1 0 1


The weights of nodes are as follows:

Node(i ) 1 2 3 4 5

wi 2 3 6 8 10

Here we assume that the weights of the nodes are in non-decreasing order. If this is not the case,

we rearrange the nodes of the PDM such that the weights are in non-decreasing order. By using

the methods proposed in [6, 13], we can find that the optimal rate vector is r∗ = [3,3,1,0,0]T and

the minimum weighted cost is 21. However, for the basic cooperative data problem (unweighted

case) with the same packet distribution matrix, the optimal rate vector is r = [1,1,1,1,1]T.

Remark 3.3. By using algorithms in [6, 7, 73], we can show that the minimum sum rate Rmi n

for Example 3.6 is 5. But for the cooperative data exchange problem with weighted cost, the

optimal rate vector has a sum rate of 7, which is larger than the minimum required sum rate.

That is why we need to have the second optimization over K (R), where R ∈ {Rmi n , . . . ,K }.

Thus, only finding rate vectors with sum rate Rmi n is not enough, we have to optimize K (R)

over all R ∈ {Rmi n , . . . ,K }. However, we show that it is not necessary to compute K (R) for all

R ∈ {Rmi n , . . . ,K }. By exploiting the convexity of the function K (R), we can search the optimal

R and rate vector by the binary search method.

We propose an efficient deterministic algorithm based on (d ,K )-Basis to solve the optimization

problem (3.47). For any given fixed number of transmissions R, Algorithm 3 searches the

existence of a corresponding (d ,K )-Basis where d = K −R.

Theorem 3.5. For any R ∈ {Rmi n , . . . ,K } and d = K −R, let r = [r1, . . . ,rN ]T denote the output

rate vector of Algorithm 3 with input PDM E and d, then K (R) =∑N
i=1 wi ri .

The details of the proof of Theorem 3.5 are given in Appendix 3.8.1, but for a brief outline, we

may observe that for any other rate vector which has the same sum rate as the rate vector r

output by Algorithm 3, we must have either (1) if it can achieve universal recovery, it has equal

or larger weighted cost than r; or (2) it cannot achieve universal recovery, hence it should not

be considered.

Remark 3.4. In words, Theorem 3.5 says that the output rate vector of Algorithm 3 is the optimal

rate vector which has the minimum weighted cost among all the rate vectors which have sum

rate R and can achieve universal recovery.
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Algorithm 3 Search (d ,K )-Basis (SdB)

1: Input: E = [e1, . . . ,eN ]T (wi ≤ w j ∀i ≤ j ) and d .
2: Output: True, r, V or False.
3: Initialization: Q =;, V =;, r = [r1, . . . ,rN ]T = 01×N .
4: for i : i ∈ {1, . . . , N } do
5: for b ∈B(ei ,d) do
6: if b 6∈G (Q,d) then
7: ri = ri +1
8: V = V∪ {b}
9: while ∃S ⊆ Q, |S| ≤ 2 : (3.49) holds do

wH (qS ∨b) ≤ ∑
qi∈S

wH (qi )+wH (b)−|S|d (3.49)

10: b = b ∨qS, Q = Q \ S
11: end while
12: Q = Q∪ {b}
13: end if
14: if |V| = K −d then
15: return True, r and V
16: end if
17: end for
18: end for
19: return False
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Comparing to Algorithm 1 which checks the existence of any balanced (d ,K )-Basis for the

basic cooperative data exchange problem and outputs the corresponding (d ,K )-Basis vectors

if they exist, Algorithm 3 requires that the input PDVs be ordered according to their weights.

The nodes with smaller weights have smaller indices. The node with the smallest weight

would be selected to generate as many (d ,K )-Basis vectors as it can. Then, the nodes with

larger weights would be selected to generate (d ,K )-Basis vectors that can not be generated by

previous nodes. We show that by ordering the input PDVs in ascending order of their weights,

Algorithm 3 can find the optimal rate vector and corresponding (d ,K )-Basis vectors which

can achieve universal recovery by using K −d transmissions and has the minimum overall

weighted cost. The ordering of the PDVs according to their weights can be done before the

start of Algorithm 3 and only requires complexity O (N log(N )). As compared to the complexity

of searching the existence of a (d ,K )-Basis, which is O (N 3K 3), the complexity of pre-ordering

nodes can be ignored.

Now we have a method to get the optimal solution to the sub-optimization problem (3.47). In

order to get the globally optimal solution to the optimization problem (3.48), it is sufficient

to only consider the rate vectors that are output by Algorithm 3 with different values of input

parameter d (d = K −R). However, it is not necessary to run Algorithm 3 with all possible

R ∈ {Rmi n , . . . ,K }, by leveraging convexity of the function K (R) which is stated by the following

theorem. Hence the optimal weighted cost and rate vector can be found by a binary search

style method.

Theorem 3.6. For Rmi n ≤ R ≤ K , the function defined by (3.47): K (R) = minr∈Ω,S (r)=R
∑N

i=1 wi ri

is convex.

The proof is given in Appendix 3.8.2. To prove Theorem 3.6, it is sufficient to only consider

coding schemes with rate vectors output by Algorithm 3, since they are the conditionally

optimal solution for fixed sum rate R. In particular, we exploit some properties of the rate

vector output by Algorithm 3 to show that the second order difference of K (R) is non-negative,

i.e. K (R +2)+K (R)−2K (R +1) ≥ 0. By induction, we prove that K (R) is a convex function

of R.

Remark 3.5. In [6], it has been proved that the function K (R) defined in (3.47) is convex for

Rmi n ≤ R ≤ K for a relaxed condition where each entry of r = [r1, . . . ,rN ]T can be non-integer

rate vector. However, the entries of the rate vector should always be integers for the cooperative

data exchange problem. The improvement of our theorem is that we prove that for integer rate

vectors, the function K (R) defined in (3.47) is still convex for Rmi n ≤ R ≤ K .

Since the function K (R) is a convex function, it is not necessary to search all possible R to get

the optimal solution to optimization problem (3.48). We propose Algorithm 4 to compute the

minimum weighted cost by using a binary search method.

The complexity of the binary search of Algorithm 4 is approximately O (log(K )). Hence, the

overall complexity of our two algorithms is O (N 3K 3 log(K )) which is the same complexity as
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Algorithm 4 Finding r∗ and C ∗ using Binary Search Algorithm

1: Input: E = [e1, . . . ,eN ]T, K and w = [w1, . . . , wN ]T such that (wi ≤ w j ∀i ≤ j )
2: Output: r∗ and C ∗

3: Initialization: dst ar t = 0, dend =M

4: while dst ar t < dend do
5: d = max{bdst ar t+dend

2 c,dst ar t +1}
6: (F,r,V) = SdB(E ,d)
7: if F is False then
8: dend = d
9: else

10: d̂ = d −1
11: (F̂ , r̂, V̂) = SdB(E , d̂)
12: if wT · r > wT · r̂ then
13: dend = d̂ , r∗ = r̂
14: else
15: dst ar t = d , r∗ = r
16: end if
17: end if
18: end while
19: R∗ = K −d , C ∗ = wT · r

the complexity of algorithms for the basic cooperative data exchange problem6.

Example 3.7. On applying Algorithm 3 on Example 3.6 for d = {0,1,2,3,4}, we can get the

results as shown in Table 3.1. As can be seen from the table, the minimum cost is achieved by a

Table 3.1 – Sum rate, optimal weighted cost and rate vector

d R=K-d K (R) r1 r2 r3 r4 r5

4 5 29 1 1 1 1 1
3 6 22 2 2 2 0 0
2 7 21 3 3 1 0 0
1 8 23 4 3 1 0 0
0 9 25 5 3 1 0 0

coding scheme that uses 7 transmissions, which is larger than the minimum number of required

transmissions (Rmi n = 5) for achieving universal recovery. Additionally, if we plot the function

K (R) vs R for example 3.6 and connect the points, it is easy to see the convexity in Fig. 3.1.

6If we include the pre-ordering process for the nodes, the overall complexity should be O (N 3K 3 log(K )+
N log(N )). But as we mentioned, the complexity of pre-ordering can be ignored compared to the complexity of
other parts.
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Figure 3.1 – Optimal weighted cost (K (R)) vs Sum rate (R) for Example 3.6.

3.6 Successive Omniscience

In the basic cooperative data exchange problems, all nodes have the same priority and should

be able to recover all packets at the end of the communication phase. In this section, we con-

sider a generalized problem called Successive Local Omniscience (SLO) [12, 74], where nodes

have different priorities. Specifically, let G = {G1, . . . ,GM } be a partition of nodes {1, . . . , N } In

the SLO problem, communication occurs in M rounds, numbered from 1 to M and taking

place in this order, as follows:

• In round i , only the nodes in the set G[i ]
def= ∪i

j=1G j are allowed to transmit.

• After round i , all nodes in the set G[i ] must be able to recover all packets that were

initially present at all the nodes in the set G[i ].

In this sense, if i < k, then nodes in Gi can be thought of as having priority over nodes in Gk

(although in the general case, no node is guaranteed to attain full omniscience of all packets

before the end of the last round).

Let ri = [r i
1, . . . ,r i

N ]T denote the accumulated rate vector up to and including the i th round,

where each r i
j denotes the total number of transmissions made by node j from the first round

to the i th round. The corresponding entries of rate vectors ri and ri+1 satisfy r i
j ≤ r i+1

j for

every node j ∈ {1, . . . , N }. Let Ω(G[i ]) be the set of rate vectors up to and including the i th

communication round satisfying∑
j∈G[i ]\I

r i
j ≥

∣∣XG[i ] \ XI

∣∣ ,∀I (G[i ] (3.50)

Then we have the following lemma characterizing solutions to the SLO problem:

Lemma 3.6. Any solution to the SLO problem is also a solution to the following multi-objective
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linear program:

min
ri∈Ω(G[i ])

N∑
j=1

r i
j ,∀i ∈ {1, . . . , M } (3.51)

Proof. For any i ∈ {1, . . . , M }, rate vectors ri ∈Ω(G[i ]) satisfy the Slepian-Wolf constraints for

achieving local omniscience and only nodes in G[i ] are allowed to make transmissions. The

minimization gives the minimum sum rate. Thus, for M communication rounds, the overall

optimal solutions achieve successive local omniscience.

In this section, we present an efficient solution of the SLO problem via the (d ,K )-Basis method.

Let EG[i ] denote the packet distribution matrix of the nodes in G[i ]. If we run Algorithm 2 with

EG[i ] as input in the subspace indexed by the collectively available packets of G[i ], it will return

the minimum number of required transmissions for achieving local omniscience as well as the

corresponding (d ,Ki )-Basis vectors. Algorithm 2 can be called for every EG[i ] , ∀i ∈ {1, . . . , M }

and we can get the di -Basis vectors for local omniscience achieved by each G[i ]. If di ≥ di+1,

the (di ,Ki )-Basis vectors can also be used to generate (di+1,Ki+1)-Basis vectors by adding 0’s

to the dimensions that are added by packets in XG[i+1] \ XG[i ] . If di < di+1, the (di ,Ki )-Basis

vectors cannot be used to generate (di+1,Ki+1)-Basis vectors. Hence, the optimal strategy is to

use the coding scheme based on (di ,Ki )-Basis in the subspace indexed by packets of XG[i+1] so

that every transmission used in the previous round are useful in the current round.

Theorem 3.7. For successive local omniscience problem with G[i ] and corresponding packet

distribution submatrix EG[i ] , for i ∈ {1, . . . , M }, the minimum number of required transmissions

R∗
i for round i is

R∗
i = Ki −min{Mi ,d∗

1 , . . . ,d∗
i }, (3.52)

where Ki = |XG[i ] | denotes the number of packets collectively available at nodes in G[i ], Mi =
min j∈G[i ] |X j | is the minimum number of available packets at any single node in G[i ] and d∗

i is

the maximum (d ,Ki )-Basis that can be generated by PDVs of nodes in G[i ].

Proof. For the first round, R∗
1 = K1 −min{M1,d∗

1 }, according to Theorem 3.3. For the i th

round, since G[ j ] ⊂ G[i ], ∀ j < i , Mi ≤ M j . According to Theorem 3.3, nodes in G[i ] can

generate a coding scheme which is based on the {Mi ,d∗
i }-Basis and can achieve the local

omniscience. If d∗
i = min{d∗

1 . . . ,d∗
i }, and all transmissions used in previous rounds can also

be used as the transmissions of coding schemes based on the {Mi ,d∗
i }-Basis. Thus, in the

i th round, only additional transmissions are required and the total minimum number of

required transmissions for achieving local omniscience is R∗
i = Ki −min{Mi ,d∗

i }. If d∗
j =

min{d∗
1 . . . ,d∗

i } and j < i , then transmissions generated in the j th round cannot all be used

for the coding scheme based on the {Mi ,d∗
i }-Basis. In order to make use of all previously

generated transmissions, the coding scheme based on {Mi ,d∗
j }-Basis can be used to achieve
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local omniscience for nodes in G[i ] and the total number of required transmissions is R∗
i =

Ki − {Mi ,d∗
j }. Therefore, R∗

i = Ki −min{Mi ,d∗
1 , . . . ,d∗

i }.

We propose Algorithm 5 to compute the minimum number of required transmissions (R∗
i ) and

the local optimal rate vector (r∗i ) for nodes in each group with different priorities. Algorithm 5

iteratively calls Algorithm 1 to search for the existence of a (d ,Ki )-Basis that can be generated

for linear coding schemes to achieve local omniscience.

Algorithm 5 Successive Local Omniscience

1: Input: E = [e1, . . . ,eN ]T and G = {G1, . . . ,GM }
2: Output: R∗

1 , . . . ,R∗
M and r∗1 , . . . ,r∗M

3: Initialization: d∗ = K
4: for i = 1. . . M do
5: dmi n = 1, dmax = min{Mi ,d∗}
6: (F,r,V) = SdB(EG[i ] ,dend )
7: if F is True then
8: d∗

i = dmax , V∗
i = V, r∗i = r

9: else
10: (F,r,V) = SdB(EG[i ] ,dmi n)
11: if F is False then
12: d∗

i = 0, V∗
i = IKi

13: else
14: while dmax −dmi n > 1 do
15: d = bdmi n+dmax

2 c
16: (F,r,V) = SdB(E ,d)
17: if F is True then
18: dmi n = d , d∗

i = d , V∗
i = V, r∗i = r

19: else
20: dmax = d
21: end if
22: end while
23: end if
24: end if
25: d∗ = d∗

i , R∗
i = Ki −d∗

i
26: end for

Based on the (d ,Ki )-Basis vectors V∗
i and local optimal rate vector r∗

i , the corresponding linear

coding scheme can be generated to achieve local omniscience. Instead of generating linear

coding schemes for each communication round individually, it is possible to globally generate

a linear coding scheme in which the first R∗
i transmissions can achieve local omniscience.

Regarding the complexity of our approach, in each communication round, the minimum

number of required transmissions and the accumulated rate vector is found by using binary

search method and iteratively calling Algorithm 1. The total number of outer iterations is

equal to the number of priority groups, M . The binary search method for the i th round has
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complexity bounded by O (log(Ki )). For the i th round, Algorithm 1 has complexity bounded

by O (|Gi |3K 3
i ), since the number of new nodes and packets considered in the i th round

are |Gi | and Ki , respectively. We note that for algorithm 1, the nodes in G[i−1] have already

been checked in previous interations and the basis vectors generated by them in previous

iterations can be reused in current iteration. Hence, we do not need to check them again.

Therefor, the total number of computation can be expressed as
∑M

i=1 |Gi |3K 3
i log(Ki ). Since ∀i :

|G[i ]| ≤ N , Ki ≤ K and
∑M

i=1 |Gi | = N , we have
∑M

i=1 |Gi |3K 3
i log(Ki ) ≤ N 2K 3 log(K )

∑M
i=1 |Gi | =

N 3K 3 log(K ). The overall complexity of our (d ,K )-Basis method for solving SLO problem is

bounded by O (N 3K 3 log(K )).

Example 3.8. Consider the successive local omniscience problem with the following packet

distribution matrix

E =



1 1 1 1 0 0 0 0 0

0 1 1 1 1 0 0 0 0

1 1 0 0 0 1 0 0 0

0 0 1 1 0 0 1 0 0

1 0 1 1 1 1 1 1 0

1 1 1 1 1 0 1 0 1


(3.53)

And the nodes are partitioned into three groups with decreasing priorities: G1 = {1,2}, G2 = {3,4}

and G3 = {5,6}. Since nodes in G1 collectively only have packets P1, . . . ,P5, the optimization for

the first communication round is equivalent to the basic CDE problem with packet distribution

matrix EG1 , which is a submatrix of the first two rows and five columns of E.

EG1 =
[

1 1 1 1 0

0 1 1 1 1

]
(3.54)

It is apparent that only two transmissions are required to achieve local omniscience for G1.

Consider the following two coding schemes:

• Coding scheme 1: Node 1 sends P1 and Node 2 sends P5.

• Coding scheme 2: Node 1 sends P1 +P2 +P3 +P4 and Node 2 sends P2 +P3 +P4 +P5.

In Coding scheme 1, each transmission is a linear combination of as few packets as possible,

while in Coding scheme 2, each transmission is a linear combination of as many packets as

possible. Both coding schemes can enable two nodes to fully recover packets that are collectively

available at them. However, we will show that Coding scheme 1 is suboptimal but Coding

scheme 2 is optimal. In the second communication round, the goal is to enable node in G[2]

to recover packets which are collectively available at them. Similarly, we have the packet
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distribution matrix EG[2] , which is a submatrix of the first four rows and seven columns of E.

EG[2] =


1 1 1 1 0 0 0

0 1 1 1 1 0 0

1 1 0 0 0 1 0

0 0 1 1 0 0 1

 (3.55)

If we treat this as a packet distribution matrix of a basic CDE problem, it is easy to find that

the minimum number of required transmission is 5, since the (2,7)-Basis is the (d ,7)-Basis

with largest d value that can be generated by row vectors of EG[2] . And this implies that in the

successive local omniscience problem, the total number of required transmissions is at least 5.

If we choose Coding scheme 1 in the first transmission round, the packet distribution matrix

becomes

ÊG[2] =


1 1 1 1 1 0 0

1 1 1 1 1 0 0

1 1 0 0 1 1 0

1 0 1 1 1 0 1

 (3.56)

As the row vectors of ÊG[2] can only generate a (3,7)-Basis which has largest d value, 4 transmis-

sions are required in the second communication round to achieve local omniscience for nodes in

G[2]. Hence, the total number of transmissions for the first and second rounds is 2+4 = 6 which

is larger than the lower bound 5. However, if Coding Scheme 2 is chosen in the first round, it is

possible to generate a coding scheme based on (2,7)-Basis in which the first two transmissions

achieve local omniscience for nodes in G1. The desired (2,7)-Basis generated by EG[2] is
v1

v2

v3

v4

v5

=


1 1 1 1 0 0 0

0 1 1 1 1 0 0

0 1 1 1 1 0 0

1 1 0 0 0 1 0

0 0 1 1 0 0 1

 (3.57)

As one can see the first 5 columns of v1 and v2 can actually form a (3,5)-Basis. And the coding

scheme based on them can achieve local omniscience for nodes in G1. Similarly, we can show

that 2 transmissions are required in the third communication round to achieve omniscience

for nodes in G[3]. Instead of generating coefficients for linear combinations of packets for each

round individually, we can deal with them together by constructing a linear coding scheme

based on the final (d ,K )-Basis we need, which is a (2,9)-Basis in this case. Given the rate vector

in each round:

r1 = [1,1,0,0,0,0]T (3.58)

r2 = [0,1,1,1,0,0]T (3.59)

r3 = [0,0,0,0,1,1]T (3.60)
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And the (2,9)-Basis that generated by row vectors of E

v1

v2

v3

v4

v5

v6

v7


=



1 1 1 1 0 0 0 0 0

0 1 1 1 1 0 0 0 0

0 1 1 1 1 0 0 0 0

1 1 0 0 0 1 0 0 0

0 0 1 1 0 0 1 0 0

1 0 1 1 1 1 1 1 0

1 1 1 1 1 0 1 0 1


(3.61)

By using the coding construction method based on MDS code in Section 3.4, we can get a coeffi-

cient matrix as follows, where all entries are over finite field GF (24) with primitive polynomial

α4 +α+1. 

a1

a2

a3

a4

a5

a6

a7


=



4 7 3 1 0 0 0 0 0

0 8 12 3 2 0 0 0 0

0 13 13 2 2 0 0 0 0

15 8 0 0 0 1 0 0 0

0 0 4 5 0 0 10 0 0

10 0 9 9 5 5 5 5 0

9 4 1 1 1 0 1 0 1


(3.62)

It can be verified that the first 2 transmissions achieve local omniscience for nodes in G1, the

first 5 transmissions achieve local omniscience for nodes in G[2], and all transmissions together

achieve omniscience for nodes in G[3] (all nodes).

3.7 Conclusion

In this chapter, we introduce the concept of (d ,K )-Basis. We establish that the existence of

such a basis is both a necessary and sufficient condition for the existence of coding schemes

that can achieve universal recovery with K −d transmissions for the fully connected network.

We provide a polynomial-time deterministic algorithm based on the (d ,K )-Basis construction

which solves the cooperative data exchange problem. We show that we can efficiently construct

the coefficients of an optimal linear coding scheme starting from a Vandermonde matrix by

levering the connection between the (d ,K )-Basis and maximum distance separable codes.

Moreover, we demonstrate that our (d ,K )-Basis construction method can also be used in

solving generalized versions of the cooperative data exchange problem, including CDE with

weighted cost and with successive local omniscience.
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3.8 Appendix

3.8.1 Proof of Theorem 3.5

In order to prove Theorem 3.5, we first prove two useful Lemmas.

Lemma 3.7. Let r∗ = [r∗
1 ,r∗

2 , . . . ,r∗
N ]T denote the rate vector output by Algorithm 3. For any rate

vector r = [r1, . . . ,rN ]T such that r ∈Ω and S (r∗) = S (r), there does not exists any node pair

(i , j ) such that i < j , ri > r∗
i and r j < r∗

j .

Proof. If the coding scheme with rate vector r can achieve universal recovery and uses the

same total number of transmissions, then the coding scheme can be implemented as a (d ,K )-

Basis based coding scheme which has the same d value as the coding scheme with rate vector

r∗. As Algorithm 3 guarantees that ∀i ∈ {1, . . . , N }, if r∗
i > 0, then there must exist as many as∑N

j=i r∗
j (d ,K )-Basis vectors that cannot be generated by nodes in set {1,2, . . . , i −1}. If ∃i < j

such that, ri > r∗
i and r j < r∗

j , then
∑N

j=i r j <∑N
j=i r∗

j which is not possible as such vectors can

only be generated by nodes in set {i , i +1. . . , N }. Hence, it is impossible that ∃i < j : ri > r∗
i and

r j < r∗
j .

Lemma 3.8. Let r∗ = [r∗
1 ,r∗

2 , . . . ,r∗
N ]T denote the rate vector output by Algorithm 3. If there

exists a coding scheme with rate vector r = [r1, . . . ,rN ]T such that r ∈Ω, S (r∗) =S (r), and there

exists node pair (i,j) such that i < j , ri < r∗
i and r j > r∗

j , then C (r) ≥C (r∗).

Proof. Let S1 = {i : ri < r∗
i }, S2 = { j : r j > r∗

j } and S3 = {k : rk = r∗
k }. Since S (r∗) = S (r) , we

have

0 =
N∑

i=0
(ri − r∗

i ) = ∑
i∈S1

(ri − r∗
i )+ ∑

j∈S2

(r j − r∗
j )+ ∑

k∈S3

(rk − r∗
k ) (3.63)

= ∑
i∈S1

(ri − r∗
i )+ ∑

j∈S2

(r j − r∗
j ) (3.64)

Hence, for each i ∈ S1 that sends one less transmission, there must exist one corresponding

j ∈ S2 which sends one more transmission. According to Lemma 3.7, if there exists such pair

of (i , j ), it must satisfy i < j and wi < w j . Let P = ∑
i∈S1

(r∗
i − ri ) = ∑

j∈S2
(r j − r∗

j ) denote the

total number of such pairs and P denote the partition of such pairs. Therefore,

C (r)−C (r∗) =
N∑

i=0
wi ri −

N∑
i=0

wi r∗
i (3.65)

= ∑
i∈S1

wi (ri − r∗
i )+ ∑

j∈S2

w j (r j − r∗
j ) (3.66)

= ∑
(i , j )∈P

(w j −wi ) (3.67)

≥ 0 (3.68)
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Now, we are ready to prove Theorem 3.5.

Proof of Theorem 3.5. If there exists any linear coding scheme that achieves universal recov-

ery by using K −d transmissions with rate vector r = [r1, . . . ,rN ]T (
∑N

i=i ri = K −d), it is always

possible to generate a corresponding linear coding scheme based on the (d ,K )-Basis that have

the same rate vectors [73]. Hence, they have the same weighted cost and we can only consider

the coding schemes based on (d ,K )-Basis. Let r∗ = [r∗
1 , . . . ,r∗

N ]T denote the rate vector output

by Algorithm 3. According to Lemma 3.7, there does not exist any i < j such that r j < r∗
j .

Additionally, since S (r∗) =S (r), if rate vector r is different from r∗, the change can only be

∃i < j : ri < r∗
i and r j > r∗

j . According to Lemma 3.8, C (r) ≥C (r∗). Therefore, the rate vector

output by Algorithm 3 has the minimum weighted cost in all coding schemes which use K −d

transmissions and achieve universal recovery.

3.8.2 Proof of Theorem 3.6

In order to prove Theorem 3.6, we first prove two useful Lemmas.

Lemma 3.9. Let r(l ) be the rate vector output by Algorithm 3 for input E and d = K −l . Thus, r(l )

is the optimal rate vector with minimum weighted cost among all the rate vectors with S (r) = l .

For the coding schemes which have rate vectors r(l ) = [r(l ,1), . . . ,r(l ,N )]
T with l ∈ {Rmi n , . . . ,K }

yielded by Algorithm 3,we have

(1) r(l+1,1) = r(l ,1) +1.

(2) r(l+1,m) ≤ r(l ,m) +1, ∀2 ≤ m ≤ N .

(3) If r(l+1,m) < r(l ,m), then r(l+2,m) ≤ r(l+1,m).

Proof. (1) Since in Algorithm 3, we always start the generation of basis vectors from the PDV

of node 1 and there is no previously generated basis vector, then the number of basis vectors

that should be generated by node 1 is

r(l ,1) = wH (e1)−d = wH (e1)−K + l (3.69)

Since Rmi n ≤ l ≤ K and Rmi n = K −min{M ,d∗}, we have 0 ≤ r(l ,1) ≤ wH (e1). We note that

wH (e1) ≥M ≥ K −Rmi n . Therefore, for any feasible l , we have r(l+1,1) = r(l ,1) +1. This means

the first node generates 1 more vector when the total number of transmissions increases by 1.

When r(l ,1) = |X1|, each transmissions is just a pure packet. In such cases, we have d = 0 and

l = K . Universal recovery can always be achieved when all packets have been sent individually.

No coding scheme with more than K transmissions should be considered.
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(2) Similarly, for any 2 ≤ m ≤ N , the total number of feasible basis vectors that can be generated

by node m is wH (em)−K +l . However, some of them may not be compatible with basis vectors

that have been generated by previous nodes. Hence we have

r(l ,m) ≤ wH (em)−K + l (3.70)

And r(l+1,m) ≤ r(l ,m) +1, ∀2 ≤ m ≤ N . This means node m can generate at most 1 more basis

vector when the total number of transmissions increases by 1.

(3) As the total number of transmissions (sum rate) goes from l to l +1, the corresponding

basis change from (K − l )-Basis to (K − l −1)-Basis. Therefore, the number of packets that

are used to generate each transmission decreases by 1. Note that wH (em) ≥ M ≥ K −Rmi n

, ∀m ∈ {1, . . . , N }. When l = Rmi n , nodes m with wH (em) = K −Rmi n are not considered to

generate any basis vector, since every basis vector needs K −Rmi n +1 ones. But when l > Rmi n ,

every node is considered to generate basis vectors. If node i is not used to generate any basis

vector, that means all basis vectors that can be generated by node i are not compatible with

the basis vectors generated by previous nodes. If r(l+1,m) < r(l ,m), that means besides the first

node, there exists at least one node with lower weight than node m that generates more basis

vector(s), i.e. ∃n s.t. n < m and r(l+1,n) > r(l ,n). The set of basis vectors that are generated to

form the (K −l−1)-Basis by node m is a subset of B(em ,K −l ). Let D(m, l+1) denote vectors in

B(em ,K − l ) but are not selected to form the (K − l −1)-Basis. Then every vector in D(m, l +1)

is not compatible with the (K − l −1)-Basis vectors generated by previous nodes. Any vector in

B(em ,K − l −1) which can be generated by vectors in D(m, l +1) is also not compatible with

the (K − l −2)-Basis vectors generated by previous nodes. Hence, the maximum number of

basis vectors that can be generated by node m for the next round is upper-bounded by r(l+1,m).

Therefore, If r(l+1,m) < r(l ,m), then r(l+2,m) ≤ r(l+1,m) , ∀2 ≤ m ≤ N .

Definition 3.9. Let S(l ,↑) denote the set of nodes which generate more number of transmissions

when the sum rate increases from l to l +1. Let S(l ,0) denote the set of nodes which generate the

same number of transmissions when the sum rate increases from l to l +1. Let S(l ,↓) denote the

multiset of nodes that generate fewer transmissions when the sum rate increases from l to l +1.

The multiplicity of node i in S(l ,↓) equals r(l ,i ) − r(l+1,i ).

Lemma 3.10. For ∀Rmi n ≤ l ≤ K −1, we have (1) S(l+1,↑) ⊆ S(l ,↑) and (2) Let W i
l+1 be the i th

largest w ∈ {w j : j ∈ S(l+1,↓)} and W i
l be the i th largest w ∈ {w j : j ∈ S(l ,↓)}. For any W i

l+1, there

exists W i
l such that W i

l+1 ≤W i
l .

Proof. Let r(l ) = [r(l ,1), . . . ,r(l ,N )]
T and r(l + 1) = [r(l ,1), . . . ,r(l+1,N )]

T denote the rate vectors

output by Algorithm 3 for d = K − l and d = K − l −1, respectively. According to Theorem 3.5,

r(l ) and r(l +1) are optimal rate vectors for fixed sum rate l and l +1, respectively.

(1) Assuming that S(l+1,↑) 6⊆ S(l ,↑), then there must exist at least one node k, such that k ∈ S(l+1,↑)
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and k ∉ S(l ,↑). Hence, k must be in S(l ,0) or S(l ,↓). It is apparent that k 6= 1, since the first node

always increases the rate by 1 when the total sum-rate increases by 1. For k ∈ S(l+1,↑) \{1}, there

must always exist a corresponding node m ∈ S(l+1,↓) such that wk < wm .

(i) If k ∈ S(l ,0), we know that r(l+1,k) = r(l ,k). Coding schemes with rate vector r̂(l ) =
[r̂(l ,1), . . . , r̂(l ,N )]

T such that

r̂(l ,k) = r(l+1,k) = r(l ,k) +1 (3.71)

r̂(l ,m) = r(l+1,m) = r(l ,m) −1 (3.72)

r̂(l ,i ) = r(l ,i ),∀i ∈ {1, . . . , N } \ {k,m} (3.73)

can also achieve universal recovery. Moreover, coding scheme with rate vector r̂(l ) has

lower cost than coding scheme with rate vector r(l ). This contradicts that coding scheme

with rate vector r(l ) is optimal for all rate vector with sum rate l .

(ii) If k ∈ S(l ,↓), we know that r(l+1,k) < r(l ,k). According to Lemma 3.9, r(l+1,k) ≤ r(l ,k). This

contradicts our assumption that k ∈ S(l+1,↑).

Therefore, we have S(l+1,↑) ⊆ S(l ,↑).

(2)We use the induction proof method to prove this part of lemma. For i = 1, let W 1
l+1 = wm ,

W i
l = wn . We assume that W i

l+1 > W i
l , then we have wm > wn which implies that m 6∈ S(l ,↓).

Since S(l+1,↑) ⊆ S(l ,↑), coding scheme with rate vector r̂(l ) = [r̂(l ,1), . . . , r̂(l ,N )]
T which satisfies

r̂(l ,m) = r(l ,m) −1 (3.74)

r̂(l ,n) = r(l ,n) +1 (3.75)

r̂(l , j ) = r(l , j ),∀ j ∈ {1, . . . , N } \ {m,n} (3.76)

can also achieve universal recovery with the same sum-rate and has lower weighted cost. This

contradicts that coding scheme with rate vector r(l ) = [r(l ,1), . . . ,r(l ,N )]
T is optimal for all rate

vector with sum rate l . Thus, we have W 1
l+1 ≤W 1

l . For i > 1, assuming that W i−1
l+1 ≤W i−1

l , we

show that W i
l+1 ≤ W i

l . let W i
l+1 = wa , W i

l = wb . If W i−1
l+1 ≤ wb , then it is straightforward that

wa = W i
l+1 ≤ W i−1

l+1 ≤ wb = W i
l . If W i−1

l+1 > wb , and we assume that wa > wb . In such cases,

a 6∈ S(l ,↓), since wa ≤ W i−1
l+1 ≤ W i−1

l . By using a similar trick as we used for i = 1, it is able to

show that there exists another coding scheme which achieves universal recovery and has

a lower sum weighted cost. Hence the assumption wa > wb can never be true. Therefore,

W i
l+1 ≤W i

l .

Now we are ready to prove Theorem 3.6.

Proof of Theorem 3.6. For any Rmi n ≤ l ≤ K −2, we show that the second order difference of
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K (l ) is non-negative, i.e. F (l +1)−F (l ) ≥ 0, where F (l ) =K (l +1)−K (l ). We compute the

difference of the weighted cost of two coding schemes when sum-rate increases by 1.

F (l +1) =K (l +2)−K (l +1) (3.77)

= ∑
i∈S(l+1,↑)

wi −
∑

i∈S(l+1,↓)

wi (3.78)

= w1 +
∑

i∈S(l+1,↑)\{1}
wi −

∑
i∈S(l+1,↓)

wi . (3.79)

According to Lemma 3.9, node 1 always generates 1 more transmission when the total number

of transmissions increases by 1. And for other nodes, if their rate increases, the increment

is 1, whereas if their rate decreases, the decrement can be more than 1. And the number of

multiplications of the nodes in S(l+1,↓) is equal to the decrease in rate. Similarly, for sum-rate

change from l to l +1, we have

F (l ) =K (l +1)−K (l ) = w1 +
∑

i∈S(l ,↑)\{1}
wi −

∑
i∈S(l ,↓)

wi . (3.80)

The reason why node 1 is separated from other nodes is that the total number of transmissions

only increases by 1, which implies that the total number of transmissions sent by other nodes,

except node 1, remains the same. Hence

|S(l ,↑) \ {1}| = |S(l ,↓)| (3.81)

|S(l+1,↑) \ {1}| = |S(l+1,↓)| (3.82)

Therefore, ∀i ∈S(l ,↑) \ {1}, ∃ j ∈S(l ,↓) such that wi < w j . We can construct a partition of node

pairs (i , j ), where i ∈S(l ,↑) \ {1} and j ∈S(l ,↓) as follows

P (l ) = {(i , j ) : i ∈S(l ,↑) \ {1}, j ∈S(l ,↓), i < j } (3.83)

Note that the number of node pairs in P (l ) is equal to |S(l ,↑) \ {1}|. Then we have

F (l ) = w1 +
∑

(i , j )∈P (l )
(wi −w j ) (3.84)

where every term of the summation (wi −w j ) is negative.

We show that for each pair (i , j ) ∈P (l +1), there always exists a pair (î , ĵ ) ∈P (l ) such that

wi −w j − (w î −w ĵ ) ≥ 0 (3.85)

Assuming that there exists a node pair (i , j ) ∈P (l +1) such that for all possible pairs (î , ĵ ) ∈
P (l ):

wi −w j − (w î −w ĵ ) < 0 (3.86)
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Equivalently, we have

wi −w j < max
î∈S(l ,↑), ĵ∈S(l ,↓)

(w î −w ĵ ) (3.87)

If i ∈ S(l ,↑), then w j > max ĵ∈S(l ,↓)
w ĵ , which contradicts Lemma 3.10. If i 6∈ S(l ,↑), consider

another coding scheme with rate vector r = [r1,r2, . . . ,rN ]T such that

ri = r(l+1,i ) +1,r j = r(l+1, j ) −1 (3.88)

r î = r(l+1,î ) −1,r ĵ = r(l+1, ĵ ) +1 (3.89)

rm = r(l+1,m),∀m 6∈ {i , j , î , ĵ } (3.90)

It can be verified that this coding scheme can also achieve universal recovery with total

l + 1 transmissions. It has lower weighted cost than the coding scheme with rate vector

[r(l+1,1), . . . ,r(l+1,N )]
T, which contradicts that coding scheme with rate vector [r(l+1,1), . . . ,r(l+1,N )]

T

has the minimum weighted cost over all coding schemes that achieve universal recovery with

l +1 transmissions. Starting form the node pair (i , j ) with largest j , we can apply this binding

for every (i , j ) and remove used (î , ĵ ) iteratively. And it is able to find (î , ĵ ) ∈P (l ) such that

Eqn (3.85) is satisfied for every pair (i , j ) ∈P (l +1). Hence, we have

F (l +1)−F (l )

= ∑
(i , j )∈P (l+1)

(wi −w j )− ∑
(m,n)∈P (l )

(wm −wn) (3.91)

= ∑
(i , j )∈P (l+1),(î , ĵ )∈P (l )

[(wi −w j )− (w î −w ĵ )]

− ∑
(m,n)∈P (l )\{Q}

(wm −wn) (3.92)

≥ 0 (3.93)

where every (wi −w j )− (w î −w ĵ ) ≥ 0, every wm −wn < 0 and Q is the set of node pairs (î , ĵ )

that are used in the first summation. Hence, the function K (l ) = minr∈Ω,S (r)=l
∑N

i=1 wi ri is

convex.
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4 Single-Server Multi-Message PIR with
Side Information

In the information-theoretic private information retrieval problem, one user wishes to down-

load one or multiple messages from a database, which is stored at one or multiple servers, and

requires that the server(s) should not be able to infer any information about which message(s)

the user wants to download. If the database is only stored at a single server (or equivalently

multiple colluding servers) and no side information is available, the user has to download the

whole database to achieve the information-theoretic privacy. However, it has been shown that

the information-theoretic privacy can be achieved without downloading the whole database

under either of the following conditions: (1) the database is stored in multiple non-colluding

servers [22]; (2) the user possesses some messages as side information [49]. In this chapter, we

investigate the extended case for private information retrieval with side information, which is

multi-message single-server private information retrieval with side information. We establish

the capacity for this problem by presenting the proof for the converse and proposing an

achievability coding scheme.

4.1 Problem Statement

In the single-server multi-message private information retrieval with side information prob-

lem, it is assumed that there exists a database consisting of K messages, denoted by X1:K =
{X1, . . . , XK }. The database is only stored at a single server. The random variable of the mes-

sages, Xi ’s for all i ∈ {1, . . . ,K }, are assumed to be independent from each other and consists of

L bits, i.e.,

H(X1) =·· · = H(XK ) = L, (4.1)

H(X1, . . . ,XK ) =H(X1)+·· ·+H(XK ). (4.2)

Let W1:N = {W1, . . . ,WN } ⊆ {1, . . . ,K } denote the set of indices of the demand messages and let

S1:M = {S1, . . . ,SM } ⊆ {1, . . . ,K }\W1:N denote the set of indices of the side information messages.

The user initially possesses M messages, denoted by XS1:M = {XS1 , . . . , XSM }, as side information

messages and wants to download N messages, denoted by XW1:N = {XW1 , . . . , XWN }, from the
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Chapter 4. Single-Server Multi-Message PIR with Side Information

server. We assume that the server only knows the number (M) of side information that the user

has but does not know the set of indices S1:M of those side information messages. For each

n ∈ {1, . . . , N }, let Wn denote the random variable for demand index Wn . For each m ∈ {1, . . . , M },

let Sm denote the random variable for side information index Sm . Let W1:N = {W1, . . . ,WN }

denote the random variable for the set of the random variables for the demand indices and

S1:M = {S1, . . . ,SM } denote the random variable for the set of the random variables for the side

information indices. We assume that W1:N is uniformly distributed over all subsets of {1, . . . ,K }

with size N , i.e.,

Pr(W1:N =W1:N ) = 1(K
N

) , ∀W1:N ⊆ {1, . . . ,K }, |W1:N | = N . (4.3)

Additionally, we assume that S1:M is conditionally uniformly distributed over all subsets of

{1, . . . ,K } \ W1:N , i.e.,

Pr(S1:M = S1:M |W1:N =W1:N ) =


1(K−N
M

) , ∀S1:M ⊆ {1, . . . ,K } \W1:N , |S1:M | = M ,

0, otherwise.

(4.4)

The goal of the user is to retrieve the demand messages XW1:N from the server and still keeps

the indices W1:N private from the server. To achieve this goal, the user generates and sends

a query to the server and the server. Let Q [W1:N ,S1:M ] denote a query generated for demand

indices W1:N and side information indices S1:M and let Q[W1:N ,S1:M ] denote the random variable

for Q [W1:N ,S1:M ]. We assume that the query is generated from a (stochastic) function of the

indices W1:N and S1:M and is independent of all messages, i.e.,

H(Q[W1:N ,S1:M ]|X1:K ) = H(Q[W1:N ,S1:M ]) (4.5)

We also use the notation Q to denote a query realization that is generated without specifying

the demand side information indices. When the server receives query realization Q [W1:N ,S1:M ],

it generates and sends back the answer string A[W1:N ,S1:M ], which is a deterministic function of

Q [W1:N ,S1:M ] and all messages. Let A[W1:N ,S1:M ] denote the random variable of A[W1:N ,S1:M ], which

should satisfy

H(A[W1:N ,S1:M ]|Q[W1:N ,S1:M ],X1:K ) = 0. (4.6)

We note that given the query realization Q, the random variable of answer string, A, is still

not determined since the messages are random variables. The query Q[W1:N ,S1:M ] is from an

alphabet Q and the answer string A[W1:N ,S1:M ] is from an alphabet A . The PIR scheme is the set

of all queries and answer strings.

Let D denote the number of download bits from the server for any coding scheme satisfying
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above requirements., which can be computed as

D =H(A[W1:N ,S1:M ]|Q[W1:N ,S1:M ],W1:N ,S1:M ) (4.7)

=E(W1:N ,S1:M )∼(W1:N ,S1:M )
[
H(A[W1:N ,S1:M ]|Q[W1:N ,S1:M ],W1:N =W1:N ,S1:M = S1:M )

]
(4.8)

=H(A[W1:N ,S1:M ]|Q[W1:N ,S1:M ],W1:N =W1:N ,S1:M = S1:M ) (4.9)

where Equation (4.9) is because the number of download bits is independent of the realizations

of demand and side information indices.

The rate of such coding scheme is defined as follows.

R = lim
L→∞

L

D
, (4.10)

where L is the number of bits per message. The capacity is the supreme of all achievable rates.

We use C (K .M , N ) to denote the capacity for single-server multi-message private information

retrieval with side information problem, which has K messages, M side information messages

and N demand messages.

C (K , M , N ) = sup lim
L→∞

L

D
. (4.11)

4.1.1 Retrieval and Privacy Conditions

For any demand indices W1:N and side information indices S1:M , any generated query Q [W1:N ,S1:M ]

and corresponding answer string A[W1:N ,S1:M ] should permit decoding of the demand messages

XW1:N with side information messages XS1:M . Hence, the random variables of query and answer

string, Q[W1:N ,S1:M ] and A[W1:N ,S1:M ], should satisfy:

H(XW1:N |A[W1:N ,S1:M ],Q[W1:N ,S1:M ],XS1:M ) = 0,∀W1:N ⊆ {1, . . . ,K },∀S1:M ⊆ {1, . . . ,K } \W1:N . (4.12)

We refer to Condition (4.12) as the retrieval condition for single-server multi-message PIR with

side information.

Besides, private information retrieval requires that the server should not be able to infer any

information about the indices of the demand messages, which requires the query to satisfy:

I (W1:N ;Q[W1:N ,S1:M ]) = 0. (4.13)

By using the chain rule of mutual information, we can get

I (W1:N ;A[W1:N ,S1:M ],Q[W1:N ,S1:M ],X1:K ) =I (W1:N ;X1:K )+ I (W1:N ;Q[W1:N ,S1:M ]|X1:K )

+ I (W1:N ;A[W1:N ,S1:M ]|Q[W1:N ,S1:M ],X1:K ) (4.14)

=I (W1:N ;Q[W1:N ,S1:M ]). (4.15)
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Equation (4.15) is because random variables of demand indices W1:N are independent of the

random variable of messages X1:K , i.e., I (W1:N ;X1:K ) = 0, the answer string is deterministic

given query and all messages, i.e., H (A[W1:N ,S1:M ]|Q[W1:N ,S1:M ],X1:K ) = 0. Hence, the answer string,

query and all messages must satisfy:

I (W1:N ;A[W1:N ,S1:M ],Q[W1:N ,S1:M ],X1:K ) = 0. (4.16)

We refer to Condition (4.16) as the privacy condition for the single-server multi-message PIR

with side information.

For any fixed W1:N ⊆ {1, . . . ,K } and S1:M ⊆ {1, . . . ,K }\W1:N , the probability of choosing query Q ∈
Q and corresponding answer string A ∈A , denoted by Pr(A = A,Q =Q|W1:N =W1:N ,S1:M =
S1:M ), is known by the server. Hence, the server can verify privacy condition (4.16) for any

PIR coding scheme. For each query Q j and corresponding answer string A individually, we

cannot determine whether it satisfies the privacy condition or not. But the following necessary

condition can be derived from the privacy condition.

Definition 4.1 (Necessary Condition). The query realization Q and corresponding answer

string A generated for K messages, M side information messages and N demand messages

satisfy the necessary condition, if for any W1:N ′ ⊆ {1, . . . ,K } with |W1:N ′ | = N ′ ≤ N , there exists at

least one corresponding S1:M ′ ⊆ {1, . . . ,K } \W1:N ′ with |S1:M ′ | = M ′ ≤ M such that

H(XW1:N ′ |A,Q =Q,XS1:M ′ ) = 0. (4.17)

.

We note that, according to Definition 4.1, the necessary condition is defined for any single

query and its corresponding answer string. The privacy condition, which is defined for the

coding scheme, is closely related to the necessary condition.

Lemma 4.1. For any query realization Q and corresponding answer string A from a single-server

multi-message PIR with side information coding scheme which satisfies the privacy condition,

Q and A also satisfy the necessary condition defined in Definition 4.1.

Proof. We need to show that for any W1:N ′ ⊆ {1, . . . ,K } with |W1:N ′ | = N ′ ≤ N , there exists

at least one corresponding S1:M ′ ⊆ {1, . . . ,K } \ W1:N ′ with |S1:M ′ | = M ′ ≤ M such that Equa-

tion (4.17) is satisfied. The proof is by contradiction. Suppose there exists W1:N ′ ⊆ {1, . . . ,K }

with |W1:N ′ | = N ′ ≤ N , all S1:M ′ ⊆ {1, . . . ,K } \W1:N ′ with |S1:M ′ | = M ′ ≤ M satisfy

H(XW1:N ′ |A,Q =Q,XS1:M ′ ) > 0. (4.18)

Then, XW1:N ′ cannot be decoded from A given any M side information messages, which implies

that XW1:N ′ cannot be the demand messages. This contradicts the requirement of the privacy

condition.
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This necessary condition for single demand message cases has been mentioned in [49]. We

have the following remarks for Lemma 4.1.

• Although the privacy condition cannot be verified for any particular query Q and corre-

sponding answer string A, the necessary condition in Lemma 4.1 can be verified easily

by checking the existence of S1:M which satisfies Equation (4.18) for every W1:N .

• For the special cases, where N ′ = 1, for any single message XW1 , there always exists at

least one S1:M ⊆ {1, . . . ,K } \ {W1} such that

H(XW1 |A,Q =Q,XS1:M ) = 0. (4.19)

• Since every A and Q can be generated for any W1:N with a proper S1:M , we just use A and

Q instead of A[W1:N ,S1:M ] and Q[W1:N ,S1:N ].

Example 4.1. Consider a single-server multi-message PIR with side information problem which

has parameters K = 9, M = 2, N = 2. Suppose there exists one query realization Q1 and corre-

sponding answer string A1 which satisfies

A1 =



X1 +X2

X2 +X3

X4 +X5

X5 +X6

X7 +X8

X8 +X9


(4.20)

It is easy to verify that Q1 and A1 satisfy the necessary condition in Lemma 4.1. Hence, there

must exist a coding scheme that satisfies the privacy condition and retrieval condition. And A1 is

one of its answer strings. The construction of coding scheme from A1 is present in Section 4.1.2.

Consider another query realization Q2 and corresponding answer string A2 which satisfies

A2 =


X1 +X2 +X3

X4 +X5 +X6

X7 +X8 +X9

 (4.21)

It can be verified that Q2 and A2 do not satisfy the necessary condition in Lemma 4.1, since

decoding X1 and X4 requires 4 messages, which are X2, X3, X5, and X6. However, the number of

side information messages is only 2, which implies that X1 and X4 are not the demand messages.

Thus, we can conclude that A2 can not be one answer string from any coding scheme which

satisfies both privacy condition and retrieval condition.
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4.1.2 Coding Scheme based on One Answer String

Given only one answer string A from a single-server PIR with side information coding scheme,

it is not enough to verify whether the coding scheme satisfies the privacy condition or not.

However, if the given answer string A satisfies the necessary condition of privacy condition

defined in Lemma 4.1, it is possible to construct a single-server PIR with side information

coding scheme based on answer string A.

Without loss of generality, we can express the answer string A as the function of all messages,

i.e.,

A = f (X1,X2, . . . ,XK ) (4.22)

The coding scheme for messages X′
1, . . . ,X′

K can be constructed by the following steps.

1. The user randomly generates a mapping from the demand messages X′
W1:N

to messages

XW ′
1:N

such that

XW ′
1:N

= X′
W1:N

, (4.23)

with the same probability ∀W ′
1:N ⊂ {1, . . . ,K } and |W ′

1:N | = N :

Pr(W′
1:N =W ′

1:N ) = 1(K
N

) . (4.24)

2. Let S′
1:M denote the indices of messages which are required to decode XW ′

1:N
from A. The

user generates the mapping from the side information messages X′
S1:M

to them such that

XS′
1:M

= X′
S1:M

. (4.25)

3. The user randomly maps the messages X′
1:K \ X′

W1:N∪S1:M
to X1:K \ XW ′

1:N∪S′
1:M

.

X′
1:K \ X′

W1:N∪S1:M
= X1:K \ XW ′

1:N∪S′
1:M

. (4.26)

4. The query Q ′ for answer string A′ can be generated by mapping the messages X1:K to

X′
1:K according to previous steps,

A′ = f (X1,X2, . . . ,XK ), (4.27)

where XW ′
1:N

= X′
W1:N

, XS′
1:M

= X′
S1:M

and X′
1:K \ X′

W1:N∪S1:M
= X1:K \ XW ′

1:N∪S′
1:M

.

Lemma 4.2. The constructed coding scheme satisfies both privacy condition and retrieval

condition.

Proof. According to Step 2, messages XW ′
1:N

can be decoded from A given XS′
1:M

as side infor-
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mation, i.e.,

H(XW ′
1:N

|A,XS′
1:M

) = 0. (4.28)

Replacing all X1:K with X′
1:K according to the selected random mapping, we can get

H(X′
W1:N

|A′,X′
S1:M

) = 0. (4.29)

Hence, messages X′
W1:N

can be decoded from A′ given X′
S1:M

as side information, which satisfies

the retrieval condition.

According to Step 1, the probability for any N messages X′
W1:N

to be the demand messages is

the same as the probability of choosing W ′
1:N to be the mapping indices for W1:N , which is the

same for any subset of indices in {1, . . . ,K } of size N . Therefore, the privacy condition is also

satisfied.

Definition 4.2 (Valid Answer String). For any answer string which satisfies the necessary condi-

tion defined in Definition 4.1, we call it a valid answer string, since based on it we can generate

a PIR coding scheme which satisfies both privacy condition and retrieval condition.

Example 4.2. Let us revisit the Example 4.1 and show how to design a PIR coding scheme based

on answer string A1. Suppose we want to construct the query Q3 for demand messages X′
1 and

X′
5 with side information messages X′

4 and X′
6. We first randomly map X′

1 and X′
5 to any two

messages with equal probability. Suppose we choose X3 and X7 and generate the mapping

X3 = X′
1,X7 = X′

5 (4.30)

To decode X3 and X7 from A1, we need to know one message of {X1,X2} and one message of

{X8,X9}. Suppose we choose X2 and X8 and generate the mapping

X2 = X′
4,X8 = X′

6 (4.31)

And we randomly map the other messages as follows

X1 = X′
2,X4 = X′

3,X5 = X′
7,X6 = X′

8,X9 = X′
9 (4.32)

Then the answer string A3 for query Q3 can be expressed as

A3 = f (X′
2,X′

4,X′
1,X′

3,X′
7,X′

8,X′
5,X′

6,X′
9) =



X′
2 +X′

4

X′
4 +X′

1

X′
3 +X′

7

X′
7 +X′

8

X′
5 +X′

6

X′
6 +X′

9


. (4.33)
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It can be verified that given the side information messages X′
4 and X′

6, the demand messages X′
1

and X′
5 can be successfully decoded from A3. We note that besides the demand messages, X′

2 and

X′
9 can also be decoded as by-product. Intuitively, we do not want many of these non-demand

messages to be decodable since each of them cost L extra download bits. However, we will show

that it is inevitable in multi-message private information retrieval with side information.

4.1.3 Conditional Answer String

Given the query realization Q, the answer string A is a deterministic function of all messages

X1:K , which can be expressed as

A = fQ (X1, . . . ,XK ) (4.34)

We note that when the messages X1, . . . ,XK as the input of the function fQ are random variables,

the answer string A as the output should also be a random variable.

Definition 4.3. (Conditional Answer String) For each answer string A and any subset of mes-

sages XK , ∀K ⊆ {1, . . . ,K }, define the conditional answer string of A given XK as

A‖XK = fQ (X1, . . . ,XK |Xi = c,∀i ∈K ), (4.35)

where c is any constant value that the messages can take.

Remark 4.1. Setting the random variables of messages into constant value in the function can

remove the randomness of those random variables. Since the constant value is known to both

user and server, there is no difference between using one constant value or different constant

values for the conditional messages.

Lemma 4.3. For any answer string A that satisfies the necessary condition, i.e., ∀W1:N ′ ⊆
{1, . . . ,K } with |W1:N ′ | = N ′ ≤ N , there exists at least one S1:M ′ ⊆ {1, . . . ,K } \W1:N ′ with |S1:M ′ | =
M ′ ≤ M such that

H(XW1:N ′ |A,Q =Q,XS1:M ′ ) = 0, (4.36)

for any subset of messages XK ⊂ X1:K , the corresponding conditional answer string A‖XK also

satisfies the necessary condition for the messages X1:K \ XK , i.e., ∀W1:N ′ ⊆ {1, . . . ,K } \ K with

|W1:N ′ | = N ′ ≤ N , there exists at least one S1:M ′ ⊆ {1, . . . ,K } \ (W1:N ′ ∪K ) with |S1:M ′ | = M ′ ≤ M

such that

H(XW1:N ′ |A‖XK ,Q =Q,XS1:M ′ ) = 0. (4.37)

Proof. Since the answer string A satisfies the necessary condition in Lemma 4.1, then for

any W1:N ′ ⊆ {1, . . . ,K } with N ′ ≤ N , there must exist at least one S1:M ′ ⊆ {1, . . . ,K } \ W1:N ′ with

M ′ ≤ M such that H(XW1:N ′ |A,Q =Q,XS1:M ′ ) = 0. Then for any W1:N ′ ⊆ {1, . . . ,K } \K , there are

the following two cases.
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1. If S1:M ′ ∩K =;, then there must exist S1:M ′ ⊆ {1, . . . ,K } \ (W1:N ′ ∪K ) such that

H(X1:N ′ |A‖XK ,Q =Q,XS1:M ′ ) ≤H(X1:N ′ |A,Q =Q,XS1:M ′ ) (4.38)

=0 (4.39)

2. If S1:M ′ ∩K = τ 6= ;, then there must exist (S1:M ′ \τ) ⊆ {1, . . . ,K } \ (W1:N ′ ∪K ) such that

H(X1:N ′ |A‖XK ,Q =Q,XS1:M ′\τ) =H(X1:N ′ |A,Q =Q,XS1:M ′\τ,XK ) (4.40)

≤H(X1:N ′ |A,Q =Q,XS1:M ′ ) (4.41)

=0 (4.42)

In both case, for any W1:N ′ , there always exists a subset of indices S∗ ⊆ {1, . . . ,K } \ (W1:N ′ ∪K ),

which can be S1:M ′ or S1:M ′ \τ, such that given XS∗ , XW1:N ′ can be decoded from A‖XK , which

satisfies the necessary condition in Lemma 4.1.

Corollary 4.1. For any valid answer string A for messages X1:K and ∀K ⊂ {1, . . . ,K }, the condi-

tional answer string A‖XK is also a valid answer string for messages X1:K \ XK .

Proof. According to Lemma 4.3, the conditional answer string A‖XK satisfies the necessary

condition for messages X1:K \ XK . Hence it is a valid answer string by Definition 4.2.

Example 4.3. For answer string A1 defined in Equation (4.20). The conditional answer string

A‖X1,2,3 can be expressed as follows:

A‖X1,2,3 =



c + c

c + c

X4 +X5

X5 +X6

X7 +X8

X8 +X9


, (4.43)

where c is any constant value that the messages may take. We note that we can also assign

different constant values to X1,X2,X3, respectively. It can be verified that A‖X1,2,3 satisfies the

necessary condition for X4, . . . ,X9 and hence it is a valid answer string for X4, . . . ,X9.

4.2 The Capacity

Theorem 4.1. For the single-server multi-message private information retrieval with side

information problem with K messages, M side information messages and N demand messages,
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the capacity is

C (K , M , N ) =
(
K −M − (T ∗−N −1)+bM

N
c−Θ

)−1

, (4.44)

where

T ∗ =
⌊

K − (N 2 +M +1)

N +bM
N c

⌋
+N +1, (4.45)

Θ=
(
K −N 2 −N −M − (T ∗−N −1)+(N +bM

N
c)

)+
. (4.46)

Proof. The proofs for the converse and achievability are presented in Section 4.2.1 and Sec-

tion 4.2.2, respectively.

We have the following remarks regarding the formula (4.44).

• It can be verified that the capacity is lower-bounded by (K −M)−1. This is not surprising

since the MDS coding scheme which downloads (K −M)L bits from the server always

satisfies both retrieval condition and privacy condition.

• When N > M , which can be interpreted as the number of demand messages is larger

than the number of side information messages, the capacity is (K −M)−1.

• When N 2 +N ≥ K −M , which can be interpreted as the number of demand messages is

larger than the square root of the number of total messages (except the side information

messages), the capacity is (K −M)−1.

• When N = 1, the multi-message problem degrades into the single-message problem. In

such cases, T ∗ =
⌊

K−(1+M+1)
1+M

⌋
+1+1 = ⌊ K−1

1+M

⌋+1. Since M ≥ 0, it is easy to see that T ∗ can

also be expressed as T ∗ = d K
1+M e. Since N = 1, it can be verified that θ is always positive.

The capacity for special cases when N = 1 can be shown to be C (K , M ,1) = d K
1+M e−1,

which matches the capacity for single-server single-message PIR in [49].

4.2.1 Converse

In this section, we present the proof for the converse of Theorem 4.1. We need to show that

the rate of any coding scheme which satisfies both retrieval condition and privacy condition is

lower-bounded by

R ≥ K −M − (T ∗−N −1)+bM

N
c−Θ. (4.47)

For any query realization Q and corresponding answer string A, the total number of download
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bits can be expressed as

D =H(A|Q =Q) (4.48)

=H(X1:K ,A|Q =Q)−H(X1:K |A,Q =Q) (4.49)

=H(X1:K |Q =Q)+H(A|Q =Q,X1:K )−H(X1:K |A,Q =Q) (4.50)

=K L−H(X1:K |A,Q =Q), (4.51)

where Equation (4.51) is because that query Q = Q is assumed to be independent of the

messages, i.e., H(X1:K |Q = Q) = H(X1:K ) = K L, and according to Equation (4.6), the answer

string A is deterministic given query Q =Q and all messages X1:K .

According to Lemma 4.1, for any single index W ∈ {1, . . . ,K }, there exist at least one S ⊆
{1, . . . ,K } \ {W } such that H(XW |A,Q =Q,XS) = 0. Without loss of generality, we can make the

following assumptions.

1. Decoding XW ( j ) with W j ∈ {1, . . . ,K } from A requires at least |S( j )| messages, denoted by

XS( j ) , as side information.

2. S(1) has the smallest size over all S( j )’s, i.e.,

S(1) ∈ argmin
S( j )

|S( j )| (4.52)

We note that there may be multiple subsets that have the minimum size. Let U (1) denote

the set of indices such that XU (1) can also be decoded given XS(1) as side information. Let

Z1 =W (1)∪U (1)∪S(1) denote the union set of indices1. Equation (4.51) can be further expanded

as follows.

D = K L−H(XZ1 |A,Q =Q)−H(X1:K |A,Q =Q,XZ1 ). (4.53)

We note that according to the assumption for U (1), none of the messages X1:K \ XZ1 can be

decoded given XZ1 .

Similarly, we can construct Zi =W (i )∪U (i )∪S(i ) such that given XZ i−1
1

, decoding XW (i ) requires

the smallest number of side information XS(i ) , and XU (i ) can be decoded at the same time.

1We note that W (1) is a single index instead of a subset of indices. For the ease of notation we still use
W (1) ∪U (1) ∪S(1) to denote the union set {W (1)}∪U (1) ∪S(1).
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Suppose after T iterations, we have Z T
1 = {1, . . . ,K }. Then, we have

D =K L−H(XZ1 |A,Q =Q)−H(XZ2 |A,Q =Q,XZ1 )−H(X1:K |A,Q =Q,XZ 2
1

) (4.54)

=K L−H(XZ1 |A,Q =Q)−H(XZ2 |A,Q =Q,XZ1 )

−·· ·−H(XZT |A,Q =Q,XZ T−1
1

)−H(X1:K |A,Q =Q,XZ T
1

) (4.55)

=K L−
T∑

i=1
H(XZi |A,Q =Q,XZ i−1

1
), (4.56)

where Equation (4.56) is because the last term H(X1:K |A,Q =Q,XZ T
1

) = 0 due to the assump-

tion Z T
1 = {1, . . . ,K }. To get the lower-bound for D, we need to maximize the summation in

Equation (4.56).

For the last group of messages XZT , by assumption, given all messages of previous groups

XZ T−1
1

, from the conditional answer string A‖XZ T−1
1

, no message can be decoded given less than

|S(T )| messages as side information messages and XW (T )∪U (T ) can be decoded given messages

XS(T ) , i.e.,

H(XW (T )∪U (T ) |A,Q =Q,XZ T−1
1

,XS(T ) ) = 0. (4.57)

Hence, we have

H(XZT |A,Q =Q,XZ T−1
1

) =H(XS(T ) |A,Q =Q,XZ T−1
1

)+H(XW (T )∪U (T ) |A,Q =Q,XZ T−1
1

,XS(T ) ) (4.58)

≤H(XS(T ) ) (4.59)

and

H(A‖XZ T−1
1

|Q =Q) =H(A|Q =Q,XZ T−1
1

) (4.60)

=H(A,XZT |Q =Q,XZ T−1
1

)−H(XZT |A,Q =Q,XZ T−1
1

) (4.61)

=H(XZT |Q =Q,XZ T−1
1

)+H(A|Q =Q,XZ T−1
1

,XZT )

−H(XZT |A,Q =Q,XZ T−1
1

) (4.62)

≥H(XZT )−H(XS(T ) ) (4.63)

=H(XW (T )∪U (T ) ) (4.64)

Hence, the conditional answer string A‖XZ T−1
1

has at least |W (T ) ∪U (T )|L bits, which is enough

for messages XZT such that given any |S(T )| messages, the other messages can be decoded

from A‖XZ T−1
1

.

By assumption, none of the messages in XZT−1 can be decoded from A‖XZT−2 , while XW (T−1)∪U (T−1)

can be decoded from A‖XZ T−2
1

given XS(T−1) . We note that no message from XZT is required

to decode XW (T−1)∪U (T−1) from A‖XZ T−2
1

, even though A‖XZ T−2
1

is also a function of XZT . Thus it

must be possible to divide A‖XZ T−2
1

into two parts. One part is a function of only XZT−1 , de-

noted by A(XZT−1 ), which permits the decoding of XW (T−1)∪U (T−1) with XS(T−1) as side information.
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The other part is a function of both XZT−1 and XZT , denoted by A(XZT−1 ,XZT ), which satisfies

A(XZT−1 ,XZT )‖XZT−1 = A‖XZ T−1
1

.

Lemma 4.4. Giving any |S(T )|messages from XZT , without loss of optimality, we can assume that

no information about XZT−1 can be inferred from A(XZT−1 ,XZT ), i.e., ∀S ⊂ ZT with |S| ≤ |S(T )| :

H(XZT−1 |A(XZT−1 ,XZT ),XS) = H(XZT−1 ). (4.65)

Proof. By assumption, A‖XZ T−1
1

= A(XZT−1 ,XZT )‖XZT−1 satisfies two properties: (i) no message

of XZT can be decoded given less than |S(T )| messages and (ii) all messages of XZT can be

decoded given any |S(T )| messages.

If any function of XZT−1 (e.g. f (XZT−1 )) can be decoded from A(XZT−1 ,XZT ) with |S| ≤ |S(T )|, then

in A(XZT−1 ,XZT ), there must exist an answer string Ã( f (XZT−1 ),XS) which is only a function of

f (XZT−1 ) and XS . From Ã( f (XZT−1 ),XS)‖XZT−1 , there must exist one message in XS that can be

fully decoded or partially decoded by given only |S|−1 ≤ |S(T )|−1 messages.

For the first case where one message can be fully decoded, it contradicts property (i) that

no message can be fully decoded by given less than |S(T )| messages. For the second case

where one message (e.g. Xl ) can be partially decoded, according to property (ii), given any

|S(T )| messages including XS as side information messages, all other messages in XZT can be

decoded from A(XZT−1 ,XZT )‖XZT−1 . Note that given XS and XZT−1 , Ã( f (XZT−1 ),XS) is a constant.

Hence, decoding the other |W (T ) ∪U (T )| messages cannot use Ã( f (XZT−1 ),XS), which implies

(A(XZT−1 ,XZT ) \ Ã( f (XZT−1 ),XS))‖XZT−1 has (|W (T ) ∪U (T )|)L bits. By assumption ZT = W (T ) ∪
U (T ) ∪S(T ), it is easy to see that an answer string with (|W (T ) ∪U (T )|)L bits is enough to satisfy

property (ii) (e.g. MDS style coded answer string). Hence, Ã( f (XZT−1 ),XS) can be replaced

by Ã( f (XZT−1 ),XS)‖XS which satisfies (4.65), while the privacy and retrieval conditions are

preserved and the number of download bits does not increase.

Lemma 4.5. For decoding any two messages, one in XZT−1 and another in XZT , from A‖XZ T−2
1

,

the number of required side information messages is |S(T−1)|+ |S(T )|.

Proof. By assumption, decoding any one message in XZT from A‖XZ T−1
1

requires |S(T )| side

information messages from XZT . According to Lemma 4.4, no information of XZT−1 can be

inferred from A(XZT−1 ,XZT ) given any |S(T )| messages from XZT . Hence, the demand message

in XZT−1 can only be decoded from A(XZT−1 ), which requires |S(T−1)| side information messages.

Therefore, decoding any two messages, one in XZT−1 and another in XZT , from A‖XZ T−2
1

requires

|S(T−1)|+ |S(T )| side information messages.

According to the assumption, given XS(T ) and XS(T−1) , messages XW (T )∪U (T ) and XW (T−1)∪U (T−1)

can be decoded from A‖XZ T−2
1

, respectively. Thus, even we only want to decode 2 messages,

the other messages will be decoded as a by-product.
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Lemma 4.6. Without loss of optimality, the conditional answer string A‖XZ T−2
1

= {A(XZT−1 ),

A(XZT−1 ,XZT )} can be replaced by {A(XZT−1 ),A(XZT−1 ,XZT )‖XZT−1 }.

Proof. For any message XW ∈ XZ T
T−1

, if it can be decoded from {A(XZT−1 ),A(XZT−1 ,XZT )} with

side information set S, it can also be decoded from {A(XZT−1 ),A(XZT−1 ,XZT )‖XZT−1 } with the

same S, since

H(XW |A(XZT−1 ),A(XZT−1 ,XZT )‖XZT−1 ,XS) ≤ H(XW |A(XZT−1 ),A(XZT−1 ,XZT ),XS) = 0. (4.66)

For any two messages in either XZT−1 or XZT , the minimum number of required side informa-

tion for decoding them is |S(T−1)| or |S(T )|, respectively, for both answer strings.

For any two messages, one in XZT−1 and another in XZT , according to Lemma 4.5, the min-

imum number of required side information is |S(T−1)| + |S(T )| for {A(XZT−1 ),A(XZT−1 ,XZT )}.

And it can be easily verified that the minimum number of required side information for

{A(XZT−1 ),A(XZT−1 ,XZT )} is also |S(T−1)|+ |S(T )|.

Further, when decoding any two messages from both groups, all other messages from both

groups can also be decoded. Hence, if any subset of messages from XZ T
T−1

can be decoded

from the original conditional answer string A‖XZ T−2
1

= {A(XZT−1 ),A(XZT−1 ,XZT )} with side infor-

mation XS , they can also be decoded from the modified conditional answer string {A(XZT−1 ),

A(XZT−1 ,XZT )‖XZT−1 } with the same side information. Therefore, the new answer string also

satisfies the privacy condition and requires no more download bits than the old answer

string.

According to Lemma 4.6, the answer string A‖XZ T−2
1

can be replaced by an answer string which

can be completely separated into two functions, each of which is only the function of either

XZT−1 or XZT . Similarly, we can apply the same processes for all previous groups of messages

iteratively and show that A‖XT−i
1 can be replaced by answer string which can be completely

separated into i functions and each function only depends on messages from one group.

Finally, the answer string A can be replaced by a new answer string Â such that

(1) Â is a valid answer string from coding schemes that satisfy the privacy condition and

downloads the same number of bits as A.

(2) Â can be fully separated into T functions Â(XZ1 ), . . . , Â(XZT ), where A(XZt ) for t ∈ {1, . . . ,T }

only depends on messages in XZt . Zi ∩Z j =; for any i 6= j ∈ {1, . . . ,T }.

(3) From each Â(XZt ) for t ∈ {1, . . . ,T }, XW (t )∪U (t ) can be decoded given XS(t ) as side infor-

mation and no message in XZt can be decoded given less than |S(t )| side information

messages (|S(t )| ≥ 1).

Lemma 4.7. For any valid answer string Â which satisfies the necessary condition, for any

t ∈ {1, . . . ,T }, we have |W (t ) ∪U (t )| ≥ N .
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Proof. For any j ∈ S(t ), given XS(t )\ j , none of XW (t )∪U (t ) can be decoded. Hence, if there exists

any t such that |W (t ) ∪U (t )| < N , then W =W (t ) ∪U (t ) ∪ j cannot be decoded from Â, which

violates the necessary condition. Therefore, for any valid Â satisfying the necessary condition,

we have |W (t ) ∪U (t )| ≥ N .

For any query realization Q and corresponding answer string A, the number of download bits

can be expressed as

D =H(A|Q =Q) (4.67)

=H(Â|Q̂ = Q̂) (4.68)

=K L−
T∑

i=1
H(XZi |Â,Q̂ = Q̂,XZ i−1

1
) (4.69)

=K L−
T∑

i=1
H(XZi |Â(XZ1 ), . . . , Â(XZT ),Q̂ = Q̂,XZ i−1

1
) (4.70)

=K L−
T∑

i=1
H(XZi |Â(XZi ),Q̂ = Q̂) (4.71)

=K L−
T∑

i=1

[
H(XS(i ) |Â(XZi ),Q̂ = Q̂)+H(XW (i )∪U (i ) |Â(XZi ),Q̂ = Q̂,XS(i ) )

]
(4.72)

≥K L−
T∑

i=1
H(XS(i ) ) (4.73)

=K L−L
T∑

i=1
|S(i )| (4.74)

Equation (4.71) is because only Â(XZi ) depends on XZi and for any j 6= i , Â(XZ j ) is independent

of XZi . Equation (4.73) is because given XS(i ) as side information, messages XW (i )∪U (i ) can be

decoded from Â(XZi ), i.e., H(XW (i )∪U (i ) |Â(XZi ),Q̂ = Q̂,XS(i ) ) = 0.

According to the necessary condition of privacy condition shown in Lemma 4.1, for any

W1:N ′ ⊆ {1, . . . ,K } with N ′ ≤ N , there must exist S1:M ′ ⊆ {1, . . . ,K } \W1:N ′ with M ′ ≤ M such that

H(XW1:N ′ |Â,Q̂ = Q̂,XS1:M ′ ) = 0. Consider W1:N ′ = {W (1), . . . ,W (N ′)} with N ′ ≤ N and N ′ ≤ T . To

successfully decode XW1:N ′ from Â, the following condition must be satisfied

N ′∑
t=1

|S(t )| ≤ M . (4.75)

By assumption, we have Z T
1 = {1, . . . ,K }. The number of groups, T , must satisfy
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K =
T∑

i=1
|Zi | =

T∑
i=1

|W (i )|+ |U (i )|+ |S(i )| (4.76)

≥
T∑

i=1
(N +|S(i )|) (4.77)

≥T N +
T∑

i=1
|S(i )|. (4.78)

Equation (4.77) is because |W (i )|+ |U (i )| = |W (i ) ∪U (i )| ≥ N according to Lemma 4.7.

Depending on the relationship between the three parameters of the problem, which are K , M

and N , we have the following three cases.

1. If K ≤ N 2 +M , equivalently T ≤ N and
∑T

i=1 |S(i )| ≤ M . From Equation (4.74), we have

D ≥ K L−L
T∑

i=1
|S(i )| ≥ (K −M)L. (4.79)

2. If N 2 +M < K ≤ N 2 +M +N , the number of groups, T , can be N +1. The number of

messages in the first N groups can be computed as follows.

|Z N
i | =

N∑
i=1

|W (i )|+ |U (i )|+ |S(i )| (4.80)

≥N 2 +
N∑

i=1
|S(i )| (4.81)

Additionally, for the (N + 1)-th group, according to Lemma 4.7, we have |W (N+1)| +
|U (N+1)| ≥ N . Thus the number of messages in S(N+1) can be computed as follows

|S(N+1)| =K −|Z N
1 |− |W (N+1)|− |U (N+1)| (4.82)

≤N 2 +M +N − (N 2 +
N∑

i=1
|S(i )|)−N (4.83)

≤M −
N∑

i=1
|S(i )| (4.84)

Hence, for all T = N +1 groups, we have

N+1∑
i=1

|S(i )| ≤ M . (4.85)
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The total number of download bits can be lower-bounded by

D ≥K L−L
T∑

i=1
|S(i )| (4.86)

≥(K −M)L. (4.87)

3. If K ≥ N 2+M+N+1, the number of groups, T , can be more than N . Since the sum of any

N of |S(i )|’s is upper bounded by M , to maximize the sum for all |S(i )|’s, for i ∈ {1, . . . ,T },

the optimal choice for S(i )’s would be that N −bM
N cN of |S(i )|’s are upper bounded by

bM
N c+1 and others are upper bounded by bM

N c. Without loss of generality, we can assume

that

S(i ) ≤


bM

N
c+1, i ∈ {1, . . . , N −bM

N
cN }

bM

N
c, i ∈ {N −bM

N
cN +1, . . . ,T }.

(4.88)

If N > M , then bM
N c = 0, which gives

|S(i )| ≤
{

1, i ∈ {1, . . . , M }

0, i ∈ {M +1, . . . ,T }.
(4.89)

Note that if we plug-in bM
N c = 0 into Equation (4.88), we can get |S(i )| ≤ 1 for all i ∈

{1, . . . , N }. But since the total number of side information is M , the number of non-zero

|S(i )|’s can only be at most M . In such cases, the total number of download bits satisfies

D ≥ (K −M)L.

If N ≤ M , equivalently bM
N c ≥ 1, then the number of download bits satisfies

D ≥K L−L
T∑

i=1
|S(i )| (4.90)

=K L−L
N∑

i=1
|S(i )|−L

T−1∑
i=N+1

|S(i )|−L|S(T )| (4.91)

≥K L−L(M − (T −N −1)bM

N
c− |S(T )|). (4.92)

In such cases, the numbers of messages in Z T−1
1 satisfy

|Z N
1 | ≥N 2 +M , (4.93)

|Z T−1
N+1| ≥(T −N −1)(N +bM

N
c). (4.94)

For the last group, if |ZT | ≤ N , then we have |S(T )| = 0. If |ZT | > N , then |S(T )| = |ZT |−
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|W (T ) ∪U T |. Hence, we have

K =|Z N
1 |+ |Z T−1

N+1|+ |ZT | (4.95)

≥N 2 +M + (T −N −1)(N +bM

N
c)+|ZT |. (4.96)

And T can be upper bounded as follows.

T ≤K − (N 2 +M +|ZT |)
N +bM

N c +N +1 (4.97)

≤K − (N 2 +M +1)

N +bM
N c +N +1. (4.98)

As T can only be an integer, the maximal value of T can be expressed as

T ∗ =
⌊

K − (N 2 +M +1)

N +bM
N c

⌋
+N +1, (4.99)

which is the same as Equation (4.45). When T = T ∗, the number of the message in the

last group satisfies

|ZT | ≤ K −N 2 −M − (T ∗−N −1)(N +bM

N
c). (4.100)

Then the number of side information in the last group (S(T ) = S(T ∗)) can be upper

bounded by

|S(T ∗)| =
(
K −N 2 −M − (T ∗−N −1)(N +bM

N
c)−N

)+
, (4.101)

which is the same asΘ defined in Equation (4.46). And the total number of download

bits can be lower bounded by

D ≥ (K −M − (T ∗−N −1)bM

N
c− |S(T ∗)|)L. (4.102)

For all three cases, the normalized number of download bits can be lower bounded the same

expression

R = D

L
≥ K −M − (T ∗−N −1)+bM

N
c−Θ. (4.103)

where T ∗ andΘ are defined by Equation (4.45) and (4.46), respectively.
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4.2.2 Achievability

In this section, we prove the achievability of Theorem 4.1 by presenting a coding scheme for

the single-server multi-message private information retrieval with side information problem

which downloads the minimum normalized number of bits.

For any single-server multi-message PIR with side information problem with K total messages,

M side information messages and N demand messages, we first compute T ∗ defined by

Equation (4.45) and Θ defined by Eqn. (4.46). If T ∗ = N +1 and Θ= 0, then R∗ = K −M . It is

trivial that the optimal coding scheme is the MDS coding scheme which satisfies given any M

side information all of the other K −M messages can be decoded. If T ∗ > N +1 or T ∗ = N +1,

Θ> 0, the coding scheme can be constructed as follows:

Step 1: The user creates T ∗ subsets, denoted by {℘1, . . . ,℘T ∗}, which will be populated by

messages. For all i ∈ {1, . . . ,T ∗}, the size of ℘i satisfies:

|℘i | =


bM

N
c+N +1, 1 ≤ i ≤ t

bM

N
c+N , t +1 ≤ i ≤ T ∗−1

Θ+N , i = T ∗

(4.104)

where t = M −NbM
N c. Let ci ∈N for i ∈ {1, . . . ,T ∗} denote the number of demand messages in

subset ℘i and is initialized to be 0.

Step 2: For the first demand message XW1 , the user randomly selects one subset ℘i (i ∈
{1, . . . ,T ∗}) to contain it with probability |℘i |

K , i.e.,

Pr(XW1 ∈℘i ) = |℘i |
K

. (4.105)

The user updates ci = ci +1. Then for the j -th demand message XW j ( j ∈ {1, . . . , N }), the user

randomly selects one subset ℘u (u ∈ {1, . . . ,T ∗}) to contain it with probability |℘u |−cu

K− j+1 .

Pr(XW j ∈℘u) = |℘u |− cu

K − j +1
. (4.106)

Iteratively, the user places all demand messages into the subsets.

Step 3: For each subset℘i with ci > 0, the user randomly selects mi side information messages

to put into ℘i , where mi satisfies:

mi =


bM

N
c+1, 1 ≤ i ≤ t

bM

N
c, t +1 ≤ i ≤ T ∗−1

Θ, i = T ∗

(4.107)
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Step 4: The user randomly distributes the other messages to fill up the remaining empty

spaces in each subset.

Step 5: The user sends queries to the server according to the coding scheme which satisfies the

MDS-Condition in each subset of messages X℘i (∀i ∈ {1, . . . ,T ∗}) with R(|℘i |,mi ) = (|℘i |−mi )L

bits.

We name the coding scheme constructed by this method as Partition-and-MDS-Coding

scheme, which is a modification of an optimal coding scheme for single demand message

proposed in [42]. The way we select subsets for demand messages is related to the urn prob-

lem. The probability of any N messages to be the demand messages follows the binomial

distribution.

Theorem 4.2. The Partition-and-MDS-Coding scheme satisfies the Retrieval Condition and

the Privacy Condition.

Proof. For each subset of message X℘i , if it contains demand messages, the number of down-

load bits R(|℘i |,mi ) and the number of side information messages mi in such subset of mes-

sages satisfy R(|℘i |,mi )+mi L = |℘i |L. Additionally, the Partition-and-MDS-Coding scheme

satisfies MDS-Condition in every subset of messages. Thus, all missing messages in ℘i can be

successfully decoded, including the demand messages. Therefore, the Retrieval Condition is

satisfied.

The probability that any N messages ({XW1 , . . . ,XWN }) are the demand messages can be com-

puted as

Pr(W1:N = {W1, . . . ,WN }) =N ! Pr(WN
1 =W N

1 ) (4.108)

=N ! Pr(W1 =W1)Pr(WN
2 =W N

2 |W1 =W1) (4.109)

=N !
N∏

i=1
Pr(Wi =Wi |Wi−1

1 =W i−1
1 ) (4.110)

According to the construction of the Partition-and-MDS-Coding scheme and assume that

Wi ∈℘ j , we have

Pr(Wi =Wi |Wi−1
1 =W i−1

1 )

=Pr(Wi ∈℘ j |Wi−1
1 =W i−1

1 )×Pr(Wi =Wi |Wi ∈℘ j ,Wi−1
1 =W i−1

1 ) (4.111)

=|℘ j |− |℘ j \ (℘ j ∩ {W1, . . . ,Wi−1})|
K − i +1

× 1

|℘ j |− |℘ j \ (℘ j ∩ {W1, . . . ,Wi−1})| (4.112)

= 1

K − i +1
(4.113)
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Hence, we have

Pr(W1:N = {W1, . . . ,WN }) =N !
N∏

i=1

1

K − i +1
(4.114)

= N !

K (K −1) · · · (K −N +1)
(4.115)

= 1(K
N

) (4.116)

Since there are
(K

N

)
possible demand message pairs with size N , every N -message pair is equally

likely to be the demand messages, which satisfies the Privacy Condition of multi-message

PIR.

Example 4.4. Consider a single-server multi-message private information retrieval with side

information problem with the following setup: K = 13, M = 5, N = 2, W1,2 = {2,5} and S1:5 =
{1,4,6,7,9}. The coding scheme can be constructed by using the Partition-and-MDS-Coding

method. In this example, we have T ∗ = 3 > N andΘ= 2 > 0.

• Step 1: The user first creates three subsets (℘1, ℘2, ℘3) with size |℘1| = 5, |℘2| = 4 and

|℘3| = 4.

• Step 2: The user randomly selects one subset from {℘1,℘2,℘3} to contain the first demand

message X2 with probability 5
13 , 4

13 and 4
13 , respectively. Suppose ℘1 is chosen. Then for

the second demand message X5, the user randomly selects one subset from {℘1,℘2,℘3}

with probability 4
12 , 4

12 and 4
12 , respectively. Suppose ℘3 is chosen.

• Step 3: For℘1 and℘3, the subsets which are chosen to contain demand messages, the user

randomly distributes 3 and 2 side information messages into them, respectively. Suppose

X1,X4,X6 are placed in ℘1 and X7,X9 are placed in ℘2.

• Step 4: The user randomly distributes the remaining messages into the subsets. Suppose

we get ℘1 = {X1,X2,X4,X6,X8}, ℘2 = {X3,X10,X11,X13} and ℘3 = {X5,X7,X9,X12}.

• Step 5: The user generates and sends query Q to request the following answer strings A,

which consists of the MDS-coded messages from each subsets. For example, the first two

coded messages are linear combinations of messages in subset ℘1 and given any three

messages, the other two messages can be decoded.

A =



X1 +X2 +X4 +X6 +X8

X1 +2X2 +3X4 +4X6 +5X8

X3 +X10 +X11 +X13

X3 +2X10 +3X11 +4X13

X5 +X7 +X9 +X12

X5 +2X7 +3X9 +4X12


(4.117)
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From the user’s perspective: X2 can be decoded from T1 and T2 given that X1, X4 and X6 are

side information. X5 can be decoded from T5 and T6 given that X7 and X9 are side information.

Hence, the Retrieval Condition is satisfied.

From the server’s perspective, the probability for any two messages to be the demand message is

the same, which is 1
(13

2 )
= 1

78 . Thus, the server cannot infer any information about the indices of

the demand messages.

4.3 Numerical Examples

In this section, we present the numerical examples for single-server multi-message private

information retrieval with side information.

Example 4.5. We give the numerical simulation for single-server multi-message private infor-

mation retrieval with side information for fixed K = 100 and M ∈ {1, . . . ,10} and N ∈ {1, . . . ,9}.

The black line in the plot is the normalized download bits for a trivial MDS coding scheme
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Figure 4.1 – Normalized number of download bits for fixed K = 100, N ∈ {1, . . . ,9}, and M ∈
{1, . . . ,10}.

which requires K −M download bits per demand bit and be treated as the known upper bound

for normalized download bits. It can be seen from the plot that when N > M, the optimal coding

scheme (our partition-and-MDS coding scheme) has the same performance as the trivial MDS

coding scheme. However, when N ≤ M, our partition-and-MDS-coding scheme download much

fewer bits than the trivial MDS coding scheme. Some numerical effect happens for N ≥ 2 due to

bM
N c. For example, when N = 2, from M = 4 to M = 5, the normalized number of download bits

keeps the same, while from M = 5 to M = 6, the normalized number of download bits decreases
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about 10.

Example 4.6. We give another numerical simulation for single-server multi-message private

information retrieval with side information for fixed N = 4, different M ∈ {1, . . . ,12} and different

K ∈ {N +M , . . . ,100}. As we can see from the plot, when M = 1,2,3, which are smaller than
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Figure 4.2 – Normalized number of download bits for fixed N = 4, M ∈ {1, . . . ,12}, and K ∈
{N +M , . . . ,100}.

N = 4, the normalized number of download bits per demand bit ( D
L ) grows linearly as K goes

large, which is consistent with the theoretical result since in such cases D = (K −M)L. And when

M > N , D
L increases as K goes large, but with a smaller ratio and the staircase effect can be seen.

Sometimes, when K increases by a small amount, the normalized number of download bits D
L

remains the same. We also plot the ration between D/L and K −M in the following figure. It

can be seen that for fixed N as K becomes large, to achieve the privacy, the percentage of missing

bits we need to download decreases. And for larger M, the percentage of missing bits we need to

download is even smaller. The reason that each curve becomes up and down as K goes large

is that the normalized number of download bits may not increase when K increases. When D

increases as K becomes large, the ratio D
L(K−M) also increases. When D remains the same as K

becomes large, the ration D
L(K−M) decreases.

69



Chapter 4. Single-Server Multi-Message PIR with Side Information

0 10 20 30 40 50 60 70 80 90 100

# of Total Messages K

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

D
/ L

(K
-M

)

Ratio of Normalized # of Download Bits over (K-M)

M=1

M=2

M=3

M=4

M=5

M=6

M=7

M=8

M=9

M=10

M=11

M=12

Figure 4.3 – Percentage of normalized number of download bits ( D
(K−M)L ) for fixed N = 4,

M ∈ {1, . . . ,12}, and K ∈ {M +N , . . . ,100}.

4.4 Discussion and Conclusion

4.4.1 Privacy Condition in Single-Server PIR with Side Information

For the single-server private information retrieval with side information problem, the privacy

condition can be used to derive the necessary condition defined in Definition 4.1. The privacy

condition for single-server PIR is a statistic property for all the queries and answer strings,

while the necessary condition is a property for each query and answer string. The necessary

condition is much easier to be verified and can be verified for any single query and answer

string. In the single-server PIR problem, it is sufficient to use one answer string which satisfies

the necessary condition to represent the PIR coding scheme. The other answer strings in such

coding scheme can be generated by randomly permuting the messages. Additionally, based

on this necessary condition, the converse for the capacity can be derived.

4.4.2 Conclusion

In this chapter, we studied the single-server multi-message private information retrieval with

side information problem. We established the capacity of this problem and gave a closed-form

expression for the capacity. We presented the proof of the converse bound for the normalized

total number of download bits and proposed an achievability scheme, Partition-and-MDS

coding scheme, to construct optimal codes that satisfy both the retrieval condition and the

privacy condition. The proposed achievability scheme is a linear coding scheme, which implies
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that linear coding schemes are sufficient to optimally solve the multi-server single-message

private information retrieval with side information problem.

In this problem, the privacy condition requires that each subset of messages with size N must

have equal probability to be the demand messages from the server’s perspective. Hence, for

each subset of messages with size N , they must be decodable from the answer string given no

more than M side information messages, which is referred to as the necessary condition in this

chapter.
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5 Multi-Server Single-Message PIR with
Side Information

In Chapter 4, we study the multi-message single-server private information retrieval with side

information, which is an extension of the single-server single-message private information

retrieval with side information [49]. In this chapter, we investigate the multi-server single-

message private information retrieval with side information, which can be interpreted as

the extension of either multi-server single-message private information retrieval without

side information [22] or single-server single-message private information retrieval with side

information [49]. We prove the capacity for this problem by presenting the proof for the

converse and proposing an achievability coding scheme.

5.1 Problem Statement

In the multi-server single-message PIR with Side Information problem, there is a database

that consists of K messages, denoted by X1:K = {X1, . . . , XK }. The database is repeatively stored

at N non-colluding servers without any coding. The random variables of the messages, Xi ’s

for i ∈ {1, . . . ,K }, are assumed to be independent from each other and consists of L bits, i.e.,

H(X1) = ·· · = H(XK ) = L, (5.1)

H(X1, . . . ,XK ) = H(X1)+·· ·+H(XK ) = K L. (5.2)

Let W ∈ {1, . . . ,K } denote the demand index and S ⊆ {1, . . . ,K } \ {W } denote the set of side

information indices. The user wants to download message XW from the servers, which is

referred to as the demand message, and initially has M messages XS with |S| = M , which

is referred to as the side information messages. We assume that the servers only know the

number (M) of side information messages that the user has but do not know the set of indices

(S) of those side information messages. Suppose the demand message is uniformly chosen

from all K messages and the M side information messages are uniformly chosen from the

other K −1 messages. Let W denote the random variable for W , which is uniformly distributed
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over {1, . . . ,K },

Pr(W =W ) = 1

K
, ∀W ∈ {1, . . . ,K }, (5.3)

Let S denote the random variable for S with |S| = M , which is uniformly distributed over

{1, . . . ,K } \ {W } given W =W ,

Pr(S = S|W =W ) =


1(K−1
M

) , S ⊆ {1, . . . ,K } \ {W },

0, otherwise.

(5.4)

The discussion about the distribution models for W and S is given in Section 5.4.1.

The goal of the user is to download the demand message XW from the servers and reveal no

information about W to any of the servers. To achieve this goal, the user generates and sends

queries to the servers. Let Q[W,S]
j ( j ∈ [N ]) denote the random variable for the query which

is generated for downloading message XW while having side information XS and sent to the

j -th server. Following the literature, we assume that Q[W,S]
j is a (stochastic) function of the

indices W and S, but does not depend on contents of any of the messages, i.e.,

H(Q[W,S]
j |X1:K ) = H(Q[W,S]

j ). (5.5)

Let Q [W,S]
j denote the realization of Q[W,S]

j . Note that the notation Q [W,S]
j should not be in-

terpreted as a function of W and S. The superscript is added for giving the additionally

information that this query realization is generated for demand index W and side information

indices S. We use Q j without superscript to denote the query realization for server j when the

demand index and side information indices are not specified. Once the j -th server receives

the query Q [W,S]
j , it returns corresponding answer string A[W,S]

j to the user. Let A[W,S]
j denote

the random variable for A[W,S]
j . The answer string A[W,S]

j is results of a deterministic function

of the query Q[W,S]
j and messages X1:K , i.e.,

H(A[W,S]
j |Q[W,S]

j ,X1:K ) = 0,∀ j ∈ {1, . . . , N }. (5.6)

The query Q[W,S]
j is from an alphabet Q and the answer string A[W,S]

j is from a corresponding

alphabet A . The PIR scheme is the set of queries and answer strings.

Let D denote the total number of bits downloaded from the servers for any coding scheme

satisfying the above requirements

D =H(A[W,S]
1:N |W,S) (5.7)

= ∑
W ∈{1,...,K }

Pr(W =W )
∑

S⊆{1,...,K }\{W },|S|=M
Pr(S = S|W =W )H(A[W,S]

1:N |W =W,S = S) (5.8)

=H(A[W,S]
1:N |W =W,S = S). (5.9)
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where Equation (5.9) is because the number of download bits is independent of the demand

index and side information indices, i.e., H(A[W,S]
1:N |W =W,S = S) = H(A[W,S]

1:N |W =W ′,S = S′) for

any |S| = |S′| = M . The rate of such coding scheme is defined as follows.

R = lim
L→∞

L

D
. (5.10)

The capacity is the supremum of all achievable rates. We use C (K , M , N ) to denote the capacity

for MSPIR-SI problem with K messages, M side information messages and N servers.

C (K , M , N ) = sup lim
L→∞

L

D
(5.11)

5.1.1 Retrieval and Privacy Conditions

For any given W,S, let Q [W,S]
1:N = Q [W,S]

1 , . . . ,Q [W,S]
N and A[W,S]

1:N = A[W,S]
1 , . . . , A[W,S]

N denote the

queries and answer strings generated by some coding scheme for retrieving XW with XS as

side information. To successfully decode the demand message XW from the answer strings,

the answer strings and queries must satisfy:

H(XW |A[W,S]
1:N ,Q[W,S]

1:N ,XS) = 0,∀W ∈ {1, . . . ,K },∀S ⊆ {1, . . . ,K } \ {W }. (5.12)

We refer to Condition (5.12) as the retrieval condition for multi-server single-message PIR with

side information.

Additionally, private information retrieval requires that none of the servers individually should

be able to infer any information about the index of the demand message. Hence, the queries

must satisfy:

I (W;Q[W,S]
j ) = 0,∀ j ∈ {1, . . . , N }. (5.13)

According to the chain rule of mutual information, we can obtain

I (W;A[W,S]
j ,Q[W,S]

j ,X1:K ) =I (W;X1:K )+ I (W;Q[W,S]
j |X1:K )+ I (W;A[W,S]

j |Q[W,S]
j ,X1:K ) (5.14)

=I (W;Q[W,S]
j |X1:K )+ I (W;A[W,S]

j |Q[W,S]
j ,X1:K ) (5.15)

=I (W;Q[W,S]
j |X1:K ) (5.16)

=I (W;Q[W,S]
j ). (5.17)

Equation (5.15) is because W is independent of the messages, i.e., I (W;X1:K ) = 0. Equa-

tion (5.16) is because A[W,S]
j is deterministic given Q[W,S]

j and X1:K . i.e., I (W;A[W,S]
j |Q[W,S]

j ,X1:K ) =
0. Equation (5.17) is because W and Q[W,S]

j are both independent of the messages. Thus, the

answer strings, queries and messages must satisfies:

I (W;A[W,S]
j ,Q[W,S]

j ,X1:K ) = 0,∀ j ∈ {1, . . . , N }. (5.18)
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We refer to Condition (5.18) as the privacy condition for multi-server single-message PIR with

side information.

It can be shown that the privacy condition (5.18) is equivalent to the requirement that ∀ j ∈
{1, . . . , N }, we have

H(W) = H(W|A[W,S]
j ,Q[W,S]

j ,X1:K ). (5.19)

Since the random variable of the demand index, W, is assumed to be uniformly distributed

over all indices {1, . . . ,K }, H(W) has the maximum entropy. For any specific query realization

Q j received by server j , messages X1:K and corresponding answer string A j , we have

H(W|A[W,S]
j = A j ,Q[W,S]

j =Q j ,X1:K = X1:K ) ≤ H(W). (5.20)

Thus, to satisfy Equation (5.19), we must have ∀ j ∈ {1, . . . , N } and ∀W ∈ {1, . . . ,K } :

Pr(W =W |A[W,S]
j = A j ,Q[W,S]

j =Q j ,X1:K = X1:K ) = Pr(W =W ) = 1

K
. (5.21)

Note that given Q[W,S]
j =Q j and all messages X1:K = X1:K , the answer string A[W,S]

j is determin-

istic. Thus, for any specific valid query Q j ∈Q and its corresponding answer strings A j ∈A ,

server j should not be able to infer any information about the realization of the demand index

W. In particular, this observation implies the following lemma.

Lemma 5.1. For any query realization Q j ∈ Q and any two indices W,W ′ ∈ {1, . . . ,K }, there

exist S j ⊆ {1, . . . ,K } \ {W } with |S j | ≤ M and S′
j ⊆ {1, . . . ,K } \ {W ′} with |S′

j | ≤ M such that ∀K ⊆
{1, . . . ,K } :

H(A
[W,S j ]
j |Q[W,S j ]

j =Q j ,XK ) = H(A
[W ′,S′

j ]

j |Q[W ′,S′
j ]

j =Q j ,XK ). (5.22)

Proof. We prove this lemma by contradiction. For any query realization Q j ∈ Q, server j

generates the corresponding answer string A j , which is the result of a deterministic function

of Q j and all messages. For the remainder of the proof, we denote it as

A j = fQ j (X1, . . . , XK ). (5.23)

According to the privacy condition and Equation (5.21), for any index W ∈ {1, . . . ,K }, we have

Pr(W =W |A j = A j ,Q j =Q j ,X1:K = X1:K ) = 1

K
. (5.24)

Now, suppose that for some message W ′, there do not exist side information indices S′
j ⊆

{1, . . . ,K } \ {W ′} for which the resulting query could be Q
[W ′,S′

j ]

j =Q j (with positive probability).

Clearly, then, W ′ cannot satisfy Eqn. (5.24). Hence, for any two indices W and W ′, there must
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exist S j ⊆ {1, . . . ,K } \ {W } and S′
j ⊆ [K ] \ {W ′} such that with positive probability

Q
[W,S j ]
j =Q j , A

[W,S j ]
j = A j = fQ j (X1, . . . , XK ), (5.25)

Q
[W ′,S′

j ]

j =Q j , A
[W ′,S′

j ]

j = A j = fQ j (X1, . . . , XK ). (5.26)

Since A
[W,S j ]
j and A

[W ′,S′
j ]

j are the same function fQ j of the same random variables X1:K = X1:K ,

we have

H(A
[W,S j ]
j |Q[W,S j ]

j =Q j ,XK ) = H(A
[W ′,S′

j ]

j |Q[W ′,S′
j ]

j =Q j ,XK ). (5.27)

For any query realization Q j , from the user’s perspective, the query Q j is generated for index

pair (W,S). However, from the sever j ’s perspective, the query Q j can be possibly generated

for (W,S) or (W ′,S′). The server j should not be able to distinguish them. For any index

W ′ ∈ {1, . . . ,K }, it is always possible to find at least one corresponding S′ ⊆ {1, . . . ,K }\{W ′} such

that Q j is generated for downloading XW ′ with side information messages XS′ , i.e.,

Pr(Q[W,S]
j =Q j |W =W ′,S = S′) > 0. (5.28)

We refer to each S′ as the virtual side information for W ′ in query Q j , which is formally defined

in Definition 5.1.

Definition 5.1 (Virtual Side Information). For any query realization Q j from any valid PIR

with side information coding scheme and any index i ∈ {1, . . . ,K }, define

EQ j (i ) = {v : Pr(Q[W,S]
j =Q j |W = i ,S = v) > 0}. (5.29)

We refer to each v ∈ EQ j (i ) as one virtual side information for index i in query Q j . Let VQ j =
[v1, . . . , vK ] denote a virtual side information vector for query Q j , where vi ∈ EQ j (i ).

Regarding the virtual side information, we have the following remarks.

• The set EQ j (i ) may contain more than one element. Hence, the virtual side information

is not necessarily unique for fixed query Q j and index i .

• Each virtual side information v ∈ EQ j (i ) is a subset of indices. The size of each v is no

larger than M , i.e., |v | ≤ M .

• The server j cannot infer which index pair (i , vi ) the query Q j is generated for. Thus,

any (i , vi ) (∀i ∈ {1, . . . ,K }) can be the demand and side information index pair (W,S).

• The virtual side information is defined for each query Q j . For queries generated for

different server Q j and Q j ′ with j 6= j ′, the virtual side information for the same index

may be different, i.e., EQ j (i ) 6≡ EQ j ′ (i ).
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This definition is the key to our development here. The important observation is that for

any PIR with side information coding scheme, if we consider any possible query received

by a server, then this query must be consistent with every message in the database. If this

was not the case, then upon receiving that particular query, the server would be able to rule

out a certain message as being the demand message, which in turn would contradict the

privacy condition. Hence, the considered scheme could not be valid. According to Lemma ??,

there always exists at least one set of virtual side information messages for every message in

any query realization from valid PIR with side information coding scheme. The virtual side

information for multi-server PIR with side information is different from a similar concept

defined in [49] for single-server PIR with side information and the detailed discussion is given

in Section 5.4.2.

Example 5.1 (Virtual Side Information). Consider a MSPIR-SI problem with two servers (N = 2),

five messages (K = 5) and two side information messages (M = 2). Suppose the user wants to

download message X1 (W = 1) and has X2 and X3 as side information (S = {2,3}). Additionally,

suppose each message can be divided into 4 chunks, i.e,. Xi = {Xi 1,Xi 2,Xi 3,Xi 4}, ∀i ∈ {1,2,3,4}.

Suppose the user generates queries Q1 and Q2 from a valid PIR coding scheme 1 for asking the

following answer strings from Server 1 and Server 2. It can be verified that from A[W,S]
1 and

A[W,S]
1 for Server 1 A[W,S]

2 for Server 2
X11 +X21 +X31 X12 +X22 +X32

X41 +X51 X42 +X52

X13 +X23 +X33 +X42 +X52 X14 +X24 +X34 +X41 +X51

A[W,S]
2 , the sum X1 +X2 +X3 can be decoded and hence X1 can be decoded given X2 and X3 as

side information. From the Server 1’s perspective, when Q1 is received to request A[W,S]
1 , without

the knowledge of Q2, the only information it can infer from Q1 is:

(1) If X1 is the demand message, then X2 and X3 must the be side information messages.

(2) If X4 is the demand message, then X5 must the be one of the side information messages.

The other side information message is not required for decoding X4.

Thus, the query Q1 may possibly generated for (W = 1,S = {2,3}) or (W = 4,S = {5,∗}), where ∗
denotes any other index. For Q1, the virtual side information for index 1 is {2,3} and the virtual

side information for index 4 could be any one of {{1,5}, {2,5}, {3,5}, {5}}. And the virtual side

information vectors is not unique which could be

VQ1 = [v1, v2, v3, v4, v5] (5.30)

v1 = {2,3}, v2 = {1,3}, v3 = {1,2}, v4 = {1,5}, v5 = {4} (5.31)

1The construction of such coding scheme is shown in Section 5.3.2.
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5.2 Useful Techniques and Insights

In this section, we introduce two useful tools which are later used in the proof for the converse

of the capacity of multi-server single-message PIR with side information.

5.2.1 PIR Scheme for More Messages

Consider one multi-server single-message PIR with side information coding scheme C for K

message, M side information messages and N servers. The coding scheme C satisfies both

privacy condition and retrieval condition and is referred to as (K , M , N )-PIR coding scheme.

Suppose we only know the set of all answer strings A and set of all queries Q of C . Based on

the answer strings A and Q, we present a way to generate another coding scheme Ĉ with Â

and Q̂ for parameter triplet (K + t , M , N ) for any 0 < t ≤ M +1 as follows:

1. The user generates two empty subsets ℘1 and ℘2 with size |℘1| = K and |℘2| = t .

2. The user randomly selects one subset (either ℘1 or ℘2) to place the demand message

XW with probability proportional to the size of the subset.

Pr(XW ∈℘1) = |℘1|
|℘1|+ |℘2|

= K

K + t
(5.32)

Pr(XW ∈℘2) = |℘2|
|℘1|+ |℘2|

= t

K + t
(5.33)

3. If XW ∈ ℘1, the user places all side information message in ℘1. If XW ∈ ℘2, the user

randomly selects t −1 side information messages to place in ℘2
2.

4. The user randomly distributes the other messages to fill up ℘1 and ℘2.

5. If XW ∈ ℘1, the user generates queries Q [W,S]
1 , . . . ,Q [W,S]

N from the (K , M , N )-PIR cod-

ing scheme for the messages in ℘1 and send them to the servers, respectively. If

XW ∈℘2, the user randomly select XW ′ ∈℘1 and XS′ ⊆ (℘1 \ {XW ′}) to generate queries

Q [W ′,S′]
1 , . . . ,Q [W ′,S′]

N from the (K , M , N )-PIR coding scheme for the messages in ℘1 and

send them to the servers, respectively.

6. The user additionally query Qb which requests the sum of all messages in ℘2 and sends

Qb to Server 1.

7. The server which receives query Q [W,S]
j or Q [W ′,S′]

j replies with the corresponding answer

string A j = fQ [W,S]
j

(X℘1 ) or A j = f
Q [W ′ ,S′]

j
(X℘1 ), respectively. Server 1 additionally replies

another answer string B =∑
X∈℘2

X.

If XW ∈ ℘1, the generated queries Q̂ [W,S]
1 , . . . ,Q̂ [W,S]

N and answer strings Â[W,S]
1 , . . . , Â[W,S]

N are

shown as follows:
2When XW ∈℘2 and t < M −1, not all side information messages can be placed in ℘2.
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Â[W,S]
1 for Server 1 Â[W,S]

2 for Server 2 . . . Â[W,S]
N for Server N

A[W,S]
1 ,B A[W,S]

2 . . . A[W,S]
N

Q̂ [W,S]
1 ={Q [W,S]

1 ,Qb} (5.34)

Q̂ [W,S]
2:N =Q [W,S]

2:N (5.35)

Â[W,S]
1 = {A[W,S]

1 ,B} (5.36)

Â[W,S]
2:N = A[W,S]

2:N (5.37)

If XW ∈ ℘2, the generated queries Q̂ [W,S]
1 , . . . ,Q̂ [W,S]

N and answer strings Â[W,S]
1 , . . . , Â[W,S]

N are

shown as follows:

Â[W,S]
1 for Server 1 Â[W,S]

2 for Server 2 . . . Â[W,S]
N for Server N

A[W ′,S′]
1 ,B A[W ′,S′]

2 . . . A[W ′,S′]
N

Q̂ [W,S]
1 ={Q [W ′,S′]

1 ,Qb} (5.38)

Q̂ [W,S]
2:N =Q [W ′,S′]

2:N (5.39)

Â[W,S]
1 = {A[W ′,S′]

1 ,B} (5.40)

Â[W,S]
2:N = A[W ′,S′]

2:N (5.41)

Lemma 5.2. The constructed (K + t , M , N )-PIR coding scheme satisfies both retrieval condition

and privacy condition.

Proof. If XW ∈℘1, according to Equation (5.36) and (5.37), the answer strings Â[W,S]
1 , . . . , Â[W,S]

N

can be used to recover the answer strings A[W,S]
1 , . . . ,A[W,S]

N , which is generated by a (K , M , N )-

PIR coding scheme for messages in ℘1 and hence satisfy retrieval condition. Therefore, from

A[W,S]
1 , . . . ,A[W,S]

N , XW can be decoded with XS as side information. If XW ∈ ℘2, according to

Equation (5.40), the answer string Â[W,S]
1 can be use to recover answer string B, which is the

sum of XW and messages in XS . The user can decode the demand message XW from B with XS

as side information. Hence, the retrieval condition (5.12) is satisfied.

The probability for any index W ∈ {1, . . . ,K + t } to be the demand index can be computed as

Pr(W =W |Â1:N ,Q1:N ) =Pr(W =W, XW ∈℘i |Â1:N ,Q1:N ) (5.42)

=Pr(W =W |XW ∈℘i , Â1:N ,Q1:N )Pr(XW ∈℘i |Â1:N ,Q1:N ) (5.43)

= 1

|℘i |
|℘i |

K + t
(5.44)

= 1

K + t
. (5.45)
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From each server’s perspective, every message has the same probability ( 1
K+t ) to be the

demand message. Therefore, the privacy condition (5.18) is also satisfied.

Lemma 5.3. For any queries Q[W,S]
1 , . . . ,Q[W,S]

N and answer strings A[W,S]
1 , . . . ,A[W,S]

N from any

(K , M , N )-PIR coding scheme and any t ∈ {1, . . . , M +1}, there exist queries Q̂ [W,S]
1 , . . . ,Q̂ [W,S]

N with

answer strings Â[W,S]
1 , . . . , Â[W,S]

N from the constructed (K + t , M , N )-PIR coding scheme such that

H(Â[W,S]
j |Q̂[W,S]

j = Q̂ [W,S]
j ,Xτ) = H(A[W,S]

j |Q[W,S]
j =Q [W,S]

j ),∀ j ∈ {1, . . . , N }, (5.46)

for some τ⊆ {1, . . . ,K + t } \ (W ∪S) with |τ| = t .

Proof. Without loss of generality, we assume that the (K , M , N )-PIR coding scheme applies

on messages {X1, . . . ,XK }. This assumption also implies W ∈ {1, . . . ,K } and S ⊆ {1, . . . ,K } \ {W }.

Then we can pick τ= {K +1, . . . ,K + t } and hence Xτ = {XK+1, . . . ,XK+t }. For any W ∈ {1, . . . ,K },

S ⊆ {1, . . . ,K } \ {W }, suppose the (K , M , N )-PIR coding scheme generates Q [W,S]
1 , . . . ,Q [W,S]

N . It

is always possible to find corresponding queries Q̂ [W,S]
1 , . . . ,Q̂ [W,S]

N from the (K + t , M , N )-PIR

coding scheme such that ℘1 = {X1, . . . ,XK } and ℘2 = {XK+1, . . . ,XK+t }, Q̂ [W,S]
1 = {Q [W,S]

1 ,Qb} and

Q̂ [W,S]
2:N =Q [W,S]

2:N . We note that answer string B is deterministic given messages Xτ, i.e.,

H(B|Q̂1 = {Q [W,S]
1 ,Qb},Xτ) = 0. (5.47)

Thus, for Server 1, we have

H(Â[W,S]
1 |Q̂[W,S]

1 = Q̂ [W,S]
1 ,Xτ) = H(A[W,S]

1 ,B|Q̂[W,S]
1 = {Q [W,S]

1 ,Qb},Xτ) (5.48)

= H(A[W,S]
1 |Q[W,S]

1 =Q [W,S]
1 ), (5.49)

and for Server j ∈ {2, . . . , N }, we have

H(Â[W,S]
j |Q̂[W,S]

j = Q̂ [W,S]
j ,Xτ) = H(A[W,S]

j |Q[W,S]
j =Q [W,S]

j ) (5.50)

Therefore, for all j ∈ {1, . . . , N }, Equation (5.46) is satisfied.

Remark 5.1. We note that the constructed coding scheme with answer strings Â[W,S]
1 , . . . , Â[W,S]

N

is not necessarily optimal.

5.2.2 PIR Scheme for Fewer Messages

In this section, we introduce a simple and novel approach, setting constants, to generate

answer strings for (K ′, M , N )-PIR coding schemes from answer strings for (K .M , N )-PIR coding

schemes with K ′ < K .

Lemma 5.4. Given answer strings A for any (K .M , N )-PIR coding scheme for message X1:K ,

the answer strings Ä for (K ′, M , N )-PIR coding scheme for messages X1:K \ XK for any K ⊂
{1, . . . ,K }can be generated by setting messages XK to constants.
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Proof. Let A1, . . . ,AN and Q1, . . . ,QN denote one group of answer strings and queries generated

by any (K .M , N )-PIR coding scheme for message X1:K . Each A j (∀ j ∈ {1, N }) is a deterministic

function of Q j and X1:K and can be written as follows.

A j = fQ j (X1, . . . ,XK ) = fQ j (X1:K ) (5.51)

By setting the messages XK into constant c, where c is any value that could possibly taken by

the messages, we get Ä

Ä j = fQ j (X1, . . . ,XK |XK = c) (5.52)

= fQ̈ j
(X1:K \ XK ) (5.53)

Let the probability of choosing Ä1, . . . , ÄN to be the answer strings for given W =W be the same

probability as A1, . . . ,AN , i.e.,

Pr(Ä1, . . . , ÄN |W =W ) = Pr(A1, . . . ,AN |W =W ). (5.54)

For Server j ,

Pr(Ä j |W =W ) = Pr(A j |W =W ). (5.55)

For any message XW which can be decoded from A1, . . . ,AN which can be decoded given XS as

side information and W 6∈K , i.e.,

H(XW |A1, . . . ,AN ,XS) = 0, (5.56)

we have

H(XW |Ä1, . . . , ÄN ,XS) =H(XW | fQ̈1
(X1:K \ XK ), . . . , fQ̈N

(X1:K \ XK ),XS) (5.57)

=H(XW | fQ1 (X1:K ), . . . , fQN (X1:K ),XS ,XK ) (5.58)

≤H(XW |A1, . . . ,AN ,XS) (5.59)

= 0. (5.60)

Thus, message XW can also be decoded from Ä1, . . . , ÄN given XS as side information, which

satisfies the retrieval condition.

The probability for any index W ∈ {1, . . . ,K } \ K to be the demand index given the answer
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string Ä j and queries Q̈ j for all j ∈ {1, . . . , N } can be computed as

Pr(W =W |Ä j ) =Pr(W =W, Ä j )

Pr(Ä j )
(5.61)

= Pr(W =W )Pr(Ä j |W =W )∑
W ′∈{1,...,K }\K Pr(Ä j |W =W ′)

(5.62)

= Pr(W =W )Pr(A j |W =W )∑
W ′∈{1,...,K }\K Pr(A j |W =W ′)

(5.63)

=Pr(W =W |A j ,W 6∈K ) (5.64)

= 1

K −|K | . (5.65)

From Server j ’s perspective, every index in {1, . . . ,K } \ K has the same probability to be de

demand index, which satisfies the privacy condition.

Therefore, the constructed (K ′, M , N )-PIR coding scheme with answer strings Ä is a valid PIR

coding scheme which satisfies both retrieval condition and privacy condition.

We have the following remarks for the operation, Setting Constants.

• The constant c can be any possible value which the message is allowed to take. And for

different answer string A j , c can also be chosen differently. Since the user only knows

the value of the side information messages and does not know the value of demand

message and other unwanted messages, the answer strings should be compatible with

all possible values. There is no need to worry about not well-defined functions like 0 in

the denominator.

• Setting constant can be interpreted as telling the server that none of those messages is

the demand message. From the original answer string A j , Server j can not infer which

index in {1, . . . ,K } is the demand index. From the generated answer string Ä j , Server

j can only know K contains no demand index, but still cannot infer which index in

{1, . . . ,K } \K is the demand index.

5.2.3 No Need to Reuse Indices

In this section, we present an informative insight into the virtual side information. According

to Lemma 5.1, for any query realization Q j , it is always possible to find at least one virtual

side information for every index. Suppose for query Q j , the virtual side information for W0

is denoted by S0 and there exists another index W1 ∈ {1, . . . ,K } \ (W0 ∪ S0), the virtual side

information for W1 is denoted by S1, j . The query Q j can be treated as Q [W0,S0]
j or Q

[W1,S1, j ]
j and

satisfies

H(A[W0,S0]
j |Q[W0,S0]

j =Q [W0,S0]
j ,XW0∪S0 ) = H(A

[W1,S1, j ]
j |Q[W1,S1, j ]

j =Q
[W1,S1, j ]
j ,XW0∪S0 ). (5.66)
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In general, S1, j is only restricted to satisfy S1, j ⊆ {1, . . . ,K } \ {W1} and |S1, j | ≤ M , which means

S1, j ∩ (W0 ∪S0) may not always be empty. One interesting question would be can we restrict

the S1, j ∩ (W0 ∪S0) =; and still can find S1, j which satisfies Equation (5.66)?

Lemma 5.5. Consider one query realization Q [W0,S0]
j and corresponding answer string A[W0,S0]

j

which are generated for demand index W0 and side information indices S0 by a PIR with side

information coding scheme. Suppose Q [W0,S0]
j has virtual side information S1, j for index W1

such that W1 6∈W0 ∪S0. If S1, j ∩ (W0 ∪S0) = τ 6= ;, it is possible to construct another PIR with

side information coding scheme with query realization Q̂ [W0,S0]
j and answer string Â[W0,S0]

j for

demand index W0 and side information indices S0 and have virtual side information Ŝ1, j for

index W1 which satisfy Ŝ1, j = S1, j \τ and

H(A
[W1,S1, j ]
j |Q[W1,S1, j ]

j =Q
[W1,S1, j ]
j ,XW0∪S0 ) = H(Â

[W1,Ŝ1, j ]
j |Q̂[W1,Ŝ1, j ]

j = Q̂
[W1,Ŝ1, j ]
j ,XW0∪S0 ). (5.67)

Proof. According to Lemma 5.1, we have

H(A[W0,S0]
j |Q[W0,S0]

j =Q [W0,S0]
j ,XW0∪S0 ) = H(A

[W1,S1, j ]
j |Q[W1,S1, j ]

j =Q
[W1,S1, j ]
j ,XW0∪S0 ), (5.68)

where query Q [W0,S0]
j =Q

[W1,S1, j ]
j are the same query and A[W0,S0]

j = A
[W1,S1, j ]
j are the same answer

string. We note that query Q
[W1,S1, j ]
j =Q

[W1,S1, j ]
j and the corresponding answer string A

[W1,S1, j ]
j

are also valid for demand index W1 and side information indices S1, j . There exists a group

of answer strings, denoted by A
[W1,S1, j ]
1:N , from which XW1 can be decoded given XS1, j as side

information. Note that Server j only knows that its own answer string is A
[W1,S1, j ]
j and does not

know answer strings from other servers.

Let Ä
[W1,S1, j ]
j denote the answer string which are obtained by setting XW0∪S0 to constants in

A
[W1,S1, j ]
j as described in Section 5.2.2, i.e.

A
[W1,S1, j ]
j = f

Q
[W1,S1, j ]

j

(X1,X2, . . . ,XK ), (5.69)

Ä
[W1,S1, j ]
j = f

Q
[W1,S1, j ]

j

(X1,X2, . . . ,XK |Xi = c,∀i ∈W0 ∪S0), (5.70)

where c is any constant value the messages could possibly take. Since the original answer sting

A
[W1,S1, j ]
j is one answer string from (K , M , N )-PIR coding scheme, denoted by C1, according to

Lemma 5.4, answer string Ä
[W1,S1, j ]
j is from an (K −|W0 ∪S0|, M , N )-PIR coding scheme. The

reused virtual side information messages for W1 indexed by τ are constants in answer string

Ä
[W1,S1, j ]
j . Thus, one virtual side information for W1 in the query corresponding to Ä

[W1,S1, j ]
j is

S1, j \τ, which does not contain any index from W0 ∪S0. Hence, we can rewrite Ä
[W1,S1, j ]
j as

Ä
[W1,S1, j \τ]
j .

According to Lemma 5.2, it is possible to construct a valid (K , M , N )-PIR coding scheme with

answer string Â
[W1,S1, j \τ]
j based on the (K −|W0 ∪S0|, M , N )-PIR coding scheme with answer
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string Ä
[W1,S1, j \τ]
j such that

H(Â
[W1,S1, j \τ]
j |Q̂[W1,S1, j \τ]

j = Q̂
[W1,S1, j \τ]
j ,XW0∪S0 )

=H(Ä
[W1,S1, j \τ]
j |Q̈[W1,S1, j \τ]

j = Q̈
[W1,S1, j \τ]
j ) (5.71)

=H( f
Q

[W1,S1, j ]

j

(X1,X2, . . . ,XK |Xi = c,∀i ∈W0 ∪S0)|Q̈[W1,S1, j \τ]
j = Q̈

[W1,S1, j \τ]
j ) (5.72)

=H(A
[W1,S1, j ]
j |Q[W1,S1, j ]

j =Q
[W1,S1, j ]
j ,XW0∪S0 ), (5.73)

where Equation (5.71) is from Lemma 5.3 Equation (5.46).

Before moving on, we would like to mention that

• For any answer string A j with S1, j ∩ (W0∪S0) = τ 6= ;, with out loss of optimality, we can

construct another answer string Â j which has Ŝ1, j as the virtual side information for W1

and Ŝ1, j does not reuse indices in W0 ∪S0.

• It is good to note that we use the notation S1, j for the virtual side information for W1

in query Q [W0,S0]
j , which implies the fact that the virtual side information for the non-

demand index can be different for queries for different servers. Basically, it is possible

that the virtual side information for W1 are S1,1 for Server 1 and S1,2 for Server 2 such

that S1,1 6= S1,2.

• The virtual side information for W0 is always S0 for queries for all servers, since W0 and

S0 are the real demand and side information indices.

Example 5.2. Suppose a (5,2,2)-PIR with side information coding scheme generates answer

strings A[W,S]
1 and A[W,S]

2 for W = 1 and S = {2,3}.

A[W,S]
1 for Server 1 A[W,S]

2 for Server 2
X11 +X21 +X31 X12 +X22 +X32

X41 +X51 +X31 X42 +X52 +X32

X13 +X23 +X33 +X42 +X52 +X32 X14 +X24 +X34 +X41 +X51 +X31

From Server 1’s perspective, the virtual side information for W0 = 1 is S0 = {2,3} and virtual side

information for W1 = 4 is S1,1 = {5,3}. In such case, τ= S1,1 ∩ (W0 ∪S0) = {3}. The corresponding

A
[W1,S1,1]
1 and A

[W1,S1,1]
2 can be expressed as

A
[W1,S1,1]
1 for Server 1 A

[W1,S1,1]
2 for Server 2

X11 +X21 +X31 X13 +X23 +X33

X41 +X51 +X31 X43 +X53 +X33

X13 +X23 +X33 +X42 +X52 +X32 X11 +X21 +X31 +X44 +X54 +X34
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Note that A[W,S]
1:2 cannot be used to decode XW1 = X4 even given XS1,1 = {X5,X3} as side information

but A
[W1,S1,1]
1:2 can be used to decode XW1 given XS1 as side information. The modified answer

string Ä
[W1,S1,1]
1 can be obtained by setting all component of X1,X2,X3 to be constant and can be

expressed as

Ä
[W1,S1,1]
1 =


c1 + c1 + c1

X41 +X51 + c1

c3 + c3 + c3 +X42 +X52 + c2

=
{

X41 +X51 + c1

c3 + c3 + c3 +X42 +X52 + c2

}
(5.74)

where c1,c2,c3,c4 are four constants for four components of X1,X2,X3. Since c1 + c1 + c1 is a

constant and the user knows it, Server 1 does not have to send it back to the user. Similarly, we

have

Ä
[W1,S1,1]
2 =


c3 + c3 + c3

X43 +X53 + c3

c1 + c1 + c1 +X44 +X54 + c4

=
{

X43 +X53 + c3

c1 + c1 + c1 +X44 +X54 + c4

}
(5.75)

Then, the constructed coding scheme with answer string Â
[W1,S1,1\τ]
1 and Â

[W1,S1,1\τ]
2 are

Â
[W1,S1,1\τ]
1 =

{
Ä

[W1,S1,1]
1

B

}
=


X41 +X51 + c1

c3 + c3 + c3 +X42 +X52 + c2

X1 +X2 +X3

 (5.76)

Â
[W1,S1,1\τ]
2 = {Ä

[W1,S1,1]
2 } =

{
X43 +X53 + c3

c1 + c1 + c1 +X44 +X54 + c4

}
(5.77)

In Â
[W1,S1,1\τ]
1 , the virtual side information, S1,1, for W1 = 4 does not contain index 3 any more. It

can be verified that

H(Â
[W1,S1,1\τ]
1 |Q̂[W1,S1,1\τ]

1 = Q̂
[W1,S1,1\τ]
1 ,XW0∪S0 ) = H(A

[W1,S1,1]
1 |Q[W1,S1,1]

1 =Q
[W1,S1,1]
1 ,XW0∪S0 ).

(5.78)

5.2.4 The Symmetry in Unwanted Indices

In previous Section 5.2.3, we show that without loss of optimality, we can assume that the

virtual side information S1, j for W1 contains no index from W0 ∪S0. Thus, we have S1, j ⊆
{1, . . . ,K } \ (W0 ∪ S0 ∪W1). Another interesting question is does the actually indices in S1, j

changes the value of the conditional entropy H (A
[W1,S j ]
j |Q[W1,S j ]

j =Q
[W1,S j ]
j ,XW0∪S0 )? Intuitively,

due to the symmetry in unwanted indices, the value of the conditional entropy term should

not depend on the indices in S1, j . We show that the size of S1, j is more important in the
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following Lemma 5.6.

Lemma 5.6. Let g (S j ) = H(A
[W1,S j ]
j |Q[W1,S j ]

j = Q
[W1,S j ]
j ,XW0∪S0 ). For any two subset of indices,

S1, j ,S′
1, j ⊆ {1, . . . ,K } \ {W1}, if H(XS1, j |XW0∪S0 ) = H(XS′

1, j
|XW0∪S0 ), we have g (S1, j ) = g (S′

1, j ).

Proof. For any S j ⊆ {1, . . . ,K } \ {W1}, we have:

H(A
[W1,S j ]
j |Q[W1,S j ]

j =Q
[W1,S j ]
j ,XW0∪S0 )

=H(XW1∪S j ,A
[W1,S j ]
j |Q[W0,S j ]

j =Q
[W1,S j ]
j ,XW0∪S0 )

−H(XW1∪S j |A
[W1,S j ]
j ,Q

[W1,S j ]
j =Q

[W1,S j ]
j ,XW0∪S0 ) (5.79)

=H(XW1∪S j |Q
[W0,S j ]
j =Q

[W1,S j ]
j ,XW0∪S0 )

+H(A
[W1,S j ]
j |Q[W1,S j ]

j =Q
[W1,S j ]
j ,XW0∪S0∪W1∪S j )

−H(XW1∪S j |A
[W1,S j ]
j ,Q

[W1,S j ]
j =Q

[W1,S j ]
j ,XW0∪S0 ) (5.80)

=H(XW1 |Q
[W0,S j ]
j =Q

[W1,S j ]
j ,XW0∪S0 )

+H(XS j |Q
[W0,S j ]
j =Q

[W1,S j ]
j ,XW0∪S0∪W1 ) (5.81)

+H(A
[W1,S j ]
j |Q[W1,S j ]

j =Q
[W1,S j ]
j ,XW0∪S0∪W1∪S j )

−H(XS j |A
[W1,S j ]
j ,Q

[W1,S j ]
j =Q

[W1,S j ]
j ,XW0∪S0 )

−H(XW1 |A
[W1,S j ]
j ,Q

[W1,S j ]
j =Q

[W1,S j ]
j ,XW0∪S0∪S j ) (5.82)

=H(XW1 |XW0∪S0 )︸ ︷︷ ︸
=L

+H(XS j |XW0∪S0 )︸ ︷︷ ︸
(a)

+H(A
[W1,S j ]
j |Q[W1,S j ]

j =Q
[W1,S j ]
j ,XW0∪S0∪W1∪S j )︸ ︷︷ ︸

(b)

−H(XS j |A
[W1,S j ]
j ,Q

[W1,S j ]
j =Q

[W1,S j ]
j ,XW0∪S0 )︸ ︷︷ ︸

(c)

−H(XW1 |A
[W1,S j ]
j ,Q

[W1,S j ]
j =Q

[W1,S j ]
j ,XW0∪S0∪S j )︸ ︷︷ ︸

(d)

(5.83)

The answer string A
[W1,S j ]
j is generated by a deterministic function of the selected query

realization Q
[W1,S j ]
j = Q [W1,S1]

j and all messages X1:K , which can be expressed as A
[W1,S j ]
j =

f
Q

[W1,S j ]

j

(X1, . . . ,XK ). Let us first consider S j = S1, j . For any query Q
[W1,S1, j ]
j = Q̃

[W1,S1, j ]
j generated

for (W1,S1, j ), we have the answer string A
[W1,S1, j ]
j = f

Q̃
[W1,S1, j ]

j

(X1, . . . ,XK ). Consider another

answer strings A
′[W1,S1, j ]
j = f

Q̃
[W1,S1, j ]

j

(X′
1, . . . ,X′

K ), where {X′
1, . . . ,X′

K } are one particular permu-

tation of {X1, . . . ,XK } . Define the mapping from {X1, . . . ,XK } to {X′
1, . . . ,X′

K } for S′
1, j as follows.

∀i ∈ {1, . . . ,K }:
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1. If i ∈W0 ∪S0 ∪W1 or i 6∈ S1, j ∪S′
1, j or i ∈ S1, j ∩S′

1, j , X′
i = Xi

2. If i ∈ S1, j and i 6∈ S′
1, j , X′

i = Xî and X′
î
= Xi , where î ∈ S′

1, j and î 6∈ S1, j .

Specifically, we swap the messages with indices only in either S1, j or S′
1, j . Since A

[W1,S1, j ]
j is

a valid answer string from Server j for (W1,S1, j ), it is easy to see that A
′[W1,S1, j ]
j is a also valid

answer string from Server j for (W1,S′
1, j ). Hence, we have

f
Q̃

[W1,S1, j ]

j

(X′
1, . . . ,X′

K ) = A
′[W1,S1, j ]
j = A

[W1,S′
1, j ]

j = f
Q̃

[W1,S′
1, j

] (X1, . . . ,XK ). (5.84)

For any two subsets of indices, S1, j and S′
1, j , such that H (XS1, j |XW0∪S0 ) = H (XS′

1, j
|XW0∪S0 ), terms

(a) of Equation (5.83) are the same. For terms (b), we have

H(A
[W1,S1, j ]
j |Q[W1,S1, j ]

j = Q̃
[W1,S1, j ]
j ,XW0∪S0∪W1∪S1, j )

=H( f
Q̃

[W1,S1, j ]

j

(X1, . . . ,XK )|Q[W1,S1, j ]
j = Q̃

[W1,S1, j ]
j ,XW0∪S0∪W1∪S1, j ) (5.85)

=H( f
Q̃

[W1,S1, j ]

j

(X′
1, . . . ,X′

K )|Q[W1,S1, j ]
j = Q̃

[W1,S1, j ]
j ,X′

W0∪S0∪W1∪S1, j
) (5.86)

=H( f
Q̃

[W1,S′
1, j

]

j

(X1, . . . ,XK )|Q[W1,S′
1, j ]

j = Q̃
[W1,S′

1, j ]

j ,XW0∪S0∪W1∪S′
1, j

) (5.87)

=H(A
[W1,S′

1, j ]

j |Q[W1,S′
1, j ]

j = Q̃
[W1,S′

1, j ]

j ,XW0∪S0∪W1∪S′
1, j

). (5.88)

Hence, terms (b) are the same for S1, j and S′
1, j . Similarly, it can be shown that terms (c) and

(d) are also the same, respectively. Thus, if H(XS1, j |XW0∪S0 ) = H(XS′
1, j
|XW0∪S0 ), for any query

Q̃
[W1,S1, j ]
j generated for (W1,S1, j ), it is always possible to generate another query Q̃

[W1,S′
1, j ]

j for

(W1,S′
1, j ) such that the value of two conditional entropy terms are the same. Therefore, we

have g (S1, j ) = g (S′
1, j ) if H(XS1, j |XW0∪S0 ) = H(XS′

1, j
|XW0∪S0 ).

For Lemma 5.6, we have the following remarks.

• The value of g (S) only depends on H (XS |XW0∪S0 ), which is not surprising because the all

messages except the demand and side information messages (XW0∪S0 ) should be fully

symmetric in the answer strings and can be re-indexed arbitrarily.

• We note that it is not straightforward to compute the value of g (S) from H(XS |XW0∪S0 ).

Example 5.3. Consider an (8,2,2)-PIR with side information coding scheme which generates

answer strings A[W,S]
1 and A[W,S]

2 for W = 1 and S = {2,3}.

From Server 1’s perspective, the virtual side information for W1 = 4 is S1,1 = {5,6}. From Server 2’s

perspective, the virtual side information for W1 = 4 is S1,2 = {5,7}. Hence, A[W,S]
1 and A[W,S]

2 can

also be interpreted as A
[W1,S1,1]
1 and A

[W1,S1,2]
2 , respectively. We note that S1,1 and S1,2 are different.
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A[W,S]
1 for Server 1 A[W,S]

2 for Server 2
X11 +X21 +X31 X12 +X22 +X32

X41 +X51 +X61 X42 +X52 +X72

X71 +X81 X62 +X82

X13 +X23 +X33 +X42 +X52 +X62 +X72 +X82 X14 +X24 +X34 +X41 +X51 +X61 +X71 +X81

By swapping the different indices in S1,1 and S1,2, we can get the answer strings A
′[W1,S′

1,1]
1 and

A
′[W1,S′

1,2]
2 .

A
′[W1,S′

1,1]
1 for Server 1 A

′[W1,S′
1,2]

2 for Server 2
X11 +X21 +X31 X12 +X22 +X32

X41 +X51 +X71 X42 +X52 +X62

X61 +X81 X72 +X82

X13 +X23 +X33 +X42 +X52 +X62 +X72 +X82 X14 +X24 +X34 +X41 +X51 +X61 +X71 +X81

We note that S′
1,1 = S1,2 and g (S1,1) and g (S′

1,1) can be computed as follows.

g (S1,1) =H(A
[W1,S1,1]
1 |Q[W1,S1,1]

1 =Q
[W1,S1,1]
1 ,X{1,2,3}) (5.89)

=H(X41 +X51 +X71,X61 +X81,X42 +X52 +X62 +X72 +X82) (5.90)

=3

4
L (5.91)

g (S′
1,1) =H(A

′[W1,S′
1,1]

1 |Q′[W1,S′
1,1]

1 =Q
′[W1,S′

1,1]
1 ,X{1,2,3}) (5.92)

=H(X42 +X52 +X62,X72 +X82,X41 +X51 +X61 +X71 +X81) (5.93)

=3

4
L (5.94)

Hence, the actual indices in virtual side information S1, j are not important. It is always possible

to generate answer string A′
j with virtual side information S′

1, j such that g (S1, j ) = g (S′
1, j ).

5.3 The capacity

Theorem 5.1. The capacity of multi-server single-message private information retrieval with

side information for K messages, M side information messages, and N servers is

C (K , M , N ) =
(
1+ 1

N
+ 1

N 2 +·· ·+ 1

N
⌈

K
M+1

⌉−1

)−1

. (5.95)

Proof. The proofs for the converse and achievability are presented in Section 5.3.1 and Sec-

tion 5.3.2, respectively.

We have the following remarks regarding formula (5.95).
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• The capacity C (K , M , N ) is a non-increasing function of K and a non-decreasing func-

tion of N and M , which is intuitive since the larger number of messages, less number of

servers and less number of side information messages are, the more download bits are

required.

• By setting the number of side information message(s) M = 0, we get the formula for

multi-server single-message private information retrieval without side information

given in [22].

• By setting the number of servers N = 1, we recover the formula for single-server single-

message private information retrieval with side information given in [49].

• The side information effectively reduces the total number of messages linearly from

K to
⌈ K

M+1

⌉
. Specifically, the multi-server single-message PIR with side information

problem for K messages and M side information messages has the same capacity as

multi-server single-message PIR without side information for
⌈ K

M+1

⌉
messages.

5.3.1 Converse

In this section, we present the proof for the converse of Theorem 5.1. We need to show that

D ≥ L

(
1+ 1

N
+ 1

N 2 +·· ·+ 1

N
⌈

K
M+1

⌉−1

)
. (5.96)

Let W0 =W denote the demand index and S0 = S denote the side information indices. The

total number of download bits (D) for any specific query realizations Q [W0,S0]
1:N can be lower

bounded as follows.

D ≥H(A[W0,S0]
1:N |Q[W0,S0]

1:N =Q [W0,S0]
1:N ,XS0 ) (5.97)

=H(A[W0,S0]
1:N ,XW0 |Q[W0,S0]

1:N =Q [W0,S0]
1:N ,XS0 )

−H(XW0 |A[W0,S0]
1:N ,Q[W0,S0]

1:N =Q [W0,S0]
1:N ,XS0 ) (5.98)

=H(XW0 |Q[W0,S0]
1:N =Q [W0,S0]

1:N ,XS0 )

+H(A[W0,S0]
1:N |Q[W0,S0]

1:N =Q [W0,S0]
1:N ,XW0∪S0 ) (5.99)

=L+H(A[W0,S0]
1:N |Q[W0,S0]

1:N =Q [W0,S0]
1:N ,XW0∪S0 ) (5.100)

≥L+H(A[W0,S0]
j |Q[W0,S0]

1:N =Q [W0,S0]
1:N ,XW0∪S0 ) (5.101)

=L+H(A[W0,S0]
j |Q[W0,S0]

j =Q [W0,S0]
j ,XW0∪S0 ). (5.102)

Equation (5.99) is because H(XW0 |A[W0,S0]
1:N ,Q[W0,S0]

1:N = Q [W0,S0]
1:N ,XS0 ) = 0 from the retrieval con-

dition (5.12). Equation (5.100) is because H(XW0 |Q[W0,S0]
1:N =Q [W0,S0]

1:N ,XS0 ) = H(XW0 ) = L. Equa-

tion (5.102) is because A[W0,S0]
j only depends on Q [W0,S0]

j and X1:K , and is independent of any

Q [W0,S0]
j ′ ( j ′ 6= j ) given Q [W0,S0]

j . For the ease of notation, we use W0 ∪S0 to denote {W0}∪S0.
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According to Lemma 5.1, for query realization Q [W0,S0]
j and answer strings A[W0,S0]

j , for any W1 ∈
{1, . . . ,K } \ {W0}, there must exist S1, j ⊆ {1, . . . ,K } \ {W1} and |S1, j | ≤ M such that ∀ j ∈ {1, . . . , N }

H(A[W0,S0]
j |Q[W0,S0]

j =Q [W0,S0]
j ,XW0∪S0 ) = H(A

[W1,S1, j ]
j |Q[W1,S1, j ]

j =Q
[W1,S1, j ]
j ,XW0∪S0 ), (5.103)

where Q [W0,S0]
j and Q

[W1,S1, j ]
j are actually the same query corresponding to the same answer

strings which may be possibly generated for (W0,S0) or (W1,S1, j ).

We note that S1, j (∀ j ∈ {1, . . . , N }) is determined by the query Q
[W1,S1, j ]
j . Since Q

[W1,S1,1]
1 =

Q [W0,S0]
1 , . . . ,Q

[W1,S1,N ]
N =Q [W0,S0]

N are generated for decoding XW0 with XS0 as side information

messages, the virtual side information indices S1, j for index W1 and query Q [W0,S0]
j may be

chosen differently for each server j , i.e., the sizes of S1, j ’s may be different, or even if the sizes

are the same, the indices may also be different. The difference among S1, j ’s for different j

is the main difficulty of proving the converse for multi-server private information retrieval

with side information. However, we prove that the number of download bits for answer string

corresponding to query with different virtual side information can be lower bounded by

another answer string corresponding to query with the same common virtual side information

in Theorem 5.2.

Theorem 5.2. Consider Q1,Q2, . . . ,QN are queries generated for demand index W0 with side

information indices S0 from a valid multi-server single-message PIR with side information

coding scheme. If the virtual side information indices for any index W1 6∈W0 ∪S0 are different

for different queries, i.e., ∃ j1 6= j2 ∈ {1, . . . , N } such that S1, j1 6= S1, j2 , there exist a common virtual

side information S1 such that ∀ j ∈ {1, . . . , N } :

H(A
[W1,S1, j ]
j |Q[W1,S1, j ]

j =Q
[W1,S1, j ]
j ,XW0∪S0 ) ≥ H(A[W1,S1]

j |Q[W1,S1]
j = Q̈ [W1,S1]

j ,XW0∪S0 ). (5.104)

Proof. The proof is given in the Appendix 5.5.1.

Before we move on to the proof of converse, it is instructive to notice that:

• The original query Q j for j ∈ {1, . . . , N } has the same virtual side information S0 for W0,

but has different virtual side information S1, j for W1. The constructed query Q̈ j for

j ∈ {1, . . . , N } has the same virtual side information S0 for W0, and also has the same

virtual side information S1 for W1.

• The constructed queries Q̈1, . . . ,Q̈N collectively may not permit the decoding of XW1 with

XS1 as side information messages. This is because the constructed queries Q̈1, . . . ,Q̈N is

obtained from the original query Q1, . . . ,QN , which are generated for decoding XW0 with

XS0 as side information messages. Since the virtual side information S1, j ’s for W1 may

be different in different query Q j ’s, it is not guaranteed that XW1 can be decoded given

some side information messages.
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Now we can continue the proof of the converse for Theorem 5.1. Taking summation over all

j ∈ {1, . . . , N } at both sides of Equation (5.102), we have

N D ≥ N L+
N∑

j=1
H(A[W0,S0]

j |Q[W0,S0]
j =Q [W0,S0]

j ,XW0∪S0 ) (5.105)

≥ N L+
N∑

j=1
H(A

[W1,S1, j ]
j |Q[W1,S1, j ]

j =Q
[W1,S1, j ]
j ,XW0∪S0 ) (5.106)

≥ N L+
N∑

j=1
H(A[W1,S1]

j |Q[W1,S1]
j = Q̈ [W1,S1]

j ,XW0∪S0 ) [for some S1] (5.107)

≥ N L+min
S1

N∑
j=1

H(A[W1,S1]
j |Q[W1,S1]

j = Q̈ [W1,S1]
j ,XW0∪S0 ), (5.108)

where Equation (5.107) is from Theorem 5.2 and Equation (5.108) is because we minimize the

sum of conditional entropy terms over all possible choices of S1.

As we mentioned above, the answer strings for Q̈ [W1,S1]
1:N collectively may not enable the user

to decode XW1 with XS1 as side information. Nevertheless, the existence of queries Q̂ [W1,S1]
1:N

such that the answer strings of them can be used to decode XW1 with XS1 as side information

is proved by the following Lemma.

Lemma 5.7. For any group of queries Q1, . . . ,QN generated for demand index W0 and side

information indices S0 from any multi-server single-message PIR with side information coding

scheme, if the virtual side information of W1 6∈W0 ∪S0 in all Q1, . . . ,QN is the same, denoted by

S1, and the corresponding answer strings A1, . . . ,AN cannot be used to decode XW1 with XS1 as

side information messages, i.e.,

H(XW1 |A1:N ,Q1:N =Q1:N ,XS1 ) 6= 0, (5.109)

there must exist another group of queries Q̂1, . . . ,Q̂N such that the corresponding answer strings

Â1, . . . , ÂN can be used to decode XW1 with XS1 as side information, i.e.,

H(XW1 |Â1:N ,Q̂1:N = Q̂1:N ,XS1 ) = 0, (5.110)

and for any j ∈ {1, . . . , N }, they satisfy

H(A j |Q j =Q j ,XW0∪S0 ) = H(Â j |Q̂ j = Q̂ j ,XW0∪S0 ). (5.111)

Proof. The proof is presented in Appendix 5.5.2.

For Lemma 5.7, we note that

• For both original queries Q1, . . . ,QN and the new queries Q̂1, . . . ,Q̂N , the virtual side in-

formation indices of W0 and W1 are S0 and S1, respectively. Hence, for any j ∈ {1, . . . , N },
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Q j and Q̂ j can be written as Q [W1,S1]
j and Q̂ [W1,S1]

j , respectively.

• The answer strings corresponding to Q̂1, . . . ,Q̂N can be used to decode XW1 with XS1 as

side information messages. But they may not permit the decoding of XW0 as XS0 as side

information messages.

• Both groups of queries download the same number of bits from the servers.

According to Lemma 5.7, we can replace Q̈ [W1,S1]
1 , . . . ,Q̈ [W1,S2]

N with Q̂ [W1,S1]
1 , . . . ,Q̂ [W1,S2]

N , which

satisfies

H(A[W1,S1]
j |Q[W1,S1]

j = Q̈ [W1,S1]
j ,XW0∪S0 ) = H(A[W1,S1]

j |Q[W1,S1]
j = Q̂ [W1,S1]

j ,XW0∪S0 ). (5.112)

Therefore, the total number of download bits can be further lower bounded by

N D ≥N L+min
S1

N∑
j=1

H(A[W1,S1]
j |Q[W1,S1]

j = Q̂ [W1,S1]
j ,XW0∪S0 ) (5.113)

≥N L+min
S1

H(A[W1,S1]
1:N |Q[W1,S1]

1:N = Q̂ [W1,S1]
1:N ,XW0∪S0 ) (5.114)

=N L+min
S1

H(XW1,S1 ,A[W1,S1]
1:N |Q[W1,S1]

1:N = Q̂ [W1,S1]
1:N ,XW0∪S0 )

−H(XW1,S1 |A[W1,S1]
1:N ,Q[W1,S1]

1:N = Q̂ [W1,S1]
1:N ,XW0∪S0 ) (5.115)

=N L+min
S1

H(A[W1,S1]
1:N |Q[W1,S1]

1:N = Q̂ [W1,S1]
1:N ,XW 1

0 ∪S1
0
)

+H(XW1∪S1 |Q[W1,S1]
1:N = Q̂ [W1,S1]

1:N ,XW0∪S0 )

−H(XS1 |A[W1,S1]
1:N ,Q[W1,S1]

1:N = Q̂ [W1,S1]
1:N ,XW0∪S0 ). (5.116)

Dividing by N on both sides, we get

D ≥L+min
S1

1

N
[H(A[W1,S1]

1:N |Q[W1,S1]
1:N = Q̂ [W1,S1]

1:N ,XW 1
0 ∪S1

0
)

+H(XW1∪S1 |Q[W1,S1]
1:N = Q̂ [W1,S1]

1:N ,XW0∪S0 )

−H(XS1 |A[W1,S1]
1:N ,Q[W1,S1]

1:N = Q̂ [W1,S1]
1:N ,XW0∪S0 )]. (5.117)

For i ∈ {1, . . . ,K −1}, define Di as follows.

Di =H(XWi∪Si |Q[Wi ,Si ]
1:N = Q̂ [Wi ,Si ]

1:N ,XW i−1
0 ∪Si−1

0
)

−H(XSi |A[Wi ,Si ]
1:N ,Q[Wi ,Si ]

1:N = Q̂ [Wi ,Si ]
1:N ,XW i−1

0 ∪Si−1
0

). (5.118)

Then we can rewrite Equation (5.117) as

D ≥ L+min
S1

1

N
H(A[W1,S1]

1:N |Q[W1,S1]
1:N = Q̂ [W1,S1]

1:N ,XW 1
0 ∪S1

0
)+ D1

N
. (5.119)
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Iteratively, we can use {Wi+1,Si+1} to replace {Wi ,Si } such that Wi+1 6∈W i
0 ∪Si

0. Accordingly,

Theorem 5.2 and Lemma 5.7 can be easily extended to the cases where the conditioning part

is XW i−1
0 ∪Si−1

0
, i.e.,

H(A
[Wi ,Si , j ]
j |Q[Wi ,Si , j ]

j =Q
[Wi ,Si , j ]
j ,XW i−1

0 ∪Si−1
0

) ≥ H(A[Wi ,Si ]
j |Q[Wi ,Si ]

j = Q̈ [Wi ,Si ]
j ,XW i−1

0 ∪Si−1
0

),

(5.120)

and

H(A[Wi ,Si ]
j |Q[Wi ,Si ]

j = Q̈ [Wi ,Si ]
j ,XW i−1

0 ∪Si−1
0

) = H(A[Wi ,Si ]
j |Q[Wi ,Si ]

j = Q̂ [Wi ,Si ]
j ,XW i−1

0 ∪Si−1
0

). (5.121)

Then, after T iterations, the total number of download bits can be bounded by

D ≥ L+min
S1

1

N
H(A[W1,S1]

1:N |Q[W1,S1]
1:N = Q̂ [W1,S1]

1:N ,XW 1
0 ∪S1

0
)+ D1

N
(5.122)

≥ L+min
S1,S2

1

N 2 H(A[W2,S2]
1:N |Q[W2,S2]

1:N = Q̂ [W2,S2]
1:N ,XW 2

0 ∪S2
0
)+ D2

N 2 + D1

N
(5.123)

. . . (5.124)

≥ L+ min
S1,...,ST

1

N T
H(A[WT ,ST ]

1:N |Q[WT ,ST ]
1:N = Q̂ [WT ,ST ]

1:N ,XW T
0 ∪ST

0
)+ DT

N T
+ DT−1

N T−1
+·· ·+ D1

N
. (5.125)

Additionally, we assume that after T substitutions, we have

W T
0 ∪ST

0 = {1, . . . ,K }. (5.126)

Since A[WT ,ST ]
1:N are deterministic given Q[WT ,ST ]

1:N = Q̂ [WT ,ST ]
1:N and all messages, {X1, . . . ,XK }, we

have

H(A[WT ,ST ]
1:N |Q[WT ,ST ]

1:N = Q̂ [WT ,ST ]
1:N ,XW T

0 ∪ST
0

) = 0. (5.127)

Hence, the total number of download bits satisfies

D ≥ L+ min
S1,...,ST

DT

N T
+ DT−1

N T−1
+·· ·+ D1

N
. (5.128)

To get the lower bound, we need to minimize each Di . Note that we can get a lower bound on
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each Di as follows.

Di =H(XWi∪Si |Q[Wi ,Si ]
1:N = Q̂ [Wi ,Si ]

1:N ,XW i−1
0 ∪Si−1

0
)

−H(XSi |A[Wi ,Si ]
1:N ,Q[Wi ,Si ]

1:N = Q̂ [Wi ,Si ]
1:N ,XW i−1

0 ∪Si−1
0

) (5.129)

=H(XWi |Q[Wi ,Si ]
1:N = Q̂ [Wi ,Si ]

1:N ,XW i−1
0 ∪Si

0
)

+H(XSi |Q[Wi ,Si ]
1:N = Q̂ [Wi ,Si ]

1:N ,XW i−1
0 ∪Si−1

0
)

−H(XSi |A[Wi ,Si ]
1:N ,Q[Wi ,Si ]

1:N = Q̂ [Wi ,Si ]
1:N ,XW i−1

0 ∪Si−1
0

) (5.130)

=L+H(XSi |Q[Wi ,Si ]
1:N = Q̂ [Wi ,Si ]

1:N ,XW i−1
0 ∪Si−1

0
)

−H(XSi |A[Wi ,Si ]
1:N ,Q[Wi ,Si ]

1:N = Q̂ [Wi ,Si ]
1:N ,XW i−1

0 ∪Si−1
0

) (5.131)

≥L, (5.132)

where Equation (5.130) is because H(XWi |Q[Wi ,Si ]
1:N = Q̂ [Wi ,Si ]

1:N ,XW i−1
0 ∪Si

0
) = H(XWi ) = L for each

Wi 6∈W i−1
0 ∪Si−1

0 ; and Equation (5.132) is due to the fact that condition cannot increase the

entropy. Thus, each Di is a positive term and is lower bounded by L. In order to get the

lower bound for D, we also need to minimize the number of terms Di for i = {1, . . . ,T }. It

is equivalent to maximize the size of W i
0 ∪ Si

0 given W i
0 and Si−1

0 . Apparently, the optimal

choice for Si is M new indices which are not included in W i
0 ∪Si−1

0 . Since the total number of

messages is K , to satisfy our assumption (5.126), we need

T ≥
⌈

K −M −1

M +1

⌉
=

⌈
K

M +1

⌉
−1. (5.133)

Hence, the lower bound for the total number of download bits is

D ≥L

(
1+ 1

N
+ 1

N 2 +·· ·+ 1

N T

)
(5.134)

=L

(
1+ 1

N
+ 1

N 2 +·· ·+ 1

N
⌈

K
M+1

⌉−1

)
. (5.135)

Thus, the capacity of multi-server single-message PIR with side information problem can be

upper bounded by

C (K , M , N ) = sup lim
L→∞

L

D
≤

(
1+ 1

N
+ 1

N 2 +·· ·+ 1

N
⌈

K
M+1

⌉−1

)−1

. (5.136)

5.3.2 Achievability

In this section, we present a proof of the achievability of Theorem 5.1. We present a cod-

ing scheme which satisfies the privacy and retrieval conditions and the rate matches the

information-theoretic converse bound (5.136).

In [42], Kadhe et al. present an achievability scheme, named Multi-Server W -PIR scheme, for
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multi-server single-message private information retrieval with side information when the total

number of messages K is divisible by M +1. We generalize this Multi-Server W -PIR scheme to

the cases where K is not divisible by M+1, also see [49, Remark 5]. In line with the terminology

in [42], we will refer to this scheme as the Partition-and-Coding scheme for Multi-Server. It can

be broken down into the following steps:

1. The user first generatesΘ= ⌈ K
M+1

⌉
empty subsets, denoted by ℘1, . . . ,℘Θ. The firstΘ−1

subsets have size M +1 and the last subset has size K − (Θ−1)(M +1), i.e.,

|℘1| =|℘2| = · · · = |℘Θ−1| = M +1 (5.137)

|℘Θ| =K − (Θ−1)(M +1) (5.138)

2. The user randomly selects one subset to contain the demand message XW with proba-

bility proportional to the size of the subsets.

Pr(XW ∈℘i ) = |℘i |
K

,∀i ∈ {1, . . . ,Θ} (5.139)

3. The user puts the side information messages in the selected subset until the subset is

full3.

4. The user randomly distributes the other messages to the other subsets.

5. For each subset, the user generates a super-message (following the terminology in [42]),

which is simply the sum of all messages in the subset.

6. The user applies the PIR coding scheme for the case where there is no side information

(exactly as in [22]) on the super-messages and sends the queries to the servers.

Theorem 5.3. The Partition-and-Coding scheme for Multi-Server satisfies the Privacy and

Retrieval conditions and achieves the maximum rate.

Proof. To see that the rate of the Partition-and-Coding scheme for Multi-Server indeed

matches the claimed formula, we start by observing that a PIR coding scheme without side

information forΘ super-messages requires 1+ 1
N +·· ·+ 1

NΘ−1 transmissions [22]. According to

step one, the number of super-messages always satisfies Θ = ⌈ K
M+1

⌉
. Thus the rate R of the

Partition-and-Coding scheme for Multi-Server satisfies

R =
(
1+ 1

N
+·· ·+ 1

N
⌈

K
M+1

⌉−1

)−1

, (5.140)

which matches the upper bound of the capacity previously shown in Equation (5.136). Hence,

the Partition-and-Coding scheme for Multi-Server achieves the maximum rate.

3If the last subset is chosen to contain the demand message, then not all side information messages are required
to be placed in the last subset. Otherwise, all side information messages should be placed in the chosen subset.
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Next, we show that the retrieval condition is satisfied. The PIR coding scheme for multi-server

without side information proposed in [22] guarantees that the super-message consisting of the

demand message and the side information messages can be successfully decoded. Since the

super-message is the sum of all messages in the subset, given the side information messages

in the subset, the only unknown is the demand message. Hence, the user can decode the

demand message, which satisfies the retrieval condition.

Finally, we show that the privacy condition is also satisfied. For super-messages, the PIR coding

scheme for the multi-server without side information (exactly as in [22]) satisfies the privacy

condition, which means the server cannot infer which super-message contains the demand

message. Let ℘i denote the subset of messages for constructing super-message Yi . Then, the

probability for Yi to contain the demand message XW can be computed as

Pr(XW ∈℘i |A,Q) = |℘i |
K

, (5.141)

where W denotes the random variable for the index of the demand message and A and Q

denote the answer strings and queries, respectively. Moreover, each message in the same

subset has the same probability to be the demand message, i.e.,

Pr(W = j |XW ∈℘i ,A,Q) = 1

|℘i |
. (5.142)

Hence, ∀i ∈ {1, . . . ,Θ} and ∀X j ∈℘i , the probability for message X j to be the demand message

given the answers and queries is

Pr(W = j |A,Q) = Pr(W = j , XW ∈℘i |A,Q) (5.143)

= Pr(W = j |XW ∈℘i ,A,Q)Pr(XW ∈℘i |A,Q) (5.144)

= |℘i |
K

1

|℘i |
(5.145)

= 1

K
. (5.146)

Therefore, from the server’s perspective, each message has the same probability ( 1
K ) to be the

demand message, which satisfies the privacy condition.

Example 5.4. Consider the multi-server single-message PIR with side information for K = 5

messages, N = 2 servers and M = 1 side information message. The user wants to download X1

and has X2 as the side information message. We first show an asymmetric coding scheme that

uses different virtual side information for different servers and hence suboptimal. Then we use

the Partition-and-Coding scheme for multi-server to construct an optimal code.

Specifically, consider the following asymmetric coding scheme:

Each message is divided into 4 chunks. It is easy to verify that given X2 (and its chunks

X21, X22, X23, X24), the demand message X1 can be recovered from the answer strings. Two
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Server 1 Server 2
X11 +X21 X12 +X22

X31 +X41 X32 +X52

X51 X42

X13 +X23 +X32 +X42 +X52 X14 +X24 +X31 +X41 +X51

chunks of each message are requested from each server and each server individually cannot infer

any information about the demand index. The virtual side information for X3 is different at the

two servers. Specifically, for X3, the virtual side information in Server 1’s perspective is X4, while

the virtual side information in Server 2’s perspective is X5. For 4 demand bits, the total number

of download bits is 8. Hence, the rate for this coding scheme is 4
8 = 1

2 , which is suboptimal.

By contrast, the Partition-and-Coding scheme for multi-server proceeds as follows:

1. The user createsΘ= ⌈ K
M+1

⌉= 3 empty subsets, ℘1,℘2,℘3 of size 2,2, and 1, respectively:

℘1 = {∗,∗},℘2 = {∗,∗},℘3 = {∗}. (5.147)

2. The user randomly selects one subset from {℘1,℘2,℘3} to contain the demand message X1

with probability 2
5 , 2

5 , 1
5 , respectively. Suppose the user chooses ℘2. Then, we have:

℘1 = {∗,∗},℘2 = {X1,∗},℘3 = {∗}. (5.148)

3. The user puts side information X2 into the selected subset ℘2, leading to:

℘1 = {∗,∗},℘2 = {X1, X2},℘3 = {∗}. (5.149)

4. The user randomly distributes the remaining messages to the other subsets. For example,

suppose that the outcome of this process is

℘1 = {X3, X5},℘2 = {X1, X2},℘3 = {X4}. (5.150)

5. For each subset, a super-message is generated

℘1 = {X3, X5}, Y1 = X3 +X5, (5.151)

℘2 = {X1, X2}, Y2 = X1 +X2, (5.152)

℘3 = {X4}, Y3 = X4. (5.153)

6. For the current example with 2 servers and 3 super-messages, we now show that an

optimal coding scheme can be implemented already with messages of length L = 23 = 8
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bits.4 That is, we have that ∀ j ∈ {1, . . . ,8} :

Y1 j = X3 j +X5 j , (5.154)

Y2 j = X1 j +X2 j , (5.155)

Y3 j = X4 j . (5.156)

Following the standard method proposed in [22], we can construct an optimal PIR scheme

for multi-server without side information for Y1,Y2,Y3. The user sends the queries shown

as follows to Server 1 and Server 2.

Server 1 Server 2
Y11,Y21,Y31 Y12,Y22,Y32

Y23 +Y12 Y25 +Y11

Y24 +Y32 Y26 +Y31

Y13 +Y33 Y14 +Y34

Y27 +Y14 +Y34 Y28 +Y13 +Y33

It can be verified that Y21, . . . ,Y28 can be recovered from the coding scheme. Hence, Y2 can be fully

decoded. Given X2 as the side information, the demand message X1 can also be retrieved. For 8

bits message, the total number of download bits is 14. Hence, the rate is 8
14 = 4

7 , which is higher

than that of the above asymmetric coding scheme and matches the capacity
(
1+ 1

2 + 1
22

)−1
.

5.4 Discussions and Conclusion

5.4.1 Models for the Demand Index and Side Information Indices

In Section 5.1, we first define the distribution of the random variable of demand index W and

then define the distribution of the random variable of side information indices S is defined as

the conditional distribution given W. This way of definitions for W and S is somehow counter-

intuitive and may cause the confusion that if the user can choose the side information indices

from some distribution, why don’t the user just choose the demand index as side information.

For this misunderstanding, we would like to clarify that for any specific private information

retrieval with side information problem, neither the demand index nor the side information

indices can be chosen by the user. Both W and S are fixed as realizations W and S at beginning,

and are used as the inputs to generate queries. The distributions are assumptions and used

for the coding schemes instead of any specific query or answer string.

It is also beneficial to notice that from the distribution for W and conditional distribution

for S given W defined in Equation (5.3) and (5.4), respectively, we can derive the marginal

4Note that Theorem 5.1 characterizes optimal performance in the limit as the message length L becomes large,
as defined in Equation (5.10). For the example at hand, that same performance can be attained already for L = 8.

99



Chapter 5. Multi-Server Single-Message PIR with Side Information

distribution for S as follows.

Pr(S = S) = ∑
W ∈{1,...,K }

Pr(S = S,W =W ) (5.157)

= ∑
W ∈{1,...,K }

Pr(S = S|W =W )Pr(W =W ) (5.158)

= ∑
W ∈{1,...,K }\S

Pr(S = S|W =W )Pr(W =W )

+ ∑
W ∈S

Pr(S = S|W =W )Pr(W =W ) (5.159)

=(K −M)× 1(K−1
M

) × 1

K
(5.160)

= 1(K
M

) , (5.161)

where in Equation (5.159), Pr(S = S|W =W ) = 0 for any W ∈ S. The conditionally distribution

for W given S satisfies

Pr(W =W |S = S) =Pr(W =W,S = S)

Pr(S = S)
(5.162)

=Pr(S = S|W =W )Pr(W =W )

Pr(S = S)
(5.163)

=
1

(K−1
M )

× 1
K

1
(K

M)

(5.164)

= 1

K −M
. (5.165)

The distribution for W and conditional distribution for W given S are more intuitive and can

be interpreted as the M side information messages XS are chosen uniformly at random from

K messages and then the demand message is chosen uniformly at random from the remaining

K −M messages. However, the two ways of defining the distributions are equivalent. The joint

distribution of W and S satisfies

Pr({W,S} = {W,S}) = 1( K
M+1

) ,∀S ⊂ {1, . . . ,K },W ∈ {1, . . . ,K } \ S. (5.166)

5.4.2 Virtual Side Information in Multi-Server and Single-Server Cases

In the multi-server PIR with side information problem, we defined the virtual side information

for each server and each query. The virtual side information just indicates that the query

may possibly be generated for any demand index W with proper side information indices

S. A similar concept for single-server PIR with side information is defined in [49], which

can be interpreted as the decoding property. For every index W ∈ {1, . . . ,K }, it is possible

to find S ⊆ {1, . . . ,K } \ {W } with |S| = M such that given side information XS , the message
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XW can be decoded. However, in multi-server cases, the virtual side information does not

guarantee similar decoding property. Even when queries for all servers have the same virtual

side information for every index, the corresponding answer string may still not permit the

decoding of the messages which are neither the demand message nor the side information

messages. This is the main difference between multi-server and single-server PIR with side

information problems.

Moreover, in multi-server cases, the answer string for each server may not include all messages.

This is because the missing message in answer string generated by server i can be used in

answer string generated by server j . However, in single-server cases, the answer string must

cover all messages. Otherwise, the missing message can be excluded from being the demand

message, which violates the privacy condition.

5.4.3 Conclusion

In this chapter, we studied the multi-server single-message private information retrieval

with side information problem. We characterized the capacity of this problem by presenting

the proof of the converse bound for the total number of download bits per demand bit and

proposing an achievability scheme to construct optimal codes which satisfy both the retrieval

condition and privacy condition. We introduced the conception, virtual side information,

which can be utilized in the proof of the converse bound. The tricky part of this problem is that

for queries generated for different servers, the virtual side information for those undemanded

indices can be different. We have shown that for each group of queries with different virtual

side information, it is always possible to generate another group of queries with the same

virtual side information and downloads no more bits. The proposed achievability scheme is a

linear coding scheme, which implies that linear coding schemes are sufficient to optimally

solve multi-server single-message private information retrieval with side information problem.

5.5 Appendix

5.5.1 Proof of Theorem 5.2

In this section, we present the proof for Theorem 5.2.

Proof. For index W1, denote the corresponding virtual side information at Server j by S1, j

for j ∈ {1, . . . , N }. According to Lemma 5.5, without loss of optimality, we can assume that

S1, j ∩(W0∪S0) =;, ∀ j ∈ {1, . . . , N }. Without loss of generality, let us assume that |S1,1| ≥ |S1,2| ≥
· · · ≥ |S1,N |. Let the common virtual side information be S1 = S1,1.

For any S1, j with j 6= 1, according to Lemma 5.6, it is possible to find a query Q̂ j with virtual
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side information indices Ŝ1, j for W1 such that

Ŝ1, j ⊆ S1, (5.167)

|Ŝ1, j | = |S1, j |, (5.168)

H(A
[W1,S1, j ]
j |Q[W1,S1, j ]

j =Q
[W1,S1, j ]
j ,XW0∪S0 ) = H(A

[W1,Ŝ1, j ]
j |Q[W1,Ŝ1, j ]

j = Q̂
[W1,Ŝ1, j ]
j ,XW0∪S0 ). (5.169)

Note that the virtual side information for one index in a query and the corresponding answer

string are not necessarily unique. For answer string A
[W1,Ŝ1, j ]
j and corresponding query realiza-

tion Q
[W1,Ŝ1, j ]
j , since the virtual side information for W1 satisfies Ŝ1, j ⊆ S1, S1 is also a possible

virtual side information for W1. Thus, there must exist query realization Q̈ [W1,S1]
j such that

H(A
[W1,Ŝ1, j ]
j |Q[W1,Ŝ1, j ]

j = Q̂
[W1,Ŝ1, j ]
j ,XW0∪S0 ) ≥ H(A[W1,S1]

j |Q[W1,S1]
j = Q̈ [W1,S1]

j ,XW0∪S0 ), (5.170)

where the equality holds when Q̈ [W1,S1]
j = Q̂

[W1,Ŝ1, j ]
j . Therefore, it is always possible to find the

common virtual side information S1 such that ∀ j ∈ {1, . . . , N }:

H(A
[W1,S1, j ]
j |Q[W1,S1, j ]

j =Q
[W1,S1, j ]
j ,XW0∪S0 ) ≥ H(A[W1,S1]

j |Q[W1,S1]
j = Q̈ [W1,S1]

j ,XW0∪S0 ). (5.171)

5.5.2 Proof of Lemma 5.7

In this section, we present the proof of Lemma 5.7.

Proof. By assumption, the both groups of answer strings, A1, . . . ,AN and Â1, . . . , ÂN , have

virtual side information S0 for W1 and S1 for W1 in all queries Q j for j ∈ {1, . . . , N }. According

to Lemma 5.1, ∀ j ∈ {1, . . . , N }:

H(A[W0,S0]
j |Q[W0,S0]

j =Q [W0,S0]
j ,XW0∪S0 ) = H(A[W1,S1]

j |Q[W1,S1]
j =Q [W1,S1]

j ,XW0∪S0 ) (5.172)

where Q [W0,S0]
j =Q [W1,S1]

j =Q j are the same query. Similarly,

H(Â[W1,S1]
j |Q̂[W1,S1]

j = Q̂ [W1,S1]
j ,XW0∪S0 ) = H(Â[W0,S0]

j |Q̂[W0,S0]
j = Q̂ [W0,S0]

j ,XW0∪S0 ) (5.173)

where Q̂ [W1,S1]
j = Q̂ [W0,S0]

j = Q̂ j are the same query. From Server j ’s perspective, both Q j and Q̂ j

can possibly be generated for (W0,S0) or (W1,S1). Thus, Q j and Q̂ j (∀ j ∈ {1, . . . , N }) are actually

from the same subset of queries, denoted by Q
[W0,S0],[W1,S1]
j , which has virtual side information

S0 and S1 for W0 and W1, respectively. By taking average over all queries in Q
[W0,S0],[W1,S1]
j , we
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can obtain

H(A[W0,S0]
j |Q[W0,S0]

j ,XW0∪S0 )

=E
Q

[W0,S0]
j ∈Q

[W0,S0],[W1,S1]
j

[
H(A[W0,S0]

j |Q[W0,S0]
j =Q [W0,S0]

j ,XW0∪S0 )
]

(5.174)

=E
Q

[W1,S1]
j ∈Q

[W0,S0],[W1,S1]
j

[
H(A[W1,S1]

j |Q[W1,S1]
j =Q [W1,S1]

j ,XW0∪S0 )
]

(5.175)

=H(A[W1,S1]
j |Q[W1,S1]

j ,XW0∪S0 ) (5.176)

=H(Â[W1,S1]
j |Q̂[W1,S1]

j ,XW0∪S0 ) (5.177)

For the queries in Q
[W0,S0],[W1,S1]
j , Server j can only infer the virtual side information for W0

and W1, but should not be able to infer which one of W0 and W1 is the real demand index and

which one of S0 and S1 is the real side information indices. Thus, without loss of optimality, we

can assume that for every Q1, . . . ,QN there exist Q̂1, . . . ,Q̂N which satisfy Equation (5.111).
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6 Multi-User Private Information Re-
trieval with Side Information

In Chapter 4 and Chapter 5, we studied the private information retrieval with side information

for multi-messages and multi-server extensions, respectively. In this chapter, we investigate

another extension, the multi-user private information retrieval with side information. We

consider the scenario where multiple users cooperatively download one message from the

single server while keeping the index of the demand message private from the server. We

consider the linear cases where answer string is assumed to be linear combinations of the

messages. We establish the capacity by providing the proof for converse and proposing an

achievability scheme.

6.1 Problem Statement

In the multi-user private information retrieval with side information problem, there is a

database which consists of K messages, denoted by X1:K = {X1, . . . , XK }, and is stored in a

single server. The random variables of the messages, denoted by Xi ’s, for i ∈ {1, . . . ,K }, are

assumed to be independent from each other, i.e.,

H(X1, . . . ,XK ) = H(X1)+·· ·+H(XK ). (6.1)

We assume that there are N users that want to cooperatively retrieve a common message

XW ∈ {X1, . . . , XK }. We refer to W ∈ {1, . . . ,K } as the demand index and XW as the demand

message. Let W denote the random variable of the demand index W . W is assumed to be

uniformly distributed over {1, . . . ,K }, i.e.,

Pr(W =W ) = 1

K
, ∀W ∈ {1, . . . ,K }. (6.2)

Additionally, it is assumed that each user initially has a subset of messages as side information.

For each user i ∈ {1, . . . , N }, let Si denote the set of the indices of the side information messages

of user i . We refer to Si ⊆ {1, . . . ,K } \ {W } as the side information indices of user i and XSi =
{X j : j ∈ Si } as the side information messages of user i . Let Mi denote the number of side
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information messages of user i , i.e., |Si | = Mi . Let Si denote the random variable for Si for

each i ∈ {1, . . . , , N }, which is assumed to be conditionally uniformly distributed over all subsets

of {1, . . . ,K } \ {W } with size Mi , i.e.,

Pr(Si = Si ) = 1(K−1
Mi

) , ∀Si ⊆ {1, . . . ,K } \ {W }, |Si | = Mi . (6.3)

We note that different users can have different numbers of side information messages. We

assume that the server only knows the numbers of the side information messages of all users

(M1, . . . , MN ), but does not know the actual indices of side information messages (S1, . . . ,SN ).

The goal of the users is to download the demand message XW from the server while revealing

no information about W to the server. To achieve the goal, the users jointly generate and send

a query Q to the server. Let Q denote the random variable for query realization Q which is

generated for retrieving message XW while having XS1 , . . . , XSN as side information at each

user, respectively. Following the literature, we assume that Q is a (stochastic) function of

the demand index W and all side information indices S1, . . . ,SN , but does not depend on the

contents of any of the messages, i.e.,

H(Q|X1:K ) = H(Q). (6.4)

After the server receives the query Q, it generates and replies the corresponding answer string

A to the users. Let A denote the random variable for the answer string realization A, which is a

deterministic function of query Q and all messages X1, . . . ,XK , i.e.,

H(A|Q,X1:K ) = 0. (6.5)

We only consider the linear code scheme, where the answer string is assumed to be linear

combinations of messages. The query Q is chosen from an alphabet Q and the answer string A

is from a corresponding alphabet A . The PIR scheme is the set of queries and answer strings.

6.1.1 Retrieval and Privacy Conditions

For any fixed W and S1, . . . ,SN , the user jointly generate one query Q (from potentially multiple

queries) and request the corresponding answer string A from the server. In order to let every

user successfully recover the demand message XW , the answer string A and query Q must

satisfy:

H(XW |A,Q,XSi ) = 0, ∀i ∈ {1, . . . , N } (6.6)

We refer to Condition (6.6) as the retrieval condition for multi-user private information retrieval

with side information.

The private information retrieval also requires that the server should not be able to infer any
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information about the index of the demand message from the received query. Thus, the query

Q must satisfy:

I (W;Q) = 0. (6.7)

As we have shown in Chapter 5, Equation (6.7) can be used to derive the following equation.

I (W;A,Q,X1:K ) = 0. (6.8)

We refer to Condition (6.8) as the privacy condition for multi-user private information retrieval.

6.1.2 Definitions and Useful Lemma

For each specific multi-user PIR with side information problem, we can use a matrix to

represent all the information that we need.

Definition 6.1 (Characterization Matrix). For the multi-user private information retrieval

with side information problem with demand index W and side information indices S1, . . . ,SN ,

define the characterization matrix C with entry Ci , j (∀i ∈ {1, . . . , N }, j ∈ {1, . . . ,K }) :

Ci , j =


1, if j =W,

α, if j ∈ Si ,

0, otherwise.

(6.9)

For V ⊆ {1, . . . ,K }, let C V denote the submatrix of C with columns indexed by V . Let wα(C (i , :))

denote the number of α’s in the i -th row vector of C .

The characterization matrix contains 3 entries, which are 1, α and 0 representing demand

index, side information indices and other indices, respectively. The number of columns is

equal to the total number of messages K . The number of rows is equal to the number of users

N . Each row carries the information for the corresponding user.

Example 6.1. Consider a multi-user private information retrieval with side information prob-

lem with the setting: K = 7, N = 3, W = 1, S1 = {2,3}, S2 = {3,4,5}, and S3 = {2,4}. Then we can

use the following matrix to represent the problem with this specific setting.

C =

1 α α 0 0 0 0

1 0 α α α 0 0

1 α 0 α 0 0 0

 . (6.10)

Since we only consider the linear coding schemes, the answer string is the set of linear combi-

nations of messages. Suppose there are R linear combinations in answer string A = {T1, . . . ,TR }.

We note that each linear combination Tr for r ∈ {1, . . . ,R} may not use all messages. In other
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words, the coefficients of some messages may be zeros. Hence, we define the coding subspace

for the messages which are used to generate each linear combination as follows.

Definition 6.2 (Coding Subspace). For any linear answer string A = {T1, . . . ,TR }, let supp(Tr )

denote the messages which are used to generated Tr for any r ∈ {1, . . . ,R}. Define the partition

of the messages according to the answer string A as P (A) = {℘1, . . .} such that ∀Tr ∈ {T1, . . . ,TR },

!∃℘ j ∈P (A) such that supp(Ti ) ⊆℘ j . We call the subspace spanned by messages in ℘ j a coding

subspace, and in slight abuse of notation, use the same symbol ℘ j to denote this subspace. Let

T(℘ j ) = {Tr ∈ {T1, . . . ,TR } : supp(Tr ) ⊆℘ j }.

Regarding the concept of coding subspace, it is good to notice that:

1. For each linear combination Tr ∈ {T1, . . . ,TR }, we can easily identify which messages are

used to generate this linear combination. Hence, it is always possible to partition the

messages into subsets of messages such that each linear combination only consists of

messages from a single subset.

2. The set of all messages is always a valid coding subspace for all linear answer strings.

3. Linear combinations in different coding subspace have no commonly used messages.

They are completely independent of each other and cannot help each other to decode

any messages.

Definition 6.3 (Decoding Pattern). The set of side information messages XS is called a de-

coding pattern of message Xi if XS and Xi belong to the same coding subspace (℘) and given

XS , Xi can be decoded from the answer string requested by the users. Hence S should satisfy

H(Xi |T(℘),XS) = 0.

For any answer string A satisfying the privacy condition, it is always possible to find one (or

multiple) decoding pattern(s) for every message. Otherwise, if one message has no decoding

pattern, which implies that message cannot be the demand message and violates the privacy

condition.

Definition 6.4 (MDS-Condition). A linear answers string A satisfies the MDS-Condition in

coding subspace ℘i ∈P (A) if either of the following two conditions is satisfied:

(i) The normalized number of download bits is equal to the size of the coding subspace, i.e.,

|T(℘i )| = |℘i |. (6.11)

(ii) The normalized number of download bits is equal to the size of coding subspace minus

Mi , i.e., ∃Mi ∈ {1, . . . , |℘i |−1} such that

|T(℘i )| = |℘i |−Mi , (6.12)
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and given any subset of messages in ℘i with size Mi , the other messages in ℘i can be fully

decoded, i.e.,

H(℘i |T(℘i ),XV ) = 0,∀XV ⊂℘i , |XV | = Mi . (6.13)

Additionally, no message in ℘i can be decoded, given less than Mi side information, i.e.,

∀XU ⊂℘i with |XU | ≤ Mi −1, ∀X j ∈℘i \ XU :

H(X j |T(℘i ),XU ) 6= 0. (6.14)

We note that the MDS-Condition is defined for an answer string and one of its coding subspaces.

It can be conveniently verified for any answer string A and coding subspace ℘i . If A satisfies the

condition (i), then the linear combinations T(℘i ) are equivalent to sending each message in ℘i

individually without any coding. If A satisfies the condition (ii), then the linear combinations

T(℘i ) can be used to decode any messages in ℘i as long as Mi messages are given as side

information. This property is closely related to Maximum Distance Separable (MDS) codes. So

we name it as the MDS-Condition.

Definition 6.5. For any characterization matrix C and any L ∈ {1, . . . ,K }, define R(L) as

RC (L) = L− max
V ⊆{1,...,K }\{W },|V |=L−1

min
i∈{1,...,N }

wα(C V (i , :)), (6.15)

where W is the index of the demand message.

For any fixed L, we select L−1 of columns and the demand message column from C to form a

submatrix. For the selected submatrix of C , we can compute the number of α’s for any row

i and find the row with the minimum number of α’s. The optimal selection of such L −1

columns should maximize the minimum number of α’s in any row vector of the submatrix.

And RC (L) is defined as L minus the maximized minimal number of α’s. We note that the

optimal choices for V and i are not necessarily unique.

Example 6.2. Consider the single-server multi-user private information retrieval with side

information problem with the following characterization matrix:

C =

1 α α 0 0 0 0

1 0 α α α 0 0

1 α 0 α 0 0 0

 . (6.16)

We can try all possible selections of columns for any L ∈ {1, . . . ,7} and get the following results

1. L = 1 : RC (L) = L.

2. L = 2 : RC (L) = L with optimal V = {2} and i = 2.

3. L = 3 : RC (L) = L−1 with optimal V = {2,3} and i = 2.
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4. L ≥ 4 : RC (L) = L−2 with optimal V ⊇ {2,3,4} and i = 1.

However, this traversal method requires high complexity. We show the detail of how to efficiently

compute RC (L) in Section 6.3. Let us consider the following linear answer string A = {T1, . . . ,T4} :

T1 = X2 +X5 +X6 +X7, (6.17)

T2 = X2 +2X5 +3X6 +4X7, (6.18)

T3 = X1 +X3 +X4, (6.19)

T4 = X1 +2X3 +3X4. (6.20)

It can be verified that the answer string A satisfies the MDS-Condition for coding subspaces

℘1 = {X2,X5,X6,X7} and ℘2 = {X1,X3,X4}. From T3 and T4, given any one message in ℘2, the

other two messages can be decoded. Since users have at least one message of {X3,X4}, they

can successfully decode the demand message X1. Hence, answer string A satisfies the retrieval

condition. Also, it can be computed that RC (4) = L−2 = 2 and RC (3) = L−1 = 2, which are the

number of linear combinations in ℘1 and ℘2, respectively.

In each coding subspace, the number of decoding patterns for each message is the same. But since

the server has no information about the side information messages of the users, the demand

message can be possible in either of the two coding subspaces. By using the randomized coding

technique discussed in Section 6.2.2, the probability of the demand message to be placed in℘i is

|℘i |/K . Then, every message can be the demand message with equal probability which is 1/K .

Hence, the privacy condition is also satisfied.

As one may notice, only T3 and T4 are useful in decoding the demand message X1. Why is

it necessary to have two transmissions in ℘1? The reason is RC (|℘1|) = 2 and we show that

|T(℘1)| ≥ RC (|℘1|) is a necessary condition for users to put the demand message in ℘i in

Lemma 6.2.

6.2 The Capacity

Theorem 6.1. For the single-server multi-user private information retrieval with side informa-

tion problem where all users want the same message but have different side information, the

minimal number of required linear combinations satisfies

R∗ = min
L∈Π(K )

∑
l∈L

RC (l ), (6.21)

whereΠ(K ) denotes the set of partitions of K .

Proof. We present the proof of the converse and achievability for Theorem 6.1 in Section 6.2.1

and Section 6.2.2, respectively.
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We have the following remarks regarding Theorem 6.1.

1. The minimum number of required linear combinations can be obtained by solving an

optimization problem over all partitions of the total number of messages, K . Although

the number of partitions of K grows exponentially with K , the optimization problem can

be solved by a dynamic programming algorithm shown in Section 6.3 with polynomial

complexity.

2. The minimum number of required linear combinations is the sum of the number of

linear combinations in each coding subspace.

6.2.1 Converse

In this section, we present the proof for the converse for Theorem 6.1. We need to show that

R∗ ≥ min
L∈Π(K )

∑
l∈L

RC (l ). (6.22)

For any answer string which is a set of linear combinations of messages from {X1, . . . ,XK }, it is

always possible to find the corresponding coding subspaces according to Definition 6.2. To

satisfy the privacy condition, a necessary condition can be derived for each coding subspace,

which is stated by the following Lemma.

Lemma 6.1. For any linear answer string which satisfies the privacy condition of single-server

multi-user private information retrieval with side information, without loss of optimality, the

MDS-Condition should be satisfied in every coding subspace.

Proof. For any answer string A from a linear PIR coding scheme which satisfies the privacy

condition, the server should not be able to infer any information about the demand index

from the answer string and query. Equation (6.8) is equivalent to

H(W|A,Q,X1:K ) = H(W). (6.23)

Since W is uniformly distributed over all indices {1, . . . ,K }, the entropy H(W) achieves the

maximum entropy. Each message should have the same probability to be the demand message.

For any W ∈ {1, . . . ,K }, we have

Pr(W =W |A = A,Q =Q,X1:K = X1:K ) = Pr(W =W ) = 1

K
. (6.24)

Therefore, for any coding subspace ℘ ∈P (A), the messages in ℘ should also have the same

probability to be the demand message.

Suppose the MDS-condition is not satisfied in coding subspace ℘, then there must exist one

message Xi ∈ ℘, such that Xi can be decoded from T(℘) given side information messages

either XSa or XSb . Additionally given XSa , XSb cannot be decoded from T(℘).
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In such cases, if all users have XSa as side information messages, which permits successful

decoding of Xi , then the messages in ℘ which cannot be decoded from T(℘) given XSa can be

separated from ℘ to form another coding subspace by setting the coefficients of the messages

that can be decoded given XSa (including XSa themselves) to be zeros in the corresponding

linear combinations. And in the split two coding subspaces, the MDS-condition is satisfied.

If not all users have XSa as side information messages, we cannot split ℘ into two coding

subspaces, since some users have to use the side information messages XSb to decode the

message Xi . Hence, the server can infer that XSa and SSb are side information messages for

different users and Xi is the demand message, which violates the privacy condition. Therefore,

without loss of optimality, we can assume that the MDS-condition is satisfied in every coding

subspace.

According to Lemma 6.1, it is sufficient to only consider the linear coding schemes with answer

strings satisfying MDS-Condition in every coding subspace.

Example 6.3. Consider a two user private information retrieval with side information problem

with setting: W = 3 and S1 = {1,2}, S2 = {4,5}. If we want to generate linear answer string in

coding subspace ℘= {1,2,3,4,5} which satisfies the retrieval condition for both users, we need

at least two linear combinations:

T1 =X1 +X2 +X3 (6.25)

T2 =X3 +X4 +X5 (6.26)

It can be verified that T1,T2 does not satisfy the MDS-Condition in℘. After receiving the query for

requesting T1,T2, the server knows that the decoding patterns for X3 are {X1,X2} and {X4,X5}. If

the both users use decoding pattern {X1,X2} to decode X3, then the following linear combinations

should also satisfy the retrieval condition

T′
1 =X1 +X2 +X3 (6.27)

T′
2 =X4 +X5 (6.28)

It can be verified that T′
1 and T′

2 satisfy the MDS-Condition in coding subspaces ℘1 = {1,2,3}

and ℘2 = {4,5}, respectively. If two users use different coding patterns to decode X3, then T′
1 and

T′
2 do not satisfy the MDS-Condition any more, since user 2 cannot decode X3. From the server’s

perspective, it can infer that the two users have different side information and X3 is the demand

message, which violates the privacy condition. We can also generate the linear combinations

which satisfy the MDS-Condition in coding subspace ℘= {1,2,3,4,5} as follows.

T′′
1 =X1 +X2 +X3 (6.29)

T′′
2 =X1 +2X2 +X4 (6.30)

T′′
3 =X1 +3X2 +X5 (6.31)
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The MDS-Condition guarantees that messages in the same coding subspaces have equal

probability to be the demand message and have the same number of decoding patterns.

Messages in coding subspaces with different dimensions may still have different numbers

of decoding patterns. Nevertheless, it is not necessary for them to have the same number of

decoding patterns as long as the demand message can be possibly put in any coding subspace.

Since only one coding subspace can contain the demand message, if the demand message

can be randomly placed into any coding subspace with the probability proportional to the

dimension of the coding subspace, the probability for every message to be placed in any

subspace is the same. To make sure that the users can randomly put the demand message

in any coding subspace, we need the coding scheme to satisfy the condition stated as the

following lemma.

Lemma 6.2. To generate a linear answer string A which satisfies MDS-Condition in coding

subspace ℘i ∈ P (A) with |℘i | = L, if H(XW |T(℘i ),XS j ) = 0 for all j ∈ {1, . . . , N }, then |T(℘i )| ≥
RC (L).

Proof. If ∀ j ∈ {1, . . . , N }: H(XW |T(℘i ),XS j ) = 0, then all users can decode the demand mes-

sage from the linear combinations consisting of messages in coding subspace ℘i . It implies

that XW ∈ ℘i . Since the answer string A satisfies MDS-condition in coding subspace ℘i ,

there are two cases to discuss. If |T(℘i )| = |℘i | = L, then the number of linear combinations

is equal to the number of messages in the coding subspace. Hence, H(XW |T(℘i ),XS j ) =
0 is always satisfied and |T(℘i )| ≥ R(L), since R(L) ≤ L. If |T(℘i )| = |℘i | − Mi < |℘i |, to

satisfy H(XW |T(℘i ),XS j ) = 0, ∀ j ∈ {1, . . . , N }, we need |XS j ∩℘i | ≥ Mi , ∀ j ∈ {1, . . . , N }. It is

equivalent to min j∈{1,...,N } |XS j ∩℘i | ≥ Mi . Let V denote the indices of messages in ℘i , then

min j∈{1,...,N } |XS j ∩℘i | = min j∈{1,...,N } wH (C V ( j , :)) is the minimum number of α’s in any row

vector of the submatrix C V . Hence,

RC (L) = L− max
V ⊆{1....,K }\W,|V |=L−1

min
j∈{1,...,N }

wH (C V ( j , :)) (6.32)

≤ L− min
j∈{1,...,N }

wH (C V ( j , :)) (6.33)

= |℘i |− min
j∈{1,...,N }

|XS j ∩℘i | (6.34)

≤ |T(℘i )|. (6.35)

By selecting the columns V to be the set of indices of the optimal coding subspace and

Mi = min j∈{1,...,N } |XS j ∩℘i |, both inequalities are tight.

Corollary 6.1 (Converse for Theorem 6.1). For the single-server multi-message private in-

formation retrieval with side information problem, the minimum number of required linear

combinations is lower bounded by minL∈Π(K )
∑

l∈L RC (l ).

Proof. According to Lemma 6.1, for any linear coding scheme which satisfies the privacy

condition, without loss of optimality, we can assume that it also satisfies the MDS-Condition
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in every coding subspace. According to Lemma 6.2, for linear combinations consisting of

messages in coding subspace with size L, the minimum number of required linear combi-

nations is RC (L). Although only one coding subspace can contain the demand message, in

order to guarantee that every coding subspace can possibly be used to contain the demand

message, the number of linear combinations in any coding subspace with dimension L should

be at least R(L) even if they are not used to transmit the demand message. Therefore, for any

partition L ∈Π(K ), the R∗(L ) =∑
l∈L RC (l ). Hence, R∗ ≥ minL∈Π(K )

∑
l∈L RC (l ).

6.2.2 Achievability

In this section, we present the proof of the achievability for Theorem 6.1 by constructing a

linear coding scheme with R∗ transmissions which satisfies both the retrieval condition and

the privacy condition.

For any {l1, . . . , lG } ∈Π(K ), the users can compute RC (li ) and the V ∗(li ) according to Defini-

tion 6.5 for all i ∈ {1, . . . ,G}.

Step 1: The users create a set of G subsets, denoted by {℘1, . . . ,℘G }, where |℘i | = li .

Step 2: The users randomly pick one subset (e.g. ℘i ) to contain the demand message

with probability proportional to the sizes of the subsets, i.e.,

Pr(XW ∈℘i ) = |℘i |
K

, ∀℘i ∈ {℘1, . . . ,℘G }. (6.36)

And the users fill up subset ℘i with side information messages indexed by V ∗(|℘i |).

Step 3: The users uniformly and randomly distribute other messages into the unchosen

subsets.

Step 4: The users send query to the server to ask for the coding scheme which satis-

fies MDS-Condition in each coding subspace ℘ j (∀ j ∈ {1, . . . ,G}) with RC (|℘ j |) linear

combinations.

We name the above coding scheme as Partition-and-MDS-Coding scheme.

Remark 6.1. In [42], Kadhe et al. proposed a Partition and Coding PIR scheme for single-sever

single-user private information retrieval with side information. In their scheme, messages are

partitioned into subsets with size M +11, where M is the number of side information messages.

For each coding subspace, the server sends only one linear combination which is the sum of all

messages in the coding subspace. Our coding scheme is an extended coding scheme designed for

multi-user cases and includes their coding scheme as the special cases for single-user.

1In the cases where K is not divided by M +1, the last subset has size less than M +1.
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Lemma 6.3 (Achievability). For any L ∈Π(K ), the Partition-and-MDS-Coding scheme satisfies

th retrieval condition and privacy condition and the number of required linear combinations is∑
l∈L RC (l ).

Proof. In our Partition-and-MDS-Coding scheme, all users can decode the demand message

from linear combinations in the coding subspace which is chosen to contain the demand mes-

sage. Hence the retrieval condition is satisfied. To show the privacy condition is also satisfied, it

is sufficient to show that the conditional probability of one message to be the demand message

given the query and answer string is equal to the prior probability. Due to the random choice

of the subset to carry the demand message, we have Pr(XW ∈℘i |Q(W,S1,S2, . . . ,SN )) = |℘i |/K .

Since in each coding subspace, the linear combinations satisfy the MDS-Condition, ev-

ery message in the same coding subspace is the demand message with equal probability.

Pr(W =W |XW ∈℘i ,Q(W,S1, . . . ,SN )) = 1
|℘i | . By conditional probability, we have

Pr(W =W |Q(W,S1, . . . ,SN ))

=Pr(W =W,XW ∈℘i |Q(W,S1, . . . ,SN )) (6.37)

=Pr(W =W |XW ∈℘i ,Q(W,S1, . . . ,SN ))Pr(XW ∈℘i |Q(W,S1, . . . ,SN ))

=|℘i |
K

1

|℘i |
(6.38)

= 1

K
. (6.39)

Therefore, the privacy condition is also satisfied. The required number of linear combinations

is the sum number of the linear combinations in each coding subspace, which is
∑

l∈L RC (l ).

Example 6.4. Consider the single-server multi-user private information retrieval with side

information problem with the following characterization matrix:

C =

1 α α 0 0 0 0

1 0 α α α 0 0

1 α 0 α 0 0 0

 , (6.40)

Let us generate the Partition-and-MDS-Coding scheme for partition L = {4,3}. According to

Equation (6.15), we can obtain

RC (4) =2 with V ∗(4) = {2,3,4} (6.41)

RC (3) =2 with V ∗(3) = {3,4} (6.42)

We note that V ∗(3) is not unique. It can also be {2,3}. We create two subsets ℘1 and ℘2 with size

4 and 3, respectively. Then we can randomly choose℘1 with probability 4
7 or℘2 with probability

3
7 to contain the demand message X1. Suppose we choose the second subset ℘2, then X1 and

XV ∗(3) = {X3,X4} should be placed in ℘2. For subset ℘1, fill it up with the remaining messages.
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Now we have two coding subspaces:

℘1 ={X2, X5, X6, X7}, (6.43)

℘2 ={X1, X3, X4}. (6.44)

Then we can generate the query to ask for the following answer string.

T1 = X2 +X5 +X6 +X7 (6.45)

T2 = X2 +2X5 +3X6 +4X7 (6.46)

T3 = X1 +X3 +X4 (6.47)

T4 = X1 +2X3 +3X4, (6.48)

It satisfies the MDS-Condition in ℘1 with RC (4) linear combinations and in ℘2 with RC (3)

linear combinations.

From the server’s perspective, Pr(XW ∈ ℘1) = 4
7 and Pr(XW ∈ ℘2) = 3

7 . Furthermore, in each

coding subspace, every message is equally likely to be the demand message. Thus, Pr(W =
W |Q(W,S1, . . . ,SN )) = 1

7 = Pr(W = W ). The server cannot infer any information about the

demand index.

6.3 Solving the Optimization

In Theorem 6.1, given RC (L) for all L ∈ {1, . . . ,K }, the minimum number of required linear

combinations can be obtained by solving the optimization problem over all partitions of the

total number of messages. Instead of trying every possible partition, we can efficiently find

the optimal one by using a dynamic programming algorithm. In this section, we present

the algorithms for computing RC (L) and searching for the optimal decomposition with the

minimum number of request linear combinations.

6.3.1 Computing RC (L)

For any fixed L ∈ {1, . . . ,K }, to compute the RC (L), we need to find the optimal subset of

columns such that the minimal number of α’s at any row is maximized. This is a set cover

problem and cannot be solved by polynomial-time algorithms. However, it is not necessary

to check all possible
(K

L

)
subset of columns. Let Cα denote the submatrix of C which consists

of columns with α-entry and K (Cα) denote the number of columns of Cα. For L >K (Cα),

R(L) = L −mini∈[N ] wH (Cα(i , :)). Hence, we only need to do traversal search for L ≤ K (Cα)

and the complexity is bounded by O (2K (Cα)).
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Example 6.5. For the characterization matrix in Example 6.4. The submatrix Cα is

Cα =

α α 0 0

0 α α α

α 0 α 0

 . (6.49)

We have

L 1 2 3 4 5 6 7
RC (L) 1 2 2 2 3 4 5

6.3.2 Searching for the Optimal Decomposition

Definition 6.6. For PIR problem with characterization matrix C , definition the average cost of

coding subspace with dimension L as

EC (L) = RC (L)

L
. (6.50)

As the privacy condition of PIR requires every message to be equally likely demanded by the

users from the server’s perspective, all messages must be used in the coding scheme. The

average cost measures how many transmissions are required for each message if we partition

the messages into a coding subspace with dimension L.

Given RC (L) for L ∈ {1, . . . ,K }, the optimization problem (6.21) can be formulated as:

minimize
∑K

l=1βl RC (l )

subject to
∑K

l=1βl l = K (6.51)

where βl is the number of coding subspace with dimension l . This optimization problem is

related to the Unbounded Knapsack Problem (UKP) [75]. We propose a Dynamic Programming

Algorithm to solve the optimization problem (6.51).

In Algorithm 6, we search for the optimal partition for k ∈ {1, . . . ,K } by checking all possible

size-2 partitions of k given that optimal partitions for all integers up to k −1 are obtained

in previous rounds. The h∗
k stores the one component of the optimal partition for coding

subspaces with dimension k for all k ∈ {1, . . . ,K }. Once we get Q(k), we know one component

of the optimal size-2 partition for k is l∗k . Hence, after we get all h∗
k for k ∈ {1, . . . ,K }, we

can start from the end to get the optimal partition for K by recursively partitioning it into 2

subspaces. The complexity of Algorithm 6 is bounded by O (K 2).

Example 6.6. For the characterization matrix in Example 6.4, we can compute RC (L) for

L ∈ {1, . . . ,K } as follows. It would be intuitive to guess that the best decomposition is what we

have shown in the previous example, {4,3}, since EC (4) is the smallest, which means coding
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Algorithm 6 Dynamic Programming Algorithm

1: Input: R = [RC (1), . . . ,RC (K )].
2: Output: The optimal partition vector L , minimal number of required transmissions Q(K ).
3: Initialization: L =;, Q(0) = 0.
4: for k = 1, . . . ,K do
5: for l = 1, . . . ,k do
6: qk (l ) =R(l )+Q(k − l )
7: end for
8: h∗

k = argminl≤k qk (l ).
9: Q(k) = qk (h∗

k ).
10: end for
11: while K − sum(L ) > 0 do
12: L =L ∪h∗

K−sum(L ).
13: end while
14: Return L and Q(K ).

L 1 2 3 4 5 6 7
RC (L) 1 2 2 2 3 4 5
EC (L) 1 1 0.67 0.5 0.6 0.67 0.71

subspace with 4 dimension has lowest average cost.

Apply Algorithm 6 on this example, we can get:

k 1 2 3 4 5 6 7
Q(k) 1 2 2 2 3 4 4
h∗

k 1 1 3 4 1 1 3

According to the table, we know that h∗
7 = 3, which means we can first partition the coding

space into a subspace with dimension 3. Then, we still have 4 dimensions to decompose.

However, since h∗
4 = 4, we do not have to decompose it further. Therefore, we get the optimal

decomposition, which is {3,4}. And the average cost of such decomposition is

EC (3,4) = RC (3)+RC (4)

K
= 4

7
= 0.57. (6.52)

Note that in this example, coding subspace with dimension 2,5,6,7 should never be used. Since

h∗
k 6= k for k ∈ {2,5,6,7}, for each k, there exists further partition, the number of required trans-

missions by which is equal to or smaller than putting k dimensions together. Thus, complexity

of Algorithm 6 can be reduced by removing coding subspaces with dimension l ∈ {1, . . . ,K } such

that h∗
l < l at the 5-th line of Algorithm 6.
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6.4 Conclusion

In this chapter, we study the single-server multi-user private information retrieval with side

information problem for linear coding schemes. In this problem, it is assumed that all users

want to download the same message from the single server and have different side information

messages. We prove that for the linear coding schemes, the minimum number of required

linear combinations can be obtained by solving an optimization problem over all partitions

of the total number of messages. We also propose the Partition-and-MDS coding scheme to

generate optimal linear coding schemes. Additionally, we have shown that the optimization

problem can be solved by the dynamic programming algorithm without traversing all possible

partitions.

Due to the assumption that all users want the same demand message and jointly generate

the query, the multi-user effect can be interpreted as one user with various side information

messages. The effective side information messages in such cases depend on the size of the

coding subspace which is used to generate linear combinations. Specifically, when we choose

different sizes of coding subspaces, the numbers of allowed side information may be different.

This is different from the original single-user cases, where the side information messages are

fixed and the number of side information is always the same for all coding subspaces.

There are two potential future working directions for this work. One direction is that we can

release the linear coding scheme restriction and allow the coding schemes to be more general.

Another direction is that we can release the assumption that all users want the same demand

message.
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7 Conclusion

In this thesis, we studied the cooperative data exchange problem and the private information

retrieval problem. For Cooperative Data Exchange (CDE) problem in the fully connected

network, we introduced the novel concept, (d ,K )-Basis for simplifying the optimization prob-

lem without using submodular function minimization methods. Additionally, we proposed a

polynomial-time deterministic algorithm based on the (d ,K )-Basis to solve the CDE problem.

We also show that our approach can be used to solve two generalized versions of the CDE prob-

lem, which are CDE with weighted cost and successive local omniscience. For the problem of

Private Information retrieval (PIR) with side information, we investigated three generalized

extensions, which are single-server multi-message PIR with side information, multi-server

single-message PIR with side information, and single-server multi-user PIR with side informa-

tion for linear coding schemes. For each extended problem, we proved the converse bound

for the capacity and proposed achievability coding scheme. We introduced two useful tools,

conditioning answer string and virtual side information, to help analyze the PIR with side

information problem.

Possible future extensions include following:

• For CDE, the (d ,K )-Basis is probably useful for other extensions of the CDE problem.

For example, the helper problem, where some nodes only want to help other nodes

and are not required to recover the common file. As the fully connected network is a

strong assumption on topology, it would be great if we can relax this assumption and

use (d ,K )-Basis method to solve the CDE problem on general multi-hop networks.

• For PIR, we hope we can relax the assumption of linear coding schemes for single-server

multi-user cases. In this problem, the users can be treated as a joint user but with various

side information messages. Hence, the previous tools may be useful for analyzing non-

linear cases. Another open problem would be the multi-server multi-message PIR

with side information problem, which is the generalized version of both single-server

multi-message and multi-server single-message PIR problems in this thesis.

121





Bibliography

[1] C. E. Shannon, “A mathematical theory of communication,” Bell system technical journal,

vol. 27, no. 3, pp. 379–423, 1948.

[2] S. El Rouayheb, A. Sprintson, and P. Sadeghi, “On coding for cooperative data exchange,”

in Information Theory (ITW 2010, Cairo), 2010 IEEE Information Theory Workshop on.

IEEE, 2010, pp. 1–5.

[3] I. Csiszar and P. Narayan, “Secrecy capacities for multiple terminals,” IEEE Transactions

on Information Theory, vol. 50, no. 12, pp. 3047–3061, Dec 2004.

[4] A. Sprintson, P. Sadeghi, G. Booker, and S. El Rouayheb, “A randomized algorithm and

performance bounds for coded cooperative data exchange,” in 2010 IEEE International

Symposium on Information Theory. IEEE, 2010, pp. 1888–1892.

[5] ——, “Deterministic algorithm for coded cooperative data exchange,” in International

Conference on Heterogeneous Networking for Quality, Reliability, Security and Robustness.

Springer, 2010, pp. 282–289.

[6] N. Milosavljevic, S. Pawar, S. El Rouayheb, M. Gastpar, and K. Ramchandran, “Efficient

algorithms for the data exchange problem,” IEEE Transactions on Information Theory,

vol. 62, no. 4, pp. 1878–1896, 2016.

[7] T. A. Courtade and R. D. Wesel, “Coded cooperative data exchange in multihop networks,”

Information Theory, IEEE Transactions on, vol. 60, no. 2, pp. 1136–1158, 2014.

[8] N. Ding, C. Chan, Q. Zhou, R. A. Kennedy, and P. Sadeghi, “Determining optimal rates

for communication for omniscience,” IEEE Transactions on Information Theory, vol. PP,

no. 99, pp. 1–1, 2017.

[9] S. E. Tajbakhsh, P. Sadeghi, and R. Shams, “A generalized model for cost and fairness analy-

sis in coded cooperative data exchange,” in Network Coding (NetCod), 2011 International

Symposium on. IEEE, 2011, pp. 1–6.

[10] M. Gonen and M. Langberg, “Coded cooperative data exchange problem for general

topologies,” Information Theory, IEEE Transactions on, vol. 61, no. 10, pp. 5656–5669,

2015.

123



Bibliography

[11] A. Heidarzadeh, M. Yan, and A. Sprintson, “Cooperative data exchange with priority

classes,” in 2016 IEEE International Symposium on Information Theory (ISIT), July 2016,

pp. 2324–2328.

[12] C. Chan, A. Al-Bashabsheh, Q. Zhou, N. Ding, T. Liu, and A. Sprintson, “Successive

omniscience,” IEEE Transactions on Information Theory, vol. 62, no. 6, pp. 3270–3289,

June 2016.

[13] D. Ozgul and A. Sprintson, “An algorithm for cooperative data exchange with cost crite-

rion,” in 2011 Information Theory and Applications Workshop, Feb 2011, pp. 1–4.

[14] A. Heidarzadeh and A. Sprintson, “Cooperative data exchange with unreliable clients,”

in 2015 53rd Annual Allerton Conference on Communication, Control, and Computing

(Allerton), Sept 2015, pp. 496–503.

[15] H. Tyagi and S. Watanabe, “Universal multiparty data exchange and secret key agreement,”

IEEE Transactions on Information Theory, vol. 63, no. 7, pp. 4057–4074, July 2017.

[16] T. A. Courtade and T. R. Halford, “Coded cooperative data exchange for a secret key,” IEEE

Transactions on Information Theory, vol. 62, no. 7, pp. 3785–3795, July 2016.

[17] M. Yan and A. Sprintson, “Algorithms for weakly secure data exchange,” in 2013 Interna-

tional Symposium on Network Coding (NetCod). IEEE, 2013, pp. 1–6.

[18] M. Yan, A. Sprintson, and I. Zelenko, “Weakly secure data exchange with generalized reed

solomon codes,” in Information Theory (ISIT), 2014 IEEE International Symposium on.

IEEE, 2014, pp. 1366–1370.

[19] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information retrieval,” in

Proceedings of IEEE 36th Annual Foundations of Computer Science, Oct 1995, pp. 41–50.

[20] S. Yekhanin, “Private information retrieval,” Commun. ACM, vol. 53, no. 4, pp. 68–73, Apr.

2010. [Online]. Available: http://doi.acm.org/10.1145/1721654.1721674

[21] A. Beimel, Y. Ishai, E. Kushilevitz, and J. F. Raymond, “Breaking the o(n1(2k-1)/) barrier for

information-theoretic private information retrieval,” in The 43rd Annual IEEE Symposium

on Foundations of Computer Science, 2002. Proceedings., 2002, pp. 261–270.

[22] H. Sun and S. A. Jafar, “The capacity of private information retrieval,” IEEE Transactions

on Information Theory, vol. 63, no. 7, pp. 4075–4088, July 2017.

[23] ——, “The capacity of robust private information retrieval with colluding databases,”

IEEE Transactions on Information Theory, vol. PP, no. 99, pp. 1–1, 2017.

[24] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, and D. A. Karpuk, “Private information retrieval

from coded databases with colluding servers,” SIAM Journal on Applied Algebra and

Geometry, vol. 1, no. 1, pp. 647–664, 2017.

124

http://doi.acm.org/10.1145/1721654.1721674


Bibliography

[25] N. B. Shah, K. V. Rashmi, and K. Ramchandran, “One extra bit of download ensures

perfectly private information retrieval,” in 2014 IEEE International Symposium on Infor-

mation Theory, June 2014, pp. 856–860.

[26] T. H. Chan, S. W. Ho, and H. Yamamoto, “Private information retrieval for coded storage,”

in 2015 IEEE International Symposium on Information Theory (ISIT), June 2015, pp.

2842–2846.

[27] S. Kumar, E. Rosnes, and A. G. i Amat, “Private information retrieval in distributed

storage systems using an arbitrary linear code,” in 2017 IEEE International Symposium

on Information Theory (ISIT), June 2017, pp. 1421–1425.

[28] Q. Wang and M. Skoglund, “Symmetric private information retrieval for mds coded

distributed storage,” in 2017 IEEE International Conference on Communications (ICC),

May 2017, pp. 1–6.

[29] K. Banawan and S. Ulukus, “Private information retrieval from coded databases,” in 2017

IEEE International Conference on Communications (ICC), May 2017, pp. 1–6.

[30] R. Tajeddine and S. E. Rouayheb, “Private information retrieval from mds coded data

in distributed storage systems,” in 2016 IEEE International Symposium on Information

Theory (ISIT), July 2016, pp. 1411–1415.

[31] J. Li, D. Karpuk, and C. Hollanti, “Towards practical private information retrieval from

mds array codes,” IEEE Transactions on Communications, pp. 1–1, 2020.

[32] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, A.-L. Horlemann-Trautmann, D. Karpuk,

and I. Kubjas, “t-private information retrieval schemes using transitive codes,” IEEE

Transactions on Information Theory, vol. 65, no. 4, pp. 2107–2118, 2018.

[33] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, C. Hollanti, and S. E. Rouayheb,

“Private information retrieval schemes for coded data with arbitrary collusion patterns,”

in 2017 IEEE International Symposium on Information Theory (ISIT), June 2017, pp.

1908–1912.

[34] K. Banawan and S. Ulukus, “The Capacity of Private Information Retrieval from Byzantine

and Colluding Databases,” ArXiv e-prints, Jun. 2017.

[35] Z. Jia, H. Sun, and S. A. Jafar, “Cross subspace alignment and the asymptotic capacity of

x-secure t-private information retrieval,” 2018.

[36] R. Tajeddine, O. W. Gnilke, D. Karpuk, R. Freij-Hollanti, and C. Hollanti, “Robust private

information retrieval from coded systems with byzantine and colluding servers,” in 2018

IEEE International Symposium on Information Theory (ISIT). IEEE, 2018, pp. 2451–2455.

[37] L. Holzbaur, R. Freij-Hollanti, and C. Hollanti, “On the capacity of private information

retrieval from coded, colluding, and adversarial servers,” in 2019 IEEE Information Theory

Workshop (ITW). IEEE, 2019, pp. 1–5.

125



Bibliography

[38] X. Yao, N. Liu, and W. Kang, “The capacity of multi-round private information retrieval

from byzantine databases,” in 2019 IEEE International Symposium on Information Theory

(ISIT). IEEE, 2019, pp. 2124–2128.

[39] Z. Wang, K. Banawan, and S. Ulukus, “Private set intersection: A multi-message symmet-

ric private information retrieval perspective,” arXiv preprint arXiv:1912.13501, 2019.

[40] H. Sun and S. A. Jafar, “The capacity of symmetric private information retrieval,” IEEE

Transactions on Information Theory, vol. 65, no. 1, pp. 322–329, 2018.

[41] Q. Wang, H. Sun, and M. Skoglund, “Symmetric private information retrieval with mis-

matched coded messages and randomness,” in 2019 IEEE International Symposium on

Information Theory (ISIT). IEEE, 2019, pp. 365–369.

[42] S. Kadhe, B. Garcia, A. Heidarzadeh, S. El Rouayheb, and A. Sprintson, “Private Informa-

tion Retrieval with Side Information,” ArXiv e-prints, Aug. 2017.

[43] Z. Chen, Z. Wang, and S. Jafar, “The Capacity of Private Information Retrieval with Private

Side Information,” ArXiv e-prints, Sep. 2017.

[44] S. Li and M. Gastpar, “Single-server multi-user private information retrieval with side

information,” in 2018 IEEE International Symposium on Information Theory (ISIT)

(ISIT’2018), Vail, USA, Jun. 2018.

[45] Z. Chen, Z. Wang, and S. Jafar, “The capacity of t-private information retrieval with

private side information,” arXiv preprint arXiv:1709.03022, 2017.

[46] A. Heidarzadeh, F. Kazemi, and A. Sprintson, “The role of coded side information in

single-server private information retrieval,” 2019.

[47] F. Kazemi, E. Karimi, A. Heidarzadeh, and A. Sprintson, “Single-server single-message

online private information retrieval with side information,” in 2019 IEEE International

Symposium on Information Theory (ISIT). IEEE, 2019, pp. 350–354.

[48] S. Li and M. Gastpar, “Converse for multi-server single-message PIR with side

information,” CoRR, vol. abs/1809.09861, 2018. [Online]. Available: http://arxiv.org/abs/

1809.09861

[49] S. Kadhe, B. Garcia, A. Heidarzadeh, S. El Rouayheb, and A. Sprintson, “Private informa-

tion retrieval with side information,” IEEE Transactions on Information Theory, pp. 1–1,

2019.

[50] R. Tandon, “The Capacity of Cache Aided Private Information Retrieval,” ArXiv e-prints,

Jun. 2017.

[51] Y.-P. Wei, K. Banawan, and S. Ulukus, “Fundamental Limits of Cache-Aided Private

Information Retrieval with Unknown and Uncoded Prefetching,” ArXiv e-prints, Sep.

2017.

126

http://arxiv.org/abs/1809.09861
http://arxiv.org/abs/1809.09861


Bibliography

[52] K. Banawan, B. Arasli, Y.-P. Wei, and S. Ulukus, “The capacity of private information

retrieval from heterogeneous uncoded caching databases,” IEEE Transactions on Infor-

mation Theory, 2020.

[53] K. Banawan and S. Ulukus, “Multi-message private information retrieval,” in 2017 IEEE

International Symposium on Information Theory (ISIT), June 2017, pp. 1898–1902.

[54] S. P. Shariatpanahi, M. J. Siavoshani, and M. A. Maddah-Ali, “Multi-message private

information retrieval with private side information,” CoRR, vol. abs/1805.11892, 2018.

[Online]. Available: http://arxiv.org/abs/1805.11892

[55] S. Li and M. Gastpar, “Single-Server Multi-Message Private Information Retrieval with

Side Information,” ArXiv e-prints, Aug. 2018.

[56] A. Heidarzadeh, B. Garcia, S. Kadhe, S. El Rouayheb, and A. Sprintson, “On the Capacity

of Single-Server Multi-Message Private Information Retrieval with Side Information,”

ArXiv e-prints, Jul. 2018.

[57] A. Heidarzadeh, S. Kadhe, S. El Rouayheb, and A. Sprintson, “Single-server multi-message

individually-private information retrieval with side information,” in 2019 IEEE Interna-

tional Symposium on Information Theory (ISIT). IEEE, 2019, pp. 1042–1046.

[58] A. Heidarzadeh and A. Sprintson, “Private computation with side information: The single-

server case,” in 2019 IEEE International Symposium on Information Theory (ISIT). IEEE,

2019, pp. 1657–1661.

[59] M. Mirmohseni and M. A. Maddah-Ali, “Private function retrieval,” in 2018 Iran Workshop

on Communication and Information Theory (IWCIT), 2018, pp. 1–6.

[60] F. Kazemi, E. Karimi, A. Heidarzadeh, and A. Sprintson, “Private information retrieval

with private coded side information: The multi-server case,” 2019.

[61] S. Kadhe, A. Heidarzadeh, A. Sprintson, and O. O. Koyluoglu, “On an equivalence between

single-server pir with side information and locally recoverable codes,” arXiv preprint

arXiv:1907.00598, 2019.

[62] R. Singleton, “Maximum distanceq-nary codes,” IEEE Transactions on Information The-

ory, vol. 10, no. 2, pp. 116–118, April 1964.

[63] J. B. Orlin, “A faster strongly polynomial time algorithm for submodular function mini-

mization,” Mathematical Programming, vol. 118, no. 2, pp. 237–251, 2009.

[64] T. A. Courtade, B. Xie, and R. D. Wesel, “Optimal exchange of packets for universal

recovery in broadcast networks,” in Military Communications Conference, 2010-Milcom

2010. IEEE, 2010, pp. 2250–2255.

127

http://arxiv.org/abs/1805.11892


Bibliography

[65] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L. M. Tolhuizen, “Polyno-

mial time algorithms for multicast network code construction,” IEEE Transactions on

Information Theory, vol. 51, no. 6, pp. 1973–1982, 2005.

[66] P. Hall, “On representatives of subsets,” Journal of the London Mathematical Society, vol. 1,

no. 1, pp. 26–30, 1935.

[67] R. Motwani and P. Raghavan, Randomized algorithms. Chapman & Hall/CRC, 2010.

[68] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, “A random linear

network coding approach to multicast,” IEEE Transactions on Information Theory, vol. 52,

no. 10, pp. 4413–4430, 2006.

[69] S. H. Dau, W. Song, Z. Dong, and C. Yuen, “Balanced sparsest generator matrices for mds

codes,” in Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on.

IEEE, 2013, pp. 1889–1893.

[70] S. H. Dau, W. Song, and C. Yuen, “On the existence of mds codes over small fields with

constrained generator matrices,” in 2014 IEEE International Symposium on Information

Theory, June 2014, pp. 1787–1791.

[71] W. Song and K. Cai, “Generalized reed-solomon codes with sparsest and balanced gen-

erator matrices,” in 2018 IEEE International Symposium on Information Theory (ISIT),

2018, pp. 1–5.

[72] N. J. A. Harvey, “Deterministic network coding by matrix completion,” Ph.D. dissertation,

Massachusetts Institute of Technology, 2005.

[73] S. Li and M. Gastpar, “Cooperative data exchange based on MDS codes,” in 2017 IEEE

International Symposium on Information Theory (ISIT) (ISIT’2017), Aachen, Germany,

Jun. 2017, pp. 1411–1415.

[74] A. Heidarzadeh and A. Sprintson, “Successive local and successive global omniscience,”

in 2017 IEEE International Symposium on Information Theory (ISIT), June 2017, pp.

2313–2317.

[75] G. B. Mathews, “On the partition of numbers,” Proceedings of the London Mathematical

Society, vol. 1, no. 1, pp. 486–490, 1896.

128



Curriculum Vitae

Su Li

Education

École Polytechnique Fédéral de Lausanne, Switzerland 2015-2020

Docteur és sciences

Advisor: Prof. Michael C. Gastpar

École Polytechnique Fédéral de Lausanne, Switzerland 2012-2015

M.Sc. in Communication Systems

with specialization in wireless communication

ETH Zürich, Switzerland 2014-2015

Master Thesis

Advisor: Prof. Friedemann Mattern

University of Electronic Science and Technology of China, China 2008-2012

B.Sc. in Communication Engineering

Research Experience

Laboratory for Information in Networked Systems, EPFL 2016-2020

Doctoral Research Assistant

Distributed System Group, ETH Zürich 2015

Student Research Assistant

Publications

S. Li, M. Gastpar. “Single-server Multi-message Private Inforamtion Retrieval with Side Infor-

mation: the General Cases". In 2020 IEEE International Symposium on Information Theory

(ISIT), 2020.

S. Li, M. Gastpar. “Converse for Multi-server Single-message PIR with Side Information". In



Bibliography

54th Annual Conference on Information Sciences and Systems, 2020.

S. Li, M. Gastpar. “Single-server Multi-message Private Information Retrieval with Side Infor-

mation". In 56th Annual Allerton Conference on Communication, Control, and Computing

(Allerton), 2018.

S. Li, M. Gastpar.“Single-server Multi-user Private Information Retrieval with Side Informa-

tion". In 2018 IEEE International Symposium on Information Theory (ISIT), 2018.

S. Li, A. Shah, M. Gastpar. “Cooperative Data Exchange with Weighted Cost based on Ba-

sis Construction". In 55th Annual Allerton Conference on Communication, Control, and

Computing (Allerton), 2017.

S. Li, M. Gastpar. “Cooperative Data Exchange based on MDS codes". In 2017 IEEE Interna-

tional Symposium on Information Theory (ISIT), 2017.

A. Hithnawi, S. Li, H. Shafagh, J. Gross, S. Duquennoy. “CrossZig: Combating Cross-Technology

Interference in Low-power Wireless Networks". In The 15th International Conference on

Information Processing in Sensor Networks (IPSN), 2016.

130


	Acknowledgements
	Abstract (English/Français/Deutsch)
	Contents
	Introduction
	Cooperative Data Exchange
	Private Information Retrieval
	Notations

	Preliminaries
	Maximum Distance Separable Matrix
	CDE based on Submodular Function Minimization
	Private Information Retrieval

	Cooperative Data Exchange based on MDS Codes
	Problem Statement
	Cooperative Data Exchange and (d,K)-Basis
	Algorithms
	Existence of (d,K)-Basis
	Searching for d*
	Complexity

	Code Construction
	Cooperative Data Exchange with Weight Cost
	Successive Omniscience
	Conclusion
	Appendix
	Proof of Theorem 3.5
	Proof of Theorem 3.6


	Single-Server Multi-Message PIR with Side Information
	Problem Statement
	Retrieval and Privacy Conditions
	Coding Scheme based on One Answer String
	Conditional Answer String

	The Capacity
	Converse
	Achievability

	Numerical Examples
	Discussion and Conclusion
	Privacy Condition in Single-Server PIR with Side Information
	Conclusion


	Multi-Server Single-Message PIR with Side Information
	Problem Statement
	Retrieval and Privacy Conditions

	Useful Techniques and Insights
	PIR Scheme for More Messages
	PIR Scheme for Fewer Messages
	No Need to Reuse Indices
	The Symmetry in Unwanted Indices

	The capacity 
	Converse
	Achievability

	Discussions and Conclusion
	Models for the Demand Index and Side Information Indices
	Virtual Side Information in Multi-Server and Single-Server Cases
	Conclusion

	Appendix
	Proof of Theorem 5.2
	Proof of Lemma 5.7


	Multi-User Private Information Retrieval with Side Information
	Problem Statement
	Retrieval and Privacy Conditions
	Definitions and Useful Lemma

	The Capacity
	Converse
	Achievability

	Solving the Optimization
	Computing RC(L)
	Searching for the Optimal Decomposition

	Conclusion

	Conclusion
	Bibliography
	Curriculum Vitae



