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The transmission problem is a system of two second-order el-
liptic equations of two unknowns equipped with the Cauchy 
data on the boundary. After four decades of research mo-
tivated by scattering theory, the spectral properties of this 
problem are now known to depend on a type of contrast 
between coefficients near the boundary. Previously, we es-
tablished the discreteness of eigenvalues for a large class of 
anisotropic coefficients which is related to the celebrated com-
plementing conditions due to Agmon, Douglis, and Nirenberg. 
In this work, we establish the Weyl law for the eigenvalues 
and the completeness of the generalized eigenfunctions for 
this class of coefficients under an additional mild assumption 
on the continuity of the coefficients. The analysis is new and 
based on the Lp regularity theory for the transmission prob-
lem established here. It also involves a subtle application of 
the spectral theory for the Hilbert Schmidt operators. Our 
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work extends largely known results in the literature which are 
mainly devoted to the isotropic case with C∞-coefficients.

© 2021 Published by Elsevier Inc.

1. Introduction

The transmission eigenvalue problem plays a role in the inverse scattering theory for 
inhomogeneous media. This eigenvalue problem is connected to the injectivity of the rel-
ative scattering operator [12], [18]. Transmission eigenvalues are related to interrogating 
frequencies for which there is an incident field that is not scattered by the medium. In 
the acoustic setting, the transmission problem is a system of two second-order elliptic 
equations of two unknowns equipped with the Cauchy data on the boundary. After four 
decades of extensive study, the spectral properties are known to depend on a type of 
contrasts of the media near the boundary (i.e., a difference of some relation of the re-
spective coefficients in each of the equations). Natural and interesting questions on the 
inverse scattering theory include: discreteness of the spectrum (see e.g. [7,6,39,19,32]) 
location of transmission eigenvalues (see [9,22,40,41], and also [10] for the application 
in time domain), and the Weyl law of transmission eigenvalues and the completeness of 
the generalized eigenfunctions (see e.g. [19,20,5,21,38]). We refer the reader to [8] for a 
recent, and self-contained introduction to the transmission problem and its applications.

This paper concerns the Weyl law of eigenvalues and the completeness of the gener-
alized eigenfunctions of the transmission problem in the time-harmonic acoustic setting. 
Let us introduce its mathematical formulation. Let Ω be a bounded, simply connected, 
open subset of Rd of class C2 with d � 2. Let A1, A2 be two real, symmetric matrix-
valued functions, and let Σ1, Σ2 be two bounded positive functions that are all defined 
in Ω. Assume that A1 and A2 are uniformly elliptic, and Σ1 and Σ2 are bounded below 
by a positive constant in Ω, i.e., for some constant Λ � 1, one has, for j = 1, 2,

Λ−1|ξ|2 � 〈Aj(x)ξ, ξ〉 � Λ|ξ|2 for all ξ ∈ Rd, for a.e. x ∈ Ω, (1.1)

and

Λ−1 � Σj(x) � Λ for a.e. x ∈ Ω. (1.2)

Here and in what follows, 〈·, ·〉 denotes the Euclidean scalar product in Rd and | · | is 
the corresponding norm. A complex number λ is called an eigenvalue of the transmission 
eigenvalue problem associated with the pairs (A1, Σ1) and (A2, Σ2) in Ω if there is a 
non-zero pair of functions (u1, u2) ∈ [H1(Ω)]2 that satisfy the system
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⎧⎪⎪⎨⎪⎪⎩
div(A1∇u1) − λΣ1u1 = 0 in Ω,

div(A2∇u2) − λΣ2u2 = 0 in Ω,

u1 = u2, A1∇u1 · ν = A2∇u2 · ν on Γ.

(1.3)

Here and in what follows, Γ denotes ∂Ω, and ν denotes the outward, normal, unit vector 
on Γ. Such a pair (u1, u2) is then called an eigenfunction pair of (1.3).

The Weyl law of transmission eigenvalues has been investigated under various as-
sumptions on (A1, Σ1) and (A2, Σ2). Robbiano [38] (see also [37]) gives the sharp order 
of the counting number when A1 = A2 = I, and Σ2 �= Σ1 = 1 near the boundary and 
Σ2 is smooth. The analysis is based on both the microanalysis (see e.g. [15,45]) and 
the regularity theory for the transmission problem. In [20], Lakshtanov and Vainberg 
obtained similar results when A1 = I, Σ1 = 1, under certain assumptions on A2 and 
Σ2. In particular, they required that Σ−1

2 A2 − I is positive definite or negative definite 
in the whole domain Ω. They also investigated the order of the counting functions for 
positive and negative eigenvalues under different assumptions on A2 and Σ2 (see also 
[36,21]) via concepts on billiard trajectories. In the isotropic case, the Weyl law for the 
remainder was established by Petkov and Vodev [35] and Vodev [41–43] for C∞ coeffi-
cients that satisfy the conditions (1.4) and (1.5) below. The case where A1 = A2 and 
represent scalar functions was also investigated in their work. Their analysis is heavily 
based on microanalysis and required a strong smoothness condition. In addition, their 
work involved a delicate analysis on the Dirichlet to Neumann maps using non-standard 
parametrix construction initiated by Vodev [40]. It is not clear how one can improve the 
C∞ condition and extend their results to the anisotropic setting using their analysis. 
Concerning the completeness of the generalized eigenfunctions, we want to mention the 
work of Robbiano [37] where A1 = A2 = I and Σ2 �= Σ1 = 1, and the work of Blästen 
and Päivärinta [5] where A1 = A2 = I, and Σ2 − Σ1 = Σ2 − 1 > 0 and smooth in Ω̄.

In this paper, we investigate the Weyl law of eigenvalues and the completeness of the 
generalized eigenfunctions for transmission problem under quite general assumptions on 
A1, A2, Σ1, Σ2. These are only imposed on the boundary of ∂Ω except for the conti-
nuity requirement. The starting point and one of the main motivations of our work are 
our discreteness result established in [32]. We demonstrated the discreteness holds if 
A1, A2, Σ1, Σ2 are continuous in a neighborhood of the boundary Γ, and satisfy the 
following two conditions, with ν = ν(x):

〈A2(x)ν, ν〉〈A2(x)ξ, ξ〉 − 〈A2(x)ν, ξ〉2 �= 〈A1(x)ν, ν〉〈A1(x)ξ, ξ〉 − 〈A1(x)ν, ξ〉2, (1.4)

for all x ∈ Γ and for all ξ ∈ Rd \ {0} with 〈ξ, ν〉 = 0, and

〈
A2(x)ν, ν

〉
Σ2(x) �=

〈
A1(x)ν, ν

〉
Σ1(x), ∀x ∈ Γ. (1.5)
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Condition (1.4) is equivalent to the celebrated complementing condition due to Agmon, 
Douglis, and Nirenberg [4] (see also [3]). The explicit formula given here was derived in 
[27].

In this paper, we establish that if conditions (1.4) and (1.5) hold then the Weyl law for 
transmission eigenvalues and the completeness of the generalized eigenfunctions hold as 
well, under the mild assumption that the coefficients are continuous in Ω̄. More precisely, 
we have

Theorem 1. Assume that A1, A2, Σ1, Σ2 ∈ C0(Ω̄), and (1.4) and (1.5) hold. Then

N(t) := #
{
k ∈ N : |λk| � t

}
= ct d

2 + o(t d
2 ) as t → +∞, (1.6)

where

c = 1
(2π)d

2∑
j=1

ˆ

Ω

∣∣∣{ξ ∈ Rd : 〈Aj(x)ξ, ξ〉 < Σj(x)
}∣∣∣ dx. (1.7)

For a measurable subset D of Rd, we denote |D| its (Lebesgue) measure.
We also have

Theorem 2. Assume that A1, A2, Σ1, Σ2 ∈ C0(Ω̄), and (1.4) and (1.5) hold. Then the 
generalized eigenfunctions are complete in [L2(Ω)]2.

Remark 1. As a direct consequence of either Theorem 1 or Theorem 2, the number of 
eigenvalues of the transmission problem is infinite. As far as we know, this fact is new 
under the general assumptions stated here.

Some comments on Theorem 1 and Theorem 2 are in order. In the conclusion of 
Theorem 1, the multiplicity of eigenvalues is taken into account. The meaning of the 
multiplicity is understood as follows. One can show (see [32], and also Theorem 3) that 
the well-posedness of the following system in [H1(Ω)]2:⎧⎪⎪⎨⎪⎪⎩

div(A1∇u1) − λΣ1u1 = Σ1f1 in Ω,

div(A2∇u2) − λΣ2u2 = Σ2f2 in Ω,

u1 = u2, A1∇u1 · ν = A2∇u2 · ν on Γ,

(1.8)

holds for all (f1, f2) ∈ [L2(Ω)]2 and for some λ ∈ C under the assumptions of Theorem 1. 
We then define the operator Tλ : [L2(Ω)]2 → [L2(Ω)]2 by

Tλ(f1, f2) := (u1, u2) where (u1, u2) is the unique solution of (1.8). (1.9)

We can also prove that such a Tλ is compact using a priori estimates. If λj is an eigenvalue 
of the transmission problem, then λj �= λ, and λj −λ is a characteristic value of Tλ (i.e., 
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(λj − λ)−1 is its eigenvalue) and conversely. One can show that the multiplicity of the 
characteristic values λj − λ and λj − λ̂ (which are the multiplicity of (λj − λ)−1 and 
(λj − λ̂)−1, see Definition 1 below) associated with Tλ and Tλ̂ are the same as long 
as Tλ and Tλ̂ are well-defined (see Remark 11). Hence, the multiplicity of eigenvalues 
that are associated with Tλ is independent of λ and it is used in Assertion (1.6). One 
can also prove that Tλ and Tλ̂ have the same set of the generalized eigenfunctions. In 
Theorem 2, the generalized eigenfunctions are associated to such a Tλ. We recall that 
the generalized eigenfunctions are complete in [L2(Ω)]2 if the subspace spanned by them 
is dense in [L2(Ω)]2.

Recall that, see e.g. [2, Definition 12.5]:

Definition 1. Let γ be an eigenvalue of a linear continuous operator A : H → H where H
is a Hilbert space. A non-zero vector v is a generalized eigenvector of A corresponding 
to γ if (γI − A)kv = 0 holds for some positive integer k. The set of all generalized 
eigenvectors of A corresponding to the eigenvalue γ together with the origin in H, forms 
a subspace of H, whose dimension is the multiplicity of γ.

Theorem 1 gives the order of the counting function N(t) and its first-order approxi-
mation. Theorem 1 and Theorem 2 provide new general conditions on the coefficients for 
which the Weyl law and the completeness of the generalized eigenfunctions hold. These 
conditions are imposed only on the boundary and the regularity assumption is very mild.

Remark 2. It is worth noting that the convention of eigenvalues of the transmission 
problem in the work of Lakshtanov and Vainberg is similar to ours and different from 
that of Robbiano (also the work Petkov and Vodev, and Vodev mentioned above) where 
λ2 is used in (1.3) instead of λ (where λ is used but t2 is considered instead of t in the 
formula of the counting function).

Remark 3. In [35], Petkov and Vodev considered the isotropic setting and obtained a 
shaper estimate for the remainder of (1.6) as in the spirit of Hörmander [17]. Other 
refined estimates were given in [41–43] and are obtained under the C∞ smoothness 
assumption. Under the continuity assumption on the smoothness of coefficients, a better 
estimate for the remainder of (1.6) as in [35] is implausible. Nevertheless, it is interesting 
to obtain better estimates for the remainder as in [35,41–43] for sufficiently regular 
coefficients and/or for the anisotropic setting.

Our strategy of the analysis is to develop the approach in [32] at the level where one 
can apply the general spectral theory for Hilbert-Schmidt operators in Hilbert space 
as given in Agmon [2] (see also [1]). Two important steps are follows. One is on sharp 
estimates for ‖Tλ‖Lp→W 1,p for p > 1 and its consequences (see Theorem 3) for large |λ|
with an appropriate direction. This, in particular, shows that T := Tμ̂1 ◦ · · · ◦Tμ̂k+1 with 
k = [d/2] is a Hilbert - Schmidt operator (see Proposition 1) for an appropriate choice of 
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μ̂j ∈ C. The analysis of this part is on the regularity theory of the transmission problems 
in Lp-scale. This is one of the cores of this paper and has its own interest. To this end, 
we first investigate the corresponding problems in the whole space and in a half space 
with constant coefficients, and then use the freezing-coefficient technique. The analysis 
also involves the Mikhlin-Hörmander multiplier theorem (in particular the theory of 
singular integrals) and Gagliardo-Nirenberg interpolation inequalities. The second step 
is to apply the spectral theory for Hilbert-Schmidt operators. To this end, we use the 
estimates for Tλ to obtain an approximation of the trace of the kernel of the product 
of T and its appropriate modified operator (see Proposition 3). The approximation of 
the trace of the kernel is then used to derive information for the Weyl law via a formula 
for eigenvalues established in Proposition 2. This formula is derived from the spectral 
theory of Hilbert-Schmidt operator and is interesting itself. The completeness of the 
generalized eigenfunctions follows directly from the estimates for Tλ in Theorem 3 where 
we pay special attention to the possible directions of λ where the information can be 
derived, after applying the spectral theory in [2].

Remark 4. We use the regularity theory and spectral theory for Hilbert-Schmidt opera-
tors to investigate the Weyl law, which was also presented by Robbiano [37]. Nevertheless, 
the way we derive the regularity theory in this paper is distinct from [37], which involved 
Carleman’s inequalities and the theory of microanalysis. The way we explore the infor-
mation of Hilbert-Schmidt operators allows us to exactly obtain the first term of the 
Weyl Law in (1.6) instead of its magnitude order as in [37].

We propose a new approach to establish the Weyl law of eigenvalues and the complete-
ness of the generalized eigenfunctions. This allows us to obtain new significant results 
and strongly weaken the smoothness assumption in various known results, that is out of 
reach previously. The transmission problem also appears naturally for electromagnetic 
waves. In this case, it is a system of two Maxwell systems equipped the Cauchy data on 
the boundary. The spectral theory of the transmission problem for electromagnetic waves 
is much less known. On this aspect, we point the reader to [11] on the discreteness, and 
to [16] on the completeness. More information can be found in the references therein. 
The analysis in this paper will be developed for the Maxwell setting in our forthcoming 
work.

The transmission problem has an interesting connection with the study of negative-
index materials which are modeled by the Helmholtz or Maxwell equations with sign 
changing coefficients. In fact, our work has its roots in [27] where the stability of solutions 
of the Helmholtz equations with sign changing coefficients was studied. Concerning the 
Maxwell equations, the stability was studied in [33]. It is not coincident that the trans-
mission problem and the Helmholtz equations with sign-changing coefficients share some 
common analysis. In fact, using reflections (a class of changes of variables), the Cauchy 
problems appear naturally in the context of the Helmholtz with sign-changing coeffi-
cients as first observed in [23] (see also [29] for the Maxwell setting). Other properties of 
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the Cauchy problems related to resonant (unstable) aspects and applications of negative-
index materials such as cloaking and superlensing can be found in [24–26,28,30,31] and 
the references therein.

The paper is organized as follows. In Section 2, we introduce several notations used 
throughout the paper. In Section 3, we establish Theorem 3, which describes the reg-
ularity theory for the transmission problem in Lp-scale. In Section 4, we recall some 
definitions, properties of Hilbert-Schmidt operators, and their finite double-norms. We 
then derive their applications in the context of the transmission problem. The main re-
sult of this section is Proposition 2, which is derived from Theorem 3. The Weyl law and 
the completeness are then established in Section 5 and in Section 6, respectively.

Acknowledgments: Quoc-Hung Nguyen is supported by the ShanghaiTech University 
startup fund (2019F0303-000-09-QuocHungNguyen) and the National Natural Science 
Foundation of China (12050410257).

2. Notations

We denote, for τ > 0,

Ωτ =
{
x ∈ Ω : dist(x,Γ) < τ

}
.

For d � 2, set

Rd
+ =

{
x ∈ Rd;xd > 0

}
and Rd

0 =
{
x ∈ Rd;xd = 0

}
.

We will identify Rd
0 with Rd−1 in several places.

For θ ∈ R and a > 0, denote

L(θ, a) =
{
reiθ ∈ C : r � a

}
. (2.1)

3. Regularity theory for transmission problems

In this section, we establish several estimates for Tλ for appropriate values of λ. The 
main results are as follows.

Theorem 3. Let ε0 > 0 and Λ � 1. Assume that (1.1) and (1.2) hold, and A1, A2, Σ1, Σ2
are continuous in Ω̄. Assume that (1.4) and (1.5) hold in the following sense, with ν =
ν(x),∣∣〈A2(x)ν, ν〉〈A2(x)ξ, ξ〉 − 〈A2(x)ν, ξ〉2 − 〈A1(x)ν, ν〉〈A1(x)ξ, ξ〉 + 〈A1(x)ν, ξ〉2

∣∣ � Λ−1|ξ|2,
(3.1)

for all x ∈ Γ and for all ξ ∈ Rd \ {0} with 〈ξ, ν〉 = 0, and
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∣∣∣〈A2(x)ν, ν〉Σ2(x) − 〈A1(x)ν, ν〉Σ1(x)
∣∣∣ � Λ−1, ∀x ∈ Γ. (3.2)

There exist two positive constants Λ0 and C depending only on Λ, ε0, Ω, and the conti-
nuity modulus of A1, A2, Σ1, and Σ2 in Ω̄ such that for θ ∈ R with infn∈Z |θ−nπ| � ε0, 
and for λ ∈ L(θ, Λ0), the following fact holds: for g = (g1, g2) ∈ [L2(Ω)]2, there exists a 
unique solution u = (u1, u2) ∈ [H1(Ω)]2 of the system⎧⎪⎪⎨⎪⎪⎩

div(A1∇u1) − λΣ1u1 = g1 in Ω,

div(A2∇u2) − λΣ2u2 = g2 in Ω,

u1 − u2 = 0, (A1∇u1 −A2∇u2) · ν = 0 on Γ.

(3.3)

Moreover, for 1 < p < ∞,

‖∇u‖Lp(Ω) + |λ|1/2‖u‖Lp(Ω) � C|λ|− 1
2 ‖g‖Lp(Ω). (3.4)

As a consequence, we have

• for 1 < p < d and p � q � dp
d−p ,

||u||Lq(Ω) � C|λ|−1+ d
2

(
1
p− 1

q

)
‖g‖Lp(Ω), (3.5)

• for p > d,

‖u‖L∞(Ω) � C|λ|−1+ d
2p ‖g‖Lp(Ω), (3.6)

• for p > d and q = p
p−1 ,

‖u‖Lq(Ω) � C|λ|−1+ d
2− d

2q ‖g‖L1(Ω). (3.7)

The remainder of this section contains two subsections, which are organized as follows. 
In the first subsection, we establish several lemmas used in the proof of Theorem 3. The 
proof of Theorem 3 is given in the second subsection.

3.1. Preliminaries

In this section, we establish several results used in the proof of Theorem 3, which is 
based on freezing coefficient technique. We begin with the corresponding settings/vari-
ants with constant coefficients in Rd and in Rd

+. The first one is

Lemma 1. Let d � 2, Λ � 1, ε0 > 0, 1 < p < ∞, and let A and Σ be a symmetric 
matrix and a non-zero real constant, respectively. Assume that infn∈Z |θ − nπ| � ε0 and 
λ ∈ L(θ, 1),
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Λ−1 � A � Λ and Λ−1 � |Σ| � Λ. (3.8)

For g ∈ Lp(Rd) and G ∈ [Lp(Rd)]d, let u ∈ W 1,p(Rd) be the unique solution of

div(A∇u) − λΣu = g + div(G) in Rd.

We have

|λ|1/2‖∇u‖Lp(Rd) + |λ|‖u‖Lp(Rd) � C
(
‖g‖Lp(Rd) + |λ|1/2‖G‖Lp(Rd)

)
, (3.9)

and, if G = 0,

‖∇2u‖Lp(Rd) � C‖g‖Lp(Rd). (3.10)

Here C denotes a positive constant depending only on p, d, Λ, and ε0.

Here and in what follows, for two d × d symmetric matrices M1 and M2, we denote 
M1 � M2 (resp. M1 � M2) if 〈M1ξ, ξ〉 � 〈M2ξ, ξ〉 (resp. 〈M1ξ, ξ〉 � 〈M2ξ, ξ〉) for all 
ξ ∈ Rd.

Proof. For an appropriate function/vector field f defined in Rd, let Ff denote its Fourier 
transform. We have

Fu(ξ) = −Fg(ξ) + iξ · FG(ξ)
〈Aξ, ξ〉 + λΣ .

Set

m(ξ) = 1
〈Aξ, ξ〉 + λΣ .

One can check that

|ξ|�|∇�m(ξ)| � C�|λ|−1 for � ∈ N.

It follows from Mikhlin-Hörmander’s multiplier theorem, see e.g. [14, Theorem 5.2.7], 
that

‖u‖Lp(Rd) � C|λ|−1‖g‖Lp(Rd).

The other estimates in Assertion (3.9) and (3.10) can be derived in the same manner. 
The proof is complete. �

Here is a result on a half space.
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Lemma 2. Let A1, A2 be two constant, symmetric matrices, and let Σ1, Σ2 be two non-
zero, real constants. Assume that, for some Λ � 1,

Λ−1 � A1, A2 � Λ, Λ−1 � |Σ1|, |Σ2| � Λ, (3.11)∣∣∣〈A2ed, ed〉〈A2ξ, ξ〉 − 〈A2ed, ξ〉2 − 〈A1ed, ed〉〈A1ξ, ξ〉 + 〈A1ed, ξ〉2
∣∣∣ � Λ−1|ξ|2 ∀ ξ ∈ P,

(3.12)
where P =

{
ξ ∈ Rd; 〈ξ, ed〉 = 0

}
, and∣∣∣〈A2ed, ed

〉
Σ2 −

〈
A1ed, ed

〉
Σ1

∣∣∣ � Λ−1. (3.13)

Let p > 1, ε0 > 0, g1, g2 ∈ Lp(Rd
+), G1, G2 ∈ [Lp(Rd

+)]d, and ϕ ∈ W 1−1/p,p(Rd
0). 

There exist two positive constants C and Λ0 depending only on Λ and ε0 such that for 
θ ∈ R with minn∈Z |θ − nπ| � ε0 and for λ ∈ L(θ, Λ0), there exists a unique solution 
u = (u1, u2) ∈ [W 1,p(Rd

+)]2 of the system

⎧⎪⎪⎨⎪⎪⎩
div(A1∇v1) − λΣ1v1 = g1 + div(G1) in Rd

+,

div(A2∇v2) − λΣ2v2 = g2 + div(G2) in Rd
+,

v1 − v2 = ϕ, (A1∇v1 −G1) · ed − (A2∇v2 −G2) · ed = 0 on Rd
0.

(3.14)

Moreover,

‖∇v‖Lp(Rd
+) + |λ|1/2‖v‖Lp(Rd

+) � C
(
|λ|−1/2‖g‖Lp(Rd

+) + ‖G‖Lp(Rd
+)

+ λ1/2−1/(2p)‖ϕ‖Lp(Rd
0) + ‖ϕ‖Ẇ 1−1/p,p(Rd

0)

)
. (3.15)

Proof. We only establish (3.15). The uniqueness for (3.14) is a consequence of (3.15). The 
existence of (v1, v2) follows from the proof of (3.15) and is omitted. Let uj ∈ W 1,p(Rd)
be the unique solution of the equation

div(Aj∇uj) − λΣjuj = gj1Rd
+

+ div(Gj1Rd
+
) in Rd.

It follows from Lemma 1 that

‖∇uj‖Lp(Rd) + |λ|1/2‖uj‖Lp(Rd) � C
(
|λ|−1/2‖gj‖Lp(Rd

+) + ‖Gj‖Lp(Rd
+)

)
.

We have

|λ|1/2−1/(2p)‖uj‖Lp(Rd
0) � C

(
‖∇uj‖Lp(Rd

+) + |λ|1/2‖uj‖Lp(Rd
+)

)
,

(Aj∇uj −Gj) · ed = 0 on Rd
0,
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and, by the trace theory,

‖uj‖W 1−1/p,p(Rd
0) � C‖uj‖W 1,p(Rd

+).

Therefore, without loss of generality, one might assume that g1 = g2 = 0 and G1 = G2 =
0. This will be assumed from now on.

Let v̂j(ξ′, t) for j = 1, 2 and ϕ̂(ξ′, t) be the Fourier transform of vj and ϕ with respect 
to x′ ∈ Rd−1, i.e., for (ξ′, t) ∈ Rd−1 × (0, +∞),

v̂j(ξ′, t) =
ˆ

Rd−1

vj(x′, t)e−ix′·ξ′ dx′ and ϕ̂(ξ′, t) =
ˆ

Rd−1

ϕ(x′)e−ix′·ξ′ dx′.

Since

div(Aj∇vj) − λΣjvj = 0 in Rd
+,

it follows that

ajv
′′
j (t) + 2ibjv′j(t) − (cj + λΣj)vj(t) = 0 for t > 0,

where

aj = (Aj)d,d, bj =
d−1∑
k=1

(Aj)d,kξk, and cj =
d−1∑
k=1

d−1∑
l=1

(Aj)k,lξkξl.

Here (Aj)k,l denotes the (k, l) component of Aj for j = 1, 2 and the symmetry of Aj is 
used. Define, for j = 1, 2,

Δj = −b2j + aj(cj + λΣj). (3.16)

Denote ξ = (ξ′, 0). Since Aj is symmetric and positive, it is clear that, for j = 1, 2,

aj = 〈Ajed, ed〉, bj = 〈Ajξ, ed〉, cj = 〈Ajξ, ξ〉, and ajcj − b2j > 0. (3.17)

Since v̂j(ξ′, t) ∈ L2(Rd
+), we have

v̂j(ξ′, t) = αj(ξ′)eηj(ξ′)t,

for some αj(ξ′) ∈ C, where

ηj = (−ibj −
√

Δj)/aj .

Here 
√

Δj denotes the square root of Δj with positive real part. Using the fact that 
v1 − v2 = ϕ and A1∇v1 · ed −A2∇v2 · ed = 0 on Rd

0, we derive that
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α1(ξ′)−α2(ξ′) = ϕ̂(ξ′) and α1(ξ′)〈iA1ξ+η1A1ed, ed〉−α2(ξ′)〈iA2ξ+η2A2ed, ed〉 = 0.
(3.18)

Note that, by (3.17),

〈Ajξ, ed〉 − 〈Ajed, ed〉bj/aj = 0.

The last identity of (3.18) is equivalent to

α1(ξ′)
√

Δ1 = α2(ξ′)
√

Δ2.

Combining this identity and the first one of (3.18) yields

α1(ξ′) = ϕ̂(ξ′)
√

Δ2√
Δ2 −

√
Δ1

. (3.19)

Extend v1(x′, t) by 0 for t < 0. We then obtain

Fv1(ξ) = −ϕ̂(ξ′)
√

Δ2√
Δ2 −

√
Δ1

1
ηj − iξd

.

Here, F is the Fourier transform in Rd. Set

g(t) = e−|λ|1/2t1t�0 for t ∈ R and Φ(x) = ϕ(x′)g(xd) for x ∈ Rd.

It follows that

Fv1(ξ) = FΦ(ξ)
√

Δ2√
Δ2 −

√
Δ1

|λ|1/2 + iξd
−ηj + iξd

.

We have

|Δ2 − Δ1|2 � C(|ξ′|4 + |λ|2), |Δj | � C(|ξ′|2 + |λ|),

and

|(ηj)| � C(|ξ′| + |λ|1/2).

As in the proof of Lemma 1, by Mikhlin-Hörmander’s multiplier theorem, see e.g. [14, 
Theorem 5.2.7], one has

‖v1‖Lp(Rd) � C‖Φ‖Lp(Rd) � C|λ|−1/(2p)‖ϕ‖Lp(Rd−1). (3.20)

We next deal with ∇v1. We have

∂tv̂1(ξ′, t) = η1v̂1(ξ′, t) in Rd
+. (3.21)
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It is clear that

η1 = η1,1 + η1,2,

where

η1,1 = −
√
a1λΣ1

a1
, and η1,2 = − ib1

a1
−

√
Δ1 −

√
a1λΣ1

a1
.

As above, one can prove that

‖F̂−1(η1,1v̂1)‖Lp(Rd
+) � C|λ|1/2‖Φ‖Lp(Rd) � C|λ|1/2−1/(2p)‖ϕ‖Lp(Rd−1), (3.22)

and, for some γ > 0,

‖F̂−1(η1,2v̂1)‖Lp(Rd
+) � C‖g‖Lp(Rd

+),

where F̂−1 denotes the Fourier inverse with respect to ξ′ in Rd−1 and

ĝ(ξ′, t) = iξ′ϕ̂(ξ′)e−γ|ξ′|t.

It is clear that g(x) = ∇x′v(x), where v is the unique solution of the system

Δx′v + γ∂2
xd
v = 0 in Rd

+ and v = ϕ on Rd
0

for γ > 0. It follows that, see e.g. [3, Theorem 3.3], we have

‖g‖Lp(Rd
+) � C‖ϕ‖Ẇ 1/p−1,p(Rd−1). (3.23)

Combining (3.22) and (3.23) yields

‖∂xd
v1‖Lp(Rd

+) � C‖ϕ‖Ẇ 1/p−1,p(Rd−1) + C|λ|1/2−1/(2p)‖ϕ‖Lp(Rd−1). (3.24)

By the same manner, we also obtain

‖∇x′v1‖Lp(Rd
+) � C‖ϕ‖Ẇ 1/p−1,p(Rd−1). (3.25)

From (3.20), (3.24), and (3.25), we obtain

|λ|1/2‖v1‖Lp(Rd
+) + ‖∇xv1‖Lp(Rd

+) � C‖ϕ‖Ẇ 1/p−1,p(Rd−1) + C|λ|1/2−1/(2p)‖ϕ‖Lp(Rd−1).

(3.26)
Similar to (3.26), we also get

|λ|1/2‖v2‖Lp(Rd
+) + ‖∇xv2‖Lp(Rd

+) � C‖ϕ‖Ẇ 1/p−1,p(Rd−1) + C|λ|1/2−1/(2p)‖ϕ‖Lp(Rd−1).

(3.27)
The conclusion thus follows from (3.26) and (3.27). The proof is complete. �
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Remark 5. Assertion (3.14) was previously established in [32] for p = 2 (see [32, the proof 
of Theorem 4]). The analysis given here has its root in [27,32]. Nevertheless, instead of 
using Parseval’s theorem to derive L2-estimates, the new ingredient involves Mikhlin-
Hörmander’s multiplier theory.

We now derive consequences of Lemmas 1 and 2 via the freezing-coefficient technique. 
As a consequence of Lemma 1, we have

Corollary 1. Let d � 2, p > 1, Λ � 1, ε0 > 0, and let A be a symmetric, matrix-valued 
function, and let Σ be a real function defined in Ω. Assume that A and Σ are continuous 
in Ω̄,

Λ−1 � A � Λ and Λ−1 � |Σ| � Λ in Ω, (3.28)

for some Λ � 1, infn∈Z |θ−nπ| � ε0, and λ ∈ L(θ, 1). For g ∈ Lp(Ω) and G ∈ [Lp(Ω)]d, 
let u ∈ W 1,p(Ω) be a solution of

div(A∇u) − λΣu = g + div(G) in Ω.

We have, for τ > 0,

‖∇u‖Lp(Ω\Ωτ ) + |λ|1/2‖u‖Lp(Ω\Ωτ )

� C
(
|λ|−1/2‖g‖Lp(Ω) + ‖G‖Lp(Ω)

)
+ C|λ|− 1

2

(
‖∇u‖Lp(Ω) + |λ|1/2‖u‖Lp(Ω)

)
. (3.29)

Here C denotes a positive constant depending only on Λ, p, ε0, τ , Ω, and the continuity 
modulus of A1, A2, Σ1, and Σ2 in Ω.

Proof. Let χ be an arbitrary smooth function with support in Ω. Set v = χu in Ω. We 
have

div(A∇v) − λΣv = f + divF in Ω,

where

f = χg + A∇u∇χ− F · ∇χ and F = χF + uA∇ϕ.

The conclusion follows from Lemma 1 by the freezing-coefficient technique and the com-
putations above. �

Similarly, as a consequence of Lemma 2, we obtain
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Corollary 2. Let d � 2, p > 1, ε0 > 0, τ > 0, and Λ � 1, and let A1, A2 be two 
symmetric, matrix-valued functions, and let Σ1, Σ2 be two real functions defined in Ω. 
Assume that A1, A2, Σ1, Σ2 are continuous in Ω2τ , (3.28) holds, and (1.4) and (1.5) are 
satisfied. There exist two positive constants Λ0 and C, depending only on Λ, ε0, and the 
continuity of A1, A2, Σ1, and Σ2 in Ω2τ such that for θ ∈ R, for λ ∈ L(θ, Λ0) with 
infn∈Z |θ − nπ| � ε0, and for g = (g1, g2) ∈ [Lp(Ω)]2, and G = (G1, G2) ∈ [Lp(Ω)]d ×
[Lp(Ω)]d, let u = (u1, u2) ∈ [W 1,p(Ω)]2 be a solution of the system

⎧⎪⎪⎨⎪⎪⎩
div(A1∇u1) − λΣ1u1 = g1 + div(G1) in Ω,

div(A2∇u2) − λΣ2u2 = g2 + div(G2) in Ω,

u2 − u1 = 0, (A2∇u2 −A1∇u1 −G2 + G1) · ν = 0 on Γ.

(3.30)

Moreover, we have

‖∇v‖Lp(Ωτ ) + |λ|1/2‖v‖Lp(Ωτ )

� C
(
|λ|−1/2‖g‖Lp(Ω) + ‖G‖Lp(Ω)

)
+ C|λ|− 1

2

(
‖∇v‖Lp(Ω) + |λ|1/2‖v‖Lp(Ω)

)
. (3.31)

Here C denotes a positive constant depending only on Λ, p, ε0, τ , Ω, and the continuity 
modulus of A1, A2, Σ1, and Σ2 in Ω2τ .

3.2. Proof of Theorem 3

We first assume the well-posedness of (3.3) and establish (3.4) - (3.7).
It is clear that (3.4) is a consequence of Corollary 1 and Corollary 2.
We next deal with (3.5) and (3.6). By Gagliardo-Nirenberg’s interpolation inequalities 

[13,34], if p > d and u ∈ W 1,p(Ω), then u ∈ C(Ω) and

‖u‖L∞(Ω) � C‖u‖
d
p

W 1,p(Ω)‖u‖
1− d

p

Lp(Ω), (3.32)

and if 1 < p < d, and u ∈ W 1,p(Ω), then, for p � q < dp
d−p ,

‖u‖Lq(Ω) � C‖u‖d(
1
p− 1

q )
W 1,p(Ω)‖u‖

1−d( 1
p− 1

q )
Lp(Ω) . (3.33)

Assertions (3.5) and (3.6) now follow from (3.4), (3.32), (3.33), and Hölder’s inequality.
We finally establish (3.7). Let

Tδ : [L2(Ω)]2 → [L2(Ω)]2

g �→ u,
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where u = (u1, u2) ∈ [H1(Ω)]2 is the unique solution of (3.3) with (g1, g2) = g. We have, 
for q = p

p−1 and p > d,

‖u‖Lq(Ω) = sup
f∈[L2(Ω)]2;‖f‖Lp(Ω)�1

|〈u, f〉|,

and

〈u, f〉 = 〈Tλ(g), f〉 = 〈g, T ∗
λ (f)〉.

One can check that

T ∗
λ =

(
1 0
0 −1

)
Tλ

(
1 0
0 −1

)
. (3.34)

It follows that

|〈u, f〉| � ‖g‖L1(Ω)‖Tλ̄(f)‖L∞(Ω)
(3.6)
� C|λ|−1+ d

2p ‖g‖L1(Ω)‖f‖Lp(Ω).

Assertion (3.7) follows.
It remains to prove the well-posedness of (3.3). It is clear that the uniqueness of (3.3)

follows from (3.4). To establish the existence for (3.3), we use the principle of limiting 
absorption and the Fredholm theory. We only consider the case where �(λ) < 0; the 
other case can be proved similarly. For δ > 0, by the Lax-Milgram theory, there exists a 
unique solution vδ = (v1,δ, v2,δ) ∈ [H1(Ω)]2 of the system⎧⎪⎪⎨⎪⎪⎩

div
(
(1 − iδ)A1∇v1,δ

)
− λΣ1v1,δ = g1 in Ω,

div
(
(1 + iδ)A2∇v2,δ

)
+ λΣ2v2,δ = g2 in Ω,

v2,δ − v1,δ = 0,
(
(1 + iδ)A2∇v2,δ − (1 − iδ)A1∇v1,δ

)
· ν = 0 on Γ.

Moreover, by Corollaries 1 and 2, applied with G1 = iδA1∇v1,δ and G2 = −iδA2∇v2,δ, 
we have, for sufficiently small δ,

‖∇uδ‖L2(Ω) + |λ|1/2‖uδ‖L2(Ω) � C|λ|−1/2‖g‖L2(Ω).

By taking δ → 0+, one derives the existence of a solution v = (v1, v2) ∈ [H1(Ω)]2 of the 
system, with Σ̂2 = −Σ2⎧⎪⎪⎨⎪⎪⎩

div
(
A1∇v1

)
− λΣ1v1 = g1 in Ω,

div
(
A2∇v2

)
− λΣ̂2v2 = g2 in Ω,

v2 − v1 = 0,
(
A2∇v2 −A1∇v1

)
· ν = 0 on Γ,

(3.35)

which satisfies
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‖∇v‖L2(Ω) + |λ|1/2‖v‖L2(Ω) � C|λ|−1/2‖g‖L2(Ω). (3.36)

The uniqueness of (3.35) is again a consequence of Corollary 1 and Corollary 2.
Define

T̂ : [L2(Ω)]2 → [L2(Ω)]2

g �→ v,

where v = (v1, v2) ∈ [H1(Ω)]2 is the unique solution of (3.35). It follows from (3.36) that 
T̂ is compact.

It is clear that u = (u1, u2) ∈ [H1(Ω)]2 is a solution of (3.3) if and only if⎧⎪⎪⎨⎪⎪⎩
div(A1∇u1) − λΣ1u1 = g1 in Ω,

div(A2∇u2) − λΣ̂2u2 = g2 + 2λΣ2u2 in Ω,

u1 − u2 = 0, (A1∇u1 −A2∇u2) · ν = 0 on Γ.

In other words,

(u1, u2) = T̂ (g1, g2) + T̂ (0, 2λΣ2u2).

Since this equation has at most one solution and T̂ is compact, this equation has a 
unique solution by the Fredholm theory. The proof is complete. �
Remark 6. Note from (3.34) that Tλ is not self-adjoint.

4. Hilbert-Schmidt operators

We now devote two subsections to the applications of Hilbert-Schmidt operators for 
the transmission problem. In the first subsection, we recall some basis facts on Hilbert-
Schmidt operators and the finite double norms. In the second subsection, we derive their 
applications for the transmission problem. The main result here is Proposition 2.

4.1. Some basic facts on Hilbert-Schmidt operators

In this section, we recall the definition and several properties of Hilbert-Schmidt 
operators. We begin with

Definition 2. Let H be a separable Hilbert space and let (φk)∞k=1 be an orthogonal basis. 
A bounded linear operator T : H → H is Hilbert Schmidt if its finite double norm

|||T||| :=
( ∞∑

‖T(φk)‖2
H

)1/2

< +∞. (4.1)

k=1
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The trace of T is then defined by

trace(T) =
∞∑
k=1

〈T(φk), φk〉. (4.2)

Remark 7. The definition of | | |T| | | and of trace(T) do not depend on the choice of (φk), 
see e.g. [2, Chapter 12].

One can check, see [2, Theorem 12.12], that if T1 and T2 are Hilbert Schmidt then 
T1T2 is also Hilbert Schmidt, and

|trace(T1T2)| � |||T1||||||T2|||. (4.3)

Let m ∈ N and T : [L2(Ω)]m → [L2(Ω)]m be a Hilbert Schmidt operator. There exists 
a unique kernel K ∈ [L2(Ω × Ω)]m×m, see e.g. [2, Theorems 12.18 and 12.19], such that

(Tu)(x) = 〈K(x, .), u〉 for a.e. x ∈ Ω, for all u ∈ [L2(Ω)]m. (4.4)

Moreover,

|||T|||2 =
¨

Ω×Ω

|K(x, y)|2 dx dy. (4.5)

Note that [2, Theorems 2.18 and 12.19] state for m = 1, nevertheless, the same arguments 
hold for m ∈ N.

We have

Lemma 3. Let d � 2, m ∈ N, and T : [L2(Ω)]m → [L2(Ω)]m be such that T(φ) ∈ C(Ω̄)
for ϕ ∈ [L2(Ω)]m, and

‖T(φ)‖L∞(Ω) � M‖φ‖L2(Ω), (4.6)

for some M � 0. Then T is a Hilbert-Schmidt operator,

|||T||| � Cm|Ω|1/2M, (4.7)

and the kernel K of T satisfies

sup
x∈Ω

⎛⎝ˆ

Ω

|K(x, y)|2dy

⎞⎠1/2

� Cm|Ω|1/2M. (4.8)

Assume in addition that
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‖T(φ)‖L∞(Ω) � M̃ ||φ||L1(Ω) for φ ∈ [L2(Ω)]m, (4.9)

for some M̃ � 0, then the kernel K of T satisfies

|K(x, y)| � M̃ ∀x, y ∈ Ω. (4.10)

Here Cm denotes a positive constant depending only on m.

Proof. The proof is quite standard as in [2]. We present the details of this proof for 
the convenience of the reader. Let (φk)∞k=1 be an orthonormal basis of [L2(Ω)]m and set 
ϕj = T(φj). Let a1, ..., aN ∈ Cm be arbitrary. By (4.6), we have

∣∣∣ N∑
j=1

aj · ϕj(x)
∣∣∣ � M‖

N∑
j=1

aj · φj‖L2(Ω) � CmM

⎛⎝ N∑
j=1

|aj |2
⎞⎠1/2

∀x ∈ Ω.

Choosing aj = ϕj(x) yields

N∑
j=1

|ϕj(x)|2 � CmM2 ∀x ∈ Ω.

Integrating over Ω, we obtain

N∑
j=1

‖ϕj‖2
L2(Ω) � Cm|Ω|M2,

which implies (4.7).
Assertion (4.8) follows from (4.6) by (4.4).
It is clear that (4.10) is a consequence of (4.9) by the definition of the kernel. �
We next recall a basic, useful property of a Hilbert-Schmidt operator, see e.g., [2, 

Theorem 12.21]1:

Lemma 4. Let m ∈ N and let T1, T2 be two Hilbert-Schmidt operators in [L2(Ω)]m with 
the corresponding kernels K1 and K2. Then T := T1T2 is a Hilbert-Schmidt operator 
with the kernel K given by

K(x, y) =
ˆ

Ω

K1(x, z)K2(z, y) dz. (4.11)

1 Note that [2, Theorems 2.21] states for m = 1, nevertheless, the same arguments hold for m ∈ N.
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Moreover,

trace(T1T2) =
ˆ

Ω

trace K(x, x)dx. (4.12)

Remark 8. Using (4.11), one can check that
ˆ

Ω

|K(x, x)| dx �
ˆ

Ω

|K1(x, z)||K2(z, x)| dz dx � ‖K1‖L2(Ω×Ω)‖K2‖L2(Ω×Ω).

Hence K(x, x) ∈ [L1(Ω)]m×m.

4.2. Applications of the theory of Hilbert-Schmidt operators

In this section, we apply the theory of Hilbert-Schmidt operators to the operator Tλ

mentioned in the introduction. The main ingredient of the analysis is Theorem 3. We 
begin with

Definition 3. Let ε0 > 0 and Λ � 1. Assume the assumptions of Theorem 3 hold. Let Λ0
and C be the constants in Theorem 3. For λ ∈ L(θ, Λ0) with infn∈Z |θ−nπ| > ε0, define

Tλ : [L2(Ω)]2 → [L2(Ω)]2

f �→ u,

where u = (u1, u2) ∈ [H1(Ω)]2 is the unique solution of, with (f1, f2) = f ,⎧⎪⎪⎨⎪⎪⎩
div(A1∇u1) − λΣ1u1 = Σ1f1 in Ω,

div(A2∇u2) − λΣ2u2 = Σ2f2 in Ω,

u1 = u2, A1∇u1 · ν = A2∇u2 · ν on Γ.

(4.13)

From now on, we fix the constant Λ0 as required in Definition 3 for a given ε0 and set

λ0 = Λ0e
iπ/2. (4.14)

Remark 9. Let T �
λ be the adjoint operator of Tλ, i.e., 〈Tλ(f), g〉 = 〈f, T ∗

λ (g)〉 for any 
f, g ∈ [L2(Ω)]2. Integrating by parts, one has⎛⎝ˆ

Ω

div(A1∇u1)v1 − div(A2∇u2)v2

⎞⎠−

⎛⎝ˆ

Ω

u1 div(A1∇v1) − u2 div(A2∇v2)

⎞⎠
=

⎛⎝ˆ

Γ

v1.A1∇u1 · ν − v2.A2∇u2 · ν

⎞⎠−

⎛⎝ˆ

Γ

u1A1∇v1 · ν − u2A2∇v2 · ν

⎞⎠ .
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This implies

T ∗
λ =

(
Σ1 0
0 −Σ2

)
Tλ

(
1/Σ1 0

0 −1/Σ2

)
. (4.15)

Thus Tλ is not self-adjoint.

For the operator Tλ defined above, the following estimates hold:

Proposition 1. We have

‖Tλ‖Lp→L∞ � C|λ|−1+ d
2p if p > d, (4.16)

‖Tλ‖Lp→Lq � C|λ|−1+ d
2

(
1
p− 1

q

)
if 1 < p < d, p � q <

dp

d− p
, (4.17)

‖Tλ‖L1→Lq � C|λ|−1+ d
2− d

2q if 1 < q <
d

d− 1 . (4.18)

Assume that λ1, ..., λk+1 satisfy the assumption of Theorem 3 with k = kd =
[
d
2
]
, and 

|λ1| ∼ |λ2| ∼ ... ∼ |λk+1| = t. Then operator 
∏k+1

j=1 Tλj
= Tλk+1 ◦ Tλk

◦ ... ◦ Tλ1 is 
Hilbert-Schmidt, and

∣∣∣∣∣∣∣∣∣ k+1∏
j=1

Tλj

∣∣∣∣∣∣∣∣∣ � Ct
d
4−1−k. (4.19)

Proof. Clearly, (4.16) - (4.18) follow from (3.5) - (3.7). Fix p1 = 2 < p2 < ... < pk <

pk+1 < +∞ with pk+1 > d and pj <
dpj−1
d−pj−1

. By (4.16) and (4.17), we obtain

∥∥∥ k+1∏
j=1

Tλj

∥∥∥
L2→L∞

� ‖Tλ1‖Lp1→Lp2 ....‖Tλk
‖Lpk→Lpk+1‖Tλk+1‖Lpk+1→L∞

� C

⎛⎝ k∏
j=1

|λ|−1+ d
2

(
1
pj

− 1
pj+1

)⎞⎠ |λ|−1+ d
2pk+1 = C|λ| d4−(k+1).

The conclusions now follow from Lemma 3. �
The following is the main result of this section and plays a crucial role in our analysis.

Proposition 2. Let k = kd =
[
d
2
]

and denote

θj =
(1

4 + 2(j − 1)
) π

k + 1 and θk+1+j =
(5

4 + 2(j − 1)
) π

k + 1 for 1 � j � k + 1.

Let t > 10Λ0 and set μj = λ0 + tzj with zj = eiθj for j = 1, . . . , 2(k + 1). We have
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trace (Tμ2(k+1) ◦ Tμ2k+1 ◦ ... ◦ Tμ1) =
∑
j

1
λ̃

2(k+1)
j − it2(k+1)

, (4.20)

where each characteristic value λ̃j of Tλ0 is repeated a number of times equal to its 
multiplicity.

Remark 10. In Proposition 2, Λ0 is chosen large and corresponds with ε0 = π
8(k+1) .

Proof. It is clear that z1, . . . , zk+1 are the solutions of zk+1 − ei
π
4 = 0 in C and 

zk+2, . . . , z2(k+1) are the solutions of zk+1 − ei
5π
4 = 0 in C. One then has, for z ∈ C,

k+1∏
j=1

(z − zj) = zk+1 − ei
π
4 ,

k+1∏
j=1

(1 − zjz) = 1 − ei
π
4 zk+1 (4.21)

and

2(k+1)∏
j=k+2

(z − zj) = zk+1 − ei
5π
4 ,

2(k+1)∏
j=k+2

(1 − zjz) = 1 − ei
5π
4 zk+1. (4.22)

Note that, if Tλ and Tλ+s exist, and Tλ is compact, then s is not a characteristic value 
of Tλ, and

Tλ+s = Tλ(I − sTλ)−1 = (I − sTλ)−1Tλ. (4.23)

Indeed, if Tλ and Tλ+s exist, one can check that I − sTλ is injective, and therefore 
subjective since Tλ is compact. One can then show that (4.23) holds.

As a consequence of (4.23), Tλ+s is the modified operator of Tλ with respect to s.
Set

T = Tμ2(k+1) ◦ ... ◦ Tμk+2 .

It follows from Proposition 1 that T is Hilbert-Schmidt, and

|||T||| � Ct
d
4−1−k, and ‖T‖L2→L2 � Ct−k−1.

Let s1, s2, . . . be the characteristic values of T repeated a number of times equal to their 
multiplicities. Thanks to [2, Theorem 12.17], one has, for a non-characteristic value λ of 
T,

trace (T ◦ (T)λ) =
∑
j

1
sj(sj − λ) + ct, (4.24)

where (T)λ is the modified operator associated with T and λ, i.e., (T)λ := T(I−λT)−1, 
for some ct ∈ C.
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By applying (4.24) with λ = 2e iπ
4 tk+1, it suffices to establish

(T)λ = Tμk+1 ◦ ... ◦ Tμ1 for λ = 2e iπ
4 tk+1, (4.25)

sj = λ̃k+1
� − ei

5π
4 tk+1, (4.26)

for some �, and

the multiplicity of sj is equal to the sum of the multiplicity of λ̃� such that (4.26) holds,
(4.27)

and

ct = 0. (4.28)

This will be done in the next three steps.
Step 1: Proof of (4.25). Since μj − λ0 = zjt, it follows from the second identity in (4.21)
that

k+1∏
l=1

(
1 − (μl − λ0)z

)
= 1 − ei

π
4 tk+1zk+1. (4.29)

One has

Tμk+1 ◦ ... ◦ Tμ1

(4.23)= Tλ0 (I − (μk+1 − λ0)Tλ0)
−1 ◦ ... ◦ Tλ0 (I − (μ1 − λ0)Tλ0)

−1

(4.23)= T k+1
λ0

k+1∏
l=1

(I − (μl − λ0)Tλ0)−1 (4.29)= T k+1
λ0

(
I − ei

π
4 tk+1T k+1

λ0

)−1
. (4.30)

In other words, we have

Tμk+1 ◦ ... ◦ Tμ1 =
(
T k+1
λ0

)
ei

π
4 tk+1 . (4.31)

Similarly, we obtain

T = Tμ2(k+1) ◦ ... ◦ Tμk+2 =
(
T k+1
λ0

)
ei

5π
4 tk+1 . (4.32)

Using the property ( (
T k+1
λ0

)
γ1

)
γ2

=
(
T k+1
λ0

)
γ1+γ2

,

for γ1 and γ1 + γ2 non-characteristic values of T k+1
λ0

, we derive from (4.31) and (4.32)
that

(T)λ =
(
T k+1
λ

)
i 5π

k+1 =
(
T k+1
λ

)
i π

k+1 = Tμk+1 ◦ ... ◦ Tμ1 ,
0 e 4 t +λ 0 e 4 t
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and (4.25) follows.
Step 2: Proof of (4.26) and (4.27). Since T = (T k+1

λ0
)ei5π/4tk+1 , it follows, see e.g. [2, 

Theorem 12.4], that s−1
j is an eigenvalue of T that is not equal to −e−i5π/4t−(k+1)

if and only if s−1
j

1+s−1
j ei5π/4tk+1 = 1

sj+ei5π/4tk+1 is an eigenvalue of T k+1
λ0

(or equivalently 

sj + ei5π/4tk+1 is a characteristic value of T k+1
λ0

), and they have the same multiplicity. 
One can check that −e−i5π/4t−(k+1) is not an eigenvalue of T. Assertions (4.26) and 
(4.27) follow.
Step 3: Proof of (4.28). For z ∈ L(θ, 1) with infn∈Z |θ − nπ| > ε0 and |z| large enough, 
let τ1, · · · , τk+1 be the k + 1 distinct roots in C of the equation xk+1 = z. Set

ηl = λ0 + τl for 1 � l � k + 1.

As in the proof of (4.30), one has

Tηk+1 ◦ · · · ◦ Tη1 = T k+1
λ0

(
I − zT k+1

λ0

)−1
.

It follows that

Tηk+1 ◦ · · · ◦ Tη1 =
(
T k+1
λ0

)
z
.

Consider λ defined by ei
5π
4 tk+1 + λ = z. We have, for large |z|,

|trace (T ◦ (T)λ)|
(4.3)
� |||T||||||Tλ|||

(4.19)
� Ct|z|

d
4−1−k → 0 as |z| → +∞, (4.33)

and ∣∣∣∣∣∣
∑
j

1
sj(sj − λ)

∣∣∣∣∣∣ �
⎛⎝∑

j

|sj |−2

⎞⎠1/2 ⎛⎝∑
j

|sj − λ|−2

⎞⎠1/2

. (4.34)

Applying [2, Theorem 12.14], we have∑
j

|sj |−2 � |||T||| � Ct, (4.35)

and applying [2, Theorems 12.4 and 12.14], we obtain

∑
j

|sj − λ|−2 � |||Tλ|||
(4.19)
� Ct|z|

d
4−1−k → 0 as |z| → +∞. (4.36)

We derive from (4.34), (4.35), and (4.36) that
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∑
j

1
sj(sj − λ) → 0 as |z| → +∞. (4.37)

Combining (4.33) and (4.37) yields ct = 0.
The proof is complete. �

Remark 11. Let λj be an eigenvalue of the transmission problem. Then λj−λ and λj− λ̂

are the characteristic values of Tλ and Tλ̂ respectively, provided that Tλ and Tλ̂ exist. 
Using (4.23) and applying [2, Theorem 12.4], one can show that the multiplicity of λj−λ

and the multiplicity of λj − λ̂ are the same.

5. The Weyl law for eigenvalues of the transmission problem - Proof of Theorem 1

5.1. Approximation of the trace of the kernel and their applications

For λ ∈ L(θ, 1) with θ �= nπ for all n ∈ Z, and x0 ∈ Ω, set

Sj,λ,x0 : L2(Rd) → L2(Rd)

fj �→ vj ,
(5.1)

where vj ∈ H1(Rd) is the unique solution of

div(Aj(x0)∇vj) − λΣj(x0)vj = Σj(x0)fj in Rd.

We also define

Sλ,x0 : [L2(Rd)]2 → [L2(Rd)]2

(f1, f2) �→ (S1,λ,x0f1, S2,λ,x0f2).
(5.2)

One then has

Sj,λ,x0f(x) =
ˆ

Rd

Fj,λ(x0, x− y)fj(y)dy,

where

Fj,λ(x0, z) = − 1
(2π)d

ˆ

Rd

eizξ

Σj(x0)−1〈Aj(x0)ξ, ξ〉 + λ
dξ for z ∈ Rd.

By Lemma 1, we get, for 1 < p < +∞,

‖∇2Sj,λ,x0fj‖Lp(Rd) + |λ|1/2‖∇Sj,λ,x0fj‖Lp(Rd) + |λ|‖Sj,λ,x0fj‖Lp(Rd) � C‖fj‖Lp(Rd).

(5.3)
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As in the proof of Theorem 3, we obtain from the interpolation inequalities (3.32) and 
(3.33) that

‖Sλ,x0‖Lp→L∞ � C|λ|−1+ d
2p if p > d, (5.4)

‖Sλ,x0‖Lp→Lq � C|λ|−1+ d
2

(
1
p− 1

q

)
if 1 < p < d, p � q <

dp

d− p
, (5.5)

‖Sλ,x0‖L1→Lq � C|λ|−1+ d
2− d

2q if 1 < q <
d

d− 1 . (5.6)

Let t > 10Λ0 and let μ1, . . . , μ2(k+1) be defined in Proposition 2. Set, for z ∈ Rd,

Fj,t(x0, z) = 1
(2π)d

ˆ

Rd

eizξ∏2(k+1)
l=1

(
Σj(x0)−1〈Aj(x0)ξ, ξ〉 + μl

) dξ, (5.7)

and define

Sj,t,x0 =
2(k+1)∏
l=1

Sj,μl,x0 .

Then

Sj,t,x0fj(x) =
ˆ

Rd

Fj,t(x0, x− y)fj(y)dy.

Since, by the definition of μl and zl,

2(k+1)∏
l=1

(
Σj(x0)−1〈Aj(x0)ξ, ξ〉 + μl

)
=

2(k+1)∏
l=1

(
Σj(x0)−1〈Aj(x0)ξ, ξ〉 + λ0 + tzl

)

=
(
Σj(x0)−1〈Aj(x0)ξ, ξ〉 + λ0

)2(k+1) − it2(k+1),

it follows from (5.7) that

Fj,t(x0, z) = 1
(2π)d

ˆ

Rd

eizξ(
Σ−1

j (x0)〈Aj(x0)ξ, ξ〉 + λ0)2(k+1) − it2(k+1) dξ. (5.8)

As a consequence of (5.8), we obtain, by a change of variables,

Fj,t(x0, 0) = 1
(2π)d

ˆ 1(
Σ−1

j (x0)〈Aj(x0)ξ, ξ〉 + λ0
)2(k+1) − it2(k+1)

dξ
Rd
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= t
d
2−2(k+1)

(2π)d

ˆ

Rd

1(
Σ−1

j (x0)〈Aj(x0)ξ, ξ〉 + t−1λ0
)2(k+1) − i

dξ. (5.9)

This implies, by the dominated convergence theorem,

Fj,t(x0, 0) = t
d
2−2(k+1)

(2π)d

ˆ

Rd

1(
Σ−1

j (x0)〈Aj(x0)ξ, ξ〉
)2(k+1) − i

dξ + O(t d
2−2(k+1)−1).

(5.10)

We next introduce St,x0 : [L2(Rd)]2 → [L2(Rd)]2 by

St,x0 = Sμ2(k+1),x0 ◦ · · · ◦ Sμ1,x0 , where Sμl,x0 =
(
S1,μl,x0 0

0 S2,μl,x0

)
.

Set

Ft(x0, ·) =
(
F1,t(x0, ·) 0

0 F2,t(x0, ·)

)
.

We then have

St,x0f(x) =
ˆ

Rd

Ft(x0, x− y)f(y)dy.

Let Kt denote the kernel corresponding to 
∏2(k+1)

l=1 Tμl
= Tμ2(k+1) ◦ · · · ◦ Tμ1 . Here is 

the main result of this section.

Proposition 3. We have
ˆ

Ω

trace Kt(x, x)dx = ĉt d
2−2(k+1) + o(t d

2−2(k+1)) as t → ∞, (5.11)

where

ĉ = 1
(2π)d

2∑
j=1

ˆ

Ω

ˆ

Rd

1(
Σ−1

j (x)〈Aj(x)ξ, ξ〉)2(k+1) − i
dξ dx. (5.12)

Proof. We claim that
ˆ

Ω

trace Kt(x, x)dx =
ˆ

Ω

trace Ft(x, 0)dx + o(t d
2−2(k+1)) as t → ∞. (5.13)

The conclusion then follows from (5.10).
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The main point of the proof is to establish (5.13). Let ϕ be a function in C∞(Rd)
such that 0 � ϕ � 1, ϕ = 1 in B 1

2
and suppϕ ⊂ B 1

2+ 1
100d

. Let δ0 > 0 and x0 ∈ Ω be 
such that dist(x0, ∂Ω) > δ0. For δ ∈ (0, 10−2δ0), set ϕδ(x) = ϕ(δ−1(x − x0)) and

Φ(δ, x0) = sup
B10δ(x0)

2∑
j=1

(|Aj(x) −Aj(x0)| + |Σj(x) − Σj(x0)|) .

The essential ingredient of the analysis is the following estimate, for t > δ−4:

‖ϕ2δ
(
Tμ2(k+1) ◦ ... ◦ Tμ1 − St,x0

)
ϕδ‖L1→L∞ � Cδ0

(
Φ(δ, x0) + δ−1t−1/2

)
t
d
2−2(k+1).

(5.14)
We first assume (5.14) and continue the proof. We have(

ϕ2δ
(
Tμ2(k+1) ◦ ... ◦ Tμ1 − St,x0

)
ϕδ

)
(f)(x)

= ϕ2δ(x)
ˆ

Ω

(
Kt(x, y) −Ft(x0, x− y)

)
ϕδ(y)f(y)dy.

It follows from (5.14) that, for x, y ∈ Ω and for t > δ−4,∣∣∣ϕ2δ(x)ϕδ(y)
(
Kt(x, y) −Ft(x0, x− y)

)∣∣∣ � Cδ0

(
Φ(δ, x0) + δ−1t−1/2

)
t
d
2−2(k+1).

This implies that, for t > δ−4,

|trace Kt(x0, x0) − trace Ft(x0, 0)| � Cδ0

(
Φ(δ, x0) + δ−1t−1/2

)
t
d
2−2(k+1). (5.15)

Here we used the fact that ϕ2δ(x0) = ϕδ(x0) = 1. Using Proposition 1 and (4.9)-(4.10), 
we have

|Kt(x, x)| � Ct
d
2−2(k+1) for x ∈ Ω. (5.16)

By (5.10), we obtain

|Ft(x, 0)| � Ct
d
2−2(k+1) for x ∈ Ω. (5.17)

Assertion (5.13) now follows from (5.15), (5.16), and (5.17) by noting that
supx∈Ω Φ(δ, x) → 0 as δ → 0.

It remains to prove (5.14). We have

ϕ2δ
(
Tμ2(k+1) ◦ · · · ◦ Tμ1 − St,x0

)
ϕδ

=
2(k+1)∑
l=1

ϕ2δ
(
Tμ2(k+1) ◦ . . . Tμl+1 ◦ (Tμl

− Sμl,x0) ◦ Sμl−1,x0 · · · ◦ Sμ1,x0

)
ϕδ. (5.18)
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Fix β0 = 1 < β1 < ... < β2k−1 < β2(k+1) = 2 with βl+1 − βl > 1/(10d). Set

Sμl,x0,1 = ϕβlδSμl,x0 , and Sμl,x0,2 = (1 − ϕβlδ)Sμl,x0 .

Then(
Sμl−1,x0 ◦ · · · ◦ Sμ1,x0

)
ϕδ =

(
(Sμl−1,x0,1 + Sμl−1,x0,2) ◦ · · · ◦ (Sμ1,x0,1 + Sμ1,x0,2)

)
ϕδ.

Since ϕβl−1δ = ϕβlδϕβl−1δ, it follows from (5.18) that

ϕ2δ
(
Tμ2(k+1) ◦ · · · ◦ Tμ1 − St,x0

)
ϕδ

=
2(k+1)∑
l=1

ϕ2δ
(
Tμ2(k+1) ◦ · · · ◦ Tμl+1

)
◦ ((Tμl

− Sμl,x0)ϕβlδ)

◦
(
Sμl−1,x0,1 ◦ · · · ◦ Sμ1,x0,1ϕδ

)
+

2(k+1)∑
l=1

ϕ2δ
(
Tμ2(k+1) ◦ · · · ◦ Tμl+1

)
◦ (Tμl

− Sμl,x0)

◦
(
Sμl−1,x0 ◦ · · · ◦ Sμ1,x0 − Sμl−1,x0,1 ◦ · · · ◦ Sμ1,x0,1

)
ϕδ. (5.19)

Let p1 = 1 < p2 < ... < p2k < d < p2(k+1) < +∞ be such that pl+1 < pld/(d − pl) for 
1 � l � 2k + 1. Using the exponential decay property: for γ > 1, r > 0, y ∈ Rd, and for 
f with supp f ⊂ Br, it holds, for t > r−3/2

‖Sμl
f‖L∞(Ω\Bγr(y)) � Cγe

−cγrt‖f‖Lq(Br(y)), (5.20)

one has for l = 2, ..., 2(k + 2) + 1,

‖
(
Sμl−1,x0 · · · ◦ Sμ1,x0

)
ϕδ −

(
Sμl−1,x0,1 · · · ◦ Sμ1,x0,1

)
ϕδ‖L1→Lpl+1 � Ce−cδt. (5.21)

Combining (5.19)-(5.21), and using (4.16)-(4.18) for Tμl
, and (5.4)-(5.6) for Sμl

, it suffices 
to prove that

‖ϕ2δ
(
Tμ2(k+1) − Sμ2(k+1),x0

)
‖Lp2(k+1)→L∞ � Cδ0

(
Φ(δ, x0) + t−1/2δ−1

)
t
−1+ d

2p2(k+1) ,

(5.22)
and for l = 1, 2, ..., 2k + 1,

‖ (Tμl
− Sμl,x0)ϕβlδ‖Lpl→Lpl+1 � Cδ0

(
Φ(δ, x0) + δ−1t−1/2

)
t
−1+ d

2

(
1
pl

− 1
pl+1

)
. (5.23)

Step 1: Proof of (5.22). We will prove the following stronger result, which will be used 
in the proof of (5.23): for λ ∈ L(θ, Λ0) and supn∈Z |θ − nπ| > ε0, β ∈ [1, 2]; and for 
1 < p < d, p � q < pd or for d > p and q = +∞:
d−p
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‖ϕβδ (Tλ − Sλ,x0) ‖Lp→Lq � Cδ0,ε0

(
Φ(δ, x0) + |λ|−1/2δ−1

)
|λ|−1+ d

2

(
1
p− 1

q

)
. (5.24)

Denote

u = Tλ(f) and v = Sλ,x0f.

Set

uj,δ = ϕβδuj and vj,δ = ϕβδvj .

Since, in Ω,

div(Aj∇uj) − λΣjuj = Σjfj ,

and

div(Aj(x0)∇vj) − λΣj(x0)vj = Σj(x0)fj ,

we have, in Ω,

div(Aj(x0)∇uj,δ) − λΣj(x0)uj,δ = fj,δ and div(Aj(x0)∇uj,δ) − λΣj(x0)uj,δ = gj,δ,

where

fj,δ = f̃j,δ + div F̃j,δ and gj,δ = g̃j,δ + div G̃j,δ,

with

f̃j,δ = ϕβδΣjfj + Aj∇uj∇ϕβδ − λ
(
Σj(x0) − Σj(x)

)
uj,δ,

F̃j,δ = ujAj∇ϕβδ +
(
Aj(x0) −Aj(x)

)
∇uj,δ,

g̃j,δ = ϕβδΣj(x0)fj + Aj(x0)∇vj∇ϕβδ, and G̃j,δ = vjAj(x0)∇ϕβδ.

By Theorem 3 and (5.3), we have for 1 < p < +∞,

‖∇u‖Lp(Ω) + ‖∇v‖Lp(Rd) + |λ|1/2
(
‖u‖Lp(Ω) + ‖v‖Lp(Rd)

)
� C|λ|− 1

2 ‖f‖Lp(Ω). (5.25)

By Lemma 1, we obtain for 1 < p < +∞,

|λ|1/2‖∇(uj,δ − vj,δ)‖Lp(Rd) + |λ|‖uj,δ − vj,δ‖Lp(Rd)

� C
(
‖f̃j,δ − g̃j,δ‖Lp(Rd) + |λ|1/2‖F̃j,δ − G̃j,δ‖Lp(Rd)

)
. (5.26)

Using (5.25), we derive, for 1 < p < +∞, that, with uδ = (u1,δ, u2,δ) and vδ = (v1,δ, v2,δ),
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‖∇(uδ − vδ)‖Lp(Rd) + |λ|1/2‖uδ − vδ‖Lp(Rd)

� Cδ0

(
Φ(δ, x0) + |λ|−1/2δ−1

)
|λ|−1/2‖f‖Lp(Ω).

By Gagliardo-Nirenberg’s interpolation inequalities, one gets that for 1 < p < d and 
p � q � dp

d−p

‖uδ − vδ‖Lq(Rd) � Cδ0

(
Φ(δ, x0) + |λ|−1/2δ−1

)
|λ|−1+ d

2

(
1
p− 1

q

)
‖f‖Lp(Ω),

and for p > d,

‖uδ − vδ‖L∞(Ω) � Cδ0

(
Φ(δ, x0) + |λ|−1/2δ−1

)
|λ|−1+ d

2p ‖f‖Lp(Ω),

and assertion (5.24) follows.
Step 2: Proof of (5.23). By (4.15),

T �
λ − S�

λ,x0
=
(

Σ1 0
0 −Σ2

)
(Tλ − Sλ,x0

)
(

1/Σ1 0
0 −1/Σ2

)
,

it follows that by (5.24), for λ ∈ L(θ, Λ0) with supn∈Z |θ − nπ| > ε0, β ∈ [1, 2]; and for 
1 < p < d, p � q < pd

d−p or for d > p and q = +∞:

‖ϕβδ

(
T ∗
λ − S∗

λ,x0

)
‖Lp→Lq � Cδ0,ε0

(
Φ(δ, x0) + |λ|−1/2δ−1

)
|λ|−1+ d

2

(
1
p− 1

q

)
,

which implies

‖ (Tλ − Sλ,x0)ϕβδ‖
L

q
q−1 →L

p
p−1

� Cδ0,ε0

(
Φ(δ, x0) + |λ|−1/2δ−1

)
|λ|−1+ d

2

(
q−1
q − p−1

p

)
.

(5.27)

This gives (5.23). The proof is complete. �
As a consequence of Proposition 2 and Proposition 3, we obtain

Corollary 3. We have

∑
j

1
|λ̃j |2(k+1) − it2(k+1)

= ĉt d
2−2(k+1) + o(t d

2−2(k+1)) as t → ∞,

where each characteristic value λ̃j of Tλ0 is repeated a number of times equal to its 
multiplicity, and ĉ is defined by (5.12).
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Proof. By Propositions 2 and 3, and (4.12) in Lemma 4, we have

∑
j

1
λ̃

2(k+1)
j − it2(k+1)

= ĉt d
2−2(k+1) + o(t d

2−2(k+1)) as t → ∞.

For j0 ∈ N large and for t � 2|λ̃j0 |, we have

∣∣∣∣∣∣
∞∑
j=1

1
λ̃

2(k+1)
j − t2(k+1)i

−
∞∑
j=1

1
|λ̃j |2(k+1) − t2(k+1)i

∣∣∣∣∣∣
�

j0∑
j=1

1
|λ̃2(k+1)

j − t2(k+1)i|
+ 1∣∣|λ̃j |2(k+1) − t2(k+1)i

∣∣
+

∞∑
j=j0+1

C|λ̃j |2k+1|�λ̃j |
|λ̃2(k+1)

j − t2(k+1)i|
∣∣|λ̃j |2(k+1) − t2(k+1)i

∣∣
� 2j0t−2(k+1) +

(
sup
j�j0

|�λ̃j |
|λ̃j |

) ∞∑
j=j0+1

1
(|λ̃j | + t)2(k+1)

. (5.28)

By [2, Theorem 12.14] and Theorem 3, we have

∞∑
j�j0

(|λ̃j | + |t|)−2(k+1) � C|||T k+1
−it |||2, (5.29)

and by Proposition 1, we obtain

|||T−it|||2 � Ct
d
2−2(k+1). (5.30)

Since, by Theorem 3, (
sup
j�j0

|�λ̃j |
|λ̃j |

)
→ 0 as j0 → +∞,

it follows from (5.28), (5.29), and (5.30) that∣∣∣∣∣∣
∞∑
j=1

1
λ̃

2(k+1)
j − t2(k+1)i

−
∞∑
j=1

1
|λ̃j |2(k+1) − t2(k+1)i

∣∣∣∣∣∣ = ◦(1)t d
2−2(k+1) as t → ∞.

The proof is complete. �
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5.2. Proof of Theorem 1

Before giving the proof of Theorem 1, we recall a Tauberian theorem of Hardy and 
Littlewood, see e.g. [44, Theorem 2a] or [2, Theorem 14.5].

Lemma 5. Let σ(s) be a non-decreasing function for s > 0, let a ∈ (0, 1) and P � 0. 
Then, as t → ∞,

∞̂

0

dσ(s)
s + t

= Pta−1 + ◦(ta−1),

if and only if, as s → ∞,

σ(s) = P

a
´∞
0 ta−1(1 + t)−1dt

sa + ◦(sa).

We are ready to give

Proof of Theorem 1. We have, by Corollary 3,

∞∑
j=1

1
|λ̃j |2(k+1) − t2(k+1)i

= ĉt d
2−2(k+1) + o(t d

2−2(k+1)) as t → ∞,

where ĉ is given by (5.12):

ĉ = 1
(2π)d

ˆ

Ω

∑
j=1,2

ˆ

Rd

1
(Σj(x)−1〈Aj(x)ξ, ξ〉)2(k+1) − i

dξdx. (5.31)

Considering the imaginary part yields,

∞∑
j=1

t2(k+1)

|λ̃j |4(k+1) + t4(k+1)
= ĉ1t

d
2−2(k+1) + o(t d

2−2(k+1)) as t → +∞,

where

ĉ1 = �(ĉ) = 1
(2π)d

∑
j=1,2

ˆ

Ω

ˆ

Rd

1
(Σj(x)−1〈Aj(x)ξ, ξ〉)4(k+1) + 1

dξdx.

This implies, by replacing t4(k+1) by t,

∞∑
j=1

1
|λ̃j |4(k+1) + t

= ĉ1t
d

8(k+1)−1 + o(t
d

8(k+1)−1) as t → +∞.
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Since λ̃j = λj − λ0, one obtains

∞∑
j=1

1
|λj |4(k+1) + t

= ĉ1t
d

8(k+1)−1 + o(t
d

8(k+1)−1) as t → +∞.

We can write this identity under the form

∞̂

0

dN(s
1

4(k+1) )
s + t

= ĉ1t
d

8(k+1)−1 + o(t
d

8(k+1)−1) as t → ∞.

By Lemma 5, one has

N(t) = ct d
2 + ◦(t d

2 ), (5.32)

where

c = ĉ1
d

8(k+1)
´∞
0 t

d
8(k+1)−1(1 + t)−1dt

.

We have, by Fubini’s theorem,
ˆ

Rd

1
(Σj(x)−1〈Aj(x)ξ, ξ〉)4(k+1) + 1

dξ

=
∞̂

0

∣∣∣{ξ : (Σj(x)−1〈Aj(x)ξ, ξ〉)4(k+1) < t
}∣∣∣ dt

(t + 1)2 .

Since ∣∣∣{ξ : (Σj(x)−1〈Aj(x)ξ, ξ〉)4(k+1) < t
}∣∣∣ = t

d
8(k+1)

∣∣∣{ξ : 〈Aj(x)ξ, ξ〉 < Σj(x)
}∣∣∣,

it follows that
ˆ

Rd

1
(Σj(x)−1〈Aj(x)ξ, ξ〉)4(k+1) + 1

dξ

=
∣∣∣{ξ : 〈Aj(x)ξ, ξ〉 < Σj(x)

}∣∣∣ ∞̂

0

t
d

8(k+1) dt

(t + 1)2

=
∣∣∣{ξ : 〈Aj(x)ξ, ξ〉 < Σj(x)

}∣∣∣ d

8(k + 1)

∞̂

0

t
d

8(k+1)−1(1 + t)−1dt.

Here in the last identity, an integration by parts is used. We therefore have
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c = 1
(2π)d

∑
j=1,2

ˆ

Ω

∣∣∣{ξ : 〈Aj(x)ξ, ξ〉 < Σj(x)
}∣∣∣dx.

The proof is complete. �
6. Completeness of generalized eigenfunctions of the transmission problem - Proof of 
Theorem 2

Fix ε0 > 0. For z ∈ L(θ, 1) with infn∈Z |θ − nπ| > ε0 and |z| large enough, let 
τ1, · · · , τk+1 with k = kd = [d/2] be the k + 1 distinct roots in C of the equation 
xk+1 = z. Set

ηl = λ0 + τl for 1 � l � k + 1.

As in the proof of (4.30), one has

Tηk+1 ◦ · · · ◦ Tη1 = T k+1
λ0

(
I − zT k+1

λ0

)−1
.

It follows that

Tηk+1 ◦ · · · ◦ Tη1 =
(
T k+1
λ0

)
z
.

Since T k+1
λ0

is a Hilbert-Schmidt operator, it follows from [2, Theorem 16.4] that:
1) the space spanned by the general eigenfunctions of T k+1

λ0
is equal to R(T k+1

λ0
), the 

closure of the range of T k+1
λ0

with respect to the L2-topology.
On the other hand, we have
2) the range R(T k+1

λ0
) of T k+1

λ0
is dense in [L2(Ω)]2, since R(Tλ0) is dense in [L2(Ω)]2

and Tλ0 is continuous,
3) the space spanned by the general eigenfunctions of T k+1

λ0
associated to the non-

zero eigenvalues of T k+1
λ0

is equal to the space spanned by the general eigenfunctions of 
Tλ0 associated to the non-zero eigenvalues of Tλ0 . This can be done as in the last part 
of the proof of [2, Theorem 16.5]. Consequently, the space spanned by all generalized 
eigenfunctions of T k+1

λ0
is equal to the space spanned by all generalized eigenfunctions of 

Tλ0 .
The conclusion now follows from 1), 2), and 3). �
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