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Abstract 
Despite their widespread use for performing advanced computational tasks, digital signal 
processors suffer from several restrictions, including low speed, high-power consumption and 
complexity, caused by costly analog–digital converters. For this reason, there has recently been 
a surge of interest in performing wave-based analog computations that avoid analog–digital 
conversion and allow massively parallel operation. In particular, novel schemes for wave-based 
analog computing have been proposed based on artificially engineered photonic structures, that 
is, metamaterials. Such kinds of computing systems, referred to as computational 
metamaterials, can be as fast as the speed of light, and as small as its wavelength, yet impart 
complex mathematical operations on an incoming wave packet, or even provide solutions to 
integro-differential equations. These much-sought features promise to enable a new generation 
of ultra-fast, compact and efficient processing and computing hardware based on light wave 
propagation. In this Review, we discuss recent advances in the field of computational 
metamaterials, surveying the state-of-the-art meta-structures proposed to perform analog 
computation. We further describe some of the most exciting applications suggested for these 
computing systems, including image processing, edge detection, equation solving and machine 
learning. Finally, we provide an outlook for the possible directions and the key problems for 
future research. 
 

[H1] Introduction 

Nowadays, digital signal processors (DSPs) are ubiquitously used to carry out a wide variety of computational 
tasks, from relatively simple to highly complex ones1. DSPs generally consist of three basic components: an 
analog-to-digital converter (A/D), a processing unit and often a digital-to-analog converter (D/A). The first 
sub-block (A/D) takes an analog signal (representing for instance an image or voice) and discretizes it into a 
series of bits. The second sub-block, the processing unit, manipulates the discretized version of the analog 
signal according to the desired computational operation. The resulting digital stream can then be converted 
back into the analog domain using the D/A sub-block.   
Despite their versatile functionality, DSPs have several drawbacks, most of which arise from the unavoidable 
analog-to-digital conversion. In particular, the A/D and D/A sub-blocks of DSPs tend to consume significant 
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power. This renders DSPs cost-inefficient, especially when it comes to performing simple computational tasks 
such as differentiation or integration2. The A/D and D/A converters also restrict the speed of processing, given 
that the discretization process is time-consuming and cannot be performed in a massively parallel manner. 
Moreover, at high frequencies (above the GHz range), the A/D and D/A converters fail to perform discretization 
properly because the signals vary too rapidly. These limitations have led to a surge of interest in revisiting the 
idea of analog computing, which may be traced back to several decades ago, in which signal processing happens 
in the analog domain and hence the analog-to-digital conversion is not needed. 
An analog computer is a device that takes advantage of continuous variations in a given physical phenomenon 
to perform a certain computational or processing task. The first electronic or mechanical analog computers, 
originally preferred to digital versions, were based on continuously varying quantities, such as electric current 
or mechanical motion3 (Box 1). Despite being free of A/D and D/A converters, such kinds of computers turned 
out to be very slow and bulky, hindering their applicability in modern systems in which high-speed and 
miniaturization are sought. In addition, small errors triggered by noise were found to propagate and be 
amplified as the signals were processed in series. Digital computers could overcome these challenges, and took 
over the scene.  
Recently, the interest in analog computing was revived in the context of metamaterials research, as it was shown 
that subwavelength structures could implement computing functionalities by leveraging light propagation in 
suitably engineered artificial photonic materials4. This solution enables ultra-fast speeds, low loss, sub-
wavelength form factors and massively parallel operations, holding the promise to overcome the 
aforementioned challenges. This computing platform is indeed based on the enhanced interaction of optical 
fields with artificially created structures, the metamaterials5-18. As opposed to conventional electronic and 
mechanical computers, computational photonic metamaterials can be very fast. This is because they operate at 
the speed of light and, more importantly, are capable of performing a large number of operations in parallel.  
At the same time, the very small wavelength of optical waves enables miniaturization and integration. These 
features hence create the ideal conditions for carrying out specific-purpose signal processing tasks with ultra-
fast speed and massive parallelization, at scales potentially smaller than the wavelength.  
In this Review, we discuss recent advances in this thriving area of research. We start by describing different 
approaches proposed for wave-based analog computing, including the Fourier optics approach19,20, the Green’s 
function metamaterial approach4 and the metasurface approach4. We then outline the designs and unusual 
properties of state-of-the-art computational metamaterials, proposed in various areas of wave physics, such as 
photonics and phononics. Afterwards, we discuss recent developments and applications of computational 
metamaterials in modern engineering, such as equation solving, machine learning and topological analog signal 
processing. In the last part of the Review, we provide an outlook for possible future directions, including multi-
functional computational metamaterials, intelligent metamaterial computing systems and wave-based analog 
signal processors based on disorder.   

 

[H1] Analog computing principles  

[H2] Fourier optics 
[H3] Principle of operation 
The idea of leveraging waves to perform analog computing dates back to several decades before the 
development of computational metamaterials. In fact, a simple (convex) lens acts as a Fourier transformer on 
an image placed in its focal plane19-22, transforming a constant illumination, in the form of a uniform 
monochromatic plane-wave incident field with planes of constant phase perpendicular to the lens axis, into a 
single dot at its focal length, which approaches a delta Kronecker function in the limit of a lens with infinite 
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aperture. Conversely, the emission from a point-like source is ideally converted into a uniform plane wave by 
the lens. The ability of lenses to take the Fourier transform of incident fields is at the basis of Fourier optics, 
which is the simplest example of a platform for using light to perform signal-processing tasks. 
The general principle of Fourier optics is to convert a signal to the Fourier space, perform the signal-processing 
operation on the Fourier-transformed signal, and then convert the output back to the regular space. As an 
example, let us suppose that an arbitrary image is placed in the front focal plane of an optical lens. At the back 
focal plane of the lens, the 2D spatial Fourier transform of the corresponding image is generated. At this plane, 
the spectral features of the image can be manipulated using a mask plate with a specific transverse transparency 
pattern. If, for instance, we cover the center of the Fourier plane with an opaque mask plate, and then use a 
second lens to inverse-Fourier-transform the image, the low-order Fourier components will be suppressed, but 
the information associated with the higher-order harmonics will be maintained, enhancing the edges. Similarly, 
a pinhole mask placed at the center of the Fourier plane attenuates the information associated with the high-
order Fourier components, blurring the edges of the image and keeping its slower variations. This optical 
system, known as a 4F correlator19 (the name comes from the fact that the system is 4 focal lengths long), can 
therefore apply a large number of linear operations to the Fourier spectrum of an image. The science of Fourier 
optics indeed consists in tailoring the local transmission amplitude and phases of the Fourier mask to achieve 
various advanced functions. 
Compared to conventional electronic analog computers (Box 1), analog signal processors based on Fourier 
optics are much faster, because the speed of light is much larger than the drift velocity of electrons. Yet, their 
bulky structures, involving at least four focal lengths, broadly hinder their miniaturization. Alignment issues 
and aberrations caused by the realistic features of the lenses further complicate the picture. Despite all of these 
challenges, Fourier optics is a well-established field of science and technology19 . 
Electromagnetic metamaterials, compound materials made of artificial scatterers designed to achieve desired 
macroscopic properties, and their 2D versions, electromagnetic metasurfaces, can shrink dramatically the size 
of these processing systems, and avoid the need for Fourier-transforming the image twice. Like analog signal 
processors based on Fourier lenses, metamaterial computing systems can be superfast (because they are based 
on propagating waves). However, as opposed to conventional Fourier optics signal processors, computational 
metamaterials and metasurfaces can be made smaller than the operation wavelength, because they usually rely 
on subwavelength resonant scatterers. Two approaches have been introduced to computational metamaterials: 
the Green’s function approach, and the metasurface approach, as detailed in the following.  
 
[H2] Green’s function approach 
[H3] Principle 
The Green's function (GF) method4,23-38 has guided several designs of metamaterial computing systems. As the 
name of the method denotes, in the GF approach, the Green’s function of the operator of choice is directly 
realized in real space, without transforming back and forth from the spatial to the spectral domain, gaining in 
compactness and avoiding possible challenges in error propagation and alignment issues. Let us consider a 
hypothetical linear system (FIG. 1a), which acts on an input signal 𝑓 and turns it in into the output 𝑔. The 
signals 𝑓	and 𝑔 could be for example the optical fields that are incident on and transmitted through a 
metamaterial. For simplicity, we assume here that the fields only vary with respect to a single spatial coordinate 
𝑦. Because our system should apply an operation on this incoming 1D function independent of its specific y 
variations, we require that the metamaterial properties are invariant upon translations along 𝑦, whereas the 
input and output signals, 𝑓(𝑦) and 𝑔(𝑦), explicitly depend on 𝑦. From a system theory point of view, 𝑓(𝑦) and 
𝑔(𝑦) are related to each other through the Green’s function of the metamaterial, defined in the Fourier space 
as 𝐻(𝑘!* = FT[𝑔(𝑦)]/FT[𝑓(𝑦)], in which FT stands for the Fourier transform. By engineering the 
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metamaterial properties, we can actually tailor the associated Green’s function 𝐻(𝑘!* to match the transfer 
function of the desired operator. This design can be performed either by direct optimization or by inverse 
design, using for instance generalized sheet transition conditions39 in the case of metasurface design. To 
provide a concrete example, let us consider the irregularly shaped transfer function 𝐻"(𝑘!) whose amplitude 
is shown in FIG. 1b. The transfer function is associated with an arbitrarily chosen mathematical operation. The 
GF method can be employed to implement this transfer function in a composite metamaterial, for instance the 
multilayer structure shown in FIG. 1c, composed by a stack of subwavelength metamaterial slabs. Each layer 
has a specific thickness (𝑑#), permittivity (𝜖#) and permeability (𝜇#). By running an optimization on the 
parameters 𝑑#, 𝜖# and 𝜇#, it is possible to make the GF of the multilayered structure to be approximately equal 
to the transfer function of the operator of choice, that is, 𝐻"(𝑘!). In this case, in real space, the optimized 
metamaterial acts as an analog signal processor, applying the desired mathematical operation in the spatial 
domain to any incident signal 𝑓(𝑦). 
 
 
[H3] Implementation  
 
The GF method has been used to perform specific-purpose computing operations in recent years. One of the 
most popular mathematical operations implemented using this method, which is commonly used to determine 
sharp variations, edges and extremal values of signals, is differentiation. A simple optical structure that can be 
used to calculate the derivative of incident waves under certain conditions is shown in FIG.1d40. This basic 
differentiator consists of an interface between two dielectrics with different refractive indices (𝑛$ = 1 and 𝑛% =
3.4). A transverse-magnetic (TM)-polarized incident field impinges on the interface. The TM Fresnel reflection 
coefficient of the interface for the incident angle 𝜃 is expressed as 
 

𝑅(𝜃) =
𝑛$;1 − (𝑛$/𝑛% sin 𝜃)

%−𝑛% cos𝜃
𝑛$;1 − (𝑛$/𝑛% sin 𝜃)

%+𝑛% cos𝜃
	.																																																																																																																(1) 

 
At the incident angle 𝜃& = 𝑡𝑎𝑛'$(𝑛% 𝑛$⁄ ), known as the Brewster angle41, the TM reflection coefficient of the 
structure vanishes: this is the case represented in FIG. 1d.  It is easy to verify that the relation between the 
Brewster angle, the angular parameter 𝜃, and the wavenumber 𝑘! is 
 
𝑘! = 𝑘" sin(𝜃 − 𝜃()																																																																																																																																																										(2) 
 
in which 𝜃 varies between 0 and 𝜋/2. Note that the coordinate system for the signal is not aligned with the 
interface, as represented in Fig.1d. Equation 2 defines a one-to-one mapping between the angular parameter 𝜃 
and the wavenumber 𝑘!, based on which the Fresnel reflection coefficient of equation 1 can be transformed 
into the spatial Fourier domain. The corresponding spatial Fourier spectrum of the Fresnel reflection coefficient 
around the Brewster angle is shown in FIG. 1e. As observed, the reflection spectrum of the interface becomes 
equal to zero at 𝑘! = 0 (note that this wavenumber corresponds to 𝜃 = 𝜃(	, equation 2). Near this zero, the 
reflection spectrum can be approximated with a linear function of the form 𝑅(𝑘!* ≈ 𝐴𝑘! (Taylor expansion), 
in which 𝐴 = −(𝑛%/2	 − 1/2𝑛%))/𝑘" (the slope of the dashed line in Fig. 1e). Interestingly, 𝑅(𝑘!* is very 
similar to the Green's function of the ideal spatial differentiator, namely 𝐻(𝑘!* = 𝑖𝑘!, other than a 
proportionality coefficient. This implies that for signals impinging on the interface at the Brewster angle with 
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a sufficiently narrow spatial spectrum around that angle (the yellow-shaded region in FIG.1e), the reflected 
field is the derivative of the incident field. This is demonstrated in FIG. 1f, in which the reflected field (𝑔(𝑦), 
bottom panel) corresponding to a Gaussian incident signal (𝑓(𝑦), top panel) is shown. 𝑔(𝑦) has a Gaussian 
derivative profile, evidencing the proper operation of a differentiator, assuming that the image does not have 
too large spectral features. It should be noted that, because the differentiator works near a zero of reflection, 
the amplitude of the derivative signal (the reflected field) is generally small, leading to relatively low signal-
to-noise ratio. This property is inherent to the derivative operation. 
A similar approach can be used to perform analog integration42: consider the configuration shown in FIG. 1g, 
the well-known dielectric slab waveguide geometry, whose core and cladding layers have refractive indices of 
𝑛% = 3.4, and 𝑛$ = 1.5, respectively. The structure is excited from the far-field using a prism coupler at 
incident angle 𝜃. At some specific 𝜃, the transverse momentum of the incoming beam 𝑓(𝑦) becomes equal to 
the one of the guided mode of the slab waveguide, leading to a resonance peak in the transmission spectrum 
(FIG. 1h). Around this resonance, we can approximate the transmission coefficient of the system with 𝑇(𝑘!* =
𝐴 𝑘!⁄ , in which 𝐴 is a constant depending on the quality factor of the resonance. This approximation is 
acceptable only for signals that satisfy two conditions: first, the incident field must have a sufficiently small 
spectral bandwidth, because away from the transparency condition the transmission is zero, and no output is 
generated. Second, the incident field must only possess non-zero spatial-frequency components. Indeed, 
integrating a signal with a non-zero spatial frequency component requires amplifying the output, because the 
transfer function of the ideal integrator 𝑇(𝑘!* = 𝐴 𝑘!⁄  blows up at 𝑘! = 0. Such operation is therefore 
impossible in a passive device for which the transmission is always below one, unless one only works with 
signals without any component at 𝑘! = 0. Under these conditions, 𝑇(𝑘!* is similar, up to a constant factor, to 
the transfer function of the ideal integrator (𝐺(𝑘!* = 1/𝑖𝑘!). Hence, such a simple structure functions like an 
analog integrator. This is illustrated in FIG. 1i, which shows the transmitted field (bottom panel) corresponding 
to a Gaussian derivative incident signal (which indeed has no zero-spatial frequency component, top panel). 
As expected, the transmitted field has a Gaussian profile. We note that the structures in Figs. 1d and g are not 
metamaterials per se and, as such, cannot be used for realizing arbitrarily complex computing operations. Yet, 
these examples provide an intuitive idea of the underlying principle of the GF method, which is directly 
applicable to metamaterial platforms.  
The described analog differentiator and integrator can be employed as building blocks to construct more 
complex analog operations. Suppose, for instance, that we want to realize an analog second-order differentiator. 
This can be readily accomplished by cascading two realizations of first-order differentiators, each of which 
differentiates the incident signal one time. Similarly, a second-order integrator can be realized by cascading 
two first-order integrators. We stress that these two practical examples are limited in the extent of images that 
can be processed (only images with slow variations impinging from specific angles), and in the overall 
efficiency of the output. Yet, the general platform used for the GF method, as in Fig. 1c, in which optimized 
multilayers can arbitrarily tailor the Green’s function output 𝐻(𝑘!*, hold the promise to implement more 
sophisticated and efficient analog processing metamaterials.  
 
[H3] Examples and applications 
 
The applicability of the GF method for performing wave-based analog computing has been experimentally 
verified in a series of proposals. In a first example, somewhat analogous to the implementation in Fig. 1d, an 
analog spatial differentiator based on the resonance behavior of surface plasmon polaritons (SPPs) was 
experimentally demonstrated43. The differentiator, shown in FIG. 2a, includes a thin layer of metallic film and 
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a prism coupler. At the incident angle at which the momentum of the excitation field matches the one of the 
SPP mode (phase-matching condition), the reflection spectrum drops to zero (FIG. 2b). Around this dip, the 
reflection spectrum follows the transfer function of a first-order differentiator (the red line). The fact that this 
differentiator is only composed of a single metallic layer makes the fabrication of the system simple. In 
addition, it represents a significant miniaturization compared to signal processors based on conventional bulky 
Fourier elements. At the same time, its operation is limited to a narrow spatial spectrum around the dip in 
reflection, and does not avoid the aforementioned limitations in terms of overall resolution of the images that 
can be processed and of overall efficiency. 
Several important applications have been proposed for analog spatial differentiators. In one dimension, they 
can be used to determine the sharp variations of functions. Likewise, in two dimensions, spatial differentiation 
provides the possibility of detecting the sharp variations of incident images (2D signals), that is, their edges 

44,45. FIG. 2c demonstrates the possibility of performing edge detection using the plasmonic spatial 
differentiator shown in FIG. 2a. To this end, the incident field was modulated with a spatial light modulator 
and projected onto the metal film of the plasmonic differentiator. The bottom panel of FIG. 2c depicts the 
corresponding reflected image. Indeed, the edges of the incident image (FIG. 2c, top) have been resolved. Note 
that the vertical edges of the image are resolved better, because the differentiation is performed only along the 
horizontal direction (y axis). Yet, as long as the edge is not purely vertical, its signature can be traced in the 
reflected image. This limitation was later overcome with a design based an all-dielectric metasurfaces22, which 
had the additional advantage of being less affected by absorption losses.  
 
As mentioned above, as a trade-off for its simplicity, the plasmonic spatial differentiator has a few drawbacks. 
In particular, it works only for incident waves possessing a narrow spatial bandwidth (this is caused by the 
presence of higher-order terms in the Taylor series expansion of 𝑅(𝑘!)). For this reason, the differentiator is 
not capable of resolving edges that are very close to each other. In a recent proposal46, a more sophisticated 
spatial analog differentiator going beyond these limitations was presented. The structure of the differentiator, 
shown in FIG. 2d, exploits a spatially modulated resonant metasurface with a strong nonlocal response, a 
property that is often considered undesirable for other metasurface applications. The metasurface array is 
composed of resonant particles (split ring resonators, SRRs, resonating at a frequency 𝑓" = 1.26	GHz), on 
which a TM-polarized wave is normally incident. A slow periodic modulation is applied to the relative 
permittivities of the dielectrics inside the SRR gaps, leading to the appearance of a leaky-wave resonance with 
controllable nonlocality. At the leaky-wave resonance frequency, the reflection coefficient of the structure 
drops to zero. Furthermore, this frequency is a function of the incident angle, owing to the nonlocal properties 
of the leaky wave. Then, if the operation frequency is equal to the leaky-wave frequency at normal incidence, 
the reflection spectrum changes as a function of the incident angle according to a parabolic function law, 
matching the transfer function of the second-order differentiator22,35. Interestingly, the spatial modulation 
applied to the metasurface profile provides an additional degree of freedom to enhance the bandwidth of 
operation. More specifically, by precisely controlling the parameters of the modulation, the corresponding 
higher-order (above the third-order) Taylor coefficients can be canceled, allowing one to enhance the spatial 
bandwidth of differentiation, that is, the overall resolution of the device, and tune it to the desired level 
corresponding to the numerical aperture of the optical system of interest. The corresponding optimized Green’s 
function, obtained using numerical simulations, is shown in FIG. 2e, and is in good agreement with the transfer 
function of the ideal case. The slight deviation from the ideal response might be suppressed by introducing 
more sophisticated modulation patterns over the metasurface profile. FIG. 2f demonstrates the performance of 
this second-order differentiator for edge detection. Compared to the plasmonic spatial differentiator discussed 
earlier, this design provides a higher resolution for edge detection, thanks to its larger operational beamwidth. 
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It is worth mentioning that it is also possible to achieve wide-band first-order differentiation by slightly 
modifying the structure of FIG. 2d. To this end, one should break both the horizontal and vertical mirror 
symmetries of the system, for example, by adding a horizontally misplaced array structure on one side of the 
SRR array. Alternatively, the reflection symmetries of the structure can be broken by tilting the direction of the 
incident field, leading to a first-order zero around which the transmission follows a linearly varying function 
akin to the transfer function of the first-order differentiator.   
The metasurface discussed above was designed to operate in the microwave range, but a similar response can 
be obtained at optical frequencies. An optical spatial differentiator based on a resonance-based metasurface 
array was realized47, composed of low-loss silicon dielectric resonators placed on top of an AL2O3 substrate 
(FIG. 2g). By engineering the resonators composing the metasurface, the Green’s function of the structure was 
tailored such that it approached the transfer function of the second-order derivative operator over a wide 
operational bandwidth (FIG. 2h). The excellent performance of this optical differentiator for characterizing the 
edges of incident images is demonstrated by the images in FIG. 2i. It should be noted that, although both the 
structures in FIG. 2d and in FIG. 2f work only for a specific polarization of the incident wave, a recent work 
has demonstrated the possibility of performing the same kinds of operation for both transverse-electric (TE) 
and TM polarizations48.  
 
[H2] Metasurface approach  
[H3] Principle 
Although the GF technique is a straightforward approach to realize specific-purpose computational 
functionalities, it does not generally provide a platform that can be easily adapted to an arbitrarily complex 
operator without using more complex geometries and optimization techniques. An alternative strategy, known 
as metasurface approach49-68, has enabled the realization of a wider range of operators. The core idea of this 
approach, schematically sketched in FIG. 3a, is essentially to map the conventional 4F correlator approach, 
commonly used in Fourier optics and described in the previous section, onto a more compact metamaterial 
platform. Consider a linear, shift-invariant system, aimed at applying a specific operator (characterized by the 
transfer function 𝐻(𝑘*)) to the input field 𝑓(𝑥). From a system perspective, the relation between the input field 
𝑓(𝑥) and the corresponding output 𝑔(𝑥) is expressed as 
 
𝑔(𝑥) = 𝐼𝐹𝑇T

(+,-.)
[𝐻(𝑘*)UVW
(+,-.%

. 𝐹𝑇	[𝑓(𝑥)]UXXVXXW
(+,-.$

]																																																																																																																																		(3)                                                                                                                 

 
Equation 3 governs the working of analog computers based on the metasurface approach, which essentially 
consist of three distinct sub-blocks: a spatial Fourier transformer, FT, that takes the Fourier transform of the 
input field 𝑓(𝑥) (as explained before, the Fourier transformation can be performed using an optical lens); a 
properly designed metasurface with position-dependent transmission (or reflection) coefficient, corresponding 
to the transfer function of the operator of choice; and an inverse Fourier transformer, IFT, that takes the inverse 
Fourier transform of 𝐺(𝑘*) = 𝐹(𝑘*)𝐻(𝑘*), yielding the desired output field 𝑔(𝑥). 
 
[H3] Examples and applications 
An example of a metasurface computing system, designed to calculate the first-order derivative (𝜕/𝜕𝑥) of input 
signals, is shown in FIG 3b. The system includes two graded-index (GRIN) dielectric lenses69 that have a 
parabolic variation of permittivity 𝜀(𝑥) = 𝜀-(1 − (𝜋𝑥/2𝐿)%), where 𝐿 is the focal length of the lens. In the 
paraxial approximation, such an inhomogeneous material acts as a Fourier transformer69. The metasurface 
block (denoted as MS) is composed of a layered structure of two alternating materials, aluminium-doped zinc 
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oxide (AZO) and silicon70, with different dissipation losses. The geometrical parameters of the metasurface are 
tailored such that it provides a position-independent transmission coefficient akin to the transfer function of the 
targeted operator,  𝐻(𝑘*) = 𝑖𝑘*. The simulated performance of the system is shown in FIG. 3c, and confirms 
that the transmitted field is indeed the derivative of the incident field distribution. Compared to the analog 
differentiators based on 4F correlators, this system provides several advantages. In particular, by properly 
engineering the metasurface sub-block, the system can be adapted to perform more complex mathematical 
operation, such as local phase control, that are not achievable with standard spatial analog filters. In addition, 
it provides higher-resolution reconstruction, because the metasurface sub-block can be deeply subwavelength. 
Alignment issues may also be reduced if the entire system can be manufactured in one block. 
Several other computing systems based on the metasurface approach were proposed and experimentally 
demonstrated. For example, an analog system based on a plasmonic meta-reflect array capable of performing 
a large variety of processing operations was demonstrated.71. The unit cell of the metasurface, shown in the 
inset of FIG. 3d, is composed of silicon nano-bricks arranged on top of a silica layer placed on an optically 
thick metallic film. By varying the size of the nano-bricks (𝐿* and 𝐿!), the amplitude and phase of the reflected 
field can be independently controlled (FIG. 3d). This enables the realization of arbitrary transfer functions. 
Suppose, for example, that we want to realize the derivative 𝜕/𝜕𝑥. The associated transfer function (𝐻(𝑘*) =
𝑖𝑘*) implies a position-dependent reflection coefficient of the form |𝑟| = 𝑅"𝑥/𝐿, in which −𝐿 < 𝑥 < 𝐿	is the 
length of the metasurface array and 𝑅"	is a constant (FIG. 3e). The parameters of the metasurface can be 
tailored to achieve the desired reflection profile. The proper operation of the corresponding computing system 
was experimentally demonstrated by exciting the structure with a Gaussian derivative incident signal; the 
corresponding reflected field was the derivative of the incident field, confirming the proper functionality of the 
system (FIG. 3f).  
Although this plasmonic metasurface can perform various mathematical operations, it suffers from some 
limitations: it has high absorption and low conversion efficiency, which stems from the use of lossy plasmonic 
materials. In addition, it is not compatible with CMOS technology, hindering its integration within silicon 
photonic devices. These disadvantages were overcome by developing an all-dielectric metasurface computing 
system72. The metasurface was built from silicon nano-resonators placed on top of a silica spacer and a thick 
layer of silver (FIG. 3g). The amplitude and phase of the reflection coefficient of the metasurface as a function 
of the width (𝐿!) and length (𝐿*) of the silicon nano-bricks are shown in FIG. 3h. The associated reflection 
coefficient spans the full phase range of 0 to 2𝜋, whereas the amplitude of the reflection can vary from 0 to 1 
by varying 𝑊 and 𝐿. Coupled to GRIN lenses, these features enable the realization of arbitrary mathematical 
functionalities. As an example, a second-order differentiator was designed by properly structuring the nano-
bricks of the metasurface. When a sinc-shaped electric field, 𝑓(𝑥) = sinc(𝑥/6.8 × 10'0), was used as the input 
field, the reflected field was indeed its second-order derivative (FIG. 3i).  
 
 
[H2] Acoustic computational metamaterials  
 
In addition to their development in optics, computational metamaterials have been explored in another area of 
classical physics, namely acoustics. Although acoustic computational metamaterials are not as fast as their 
optical counterparts, because they operate at the speed of sound, they could potentially be used to accelerate 
imaging and prospection methods by allowing more processing tasks to be performed analogically and in 
parallel. In addition, tremendous advances in surface acoustic wave technology offer great potentialities for the 
miniaturization of acoustic analog signal processors. For example, an acoustic computing system based on the 
metasurface approach73 employed a meta-structure with a unit-cell composed of three tapered labyrinthine 
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spiral components with varying radians, 𝑆$, 𝑆% and 𝑆) (FIG. 4a). By tuning 𝑆$, 𝑆% and 𝑆), a full control over 
both the amplitude (FIG. 4b) and the phase (FIG. 4c) of the transmitted field was achieved, providing the 
possibility of achieving a broad range of analog computational tasks. As a specific example, a second-order 
linear differential equation solver was designed using such a meta-structure. The transfer function of the 
targeted differential equation (FIG. 4d) was realized by precisely tuning the spiral radians of the unit cells. The 
functionality of the system was demonstrated in simulations by exciting the metasurface with a Gaussian 
incident field (FIG. 4e), which resulted in a transmitted pressure field (FIG. 4f) in perfect agreement with the 
analytically predicted solution of the targeted ordinary differential equation (ODE). 
This computing system is based on the metasurface approach. GF-based acoustic computation has also been 
implemented with metamaterials to perform specific-purpose computational tasks using acoustic signals. An 
acoustic spatial differentiator was indeed demonstrated based on the GF method74, and its structure is shown in 
FIG. 4g. It was built from a metamaterial composed of a square array of cross-shaped pipes. The holey structure 
of the metamaterial provides a reduced compressible volume for sound propagation, effectively reducing the 
speed at which the acoustic wave travels75. As a result, the metamaterial acts like a high-index acoustic medium, 
confining sound and guiding it via total internal reflection (this is akin to the principle of dielectric slab 
waveguide in optics). At a specific incident angle, the characteristic impedance of the metamaterial matches 
that of the incident medium, air. This leads to a dip (zero) in the reflection spectrum, near which the Green’s 
function of the structure can be approximated with a linearly varying function. At this condition, in real space, 
the structure serves as a first-order differentiator. The relevance of such kind of a differentiator for acoustic 
image edge detection is illustrated in FIG. 4h.  
 
 
 

[H1] Emerging directions 
 
[H2] Wave-based equation solvers 
[H3] Solving linear differential equations 
Equations are ubiquitous in many areas of science, including mathematics, physics and engineering. Wave-
based analog computers as those discussed in the previous sections represent an ideal platform for ultra-fast 
equation solving76,77. As a relevant example, we start by discussing first-order ODEs, with general form 
 
𝛼𝑓ˊ(𝑡) + 𝛽𝑓(𝑡) = 𝑔(𝑡).																																																																																																																																																					(4) 
 
A wave-based analog system returning the solution of equation 4 for given coefficients 𝛼 and 𝛽 is schematically 
shown in FIG. 5a. Consider an arbitrary resonator with a Lorentzian spectral line-shape around the resonance. 
The Green’s function of the resonator is given by 
 
𝐻(𝜔) = 1 (𝛼𝑗(𝜔 − 𝜔") + 𝛽),																																																																																																																																								(5)⁄  
 
in which 𝛼 and 𝛽 are arbitrary constants, function of the quality factor of the resonator. The Green’s function 
of equation 5 (plotted in FIG. 5b) is equivalent to the transfer function of the first-order ODE in equation 4, 
implying that, in the time domain, any Lorentzian resonator acts as a first-order ODE solver. In acoustics, such 
kind of functionality can be achieved by, for example, putting a defect inside a Bragg phononic crystal (FIG. 
5c). In another example of an all-optical differential equation solver experimentally realized based on a 
resonance phenomenon74, the system was made of a silicon micro-ring resonator coupled to two straight 
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waveguides (FIG. 5d). Around the resonance frequency of the micro-ring resonator, the transmission spectrum 
of this system exhibits a Lorentzian peak (FIG. 5e), corresponding to a first-order ODE with specific constant 
coefficients. Remarkably, the spectral characteristics of the structure can be tuned via a gate voltage applied to 
the micro-ring resonator, enabling a wide control over the constant coefficients. To examine the performance 
of the differentiator, the micro-ring resonator was excited with a Gaussian pulse. The corresponding transmitted 
signal was in excellent agreement with the solution of the targeted ODE (FIG. 5f).  
Note that, in general, it is possible to solve higher-order ODEs by constructing a network of first-order ODE 
solvers with different transfer functions. As an example, let us suppose that we want to engineer a transfer 
function of order n (n may be arbitrarily high), corresponding to the following differential equation    
 
𝑓1(𝑡) + 𝐴1'$𝑓1'$(𝑡) + ⋯+ 𝐴$𝑓2(𝑡) + 𝐴"𝑓(𝑡) = 𝐵𝑔(𝑡).																																																																																						(6) 
 
The associated transfer function is given by  
	

𝐻(𝜔) =
𝐵

(𝑗(𝜔 − 𝜔")*
1
+ 𝐴1'$(𝑗(𝜔 − 𝜔")*

1'$
+. . +𝐴$(𝑗(𝜔 − 𝜔")*+𝐴"

	 	
.																																																							(7) 

 
By employing partial fractional decomposition 𝐻(𝜔) can be written as a summation of the form  
 

𝐻(𝜔) =m
𝐾#

𝑗(𝜔 − 𝜔") + 𝜔"/2𝑄#

1

#3$

,																																																																																																																																	(8) 

where 𝑸𝒊 = −𝝎𝟎/𝟐𝑷𝒊, in which 𝑷𝒊 are the complex roots of the associated n-th order denominator polynomial, 
and 𝑲𝒊 are complex constant coefficients. Equation 8 suggests that the transfer function of an arbitrary n-th 
order ODE can be realized by adding the output signals of n different Lorentzian resonators with different 
quality factors 𝑸𝒊. The summation can be performed in a fully analog fashion using, for instance, standard 
directional couplers79. 
 
[H3] Solving integral equations 
Metamaterials have also been exploited to solve integral equations that cannot be directly solved using a Fourier 
transform. In particular, a metamaterial platform was proposed80 to solve the general integral equation 
 

𝑔(𝑢) = 𝐼#1(𝑢) +v 𝐾(𝑢, 𝑣)𝑔(𝑣)𝑑𝑣
&

6
,																																																																																																																													(9) 

 
in which 𝐼#1(𝑢)	 is the input signal, 𝑔(𝑣) is the unknown function and 𝐾(𝑢, 𝑣)	is the kernel associated with an 
arbitrary operator. Note that 𝐾(𝑢, 𝑣)	is assumed to have general dependence on 𝑢 and 𝑣, not just on the 
difference 𝑢 − 𝑣, which would correspond to a convolution, preventing in general the equation to be solved by 
using Fourier optics. The schematic of a metamaterial-based system solving equation 8 with the arbitrarily-
chosen Kernel  

𝐾(𝑢, 𝑣) = 0.06 y(4 − 4𝑖)𝐽"(𝑢𝑣) + 3 exp ~
𝑖2𝜋

5(𝑢 + 𝑣)
− (1 − 2𝑖)��																																																																							(10) 
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is shown in FIG. 5g. In this system, the kernel 𝐾(𝑢, 𝑣) is implemented using a binary metamaterial composed 
of air and polystyrene. The inhomogeneity of the metamaterial structure, described by an inhomogeneous 
relative permittivity 𝜀(𝑥, 𝑦), allows one to realize the desired kernel function	𝐾(𝑢, 𝑣) using an optimization 
process. 𝑁	feedback waveguides provide feedback to the system, adding the output of the metasurface 

∫ 𝐾(𝑢, 𝑣)𝑔(𝑣)𝑑𝑣&
6  to the input function 𝐼#1(𝑢)	at 𝑁 different points across the [𝑎, 𝑏] interval. In this discrete 

form, the system implements the equivalent 𝑁 × 𝑁 matrix equation of equation 9. The prototype of the 
metamaterial structure, in which five metallic waveguides operating at the fundamental 𝑇𝐸$" mode were used 
to sample the output across the desired range, is shown in FIG. 5h. The output signal measured at the first 
sampling waveguide, shown in FIG. 5i, is in excellent agreement with the theoretical solution of the targeted 
integral equation. 
 
 
[H2] Topological and nonreciprocal computing  
Wave-based analog computers provide the possibility of carrying out specialized computational tasks with 
ultra-high speed, but they suffer from an important limitation, which may hinder their applicability in large-
scale applications. Unlike digital signal processors, in which disorder is not an issue thanks to the binarized or 
discretized nature of the input, wave-based analog computers are typically fragile to noise and perturbations. 
In particular, the errors caused by geometrical imperfections can accumulate during series operation, degrading 
the performance of the analog computer.  
To tackle this issue, researchers have leveraged a particular class of metamaterials with non-trivial topology, 
known as topological metamaterial insulators. Such insulating artificial materials exhibit frequency bandgaps 
in which no bulk wave propagation is possible. However, the particular topology of their band structure 
guarantees the presence of modes on their boundaries. Because the existence of these boundary modes is a 
direct consequence of the topology of the bulk band structure of the system, it cannot be influenced by 
continuous deformation, such as that induced by the local introduction of small defects or geometrical 
imperfections. Instead, the topology can only change through a global, drastic modification of the system that 
would entirely destroy its insulating property. As a result, the edge modes of topological structures exhibit 
strong immunity to small and moderate levels of imperfections81-86, provided that the disorder does not break a 
symmetry on which the topological order depends. Motivated by these advances, a new class of wave-based 
analog signal processors leveraging these robust topological boundary modes was recently introduced. Such 
topological analog signal processors87, for example, implement the GF method using resonance tunneling 
through the boundary mode of a 1D topological wave insulator, thereby featuring strong robustness against a 
large range of defect types.  
 
To provide a specific example, consider the configuration shown in FIG. 6a (left), consisting of an acoustic 
pipe inside which a sonic crystal built from solid cylindrical rods is arranged. The two halves of the phononic 
crystal include two insulating lattices with different topological properties, inspired by a specific topological 
arrangement known as the Su−Schrieffer−Heeger (SSH) scheme, initially discovered in condensed matter 
systems88. The difference between the topological invariants of the two insulating halves of the system leads to 
an interface mode located at its center, which is symmetry-protected as long as all the rods have the same 
diameter. This edge mode has a Lorentzian spectral line-shape which, as explained in the previous section, can 
be utilized for solving first-order ODEs. Remarkably, the frequency of the edge mode is pinned by topology, 
even if some relatively large disorder is imparted to the positions of the rods. Indeed, after randomly shifting 
the rods (FIG. 6a right), the transfer function of the equation solver, and, as a result, the corresponding output 
signal, are not affected. The boundary mode is pinned to a certain frequency as long as the position disorder is 
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not strong enough to turn it into an insulator, and as long as the symmetry protection (identical rod diameters) 
is present87. 
This system has been used to perform analog signal processing (FIG. 6b). The measured transfer function of 
the structure, sketched in the middle panel of the figure, exhibits a peak at the resonance frequency of the 
topological edge mode (𝑓"). To characterize the performance of the system, the waveguide was excited with an 
arbitrarily shaped signal (left panel), modulated at 𝑓". The corresponding measured output signal, shown on the 
right side of the panel, follows the solution of the targeted first-order ODE (dashed line). The functionality of 
the equation solver is immune to position disorder, as shown in the lower part of FIG. 6b. Note that, as we 
explained in the previous section, by constructing a network of first-order ODE solvers using directional 
couplers, one can achieve transfer functions corresponding to higher-order ODEs. Figure 6c, for instance, 
demonstrates the possibility of solving a second-order ODE by subtracting the output signals of two topological 
first-order systems with tailored dissipation losses. 
Another way to achieve robust computing is to use the one-way modes propagating in non-reciprocal optical 
structures. Such non-reciprocal effects can be obtained by breaking time-reversal symmetry using, for example, 
a magneto-optic material under an external magnetic field89,90. For instance, the one-way character of 
magnetized surface plasmon polaritons was used to realize a spatial differentiator immune to backscattering91. 
The non-reciprocal differentiator consisted of an opaque medium film (𝜀 = −1) coated on a magnetic substrate 
(InSb, FIG. 6d). A static magnetic field was applied to the substrate, breaking time-reversal symmetry and 
leading to one-way SPP excitation. The reflection coefficient of the structure has a dip near the resonance 
frequency of the SPP mode, which can be employed to perform spatial differentiation, as we discussed before. 
The mode profile of the structure when it is excited with a Gaussian incident field at the frequency (and the 
momentum) of the SPP mode is shown in FIG. 6e. As expected, the reflected field has a Gaussian-derivative 
profile. Remarkably, there is no back-scattering, even in presence of geometrical irregularities at the interface 
between the two layers of the structure.     
 
[H2] Metamaterials for machine learning  
 
As mentioned above, one important advantage of analog approaches to perform computations is the ability to 
process information in parallel without restrictions on the operating speed. This advantage becomes important 
when a large amount of data has to be processed, for instance when performing large matrix multiplications, or 
decoding the information hidden in a large amount of measurements. Such decoding tasks can be highly non-
trivial, especially if no analytical description or physical modeling of the relation between the information and 
the data is available (for example, imaging or recognizing objects using waves through an unknown multiple-
scattering environment). One way to tackle such problems is to use machine learning92, a modern processing 
technique in which a computer is given the opportunity to learn on some training data, for which the encoded 
information is known, before being capable of processing unknown data. Machine learning often requires some 
particular form of nonlinearity, making it much more complicated than the linear analog functionalities 
described so far, because nonlinear operations cannot be tackled by Fourier optics approaches. The training 
process, during which the system learns the intricate links between the encoded information and the data and 
reconfigures itself to be able to process new data, is often based on a neural network93, an interconnected 
reconfigurable network of artificial neurons connecting the data and the information to be retrieved.  
 
The neurons and their connections, called edges, are generally assembled into a layered architecture, in which 
the output of each neuron is a weighted non-linear function of its inputs. The reconfigurable part of the network 
is represented by weights that increase or decrease the signal at a connection, a process somehow inspired by 
biological neural networks that constitutes animal brains. Neural networks are traditionally implemented in the 
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digital domain, and work on digital data. However, when practical data originates from a measurement 
operation with a large amount of analog sensors, it may be useful to perform, as much as possible, the parallel 
processing of the information in the analog domain, which can yield considerably higher speed of operation 
and processing efficiency, and lower power consumption.  
In this section, we describe two categories of efforts in which metamaterials are combined with machine 
learning for this purpose. This field is very broad and active, hence we specifically focus on works in which 
metamaterials have a computational role, rather than on research that leverages machine learning as a design 
tool for metamaterials. Let’s start with an elementary information-theoretic description of a sensing process, 
represented in FIG 7a. Part of the information that we are interested in, encoded in a field that propagates in a 
potentially complex medium, is first sampled via some physical mechanism, typically involving sensors. This 
measurement process may lead to a dataset in which the information of interest is present in part or in full. 
Sometimes, more information than needed is contained in the data. Nevertheless, the second step is generally 
to decode this data using machine learning to extract the desired information. This second step involves a series 
of large linear matrix multiplications, application of non-linear functions and successive adjustments of 
weights. The green labels in FIG. 7a highlight at which steps of this process metamaterials can be used to 
perform a computational task. 
A first category of computing metamaterials is concerned with the encoding part. The information carried by a 
wave field is either contained in the spatial degrees of freedom of the wave, or in its frequency degrees of 
freedom. Metamaterials, composed of resonant scatterers with large scattering cross-section, can possess both 
spatial dispersion (linked to multiple scattering) and frequency dispersion (linked to inertial response). 
Therefore, they can process both the spatial and temporal information carried by the wave field, for instance to 
make sure that a maximum amount of the desired information is present in the measured data. A practical 
example is shown in FIG. 7b. An array of loudspeakers (placed in an anechoic chamber) creates an acoustic 
source with spatial features much smaller than the acoustic wavelength, 𝜆, at the frequency of operation (the 
details are smaller than 𝜆/30), drawing some handwritten digits taken out of the MNIST database. Four 
microphones are used to measure the acoustic pressure at four points in the far-field. By training a neural 
network on this data, it is not possible to image the digits, because the information about subwavelength features 
is evanescent and does not reach the far-field. However, by using a metamaterial built from an ensemble of 
Helmholtz resonators placed in the near-field, the information contained in the evanescent fields can be encoded 
into information carried to the measurement points by propagating waves. In the presence of such a locally-
resonant metamaterial, the neural network can image and classify the digits110. 
A second category of machine-learning systems in which metamaterials or metasurfaces have a computing role 
is based on an approach called learned sensing94-96. In such systems, one stops looking at the encoding and 
processing tasks separately, which typically leads to the acquisition of information that is irrelevant for the 
target task. Instead, one optimizes the entire sensing cycle at once by making sure that the system only acquires 
and processes the part of the information that is needed, sensing and learning at the same time. This idea 
emerged in the context of computational imaging using metamaterials, in which originally the metamaterials 
did not have any computing role related to machine learning, but were used at the encoding level to implement 
compressive sensing strategies97-100 either exploiting frequency selection or reconfigurability. In compressive 
sensing strategies, a scene is illuminated with random or orthogonal patterns, which multiplexes all information. 
However, a lot of this information may be irrelevant. A first step along the route from compressive to learned 
sensing was taken by incorporating metasurfaces into sensing processes leveraging artificial intelligence 
methods101-103. The concept of learned sensing then naturally emerged, inspired by developments in the optical 
imaging communities95. The idea, represented in FIG. 7c, is to interpret a reconfigurable acquisition layer (for 
example a few reconfigurable split-ring resonators coupled to an ensemble of non-reconfigurable resonant 
dipoles, represented by the yellow dots in the figure) as an additional trainable layer of the machine-learning 
system (the rest of it may remain digital). Therefore, the jointly learned measurement and processing settings 
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will select only the relevant information when measuring novel data. This idea, which effectively makes the 
computation much more efficient104, was recently experimentally validated 105. 
Finally, we stress that even some of the remaining digital part of the sensing process can be implemented 
analogically with waves. Indeed, a metamaterial or an artificial structure can be involved at a later step, namely 
in the heavy linear matrix multiplications involved in the processing, in order to gain efficiency in terms of 
speed or power consumption. This is motivated by the ability of passive wave-based systems to perform many 
operations in parallel, as an alternative to digital systems subject to the fundamental thermal limits of Moore’s 
law. For instance, a neural network based on silicon nano-photonic circuits has been proposed and applied to 
perform deep learning106. In this system, a reconfigurable mesh of waveguides (FIG. 7d) was used to 
implement linear matrix multiplication, whereas the non-linearity was added digitally. Another interesting 
approach to achieve reconfigurable matrix multiplication at microwave frequencies is the use of chaotic 
cavities, such as a standard indoor environment at a Wi-Fi frequency. By making the cavity reconfigurable by 
placing programmable metasurfaces on the room walls107 (FIG. 7e), a wide variety of very large matrix 
multiplications can be performed. Rather than engineering a material with intricate design, this approach takes 
a random material and tweaks it with a programmable metamaterial to implement the desired functionality, 
thereby removing the prohibitive sensitivity to fabrication inaccuracies. At optical frequencies, spatial light 
modulators may be used to build reconfigurable metasurfaces and achieve similar multiplication tasks at higher 
frequencies and lower scales108,109. 
 

[H1] Conclusion and perspectives 
In this Review, we have discussed the recent progress in the field of computational metamaterials, and outlined 
several examples of its practical applications in modern engineering, including equation solving, image 
processing and machine learning. We close by identifying a longer-term outlook on this emerging field, and 
discuss the key challenges that should be addressed in future work.  
An interesting idea, proposed in a few recent papers111-113, is multi-functional wave-based analog computing, 
in which several computational tasks are performed simultaneously on different input channels. Such kind of 
operation provides the unique possibility of parallel processing of information, substantially enhancing the 
speed of computation. For optical signals, multi-functional analog computing can be achieved by, for example, 
a metasurface composed of anisotropic components. The anisotropic behavior of such a structure allows one to 
manipulate the reflection and transmission of the TE and TM polarization degrees of freedom independently. 
This enables performing multiple signal processing tasks at once. Extensions of parallel computing to arbitrary 
number of channels may leverage media with many spatial or temporal degrees of freedom such as disordered 
multiple-scattering systems114. Not only does the parallel operation of such kinds of computing structures 
enable enhancing the speed of processing, but it also provides the possibility of saving a lot of power, avoiding 
the use of large-scale electronic systems and the associated challenging thermal dissipation problems, which 
are currently limiting the continuation of Moore’s law. 
Most of the computational metamaterials discussed in this Review are related to linear functionalities. With the 
development of learning-based approaches, investigating the possibility of performing nonlinear analog 
processing operations with computational metamaterials is a clear opportunity for future research. We 
highlighted the relevance of wave-based analog computers for machine learning (which inherently requires 
nonlinear processing), but research on reconfigurable or non-linear metamaterials as a way to perform part or 
all of a sensing process is still in its infancy. In addition, nonlinear computational metamaterials can be used 
for other purposes, such as complex nonlinear equation solving, or to implement analogically many of the 
nonlinear filtering image processing methods employed in digital technologies. Nonlinear interaction in such 
kinds of computational metamaterials, combined with reconfigurability, also represents an opportunity for the 
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realization of programmable analog computing systems, behaving as the analog, wave-based counterpart of 
electronic field programmable gate arrays.  
Investigating the effect of undesired disorder on computational metamaterials is another important subject for 
future research. As we discussed in this Review, topological computational structures are robust against 
disorder such as impurities and defects. Yet, their much-sought robustness is ultimately restricted, when the 
imperfections are large, by Anderson localization115, which leads to a progressive filling of the band gap of the 
structure with localized bulk states in the regime of strong randomness. Although this effect seems to be 
harmful at first glance, the fact that introducing disorder to a system can induce a topological phase transition 
is very encouraging: it suggests that the opposite transition, from a trivial structure to a topological disordered 
one, is also possible116. Such a transition suggests the fascinating possibility of performing specific, well-
defined computational tasks in the regime of dominant randomness, as suggested in a recent article117. These 
findings suggest that combining topologically robust computing metamaterials and disorder-based 
computations may be a promising direction for future research. 
Most computational metamaterials, including the ones reviewed here, are resonance-based, imposing certain 
restrictions on their performance, notably in terms of the operational bandwidth. Broadening the bandwidth of 
computational metamaterials is important for some applications. Some steps along this direction have already 
been taken with wave-based computing systems designed based on wavelength-independent phenomena such 
as the Brewster effect40, or relatively broadband effects like the spin-Hall effect45,118,119. Yet, active wave 
systems may represent an unexplored way to achieve wide-band analog computation: because they are not 
subject to restrictive sum-rule bandwidth constraints as passive systems, they can push the limits on bandwidth 
up to what is allowed by causality and stability. The field of active metamaterials120-124 may be mature enough 
to offer a unique solution to maintain absorption losses to acceptable levels, enhance the signal-to-noise ratio 
and the bandwidth or provide reconfigurability124 .  
Machine learning systems based on computing metamaterials have only been proposed in hybrid analog–digital 
sensing systems, but research on fully analog machine-learning systems is another interesting route, placed at 
the boundary between wave engineering and artificial intelligence 125-131. For this, a source of non-linearity may 
be introduced in the physical layers to enable learning, exploiting Kerr dielectrics or opto-mechanical 
resonators in photonics, or controlled geometrical or electromechanical non-linearities in acoustics132. Analog 
Ising machines133,134 may also be developed to solve specific non-deterministic polynomial-time hard (np-hard) 
problems. On the far horizon, one may dream of combining wave engineering techniques with machine learning 
to enable the realization of a new generation of ‘auto-computers’ functioning without any specific manual 
operation and programming. Such intelligent computational systems may enable the solution of a wide variety 
of physical, mathematical and engineering problems that are too complex in reasoning or cannot be described 
using simple mathematical language. This suggests a very bright future for computational metamaterials.  
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Figure 1| Wave-based analog computing based on the Green’s function (GF) approach. a| A hypothetical analog 
computing system characterized by the Green’s function 𝐻(𝑘!). b| Transfer function (amplitude) of an arbitrary linear 
operator to be realized using the GF method. c| Example of a computational metamaterial based on the GF method. The 
metamaterial consists of multi-layered dielectric slabs. By optimizing the permittivity, permeability and thickness of each 
slab, it is possible to engineer the Green’s function of the structure such that it matches the desired transfer function 
𝐻"(𝑘!). d| Analog spatial differentiator based on the GF method. The differentiator consists only of an interface between 
a dielectric and free space, on which a transverse-magnetic polarized incident beam impinges at the Brewster angle. e| 
Green’s function (reflection spectrum) of the Brewster differentiator near the Brewster angle. For sufficiently wide 
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incident signals with bandwidth (BW) within the yellow region, the Green’s function can be approximated with a linear 
function (the dashed line), following the transfer function of the ideal differentiator. f| Corresponding differentiated 
reflected field (bottom panel) when the interface is illuminated with a Gaussian incident field (top panel). g| An analog 
spatial integrator, based on resonant tunneling through a dielectric slab waveguide. n1 and n2 are the refractive indices of 
the core and cladding layers, respectively.  hl At a specific incident angle, the momentum of the incident field matches 
the one of the guided mode, leading to a resonant tunneling peak in the transmission spectrum of the structure. The spectral 
line-shape of this resonance peak is the same as the one of an ideal integrator (the dashed line). i| Demonstration of the 
operation of the integrator. 
Panel c is adapted from Ref. 4, panel d, e and f from Ref. 40, panels g and h from Ref. 42. 
 

 
 

Figure 2| Analog computing systems based on the Green’s function method. a| A spatial analog differentiator based 
on a thin metallic film supporting surface plasmon polaritons (SPPs). b| Green’s function of the structure (the reflection 
spectrum) near 𝑘! = 0, showing a resonance dip (zero). Near this zero, the Green’s function can be approximated with a 
linearly varying function (the red line), corresponding to the transfer function of the ideal differentiator. c| Spatial edge 
detection based on the plasmonic spatial differentiator shown in panel a. d| Spatial differentiation based on a metasurface 
array composed of split ring resonators. The refractive indices of the dielectrics inside the SPP gaps are modulated with a 
slowly varying function, offering a degree of freedom to enhance the operation spectral bandwidth and the overall 
efficiency. e| Magnitude (solid line, left vertical axis) and phase (dashed line, right vertical axis) of the Green’s function 
of the structure in panel d, agreeing well with the one of an ideal differentiator. f| Spatial edge detection based on the 
metasurface array shown in panel d. g| Scanning electron microscope image (top and side view) of an optical computing 
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Response: Yes, it is.   

Commented [GP8]: Do you prefer us to add a value to the 
scale bar on the image or to remove the scale bar? (question 
valid for panel i as well). 
 
Response: The scale bar is not available from the original work 
(see Fig. 4 of Ref. 43). Anyways, it does not change the 
concept of the figure (i.e. edge detection). Maybe it is better 
not to show the scale bars here.  

Commented [GP9]: What about the dashed curves? Should 
we omit them if we get the editable graph? Same question for 
the arrows pointing left and right. 
 
Response: The dashed lines are the phase of the Green’s 
function, which is added to the figure and explained in the 
caption.  

Commented [GP10]: What are the scale bars for these 
images? 
 
Response: The scale bar is 400 nm for both panels (see the 
caption of Fig. 3 of Ref. 47). We mentioned the scale bare in 
the caption.   
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metasurface engineered such that it realizes the transfer function for second-order differentiation. The scale bar is 400 nm 
for both panels. h| Transfer function of the metasurface.  i| Edge detection based on the metasurface shown in panel g.  
Panels a, b and c are adapted from Ref. 43, panels d, e and f from Ref. 46, panels g, h and i from Ref. 47. 

 

 
Figure 3| Metasurface approach for wave-based analog computing. a| Block diagram of a computing system based on 
the metasurface approach, consisting of three sub-blocks: two Fourier transformers (graded index (GRIN) lenses) and a 
metasurface realizing the transfer function of the operator of choice. b| A metasurface computing system designed to 
perform first-order differentiation. c| First-order spatial differentiation based on the metasurface computing system in 
panel c. d| Analog computing based on a reflective metasurface array, consisting of silicon nano-bricks arranged on a 
silica substrate and a thick metallic layer. The amplitude and phase of the reflected field can be manipulated independently 
by varying the length (𝐿#) and width (𝐿!) of the nano-bricks. The plot shows the amplitude of the reflection coefficient, 
r. The Green lines correspond to the phase of the reflection. e| Position-dependent reflection coefficient required for 
realizing a first-order spatial differentiator. f| Experimental demonstration of the performance of the metasurface 
computing system in panel d. A Gaussian derivative incident field as the input field (top) results in a reflected field that is 
its derivative (bottom). g| A dielectric metasurface computing system, consisting of silicon nano-bricks deposited on top 
of a silica substrate. h| Variation of the amplitude and phase of the reflection coefficient as a function of the length, 𝐿#, 
and width, 𝐿!, of the silicon nano-bricks. i| Demonstration of the operation of the metasurface computing system as a 
second-order spatial differentiator. 
Panels b and c are adapted from Ref. 4, panels d, e and f from Ref. 71, panels g, h and I from Ref. 72. 
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Commented [GP11]: What does GRIN stand for?  
 
Response: It stands for graded index lens (we mentioned it in 
the caption). 
 
The text mentions the variation of permittivity, but the figure 
shows the variation of refractive index – we can change the 
schematic, or you can add a few comments in the caption to 
bridge the two. 
 
Response: We changed the schematic (nà\eps)  

Commented [GP12]: The metasurface is shown as half red 
and half blue, do these regions correspond to AZO and silicon 
or to something else? It would be good to label the materials in 
the schematic (we can redraw the schematic from scratch if 
needed, we just need guidance on what to show) 
 
Response: The blue and red regions do not correspond to 
anything important, I think they are just there to show that the 
metasurface is not homogenous. The structure of the 
metasurface can be found in Fig. 2A of Ref. 4. It would be 
great if you can somehow represent it in the figure (For us it 
was difficult due to the lack of the space and our limited 
graphical tools).  

Commented [GP13]: You don’t comment on the green lines, 
do they show the control of the phase? Can you comment a bit 
more on them? 
 
Response: Yes, they are associated with the phase of the 
reflected field. We commented on it in the revised article.  
 

Commented [GP14]: Insertion ok? It’s important to specify 
clearly what is shown in the figure. 
 
Response: Yes, the insertion is true.  

Commented [GP15]: This figure panel shows a very simple 
(linear) relationship, wouldn’t it be better to mirror the 
organization of the panels below and show first the meta-atom,  
then in a separate panel the amplitude and phase of the 
reflected field and then the result? We will try to get editable 
files from the original authors of the paper, thus it should be 
possible to show the meta-atom not as an inset. 
 
Response: Yes, it will be nice to do so, if you can get the 
editable files from the authors (we will need to revise the text a 
little bit in this case as well). 

Commented [GP16]: Is the reflected or transmitted field that 
is the derivative? The main text mentions the reflected field. 
 
Response: It is indeed the reflected field.  We fixed the issue.  
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Figure 4| Acoustic computational metamaterials. a| An acoustic metasurface computing system consisting of three 
tapered labyrinthine components with varying spiral radians, 𝑆$, 𝑆% and 𝑆&. The complex path-coiling of the labyrinthine 
structures creates strong multiple-scattering effects, leading to an extreme range of amplitudes and phases of the 
transmitted field.  b| Amplitude of the transmission coefficient, T0, as a function of 𝑆$, 𝑆% and 𝑆&. c| Phase of transmittance 
as a function of 𝑆$, 𝑆% and 𝑆&. d| Amplitude (purple) and phase (green) of the transmission spectrum associated with the 
transfer function of a second-order ordinary differential equation (ODE) solver. e| The performance of the designed 
metasurface computing system is evaluated by simulating its response to the Gaussian incident signal shown in this panel. 
f| The corresponding transmitted field, following the solution of the targeted ODE.  g| An acoustic computing system 
based on the Green’s function approach. The structure consists of a half-wavelength high-index metamaterial, whose 
reflection coefficient drops to zero at some specific incident angle θ. Near this zero, the reflection spectrum can be well-
estimated with the transfer function of the ideal differentiator. The incident field is modulated by a mask plane with 
properly designed transparency pattern corresponding to the EPFL logo.  h| Spatial vertical and horizontal edge detection 
based on the high-index acoustic computing metamaterial in panel g. 
Panels a–f are adapted from Ref. 73, panels g and h from Ref. 74. 
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Commented [GP17]: I think it would be useful to show the 
colour bars for panels b and c, and in their label T0 is used, so 
I added its definition to the caption. 
 
Response: We added the color bar to the figure 
 
Does it make sense to call all the transmission coefficients in 
this figure just T? If not, please introduce Ts in the caption for 
panels d—f. 
 
Response: Indeed, it makes sense to call all transmission 
coefficients T_0. We revised the panels d-f. 

Commented [GP18]: Do you want to comment on the green 
curve as well? 
 
Response: The green curve correspond to the phase of 
transmission. We commented on it.  

Commented [GP19]: I simplified the sentence a bit, changes 
ok? 
 
Response: It is OK.  

Commented [GP20]: Is it worth mentioning the mask in the 
caption to ensure all the important parts of the system are 
described? 
 
Response: We mentioned this point in the caption.  

Commented [GP21]: What is the difference between the 
middle and the bottom image? 
 
Response: In the middle image the vertical edges of the image 
are detected, whereas in the bottom one the horizontal edges 
are detected. We added the labels corresponding to each of 
the panels.  
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Figure 5| Wave-based analog equation solving. a | A general equation solver, aimed at solving a first-order ordinary 
differential equation (ODE). b| Green’s function of a Lorentzian resonator, matching the transfer function of the first-
order differential equation.  c| A first-order ODE solver based on resonance tunneling through a Bragg band gap. d| An 
optical first-order ODE solver based on the resonance of a micro-ring resonator fabricated on a silicon wafer. e| Amplitude 
(yellow) and phase (red) of the transfer function of the micro-ring resonator around its resonance frequency, which are 
equivalent to those of a first-order ODE with specific constant coefficients (black). T, transmission coefficient, f frequency. 
f| Experimental demonstration of first-order ODE solving based on the micro-ring resonator in panel d. The measured 
output field matches the solution of the target ODE. g| A metamaterial platform solving integral equations of general form 
𝑔(𝑢) = 𝐼#1(𝑢) + ∫ 𝐾(𝑢, 𝑣)𝑔(𝑣)𝑑𝑣&

6 , where 𝐼#1(𝑢)	 is the input signal, 𝑔(𝑣) is the unknown function and 
𝐾(𝑢, 𝑣)	is the kernel associated with an arbitrary operator. The equation solver consists of a metamaterial realizing 
the kernel of the integral equation, and N feedback waveguides adding the output of the meta-structure to the input signal 
at specific sampling points. h| A photograph of the metamaterial structure realizing the proposal in panel g. i| 
Demonstration of the proper performance of the integral equation solver.  
Panel c is adapted from Ref. 87, panels d, e and f from Ref. 78, panels g, h and i from Ref. 80. 

  

a b

e f

h

d

c

ș�

p

i

d

ȕdf/dt+ȕf=gĮdf/dt+ȕf=g
f(t) g(t)

|H
(Ȧ

)|

Ȧ

1/ȕ�

0
-10Į� 10Į�

|T
|

f(GHz)

1

0
-150 150

Phase

Measured
Ideal

-1

1
<T

/2
ʌ
� Input 

Measured output
Ideal

Time (ps)

In
te

ns
ity

 (a
.u

.)

-50 50

g N

2
1

�g(u) g(u)k(u,v)dv

Iin(u)g(u)

..

.

g(
u)

u

Experiment (real)
Experiment (imag)
Theoretical (real)
Theoretical (imag)
Simulation (real)
Simulation (imag)

-2 2

0

1

0.5

Waveguide
Waveguide

Ring

Commented [GP22]: Should we add some labels to the 
schematic to guide the reader? 
 
Response: We added some labels to the schematic to guide 
the reader 

Commented [GP23]: You don’t comment on the curve 
labelled ‘phase’, should we omit it (if we can get the editable 
version of the plot? 
 
Response: The phase of the transfer function is important. We 
have added a comment regarding it. 

Commented [GP24]: All quantities appearing in the figure 
should be defined in the caption, are the insertions ok? 
 
Response: OK 

Commented [GP25]: The figures should be presented so 
that they can be understood independently from the text : in 
this case I feel it can be useful to re-introduce the various part 
of the equation to ensure readers follow what’s going on in the 
schematic, is that ok? 
 
Response: We agree. This is OK.  
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Figure 6| Robust analog signal processing. a| Left: A topological analog signal processor solving first-order differential 
equations. The equation solver is based on the edge mode of a 1D Su−Schrieffer−Heeger (SSH)-like array of nylon 
plastic rods arranged inside an acoustic waveguide. Right: some disorder is added to the system by randomly changing 
the positions of the obstacles. The topological equation solver is robust to the disorder. b| Experimental demonstration of 
topological analog signal processing using the system in panel a. The transfer function of the system (middle panel) 
exhibits a peak near the resonance frequency of the edge mode, following the transfer function of a first-order ordinary 
differential equation (ODE). The corresponding output signal is therefore identical to the solution of the ODE (dashed 
line). The system preserves its functionality even in the presence of disorder (bottom signal path). c| Realization of a 
second-order ODE solver by subtracting the output signals of two different first-order ODE solvers (like the ones in panels 
a and b) from each other. The subtraction is performed using an acoustic rat race coupler. d| Spatial differentiation based 
on non-reciprocal one-way magnetized surface plasmon polaritons formed at the interface between an opaque medium 
film and the InSb substrate.  e| Demonstration of the proper functioning of the differentiator and its robustness to disorder.  
Panels a, b and c are adapted from Ref. 87, panels d and e from Ref. 91. 
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Commented [GP26]: Do panel a and b indeed refer to the 
same system? 
 
Response: Yes, They do.  

Commented [GP27]: Is it correct that the first-order ODE 
solvers are the same system as in panels a and b? if yes, it’s 
good to state so explicitly, so I added this parenthesis. 
 
Response: Yes, this is indeed the case.  

Commented [GP28]: Can you add some details about what 
the image actually shows? It’s not entirely obvious just by 
looking at it. 
 
Response: We added some details to the figure, guiding the 
reader better.  
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Figure 7| Machine learning with metamaterials. a| A typical sensing process, where information carried by a wave field 
is encoded in measured data. This data is processed by a machine-learning method to extract the desired information. b| 
Example of a metamaterial used to help the learning process by acting at the encoding stage. A subwavelength acoustic 
source is generated by a loudspeaker array and shaped as a handwritten digit. The acoustic far-field is sampled at four 
different points using microphones. After learning, a neural network is not able to reconstruct or classify the digits, because 
the information about subwavelength features of the source (𝜆/30) cannot reach the far-field. By placing a locally-
resonant metamaterial in the near-field (not shown in the picture), this information can be encoded in the far-field, enabling 
the reconstruction and classification of the digits by the neural network110. c| Concept of learned sensing, where the first 
layer of the neural network is a physically reconfigurable layer that is optimized during the learning process to focus only 
on measuring the relevant information104 . d| Microscope image of a silicon photonic neural network used to implement 
linear matrix multiplication for deep learning. e| A chaotic microwave cavity with reconfigurable boundary conditions 
implemented using programmable metasurfaces can be used to perform very efficient and fast large-matrix multiplication.   
Panel b is adapted from Ref. 110, panel c is courtesy of Dr. Philipp del Hougne, panel d from Ref. 106, panel e from Ref. 
107. 
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Commented [GP29]: Would you like to mention the numbers 
under each digit, or should we just remove them? 
 
Response: They could be removed. We removed them! 

Commented [GP30]: Is the paper from which panel b comes 
close to being accepted? Adapting figures from the arXiv can 
create copyright issue that can complicate the process of 
publishing the primary article. We can discuss in more detail by 
email. 
 
Response: The paper is now in press in PRX: see: 
https://journals.aps.org/prx/accepted/a0070KaaYe51b703a4a1
7b010f6de16e36a3171b1 
The estimated date for first proofs available is August 4th. Ling 
Miao is the managing editor. 

Commented [GP31]: Are there any labels we can add to this 
image? They can be useful to guide readers.   
 
Response: We have added labels. The first layer on the left 
with the three split ring resonators (SRR) can be labelled 
“tunable SRR”. The yellow dots are the “disordered medium”, 
the two layers of orange disks are a neural network. On the 
right, the column are possible outcomes. top picture represents 
“imaging”, middle one “classification” and bottom one a 
“mathematical operation”, or any other “processing” of the 
data. 

Commented [GP32]: I added some details to the caption so 
that it says more than where the image is adapted for, are the 
changes ok? 
 
Response: The change is OK.  
 
Also here, are there any labels that it could be useful to add to 
the image? 
 
Response: We added some labels to the figure, helping the 
reader to understand it better. DMMC stands for Diagonal 
Matrix Multiplication Core. SU(4) is a specific operation also 
needed by the neural network. These are quite technical terms 
and it could be that only experts understand them. 

Commented [GP33]: Can you indicate labels we can add to 
the image? What are the orange and blue bits and what is the 
white structure in the middle of the room? 
 
Response: We added the corrosponding labes to the figure. 
Farzad, can you define DMMC ? 

Commented [GP34]: In the main text it sounds like there are 
several metasurfaces, whereas here the singular is used, 
which one should be changed? 
 
 
Response: The statement in the main text is more accurate. 
We modified the one in the caption.   
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Box 1 | History of analog computing 
 
The earliest known analog computer, invented in Greece between 150 and 100 BC, is the Antikythera 
mechanism135,136, intended for specific astronomical applications (panel a).  The device was composed of nearly 
40 gears and wheels, and was devised to model the position of the moon and sun in their orbits, providing the 
possibility of predicting eclipses. Similar mechanical analog computers were later developed for astronomical 
purposes. A prominent, more recent example of such a device is the astronomical clock137 that appeared in the 
14th century, which was capable of analyzing complex astronomical phenomena, such as the relative positions 
of the earth, sun, moon and planets.  
Mechanical analog computers have been also used for computational purposes other than astronomical 
calculations. One of the mechanical computing devices commonly used since the 17th century were side 
rulers138, performing multiplications and divisions (panel b139). Such kinds of computers, developed shortly 
after the description of logarithms, worked based on the fact that the multiplication (or division) of two real 
numbers can be expressed as the addition (or subtraction) of their logarithms.   
Before the introduction of portable electronic computers, many other mechanical computers were developed. 
Examples include: the planimeter, used to calculate the area within a closed 2D shape139; the tide predictor140 
(developed in 1878), a mechanical analog computer predicting the behavior of sea tides; the Dumaresq135, an 
analog computer developed in 1902 to relate the parameters of fire-control systems to the ones of a moving 
target object; the nomograph141 (invented in 1918), a special mechanical equation solver solving a specific class 
of equations having the form of 𝑓(𝑥, 𝑦, 𝑧) = 0;  and the differential analyzer135 (invented in 1930), which could 
solve second-order and higher-order differential equations. 
Despite their simple principle of operation, mechanical analog computers suffer from several restrictions, 
including their large size and high production cost. Driven by advances in electronics, electronic analog 
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Commented [GP35]: Ok to write ‘since’ instead of ‘in’? Side 
rulers were common until quite recently. 
 
Response: It is fine  

Commented [GP36]: Is it possible to be a bit more precise 
with the timing (at least with something like the beginning of 
the 20th century)? 
 
Response: We provided a more precise timing.  
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computers emerged. The underlying principle of electronic analog computers is that by engineering the 
connectivity between the circuit elements, the transfer function of a circuit can be tailored to follow that of a 
mathematical operation. The top part of panel c, for example, represents an electronic circuit realizing the 
operator of first-order differentiation. By employing simple circuit analysis techniques, the transfer function of 
the circuit can be found as 𝑉,78 𝑉#1⁄ = −𝑖𝜔𝑅𝐶 (where Vout is the output voltage, Vin the input voltage, ω the 
frequency, R the resistance and C the capacitance). In the time domain, the relation between 𝑉,78 and 𝑉#1 is 
expressed as 𝑉,78 = −𝑅𝐶 𝑑𝑉#1 𝑑𝑡⁄ , indicating that the circuit acts as a first-order differentiator. The bottom 
part of panel c illustrates another electronic circuit, which acts as an analog integrator.  
The first generation of electronic analog computers was developed in the middle of 20th century.  For example, 
the computer shown in panel d, called AKAT-1 computer, was composed of several operational amplifiers, 
transistors and regular passive elements. The system, developed in 1959, was designed to address complex 
dynamic processes such as heat transfer by analyzing the associated differential equations. Compared to their 
mechanical ancestors, electronic analog computers were much faster and smaller, and could be adapted to a 
wider range of analog functionalities. Their early adoption was abandoned in favor of digital computers, which 
were more robust to noise. 
 
 

Commented [GP37]: Box figures do not have their own 
caption. 
 
Response: OK 

Commented [GP38]: Can the timing be a bit more precise 
here? 
 
Response: We made the timing more accurate  


