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Human activities are resulting in many land-use changes, particularly due to urbanisation and 
intensification of agricultural practices. Because of these changes, in addition to climate change, 
many species are facing habitat degradation. In order to avoid extinction under these conditions, 
they can either move to more favourable areas or adapt to their new environment. To develop 
appropriate conservation measures, it is essential to identify vulnerable populations that may not 
be able to disperse or adapt. In this context, modelling tools can be used to predict the potential 
impact of environmental changes on species and populations. However, to date, few approaches 
take into account the degree of exposure, the possibility of dispersal and the potential for adap-
tation. In this thesis, we present modelling approaches based on geo-environmental data to inte-
grate these three elements. 

First, we use ecological niche models to estimate the distribution of suitable habitats for a given 
species as a function of environmental conditions. We propose an improvement of commonly 
used models by developing an approach to integrate spatio-temporal variability of environmental 
predictors. In addition, we develop a nested model to predict the distribution of vector-borne path-
ogens. This model can be used to identify populations that may be threatened by an increasing 
presence of pathogens in their habitat. We use it to model the evolution of the distribution of 
Ixodes ricinus ticks and their Chlamydiales bacterial pathogen.  

We then use landscape graphs to analyse the connectivity between habitats and estimate the 
possibilities for threatened species to move to more favourable areas. Connectivity is also essen-
tial for maintaining gene flow and genetic diversity, which is necessary for greater adaptive ca-
pacity. We propose here an approach combining landscape graphs, simulations and empirical 
genetic data to identify the impact of reduced connectivity on population persistence and genetic 
diversity. We use it to identify butterfly populations that are threatened by increasing fragmenta-
tion in an urban landscape.  

Finally, we develop the concept of "Spatial Areas of Genotypes Probability" (SPAG) to better 
analyse the adaptive potential of populations. SPAGs make it possible to model the probability of 
finding locally adapted genetic variants in a given territory, as well as to identify vulnerable popu-
lations lacking in genetic variants that would favour adaptation to future climate conditions. We 
use it to highlight populations of Moroccan and European goats that are poorly adapted to the 
climatic conditions predicted under a climate change scenario for 2070 (strong variations in pre-
cipitation or increased drought). 

To conclude, we show how the three modelling approaches presented can be combined and 
integrated into a more general conservation framework to identify vulnerable populations facing 
high exposure to environmental changes, low dispersal possibilities and reduced adaptive              
capacity. 

Keywords: Biodiversity, Conservation, Climate change, Ecological Niche Models, Species 
Distribution Models, Connectivity, Landscape Graphs, Genetic diversity, Urban conservation,     
Local adaptation, Landscape genetics, Adaptive potential, Ixodes ricinus, Chlamydiales,                
Pieris rapae  

ABSTRACT  



 

Les activités humaines engendrent de nombreuses modifications de l'utilisation du sol, notam-
ment par l’urbanisation et l’intensification des pratiques agricoles. Associé au changement clima-
tique, ces modifications entrainent une dégradation de l’habitat de nombreuses espèces. Dans 
ces conditions, les espèces peuvent soit se déplacer vers des zones plus favorables, soit s'adap-
ter in-situ. Afin d'élaborer des mesures de conservation appropriées, il est essentiel d'identifier 
les populations vulnérables qui pourraient ne pas être en mesure de se disperser, ni de s'adapter. 
Dans ce contexte, des outils de modélisation peuvent être utilisés pour prévoir l’impact des chan-
gements environnementaux. Cependant, à ce jour, peu d'approches prennent en compte à la fois 
le degré d’exposition, les possibilités de dispersion et le potentiel d'adaptation. Dans cette thèse, 
nous présentons des outils de modélisation pour intégrer ces trois éléments. 

Tout d'abord, nous utilisons des modèles de niche écologique pour estimer la répartition des 
habitats favorables pour une espèce donnée en fonction des conditions environnementales. Nous 
proposons une amélioration des modèles couramment utilisés en développant une approche pour 
intégrer la variabilité spatio-temporelle des prédicteurs environnementaux. Nous développons 
également un modèle imbriqué qui permet de prédire la distribution d'un pathogène véhiculé par 
un hôte. Ce modèle peut être utilisé pour identifier des populations qui pourraient être menacées 
par une présence croissante de pathogènes. Nous l'utilisons pour modéliser l'évolution de la dis-
tribution spatiale des tiques Ixodes ricinus et des bactéries pathogènes Chlamydiales.  

Nous utilisons ensuite des graphes relatifs au paysage pour analyser la connectivité entre les 
habitats et estimer les possibilités pour les espèces menacées de se déplacer vers des zones 
plus favorables. Cette connectivité est également essentielle pour maintenir le flux de gènes et 
la diversité génétique permettant une plus grande capacité d'adaptation. Nous proposons une 
approche combinant des graphes relatifs au paysage, des simulations et des données génétiques 
empiriques afin d’identifier l'impact d'une connectivité réduite sur la persistance et la diversité 
génétique des populations. Nous l'utilisons pour identifier des populations de papillons qui sont 
menacées par l'augmentation de la fragmentation dans un paysage urbain.  

Finalement, nous développons le concept de "zones spatiales de probabilité des génotypes" 
(SPAG) pour mieux analyser le potentiel d'adaptation des populations. Les SPAGs permettent 
d’estimer la probabilité de trouver dans un lieu des caractéristiques génétiques qui résultent de 
l’adaptation locale et d’identifier des populations vulnérables ne possédant pas les caractéris-
tiques génétiques favorisant une adaptation aux conditions climatiques futures. Nous l'utilisons 
pour mettre en évidence des populations de chèvres marocaines et européennes qui sont mal 
adaptées aux conditions climatiques prévues par un scénario de changement climatique pour 
2070 (fortes variations de précipitations ou sécheresse accrue). 

Pour conclure, nous montrons comment les trois approches de modélisation présentées peuvent 
être combinées afin d’identifier les populations vulnérables fortement exposées aux changements 
environnementaux avec de faibles possibilités de dispersion et une capacité d'adaptation réduite. 

Mots clés: Biodiversité, Conservation, Changement climatique, Modèles de niche écologique, 
Modèles de distributions des espèces, Connectivité, Graphes paysagers, Diversité génétique, 
Conservation urbaine, Adaptation locale, Génétique du paysage, Potentiel d’adaptation, Ixodes 
ricinus, Chlamydiales, Pieris rapa
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Biodiversity is our most valuable 
but least appreciated resource. 

E. O. Wilson 

This thesis focuses on the conservation of species in the face of environmental changes… But 
why should we conserve species? Why are they endangered? And how can we preserve them? 
This general introduction aims to provide some initial responses to these questions in order to 
allow for a better understanding of the general context in which this thesis is set. It is also the 
place to present the structure of the thesis and to briefly introduce each of the following chapters. 

1.1 What is Biodiversity and why should we preserve it? 

Species preservation is essential to maintaining biodiversity. The term biodiversity was coined by 
W. G. Rosen as the title of a conference held in Washington in 1986 “National Forum on BioDi-
versity”, where it was intended as a shorthand for “Biological diversity”. Following this, E.O. Wilson 
published a book in 1988 entitled “BioDiversity” containing a collection of papers from the forum 
(Wilson, 1988). Since then, the term biodiversity has gradually emerged as a common scientific 
concept. E.O. Wilson defined it as “all hereditarily based variation at all levels of organization, 
from the genes within a single local population or species, to the species composing all or part of 
a local community, and finally to the communities themselves that compose the living parts of the 
multifarious ecosystems of the world” (E.O. Wilson in the book “Biodiversity II” (Reaka-Kudla et 
al., 1996)). Biodiversity thus contains three fundamental components: the diversity of ecosystems, 
of species and of genes. 

In his 1988 book, E. O. Wilson provided several arguments to demonstrate the dependence hu-
mans have on biodiversity. Indeed, plants, animals and micro-organisms are essential actors for 
the maintenance of many ecosystem services (Figure 1-1). First, they are the main drivers of food 
production, a chain involving several interacting actors. For example, plants use sunlight to con-
vert inorganic matter into biological tissues and are thus an essential component of primary pro-
duction. However, this process could not work without the intervention of soil micro-organisms, 
pollinating insects, etc., which themselves depend on other species for life. Second, all organisms 
contribute to the creation and regulation of the environment by maintaining nutrient and water 
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cycles, forming and decontaminating soils, purifying air and water and protecting against natural 
disasters (IPBES, 2019). Finally, organisms contribute to education, social well-being, recreation 
and cultural heritage. These services involve many species, which interact with each other and 
play a key role in the chain that enables the proper functioning of ecosystems. Preserving the 
biological diversity is thus essential to maintaining the various contributions of nature to humans 
(Eriksson and Hillebrand, 2019). 

 
Figure 1-1 – Biodiversity services 
Biodiversity provides a large range of services to humans, in various categories such as Provisioning, Sup-
porting, Regulating and Social services (IPBES 2019, iucn.org). Preserving the biological diversity is es-
sential to maintaining the proper functioning of all these services. 

1.2 Environmental changes and biodiversity crisis 

Several environmental changes can affect the conditions that species experience. Among them, 
four changes have been highlighted as currently having the most impact on species: land use 
modifications, increased pollution levels, invasion by non-native species and climate change (IP-
BES, 2019). Land use modifications are largely the result of agricultural and urban expansion 
associated with human population growth, which has led to the loss of several natural areas, 
particularly forests, wetlands and extensive grasslands. Human activities have also led to air, 
water and soil pollution, which affect the quality of many habitats, from oceans to lands and rivers. 
These combined effects, which have largely accelerated over the past 50 years (IPBES, 2019), 
have resulted in a loss of suitable habitats for many species. Last, the rate of invasion by non-
native species is increasing (IPBES, 2019), modifying inter-species dynamics. 

Climate change has also altered the conditions of various organisms, causing an average warm-
ing of 0.2°C per decade over the past 30 years, as well as a sea level rise of more than 3 mm per 
year since the start of the century and an increase in the frequency of extreme weather events 
such as storms, droughts and floods (IPBES, 2019). These changes are likely to continue in the 
future (IPCC, 2014). Indirect effects of climate change are likely to also induce variations in the 
spatial distribution of diseases, possibly modifying pathogen-host interactions (Hoffmann, 2010).  

 

 

 

 

Biodiversity 
services 
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These changes, combined with overexploitation of natural resources by humans, have led to an 
increasing loss of biodiversity worldwide. With a degradation of ecosystem quality, more than 
31,000 species are listed as under threat of extinction, which corresponds to 27% of all recorded 
species (https://www.iucnredlist.org/). Additionally, a reduction in gene flow due to a loss of con-
nectivity between natural areas is resulting in erosion of genetic diversity. Livestock genetic re-
sources are also weakened by modern breeding programs, which tend to replace several local 
breeds with a few high-producing commercial ones (Taberlet et al., 2008). This overall loss of 
genetic diversity threatens the adaptive potential of species, and thus their ability to cope with a 
changing environment. Numerous observations indicate a decline in biodiversity, which has led 
to a focus on the development of many biological conservation projects in recent decades (Dirzo 
and Raven, 2003; Newbold et al., 2015).  

1.3 Biodiversity conservation 

Due to financial constraints and resource limitations, conservation and management strategies 
tend to rely on the identification of target populations and the delineation of priority conservation 
areas (McDonald et al., 2019). This prioritization can occur at the landscape level (selection of 
priority areas), the ecosystem level (selection of target species) or the species level (selection of 
target populations within a species) (Vajana, 2017). Traditionally, priorities were set on the basis 
of habitat irreplaceability and vulnerability (Brooks et al., 2006), species richness, level of ende-
mism, vulnerability or degree of threat (Myers et al., 2000). Corresponding conservation strategies 
aimed to prevent the loss of species and ecosystem diversity, for example by preserving refuge 
areas, reducing habitat loss or preventing the invasion of alien species (Williams et al., 2008; 
Mawdsley et al., 2009). To preserve endangered species, some management strategies involved 
translocating individuals from sites affected by environmental changes to more suitable habitats 
or into established captive maintenance to prevent extinction (Mawdsley et al., 2009).  

These traditional conservation strategies only partially address the issue of genetic diversity, the 
third vital component of biodiversity. Following the development of sequencing techniques, con-
servation genetics was developed, making it possible to integrate the genetic component into the 
prioritization process by taking into account the level of genetic diversity of species or populations. 
Indeed, the conservation of a high level of genetic diversity is crucial to preventing inbreeding and 
to preserve the adaptive potential of species, thus reducing vulnerability to environmental 
changes (Allendorf and Leary, 1986). Conservation strategies have therefore integrated genetic 
diversity preservation, for example by favouring gene flow between populations, through hybridi-
zation, reintroduction or cross-breeding (Frankham, 2010). Most of these applications have tar-
geted total genetic diversity, including diversity resulting from mutations, gene flow, genetic drift 
or selection. However, through natural selection, some populations have developed local adap-
tations that have conferred a higher resistance to stressful climatic conditions, particular environ-
mental conditions or the presence of pathogens or diseases. It is essential to preserve these local 
adaptations to ensure the survival of a population in a specific habitat. Particularly, some locally 
adapted populations may present genetic traits that are better fitted to expected future environ-
mental conditions (e.g. by conferring them an adaptation to drought or high temperature), such 
that preserving these populations may increase the success of conservation outcomes. Thus, it 
is essential to consider local adaptation when planning conservation strategies. Despite this, few 
methods currently exist for considering adaptive genetic diversity in the prioritization process, 
although this issue is beginning to gain attention in conservation discussions (Funk et al., 2019; 

https://www.iucnredlist.org/
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Hoelzel et al., 2019; Mable, 2019). In addition, the transposition of academic conservation genet-
ics findings into an applied conservation perspective is too rarely operated. This is mainly the 
result of insufficient genetic training of conservation managers and decision makers (Frankham, 
2010) and even antipathy from conservation managers towards genetic data (Joost et al., 2011). 
Important efforts to better integrate genetics into practical conservation are thus required, a good 
example being the CongressGenetics project (Hoban et al., 2013). 

1.4 Modelling of geo-environmental data 

The data needed to develop conservation strategies cannot always be acquired through field 
measurements due to limitations of time, difficulties in access to terrain and restricted financial 
resources. Because of this, models and simulations are useful tools to support the decisions of 
conservation managers (Ferson and Burgman, 2006; Epperson et al., 2010). Geo-environmental 
data are widely available, generally worldwide and are showing an increasing spatial resolution 
(Leempoel et al., 2017). Climate grids computed from interpolations based on weather station 
measurements are available via global databases such as WorldClim (https://www.world-
clim.org/), as well as through meteorological offices in several countries (e.g. MeteoSwiss). Sat-
ellite data provide images of the earth’s surface from which several products can be derived, such 
as land cover classifications, vegetation indices or land surface temperature. Satellite products 
can also be used to compute digital elevation models, i.e. elevation grids for the entire earth. 
Several terrain attributes and variables can be derived from these grids, such as slope, aspect, 
orientation, drainage or sun exposure. These geo-environmental data can then be used to derive 
models that allow for a better understanding of environmental effects on species, while limiting 
the need for field work and the associated costs.  

Once a model has been trained using current geo-environmental data, it can be projected into the 
past or the future. This can provide a better understanding of the influence of past environmental 
changes on the current status of species, or help anticipate the impacts of future environmental 
changes. Different climate change scenarios for the coming decades are being developed by 
groups of experts (IPCC, 2014) and research institutes have computed corresponding climate 
grids. These grids can be used to model the effects of climate change on species persistence. 
Modelling can also be used to estimate the impact of urban planning or other land-use changes 
expected in the future. Anticipating the impact of environmental changes on species persistence 
is essential for preparing conservation measures and ensuring their implementation before threat-
ened species become extinct (McDonald et al., 2019). This anticipation could also limit the cost 
and time required to plan recovery processes for endangered species in the future (McDonald et 
al., 2019). 

1.5 Thesis contribution 

1.5.1 Research questions 

This thesis focuses on the conservation of species and their genetic characteristics, with the aim 
of providing modelling tools to facilitate the identification of vulnerable populations threatened by 
several environmental changes. More specifically, we focus on populations facing 1) a loss of 
ecological niche, 2) a reduction in dispersal possibilities, 3) a decrease in genetic diversity and 4) 
a lack of locally adapted genetic variants favourable for future conditions. 

https://www.worldclim.org/
https://www.worldclim.org/
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Ecological niche 

To live and reproduce, species require an ecological niche, i.e. a part of habitat that meets all the 
environmental conditions necessary for their long-term survival. Modifications of ecological niches 
associated with environmental changes is the focus of Chapter 2. Specifically, the suitability of a 
territory for a species can be estimated using modelling tools called “ecological niche models”. 
These models correlate records of the presence of a species with environmental variables (land-
cover, climate, etc.) in order to identify suitable areas with characteristics similar to the conditions 
under which the species was already observed. For this purpose, environmental conditions are 
usually considered at the exact location where the species was recorded (sampling point). How-
ever, a species, especially with a high dispersal capacity, may be influenced by the environmental 
conditions of a much larger area surrounding the sampling point as it interacts with a larger part 
of the landscape. In addition, climatic data are usually extracted for a time period independent of 
the sampling date (either an annual mean value, or a summary of values over the decades prior 
to sampling). In Chapter 2, we thus address the question: 

“How can we build ecological niche models that integrate the spatio-temporal varia-
bility of the environmental predictors, and does this lead to better predictive perfor-
mance?” 

Furthermore, some species may become vulnerable due to the spread of a pathogen or disease 
in their ecological niche (Hoffmann, 2010). In this context, we investigate how ecological niche 
modelling can be used to estimate the distribution of host-pathogens by addressing the question: 

“Can we use common ecological niche models to estimate the nested niche of a path-
ogen within the niche of its host?” 

Connectivity and genetic diversity 

When species are confronted with a loss of ecological niche or a shift away from the favourable 
conditions necessary for their survival, in order to avoid extinction, they may either disperse to 
more favourable areas or adapt in-situ to their new conditions. Dispersal is limited by the connec-
tivity between habitats, which is also essential for maintaining gene flow and preserving a high 
level of genetic diversity. The study of connectivity and its impact on genetic diversity is the focus 
of Chapter 3. Connectivity is particularly threatened in highly fragmented landscapes such as 
urban areas. Despite this, most conservation studies focus tends to be on natural areas, with little 
attention on urban landscapes. In addition, it can be difficult to collect genetic data in an urban 
environment due to habitat fragmentation and limited population size. In this context, Chapter 3 
questions: 

“How can we use modelisation tools using geo-environmental data to complement 
empirical data and help identify populations threatened by reduced dispersal oppor-
tunities and a loss of genetic diversity?” 

Locally adapted genetic variants 

Preservation of genetic diversity is essential to maintaining the adaptive potential of populations. 
However, as previously stated, the preservation of total genetic diversity may not be sufficient, 
thus it is important to consider the local adaptation of species or populations to a certain environ-
ment. This is the focus of Chapter 4. Several methods have been developed to identify signatures 
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of local adaptation by studying the genetic data of individuals. However, very few tools exist for 
integrating this knowledge into conservation practices. Chapter 4 addresses the following ques-
tion: 

“How can we use signatures of local adaptation to identify populations threatened by 
climate change?” 

Conservation frameworks 

This thesis focuses on several specific questions and presents both new modelling tools and 
improvements to existing ones, in order to identify vulnerable populations under threat from rapid 
environmental changes. To conclude the thesis, Chapter 5 addresses the final question: 

“How can the modelling tools presented be combined and implemented in a frame-
work dedicated to the identification of vulnerable populations?” 

 

 

Figure 1-2 – Thesis contributions 
Biodiversity is currently threatened by several environmental changes. Faced with such changes in their 
habitats, species can either disperse to other, more favourable areas, or adapt in-situ. Dispersal opportu-
nities depend on the presence of suitable habitats, and sufficient connectivity between them. To be hered-
itary, adaptation should rely on genetic characteristics (genetic diversity and local adaptation). Populations 
of species facing high modification of their suitable habitats, limited dispersal opportunities and low adaptive 
potential are thus the most vulnerable to environmental changes. ENM stands for “Ecological Niche Mod-
elling”, whereas SPAG is for “SPatial Areas of Genotype Probabilities”, the name of the approach we de-
velop in Chapter 4.  
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1.5.2 Objectives 

According to the research questions presented in the previous section, we list below the main 
objectives of this thesis. Detailed objectives will be presented in each chapter. 

Chapter 2 

 

• Analyse the performance of ecological niche models as a function of the spatio-temporal 
variability considered for the extraction of environmental variables (spatial area around 
the sampling point and time period before the sampling date). 

 

• Develop nested-models to analyse the distribution of host-pathogens and to highlight 
risk areas where the presence of a pathogen is increasing or is likely to increase in the 
near future. 

 

Chapter 3 
 

• Use modelling tools to analyse landscape connectivity and its impact on population per-
sistence and genetic diversity. 

 

• Show how modelling can assist in the identification of populations threatened by limited 
dispersal possibilities and reduced genetic diversity. 

 

Chapter 4 
Based on signatures of local adaptation identified by existing methods, develop an approach and 
the related tool to: 

 

• Predict the probability of presence of one or more locally adapted genetic variants in 
non-sampled areas. 

 

• Identify areas where there is a greater probability of finding individuals better adapted to 
future climatic conditions. 

 

• Identify vulnerable populations that may be threatened by climate change due to a lack 
of adapted variants favourable for future conditions. 

 

Chapter 5 
 

• Show how the various tools presented can be combined into a coherent methodological 
modelling framework to identify vulnerable populations. 

 

 

Chapters 2, 3, and 4 are composed of three research papers that have either already been pub-
lished or are submitted for publication in peer-reviewed journals. These chapters thus contain an 
introduction to research questions and modelling tools used in the article and are followed by the 
integral reproduction of the corresponding paper. 
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2.1 Research context 

The conservation of a species in an environment first requires the preservation of a suitable area 
where the species can live and reproduce. 

2.1.1 Definitions: habitat and ecological niche 

The concept of habitat is ambiguously defined (Hall et al., 1997), but the simplest definition is 
“the place in which species live” (Kearney, 2006). The habitat is characterised by a variety of 
specific conditions, such as climate and land cover and can be described without reference to a 
particular species (Kearney, 2006). Examples of habitats include savannah, grasslands, deserts, 
oceans, rivers, etc. The habitat is closely related to the niche of a species. The fundamental 
niche or ecological niche of a given species is the part of a habitat that respects all the environ-
mental conditions needed for its long-term survival, i.e. enabling it to find food, shelter, and to 
reproduce (Hutchinson, 1957; Sillero, 2011). Given an environmental space, the potential niche 
is defined as the portion of the environment that respects the constraints of the fundamental niche 
(Sillero, 2011). However, the establishment of a population may be limited by additional biotic 
factors such as competition, predation, human influence, etc. (Phillips et al., 2006). The realized 
niche is the part of a potential niche that is actually being occupied by the species (Sillero, 2011).  

2.1.2 Threats to the ecological niche 

To preserve a species in a territory, it is first necessarily to maintain the potential niche. This niche 
may, however, be under threat by environmental changes that alter the abiotic conditions required 
for the species’ survival. For example, Hughes et al. (2000) showed that many species, including 
alpine plants, marine invertebrates, birds and flying insects, had to modify their living range during 
the 20th century in response to global warming. Similarly, Parmesan et al. (1999) studied 35 non-
migratory butterflies species and showed that 63% of them had to expand their range northwards 
in response to the warming conditions of the last century. In addition, habitat loss and degradation 
are some of the most important factors influencing species extinction risk (Pimm and Raven, 
2000; Brooks et al., 2002). For example, coral reefs are threatened with global extinction due to 

 SPECIES ECOLOGICAL NICHE 
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degradation of their potential niche resulting from global warming (causing coral bleaching) and 
human disturbance (increasing sedimentation and eutrophication) (Munday, 2004). Similarly, the 
orangutan is threatened with extinction due to deforestation associated with oil palm cultivation 
(Swarna Nantha and Tisdell, 2009).  

In addition to threatening the preservation of appropriate potential niches, environmental changes 
may also lead to modifications of biotic interactions, e.g. by expanding of the potential niche of 
some invasive, pathogenic, competitive or predatory species. This may limit the possibility of a 
potential niche becoming the realized niche for a given species. For example, Musolin (2007) 
showed that climate change associated with milder winters led to a clear northward spread of an 
important crop pest between 1960 and 2000. Similarly, the review by Walther et al. (2009) high-
lights that global warming has induced an expansion of various invasive species (plants, fishes, 
birds) into areas where they would not have been able to survive and reproduce previously, which 
may reduce the diversity of native species in these areas.  

To preserve the potential niche of species, it is important to understand the environmental factors 
that affect the presence of species, in order to attempt to predict the influence of environmental 
changes on the suitability of a territory or its potential to become invaded by predators, competi-
tors or pathogens. In this context, ecological niche modelling is of great use for estimating the 
distribution of suitable areas for various species and how an area’s suitability will evolve with time. 

2.1.3 Ecological niche modelling (ENM) 

Several methods exist to model species distributions based on the observed relationships be-
tween species occurrence and environmental variables. These techniques are generally referred 
to as “ecological niche models” (ENM) or “species distribution models” (SDM) (Peterson and So-
berón, 2012), and they can be divided into two main categories: presence-absence and presence-
only methods.  

Presence-absence modelling techniques are based on a comparison of the environmental condi-
tions at locations where a species is present with those locations where it is absent. Conse-
quently, these methods require data for both presence and absence sites for the species. The 
latter may be very difficult to obtain as the inability to find individuals of a species at a particular 
site is not a confirmation of its absence. Due to this difficulty, several methods have been devel-
oped to estimate the distribution of a species based on occurrence data only. We will focus here 
on these presence-only modelling techniques. 

The first methods to be developed for presence-only modelling were based on environmental 
envelopes. These envelopes correspond to a volume defined in the n-dimensional space of the 
environmental predictors and include all species occurrence points. The limit values observed on 
each axis can then be used to identify the range of environmental conditions suitable for a spe-
cies. Among these methods, Busby et al. (1986) first suggested defining the envelope as an n-
dimensional rectangle (BIOCLIM). Walker and Cooks (1991) then replaced the rectangle with a 
n-dimensional convex polygon. They also suggested the use of a set of sub-envelopes, each of 
which can have a different degree of membership in the total envelope depending on the number 
of occurrence points that they contain (HABITAT). Using a different approach, Carpenter et al. 
(1993) proposed deriving a habitat suitability value using a point-to-point similarity metric to com-
pare the environmental conditions at a given site with those at the occurrences sites (DOMAIN).  
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Around the turn of the century, new methods emerged, proposing novel techniques based on the 
discrimination of presences from “background” or “pseudo-absence” points, which are resampled 
throughout the entire territory. Among them, Stockwell et al. (1999) suggested an algorithm based 
on a succession of rules to discriminate presences from background sites and achieve a binary 
prediction (GARP). Hirzel et al. (2002) developed a method similar to principal component anal-
yses to compute factors that best explain the distribution of species based on marginality (how 
the mean observed on occurrence sites differs from the global mean in the study area) and toler-
ance or specialization (how the variance between occurrence sites differs from the total variance) 
(ENFA). Later, Phillips et al. (2006) developed a new algorithm to discriminate presence data 
from background, based on the machine-learning principle of maximum entropy (Maxent, see 
Chapter 2.1.4). 

Several studies have compared the performance of these presence-only techniques and ranked 
Maxent among the most powerful ones (Elith et al., 2006; Hernandez et al., 2006; Guisan, Zim-
mermann, et al., 2007; Pearson et al., 2007; Tsoar et al., 2007; Graham et al., 2008; Huerta and 
Peterson, 2008; Wisz et al., 2008; Hoffman et al., 2010). Accordingly, we focus on the Maxent 
method in the following sections. 

2.1.4 Maxent 

When modelling species distributions, we search to estimate the probability of finding a species 
(y=1) based on the environmental conditions (x) of a site. Using Bayes’ theorem, we have: 

𝑝𝑝(𝑦𝑦 = 1|𝑥𝑥) =
𝑝𝑝(𝑥𝑥|𝑦𝑦 = 1) ∗ 𝑝𝑝(𝑦𝑦 = 1)

𝑝𝑝(𝑥𝑥)
 

Formula 2-1 

In this formula, p(x|y=1) corresponds to the probability of observing specific environmental condi-
tions knowing that the species is present, which can be estimated from the values of the environ-
mental conditions observed at the occurrence sites. However, p(y=1), which corresponds to the 
prevalence of the species, and p(x), which is the probability of observing specific environmental 
conditions, are both unknown. Nevertheless, the latter can be estimated using background sites 
randomly sampled across the entire territory. Indeed, these background points provide an esti-
mation of the environmental conditions of the entire study area and can thus be used to estimate 
the probability of observing given conditions. As a result, only p(y=1) remains unknown and we 
can calculate a suitability index proportional to the probability p(y=1|x) that we were initially look-
ing for. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑝𝑝(𝑥𝑥|𝑦𝑦 = 1)

𝑝𝑝(𝑥𝑥)
 ~𝑝𝑝(𝑦𝑦 = 1|𝑥𝑥) 

Formula 2-2 

The estimation of p(x|y=1) based on occurrence data requires fitting a probability distribution. To 
choose this distribution, Phillips et al. (2006) suggested first applying the constraint that the mean 
of the distribution has to match the mean of the environmental predictors observed in the sampled 
occurrences. Then, among the distributions meeting this constraint, they suggested selecting the 
distribution that is closest to uniform, i.e. closest to p(x). Indeed, p(x) can be considered as a null 
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model for p(x|y=1), as without occurrence data we could do no better than to consider that the 
probability of finding certain environmental conditions knowing that the species is present is pro-
portional to the frequency of these environmental conditions in the territory (Elith et al., 2010). 
Since the distance from p(x|y=1) to p(x) is the relative entropy of p(x|y=1) with respect to p(x), 
minimising the distance between p(x) and p(x|y=1) is equivalent to minimising the relative entropy. 
This is also equivalent to maximizing the entropy of the probability of finding a species at a given 
location (see (Elith et al., 2010) for a demonstration). Accordingly, Phillips et al. (2004) have 
named their modelling technique “Maxent” for “Maximum Entropy”. In addition, Phillips et al. 
(2004) demonstrated that maximizing this entropy results in the fitting of a Gibbs distribution, 
which takes the following form: 

𝑝𝑝(𝑥𝑥|𝑦𝑦 = 1) = 𝑝𝑝(𝑥𝑥) ∗ 𝑒𝑒α+β x 

Formula 2-3 

where β are the coefficients of the model and α is a constant that ensures that p(x|y=1) sums to 
1. Using Formula 2-2 and Formula 2-3, the suitability is given by: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  
𝑝𝑝(𝑥𝑥) ∗ 𝑒𝑒𝛼𝛼+𝛽𝛽 𝑥𝑥

𝑝𝑝(𝑥𝑥)
=  𝑒𝑒𝛼𝛼+𝛽𝛽 𝑥𝑥 

Formula 2-4 

A log-likelihood procedure can then be used to identify the β parameters that best fit this model 
(Phillips et al., 2004). Later, Renner and Warton (2013) demonstrated that the Maxent algorithm 
is also equivalent to a Poisson point process model, which can be implemented using a general-
ised linear model. Subsequently, Philips et al. (2017) proposed an open source release of Maxent, 
implemented through the R package “maxnet” and based on the “glmnet” package for generalized 
linear models. To run the model, several parameters must be chosen by the user, where these 
choices have been shown to strongly influence the resulting predictions (Phillips and Dudík, 2008; 
Merow et al., 2013; Morales et al., 2017; Hallgren et al., 2019). Some of the options available for 
several parameters are presented in Annex A1. 

2.1.5 Model evaluation 

Several tools have been proposed to evaluate the performance of species distribution models, to 
estimate their accuracy and predictive power, and to compare various predictions. Most of these 
tools are based on estimates of sensitivity and specificity. Given the continuous suitability values 
predicted by models such as Maxent, the application of a threshold is necessary to obtain binary 
predictions corresponding to the presence or absence of the species. Once such a threshold has 
been chosen, one can estimate the sensitivity of the model, i.e. the fraction of occurrence sites 
that are correctly predicted as presences. If absence data are also available, specificity, i.e. the 
fraction of absence sites correctly predicted as absences, can also be calculated. However, with 
presence-only data, specificity cannot be computed directly. The evaluation of the model will 
therefore focus on the distinction of presence from background locations, and the specificity is 
estimated by the fraction of background locations predicted as absences. 
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The Receiver Operating Curve (ROC) is the plot of the sensitivity versus 1-specificity for all 
possible threshold values (Figure 2-1) and the Area Under this Curve (AUC) is one of the most 
frequently used indicators to evaluate the performance of ecological niche models (Jiménez‐
Valverde, 2012). This measure was first introduced to estimate the accuracy of species distribu-
tion models by Fielding and Bell (1997) and it represents the probability that a randomly selected 
presence site will obtain a higher suitability value than a randomly selected absence or back-
ground site (Elith et al., 2006; Merow et al., 2013). If the model is not better than random, the 
AUC is equal to 0.5. The highest theoretically achievable AUC with presence and absence data 
is 1.0, but it is lower for presence-background data because some of the background points can 
correspond to presence sites (Phillips et al., 2006).  

 
Figure 2-1 – Receiver Operating Curve (ROC) 
 

The AUC has the advantage of being independent of any threshold choice, but it also shows 
some limitations (Lobo et al., 2008; Jiménez‐Valverde, 2012). Particularly, an important limitation 
is that AUC weights sensitivity and specificity equally (Lobo et al., 2008). However, with presence-
only data, we may want to give more weight to sensitivity since we know true presences, whereas 
the fraction of background sites being true absences is unknown. There is thus little reason to 
discriminate models with low specificity (Jiménez‐Valverde, 2012). Because of its limitations, it is 
advisable to combine the AUC with other evaluation measures. For example, one can calculate 
the omission rate (1-specificity), i.e. the percentage of true presences predicted as absences. 
This would however need the definition of a threshold. Several methods have been suggested to 
choose an optimal threshold, with one frequently used being the threshold that maximises the 
sum of sensitivity and specificity and therefore minimises the misclassification rate (Jiménez‐Val-
verde, 2012; Liu et al., 2013). 

 

 

Max (Se + Sp) 

AUC 
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2.1.6 Applications for conservation 

Ecological niche modelling is widely used in conservation studies. First, ecological niche models 
can be used to study the environmental factors that influence the distribution of a species and to 
estimate the potential for a species to live in non-sampled areas. For example, Meentemeyer et 
al. (2008) used ENM to estimate the probability of invasion by a tree pathogen causing forest 
disease and they highlighted areas where early detection sampling should be carried out as a 
priority. Similarly, Strubbe and Matthysen (2009) used ENM to map areas suitable for an invasive 
species and highlighted areas not yet colonized, where a spread of the invasive species is likely 
in the near future, thus threatening native species with competition.  

Ecological niche modelling can also be used to model the impact of projected climate or land-
cover changes on habitat suitability. This can be achieved by fitting a model on current environ-
mental conditions and then applying it to future projections. For example, Schleupner and Link 
(2008) used such modelling to study the impact of agricultural intensification on the availability of 
suitable areas for breeding bird populations in Eiderstedt, Germany. They highlighted a severe 
negative impact on bird populations, which can be used to argue against the projected changes. 
Falk et al. (2011) suggested using ENM as a basis for decision making in forest management 
planning, due to the possibility of projecting climate changes scenarios. As an example of appli-
cation, they modelled the distribution of silver fir under current and future climatic conditions and 
highlighted risk areas where this tree species should not be introduced due to unsuitable condi-
tions predicted in the future. Bradley et al. (2010) modelled the current distribution of three highly 
invasive plants and then used the model to project the distributions in 2100 under various climate 
change scenarios. From this, they highlighted areas where prompt eradication or management 
should be carried out as a priority. 

2.2 Scientific contribution 

2.2.1 Problem statement 

Spatial variability 

Usually, species distribution modelling studies use environmental variables extracted for the sam-
pling point only (Elith et al., 2006; Bradley et al., 2010; Williams et al., 2015; Raghavan et al., 
2016, 2019, 2020; Sage et al., 2017; Minigan et al., 2018; Soucy et al., 2018; Eisen et al., 2018; 
Hadgu et al., 2019). However, the response of a species to its environment may involve a wider 
area, notably as a function of its dispersal capability, or due to various biotic interactions (e.g. the 
presence of competitors or predators). The area considered in the point extraction of environmen-
tal variables depends on the spatial resolution of the data used. However, this spatial resolution 
is often chosen based on data availability, rather than considering the species ecology (Mayer 
and Cameron, 2003; Meyer, 2007). For example, many studies have used Worldclim climatic data 
with a spatial resolution of 1 km, or other environmental layers at a similar resolution, for any 
species and without any justifications (Porfirio et al., 2014; Manzoor et al., 2018). Occasionally, 
the choice of the resolution is also related to the computational demand, as high resolution over 
a large extent can exceed the available computing power (Guisan, Graham, et al., 2007; 
Gottschalk et al., 2011). Obviously, resolution chosen based on this latter criterion may also not 
be consistent with the species ecology. 
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In this context, several studies investigated the influence of spatial scale or “grain” on the perfor-
mance of the ENM predictions (Guisan, Graham, et al., 2007; Gottschalk et al., 2011, 2011; Con-
nor et al., 2018; Farashi and Alizadeh-Noughani, 2018; Manzoor et al., 2018). They showed that 
the optimal grain depends notably on the species under study (Guisan, Graham, et al., 2007; 
Connor et al., 2018) and the ENM method used (Farashi and Alizadeh-Noughani, 2018). All of 
these authors thus concluded that the spatial scale of environmental variables should be carefully 
chosen, in accordance with the species ecology. Some authors also suggested the use of multi-
grain approaches to consider variables affecting the presence of a species at different scales 
(Meyer and Thuiller, 2006; Meyer, 2007; Mertes et al., 2020). In addition, occurrence data may 
be attached of some errors or inaccuracies, in which case it would not be consistent to extract 
environmental variables for the sampling point only at a high resolution (Hanberry, 2013). Guisan 
et al (2007) therefore indicated that spatial resolution should also be in accordance with the error 
or inaccuracy associated with occurrence records.  

However, downscaling an environmental layer to a coarser resolution to account for data inaccu-
racies or to better fit the ecology of the species under study leads to an inevitable loss of infor-
mation. For example, the aggregation of categorical variables such as land cover class by retain-
ing the class observed in majority in the coarser cells induces an underestimation of landscape 
diversity and fragmentation (Saura, 2002). At present, when high-resolution data become increas-
ingly available, notably thanks to advances in remote sensing, and computing power appears less 
and less limiting, it would be preferable to use methods allowing to keep the precision of the 
available data. 

In this context, instead of downscaling the data and extracting the values for the sampling coor-
dinates, we suggest keeping high-resolution variables, but extracting the values in different buff-
ers surrounding the sampling point. First, this enables a better summary of the environmental 
conditions of the surrounding area, by using buffers centred on the point of interest instead of a 
fixed grid (raster) of coarser resolution. In addition, it allows the use of various statistics to sum-
marise environmental variables in the buffer area, such as mean value, standard deviation, me-
dian, mode, or percentage for the categorical classes. The use of buffers is not new (Meyer, 
2007), but its use in ecological niche modelling remains limited. In addition, an analysis of the 
influence of the buffer size on the results of Maxent modelling has, to our knowledge, never been 
presented. 

Temporal variability 

Similarly, environmental variables are usually extracted for a time period independent of the sam-
pling date. For example, Worldclim data, which are among the most commonly used for ecological 
niche modelling (Porfirio et al., 2014; Manzoor et al., 2018), provide a summary of climatic condi-
tions from 1950 to 2000. However, the suitability for a species may evolve over a much shorter 
temporal scale and the use of coarse temporal data may not provide a coherent picture of the 
current distribution, nor allow an estimate of the evolution over years.  

In addition, the occurrences used for the modelling may come from different sources, with sam-
pling corresponding to different months or years between which the climatic conditions may have 
changed. A common solution is to use an average of climatic conditions over the whole period 
covering sampling dates (Bradley et al., 2010; Williams et al., 2015). Once again, this leads to a 
loss of information since it does not allow to depict differences between the years/months under 
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study. In this context, we suggest extracting the environmental variables for each occurrences at 
an equivalent time period preceding the sampling date. 

Nested-niche 

Finally, as previously introduced, ecological niche models can also be useful for estimating the 
spread of invasive species, competitors, predators or pathogens in the context of environmental 
changes. In the case of a vector-borne pathogen, modelling the ecological niche of the vector 
may provide a first evaluation of risk areas where the pathogen’s presence may increase in the 
future (Brownstein John S et al., 2003; Illoldi-Rangel et al., 2012; Vajana et al., 2018). However, 
due to other factors influencing its presence, it is possible that the potential niche of the pathogen 
is smaller than that of its vector. In this context, we studied the possibility of using Maxent mod-
elling to estimate the nested-niche of a bacterial pathogen within the niche of its vector host. We 
propose a two-step application of Maxent based on probability theory. More specifically, we would 
like to estimate the probability of simultaneously observing a host (Ho) and its pathogen (Pa). 
Following Baye’s rule this probability can be estimated with: 

𝑝𝑝(𝐻𝐻𝐻𝐻 ∩ 𝑃𝑃𝑃𝑃) = 𝑝𝑝(𝑃𝑃𝑃𝑃 |𝐻𝐻𝐻𝐻) ∗ 𝑝𝑝(𝐻𝐻𝐻𝐻) 

Formula 2-5 

where p(Ho) is provided by the ENM derived for the host and p(Pa|Ho) can be estimated using 
ENM based on pathogen occurrence data. Indeed, occurrence data for pathogens are usually 
obtained by sampling the hosts and analysing the samples to detect those that are infected. Path-
ogen occurrences thus corresponds to the presence of the pathogen in sites where the host is 
present and their use in ENM will enable the estimation of a suitability proportional to p(Pa|Ho). 

2.2.2 Objectives 

In this context, we aim to: 

 

• Analyse the performance of the Maxent models as a function of the spatio-temporal vari-
ability considered for the extraction of the environmental variables (spatial area around 
the sampling point and time period before the sampling date). 

 

• Elaborate an approach combining different time periods and spatial areas (buffer size) 
for the various environmental factors (similar to a “multi-grain” procedure). 

 

• Analyse the possibility of using Maxent to model the nested niche of a pathogen within 
the predicted niche of its vector. 

 

• Highlight risk areas where the presence of a pathogen is increasing or likely to increase 
in the near future. 

 

2.2.3 Case study 

In the study presented in section 2.3, we build ecological niche models to estimate the spatial 
distribution of the tick species Ixodes ricinus and its Chlamydiales bacterial pathogen across the 
whole Switzerland from 2009 to 2019. Ixodes ricinus is the most common tick species in Switzer-
land and is known to be the vector of many pathogens (Mermod et al., 1973; Aeschlimann et al., 
1986; Pilloux et al., 2015). This tick goes through four life stages before reproducing: egg, larva, 
nymph and adult (Figure 2-2). Before undergoing metamorphosis from one stage to the following, 
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the tick needs to feed once from the blood of a host. Ticks thus quest on vegetation, until they 
find a host to which they can attach. Ixodes ricinus has a very large range of potential hosts, 
including almost all mammals species from Switzerland (particularly rodents, hedgehogs, roe 
deer, livestock, dogs), but also lizards, birds, and humans (Aeschlimann, 1981). Once they have 
finished feeding, they fall to the ground where they metamorphose to the next life stage and start 
questing again. Due to their sensitivity to desiccation, I. ricinus ticks need high levels of humidity 
(McCoy and Boulanger, 2015). For this reason, they regularly interrupt their questing activity to 
move to the moist soil to rehydrate. The total duration of a life cycle is estimated to be two to three 
years (McCoy and Boulanger, 2015). During the winter months, when the temperature is too low, 
the ticks hide close to the ground and enter a state similar to hibernation or diapause, waiting for 
more favourable conditions to start questing again (Aeschlimann, 1972). If they are not in direct 
contact with ice, they can survive for over a month at air temperatures of -10°C and for a couple 
of months at -5°C (Lindgren et al., 2006). However, if the unfavourable conditions persist for too 
long, the ticks cannot achieve their development before dying and thus the establishment of a 
stable population is not possible (Daniel et al., 2003).  

 
Figure 2-2 – Ixodes ricinus life cycle 
Ixodes ricinus ticks goes through four life stages (egg, larva, nymph and adult). Before metamorphosing 
from one life stage to the following, ticks have to feed once from the blood of a host. The total life cycle can 
last two to three years. 

2.2.4 Main conclusions 

Our study showed that for Ixodes ricinus, the performance of the Maxent model was noticeably 
higher when considering a buffer area around the sampling point compared with extracting envi-
ronmental data for sampling point coordinates only. In addition, for this species, the best perform-
ing models were obtained when extracting environmental variables in a buffer with a radius of 100 
or 200 m, which corresponds to the area of dispersal of known tick hosts. Similarly, the results 
indicated that the time period considered before the sampling date has a significant impact on the 
performance of the resulting models. For I. ricinus the best performing models were obtained 
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when considering the climatic conditions of the two or three years preceding the sampling date, 
which corresponds to the estimated duration of the ticks’ life cycle. These results thus highlighted 
the importance of considering the spatio-temporal variability when extracting environmental pre-
dictors for ecological niche modelling. 

In addition, our results identified the environmental factors influencing the presence of the Ixodes 
ricinus tick and its Chlamydiales bacterial pathogen in Switzerland and allowed us to map the 
evolution of suitability across the country from 2009 to 2019. We thus showed an application of 
ecological niche models to study the nested niche of a pathogen within the ecological niche of its 
host, and we conducted the first investigation of the environmental factors that may influence the 
presence of pathogenic Chlamydiales in ticks. The resulting distribution maps may be used for 
conservation purposes, as they highlight areas at risk where the presence of a pathogen is in-
creasing. Depending on the availability of sufficient future environmental data (not available for 
our study), such models may also be used to estimate the evolution of suitable areas for a species 
or a pathogen in relation to future climate predicted by climate change scenarios. This can be 
used to highlight populations that are particularly exposed to environmental changes. 

Main contributions 
 

• Demonstration of the importance to consider the spatio-temporal variability of environ-
mental variables used in ecological niche models, using buffered areas around the sam-
pling point and time windows preceding the sampling date. 

 

• Illustration of the use of Maxent to model the nested-niche of a parasite within the eco-
logical niche of its host. 

 

• Picture of the evolution of the suitability for the tick species Ixodes ricinus over a decade 
throughout Switzerland and identification of risk areas where prevalence is largely in-
creasing. 

 

• First investigation of climatic factors that may influence the presence of Chlamydiales 
bacteria in ticks. 
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2.3 PAPER A: Ixodes ricinus and Chlamydiales Swiss distributions 
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Contributions 

I collected ticks from the prospective campaign, computed the environmental variables, per-
formed all statistical and modelling analyses and wrote the first draft of the paper.  

2.3.1 Abstract 

The tick Ixodes ricinus is the vector of various pathogens, including Chlamydiales bacteria, po-
tentially causing respiratory infections. In this study, we modelled the spatial distribution of I. rici-
nus and associated Chlamydiales over Switzerland from 2009 to 2019. We used a total of 2293 
ticks and 186 Chlamydiales occurrences provided by a Swiss Army field campaign, a collabora-
tive smartphone application and a prospective campaign. For each tick location, we retrieved from 
Swiss federal datasets the environmental factors reflecting the topography, climate and land 
cover. We then used the Maxent modelling technique to estimate the suitability for I. ricinus and 
to subsequently build the nested niche of Chlamydiales bacteria. Results indicate that I. ricinus 
high habitat suitability is determined by higher temperature and vegetation index (NDVI) values, 
lower temperature during driest months and a higher percentage of artificial and forests areas. 
The performance of the model was increased when extracting the environmental variables for a 
100 m-radius buffer around the sampling points and when considering the data over the two years 
previous sampling date. For Chlamydiales bacteria, the suitability was favoured by lower percent-
age of artificial surfaces, driest conditions, high precipitation during coldest months and short 
distances to wetlands. From 2009 to 2018, we observed an extension of tick and Chlamydiales 
suitable areas, associated with a shift towards higher altitude. The importance to consider spatio-
temporal variations of the environmental conditions for obtaining better prediction was also 
demonstrated.  
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2.3.2 Importance 

Ixodes ricinus is the vector of pathogens, including the agent of Lyme disease, the tick borne 
encephalitis virus and the less known Chlamydiales bacteria at the origin of some respiratory 
infections. In this study, we identified the environmental factors influencing the presence of I. 
ricinus and Chlamydiales in Switzerland and generated maps of their distribution from 2009 to 
2018. We found an important expansion of suitable areas for both the tick and the bacteria during 
the last decade. Results provided also the environmental factors that determine the presence of 
Chlamydiales within ticks. Distribution maps as generated here are expected to bring valuable 
informations for decision-makers to control tick-borne diseases in Switzerland and establish pre-
vention campaigns. The methodological framework presented could be used to predict the distri-
bution and spread of other host-pathogen couples, to identify environmental factors driving their 
distribution and to develop control or prevention strategies accordingly. 

2.3.3 Introduction 

Ixodes ricinus is the most common tick species in Switzerland and is known to be the vector of 
many pathogens, including the tick-borne encephalitis virus and the bacteria Borrelia burgdoferi, 
agent of the Lyme disease (Mermod et al., 1973; Aeschlimann et al., 1986). In 2015, Pilloux et al. 
showed that I. ricinus may also have a role of vector and even reservoir for Chlamydiales bacteria, 
especially Rhabdochlamydiaceae and Parachlamydiaceae. Chlamydiales is an order of strict in-
tracellular bacteria containing various bacterial pathogens or emerging pathogens associated with 
serious diseases for humans and animals, including respiratory tract infections and miscarriage 
(Corsaro and Greub, 2006; Greub, 2009; Borel et al., 2018). Parachlamydiaceae have been 
largely associated to free-living amoebae (Corsaro et al., 2009, 2010) and are considered as 
emerging agents of pneumonia in humans (Lamoth and Greub, 2010a, 2010b). They have also 
been associated with miscarriage in ruminants (Borel et al., 2007; Deuchande et al., 2010) and 
have been documented in roe deer and red deer, as well as in some rodents (Regenscheit et al., 
2012; Stephan et al., 2014). Rhabdochlamydiaceae have been mainly described associated to 
arthropods, including Porcellio scaber, Blatta orientalis and Ixodes ricinus (Kostanjsek et al., 
2004; Corsaro et al., 2007; Pillonel et al., 2019). The pathogenic role of Rhabdochlamydiaceae is 
still largely unknown, but suspected to cause newborn infections (Lamoth et al., 2009) and res-
piratory complications such as pneumonia (Lamoth et al., 2011). 

Considering the potential threat to human health caused by pathogens associated with the tick 
Ixodes ricinus, studies already investigated the influence of environmental factors on its presence 
or density. They showed that the distribution and activity of I. ricinus is mainly influenced by tem-
perature and humidity (Aeschlimann, 1972; Perret et al., 2000, 2003; McCoy and Boulanger, 
2015). Indeed, this tick species is prone to desiccation and a relative humidity between 70 to 80% 
close to the soil is necessary for its survival (Aeschlimann, 1972; Kahl and Alidousti, 1997; Perret 
et al., 2000). Its most favourable habitats may therefore be vegetation types able to maintain a 
high humidity level close to the soil such as woodlands with thick vegetation litter (Aeschlimann, 
1972; Lindgren et al., 2006; McCoy and Boulanger, 2015).  

In Switzerland, several studies analysed the impact of environmental conditions on the activity or 
density of Ixodes ricinus. An early study done by Aeschlimann et al. (1972) indicated that I. ricinus 
distribution is mainly limited by the presence of a favourable vegetation cover, with a relative 
humidity close or superior to 80% and an altitude inferior to 1500 m. Perret et al. (2000) showed 
that the questing activity of ticks takes place from a temperature of 7°C and Hauser et al. (2018) 
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indicated that questing activity is largely reduced when the temperature exceeds 27°C. Jouda et 
al. (2004) showed that in the region of Neuchâtel, the density of ticks decrease with altitude, which 
was confirmed by Gern et al. (2008). However, this relationship was found opposite in the Alps 
(Valais), which they explained by drier conditions at lower altitude.  

Bacteria communities within ticks are also known to be influenced by environmental conditions, 
notably through a modification of the tick density, the tick behaviour or the vector-host interactions 
(Carpi et al., 2011; Ehrmann et al., 2018; Aivelo et al., 2019). For example, B. burgdorferi is most 
likely found at lower altitude (Gern et al., 2008), infect more ticks collected in forests than in pas-
tures (Halos et al., 2010; Ehrmann et al., 2018), and may be favoured by the forest fragmentation 
(Halos et al., 2010; Roome et al., 2018) while Rickettsia bacteria may be more prevalent in ticks 
in pasture sites showing a shrubby vegetation and a medium forest fragmentation (Halos et al., 
2010). Environmental factors might provide us with critical information for bacteria distribution and 
thus potential threats to human. However, nothing has been investigated regarding Chlamydiales 
bacteria yet. 

Most studies described above analysed the impact of environmental factors on the density or 
questing activity of ticks. None modelled across years the spatial distribution of Ixodes ricinus 
habitat suitability at the Swiss scale nor the distribution of the Chlamydiales bacteria. In our study, 
we therefore aimed to build a model estimating the spatial distribution of the I. ricinus species 
from 2009 to 2019 in all Switzerland using the Maxent modelling technique. Beside, we also in-
vestigated, for the first time, the ecological factors that determine the distribution of Chlamydiales 
bacteria and the environmental factors that influence the presence of this bacteria within its tick 
host.  

Modelling of I. ricinus distribution with Maxent has already been done at the scale of Europe 
(Porretta et al., 2013), for an area including Europe, North Africa and Middle East (Alkishe et al., 
2017) and in Romania (Domsa et al., 2018). Environmental data used in these studies were ex-
tracted from Worldclim climatic data at a spatial resolution of 30 arc-second (approximately 1 km). 
These data summarized climatic conditions from 1950 to 2000. Therefore in these studies as in 
many others (Williams et al., 2015; Raghavan et al., 2016, 2019, 2020; Sage et al., 2017; Minigan 
et al., 2018; Soucy et al., 2018; Eisen et al., 2018; Hadgu et al., 2019) environmental data were 
extracted at a resolution that did not match the species ecology and more importantly the envi-
ronmental conditions at sampling dates. Our goals were thus first to build a model of higher spatial 
resolution (100 m) for Switzerland and second to use recent climatic data to characterize in detail 
the distribution of Ixodes ricinus and its associated Chlamydiales bacterial pathogen over Swit-
zerland from 2009 to 2019. To better understand the importance of the environmental conditions 
surrounding the sampling points, and the conditions preceding sampling date, we analysed the 
performance of the model 1) across buffer zones around the sampling point and 2) through dif-
ferent period of time before the sampling date. Finally, we investigated the potential to use the 
Maxent modelling to estimate the nested niche of a parasite within the ecological niche of its host. 
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2.3.4 Material and Methods 

Species distribution can be modelled with various methods that use either records of presence 
and absence of the species or only presences (Elith et al., 2006; Tsoar et al., 2007; Huerta and 
Peterson, 2008; Norberg et al., 2019). Among them, the Maxent algorithm (Phillips et al., 2006) 
using presence records only has been shown to perform particularly well as compared to other 
presence-only modelling methods (Elith et al., 2006; Huerta and Peterson, 2008). We thus chose 
to use this model to determine the potential ecological niche of Ixodes ricinus and its associated 
Chlamydiales bacterial pathogen over Switzerland. The various steps of the method detailed in 
the paragraphs below are summarised on a Figure in Annex A2.2. 

Ticks and bacteria occurrences data 

Data regarding tick occurrences were obtained from three different sources. First, ticks were col-
lected by a field campaign conducted by the Swiss Army from 21st of April to 13th of July 2009. 
During this campaign, 172 forests were sampled with convenience sampling in forests in altitude 
lower than 1,500 m. 62,889 ticks were collected by flagging low vegetation using a white-cloth. 
The ticks were then aggregated into 8’534 pools of 5 to 10 ticks (5 nymphs or 10 adults) and each 
pool was analysed for the presence of Chlamydiales DNA by using a pan-Chlamydiales real-time 
qPCR as described by Pilloux et al. (2015), after extracting the DNA as described by Gäumann 
et al. (2010). Among the 8,534 pools, 543 were positive (6.4%) and they were located in 118 out 
of the 172 sampling sites (68.6%). 

Second, data were obtained from the collaborative smartphone application “Tick Prevention” 
(zecke-tique-tick.ch) developed by A&K Strategy GmbH, a Spin-off from the Zurich University of 
Applied Sciences (ZHAW) in which users can indicate tick locations on a map. The application 
was launched in February 2015 and by the end of December 2019, 29 153 locations of tick’s 
observations were available in Switzerland. To each observation a spatial accuracy is assigned 
depending on the scale (zoomed area) to which the observation was reported by the user. For 
our analysis, only observations with a spatial accuracy equal or higher to 100 m and only data 
collected from March to October were used. The final dataset corresponded to 5 781 tick’s loca-
tions. Moreover, since January 2017, users bitten by a tick can send the tick removed from their 
body to the national centre for tick-transmitted diseases (NRZK, www.labor-spiez.ch). The ticks 
received are analysed by three different laboratories for detecting the presence of various bacte-
ria, including Chlamydiales. In April 2019, 554 ticks from 506 sites were received and sequenced, 
among which 21 ticks (3.79%) were positive for Chlamydiales bacteria and were located in 19 
sites (3.75%).  

Finally, to increase the number of data, especially regarding Chlamydiales occurrences, a pro-
spective campaign was conducted by the authors from 11th of May to 24th of June 2018. During 
this campaign, 95 sites were visited, mainly in west Switzerland. Those sites were chosen in areas 
predicted to be favourable for the presence of ticks based on a pre-analysis of the two other 
datasets, and such to maximise the environmental variability between visited sites (see Suppl. 
File 1 for more details). Whenever possible, three ticks were collected in each site, by dragging a 
white-cloth over the soil. For some sites however, only one or two ticks could be found. Eventually, 
the campaign allowed the collection of 256 ticks, each of which were placed in a sterile tube and 
kept at 4°C before being sent to the laboratory to be analysed for the presence of Chlamydiales 
bacteria. In the laboratory, the ticks were washed once with 70% ethanol and twice with PBS. 
DNA was extracted using the NucleoSpin DNA Insect Kit (Macherey-Nagel) with NucleoSpin 
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Bead Tubes Type E and MN Bead Tube Holder in combination with the Vortex-Genie 2. Manu-
facturer’s protocol was slightly adapted by performing disruption during 20 min followed by a 2h 
incubation at 56°C in order to allow proteinase K digestion. DNA was then analysed using the 
pan-Chlamydiales qPCR developed by Lienard et al. (2011). A tick was considered as positive 
for the presence of Chlamydiales if either the two replicates were positive or if one of the two was 
highly positive (CT value < 35). As a result, 72 out of the 256 ticks were positive (28.13%), in 51 
out of 95 sites (53.6%).  

The characteristics of each dataset are summarized in Table 2-1. 

 
Table 2-1 – Datasets Ixodes ricinus and Chlamydiales 
Characteristics of the three data sources regarding Ixodes ricinus occurrences and infection by Chlamyd-
iales bacteria. The data obtained via the Tick Prevention app are divided into two datasets (column 2 and 
3). The first dataset (column 2) corresponds to tick locations recorded on the app. including a majority of 
ticks for which no information regarding Chlamydiales bacteria were available. This dataset was used in 
the modelling of the distribution of Ixodes ricinus only. The second dataset (column 3, which represents a 
subset of dataset listed in column 2) contains some ticks that were sent to laboratory for the analysis of 
Chlamydiales. This dataset was therefore used in the modelling of Chlamydiales distribution. Data from the 
two other sources (column 1 and 4) were used both for the modelling of I. ricinus and Chlamydiales. 

  

Swiss Army field  
campaign 

"Tick Prevention" app. 
ticks recorded 

"Tick Prevention" app. 
ticks sent for analysis 

Authors' prospective  
campaign 

Observation/Sampling dates 
21.04.2009 -  
13.07.2009 

09.03.2015 - 
30.10.2019 

04.04.2017 - 
07.04.2019 

11.05.2018 - 
24.06.2018 

Number of sites 172 5,781 506 95 

Number of individual ticks 62,889 5,781 554 256 

Number of pools 8,534  -  -  - 

Number of ticks/pools infected 543  - 21 72 

Infection rate in ticks/pools 6.34%  - 3.79% 28.13% 

Number of sites infected 118  - 19 51 

Infection rate in sites 68.6%  - 3.75% 53.68% 

 

Environmental data 

To characterise the environmental conditions potentially influencing the spatial distribution of Ix-
odes ricinus and Chlamydiales, several information were retrieved for the whole Switzerland ter-
ritory regarding 1) the morphometry 2) the land cover and 3) the climate.  

To characterise the morphometry of each data point site, seven indicators were derived from the 
digital elevation model provided by the USGS/NASA SRTM data version 4.1, at a 90m-resolution 
(Jarvis et al., 2008). The chosen indicators were computed using the SAGA GIS 2.3.2 software 
(Conrad et al., 2015) and represent: slope, aspect, general curvature, morphometric protection 
index, terrain ruggedness, sky-view factor and topographic wetness. The definition of each of 
these indicators and the exact procedure followed to derive them are detailed in Annex A2.3. 

To characterise the land cover, we first used the land cover statistics from the Swiss Federal 
Statistical Office (OFS, 2017). From this dataset we retrieved the classification of each Swiss 
hectare into six land cover types representative of the period 2004-2009: artificial areas, grass 
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and herb vegetation, brush vegetation, tree vegetation, bare land and watery areas. To better 
classify forest type, we computed in R (R Development Core Team, 2008) the percentage of 
coniferous in each forest based on a dataset provided by the OFS at a 25-m resolution which 
classifies the forests of Switzerland in four classes : pure coniferous, mixed coniferous, mixed 
broadleaved and pure broadleaved (OFS, 2013). Secondly, we retrieved the vector landscape 
model swissTLM3D 2016 from the Swiss Federal Office of Topography (O’Sullivan et al., 2008) 
and we use the function “Proximity” in the QGIS 2.14.7 software (QGIS Development Team, 2016) 
to derive four indices characterising the minimal Euclidean distance to watery areas: distance to 
wetland, to watercourses, to stagnant water and to any watery elements. Thirdly, we retrieved the 
16-days composite Normalised Difference Vegetation Index (NDVI) available in the MODIS Sat-
ellite products at a 250m-resolution (Huete et al., 1999), from which we derived in R the average, 
minimum, maximum and range of monthly mean NDVI. More details regarding all those land cover 
data and the derived indicators are also available in Annex A2.3. 

Finally, several indicators were computed to summarise the climatic conditions of each data point 
site. They were derived from monthly temperature (average, minimal and maximal) and sum of 
precipitation grids computed at a 100m-resolution by the Swiss Federal Institute for Forest, Snow 
and Landscape Research (www.wsl.ch), based on data from MeteoSwiss (www.meteoswiss.ch) 
and using the Daymet software (Thornton et al., 1997). From these data, 31 indicators were de-
rived to represent the climatic conditions during the period of interest and before sampling date 
(from 1 to 36 months preceding sampling date, see extraction chapter for more details). These 
indicators are presented in Annex A2.3 and they summarise 1) the values of the monthly mean, 
minimal and maximal temperature and sum of precipitation (8 indicators), 2) the variation of 
monthly temperature and precipitation (5 indicators), 3) the temperature of the warmest (resp. 
coldest) month (2 indicators) and 4) the temperature and precipitation of the three consecutive 
warmest (resp. coldest, wettest, driest) months (16 indicators). In addition, grids of the daily max-
imum and minimum temperature values at a 1km-resolution were obtained from MeteoSwiss. 
From these datasets, we estimated the daily saturated and ambient vapour pressure using the 
Tetens formula (Murray, 1966) and by approximating the temperature at dew point by the mini-
mum temperature (Running et al., 1987). We used them to compute the daily relative humidity 
and to derive 22 indicators summarising the monthly (9 indicators) and daily (13 indicators) values 
of relative humidity. All these climatic predictors were computed in R, with the detailed procedure 
presented in Annex A2.3. In total, this resulted in 77 environmental indicators, each of which were 
resampled to a final spatial resolution of 100 m. 

Data extraction 

The values of the 77 environmental predictors were extracted for each data point site (tick occur-
rence) according to their coordinates using the function “extract” from the R “raster” package. The 
climatic and NDVI variables were retrieved as a function of the sampling dates. To assess the 
influence of the conditions before sampling, we retrieved these variables for 1 month, 3 months, 
6 months, 1 year, 2 years and 3 years before sampling date. For the other stable predictors such 
as morphometric predictors, land cover type, percentage of coniferous in forest and distances to 
watery areas one single extraction was used for all sampling dates over the period of analysis 
(from 2009 to 2019).  
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To assess the influence of the environmental conditions surrounding the sampling points, for each 
environmental predictor we also computed the mean value observed in square buffers centred 
on the sampling point, with radius of 100 m, 200 m, 500 m, 700 m, 1 km and 1.5 km. Raster layers 
were also computed for each of these indicators, with every buffer radius and time period, for 
June months from 2009 to 2019. For each pixel, the computation of mean values considering a 
square buffer around the pixel was done with a moving-window procedure implemented in R, 
based on the “focal” function from the “raster” package. 

Finally, we also extracted all predictors for a randomly generated data set (to test it against sam-
pling data, see hereafter). This generated data set is composed by sites with 10,000 coordinates 
randomly localised in Switzerland, for which dates were selected randomly within the distribution 
of observed sampling dates (Annex A2.4).  

Ixodes ricinus modelling 

Selection of environmental variables 

The species distribution models were successively derived using the variables extracted for each 
combination of buffer radius (100 m, 200 m, 500 m, 700 m, 1 km and 1.5 km) and time period (1 
month, 3 months, 6 months, 1 year, 2 years and 3 years). In addition, to select the most significant 
combination of buffer radius and time period individually for each variable, we performed a Stu-
dent T-test to identify the variables that best discriminate the tick’s presences from random points. 
The computation was done using the function “t.test” in R and variables were considered as sig-
nificant if the p-value of the T-test was lower than 0.01 after a Bonferroni correction for multiple 
comparisons. For each variable, we then kept only the combination of buffer radius and time 
period showing the highest T-value. A “combination” model was then derived using this “combi-
nation” set of variable. 

As some environmental variables considered might be correlated, we used two methods to pre-
select uncorrelated environmental predictors. In the first one, we run a Principal Component Anal-
ysis (PCA) on the variables to retrieved independent components. The coordinates of the PCA-
components were then used as environmental predictors to run the species distribution model. In 
the second method, for each pair of variables showing a Pearson correlation higher than 0.8, we 
kept only the variable with the highest T-value in the T-test previously computed. In addition, we 
successively removed the variables inducing the highest inflation factor (VIF) computed with the 
R function “vif”, until the highest VIF value was lower than 10. Only the remaining variables were 
used to train the model. 

Maxent Modelling 

Species distribution modelling was performed using the Maxent algorithm (Phillips et al., 2006) 
implemented in the R package “maxnet” (Phillips et al., 2017). Maxent estimates a suitability index 
which is proportional to the probability of presence of the species knowing the environmental 
conditions of a site of interest (Elith et al., 2010). The computation requires the values of environ-
mental predictors observed on sites where presence was recorded and on background locations 
(i.e. locations representative of the entire study area). The model was trained with all Ixodes rici-
nus occurrences available for years 2009 to 2017 and the occurrences from the 2018 prospective 
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campaign. This represents a total of 2293 presence points. The occurrences reported by the us-
ers of the Tick Prevention app. in 2018 and 2019 with 3751 presence points were kept as an 
independent dataset used to test the models.  

Since the performance of the Maxent models is known to be influenced notably by the background 
point selection, environmental variable selection, features types and regularisation parameters 
(Lobo and Tognelli, 2011; Barbet‐Massin et al., 2012; Merow et al., 2013; Hallgren et al., 2019), 
we tested different alternatives regarding them. For the selection of background points, we tested 
two options: either we used the 10 000 points randomly selected in the Swiss territory or we used 
only the random points situated below 1500 m in altitude, where tick occurrence is more likely. 
For the environmental variables, we used the two procedures to derive uncorrelated set of varia-
bles, i.e. the coordinates of the PCA components and the variables filtered by the previously 
described method based on Pearson correlation and variance inflation factor. Moreover, when 
using the PCA components, we considered either all components of the PCA or only the compo-
nents needed to retain 50% of the variance, resp. 70%, 80%, 90% or 95%. For the feature types, 
we tested the use of linear features only, or the combination of linear and product, linear and 
quadratic or linear, product and quadratic together. Finally, we varied the regularisation constant 
parameters with values equal to 1, 2, 5 or 10. 

In order to perform a cross-validation procedure, we used 75% of the occurrences and back-
ground points to train the model and kept 25% to test it. The training and testing occurrences 
were selected randomly and 20 different runs were computed. All models were projected using 
the “cloglog” scaled output (Phillips, 2017), interpreted in terms of suitability index to avoid making 
assumptions regarding the prevalence of the species. 

Model evaluation 

The models were compared based on four criteria. First the Area under the Receiver Operating 
curve (AUC) (Fielding and Bell, 1997) was computed on the testing dataset. The mean value of 
AUCtest over the 20 runs was used as a measure of discrimination power. The AUC is a measure 
commonly used for the evaluation of species distribution models (Manel et al., 2001; Elith et al., 
2006). It has the advantage to be threshold-independent, but needs to be used in combination 
with other evaluation parameters (Lobo et al., 2008; Peterson et al., 2008; Jiménez‐Valverde, 
2012). Therefore, we used as a second evaluation measure the omission error rate, which reflects 
the accuracy of the model. The computation of this rate requires the definition of a threshold value 
to classify the predictions into binary presences or absences. Based on the receiver operating 
curve, we chose the threshold which maximises the sum of specificity and sensitivity and therefore 
minimizes the misclassification rate (Kaivanto, 2008). Omission errors were computed both on 
the testing and independent (3751 points from 2018 and 2019) datasets. Finally, to avoid the 
selection of complex models, that would be difficult to interpret and probably prone to overfitting, 
we used a third evaluation measure that selected against models having high number of coeffi-
cients (following the principle of information criterion (Aho et al., 2014)). 

To combine the four evaluation parameters and select the most powerful model, we assigned four 
performance ranks to each model as a function of each evaluating parameter and we selected 
the model which minimises the sum of ranks. We then applied the best model to the raster layers 
to map the predicted suitability across entire Switzerland for June months from 2009 to 2019. 
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Identification of effective variables 

In order to identify the environmental variables most contributing to the model, we implemented 
in R a jackknife procedure as proposed by Phillips (2017). For each environmental predictor, we 
computed the Maxent model with only this variable and calculated the corresponding AUC 
(AUConly). Variables leading to high values of AUConly therefore contribute a lot to the model by 
themselves. Similarly, we successively computed models with all variables except the one under 
interest and we computed the corresponding AUCwithout. Predictors associated with high values of 
AUCwithout were identified as containing important information that is not present in the other vari-
ables. 

Chlamydiales Modelling 

Background dataset 

To model the distribution of Chlamydiales bacteria within ticks, we used a similar procedure to 
that of Ixodes ricinus. The modelling was also done using Maxent, based on the 186 occurrence 
points available for 2009 and 2018. As for I. ricinus, the modelling required the definition of back-
ground data. Since we are interested by the probability to find Chlamydiales within ticks, back-
ground points have to represent the environmental conditions of the ecological niche for the tick. 
Consequently, we built a background dataset in two steps. First, we selected the points where 
ticks have been observed and analysed for the presence of Chlamydiales, but being negative 
(374 points). Secondly, in order to avoid a model discriminating presences from background due 
to differences in sampling dates, we completed the background dataset such to have a similar 
distribution of sampling months and sampling years as in the presence dataset (Annex A2.4). 
This was achieved by selecting random points within areas predicted to be suitable for ticks, 
based on the suitability predicted by the models previously derived for Ixodes ricinus. The final 
background dataset contains 1028 data points. 

Variable selection and modelling 

The same procedure was then applied as for the modelling of the tick’s suitability: 1) computation 
of a T-test to select a “combination” dataset of environmental variables, 2) selection of uncorre-
lated variables with either a PCA or a correlation/VIF procedure, 3) run of Maxent models by 
testing various parameters (method to select uncorrelated variables, feature types and regulari-
sation parameters). In order to build models for the suitability of Chlamydiales within areas suita-
ble for ticks, the predicted suitability for Chlamydiales obtained by the Maxent model was then 
multiplied by the suitability obtained for I. ricinus.  

As for I. ricinus, twenty runs were computed for each model, using 75% of the data to train the 
model and 25% to test it. The ranking procedure used to evaluate the models was slightly different 
to the one used for the tick. The AUCtest and the number of coefficients were used similarly, but 
the omission rates on testing and independent datasets were replaced by two other indicators 1) 
the difference between the mean of suitability values predicted on occurrences sites in 2009 and 
the mean suitability predicted on sites without Chlamydiales in 2009 and 2) the same difference 
for 2018. Indeed, even if sites where no Chlamydiales were found could not be considered as 
proper absences, we suspected the probability to find Chlamydiales to be lower on these sites. A 
model showing a lower suitability in areas where Chlamydiales were not identified as compared 
to occurrence sites would therefore be considered as more performant.   
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2.3.5 Results 

Ixodes ricinus modelling 

Best model 

Among the 56 models tested with various parameters, the best one, according to the ranking 
procedure, was obtained with the following parameters: 1) background points selected below 
1500 m in altitude (corresponding to 6049/10 000 points), 2) a PCA procedure to avoid correlated 
variables, with the components selected to retained 95% of the variance, 3) a combination of 
linear and quadratic features and 4) a value of 5 for the regularisation constant parameter. Details 
of the models tested, and their corresponding evaluation parameters, are available in Annex A2.5. 
These parameters were then used to test the influence of the choice of buffer radius and time 
period on the performance of the models. Figure 2-3 shows the AUCtest and sum of ranks obtained 
for each combination. According to these results, the best model was obtained by extracting the 
environmental variables in a buffer with a 100-m radius around the sampling point and for the 2 
years (24 months) preceding the sampling date. Note that the performance of the “combination” 
model was very close, as well as the performance of models obtained with an extraction for the 3 
years preceding sampling date and a buffer radius of 100 m, or for the two years preceding sam-
pling date with a 200 m buffer. Moreover, we observed for each buffer radius, that the models 
were more performant when considering the variables extracted for the 2 or 3 years previous 
sampling date, instead of considering the conditions of the current year or even shorter time pe-
riod. Similarly, the models obtained by extracting the variables within buffers of 100 m or 200 m 
radius always outperformed the other models. Performance of models with variables extracted at 
the sampling coordinates only (radius = 0m) was much lower than any buffer model, even those 
with a radius larger than 500 m. We retained the best model with variables extracted in a 100 m-
radius buffer and for the two years preceding the sampling date (Figure 2-3). The global AUC 
obtained (with both the training and testing data) is 0.794 and the mean AUCtest obtained through 
the 20 runs is of 0.789. The threshold maximising the sum of sensitivity and specificity equals 
0.59. Using this threshold, the average omission error on the testing dataset reach 23% and the 
omission rate on the independent dataset is 11%. The model estimated 31 non-negative coeffi-
cients. The median predicted suitability on all occurrences used in the model is 0.74 and the 
median suitability on independent occurrences from 2018 and 2019 is 0.88. 
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Figure 2-3 – Models performance - Ixodes ricinus. 
Performance of models predicting the suitability for Ixodes ricinus. (Left) Values of the AUCtest and the sum 
of ranks as a function of the buffer radius and the time period considered for the extraction of the environ-
mental variables. For the AUCtest, the points indicate the mean value computed through the 20 runs and 
the lines correspond to the 95% confidence intervals. (Right) Characteristics of the best model chosen 
according to best values on the graphics on the left. OE_test is the omission error on the test samples and 
OE_indep the omission errors on the independent additional data available for 2018 and 2019. 

Effective variables 

The four variables containing the largest amount of important information not available in the other 
variables (lowest AUCwithout) were: the dimension 1 (AUCwithout=0.748), dimension 12 (0.776), di-
mension 8 (0.780) and dimension 5 (0.784) (using jackknife procedure, Figure 2-4). The four 
variables containing the largest amount of important information by themselves (highest AUConly) 
were: the first dimension of the PCA (AUConly=0.641), the dimension 12 (0.617), dimension 21 
(0.591) and dimension 8 (0.582).  

The dimension 1 of the PCA is strongly positively correlated with average of the monthly mean 
temperatures (r=0.91) and indicates that presence of Ixodes ricinus is favoured by higher mean 
temperature. Dimension 8 is moderately correlated with the percentage of herbs and grass veg-
etation (r=0.57) and the mean temperature during the three consecutive driest months (r=0.40). 
Its negative coefficient indicates that a higher percentage of herb and grass vegetation or higher 
temperature values during the driest months are less favourable for the presence of ticks. Dimen-
sion 12 is moderately negatively correlated with the percentage of artificial surfaces (r=-0.51) and 
positively correlated with the range of monthly NDVI (r=0.35). This dimension is also negatively 
associated with the suitability for ticks, indicating that a higher percentage of artificial surfaces 
and a lower range of NDVI values are more favourable for I. ricinus presence. Finally, the dimen-
sion 5 is positively correlated with the mean monthly NDVI (r=0.72), the minimum and maximum 
NDVI (r=0.55 and 0.52) and is negatively correlated with the percentage of watery areas (r=-0.56). 

 

 

 

____ « combination » model (mean) 

- - - « combination » model (95% CI) 

Characteristics of the best model 

Buffer radius: 100 m 
Time period: 24 months  
Mean AUC_test: 0.789 
Mean OE_test: 0.23 
Mean OE_indep: 0.11 
 
AUC global: 0.794 
Number of coefficients: 31 
Optimal threshold (max Se+Sp): 0.59 
Median suitability on occurrences: 0.74 
Median suitability on independent data: 0.88 
 
Median suitability on occurrences data per 
year 
 

Year Number of occurrences* Median suitability 
2009 170 0.749 
2015 391 0.722 
2016 729 0.739 
2017 908 0.737 
2018 2117 0.849 
2019 1729 0.906 

 

* including independent data for 2018 and 2019 

  

Time period 
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Its positive coefficient indicates that the areas with higher NDVI values and less water are more 
favourable for ticks. 

 
Figure 2-4 – Effective variables - Ixodes ricinus.  
Dim1 – Dim26 correspond to the components of the PCA needed to retain 95% of the variance. The column 
with +/- indicates the type of association between the component and the presence of Ixodes ricinus (with 
a positive association, the higher the value of the PCA dimension, the higher the suitability for ticks). The 
last column shows the raw environmental variable most correlated to the PCA dimension, with the value of 
the correlation indicated in parenthesis (Temp. = Temperature, RH = Relative Humidity, Quant. = Quantile, 
Prec. = Precipitation, Perc. = Percentage). 

Distribution maps 

The maps of the distribution of Ixodes ricinus with values of suitability index predicted by the 
model across Switzerland for June 2009 and June 2018 are shown on Figure 2-5. The corre-
sponding projections for June 2015, 2016, 2017 and 2019 are available in Annex A2.6. Results 
for June 2009 shows that 16% of the Swiss territory is predicted suitable for the presence of 
Ixodes ricinus, when using the threshold maximising the sum of specificity and sensitivity (thresh-
old = 0.59). The suitable areas are mainly localized in land covered by tree vegetation (48.6 % of 
all suitable areas), however 26.6% are observed on hectares statistically classified as artificial 
surfaces. In addition, most of suitable area lied between 500 and 1000 m in altitude (53.04%) or 
below 500 m (46.5%). Only 0.46 % of the favourable area is found above 1000 m in altitude.  

 

 
 

Variable Jackknife results  Most correlated raw variable 
Dim 1  + Average of monthly Temp. (0.91) 
Dim 2  + Quant. 0.75 of daily RH (0.92) 
Dim 3  + Min. of monthly max. Temp. (0.63) 
Dim 4  - Range of monthly RH (-0.52) 
Dim 5  + Average NDVI (0.72) 
Dim 6  + Min Temp 3 wettest (0.58) 
Dim 7  - Max. Prec. (0.54) 
Dim 8  - Perc. grass (0.57) 
Dim 9  + Perc. grass (-0.48) 
Dim 11  + Perc. artificial (0.47) 
Dim 12  - Perc. artificial (-0.51)  
Dim 13  + Prec. seasonality (0.47) 
Dim 14  - Dist. wetlands (-0.42) 
Dim 15  + Perc. brush vegetation (0.62) 
Dim 16  + Dist. wetlands (0.45) 
Dim 17  + Aspect (0.64) 
Dim 18  + General curvature (0.37) 
Dim 19  - Perc. bare lands (0.63) 
Dim 20  - Dist. stagnant water (0.38) 
Dim 21  + Aspect (0.3) 
Dim 22  + Temp. Seasonality (0.16) 
Dim 23  + Max. daily RH (0.24) 
Dim 24  + Number successive days RH > 90% (0.31) 
Dim 25  - Number  successive days RH < 80% (0.51) 
Dim 26  - Topographic wetness index (0.24) 

AUConly AUCwithout AUC global 



Species ecological niche 

43 

In June 2018, 25% of the Swiss territory is predicted suitable for Ixodes ricinus (considering the 
threshold of 0.59). Between June 2009 and 2018, the predicted suitable area increased by more 
than 4000 km2 as shown in Figure 2-5 and only 31 km2 became unsuitable. The increased suita-
bility is particularly pronounced in the Rhône Valley (Valais), in Surselva, in Simmental, in the 
Jura border and in other lateral valleys of medium to high altitude (circles on the map). The evo-
lution of the PCA components from 2009 to 2018 in these areas shows that the increase in suit-
ability is generally associated with an increase of the values of Dimension 1 (warmer tempera-
ture), an increase of Dimension 5 (higher NDVI values), a decrease of Dimension 12 (lower range 
of NDVI values), and a decrease of Dimension 8 (temperature during driest months) in Valais and 
Jura (whereas this last dimension shows an increase of the values in Grisons). The new suitable 
areas concerned mainly grass and tree vegetation (40.8% each) with a large proportion (64.8%) 
located at an altitude between 500 and 1000 m (corresponding for example to the altitude of the 
suited hectares in Jura border or Rhône valley). An increase of suitable areas mainly in forests 
was also observed between 1000 and 1500 m (8%).The model also predicted suitable areas 
above 1500 m. These results therefore highlighted a spread of the favourable areas towards 
higher altitude. 

The distribution maps of Ixodes ricinus for the years 2015 to 2017 (Annex A2.6) indicate a con-
stant and drastic increase in suitability which is highest between 2017 and 2018. Indeed, 15.7% 
of the Swiss territory was predicted as suitable in 2009, 16.8% in 2015, 16.2% in 2016, 17.6% in 
2017 and 25.4% in 2018 (by considering the threshold of 0.59 for suitable areas). Moreover, the 
map computed for 2019 predicted important increase from 2018 to 2019, with 35% of the Swiss 
territory being predicted as suitable in 2019. The spread towards higher altitude was also ob-
served between 2018 and 2019, with a maximal altitude for the favourable areas that reached 
1595 m in 2019. The results indicate that since 2018, there is a relatively high probability that ticks 
reach such altitudes.  
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Figure 2-5 – Suitability maps - Ixodes ricinus.  
Suitability map for Ixodes ricinus in June 2009 (upper panel) and June 2018 (lower panel) as predicted by 
the best model (i.e. with environmental variables extracted with a 100m-radius buffer and for the two years 
preceding sampling date). The area concerned by the transition in suitability are represented in the inter-
mediate panel.  

 
 

 
 

 

 

Repartition in % of the suitable areas 
(Suitability > 0.59) within altitude (in m) and 
land cover classes:  

  <500   500 
1000  

1000  
1500 >1500 Total 

artificial 18.16 8.38 0.04 0 26.58 
grass 9.73 6.44 0 0 16.18 
bush 2.95 3.45 0.02 0 6.41 
tree 14.15 34.02 0.39 0 48.56 
bare land 0.65 0.51 0.01 0 1.17 
water 0.86 0.25 0 0 1.11 
Total 46.5 53.04 0.46 0 100 

 
Total suitable area: 6483 km2 

(16 % of the Swiss territory) 

 

Repartition in % of the suitable areas 
(Suitability > 0.59) within altitude (in m) 
and land cover classes:  

  <500   500 
1000  

1000  
1500 >1500 Total 

artificial 12.56 7.78 0.23 0 20.57 
grass 12.94 12.52 0.18 0 25.65 
bush 2.20 3.08 0.11 0 5.39 
tree 9.71 32.97 2.87 0.0003 45.54 
bare land 0.50 0.72 0.09 0 1.31 
water 1.12 0.41 0.01 0 1.54 
Total 39.03 57.48 3.49 0.0003 100 

 
Total suitable area: 10 484 km2 

(25 % of the Swiss territory) 

 

Repartition in % of the newly suitable areas 
(Suitability > 0.59 in 2018 and < 0.59 in 
2009) within altitude (in m) and land cover 
classes: 

  <500   500 
1000  

1000  
1500 >1500 Total 

artificial 3.47 6.78 0.55 0 10.79 
grass 18.06 22.33 0.47 0 40.86 
bush 0.99 2.5 0.27 0 3.75 
tree 2.56 31.43 6.83 0.0007 40.82 
bare land 0.27 1.06 0.21 0 1.54 
water 1.54 0.68 0.03 0 2.24 
Total 26.88 64.77 8.35 0.0007 100 

 
Total newly suitable area: 4032 km2 

Total newly unsuitable area: 31 km2 
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Chlamydiales modelling 

Best model 

The best model for Chlamydiales bacteria, among the 60 models tested with various parameters, 
was obtained with the following parameters: 1) the “correlation-VIF” procedure to select uncorre-
lated variables, 2) a combination of linear and quadratic features and 3) a value of 1 for the reg-
ularisation constant parameter. The details of all models tested and their corresponding evalua-
tion parameters are available in Annex A2.7. As for the modelling of Ixodes ricinus, we then tested 
the influence of the choice of buffer radius and time period on the performance of the models. 
Figure 2-6 shows the AUCtest and sum of ranks obtained for each combination. According to these 
results, the “combination” model outperformed the other models. Unlike the results obtained for 
Ixodes ricinus the models for Chlamydiales performed better when the variables are extracted for 
the three- or six-months preceding sampling date than when considering two or three years before 
sampling (Figure 2-6). In addition, the influence of buffer radius seems to be much less pro-
nounced than for the tick models. Accordingly, we retained the “combination” model. This model 
used 17 uncorrelated variables selected based on the “correlation/VIF” procedure. The list of 
these variables, as well as the results of the T-test are available in Annex A2.8. As the “combina-
tion” model aims to retain for each variable the best combination of buffer radius and time period, 
not all variables are selected using the same buffer radius or time period. Interestingly, we ob-
served that the variables used in the model involved either buffer radius smaller or equal to 200 
m, or superior to 1 km (Annex A2.8). The characteristics of the model are summarised on the 
right of Figure 2-6. The global AUC (with both training and testing occurrences) is 0.78 and the 
mean AUCtest obtained through the 20 runs is of 0.74. The threshold maximising the sum of sen-
sitivity and specificity equals 0.3. The mean suitability for Chlamydiales occurrence in 2009 is 
0.47 and the mean suitability for sites where Chlamydiales where not identified in 2009 is 0.37. 
For 2018, the mean suitability on presence points is 0.46 and the suitability on sites where no 
Chlamydiales were identified is 0.15. The model estimated 35 non-negative coefficients. 
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Figure 2-6 – Models performances - Chlamydiales.  
Performance of models predicting the suitability for Chlamydiales. (Left) Values of the AUCtest and the sum 
of ranks as a function of the buffer radius and the time period considered for the extraction of the environ-
mental variables. For the AUCtest, the points indicate the mean value computed over the 20 runs and the 
lines correspond to the 95% confidence intervals. (Right) Characteristics of the best model chosen accord-
ing to the graphics on the left. Mean diff 2009 (resp. 2018) is the average difference between the mean 
suitability values predicted on Chlamydiales occurrences points and on locations where no Chlamydiales 
were identified in 2009 (resp. 2018). 

Effective variables 

The four variables containing the highest amount of important information that are not available 
in the other variables (lowest AUCwithout) are (Figure 2-7): the percentage of tree vegetation in a 
100 m buffer (AUCwithout = 0.75), the coordinates (no buffer) number of successive days with a 
relative humidity inferior to 80% during the 3 months preceding sampling (0.77) or inferior to 70% 
during the 6 months preceding sampling (0.77) and the distance to wetlands within a buffer of 
1km (0.77). The four variables containing the highest amount of important information by them-
selves (highest AUConly) are: the percentage of artificial surfaces in a 100 m buffer (AUConly = 
0.59), the number of days with a relative humidity superior to 90% in a 200 m buffer during the 
two years preceding sampling date (0.57), the precipitation of the three coldest months in a 1.5 
km buffer during the two years preceding sampling (0.55) and the percentage of tree vegetation 
in a 100 m buffer around the sampling point (0.55).  

The conditions favourable for Chlamydiales are thus characterised by: a lower percentage of ar-
tificial surfaces around the sampling point (7.8% in average for the occurrences locations in a 
100m-buffer versus 16.8% for the background locations), a higher percentage of tree vegetation 
(62.8% versus 53.1%), a lower number of days with a relative humidity superior to 90% during 

  

 

 

 

 

____ « combination » model (mean) 

- - - « combination » model (95% CI) 

Characteristics of the best model 

Buffer radius: combination 
Time period: combination  
Mean AUC_test: 0.74 
Mean diff 2009: 0.12 
Mean diff 2018: 0.31 
 
AUC global: 0.78 
Number of coefficients: 35 
Optimal threshold (max Se+Sp): 0.30 
 
Median suitability on occurrences 2009: 0.47 
Median suitability on “absences” 2009: 0.37 
Median suitability on occurrences 2018: 0.46 
Median suitability on “absences” 2018: 0.15 
  

 

 

Time period 
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the two years preceding sampling date (21.1 versus 25.2), a highest amount of precipitation dur-
ing the coldest months (24.15 mm versus 20.7 mm), a higher number of successive days with a 
relative humidity inferior to 80% during the three previous months (29.7 versus 27.1) and lower 
than 70% during the 6 previous months (16 versus 14.4) and finally a shorter distance to wetlands 
(2.5 km versus 3.1 km). 

 
Figure 2-7 – Effective variables - Chlamydiales.  
Jackknife results for the best model predicting the suitability of Chlamydiales. The column “Buffer” indicates 
the buffer radius around the sampling point and “Months” the number of months before sampling date. The 
column with +/- indicates the type of association between the variable and the presence of Chlamydiales 
(with a positive association, the higher the value of the variable, the higher the suitability for Chlamydiales). 
Perc. = Percentage, Temp. = Temperature, Prec. = Precipitation, quant. 0.75 = quantile 0.75, RH = Relative 
Humidity. 
 

Distribution maps 

The distribution maps of Chlamydiales with values of suitability predicted by the model across 
Switzerland for June 2009 and June 2018 are shown on Figure 2-8. In June 2009, 8% of the 
Swiss territory is predicted as favourable for Chlamydiales bacteria (using the threshold maximis-
ing the sum of sensitivity and specificity). As the niche of the bacteria is nested within the niche 
of the tick, modelling Chlamydiales bacteria suitability involved a multiplication by the suitability 
results for Ixodes ricinus. Therefore, the areas predicted to be unfavourable for the presence of 
the tick species are also predicted as weakly suitable for Chlamydiales. On the contrary, some 
areas predicted to be highly favourable for the presence of Ixodes ricinus on Figure 2-8 did not 
match and showed very low values on Figure 2-8. This is the case for the areas situated within 
urban settlements, in which a large portion was predicted to be suitable for ticks but not for Chla-
mydiales. Indeed, the distribution of the favourable areas within the various categories of land 
cover classes indicates that they are essentially observed in natural areas, covered either by tree 

 

 
 

Variable Buffer [m] Months  Jackknife results 
Perc. artificial 100 - -  
Perc. tree vegetation 100 - +  
Perc. coniferous 0 - +  
Dist. wetlands 1000 - -  
General curvature 1500 - +  
Average max. Temp 3 wettest 1500 36 -  
Average Temp. 3 driest 1500 36 -  
Prec. 3 coldest 1500 24 +  
Prec. 3 driest 1500 36 +  
Min. monthly quant. 0.75 RH 1500 6 +  
Max. monthly quant. 0.75 RH 0 24 -  
Max. daily RH 1500 24 -  
Range daily RH 1500 6 -  
Number days RH>90 200 24 -  
Number successive days RH>90 100 36 -  
Number successive days RH<80 0 3 +  
Number successive days RH<70 0 6 +  
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(74%) or grass (12%) vegetation, and only 4% of them are observed in regions characterised by 
a large portion of artificial elements. When considering the altitudinal distribution, areas favoura-
ble for Chlamydiales seem to be essentially predicted in forest suitable for ticks, between 500 and 
1000 m in altitude. However, due to other factors influencing the model, notably the climatic con-
ditions, 52% of those forests are also predicted to be unfavourable for the bacteria. 

In June 2018, 9% of the Swiss territory is predicted as suitable for the presence of Chlamydiales. 
Between June 2009 and 2018, more than 1850 km2 are newly suitable for Chlamydiales as shown 
in Figure 2-8. Some regions showing a sharp increase in suitability values (more than 0.4). How-
ever, more than 1,300 km2 is also becoming unsuitable. In 2018, the proportion of suitable area 
within land cover classes is close to what observed in 2009, with however a clear spread towards 
higher altitude, with 23% of the favourable areas localised between 1000 and 1500 m, versus 2% 
only in 2009. Newly suitable area match those of Ixodes ricinus on Figure 2-5 (Rhône valley, 
Surselva, Jura border). The spread of favourable areas towards higher altitude is also predicted, 
with 45% of the newly suitable hectares being localised between 1000 and 1500 m. Loss of suit-
able area mainly occurred in the North-West part of Switzerland and appear to be associated with 
a decrease in precipitation during the three coldest months and a decrease of the successive 
number of days with a relative humidity inferior to 70% during the 6 previous months (15th of 
December 2017 to 15th of June 2018 as compared to 15th of December 2008 to 15th of June 2009).  
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Figure 2-8 – Suitability maps - Chlamydiales.  
Suitability map for Chlamydiales in June 2009 (upper panel) and June 2018 (lower panel) as predicted by 
the best model (i.e. with “composition” set of environmental variables). The area concerned by the transition 
in suitability are represented in the intermediate panel.  

 
 

  
 

 

 

Repartition in % of the suitable areas 
(Suitability > 0.3) within altitude (in m) and 
land cover classes:  

  <500   500 
1000  

1000  
1500 >1500 Total 

artificial 1.64 2.34 0.08 0 4.06 
grass 3.89 8.49 0.11 0 12.49 
bush 1.79 5.16 0.16 0 7.11 
tree 17.28 54.88 1.80 0 73.96 
bare land 0.23 0.74 0.07 0 1.04 
water 0.69 0.60 0.01 0 1.30 
Total 25.52 72.21 2.23 0 100 

 
Total suitable area: 3 279 km2 

(8 % of the Swiss territory) 

 

Repartition in % of the suitable areas 
(Suitability > 0.3) within altitude (in m) and 
land cover classes:  

  <500   500 
1000  

1000  
1500 >1500 Total 

artificial 0.72 2.08 0.71 0 4.24 
grass 1.47 8.90 2.84 0 15.98 
bush 0.91 3.85 0.81 0.21 5.29 
tree 7.76 48.9 18.07 0.01 71.85 
bare land 0.13 0.88 0.56 0 1.37 
water 0.33 0.65 0.18 0 1.27 
Total 11.32 65.26 23.17 0.22 100 

 
Total suitable area: 3 850 km2 

(9.3 % of the Swiss territory) 

 

Repartition in % of the newly suitable areas 
(Suitability > 0.3 in 2018 and < 0.3 in 2009) 
within altitude (in m) and land cover classes: 

  <500   500 
1000  

1000  
1500 >1500 Total 

artificial 0.45 1.81 1.35 0 3.61 
grass 0.99 10.25 5.70 0 16.94 
bush 0.29 1.46 1.44 0.02 3.21 
tree 1.92 36.21 34.63 0.43 73.19 
bare land 0.06 0.82 1.03 0.02 1.93 
water 0.18 0.56 0.35 0 1.09 
Total 3.89 51.11 44.5 0.47 100 

 
Total newly suitable area: 1 858 km2 

Total newly unsuitable area: 1 287 km2 
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2.3.6 Discussion 

Expansion of Ixodes ricinus and Chlamydiales in Switzerland 

Distribution maps for ticks and bacteria from 2009 to 2019 highlighted an extension of the suitable 
areas for both species and a spread towards higher altitude. Ixodes ricinus expended from 16% 
to 25% of the Swiss territory, and a subsequent extension for Chlamydiales bacteria is observed 
from 8% to 9.3%. Ixodes ricinus expansion occurred all over the Swiss Plateau and toward higher 
altitude in the alpine valleys and was more extended in the South-West. Newly available habitat 
concerned mostly grass and forest areas. Extension of Chlamydiales followed similar trends, re-
stricted to forest areas. As Ixodes ricinus presence is favoured by higher temperature, we might 
expect that, in the future, this expansion might continue following global warming with some limi-
tation by dryer conditions at lower altitude. 

Our results agrees with the observed increased cases of tick-borne encephalitis (TBE) in Swit-
zerland, that spread from eastern to western part of Switzerland (de Vallière and Cometta, 2006), 
leading to the extension of the vaccination recommendation (OFSP, 2013, 2019). Similar tick’s 
expansions towards higher altitudes were observed in other European countries during the last 
decades (Daniel et al., 2003; Skarphédinsson et al., 2005; Jore et al., 2011), notably in associa-
tion with milder winters and extended spring and autumn seasons (Lindgren E et al., 2000; Med-
lock et al., 2013).  

Variables explaining I. ricinus distribution  

The effective variables identified by our model are related to temperature and humidity, which 
reflects well the tick’s ecology. We found that a high temperature favours Ixodes ricinus, in agree-
ment with previous studies (Estrada-peña, 1999; Porretta et al., 2013). However, our analysis 
indicated that this relationship does not hold during driest months. This can be explained by an 
increased evaporation of the soil humidity under warmer temperature, thus accentuating the des-
iccation risk for ticks (McCoy and Boulanger, 2015). The NDVI variables, an important contribution 
to our model, are indicators of physiological plant activity and have often been shown to be pow-
erful for modelling the presence of ticks as they reflect humidity conditions (Estrada-peña, 1999; 
McCoy and Boulanger, 2015). Nevertheless, our results indicated that the ambient relative hu-
midity variables showed limited effect on the model. They may thus constitute a less precise 
predictor of soil humidity than the combination of NDVI variables with temperature and land cover 
indicators. Surprisingly, our results also showed that I. ricinus presence is favoured by a higher 
percentage of artificial surfaces. This might relate to an overrepresentation of ticks collected in 
vegetated areas situated within urban settlements or close to roads. Indeed, we expect a sam-
pling bias as many tick occurrences comes from the Tick Prevention App., in which users provide 
tick locations that are likely biased towards areas closer to roads or paths and thus artificial sur-
faces. Moreover, the other tick occurrences, either provided by the army field campaign in 2009 
or by the prospective campaign in 2018, were collected essentially in forests or close to their 
borders. On the contrary, grass areas, often corresponding to agricultural fields, were not sampled 
by the two field campaigns and were also probably less explored by the users of the application, 
since people are less likely to visit these areas. This might explain why our model associated a 
low percentage of grass vegetation as favourable for I. ricinus and we might have an underesti-
mation of the suitability index in some grass areas. Nevertheless, the presence of ticks in urban 
and suburban areas of Switzerland has already been reported (Rizzoli et al., 2014; Oechslin et 
al., 2017) and the presence of vegetated areas in urban settlement, or close to artificial surfaces 
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(roads, paths, recreational areas) may constitute favourable habitats. In addition, even if we may 
expect some grass zones, especially at the forest border, to be highly favourable for ticks, in 
general, land pasture, open land and cultivated areas have been reported to be much less fa-
vourable than woodlands (Aeschlimann et al., 1979; Huss and Braun-Fahrländer, 2007; McCoy 
and Boulanger, 2015). Finally, in agreement with previous studies (Estrada-Peña et al., 2015; 
Hauser et al., 2018), we observed that the morphometric parameters and the precipitation varia-
bles show little effect on the suitability for ticks. 

Variables for Chlamydiales spatial distribution 

Identified effective variables for the presence of Chlamydiales may provide novel insights to the 
bacteria's ecology. First, our results indicated that Chlamydiales are more likely present in ticks 
collected in forests or grass fields than in ticks collected close to artificial areas. The highest 
prevalence of Chlamydiales within natural areas could be explained by the presence of different 
hosts (likely rodents) on which ticks feed, with potentially a highest number of reservoir-competent 
hosts for Chlamydiales in natural areas. This may also relate to a higher tick abundance in natural 
areas, which is known to be associated with a higher prevalence of other pathogens in ticks 
(Aivelo et al., 2019) but not for all tick pathogens (Oechslin et al., 2017). Our results also showed 
that the presence of Chlamydiales bacteria is favoured by driest conditions (negatively associated 
with the number of days with a relative humidity superior to 90% and positively associated with 
the number of days with relative humidity inferior to 70%). High amount of precipitation during the 
coldest months also appeared to be favourable for the presence of Chlamydiales. Several suitable 
areas for Chlamydiales are predicted at an altitude higher than 1000 m, thus highest precipitation 
during the coldest months could be associated with largest snow amounts, preserving the soil 
from frost and leading to a highest tick’s survival (Lindgren et al., 2006). Finally, a shorter distance 
to wetlands was also highlighted as a factor favouring the bacteria’s presence. Several Chlamy-
diales have been considered symbionts of amoebae (Kebbi‐Beghdadi and Greub, 2014), which 
are free-living organisms usually found at the interface between water and soil, air or plants 
(Kebbi‐Beghdadi and Greub, 2014). It is therefore likely that amoebae can be found in wetlands, 
which might favour the transmission of Chlamydiales to various animal hosts on which ticks feed. 

Chlamydiales prevalence values were heterogeneous among our datasets. In 2009, ticks were 
collected in forests only and Chlamydiales were present in 68.6% of the sites visited with a low 
prevalence within pools (6.4%). Low prevalence was also observed in the ticks received by the 
users of the Tick Prevention App in 2018 and 2019 (3.79%). In 2018, the ticks sampled during 
the prospective campaign were also mainly collected in forest areas and Chlamydiales were pre-
sent in 53.7% of the site but with much higher prevalence reaching 28.13%. This rate reflects 
values obtained in 2010 in one specific site in the Swiss Alps (Rarogne), where Chlamydiales 
prevalence rate of 28.1% was found in 192 pools collected in forests and meadows (Croxatto et 
al., 2014). Differences between year 2009 and 2018 could be explained by a difference in the 
time and sampling areas (we excluded potential PCR contaminations, see Annex A2.9). As in-
fected ticks were already present in most forest sites in 2009, spread of infection might have 
occurred between 2009 and 2018. Then, ticks from Tick Prevention App were collected in sites 
more closely related to artificial areas, which we have shown reduces the prevalence of the bac-
teria. 
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On the importance of considering the spatial and temporal scale of the  
environmental variables 

For I. ricinus, the most performant models are obtained when extracting the environmental varia-
bles in a buffer with a radius of 100 or 200 m (corresponding to an area of 9 ha to 25 ha around 
the sampling point). This can be explained by the ecology of the species. First, the establishment 
of a population of ticks will probably need a suitable area that is large enough. Moreover, the 
presence of ticks strongly depends on the presence of hosts, which disperse across larger areas 
and may thus be influenced by the climatic conditions observed at some distance. Our results 
also indicate that buffer radius larger than 500 m (corresponding to areas larger than 121 ha) are 
not improving our model. This might relate to the dispersal range of tick hosts, likely rodents, 
which is usually smaller (among the long dispersal hosts, the roe deer dispersal is estimated to 
cover around 50 and 100 hectares (Cederlund and Liberg, 1995)). In addition, the most perfor-
mant models are obtained when considering the climatic conditions of the two- or three- years 
preceding sampling date. This time period appears to be relevant as it corresponds to the esti-
mated duration of the life cycle of ticks (McCoy and Boulanger, 2015). 

For the modelling of Chlamydiales bacteria, small buffer (≤200m) and a short time period (one 
year or less) is favourable for some variables, whereas for some others, to consider a larger buffer 
(1 km or 1.5 km) and a longer time period (2-3 years) is better. Some variables might be influenc-
ing locally the establishment of the tick species and the ability for the bacteria to colonize and/or 
reproduce within it, whereas other variables may be related to the interaction of the tick with the 
hosts on which it feeds, that may disperse in a larger area and thus be influenced by climatic 
conditions at a larger scale. 

Our results thus highlighted the importance of considering the environment around the sampling 
point for a good variables estimation in species distribution model, while single point is commonly 
considered (Elith et al., 2006; Williams et al., 2015; Raghavan et al., 2016, 2019, 2020; Sage et 
al., 2017; Minigan et al., 2018; Soucy et al., 2018; Eisen et al., 2018; Hadgu et al., 2019). Our 
results also showed that the time period considered before the sampling date, with sliding win-
dows, has a significant impact on the performance of the resulting models. This should be favour 
over using an average of the climatic conditions over the sampling period (Bradley et al., 2010; 
Williams et al., 2015) or any larger period of time (as Worldclim climatic data from 1950 to 2000 
which are commonly used for species distribution modelling (Porfirio et al., 2014; Manzoor et al., 
2018)). Previous studies already suggested the use of multi-grain approaches involving various 
spatial resolutions to consider variables affecting the presence of a species at different scales 
(Meyer and Thuiller, 2006; Meyer, 2007; Mertes et al., 2020). This adds to the recommendation 
of using data based on species ecology rather than on availability (Mayer and Cameron, 2003; 
Meyer, 2007). In addition, our results showed that the temporal scale of the environmental pre-
dictors should be accounted for.  

Model performance 

Ixodes ricinus distribution models are robust as they allowed a good discrimination between 
presences and randomly generated points and correctly predicted the presences of I. ricinus ob-
served in an independent dataset. Chlamydiales distribution models are more difficult to validate 
due to the limited amount of data and poor knowledge regarding their distribution. Nevertheless, 
our model performed relatively well for the data collected in 2018 as most of the occurrence loca-
tions had higher suitability index than the locations where no Chlamydiales were identified. Year 
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2009 did not show such trend as many locations where no Chlamydiales were found were pre-
dicted as potentially suitable. This might be due to an absence of Chlamydiales colonisation of 
these sites at the sampling time despite favourable conditions. 

Our investigations considered mainly environmental factors. However, other factors such as spe-
cies interaction and species life history traits might influence the presence of both the ticks and 
their bacterial pathogens (Guisan and Zimmermann, 2000; Clay et al., 2008; Estrada-Peña, 2008; 
Büchi and Vuilleumier, 2014; McCoy and Boulanger, 2015; Ehrmann et al., 2018) . Also, additional 
abiotic factors might play an important role, such as landscape fragmentation and barriers that 
can limit dispersal of ticks hosts (Estrada-Peña, 2008; McCoy and Boulanger, 2015) or disturb-
ances that can drive local populations to extinction (Vuilleumier et al., 2007).  

The precision of our predictions is limited by the precision of the data used. The interpolated 
climatic grids used were produced based on weather stations measurements and thus contain 
interpolation uncertainties that may influence the models results (Guisan and Zimmermann, 
2000). Also, with interpolated grids, the inherent collinearity and autocorrelation may lower the 
reliability of the results (Estrada-Peña et al., 2015). Finally, the occurrences data are probably 
prone to sampling bias and do not represent a random sample of the population being studied, 
which can also influence the predictions (Araújo and Guisan, 2006; Merow et al., 2013), probably 
leading to an overestimation of suitability index in urban and artificial areas as compared to natural 
ones. 

2.3.7 Conclusion 

Both Ixodes ricinus and Chlamydiales are causing a potential threat to human health and their 
prevalence are currently increasing in Switzerland, with a strong expansion of ticks in forests but 
also in urban and suburban areas. Ticks’ expansion has already recently alarmed the Public 
Health Services (OFSP, 2019), and this expansion is predicted to continue in the future due to 
global warming. In this context, our results offer a unique tool to identify precisely locations where 
diseases are likely to spread, to colonize new sites and to increase in prevalence. Maps as de-
veloped here, and associated methods, could thus bring critical information for decision-makers 
to control tick-borne diseases and target prevention campaigns.  

Our methodological framework allowed a coherent identification of environmental factors influ-
encing the presence and distribution of both Ixodes ricinus tick and their Chlamydiales bacteria 
in Switzerland, and enabled the mapping of suitability evolution across Switzerland from 2009 to 
2019. Our results highlighted an important increase of suitable areas for both species and pre-
dicted their extension towards higher altitude. Our investigations consist in the first exploratory 
analysis of the environmental factors influencing the presence of Chlamydiales bacteria within 
ticks in Switzerland, showing an application of species distribution models to study the nested 
niche of a parasite within the ecological niche of its host. Finally, our study demonstrated the 
importance of considering the spatial and temporal scale of the environmental variables used for 
species distribution models. 

Spread of pathogens through a vector is at the origin of major epidemics and infectious diseases, 
and affects humans, wildlife, and agriculture. We proposed a methodological framework based 
on geographical system able to provide deep insights on factors affecting patterns of disease 
emergence by providing a better characterisation of the spatial distribution of their vectors. This 
method can be applied to a wide range of host-pathogen association to identify their spread and 
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distribution, which is expected to bring critical information for a better understanding and control 
of pathogens.  
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3.1 Research context 

In the previous chapter, we showed how species may be confronted with a degradation of their 
habitat suitability due to environmental changes. We presented ecological niche modelling as a 
tool to identify such affected populations, threatened either by the loss of suitable conditions, or 
by the increased presence of competitors, predators or pathogens in their favourable habitat. 
Under such conditions, to survive, concerned populations may either move to more suitable areas 
or adapt to their new environment. However, both dispersal and adaptation are limited by land-
scape fragmentation. 

3.1.1 Landscape fragmentation: a limit to dispersal and adaptation 

During the last decades, population growth has led to an increased demand for housing, transport 
and infrastructure (Steffen et al., 2007). Responses to this demand have involved a strong inten-
sification of urbanization, associated with a significant increase in artificial surfaces (buildings, 
roads, recreational areas, etc.). In addition, agricultural practices have been modified, shifting 
towards more intensive production systems. These land use modifications have a negative effect 
on biodiversity by causing the disappearance of many habitats and creating various barriers to 
dispersal (Ray et al., 2002). As a result, large habitat patches are divided into smaller, more iso-
lated fragments, which is termed “landscape fragmentation”. Due to the new barriers between 
fragmented habitats, some food resources become inaccessible or increasingly distant, as well 
as important territories, such as reproductive areas (Di Giulio et al., 2009; Fu et al., 2010).  

As a consequence of habitat loss, the potential niche of a species may totally disappear from a 
territory, as discussed in the previous chapter. In other cases, the potential niche may subsist, 
but divided into small patches as a result of fragmentation. In this case, population survival de-
pends on the connectivity between the remaining habitat patches, which may first allow dispersal 
into neighbouring habitats and colonisation of newly suitable areas that may emerge following 
environmental changes. In addition, connectivity is essential to maintain gene flow. Indeed, a 
decrease in the size of habitats is often associated with a decrease in the size of animal and plant 
populations living there (Fahrig, 2003a). At the genetic level, a reduced population size limits gene 
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flow and can lead to a loss of genetic diversity (Hitchings and Beebee, 1997; Fahrig, 2003a; 
Coulon et al., 2006). To maintain a sufficient level of genetic mixing, and subsequently of genetic 
diversity, it is thus essential to maintain connectivity between habitat patches, which allows the 
reproduction of individuals from neighbouring populations (Figure 3-1).  

 
 

 
Figure 3-1 - Vulnerable populations due to fragmentation 
This figure first shows a peripheral area containing large and well-connected habitats (no. 1). In this region, 
numerous flows of individuals are possible between habitat patches, allowing genetic exchanges favoura-
ble to maintaining of a high level of genetic diversity. In urban environments, on the other hand, fragmented 
habitats are small (no. 2, 3 and 4), which limits the size of populations living there. If connectivity between 
these small habitat patches and the larger environments of the periphery is maintained (no. 2), relatively 
stable genetic diversity can be preserved due to exchanges with periphery populations. On the other hand, 
if connectivity with the periphery is no longer ensured (no. 3), genetic diversity could be threatened. At the 
extreme, some small habitat patches could become totally isolated (no. 4), reducing the chances of survival 
of populations in these environments. When carrying out development projects (e.g. building, roads, etc.), 
it is therefore important to ensure that connectivity is maintained between habitat patches of dense urban 
centres and larger areas in the periphery. In particular, projects should avoid removing important habitats 
acting as relays in the urban environment (no. 5) or cutting the links ensuring connectivity with the periphery 
(no. 6). Note: this is a fictitious example, and it is not based on any real data. 
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3.1.2 Adaptive capacity 

Adaptation of populations relies on phenotypic changes (modification of behaviour, morphology 
or physiology), which can be induced either by phenotypic plasticity or genetic evolution (Merilä 
and Hendry, 2014; Fox et al., 2019). Phenotypic plasticity results from the capacity to change the 
phenotype when exposed to different environmental conditions, without any genetic modification. 
This can allow for rapid adaptation to changes in the environment over the lifetime of individuals 
(Fox et al., 2019). For example, Charmantier et al. (2008) reported a plastic adaptation of the 
great tits, who advanced their breeding and egg-laying period in response to changing tempera-
tures that induced an earlier peak of winter moth larva, an important food resource for great tits 
offspring. Similarly, Lu et al. (2018) showed that the Arabidopsis plant can modify its flowering 
time depending on the rhizosphere microbiota composition. However, since phenotypic plasticity 
does not rely on hereditary genetic variations, it will not necessarily ensure the persistence of 
adaptation to subsequent generations (Harrisson et al., 2014). On the contrary, genetic evolution 
by natural selection allows the favourable traits to be preserved in populations due to a modifica-
tion of hereditary genetic variants. Conserving the potential for genetic adaptation is therefore 
essential for population persistence. 

3.1.3 Adaptive evolution and genetic diversity 

The foundations of adaptive evolution theory were initiated by the work of Darwin at the end of 
the 19th century (Darwin, 1859). Based on his studies in the Galapagos, he observed that birds 
living on different islands had different beak characteristics (shape and length), which he associ-
ated to their food resources (seeds, cactus, fruits, insects, etc.). Following these and other obser-
vations, Darwin concluded that evolution was the result of natural selection. Due to this selec-
tion, organisms with a trait that is better adapted to their environment will have a survival ad-
vantage or better reproductive capacity, allowing favourable traits to remain in the population for 
future generations. Later, Mendel’s studies on pea genetics highlighted the relationship between 
expressed traits and genetic characteristics, which demonstrated the heredity of genetic variants 
(Mendel, 1865). The more well-fitted individuals are thus able to transmit favourable traits to their 
offspring through an inherited genetic variant, which ensures the persistence of adaptation in 
subsequent generations. 

New genetic variants in populations may arise from mutations, which are accidental changes in 
DNA. However, mutation rates are generally low and adaptation to rapid environmental changes 
thus largely depends on the amount of genetic variants already present in populations, i.e. stand-
ing genetic variations (Willi and Hoffmann, 2009). As greater genetic diversity indicates the pres-
ence of more genetic variants in a population, it also highlights a higher adaptive potential asso-
ciated with a greater likelihood of finding a variant better suited to new conditions (Allendorf and 
Leary, 1986). Conversely, low genetic diversity may reduce the adaptive potential of the popula-
tion, and increase the risk of extinction (Frankham, 2005). For example, it has been shown that a 
decline in genetic diversity of the Glanville Fritillary butterfly preceded its extinction (Saccheri et 
al., 1998; Fountain et al., 2016). Similarly, Bozzuto et al. (2019) showed that inbreeding substan-
tially reduced the growth rate of Alpine ibex populations. Therefore, measuring genetic diversity 
can help to identify vulnerable populations. 
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3.1.4 Measuring the genetic diversity 

Definitions: DNA structure and genetic information 

The genetic information of individuals is stored in the deoxyribonucleic acid (DNA). DNA is com-
posed of nucleotides, which are organic molecules formed by a basis of carbon and phosphate 
atoms, to which a nitrogenous base is attached (Figure 3-2). Four types of nucleotides exist: 
adenine (A), cytosine (C), guanine (G) and thymine (T). DNA molecules assemble on two parallel 
DNA-strands, forming a DNA-helix, according to a pre-defined assembling rule: A always assem-
bles with T, and C with G. Some of the sequences of the DNA-helix, called genes, code for the 
formation of the amino-acids that will form proteins. 
 

 
Figure 3-2 - DNA structure 
 

The DNA-helix is subsequently enrolled into chromosomes stored in the cell nucleus (Figure 
3-2). Each species contains a given number of chromosomes, which together constitute its ge-
nome that represents all of its genetic information. Many species, including humans, are diploid, 
i.e. they possess an even number (2n) of chromosomes, which are composed of n pairs of two 
homologous chromosomes, one obtained from the mother and the second from the father. A 
given position along the genome (consisting of one or a succession of nucleotides) is called a 
locus (plural: loci) and at a given locus, the nucleotide sequence observed on a chromosome is 
the allele. Following, a diploid individual possessing the same allele on the two homologous chro-
mosomes is called homozygote for this locus, whereas an individual with two different alleles is 
heterozygote. In addition the allele combination (e.g. AG) for an individual is its genotype. When 
comparing several individuals of the same species, one can identify loci where different genotypes 
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are observed for different individuals (for example, one individual is AA and the other is AG). 
These variations are called polymorphisms. 

Genetic markers 

In the late 1970s, the development of sequencing techniques made it possible to analyse the 
genome using genetic markers. Genetic markers are DNA sequences whose position in the ge-
nome is known and can be used to identify or compare individuals, for example through the iden-
tification of polymorphisms. Several types of genetic markers exist and differ notably as regards 
the technical requirements for their analysis. Two of them, which are used later in the thesis, are 
presented below: Amplified Fragment Length Polymorphisms (AFLP) and Single Nucleotide Pol-
ymorphisms (SNP). 

Amplified Fragment Length Polymorphism (AFLP) 

AFLP markers (Vos et al., 1995) are multi-locus markers produced by a method in which DNA is 
cut by two enzymes and specific fragments are amplified by a Polymerase Chain Reaction (PCR), 
a technique for producing multiple copies of a DNA sequence. The amplified fragments are then 
analysed using fluorescence techniques that allows for the detection of the presence or absence 
of a given allele at a polymorphic-site. AFLPs are thus dominant markers, i.e. they only enable 
the detection of the presence or absence of a given allele and do not provide information regard-
ing the alternative allele. Consequently, they cannot be used to differentiate a homozygote from 
a heterozygote with the same allele. 

Single Nucleotide Polymorphism (SNP) 

SNP markers allow for the identification of single nucleotide variations (e.g. A replaced by G for 
some individuals). Comparing the genome of several individuals of the same species allows the 
identification of the position of SNPs. For some species, these known positions have been used 
to define chips that directly target sites of interest. These chips contain DNA fragments that cor-
respond to the nucleotide sequence directly preceding or following a SNP. When mixed with sin-
gle-stranded DNA, they associate with the sequence surrounding the SNP. The last nucleotide of 
the adaptor fragment corresponds to an alternative allele of the SNP and another fragment con-
tains the other alternative (Gunderson et al., 2005). By analysing the assembly results (using 
fluorescent methods), it is possible to identify the alleles that were present in the DNA studied. 

Indexes of genetic diversity 

The information provided by genetic markers can be used to quantify genetic diversity using sev-
eral indexes. Three indexes used in section 2.3 are presented below. 

Observed heterozygosity 

The observed heterozygosity is the percentage of loci that are heterozygous. A high level of ob-
served heterozygosity therefore indicates high genetic variability. For a population containing N 
individuals, the observed heterozygosity in the population can be calculated using Formula 3-1: 
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Formula 3-1 

where hi is the fraction of the N individuals that are heterozygous for the marker i, and k is the 
total number of markers considered. This value ranges from 0 (no individual heterozygous for 
any marker, no genetic diversity) to 1 (all individuals are heterozygous for all markers, high ge-
netic diversity). 

Expected heterozygosity 

The expected heterozygosity corresponds to the heterozygosity expected under the Hardy-Wein-
berg equilibrium (HWE), a law that states that in an ideal population of infinite size, with random 
mating and without evolutionary influences (migration, natural selection, mutation, etc.), the allele 
frequencies will reach an equilibrium and then remain constant over generations. In the case of 
two alternative alleles at one locus (e.g. A and G), the equilibrium frequencies are as follows: 

• p2 is the frequency of homozygote of the first allele (for example: AA) 
• q2 is the frequency of homozygote of the second allele (for example: GG) 
• 2pq is the frequency of heterozygote (for example: AG) 

Consequently, the expected heterozygosity level in a population of N individuals can be calculated 
using Formula 3-2. 
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Formula 3-2 

where, pi (respectively qi) is the frequency of presence of the first (respectively second) allele for 
the marker i among the N individuals, and k is the total number of markers considered. 

Inbreeding coefficient 

The inbreeding coefficient is defined from the comparison of observed and expected heterozy-
gosity (Wright, 1949). When the observed fraction of heterozygotes is much lower than expected 
under a population with random mating, the population is facing inbreeding. The Formula 3-3 can 
thus be used to estimate the amount of inbreeding in a population. 

𝐹𝐹 =  
𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐻𝐻𝑜𝑜𝑜𝑜𝑜𝑜

𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒
 

Formula 3-3 

3.1.5 Conservation of genetic diversity 

Following the development of genetic markers and the availability of genetic information, conser-
vation genetics has been developed to define strategies to preserve genetic diversity, notably 
by favouring gene flow between populations, hybridization or reintroductions (Frankham, 2010). 
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For example, Diekmann et al. (2010) studied a threatened population of seagrass and used ge-
netic data to identify an external population strand with high genetic diversity and genetically close 
to the threatened population. This strand could thus constitute a successful donor population for 
seed transplantation, thus increasing the genetic diversity of the threatened population. 
Raeymaekers et al. (2008) studied fish population genetics to determine the sections of a river 
that constitute the main barriers to gene flow and thus should be prioritised in restoration efforts. 
Piry et al. (2018) studied the genetic diversity of a critically endangered grasshopper species, 
endemic to a steppe habitat that had been highly reduced and fragmented over recent decades. 
They highlighted that less intensive sheep grazing may allow for gene flow to increase among the 
remaining populations and thus contribute to their preservation. Montero et al. (2019) showed that 
the creation of dispersal corridors aiming to restore connectivity between fragmented forest hab-
itats allowed for an increase of gene flows for mouse lemurs in Madagascar.  

Nevertheless, the application of conservation genetics to practical field projects is still very limited, 
and the need to develop tools for easier integration of genetics into conservation practices has 
often been emphasised (Shafer et al., 2015; R. Taylor et al., 2017; Britt et al., 2018; Holderegger 
et al., 2019). Some limitations to the use of conservation genetics by conservation professionals 
include a lack of genetic background, as well as financial restrictions (Holderegger et al., 2019). 
Indeed, collecting genetic information in the field can be costly and time-demanding (Epperson et 
al., 2010). In such situations, analysis of landscape connectivity can provide a first indication of 
potential gene flow and help identify areas particularly threatened by a loss of genetic diversity. 
In addition, landscape connectivity analyses may be used to simulate genetic data. The following 
sections thus present several alternatives for estimating landscape connectivity (section 3.1.6) 
and a software for simulating genetic data (section 3.1.7). 

3.1.6 Estimating the landscape connectivity 

Definitions: types of connectivity 

Different types of connectivity have been defined. Structural connectivity is based solely on the 
analysis of landscape structure (Fu et al., 2010). It thus depends on physical properties such as 
the size and shape of habitat patches and the distance between them (Calabrese and Fagan, 
2004), but is not related to any particular species and does not take into account ecological prop-
erties (Saura et al., 2011), such as the dispersal capacity of individuals in the landscape. As a 
result, the analysis of structural connectivity requires little initial data, but its value for ecological 
analyses remains limited (Avon and Bergès, 2013) as it provides little indication of the real ca-
pacity of species to disperse between habitats (Calabrese and Fagan, 2004). Potential func-
tional connectivity, on the other hand, incorporates information on the dispersal capacity of a 
given species, taking into account the Euclidean distance between habitats as well as landscape 
features that may constitute a barrier or, on the contrary, be favourable to the movement of indi-
viduals (Calabrese and Fagan, 2004). This connectivity does not necessarily correspond to the 
real functional connectivity, which is based on the observation of the actual movements of 
individuals (Avon and Bergès, 2013), for example with telemetry tools. However, potential func-
tional connectivity can be estimated to a large extent, while requiring a limited amount of initial 
data (Calabrese and Fagan, 2004). One method for analysing potential functional connectivity is 
based on the use of raster resistance maps.  
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Resistance maps 

Resistance maps are used to represent the influence of the landscape on species dispersal. 
These maps are usually defined in the form of a raster file in which each pixel is assigned a 
resistance value. Pixels corresponding to features that are more difficult to cross, either because 
of the associated high mortality risk or because of high energy demand, receive a higher re-
sistance value (Ray et al., 2002). From the resistance map, a cost can be associated with each 
path by summing the resistances of each pixel crossed (Figure 3-3). This cost makes it possible 
to define the shortest path (or least cost path) between two habitats based, among other things, 
on the energy consumption necessary for movement and reproduction. The cost of this path pro-
vides information on the probability of dispersal of the species between the two points. Different 
elements can be taken into account on the resistance maps, including land cover, slope, orienta-
tion, or any other factor that may influence the dispersion of the species studied.  
 

 
Figure 3-3 – Resistance maps 
Resistance values are assigned to each pixel as a function of the difficulty to cross it by the species. The 
cost of the path between two points correspond to the sum of the resistance of the pixels crossed. 

Defining resistance values is not easy and remains a sensitive issue that can significantly influ-
ence the results of connectivity analyses (Rayfield et al., 2009; Zeller et al., 2012). Very diverse 
ranges of resistance values can be observed in the literature, for example from 1 to 8 (Fu et al., 
2010), 5 to 80 (Ray et al., 2002), 1 to 100 (Sutcliffe et al., 2003), 1 to 1000 (Clauzel et al., 2013) 
or 1 to 5000 (Girardet et al., 2013). In general, the resistance of a favourable habitat is given as 
1 (Girardet et al., 2013) as the value 0 should not be used if the Euclidean distance between 
habitats is to be taken into account, which is also a limit to dispersion. Beside these generalities, 
resistance values can be assigned any real value and are generally estimated from the literature 
and supported by expert knowledge about dispersal and life history of the species under study 
(Zeller et al., 2012). They can also be estimated from real measurements of individual movements 
or gene flow when such data are available (Cushman and Lewis, 2010; Braaker et al., 2017). 
Finally, they can be computed from species distribution maps derived by ENMs (see Chapter 2.) 
that delimit favourable habitats and provide suitability values for all landscape features (Brown, 
2014; Brown et al., 2016; Rana et al., 2019). However, this should be done in combination with 
raw environmental data that can provide additional information for defining resistances, such as 
the presence of impassable barriers. In any case, resistance values depend on the species under 
consideration, as resistance caused by the environment can be highly variable and a barrier for 
one species may constitute a dispersal corridor for another (Avon and Bergès, 2013).  
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Landscape graphs 

Once resistance maps are defined, potential connectivity analyses can be performed using land-
scape graphs. Graph theory is used in many fields of geography and computer science (transport 
networks, mobility analyses, shorter path problems, network optimisation, etc.)(Urban and Keitt, 
2001). More recently, this discipline has been extended to landscape graphs, which have 
emerged as a method for modelling ecological networks (Foltête, Clauzel, Girardet, et al., 2012). 
In landscape graphs, nodes correspond to the habitat patches of interest or specific points in the 
territory (Galpern et al., 2011). The links in the graph represent the potential flows of individuals 
between the different nodes. A link is therefore created between two patches if individuals of the 
species under consideration are able to cross the space between these two habitats, according 
to the defined resistances (Urban and Keitt, 2001). Landscape graphs provide a good represen-
tation of potential flows and have a low requirement in terms of initial data, they can therefore be 
easily applied on a large scale and for different species (Calabrese and Fagan, 2004; Avon and 
Bergès, 2013). 

Software 

Connectivity analyses using resistance maps and landscape graphs have been implemented in 
various software. Among these, the UNIversal CORidor (UNICOR) network simulator use re-
sistance maps to measure potential functional connectivity between specific points in the land-
scape (Landguth, Hand, et al., 2012). It uses the Dijkstra algorithm to calculate the least cost 
paths by accounting for resistance. PathMatrix (Ray, 2005) works very similarly, but also offers 
the alternative of using a set of polygons to represent habitat patches instead of only points. Like 
UNICOR and PathMatrix, the Graphab software (Girardet et al., 2016) measures the potential 
functional connectivity and computes least-cost paths by taking into account the resistances con-
stituted by the environment. Graphab offers the advantage of performing these calculations from 
a landscape map (e.g. a land cover map or a map combining land cover and relief data), thus 
avoiding the need to define specific points of the territory or habitat polygons. Using a different 
approach, CircuitScape was developed using electrical circuit algorithms (McRae et al., 2013). 
Like UNICOR and PathMatrix, it allows for the measurement of flows between specific points in 
the territory. However, unlike the two previous software, CircuitScape takes into account all pos-
sible paths and not only the shortest path between two points. Nevertheless, due to the memory 
and the computational demand, the calculations are limited to a restricted extent. 

3.1.7 Genetic simulations 

The Cost Distance POPulations (CDPOP) software is a tool for simulating gene flow in the envi-
ronment and the genetic evolution of populations over time (Landguth and Cushman, 2010). This 
individual-based model simulates the birth, death, dispersal and mating of individuals as a func-
tion of the landscape resistance and biological parameters of the species studied: mortality rate, 
number of offspring, mutation rate, etc. The habitats of interest must be provided in the form of 
points that can either be occupied by a maximum of one individual or unoccupied at the beginning 
of the simulations. CDPOP then simulates the dispersal of each individual, as well as the mate 
selection, using probabilistic functions of the cost of the shortest path between two habitats. At 
each generation, a maximum of one individual will be conserved at each habitat point. Additional 
individuals may migrate to other free points, if the cost of travel allows it, or die. Breeding is sim-
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ulated with a Mendelian inheritance of genetic variants and for each generation, the results pro-
vide the genotype of the individuals present at each habitat point. These results make it possible 
to estimate the genetic diversity of populations and its evolution over time. 

3.2 Scientific contribution 

3.2.1 Problem statement 

Urban biodiversity 

Urban areas contain a large variety of environments, providing habitats for many native species, 
including rare and threatened ones (Araújo, 2003; Kantsa et al., 2013; Ives et al., 2016). As a 
result, cities can show a high level of biodiversity, that may be comparable or even higher than 
that of rural areas (Kowarik, 2011; Kantsa et al., 2013). Since urban areas are expanding as a 
result of population growth, they become increasingly important for biodiversity conservation. In 
addition, the conservation of urban biodiversity is key to favouring a better quality of life for resi-
dents, including well-being and better health conditions (Maller et al., 2006; Lee and Maheswaran, 
2010; Shanahan et al., 2015). Indeed, Bolund and Hunhammar (1999) highlighted six ecosystem 
services provided by urban biodiversity : air filtration, micro climate regulation, noise reduction, 
rainwater drainage, sewage treatment, and recreational and cultural values. Nature in urban set-
tlement may thus influence human health directly, for example by reducing pollution and limiting 
respiratory complications (Lovasi et al., 2008) or indirectly, for example by encouraging physical 
exercise (Timperio et al., 2008). For these reasons, it is of great importance for urban authorities 
and planners to adapt the way they design cities and plan for urban change, particularly to identify 
potential impacts on biodiversity, especially for native species. 

Conservation of urban biodiversity 

Despite the importance of urban biodiversity, studies on ecological conservation in urban envi-
ronments are very limited (Miller and Hobbs, 2002; Fazey et al., 2005; Manel and Holderegger, 
2013). Indeed, although Holderegger et al. (2019) highlighted that the study of fragmentation and 
connectivity is one of the two main conservation genetic topics of current interest to conservation 
practitioners, highly fragmented urban environments still receive lower attention than natural ar-
eas. In addition, conservation prioritisations usually allocate limited conservation value to urban 
environments and suggestions for urban conservation are often received with scepticism by the 
general population and conservation managers (Soanes et al., 2019). This may derive from the 
common idea that urban environments cannot be suitable for long-term conservation outcomes 
when associated with urban activities (Soanes et al., 2019). This misconception partially arises 
from the fact that most conservation strategies highlight the importance of large patches, while 
small and fragmented habitat patches are rarely protected (Kendal et al., 2017). However, small 
patches can support a high diversity of species. Oertli et al. (2002), for example, showed that a 
set of small ponds may contain more species and have a higher conservation value than a single 
large pond of the same total area. Similarly, Kendal et al. (2017) reported that many small urban 
grasslands contained more species than a few large reserves. Of note, small habitats can help to 
maintain connectivity, e.g. by acting as stepping stone habitats (Bierwagen, 2006; Serret et al., 
2014) and thus maintain gene flow. Conservation measures focusing on maintaining natural hab-
itats and connectivity within urban settlements should therefore be given greater consideration. 
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Impact of fragmentation 

In this context, the identification of urban plant and animal species endangered by the ongoing 
fragmentation of habitats is essential in order to promote more sustainable urbanisation pro-
cesses or conservation strategies in the future. Nevertheless, estimating the impact of urbanisa-
tion and fragmentation on species remains complex. On one hand, fragmented urban habitats 
can limit the survival of some species, while on the other, harbour self-sustaining populations of 
native (and exotic) species (Kowarik, 2011) that are able to adapt to the human-influenced envi-
ronment or even take advantage of proximity to humans that may provide food sources, reduce 
the presence of wild predators or provide new refuges (McKinney, 2002; Shochat et al., 2010). In 
addition, the impact of fragmentation can be highly variable depending on the dispersal mode. 
For example, plants pollinated by many insects may be only moderately impacted by urban frag-
mentation (Culley et al., 2007), and may not require large patches of habitat to survive. Similarly, 
species that can benefit from human-mediated dispersal (attachment to clothes, vehicles, shoes, 
soil movements, etc.) may be particularly well adapted to urban landscapes (Banks et al., 2015; 
Egizi et al., 2016). Conversely, species with only one dispersal mode such as butterflies or plants 
pollinated only by specific insects may be more strongly influenced by urbanisation and endan-
gered by the induced fragmentation (Cheptou et al., 2017). The impact of urbanisation on the 
potential connectivity and subsequently on gene flow and genetic diversity can thus be highly 
dependent on the species under study, and particular attention should be paid to maintaining 
connectivity for particularly threatened species. 

However, in urban environments, the direct observation of threatened species and the measure 
of their genetic diversity can be difficult due to the restricted number of individuals still present in 
these highly fragmented landscapes. In addition, this data collection can be costly and time-de-
manding, especially if several species have to be studied. In such situations, simulations are a 
valuable tool for analysing landscape fragmentation, structural and functional connectivity be-
tween habitats and the impact of the landscape on the genetic diversity of various species. How-
ever, simulations require the definition of many parameters that may be criticised. Consequently, 
without validation by empirical data, the simulation results may receive little consideration from 
conservation managers. 

3.2.2 Objectives 

In this context, we aim to: 

 

• Simulate the impact of fragmentation on the spatio-temporal evolution of genetic diver-
sity and population persistence for a threatened butterfly species with a high dispersal 
capacity. 

 

• Analyse the impact of a simulated reduction of the dispersal ability on this evolution. 
 

• Compare the simulated results with values of genetic diversity measured on an empirical 
dataset to illustrate a powerful combination of empirical and simulated data. 

 

• Highlight at risk areas where butterfly populations may be particularly vulnerable due to 
a loss of connectivity and genetic diversity associated with fragmentation. 
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3.2.3 Case study 

In the study presented in section 3.3, we combine empirical and simulated data to analyse the 
impact of landscape elements on the genetic diversity and persistence of Pieris rapae butterfly 
populations in the region of Marseille, France. As butterflies are an airborne species that require 
open-spaces to fly, they may be particularly constrained in their movements through fragmented 
and human-influenced landscapes, and are thus interesting species to model. In addition, butter-
flies play important ecological roles in urban areas, particularly due to their interactions with other 
wildlife groups (birds, lizards, frogs, etc.) and by pollinating a large variety of plants (Ramírez-
Restrepo and MacGregor-Fors, 2017). Yet, many urban butterflies populations are threatened 
due to increased pollution, habitat loss and fragmentation (Dennis et al., 2017).  

Pieris rapae (Figure 3-4) is also called the cabbage white butterfly, as its larvae are a pest to 
crucifer crops such as cabbages. Adults feed on the nectar of various plant species, which enable 
them to colonize many different habitats. As a result, P. rapae is mainly found in open and sunny 
landscapes such as grasslands (Ohsaki, 1979), but is also one of the most common butterfly 
species in urban areas, where it can be found in gardens, parks, or vegetated road edges (Lafran-
chis, 2004). 

  
Figure 3-4 – Pieris rapae 
(Left) Adult. Photo Credit: Magali Deschamps Cottin. (Right) P. rapae larvae, pest of cabbage. Photo 
Credit: Scot Nelson “Larva and feeding injury to crucifer” (https://www.flickr.com/photos/scotnelson/) 

3.2.4 Main conclusions 

Our study combining empirical data and simulations demonstrated that highly urbanised areas 
showed lower genetic diversity for butterflies when compared with more rural environments. This 
reduction was explained by limited population size associated with smaller habitat patches and 
limited connectivity resulting from dispersal barriers caused by impervious surfaces. In addition, 
simulation results highlighted a decrease in the number of P. rapae individuals over time, espe-
cially in highly urbanized areas. This decrease suggests that population persistence is threatened 
in urban environments. In particular, simulations have highlighted potential habitats where popu-
lations are particularly vulnerable due to lack of connectivity with their neighbouring habitats. Our 
results highlighted that in order to conserve and promote genetically stable and diverse popula-
tions, it is important to 1) preserve or restore suitable habitats and 2) maintain or increase con-
nectivity between them. 

Our study illustrated how modelling tools, here landscape graphs and genetic simulations, can be 
used to estimate the dispersal capacities of populations and their genetic diversity. We also 
demonstrated some advantages of combining simulated data with empirical data in landscape 
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genetics. The use of simulated data allowed for the analysis to be extended to a wider study area, 
including zones showing a diversity of urbanization levels, over a defined period of time. In par-
ticular, this made it possible to compare several transects and highlight local differences in the 
Marseille metropolitan area, while empirical data were restricted to a single transect. In addition, 
the simulations enabled the study of a species with a shorter dispersal distance, for which it may 
be difficult to collect samples due to its limited presence in urban environments. Here, the simu-
lations emphasized the threat posed by dense urban areas to low dispersal species compared 
with species of higher dispersal capacities. Finally, our study presented an implementation of 
surface-transects, where transects are commonly used to collect empirical data along a gradient 
of environmental conditions. We have shown here how they can be extended to a surface, ena-
bling modelling and simulations within areas along environmental gradients.  

Main contributions 
 

• Demonstrating a reduction of genetic diversity and population persistence associated with 
higher levels of urbanisation for a butterfly species. 

 

• Illustration of the advantages of combining modelling, simulations and empirical data for 
identifying populations threatened by a limited dispersal capacity and a reduced genetic 
diversity as a result of a poor landscape connectivity. 
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3.3 PAPER B: Fragmentation reduces persistence and genetic diversity 

Persistence of butterfly populations in fragmented habitats along ur-
ban density gradients: motility helps 
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I computed the landscape graphs and carried out the simulations, performed the analyses of 
simulated and empirical datasets and wrote the first draft of the paper.  

3.3.1 Abstract 

In a simulation study of genotypes conducted over 100 generations for more than 1600 butterfly’s 
individuals, we evaluate how the increase of anthropogenic fragmentation and reduction of habitat 
size along urbanisation gradients (from 7% to 59% of impervious land cover) influences genetic 
diversity and population persistence in butterfly species. We show that in areas characterised by 
a high urbanisation rate (> 56% impervious land cover), a large decrease of both genetic diversity 
(loss of 60-80% of initial observed heterozygosity) and population size (loss of 70-90% of individ-
uals) is observed over time. This is confirmed by empirical data available for the mobile butterfly 
species Pieris rapae in a sub-part of the study area. Comparing simulated data for P. rapae with 
its normal dispersal ability and with a reduced dispersal ability, we also show that a higher dis-
persal ability can be an advantage to survive in an urban or highly fragmented environment. The 
results obtained here suggest that it is of high importance to account for population persistence, 
and confirm that it is crucial to maintain habitat size and connectivity in the context of land-use 
planning. 
  

https://doi.org/10.1038/hdy.2017.40
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3.3.2 Introduction 

During the Anthropocene and particularly the last five decades, human population growth and 
migration have led to an increased demand for housing, transport and infrastructure, leading to a 
large expansion of cities and to a growing impact of human activities on the environment (Steffen 
et al., 2007; EEA, 2016). The land-use transformation into dense built-up areas, associated with 
the intensification of agriculture practices, is mainly responsible for a loss and degradation of 
natural habitats (Antrop, 2000; EEA, 2016), which is an important cause of endangerment of many 
animal and plant species (Czech et al., 2000; Dirzo and Raven, 2003, Wood and Pullin, 2002). 
For example, the change in agriculture practices has been associated with a decline of farmland 
birds across Europe between 1990 and 2000 (Donald et al., 2006) and habitat loss associated 
with land use changes have often been reported to be an important cause of the global decline 
of amphibian populations (Collins and Storfer, 2003; Cushman, 2006). 

In addition, due to landscape fragmentation, habitats of many species become divided by imper-
vious surfaces (roads, buildings, etc.) or other human-influenced areas (cropland, recreational 
areas, etc), which reduced natural habitat size and therefore population size too (Fahrig, 2003b). 
In addition, functional connectivity (i.e. the movement of individuals among patches) is also af-
fected, subsequently influencing gene flow and reducing genetic diversity (Fahrig, 2003, Hitchings 
and Beebee, 1997; Coulon et al., 2006). In the region of Marseille, France, Schoville et al. (2013) 
measured genetic diversity in the butterfly Pieris rapae within four regions along a transect leading 
from the periphery to the city-centre and showed decreased genetic diversity in urban versus non-
urban sites. Similarly, Takami et al. (2004) studied the genetic diversity of two butterfly species 
from the genus Pieris (Pieris rapae and Pieris melete) in study areas from Japan and Korea. They 
showed that the genetic diversity is not directly significantly different in urban areas as compared 
to rural ones. However, important genetic variations can be observed among seasonal subpopu-
lations in urban areas, whereas it is not the case in rural ones. As a consequence, when consid-
ering seasonal subpopulations, the genetic diversity in cities is reduced as compared to rural 
environments. As the reduction of population size and genetic diversity induces a higher risk of 
inbreeding (Bonte et al., 2012) and a lower adaptive potential (Munshi-South et al., 2016), this 
can make species more vulnerable to extinction, particularly if exposed to further environmental 
change (Allendorf and Leary, 1986).  

However, urban habitats can also harbour self-sustaining populations of native (and exotic) spe-
cies (Kowarik, 2011) which are able to adapt to the human-influenced environment or even take 
advantage of the proximity with humans that may provide food sources, reduce the presence of 
wild predators or provide new refuges (McKinney, 2002; Shochat et al., 2010). Indeed, organisms 
can adapt to anthropogenic fragmentation, either morphologically or behaviourally (Cheptou et 
al., 2017). For instance, Evans et al. (2009) showed that the forest-specialist blackbird Turdus 
merula, was able to colonize and adapt to urban environments. Despite a little reduction in ex-
pected heterozygosity within urban populations of this blackbird, no reduction of observed heter-
ozygosity was noticed and no evidence of genetic differentiation was highlighted between urban 
and rural populations. Similarly, Lourenço et al. (2017) shows no significant differences in genetic 
diversity between urban and rural populations of salamanders in the municipality of Oviedo 
(Spain). Previous studies showed that some factors could facilitate the adaptation to urban envi-
ronment, notably a higher dispersal ability or a lower habitat-selectivity (Turin and den Boer, 1988; 
Maes and Van Dyck, 2001; Wood and Pullin, 2002; Takami et al., 2004). However, estimating the 



Connectivity and genetic diversity 

70 

impact of urbanisation and fragmentation on species remains complex. Moreover, the direct ob-
servation of species and the measure of their genetic diversity may be difficult due to the restricted 
number of individuals still present in urban or highly fragmented environments. Nevertheless, the 
identification of plant and animal species endangered by the ongoing fragmentation of habitats is 
essential in order to promote more sustainable urbanisation processes or conservation strategies 
in the future. In such situations, simulations are a valuable tool to analyse the landscape frag-
mentation, the structural and functional connectivity between habitats and the impact of such 
landscapes on the genetic diversity of various species. 

In this context, our study combines empirical and simulated data to analyse the impact of land-
scape elements on the genetic diversity and on the persistence of butterfly populations in the 
region of Marseille, France. Butterflies, as airborne species that require open-spaces to fly, are 
constrained in their movements in fragmented and human-influenced landscapes and are there-
fore interesting model species. In this study, we aim to: 1) analyse the spatio-temporal evolution 
of the genetic diversity and population persistence as a function of the urbanisation level from 
simulated genetic data (500 single nucleotide polymorphism (SNP) loci over 100 generations) for 
a butterfly species with high dispersal capacity (Pieris rapae); 2) study the impact of a simulated 
reduction of the dispersal ability on this evolution; and 3) compare spatially explicit simulation 
results with measured genetic diversity of P. rapae populations, estimated from an empirical da-
taset (366 AFLP, Schoville et al. 2013). 

3.3.3 Material and Methods 

Study area 

The study area is centred on the region of Marseille, south-east France. With 855’393 inhabitants 
in 2013, Marseille is the second most populated French municipality, after Paris (source: www.in-
see.fr, population census, 2013). In order to capture the landscape heterogeneity of this region, 
we combined vector and raster data describing the land cover of the Marseille area (IGN BD Carto 
2004, SPOT 5 2004, Lizée et al., 2011) and produced a land cover classification map of eight 
classes (spatial resolution: 10 m): buildings (divided into four subclasses as a function of the 
building height), roads and other impervious surfaces, mixed surfaces (artificial and natural), 
grasslands, parks, forests, open areas (mainly not vegetated) and water.  

To simulate the impact of urbanisation on the evolution of populations and genotypes, we then 
focused on twelve equally sized spatialized areas categorized into three levels of urban densities 
(low, medium, high). These study areas were defined along four transects, each of 18 km in length 
and 4 km in width, leading from the Vieux-Port of Marseille (city-centre) to the suburbs and there-
fore showing a high urbanisation gradient from densely populated urban to more natural areas. 
As a function of the urban densities, we divided lengthwise each transect into three parts: high 
urban density being the first 6 km along the transect from the city centre (red-colored zones in 
Figure 3-5), medium urban density from 6 km to 12 km (blue-colored zones) and low urban density 
from 12 km to 18 km (green-colored zones). We thus defined twelve rectangular areas (4 km-
width, 6 km-length), partially overlapping downtown (see Figure 3-5). 

In order to compare results from simulations and empirical data, we used an empirical genetic 
dataset for the butterfly species Pieris rapae (Schoville et al., 2013). Consequently, one of the 
simulated transects (Transect B in Figure 3-5) was chosen to correspond to the sampling direction 
and sites of the empirical study published by Schoville et al. (2013). The three other directions 

http://www.insee.fr/
http://www.insee.fr/
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were spatially distributed such as to be representative of the variations in urbanisation level 
around Marseille. 

Based on the land cover map, we then computed the percentage of each land cover classes in 
the twelve defined areas. The areas with high urbanisation level are characterised by 56-59% of 
impervious land cover (buildings, roads and other impervious surfaces), 3-7% of green spaces 
(grasslands and parks), 10-22% of forests and 15-30% of other land cover types (water, mixed 
surfaces, open areas). The medium urbanised areas contain 8-41% of impervious land cover, 16-
26% of green spaces, 19-46% of forests and 17-32% of other land covers. Finally, the areas with 
a low urbanisation level show 3-13% of impervious land cover, 36-66% of green spaces, 21-37% 
of forests and 3-28% of other surfaces (Figure 3-5). 

Resistance map 

Based on expert opinion and empirical results, we assessed and assigned a relative resistance 
value to each class of the land cover classification, as a function of the capacity of Pieris rapae 
to disperse in each type of land cover (Table 3-1). 

As P. rapae is a butterfly species preferring open and sunny vegetation-covered landscapes 
(Ohsaki, 1979), we attributed the lowest resistance value to green spaces (grasslands and parks, 
resistance = 1). The mean dispersal distance for females of P. rapae during their lifetime is about 
2 km (Jones et al., 1980). On this basis, we approximated and fixed their maximum dispersal 
distance in the most favourable land cover class to 4 km. The open areas mainly not covered by 
vegetation are not a barrier to dispersal but do not offer many foraging possibilities and are there-
fore less attractive for butterflies than the greenspaces (resistance = 3). Water surfaces, buildings 
under two meters height, roads and other impervious surfaces can still be potentially crossed but 
are not vegetated and not necessarily open and will therefore probably not be chosen preferen-
tially as dispersal directions (resistance = 10). An intermediate resistance has been considered 
for mixed surfaces since they can contain each of the previous mentioned land cover classes, in 
various proportions (resistance = 5). Forests are not favourable at all for the dispersal of P. rapae 
(Ohsaki, 1979) and we thus assigned them a high resistance (resistance = 20). Finally, buildings 
constitute barriers to dispersal and received the highest resistance values, increasing as a func-
tion of building-height (4 categories, resistances respectively of 10, 20, 50, 450), with the buildings 
over 10 m in height considered as impossible to cross. Based on these resistance values, we 
produced a resistance map by assigning to each pixel of the land cover map the corresponding 
resistance value. The resulting map shows the dispersal-cost through each pixel and was used 
to compute least-cost path between two sites.  
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Figure 3-5 - Study area and simulation transects 
Four transects along urbanisation gradients leading from the city centre of Marseille (Vieux-Port) to more 
rural areas. Along each transect, three zones were delimited and represent different urban densities (high, 
medium and low). For each zone, the table indicates the percentage of land covered by impervious surfaces 
or green spaces, as well as the mean surface of green spaces' entities. The sampling sites for the simulation 
of butterfly populations and genotypes were then randomly assigned to potential habitats within the 12 
zones (100 sites per zone). Transect B contains the empirical sampling sites (yellow points) of P. rapae 
used by Schoville et al. (2013).  

 

A 

B 

C 

D 
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Table 3-1 - Resistance values 
Resistance values for the various land cover classes, used to model the dispersal of P. rapae butterfly in 
the region of Marseille, France. 

Land cover class Resistance of a 10m-pixel Maximal dispersal distance in the  land cover class [m] 

Green spaces (grasslands and parks) 1 4000 

Open areas (mainly not vegetated) 3 1300 

Mixed surfaces (artificial and natural) 5 800 

Water 10 400 

Roads and impervious surfaces 10 400 

Buildings : maximum height < 2m 10 400 

Forest 20 200 

Buildings : 2 m ≤ maximum height < 5 m 20 200 

Buildings : 5 m ≤ maximum height < 10 m  50 80 

Buildings : maximum height ≥ 10 m 450 0 

Habitat 

In order to simulate the evolution of populations and genotypes along the four transects, we first 
defined sites within potential habitat areas for P. rapae. To this end, we used the software QGIS 
2.14 (function random selection within subsets) to randomly assign 100 sites to potential habitats 
for P. rapae (i.e. green spaces) within each of the 12 zones. The number of sites per zone (100) 
was chosen in order to obtain realistic distances between the sites, but to avoid overestimating 
the number of potential habitats, notably in the city centre. In order to ensure the largest habitats 
- which are assumed to harbour important butterfly subpopulations - to be represented in the 
sampling design for the simulations, we applied a stepwise procedure. We first chose to randomly 
position three sites in each of the green spaces showing an area of at least five hectares (ha), 
and we placed then one site in each of the green spaces showing an area between 1 ha and 5 
ha. All the other sites - required to achieve a total of 100 sites per zone - were randomly positioned 
within green spaces of at least 200 m2 (2 pixels). Due to partial overlapping between the zones 
(mainly in the city centre), some points were counted for two different areas. We ended up with a 
total of 1083 sites for simulations, with a median nearest-neighbour distance of about 320 m. In 
addition, in order to allow for connectivity and potential gene flow among populations from differ-
ent transects, 550 sites were randomly distributed within green spaces situated between the tran-
sects, as illustrated in Figure 3-5. 

Simulated data 

Once the sampling sites were defined, we used the individual-based population genetics model 
software CDPOP 1.2.21 (Landguth and Cushman, 2010) to simulate the evolution of genotypes 
over 100 generations. In order to benefit from the possibility offered by the simulations to obtain 
a high number of genetic markers, but to avoid simulating a dataset too different from the empirical 
dataset available (366 AFLP markers), we decided to simulate the evolution of genotypes at 500 
diploid bi-allelic single nucleotide polymorphism loci (SNPs).  

CDPOP enables the user to define various demographic parameters related to the displacement 
of individuals between the sites, the mate-choice, the breeding with Mendelian inheritance and 
the mortality of individuals. Here, we started the simulations by considering a uniform distribution 
of butterflies over the study region, i.e. all sites previously defined were assumed to be inhabited 
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by one individual of P. rapae at the beginning of the simulations (in total 1633 P. rapae individuals 
over the study region). The initial genotypes were randomly assigned. The simulation of dispersal 
and mating movement between the sites was then based on a cost distance matrix indicating the 
cost of dispersing from one site to another. For this matrix, we defined the dispersal cost as the 
cumulative resistance of the least cost path, computed using the software Graphab (Foltête, Clau-
zel, and Vuidel, 2012) based on the resistance map previously defined. The function used to link 
the dispersal cost and the dispersal probability has then to be chosen between the four possibili-
ties offered by CDPOP: linear, inverse square, nearest neighbour and random mixing. We chose 
here the linear one, assuming that the probability to disperse decreases linearly with the increase 
of the cost. Finally, we specified the maximum dispersal distance. As for the resistance maps, we 
approximated and fixed the maximum dispersal distance of females of P. rapae to 4000 m. The 
males are less mobile and scarcely dispersed (Ohsaki, 1980), and their maximal dispersal dis-
tance was therefore defined to approximately one third of the one of females (i.e. 1350 m). 

For breeding parameters, we considered a sexual reproduction that can start from the age 0, with 
no selfing and no philopatry, both males and females allow to mate multiple times (Bissoondath 
and Wiklund, 1996) and multiple paternities possible (females can have offspring from multiple 
males). The number of offspring of P. rapae can vary between 300 and 400 eggs with about 99% 
mortality (Richards, 1940) and was thus simulated using a Poisson's law of parameter λ equal to 
300, with a birth mortality fixed at 99%. The sex of each individual was set randomly for each 
generation. 

Finally, generations of P. rapae can sometimes partially overlap (Ohsaki, 1982) and we therefore 
fixed the adult mortality to 95% which keeps the possibility of 5% of the individuals to live for more 
than one generation. In order to increase reliability of our results, we computed five runs of simu-
lations based on these parameters. 

In a second step, we computed five additional runs of simulations using exactly the same param-
eters, except that we reduced the maximal dispersal distance by one half, i.e. 2 km for the females 
and 675 m for the males. This second set of simulations corresponds to the simulation of P.rapae 
with a reduced dispersal ability and enables the analysis of the influence of the dispersal capacity 
on the evolution of genetic diversity and population persistence. 

Our simulations finally produced a dataset of 500 SNPs markers for 1633 individuals (1083 situ-
ated along 4 transects leading from the city-centre to the periphery and divided into three level of 
urbanisation, and 550 individuals in-between these transects) over 100 generations. The dataset 
is replicated 5 times (5 runs) for P. rapae with normal dispersal ability, and 5 times for P. rapae 
with reduced dispersal capacity.  

Genetic diversity and population persistence 

Once the genetic data have been simulated over 100 generations, we analysed the level of ge-
netic diversity within each of the twelve zones, based on measures of heterozygosity. A high 
heterozygosity indicates a lot of genetic variability, whereas a low heterozygosity indicates poor 
genetic diversity. We used here two indices: the average observed heterozygosity (Hobs) as well 
as the average expected heterozygosity (Hexp) assuming Hardy-Weinberg equilibrium (HWE):  
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Formula 3-5 

where hi is the frequency of individuals that are heterozygous for the marker i, pi (respectively qi) 
is the frequency of presence of the first (respectively second) allele for the marker i and k is the 
total number of markers. The values of these measures range from 0 (no individual heterozygous 
for any marker, no genetic diversity) to 1 (all individuals are heterozygous for all markers, high 
genetic diversity). The comparison of the values of these two indices can allow the identification 
of potential inbreeding. Indeed, when a population is facing high inbreeding, the fraction of heter-
ozygotes observed will be less than what is expected under random mating. The difference be-
tween observed and expected heterozygosities can therefore be used to estimate the amount of 
current inbreeding (Wright, 1949). 

During the simulations, habitat sites may become uninhabited, in particular if the cost of reaching 
sites is too high. As a result, the number of individuals per zone can change over time (starting 
from an initial value of 100 individuals per zone). We retrieved the number of individuals remaining 
in each zone at each generation (N) and used this number as an estimate of the population per-
sistence in the respective zone. 

For both dispersal abilities and for each of the twelve zones, we used the five values resulting 
from the five simulation runs to compute mean (μ), standard deviation (σ) and 95% confidence 
intervals (μ±1.96*σ/√n) for the three parameters (Hobs, Hexp and N) at each generation and we 
produced plots of their evolution over time. In order to compare the genetic diversity and number 
of individuals remaining in each zone at the end of the simulations, we also used the 5 values 
from the 5 simulation runs to compute a one-way ANOVA between the last values (generation 
100) of Hobs (resp. Hexp and N) in each of the twelve zones (i.e. 12 groups, 5 measures per groups). 
Post-hoc testing was then performed using Scheffé test in order to highlight the significant differ-
ences between the zones. All computations were performed using the Matlab R2014b software 
(functions anova1 and multcompare). 

Empirical data 

With the objective to compare the results of the genetic diversity obtained by simulations to an 
empirical case study, we used a published empirical dataset of P. rapae sampled in the same 
study region (Schoville et al., 2013). This dataset was composed of 366 AFLP markers for 219 P. 
rapae individuals that were sampled at 41 sites along a 100 km transect going from the Vieux-
Port of Marseille to the suburbs. We here used a subset of this dataset, containing only the sam-
pling sites present in our study area, which corresponds to 36 sites and 145 individuals (yellow 
points on transect B, Figure 3-5). In order to estimate genetic diversity based on this empirical 
data, for each site we identified the n nearest neighbours (Euclidean distance between sampling 
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points) for n comprised between 3 and 25. We then computed the expected heterozygosity among 
the individuals from the group of neighbouring sites. As AFLP markers do not allow the distinction 
between heterozygotes and homozygotes of the dominant allele, we can only measure the fre-
quency of homozygotes of the recessive allele (f). Assuming Hardy-Weinberg equilibrium with p 
representing the allele frequencies of the dominant allele and q the allele frequencies of the re-
cessive allele, we have: f = q2 and 𝑝𝑝 = 1 − 𝑞𝑞 = 1 −�1 − 𝑓𝑓. The expected heterozygosity can 
therefore be expressed as:  

𝐻𝐻𝑒𝑒𝑒𝑒𝑒𝑒 =  
1
𝑘𝑘
�2(𝑓𝑓 − 1 + �1 − 𝑓𝑓)
𝑘𝑘

𝑖𝑖=1

 

Formula 3-6 

where k is the total number of markers.  

In order to compare simulated and empirical data, the expected heterozygosity for the simulated 
data was also computed along the same transect (transect B) by considering for each site the n 
nearest neighbours (n between 3 and 25), using Formula 3-5. 

3.3.4 Results 

Observed heterozygosity 

The change over time of the genetic diversity, as measured by the observed heterozygosity is 
presented on Figure 3-6A (P. rapae with normal dispersal ability) and Figure 3-6B (P. rapae with 
reduced dispersal ability). The initial value at generation zero is equal to 0.5, which corresponds 
to the theoretical maximum value for heterozygosity expected under HWE, resulting from the 
random distribution of genotypes at the beginning of the simulations. For both dispersal capaci-
ties, this value rapidly decreases in all transects and for all levels of urbanisation. 

In the more rural areas (green lines), a loss of 6-7% of the initial heterozygosity can be observed 
after ten generations for P. rapae with normal dispersal ability, but the decline then stabilises and 
more than 75% of the initial heterozygosity level is still present after hundred generations (Table 
3-2). Similar evolution can be observed with the reduced dispersal, with however a more pro-
nounced decline (15-19% lost after 10 generations, 40-58% at generation 100). The Scheffé tests 
computed on the values reached at the end of the simulations indicate that with reduced dispersal 
the loss of observed heterozygosity in area 1 (transect A, -58.3%) is significantly higher (p-values 
< 10-6) than in the other areas with a similar urbanisation level (maximum 41.4% lost). This area 
is also showing the highest loss among the areas of low urbanisation levels with the normal dis-
persal ability. 

In the areas with medium urbanisation (blue lines), a loss of 9-15% of the initial heterozygosity 
can be observed with the normal dispersal ability after ten generations and 20-32% at the end of 
the simulation. Once again, the decline is more pronounced for the reduced dispersal, where the 
loss already reached 25-36% at generation 10 and 56-76% at the end of the simulations. The 
values of observed heterozygosities in these medium urbanised areas (blue lines) are generally 
lower than in the areas with low urbanisation (green lines). However, for some transects, the 
values are close and the confidence intervals sometimes intersect (transects A and B for normal 
dispersal, transect A for reduced dispersal). The Scheffé tests computed on the values at gener-
ation 100 indeed indicate significant differences between the values of areas with low and medium 
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urbanisation only in transect C and D for the normal dispersal (p-values <10-6) and in transects 
B, C, D for reduced dispersal (p-values < 10-4).  

Finally, for highly urbanized areas (red lines), more than 30% of the initial observed heterozygosity 
is already lost after ten generations with the normal dispersal and the decline continues until the 
end of the simulations, after hundred generations, where only 28 to 40% of the initial observed 
heterozygosity remains (Table 3-2). With the reduced dispersal, the level of observed heterozy-
gosity remaining after hundred generations is dramatically low (between 0.1 and 0.15, represent-
ing only 4 to 28% of the initial value). For both dispersal abilities, Scheffé’s tests indicate that the 
values reached at generation 100 in all highly urbanised areas are significantly lower than in all 
areas with medium or low urbanisation (p-values < 10-7). We can also notice that with the normal 
dispersal ability, the value of observed heterozygosity reached at generation 100 in area 12 (tran-
sect D, -96.2%) is significantly lower than in the other highly urbanised areas (p-values < 10-6). 
This area is also the one presenting the highest loss of observed heterozygosity with the reduced 
dispersal ability (-96.2 %). 

 
Table 3-2 - Decline in observed and expected heterozygosity 
For each zone, the table presents the mean percentage decline of observed and expected heterozygosities 
and the mean number of individuals lost at generation 10 and 100, computed on the basis of 5 simulation 
runs 

Zone 
Observed Heterozygosity Expected Heterozygosity Number of individuals 

Generation 10 Generation 100 Generation 10 Generation 100 Generation 10 Generation 100 

normal reduced normal reduced normal reduced normal reduced normal reduced normal reduced 

1 A L -7.3 -18.7 -23.7 -58.3 -4.6 -5.0 -19.5 -31.7 0.0 0.0 0.0 0.0 

2 A M -15.1 -32.6 -28.6 -64.7 -3.6 -6.6 -14.0 -28.8 -0.8 -29.4 -0.8 -30.2 

3 A H -35.9 -45.6 -65.6 -93.6 -7.3 -14.8 -30.6 -57.2 -29.3 -61.2 -40.2 -71.2 

4 B L -7.2 -17.4 -18.5 -41.4 -3.0 -4.2 -12.1 -17.5 0.0 -1.2 0.0 -3.0 

5 B M -8.7 -25.2 -19.5 -56.2 -3.5 -5.8 -11.9 -21.9 0.0 -3.0 0.0 -2.8 

6 B H -36.2 -42.9 -66.1 -82.3 -6.0 -15.4 -21.1 -62.6 -18.2 -70.8 -25.8 -81.4 

7 C L -6.0 -15.3 -16.9 -39.6 -3.4 -4.7 -13.6 -22.9 0.0 -0.8 0.0 -1.0 

8 C M -14.6 -36.2 -32.2 -75.8 -3.9 -7.5 -14.6 -32.9 -5.0 -32.8 -3.7 -29.0 

9 C H -30.1 -51.6 -60.9 -94.9 -6.6 -16.6 -28.1 -73.8 -17.2 -60.2 -25.5 -79.2 

10 D L -5.9 -17.0 -19.2 -40.8 -3.6 -5.0 -17.2 -24.7 0.0 0.0 0.0 0.0 

11 D M -12.8 -27.1 -34.3 -58.3 -4.4 -5.8 -18.1 -26.7 -3.0 -10.0 -3.0 -18.0 

12 D H -38.0 -54.7 -82.1 -96.2 -6.4 -16.1 -26.8 -76.7 -17.8 -71.2 -28.7 -91.0 

The names of the areas in the first column are indicated as follows: area number, transect and urbanisation level 
(L=low, M=medium and H=high). The indication ‘normal’ and ‘reduced’ are referring to the dispersal ability.  
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Figure 3-6 – Number of individuals and heterozygosity over generations 
Simulated change over time of the number of individuals (e, f), and observed (a, b) and expected (c, d) 
heterozygosities within areas of different urbanisation densities. Graphs in the left column show the 
changes over time for P. rapae with normal dispersal ability and in the right column for reduced dispersal 
ability. For each transect, the green line corresponds to the more rural area (green areas in Figure 3-5), the 
blue line to intermediate area (blue areas in Figure 3-5) and the red line to the city-centre area (red areas 
in Figure 3-5). The curves present the average value and the 95% confidence intervals computed on the 
basis of the five simulation runs.  
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Expected heterozygosity 

Like the observed heterozygosity, at the beginning of the simulations the expected heterozygosity 
is equal to 0.5 in all transects for P. rapae with normal dispersal ability (Figure 3-6C) and reduced 
dispersal (Figure 3-6D). Over time, a decrease can be observed in all transects and all areas, but 
this decline is less pronounced than for the observed heterozygosity, especially with the normal 
dispersal ability. Indeed, for this species, the highest loss of expected heterozygosity after hun-
dred generations is of 30.6 % (Table 3-2, transect A, highly urbanised) whereas it was of 82.1% 
for the observed heterozygosity (Table 3-2, transect D, highly urbanised). With the reduced dis-
persal, the decreases are more pronounced, especially in the highly urbanised areas and the 
values are also less stable between the simulation runs, which is highlighted by the much larger 
confidence intervals.  

When comparing the various levels of urbanisation, no significant difference can be highlighted 
for any transect between the areas of low or medium urbanisation, when considering the values 
of expected heterozygosity at generation 100 (p-values >> 0.5) with either dispersal abilities. The 
values of expected heterozygosity in the more rural areas (green lines) even occasionally drop 
below the value of the corresponding intermediate areas (blue lines), notably in transect A. With 
the normal dispersal ability, the differences between highly urbanised areas and the other levels 
of urbanisation are small but nevertheless significant (p-values < 0.03), except for area 6 (transect 
B). With the reduced dispersal, only the areas 9 and 12 (transects C and D) show significantly 
lower values at generation 100 as compared to the other levels of urbanisation (p-values < 0.05).  

Persistence of populations 

For P. rapae with normal (Figure 3-6E) and reduced (Figure 3-6F) dispersal abilities, the results 
show that the number of individuals in the less urbanised areas (green lines) remains stable 
throughout the study period, for all transects. Indeed, with the normal dispersal, hundred individ-
uals are present at all time in these areas (Figure 3-6E, green lines), whereas with the reduced 
dispersal (Figure 3-6F, green lines), a small loss can be noticed in half of the transects (B and C), 
but this loss is only of 3 individuals at maximum (Table 3-2). 

For the areas with a medium urbanisation (blue lines), with the normal dispersal (Figure 3-6E) the 
number of individuals slightly decreases but then remains also stable through time, with more 
than 96 individuals present at all time in all transects. However, with the reduced dispersal (Figure 
3-6F), a noticeable reduction in the number of individuals (18-30 individuals) can be observed in 
transects A, C and D, whereas in transect B the loss of individuals is very small (3 individuals at 
maximum). Scheffé tests indicate that the values reached at generation 100 are not significantly 
different between low and medium urbanised areas for the normal dispersal ability (p-values > 
0.9). However, with the reduced dispersal, the values are significantly different (p-values < 0.001) 
except in transect B. 

Finally, for the highly urbanised areas (red lines), with the normal dispersal, the number of indi-
viduals (Figure 3-6E) rapidly drops from 100 to less than 85 during the first ten generations and 
this decline is even more severe with the reduced dispersal (Figure 3-6F) for which less than 40 
individuals are present after ten generations. After approximately twenty generations, the number 
of individuals in these highly urbanised areas stabilizes for both dispersal abilities. With the normal 
dispersal, the stabilisation occurs around 60 (transect A) to 75 individuals (transect B, C, D) 
whereas with the reduced dispersal it is much lower (9 individuals in transect D to 30 individuals 
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in transect A). Once again, the Scheffé tests indicate that the values reached at the end of the 
simulations in the highly urbanised areas are always significantly lower than in the ones with 
medium or low urbanisation, with both dispersal abilities (p-values < 2*10-4).  

Simulated versus empirical results 

For both the empirical and simulated data, we can observe a significant increase of expected 
heterozygosity with increasing distance from the city centre (Figure 3-7). Moreover, the linear 
regressions fitted on the centered-reduced values show slopes that are very close for all datasets. 
 

 
Figure 3-7 – Simulated versus empirical results 
Expected heterozygosity computed for each site considering the five nearest neighbours, as a function of 
the distance to the city centre. For both simulated and empirical data, the values of heterozygosity have 
been standardised. Note that the absolute values are not directly comparable as the values of expected 
heterozygosity computed on the empirical data sets (366 AFLP) range from 0.07 to 0.18, whereas from 
simulated data (500 SNP) they are comprised between 0.012 and 0.42 (normal dispersal ability) or between 
0.005 and 0.37 (reduced dispersal ability). The linear fit and the statistics were obtained using the function 
lm in R. 
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dispersal capability (generation 100)  
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When comparing the absolute values of expected heterozygosity obtained with the simulated and 
empirical datasets, one can notice that the range of values obtained from the empirical dataset is 
much smaller than the one from simulations. Indeed the values of expected heterozygosity com-
puted on the empirical dataset (366 AFLP) range from 0.07 to 0.18, whereas from simulated data 
(500 SNP) they are comprised between 0.012 and 0.42 (normal dispersal ability) or 0.005 and 
0.37 (reduced dispersal ability). However, despite these differences in the absolute values, the 
same patterns with respect to urban density are observed in both the simulated and empirical 
data. 

Figure 3-7 presents the evolution of the expected heterozygosity as a function of the distance to 
the city-centre for the computations performed considering for each site the 5 nearest neighbours. 
The results for the other numbers of neighbours (3-25) are not presented, but lead to the same 
conclusions.  

3.3.5 Discussion 

Potential negative impact of anthropogenic fragmentation 

Results of this study illustrate that highly urbanised areas show a lower genetic diversity for but-
terflies, measured by both the observed and expected heterozygosities. These areas are charac-
terized by a high percentage of impervious land cover (> 55%), a low percentage of green spaces 
(< 8%) and a reduced surface of green spaces entities (< 600 m2) (Figure 3-5). In these conditions, 
the loss of genetic diversity observed can be explained both by the reduction in population size 
due to the loss of habitats and to their smaller size, and also to the limited connectivity due to the 
dispersal barriers caused by impervious surfaces. Indeed, during the simulations, when the re-
sistance of the landscape is important, the cost of moving to other habitats becomes too high and 
eventually individuals can only reach very few congeners to reproduce. In such situations, gene 
flow is significantly reduced, which ultimately leads to a decline of genetic diversity. This decline 
has also been highlighted by the analysis of the empirical data available in the study region for P. 
rapae, which shows a decrease of the expected heterozygosity towards the city-centre. Moreover 
several previous studies have highlighted a similar negative influence of urban environment on 
dispersal (Schtickzelle and Baguette, 2003; Schtickzelle et al., 2006; Dubois and Cheptou, 2017), 
gene flow (Keyghobadi et al., 2006) and genetic diversity (Williams et al., 2003; Takami et al., 
2004). Nevertheless, the rapidity of the decline presented here with the simulations should be 
interpreted with caution. Indeed, in real environments, populations are generally much larger than 
100 individuals, and the reduction in genetic diversity may therefore take more time than what is 
presented here. However, the aim of the analysis was not to determine the time required to reach 
a given level of genetic diversity, but to show that simulated as well as empirical data indicate that 
the genetic diversity of urban populations is significantly reduced as compared to the diversity of 
populations living in more rural areas. Moreover, the results show that the level of observed het-
erozygosity is generally lower than the level of expected heterozygosity, especially in the highly 
urbanised areas. This difference highlighted a potential inbreeding for the populations concerned, 
which is a cause of extinction risk for butterfly populations (Saccheri et al., 1998; Nieminen et al., 
2001). 

Results of the simulations also highlighted a decrease in the number of P. rapae individuals over 
time, especially in highly urbanized areas. This decrease suggests that the persistence of popu-
lations is threatened in urban environments. For the simulated data, a potential site may become 
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unoccupied over time if the individuals living there are no longer able to find a congener to repro-
duce. Indeed, in this extreme case, individuals are isolated and the population is doomed to ex-
tinction. This negative impact of urban environment on the persistence of populations has already 
been highlighted in other urban areas and for other species (Maes and Van Dyck, 2001; Wood 
and Pullin, 2002; Fattorini, 2011). However, once again, when considering the number of gener-
ations after which a site potentially becomes uninhabited, the results of the simulations should be 
interpreted with caution. In reality, depending on the initial size of the population present in each 
habitat, the real extinction may take more time than what is shown here. Nevertheless, inde-
pendently of the exact time required for extinction, the simulations we processed highlighted po-
tential habitats in which populations are particularly vulnerable due to the lack of connectivity with 
their neighbouring habitats. 

Our study was conducted in an environment, in which the fragmentation and reduced habitat size 
was mostly due to a high level of urbanisation. However, the negative impact on genetic diversity 
and population persistence highlighted here can also be observed in non-urban environments 
facing important fragmentation and reduction of habitat size. For example, Fountain et al. (2016) 
studied museum samples of the Glanville fritillary butterfly and showed that a decline in genetic 
diversity was preceding the extinction of the populations in the mainland of Finland mainly due to 
fragmentation and loss of suitable meadows. Similarly, loss of genetic diversity due to fragmen-
tation and associated lack of connectivity has been highlighted for the prairie-chickens in Wiscon-
sin (Johnson et al., 2004), for the alpine chipmunk in Yosemite National Park (Rubidge et al., 
2012) or for a tropical rain forest tree in Costa Rica (Hall et al., 1996). 

Finally, we note that the impacts highlighted in this study are not relevant for all species living in 
urban environments. Even though similar evolutions could be most probably observed for other 
butterfly species which are similarly constrained in their dispersal in urban environments, other 
species may not be negatively impacted by urbanisation, or less impacted, as previously men-
tioned in the introduction.  

Differences among transects: land cover and barriers to dispersal  

As regards areas with low urbanisation, the highest loss of genetic diversity or number of individ-
uals is generally observed in transect A. This area of transect A is characterised by a high per-
centage of green spaces (60%) and a large average surface for these entities (> 3 km2) likely to 
be favourable for the species studied. However, this area also shows the highest percentage of 
impervious surfaces (12.7%), which could explain its disadvantage as compared to other regions 
of the periphery.  

For the areas with medium urbanisation, transect C often seems to be the most negative, espe-
cially for the species with the lower dispersal ability. This could be explained by the lower per-
centage of habitat areas (grassland and parks) in this region and also to the smaller average 
surface of habitat entities (622 m2) which indicates a higher fragmentation.  

Finally, the highly urbanised areas of transect D often appears to be less favourable even if its 
land cover does not seem to be very different from the other transects. However, this transect is 
characterised by the lowest percentage of green spaces in the periphery, which is due to a quite 
high percentage of impervious surfaces (12%) but also a high percentage of water (11.8%) and 
forest (24.4%). These barriers may reduce the gene flow from the periphery to the city centre and 
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therefore threaten the viability of the populations of the city-centre. This shows that the fragmen-
tation of the less urbanised suburb areas can also have a noticeable importance on the decrease 
of genetic diversity and population persistence of the urban populations. 

Finally, we note that in our case for all parameters (expected and observed heterozygosity and 
number of individuals), the differences highlighted between the transects (differences at genera-
tion 100: 0-27.4%, 12.9% in average) remain minor relative to the differences observed between 
the three levels of urbanisation (differences at generation 100 between low and high urbanisation 
level: 9-91%, 43.7% in average). 

Dispersal capacity in urban landscapes 

When comparing the respective behaviours of P. rapae and of a butterfly with a reduced dispersal 
ability, results show that the reduction of genetic diversity is much more pronounced for the less 
mobile species and that the persistence of the latter populations is also more threatened. This 
underlines that a higher dispersal capacity may be an advantage for species living in urban envi-
ronments, which had already been highlighted by previous studies (Maes and Van Dyck, 2001; 
Wood and Pullin, 2002; Duplouy et al., 2013). Indeed, a higher dispersal capacity results in the 
ability to disperse over longer distances but also to use various dispersal modes facilitating the 
crossing of barriers present in urban landscapes. For example plants pollinated by many insects 
may be only moderately impacted by urban fragmentation (Culley et al., 2007). Similarly, species 
that can benefit from human-mediated dispersal (attachment to clothes, vehicles, shoes, soil 
movements, etc.) may be particularly adapted to urban landscapes (Banks et al., 2015; Egizi et 
al., 2016). Conversely, species with only one dispersal mode such as butterflies or plants polli-
nated only by specific insects may be more strongly influenced by urbanisation and endangered 
by the induced fragmentation (Cheptou et al., 2017). 

Relevance of simulations 

This study’s results illustrate advantages of combining simulated with empirical data in landscape 
genetics. Indeed, empirical genetic data reflects the current state of the genetic composition of 
populations, influenced by potentially unknown evolutionary processes in the past. However the 
collection of such data might be particularly expensive and time-demanding. In this context, sim-
ulations may offer many advantages (Epperson et al., 2010). 

First, as shown in this study, the use of simulated data allows for the extension of the analysis 
over a larger study area including zones showing a diversity of urbanization levels, and over a 
defined period of time. This notably makes it possible to compare several transects and to high-
light local differences across the metropolitan area of Marseille, while empirical data were re-
stricted to a single transect. Secondly, the simulations enable the study of a species with a lower 
dispersal distance, for which it may be difficult to collect samples due to its limited presence in 
urban environments. Here, the simulations permitted in particular to emphasize the threat that 
dense urban areas constitute for low dispersal species compared to species with a higher disper-
sal capacity. Finally, simulations allow the consideration of a larger genetic dataset, here based 
on 500 SNPs as compared to the 366 AFLPs constituting the empirical dataset. This can be 
particularly interesting in a context of high sequencing cost and since results may change accord-
ing to the genetic data used (Landguth, Fedy, et al., 2012).  
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However, simulations often require subjective, expert-based assumptions to be formalized (re-
sistance values, populations’ parameters, etc.) resulting in the injection of uncertainty in the re-
sults obtained. This is an important reason why the combination with empirical data is particularly 
powerful since the latter provide landmarks to relieve the uncertainty mentioned above and ena-
bling a complete analysis and a more confident interpretation of the results.  

Sustainable land-use planning 

Our results show that butterfly species can be strongly threatened in dense urban areas, highly 
fragmented environment or other human-influenced areas. For these species, in order to con-
serve and promote genetically stable and diverse populations, it is important to 1) preserve or 
restore suitable habitats and 2) maintain or increase the connectivity among them in order to allow 
dispersal also for species with limited dispersal capacities. As increasing the connectivity by the 
creation of dispersal corridors may be difficult to achieve due to the numerous constraints of urban 
or highly fragmented environments, the creation or preservation of stepping stone habitats is 
promising and of special importance (Bierwagen, 2006; Serret et al., 2014). In this context, the 
use of landscape genetic methods to assess the impact of landscape features on gene flow is a 
key step in designing functional ecological networks aiming to preserve genetic diversity and 
therefore biodiversity (Baguette et al., 2013). Genetic analyses are powerful methods to estimate 
species’ dispersal processes (Stevens et al., 2010), to assess adaptive ability (Munshi-South et 
al., 2016) and also to directly provide information about persistence of populations, which is es-
sential to promote and plan for more sustainable land-use strategies. In urban areas, the preser-
vation of biodiversity is also key to favour a better quality of life for the residents, including well-
being related to better health conditions (Maller et al., 2006). For this reason, it is of paramount 
importance that urban authorities and planners adapt the way they design dense city centers in 
particular, to identify the potential consequences on native species, and to favor the insertion of 
connected habitats. 

3.3.6 Additionnal figure 

The Figure 3-8 (unpublished) shows the landsape graphs corresponding to the dispersal paths 
between the simulated points for P. rapae (left) and for a species with a lower dispersal capacity 
(right). The graph components have been highlighted in this figure. These components corre-
spond to sets of nodes that are connected by a succession of links. Two nodes thus belong to the 
same component if it is possible to move from one to the other, and are in different components 
if there is no link to connect them. At the ecological level, the presence of few large components, 
containing many nodes, indicates a well-connected territory in which habitats are linked by dis-
persal paths. On the contrary, a high number of small components containing few nodes indicates 
the presence of small groups of habitats that are disconnected from each other, without any pos-
sibility for exchanges.  

For P. rapae (Figure 3-8, Left), a large component includes most of the habitat points from the 
periphery, indicating good opportunitites for dispersal and gene flow there. In contrast, the habitat 
points close to the city-centre are divided into many small components, indicating little exchange 
between them and a lack of connectivity with the periphery. For a species with a lower dispersal 
capacity (Figure 3-8, Right), the components are much more numerous, which highlights lower 
connectivity associated with limited dispersal and gene flow. 
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Such maps can thus be used to identify dispersal barriers as well as isolated habitats that are not 
connected to any other habitats, or only to a few of them. 

  
Figure 3-8 – Landscape graphs 
Landscape graphs for P. rapae (left) and for a species with a lower dispersal capacity (right). The least cost 
paths between the simulated habitat points are shown in orange and the components of the graph are 
highlighted in black. 
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4.1 Research context 

In the previous two chapters, we have highlighted the importance of preserving 1) suitable habi-
tats that may constitute the potential niche of a species and 2) sufficient connectivity between 
them in order to preserve the dispersal possibilities and genetic diversity of populations. A higher 
level of genetic diversity should indeed favour adaptation. However, in some cases, conserving 
total genetic diversity in populations may not be sufficient to preserve the potential for adaptation 
and it could be more valuable to specifically preserve locally adapted genetic variants. 

4.1.1 Local adaptation 

Populations of the same species living in different geographical areas may develop diverse evo-
lutionary responses according to contrasting natural selective pressures. This process is called 
local adaptation because it does not affect all individuals of the same species similarly. Due to 
this local adaptation, populations will be better suited to their native environment than to other 
locations where individuals of the same species may live. For example, rock pocket mice were 
shown to adapt locally to their environment by adapting their coat colour to the colour of the rock 
on which they live (light desert rocks or black basaltic rocks) in order to be less visible to predators. 
This adaptation has been associated with a polymorphism in the melanocortin-1-receptor (MC1R) 
gene (Nachman et al., 2003). 

At the genetic level, local adaptation results in a modification of the alleles observed between 
individuals from different populations, i.e. the presence of a polymorphism. However, not all pol-
ymorphisms are the signature of a local adaptation since most of them are neutral, i.e. they do 
not confer any advantage or disadvantage. Neutral polymorphisms can notably result from muta-
tion, gene flow or genetic drift. This neutral genetic diversity contributes to the total genetic diver-
sity but does not indicate any local adaptation. As discussed in the previous chapter, preservation 
of total genetic diversity is key to preserving the adaptive potential, as it offers more opportunities 
to find variants that are better suited to the modified conditions. However, the survival of popula-
tions in a specific site may depend even more heavily on the preservation of genetic variants that 
are already locally adapted. When developing conservation strategies to increase gene flow, for 
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example through reintroduction, hybridization or cross-breeding, it is thus important to preserve 
the local adaptation of populations. In addition, some populations may already present adapted 
traits that may be more favourable for future climatic conditions (e.g. adaptation to drought or high 
temperature). Individuals from these populations might therefore be preferentially selected for 
conservation measures as their long-term survival capacity may be higher. They can also be used 
as donor populations for reintroductions. In this context, there is a need to preserve not only 
neutral genetic diversity, but also adaptive genetic diversity in particular (McKay et al., 2001; Hoff-
mann and Willi, 2008; Sgrò et al., 2011; Willoughby et al., 2018). The development of tools to 
help preserve this adaptive potential is a challenging research question that is at the intersection 
of many fields. One of the first steps is the detection of the signatures of local adaptation in the 
genome. 

4.1.2 Identification of signatures of local adaptation 

Traditionally, local adaptation was identified using common garden experiments. However, with 
advances in sequencing techniques, several methods have been developed to identify loci po-
tentially subject to natural selection, based on genetic data (Nielsen, 2005; Schoville et al., 2012; 
Joost et al., 2013; Vitti et al., 2013; Rellstab et al., 2015). These methods come from two main 
research areas: population genetics and landscape genetics. 

Population genetics 

Population genetics is a discipline of biology that describes the genetic variations within popula-
tions (Fisher, 1930; Wright, 1932, 1949; Haldane, 1959). In this field, many methods have been 
developed to identify local adaptation. A first group of methods relies on the comparison of intra- 
and interspecific measures. Under positive directional selection, an allele that provides greater 
fitness and improves the chances of survival is expected to be preferentially passed to the off-
spring and therefore to show a higher frequency in this population (whereas a negative selection 
disfavouring deleterious allele will induce a lower frequency). As a result, very different allele 
frequencies will be observed at the corresponding locus between populations facing different se-
lection pressures, or between populations facing selection versus a neutral population. This ge-
netic differentiation can be measured using the Wright’s fixation index, FST, which compares the 
allele frequencies within a population with those existing between populations. Natural selection 
is thus expected to produce extreme values of FST at selected loci, relative to other loci (Beaumont 
and Nichols, 1996). Based on this idea, various software have been developed to compare ob-
served frequencies with null models where no selection takes place, and to identify loci that are 
statistical outliers (Foll and Gaggiotti, 2008; Excoffier and Lischer, 2010). Another way to identify 
selection based on inter- and intraspecific divergence relies on the comparison of the ratio of non-
synonymous to synonymous mutations (McDonald et al., 1991). Non-synonymous mutations are 
mutations that modify the amino-acid sequence and the corresponding derived protein, thus re-
sulting in a biological change in the organism. Synonymous mutations on the contrary produce 
the same amino acid. Natural selection affects non-synonymous mutations, where positive selec-
tion favouring an allele will increase the proportion of non-synonymous mutations when compared 
to synonymous ones (whereas negative selection disfavouring a deleterious allele will act in-
versely) (Nielsen, 2005). 

Some other population genetics methods focus on the detection of selective sweeps based on 
the analysis of the frequency spectrum within a population. When a mutation occurs and is re-
tained by directional selection, its frequency will increase in the population. Usually, genes that 
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are closely situated on the same chromosome will be transmitted together to the offspring, i.e. the 
copies transmitted to the offspring will come from the same homologous chromosome of the par-
ent. As a result, the alleles of linked sites surrounding the mutation are also likely to increase their 
frequency, which is called genetic hitchhiking. This produces genomic regions showing reduced 
genetic variations as compared to the rest of the genome, which is called a selective sweep. The 
identification of these selective sweeps can therefore be used to identify possible loci under se-
lection (Kim and Stephan, 2002). Some software have been developed based on this idea (Niel-
sen et al., 2005; Chen et al., 2010; Pavlidis et al., 2013). All these population genetics methods 
focus on populations and therefore require the analysis of population structure. 

Population structure analysis 

There are several ways of defining populations of individuals of the same species, all of which 
involve a cohesive process to group individuals together (Waples and Gaggiotti, 2006). This co-
hesion may result from an opportunity to interact demographically (competition, interactions, etc.) 
or genetically (reproduction). Populations thus correspond to groups of individuals of the same 
species that can either interact or reproduce together. Different populations may be created due 
to barriers restricting dispersal or gene flow. Geographically separated individuals will then evolve 
differently and their allele frequencies will vary depending on their history, including the amount 
of genetic drift (i.e. the change in allele frequencies resulting from random sampling of organisms), 
potential bottlenecks (i.e. strong reductions of population size at a given time leading to an im-
portant loss of genetic diversity), or migratory events (Günther and Coop, 2013).  

Several statistical methods have been developed to identify different populations based on ge-
netic data. Pritchard et al. (2000) presented a Bayesian clustering method to group individuals 
according to their genetic characteristics (STRUCTURE). This method requires the user to define 
the estimated number of populations (K). Usually, several values for K are tested such to retain 
the most likely number. STRUCTURE then assigns each individual to one or more population(s) 
based on the probability of observing their allele frequencies in the population of interest. Individ-
uals may be assigned to several populations in the case of admixture, i.e. when individuals pos-
sess recent origins from two or more distant populations. Based on the same statistical model, 
ADMIXTURE was then developed (Alexander and Lange, 2011), using a faster optimization al-
gorithm and adding a cross-validation procedure to define the most likely value for K. 

Principal Component Analysis (PCA) can also be used to identify population structure (Patterson 
et al., 2006). In this case, PCA is used to reduce the dimensions of genetic data. PCA output does 
not directly groups individuals into populations, but instead provides their coordinates along axes 
of genetic variations. A clustering procedure could then be used to assign individuals into discrete 
populations (see for example DAPC (Jombart et al., 2010)). 

Landscape genomics  

Identifying local adaptation with population genetics methods can be difficult when datasets show 
a weak genetic structure (i.e. all individuals belong to the same population) or have only a few 
sampled individuals. Moreover, these methods do not directly provide information on the environ-
mental variable that may produce the selection. Finally, the computations can be very time-con-
suming, making them difficult to apply in genome-wide studies (Schoville et al., 2012; Joost et al., 
2013; Stucki et al., 2014). Other methods for detecting signatures of local adaptation have thus 
been developed, in the field of landscape genomics.  
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Landscape genomics is a subfield of landscape genetics, a discipline that focuses on the spatial 
dimension of genetic information and studies the interaction between environmental variables and 
evolutionary processes (Manel et al., 2003). Landscape genomics studies the influence of the 
environment on the distribution of neutral and adaptive variations in the genome (Luikart et al., 
2003). Many methods have been developed in this field to identify loci under selection. These 
methods integrate environmental data (climate, land cover, altitude, etc.) and seek to identify 
genotype or allele occurrences that are significantly correlated with environmental variables, in-
dicating that they have possibly been selected by the environment. However, high numbers of 
false positives can be detected using these methods if population structure is not correctly inte-
grated. Indeed, differences in allele frequencies resulting from genetic drift, bottleneck, migratory 
events, etc. may be falsely attributed to local adaptation if the population structure is not taken 
into account (Excoffier et al., 2009). Analysing the population structure is thus an essential pre-
requisite for landscape genomics studies. 

In 1969, Johnson and Schaffer first correlated allelic frequencies with environmental variables, to 
look for signatures of selection in insects (Johnson et al., 1969). Later, Joost et al. (2007) devel-
oped the parallel processing of a large number of logistic regressions to estimate the probability 
of presence of a genetic variant as a function of an environmental variable (Spatial Analysis 
Method, see next section). This approach enables a fast analysis of many loci in relation to many 
environmental variables, and the identification of possible selection signals without any prior in-
formation about loci. On this basis, to meet the requirements imposed by new high-density ge-
nomic data, Stucki et al. (2014) developed the Samβada software tool that allows for the rapid 
computation of logistic regressions with large genomic datasets. Samβada also allows for multi-
variate analyses, including more than one environmental variable as well as information about 
population structure. Several other approaches based on genotype-environment associations 
have been developed, in particular to more easily integrate population structure parameters 
(Manel et al., 2010; Coop et al., 2010; Günther and Coop, 2013; Gautier, 2015). In the following 
section, we present the SAM method, which will be used in the analysis presented in section 4.3. 

4.1.3 Spatial Analysis Method (SAM) 

Logistic regressions 

The Spatial Analysis Method (SAM) implements logistic regressions to link the presence of an 
allele or genotype to environmental variables. Logistic regression is a standard method used to 
describe the relationship between a binary response variable, here the presence or absence of a 
genotype, and one or more continuous predictors, here the environmental predictors (Figure 4-1). 

These logistic regressions estimate the probability p of observing a given genotype as a function 
of environmental conditions. More specifically, logistic regressions express the logarithm of the 
odds, which is the ratio of the probability of success (presence of the genotype = p) to the proba-
bility of failure (absence of the genotype = 1-p), as a linear regression of environmental predictors 
(Formula 4-1): 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑝𝑝) = 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑝𝑝

1 − 𝑝𝑝
� = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1 + 𝛽𝛽2𝑥𝑥2 + ⋯+ 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛 

Formula 4-1 
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where x1… xn are the values of the environmental predictors and β0… βn are the coefficients of 
the logistic regression. These coefficients can be estimated using a maximum likelihood method. 

 
Figure 4-1 – Univariate logistic regression 

 

As a result, the probability (p) of presence of the genotype (G) given the environmental conditions 
(x) can be obtained using Formula 4-2. 

𝑝𝑝 = 𝑝𝑝(𝐺𝐺|𝑥𝑥) =
𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥1+𝛽𝛽2𝑥𝑥2+⋯+𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛

1 + 𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥1+𝛽𝛽2𝑥𝑥2+⋯+𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛
 

Formula 4-2 

Covariates can also be integrated in the model, for example to consider population structure. In 
that case, the probability to observe a genotype, given the environmental conditions and the co-
variates, can be expressed using Formula 4-3. 

𝑝𝑝 = 𝑝𝑝(𝐺𝐺|(𝑥𝑥 ∩ 𝑐𝑐)) =
𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥1+𝛽𝛽2𝑥𝑥2+⋯+𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛+𝛾𝛾1𝑐𝑐1+𝛾𝛾2𝑐𝑐2+⋯+𝛾𝛾𝑛𝑛𝑐𝑐𝑛𝑛

1 + 𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥1+𝛽𝛽2𝑥𝑥2+⋯+𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛+𝛾𝛾1𝑐𝑐1+𝛾𝛾2𝑐𝑐2+⋯+𝛾𝛾𝑛𝑛𝑐𝑐𝑛𝑛
 

Formula 4-3 

where c1….cn are the values of the covariates and γ1….γn are the associated coefficients. 

To identify genotypes that are significantly associated with environmental conditions, which may 
therefore be the signature of natural selection, independent univariate logistic regressions are 
computed between each genotype and each environmental predictor and the most significant 
associations are identified on the basis of statistical tests. 

 

 

Environmental variable (x1) 

𝒑𝒑 =
𝒆𝒆𝜷𝜷𝟎𝟎+𝜷𝜷𝟏𝟏𝒙𝒙𝟏𝟏

𝟏𝟏 + 𝒆𝒆𝜷𝜷𝟎𝟎+𝜷𝜷𝟏𝟏𝒙𝒙𝟏𝟏
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Statistical tests 

Likelihood-ratio test (G score) 

This statistic compares the likelihood L of the complete model (M) with the likelihood L0 of a model 
excluding the environmental variable of interest (M0). In the univariate case, M thus contains a 
constant plus an environmental predictor, whereas M0 contains only one constant. The G score 
is then computed using Formula 4-4. 

𝐺𝐺 = 2 𝑙𝑙𝑙𝑙
𝐿𝐿
𝐿𝐿0

 

Formula 4-4 

The null hypothesis H0 of this test is that the model considered is no better than a null model, i.e. 
the environmental variable considered does not help in predicting the probability of presence of 
the genotype. Assuming H0, the G values will follow a chi-square distribution with one degree of 
freedom. This distribution can thus be used to estimate the p-value associated with the observed 
G score. 

Wald test 

The Wald test is a common statistic used to estimate whether a parameter is equal to a given 
value (V). In our case, it is used to test the null hypothesis that the β parameter associated with 
an environmental variable is equal to 0, which would indicate that the environmental variable 
studied has no effect on the probability of finding the genotype. The Wald test is calculated from 
the difference between the estimated value β and the testing value (V). This difference is then 
expressed as a number of standard errors of the β parameter (𝜎𝜎(𝛽𝛽)) (Formula 4-5): 

𝑊𝑊 =
𝛽𝛽

𝜎𝜎(𝛽𝛽)
 

Formula 4-5 

Under the null hypothesis, the Wald ratio values will also follow a chi-squared distribution with 
one degree of freedom. 

Functions of the marker detected 

When the genetic data analysed does not correspond to the whole genome, it is possible that 
some of the loci detected are not under selection themselves, but are the signature of a selection 
that has occurred in a closely localised gene (through selective sweep). The study of the genomic 
areas surrounding the detected loci thus allows the identification of potential genes that may be 
under selection. When a reference genome is available (i.e. a complete assembly of the entire 
genome of a species, making it possible to locate the position of genes), the analysis of a genomic 
area can be carried out by using a genomic browser such as the ones available on NCBI 
(https://www.ncbi.nlm.nih.gov/genome/) or Ensembl (https://www.ensembl.org/index.html). Such 
tools enable the identification of all known genetic information located around a locus of interest. 
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4.2 Scientific contribution 

4.2.1  Problem statement 

Despite the numerous tools developed to identify the signature of local adaptation, the integration 
of this knowledge into conservation practices is still very limited. Several authors have thus high-
lighted the need to develop methods to better take into account the adaptive potential in conser-
vation practices (Funk et al., 2019; Hoelzel et al., 2019; Mable, 2019). To this end, there is a need 
to provide tools to map the spatial distribution of locally adapted genetic variants and to project 
the probability of finding them in un-sampled areas or under future climatic conditions (Bay et al., 
2017). However, very few studies have addressed this issue. Fournier et al. (2011) identified 
locally adapted SNP alleles and then used the Maxent species distribution model (Phillips et al., 
2006) to estimate their spatial distribution. Similarly, Exposito-Alonso et al. (2018) trained one 
ENM (random forests) for each SNP identified as locally adapted in order to highlight which alleles 
are most likely given the current environmental conditions. They then projected the models into 
future climatic conditions to identify populations that would require significant modifications of their 
allele composition to be better adapted to the future climate. Fitzpatrick and Keller (2015) pro-
posed another approach based on two community-level modelling methods (Generalised Dissim-
ilarity Modelling and Gradient Forest). They used it to map the current and future spatial distribu-
tion of several adaptive variants and to assess the “genetic offset” of populations under climate 
change as a function of the mismatch between the current distributions and future predictions. 
Following this, Bay et al. (2018) defined this mismatch as the “genomic vulnerability” of popula-
tions and showed that recent climate change has already negatively affected populations with 
high genomic vulnerability. 

However, practical applications of these methods remain limited and there is still a need to de-
velop new tools to ease the integration of the adaptive potential into conservation practices. The 
SAM method presented in the previous section can be directly used to map the probability of 
finding a specific genetic variant in a territory by projecting the logistic regression onto the envi-
ronmental layers (see case studies in Annex A3). However, since local adaptation usually involves 
several loci, potentially associated with different environmental conditions, the method needs to 
be extended to enable the simultaneous consideration of several variants and environmental var-
iables. We will therefore consider how the SAM approach presented in the previous section can 
be further developed to meet this need. As compared with existing methods previously cited (Ran-
dom Forests, Gradient Forest and Generalised Dissimilarity Modelling), the SAM approach relies 
on logistic regressions that can be understood and implemented without requiring advanced 
mathematical background. This could be an advantage to facilitate its practical implementation in 
a conservation framework involving actors with different scientific backgrounds. 
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4.2.2 Objectives 

In this context, we aim to develop a new tool based on gene-environment associations (SAM 
method) to: 
 

 

• Predict the probability of presence of one or many locally adapted genetic variants in 
non-sampled areas. 

 

• Identify areas where there is a higher probability of finding individuals better adapted to 
the future climatic conditions. 

 

• Identify vulnerable populations that may be threatened by climate change due to a lack 
of locally adapted genetic variant favourable for the future conditions. 

 

4.2.3 Case study 

In the study presented in section 4.3, we analyse the local adaptation of Moroccan and European 
goats’ populations to estimate their vulnerability to climate change. Goats are able to live in very 
contrasting environments and are thus interesting candidates for studying local adaptation. How-
ever, like many other livestock species, their potential for local adaptation is currently threatened 
by selective breeding aimed at improving production value (Taberlet et al., 2008). 

The genetic data used in our study were provided by the NEXTGEN and AdaptMap projects. 
NEXTGEN, for “next generation methods to preserve farm animal biodiversity”, is the first project 
which provided whole genome sequence data for goats (https://www.epfl.ch/labs/nextgen/). One 
goal of this project was to highlight the genomic regions associated with local adaptation in order 
to encourage a more sustainable breeding management. In the project, 161 goats were sampled 
in Morocco (Figure 4-2). In this county, goats live semi-wild, spending more than 8 months out-
doors and the anthropic selection is relatively modest  (Boujenane, 2005). The different popula-
tions, confronted with contrasting environmental conditions from the Sahara desert to the Atlas 
Mountains, are thus expected to have developed local adaptation.  

AdaptMap (Stella et al., 2018) is an international project developed to improve coordination bet-
ween various independent projects collecting genetic data from goats worldwide 
(http://www.goatadaptmap.org/). The AdaptMap project has regrouped the genetic data collected 
and harmonised it into a common database. This common dataset contains geo-reference genetic 
data for 4563 goats sampled worldwide (Figure 4-2). We carried out a first analysis of the entire 
dataset with several partners from the AdapMap project and we identified several signatures of 
natural selection (Bertolini et al., 2018).  
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Figure 4-2 – Goat datasets from NEXTGEN and AdaptMap projects 
This figure shows the localisation of goats sampled by the NEXTGEN project in Morocco (Left, bottom) and 
by independent projects worldwide, regrouped in the AdaptMap dataset (Right). For this latter dataset, 
some additional geo-referenced data are available for goats sampled in Pakistan, South America and Aus-
tralia. Source for top left photo: https://ec.europa.eu/programmes/horizon2020/en/news/saving-animal-
dna-future-generations. 

4.2.4 Main conclusions 

Using the results of the SAM method to detect locally adaptive genetic variants, our study intro-
duced a new tool: the SPatial Areas of Genotype probability (SPAG) that maps the probability of 
finding beneficial variants in a study area. We presented a univariate model, that can be used to 
predict the spatial distribution of a single genotype, and three multivariate models allowing the 
integration of several genotypes, potentially associated with various environmental variables. In 
a second step, our study showed that the combination of the SPAG models with climate change 
predictions can be used to identify populations with genetic variants better suited for the future 
environmental conditions and vulnerable populations that may not be able to adapt. We validated 
the SPAG concept with one simulated dataset and two case studies on goats (Moroccan and 
European ones). 

Several potential signatures of natural selection were identified for the goats under study. For the 
Moroccan population, the results obtained with the SAM method highlighted several genes 
strongly associated with the variation of precipitation and potentially related to skin or hair prop-
erties. Following this, the SPAGs enabled the identification of vulnerable populations currently 
lacking genetic variants locally adapted to the strong variations of precipitation predicted under a 
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2070 climate change scenario. For Europe, using logistic regressions allowed the identification of 
genes potentially conferring adaptation to drought, and SPAGs then made it possible to identify 
populations that may be particularly threatened by upcoming drought conditions.  

 
Main contributions 

 

• Presentation of the new SPatial Areas of Genotype Probabilities approach, to map the 
probability of finding locally adapted genetic variants in a study area. 

 

• Development of a univariate model and three multivariate models making it possible to 
integrate several locally adapted genotypes potentially associated with different environ-
mental variables. 

 

• Illustration of the method with two case studies, allowing the identification of goat popula-
tions threatened by climate change due to a lack of favourable adaptive variants. 
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4.3 PAPER C: Spatial Areas of Genotype Probabilities 
Spatial Areas of Genotype Probability (SPAG): predicting the spatial 
distribution of adaptive genetic variants under future climatic  
conditions 
 
Version of the article revised and resubmitted in Global Change Biology:  
https://doi.org/10.1101/2019.12.20.884114 

Estelle Rochat1, 2, Stéphane Joost1, 2, 3 

1 Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental 
Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland  

2 The ADAPTMAP Consortium 

3 The NEXTGEN Consortium 

Contributions 

I developed the theoretical basis of the three multivariate models, implemented all models as R 
functions, prepared the simulated dataset, computed the analyses on the case studies and wrote 
the first draft of the paper.  

4.3.1 Abstract 

In a context of rapid global change, one of the key components for the survival of species is their 
genetic adaptive potential. Many methods have been developed to identify adaptive genetic var-
iants, but few tools were made available to integrate this knowledge into conservation manage-
ment. We present here the SPatial Areas of Genotype probability (SPAG), using genotype-envi-
ronment logistic associations to map the probability of finding beneficial variants in a study area. 
We define a univariate model predicting the spatial distribution of a single genotype, and three 
multivariate models allowing the integration of several genotypes, potentially associated with var-
ious environmental variables. We then integrate climate change projections to map the corre-
sponding future distribution of genotypes. The analysis of the mismatch between current and 
future SPAGs makes it possible to identify a) populations that are better adapted to the future 
climate through the presence of genetic variants able to cope with future conditions, and b) vul-
nerable populations where genotype(s) of interest are not frequent enough for the individuals to 
adapt to the future climate. We validate the SPAG approach using simulations and we use it to 
study the potential adaptation of 161 Moroccan and 382 European goats to the bioclimatic condi-
tions. In Morocco, using whole genome sequence data, we identify seven genomic regions 
strongly associated with the precipitation seasonality (WorldClim database). The predicted shift 
in SPAGs under a strong climate change scenario for 2070 highlights goat populations likely to 
be threatened by the expected increase in precipitation variation in the future. In Europe, we find 
genomic regions associated with low precipitation, the shift in SPAGs highlighting vulnerable pop-
ulations not adapted to the very dry conditions expected in 2070. The SPAG methodology is 
successfully validated using cross-validations and provides an efficient tool to take the adaptive 
potential into account in general conservation frameworks.  
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4.3.2 Introduction 

Climate change has altered the conditions of various organisms, causing an average warming of 
0.2°C per decade over the past 30 years, as well as a sea level rise of more than 3 mm per year 
since the start of the century and an increase in the frequency of extreme weather events such 
as storms, droughts and floods (IPBES, 2019). These changes are likely to continue in the future 
(IPCC, 2014). When such important changes occur, many animal and plant species are con-
fronted with a shift away from the favourable conditions necessary for their survival (IPBES, 
2019). In order to avoid extinction under these conditions, they can either move to more favoura-
ble areas or adapt to their new environment (Hughes, 2000). Due to limitations in dispersal ca-
pacity, loss of favourable habitats and increased landscape fragmentation, the possibilities for 
dispersal to new areas are often limited (Opdam and Wascher, 2004; McGuire et al., 2016). Pop-
ulation adaptation relies on phenotypic changes, which can be induced either by phenotypic plas-
ticity or genetic evolution (Merilä and Hendry, 2014; Fox et al., 2019). Phenotypic plasticity can 
allow species to rapidly evolve by changing their behaviour, physiology or morphology (Reed et 
al., 2011; Fox et al., 2019). However, it can also potentially lead to a fitness reduction (Duputié et 
al., 2015) and, since it is not based on heritable genetic variations, it will not necessarily ensure 
the persistence of adaptation for the next generations. In order to preserve biodiversity, it is there-
fore crucial to promote the conservation of the genetic adaptive potential of populations (Hoffmann 
and Sgrò, 2011; Sgrò et al., 2011; Nicotra et al., 2015; Shafer et al., 2015). 

Conservation of this adaptive potential is also of major importance for livestock management in 
order to ensure herd persistence (Hoffmann, 2010; FAO, 2015). Indeed, many livestock popula-
tions, especially in developing countries, are breed in pastoralist systems and live most of the 
time outdoors, confronted to difficult production conditions (e.g. heat stress, poor food resources 
and the presence of parasites and diseases), and without significant food or water supplies (FAO, 
2015). These populations show signatures of local adaptation to their climatic conditions (McMa-
nus et al., 2009, 2011; FAO, 2015; Bertolini et al., 2018), to limited food resources (Silanikove, 
2000) or to the presence of parasites (Noyes et al., 2011; FAO, 2015; Vajana et al., 2018). How-
ever, due to the increasing demand for food production, these local breeds currently tend to be 
replaced by high-producing commercial breeds imported from developed countries (Rischkowsky 
and Pilling, 2007; Hoffmann, 2010). This has led to a loss of genetic diversity, which threatens 
the adaptive potential of livestock species to environmental changes (FAO, 2015). In addition, 
imported breeds lack in the locally adapted genetic variants, which may reduce their fitness (FAO, 
2015). It is therefore essential to highlight the adaptive potential of livestock species in order to 
encourage farmers to conserve local traditional breeds, and to carefully design cross-breeding, 
translocation or artificial selection (Scherf et al., 2008; Allendorf et al., 2010). 

One of the essential components of the adaptive capacity of populations is genetic diversity (Al-
lendorf and Leary, 1986). Since mutation rates are generally low, adaptation to rapid environmen-
tal changes largely depends on the amount of genetic variants already present in populations, i.e. 
standing genetic diversity (Orr and Unckless, 2008). With the recent increase in the availability of 
genetic data and the development of conservation genomics, various tools have been developed 
to integrate genetic diversity into conservation frameworks (Bonin et al., 2007; Vandergast et al., 
2011; Thomassen et al., 2011). However, conserving neutral variation in populations may not be 
sufficient to allow rapid adaptation to increasingly stressful conditions (Reed and Frankham, 
2001), and it could be more valuable to specifically preserve adaptive variation, i.e. variation as-
sociated with a trait involved in fitness (Hoffmann and Willi, 2008; Sgrò et al., 2011; Willoughby 
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et al., 2018) or to combine both approaches (Funk et al., 2012; Pauls et al., 2013). Increasing 
attention is currently being paid to this issue in conservation discussions (Funk et al., 2019; 
Hoelzel et al., 2019; Mable, 2019).  

Several methods have been developed to identify signatures of local adaptation, based on various 
assumptions and with different limitations and advantages (Schoville et al., 2012; Joost et al., 
2013; Vitti et al., 2013; Hoban et al., 2016). The results have notably been used to establish 
prediction of future habitat range of species facing climate change (Hällfors et al., 2016; Ikeda et 
al., 2017; Garzón et al., 2019; Razgour et al., 2019). However, there is currently a need to inte-
grate this knowledge in order to predict the distribution of locally adapted genetic variants along 
environmental gradients, and to project the probability of finding them in un-sampled areas or 
under future climatic conditions (Bay et al., 2017). Nevertheless, very few studies have addressed 
this issue. Fournier et al. (2011) identified locally adapted SNP alleles and then used the Maxent 
species distribution model (Phillips et al., 2006) to estimate their spatial distribution. Fitzpatrick 
and Keller (2015) proposed another approach based on two community-level modelling methods 
(Generalised Dissimilarity Modelling and Gradient Forest). They used it to map the current and 
future spatial distribution of several adaptive variants and to assess the “genetic offset” of popu-
lations under climate change as a function of the mismatch between the current distributions and 
future predictions. However, practical applications of these methods remain limited and there is 
still a need to develop new tools to ease the integration of the adaptive potential into conservation 
practices, especially by considering several loci, potentially non-independent and adapted to dif-
ferent environmental conditions. 

We propose here a novel approach to predict genotype frequencies and map SPatial Areas of 
Genotypes Probabilities (SPAG) based on logistic genotype-environment associations (Joost et 
al., 2007) and conditional probability theory. SPAGs can be used to a) predict the probability of 
presence of one or many locally adapted genetic variants in non-sampled areas b) identify areas 
where there is a greater probability of finding individuals better adapted to future climatic condi-
tions, c) identify vulnerable populations that may be threatened by climate change and d) integrate 
the results into conservation frameworks by means of an easy combination with other georefer-
enced layers. The concept of applying logistic regressions on an environmental layer to predict 
the probability of presence of a genotype had been sketched out several years ago (Joost 2006; 
page 138). Here, we formalise this concept and extend it to multivariate models. We introduce 
the theoretical bases of SPAGs and validate the approach with a simulated dataset. We then 
present an application of our approach to two case studies in order to analyse the local adaptive 
potential of Moroccan and European goat populations. 

4.3.3 Material and Methods 

SPAG’s approach 

Logistic regressions (SAM) 

The Spatial Analysis Method (SAM, Joost et al., 2007) can be used to detect genotypes that are 
strongly associated with an environmental variable and are therefore potential adaptive variants 
(strictly additive). This method assumes a linear response of the genotype to the environmental 
variable and uses logistic regressions (Formula 4-6) to assess the probability of presence of a 
genotype G1 as a function of an environmental variable (x1), 
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𝑝𝑝(𝐺𝐺1) =  𝑝𝑝(𝐺𝐺1 = 1 | 𝑥𝑥1)  =
𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥1

1 + 𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥1
 

Formula 4-6 

where β0 and β1 are the parameters of the regression to be fitted. Independent univariate logistic 
regressions can be computed between each genotype and each environmental predictor and 
significant associations can be identified using statistical tests. Joost et al. (2007) suggested the 
combined use of a likelihood ratio (G score) and a Wald test. The likelihood ratio (G) compares 
the likelihood of a model with the likelihood of a null model without the environmental variable of 
interest. The null hypothesis is that the model considered is no better than the null model, i.e. the 
environmental variable considered does not help in predicting the probability of presence of the 
genotype. The Wald test is a common statistic used to estimate whether a parameter is equal to 
a given value. In our case, it is used to reject the null hypothesis that the β parameter associated 
with an environmental variable is equal to 0, which would also indicate that it has no effect on the 
probability of finding the genotype. The SAM approach is implemented in the Samβada software 
and has previously been validated against other methods for identifying signatures of natural se-
lection (Stucki et al., 2017). 

Univariate SPAG 

Once the genotype(s) involved into significant associations with the environmental variables have 
been identified, Formula 4-6 enables the estimation of the probability of presence of a genotype 
for any value of an environmental variable (x1). We consequently used it to estimate and delimit 
on a map the probability of presence of a genotype over the whole region of interest (Joost, 2006; 
Rochat et al., 2016). We named such a delimited surface univariate Spatial Area of Genotype 
Probability (SPAG). 

As more than one adaptive locus are usually identified, we also developed multivariate models to 
compute a single map showing the probability of presence of multiple genotypes. Three different 
multivariate models have been developed to date: the Intersection, Union and K-Percentage.  

Intersection SPAG (I-SPAG) 

The Intersection model (I-SPAG) is used to compute the probability that the variants of interest 
are all simultaneously present. Following the theory of conditional probability (Kolmogorov, 1956), 
the probability of simultaneous presence of n adaptive genotypes Gi, i=1:n can be computed using 
Formula 4-7: 

𝑝𝑝 ��𝐺𝐺𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� = 𝑝𝑝 ��𝐺𝐺𝑖𝑖

𝑛𝑛−1

𝑖𝑖=1

�𝑝𝑝(𝐺𝐺𝑛𝑛�⋂ 𝐺𝐺𝑖𝑖𝑛𝑛−1
𝑖𝑖=1 ) 

Formula 4-7 

where 𝑝𝑝(𝐺𝐺𝑛𝑛�⋂ 𝐺𝐺𝑖𝑖𝑛𝑛−1
𝑖𝑖=1 ) is a conditional probability that can be estimated using a logistic regression 

where ⋂ 𝐺𝐺𝑖𝑖𝑛𝑛−1
𝑖𝑖=1  is integrated as a covariate (Formula 4-8). 
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𝑝𝑝(𝐺𝐺𝑛𝑛�⋂ 𝐺𝐺𝑖𝑖𝑛𝑛−1
𝑖𝑖=1 )  =

𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥𝑛𝑛+𝛽𝛽2⋂ 𝐺𝐺𝑖𝑖𝑛𝑛−1
𝑖𝑖=1

1 + 𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥𝑛𝑛+𝛽𝛽2⋂ 𝐺𝐺𝑖𝑖𝑛𝑛−1
𝑖𝑖=1

 

Formula 4-8 

However, as we would like to use this model to predict the probability of presence of the geno-
types for any point of the region of interest, i.e. also where Gi values are unknown, we suggested 
to estimate ⋂ 𝐺𝐺𝑖𝑖𝑛𝑛−1

𝑖𝑖=1  by 𝑝𝑝(⋂ 𝐺𝐺𝑖𝑖𝑛𝑛−1
𝑖𝑖=1 ) .  

Using the associative property of the intersection operator, the intersection of n genotypes can 
be computed by starting with the univariate model p(G1), which is used as a covariate to compute 
p(G1 ∩ G2), itself used to compute p(G3 ∩ (G1 ∩ G2)), etc.. Formula 4-8 can thus be implemented 
with a recursive model based on the univariate formula in which covariates are added (see Annex 
A4.1 for more details). We implemented this model as a function in R, available following the link 
given in the section “code availability” at the end of the paper. 

Union SPAG (U-SPAG) 

The union model (U-SPAG) is used to compute the probability of finding at least one of the adap-
tive genotypes of interest. We implemented it with the inclusion-exclusion principle (e.g. for two 
genotypes: p(G1 ∪ G2) = p(G1) + p(G2) – p(G1 ∩ G2)). We implemented the generalised formula 
for n adaptive genotypes (Formula 4-9), as a function in R based on the intersection model pre-
viously described (see code availability and Annex A4.1). 

𝑝𝑝��𝐺𝐺𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� = �𝑝𝑝(𝐺𝐺𝑖𝑖) −�𝑝𝑝�𝐺𝐺𝑖𝑖�𝐺𝐺𝑗𝑗� + � 𝑝𝑝�𝐺𝐺𝑖𝑖�𝐺𝐺𝑗𝑗�𝐺𝐺𝑘𝑘� +
𝑖𝑖<𝑗𝑗<𝑘𝑘𝑖𝑖<𝑗𝑗

𝑛𝑛

𝑖𝑖=1

… + (−1)𝑛𝑛−1𝑝𝑝��𝐺𝐺𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� 

Formula 4-9 

K-Percentage SPAG (K-SPAG) 

Finally, we developed a K-percentage model (K-SPAG) to estimate the probability that an indi-
vidual carries K% of n adaptive genotypes. This probability can be computed by combining for-
mulas from the union and intersection models (Formula 4-10, explained in more detail in Annex 
A4.1). Again, this formula was implemented as a function in R (see code availability). 

𝑝𝑝(𝐾𝐾% 𝐺𝐺𝑖𝑖=1….𝑛𝑛) =  𝑝𝑝�� � (𝐺𝐺𝑖𝑖1 ∩ 𝐺𝐺𝑖𝑖2 ∩ … ∩ 𝐺𝐺𝑖𝑖𝑘𝑘)
1≤𝑖𝑖1<𝑖𝑖2<⋯<𝑖𝑖(𝐾𝐾%∗𝑛𝑛+1)

𝑛𝑛

𝑖𝑖=1

� 

Formula 4-10 

Note that all multivariate models allow the integration of adaptive genotypes associated with var-
ious environmental variables since the environmental variable xi used to compute p(Gi) can be 
different for each i.  
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Simulation study 

In order to test the SPAG’s approach, we first computed a simulated dataset using the individual-
based population genetics model software CDPOP 1.3 (Landguth and Cushman, 2010; Landguth 
et al., 2020). We simulated individual genetic exchanges and natural selection across 300 non-
overlapping generations among 200 individuals randomly located in a 500x500 gridded land-
scape. For the breeding parameters, we considered a sexual reproduction, with random mating, 
both male and female with replacement, no selfing, no philopatry, no multiple paternity, equal sex 
ratio and each mated pair producing three offspring. The movement of the individuals was linearly 
restricted as a function of the Euclidean distance, with a maximum dispersal corresponding to 
25% of the entire landscape. We simulated 50 diallelic loci, with three loci under selection (L0, L1 
and L2). The selection was implemented using three 500x500 raster gradients, the first from north 
to south (X0), the second from east to west (X1) and the third from northwest to southeast (X2) 
(see Figure 4-3A). We set the average effects bL0A0A0=10 and bL0A1A1=-10 for the locus L0 
with the environmental variable X0, which indicates that the genotype A0A0 from locus L0 will be 
favoured in the South (where X0=1), whereas A1A1 will be favoured in the North (where X0=-1). 
We set similar effects for the locus L1 with the environmental variable X1 and L2 with X2. All other 
beta effects were set to 0, indicating no influence of the environmental variable to the distribution 
of genotypes. All genotypes were randomly initialised at the beginning of the simulations. The 
exact list of simulation parameters used is provided in Annex A4.2 . 

Univariate logistic regressions were then applied to the genetic data of individuals at the 300th 
generation in order to identify the most significant associations, which should highlight loci under 
selection. Univariate and multivariate SPAGs were then computed to estimate the probability of 
finding these genotypes across the simulated landscape. The results were validated using a 
cross-validation procedure presented in Box 1 (page 105). 

Moroccan and European goats 

Genetic data 

Two genetic datasets characterising goats (Capra hircus) were used as case studies. The first 
one was produced in the context of the NEXTGEN project (Alberto et al., 2018) and the second 
was collected by the ADAPTMAP consortium (Stella et al., 2018; http://www.goatadaptmap.org/). 

The NEXTGEN project produced whole genome sequences data for 161 Moroccan goats from 6 
different local breeds. Since goat production system in Morocco is mainly free-range, these goats 
are living from 8 to 12 months outdoors (Boujenane, 2005), and are confronted to contrasting 
environmental conditions, from the Sahara desert to the Atlas Mountains (see Figure A in Annex 
A4.3). The goats were sampled in 161 farms chosen such to be representative of the range of 
environmental conditions observed in Morocco (Stucki, 2014). The sequencing method is de-
scribed by Benjelloun et al. (2015) and allows to genotype 31.8 M of SNPs mapped to the goat’s 
reference genome CHIR v1.0 (Dong et al., 2013).  

The ADAPTMAP consortium gathered genetic data for 4’563 goats from 144 breeds, sequenced 
worldwide with the CaprineSNP50 BeadChip and mapped on the most recent goat reference 
genome ARS1 (Bickhart et al., 2017). The goats were georeferenced to the place where they 
have been sampled. We used here a subset of these data, constituted of individuals from Swit-
zerland, North of Italy and France. This represented 458 individuals distributed in 196 locations, 
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with 1 to 39 individuals per site. In order to avoid overweighting of some locations, we selected a 
maximum of five individuals per sampling site. These five individuals were chosen as the subset 
showing the highest Nei’s genetic distances, computed with the function dist.genpop from the 
package adegenet (Jombart, 2008) in the R environment (R Development Core Team, 2008). 
The resulting dataset contains 382 individuals from 196 locations and 11 different breeds (see 
Figure B in Annex A4.3). 

Both genetic datasets were filtered such as to keep only autosomal, bi-allelic SNPs, with a maxi-
mum missingness per individuals and per site of 0.05 and a maximum major genotype frequency 
of 0.9. The final datasets contain 8,497,971 SNPs for the Moroccan goats and 46,294 SNPs for 
the European ones. 

Environmental data 

The climatic conditions of the sampling locations were characterised using the 19 bioclimatic var-
iables (Annex A4.4) from the WorldClim database (https://www.worldclim.org/), representative of 
the period 1960-1990 (Hijmans et al., 2005). Each variable was retrieved as a raster layer with a 
spatial resolution of 30 arc-seconds (approx. 1km2) and values were extracted for all sampling 
locations using the extract function from the R-package raster (Hijmans and van Etten, 2012). In 
order to get similar ranges of values for all bioclimatic variables, which makes it easier to compare 
the subsequently derived models, all variables were standardised for each dataset, by subtracting 
the mean and dividing by the standard deviation. Some of the bioclimatic variables are highly 
correlated. However, we choose to keep all of them to be able to identify a posteriori which vari-
able had the strongest effect. Since no models computed involved more than one environmental 
variable simultaneously, this collinearity will not impact the results. 

Population Structure 

The genetic population structure was estimated with a Principal Component Analysis (Price et al., 
2006; Reich et al., 2008) computed with the function snpgdsPCA from the SNPRelate R-package 
(Zheng et al., 2012). In order to avoid a strong influence of SNP clusters on this analysis, we used 
here a pruned set of SNPs that are in approximate linkage equilibrium with each other. The prun-
ing was performed with the function snpgdsLDpruning from the SNPRelate package, with a 
threshold D’=0.2. The resulting datasets contain 59,224 SNPs for the Moroccan goats and 14,571 
SNPs for the European ones.  

Logistic regressions and SPAGs 

For the two datasets, logistic models were computed for each genotype with the 19 bioclimatic 
variables. The statistical significance of the model was assessed using Wald test and log-likeli-
hood ratio (G), both corrected for the false-discovery rate due to multiple comparisons using the 
procedure proposed by Benjamini and Hochberg (1995), under an expected false discovery rate 
(FDR) of 0.05 (i.e. 5% of the results expected to be false positives). 

In order to lower the number of false positive resulting from demographic processes instead of 
natural selection (Li et al., 2012), logistic models were computed with the addition of covariates 
corresponding to the coordinates of individuals on the significant components of the PCA. The 
significance of the models with population covariates was assessed using a Wald test and a log-
likelihood ratio which compares the model with environment and covariates to the model with 
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covariates only. An association was considered as significant if both the models without covari-
ates and with population covariates were significant.  

Finally, to identify potential functions of the SNPs involved into the significant associations, we 
used the NCBI Genome Data Viewer (https://www.ncbi.nlm.nih.gov/genome/gdv/browser/ge-
nome/?id=GCF_000317765.1) to search for the presence of annotated genes in the genomic 
region of 10kbp surrounding the SNPs of interest. All analyses were computed using a combina-
tion of the Samβada software (Stucki et al., 2017) and a custom R-script based on the glm func-
tion. 

Validation procedure 

For the simulated data as well as for the two goat datasets, SPAGs were validated with a cross-
validation procedure, using 25% of the individuals to compute the SPAG (i.e. 50 individuals for 
the simulated datasets, 41 individuals for the Moroccan goats and 96 for the European) and the 
remaining 75% to test it. Training individuals were selected such to represent the entire range of 
values of the environmental variable under study (see Annex A4.1 for the exact procedure). The 
model was validated using the Area Under the Receiver Operating Curve computed with the test-
ing dataset (AUCtest, (Fielding and Bell, 1997)) and a custom validation graph presented in Box 
1. The cross-validation procedure was repeated 10 times.  

https://www.ncbi.nlm.nih.gov/genome/gdv/browser/genome/?id=GCF_000317765.1
https://www.ncbi.nlm.nih.gov/genome/gdv/browser/genome/?id=GCF_000317765.1
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Box 1: Validation Procedure 

SPAGs indicate the probability of finding one or more genotypes of interest in a territory (panel 
below). For a given threshold value (e.g. th=0.6), we can thus use the SPAG to delimit the area 
where the probability of finding the genotype(s) of interest is predicted to be greater or equal to 
this threshold (e.g. probability>=0.6). If the SPAG is valid, the frequency of the genotype(s) ob-
served among the testing individuals located within the thresholded SPAG should effectively be 
greater or equal to the threshold value, whereas it should be less outside.  

 

To validate the SPAGs, we thus calculated the observed genotype frequencies inside and outside 
the thresholded SPAGs for each threshold value between 0 and 1 (with a step of 0.1) and we 
presented the results on a graph (panel below). The green line indicates the genotype frequency 
observed inside the thresholded SPAG, whereas the red line shows the genotype frequency ob-
served outside it. A black line indicates the limit case where the observed genotype frequency is 
equal to the threshold value. The SPAG is thus validated if the green line remains above the black 
line and the red line remains below it. The green and red areas around the lines indicate the 95% 
confidence intervals for each line, computed on the basis of the 10 cross-validation runs. We also 
presented on the graph the percentage of individuals located within the thresholded SPAG (grey 
line) and outside it (dotted grey line). The hatched grey areas indicate ranges of testing values 
where there was less than 5 individuals remaining inside or outside the thresholded SPAG, which 
was therefore considered not to be usable for the validation. 

 
For a threshold value th=0.4, the SPAG is validated since 50% of the testing individuals located within the area 
SPAG≥0.4 carry the genotype of interest, whereas only 26% carry it ouside (SPAG<0.4). Inversely, the model is not 
validated for th=0.6, since only 54% of individuals carry the genotype of interest whithin the area where the SPAG 
predicted a probability of at least 0.6 (SPAG ≥0.6). The model is also not valid for a value th=0.2 since 23% of individuals 
carry the genotype of interest in the area SPAG<0.2.   

 
 

 

 

 

 

 

 
 

Genotype probability of 
presence as predicted by 
the SPAG 

Threshold th = 0.6 

Thresholded SPAG (th =0.6) 
Sampled individuals located 
inside the thresholded SPAG. 
The genotype frequency 
among them should be at 
least 0.6 
 
Sampled individuals outside 
the thresholded SPAG. The 
genotype frequency among 
them should be less than 0.6. 

Number of individuals 
% of individuals inside the SPAG 
% of individuals outside the SPAG 
95% confidence interval (10 runs) 

Genotype frequency inside the thresholded SPAG 
Mean value 
95% confidence interval – model validated 
95 % confidence interval – model not validated 

Genotype frequency outside the thresholded SPAG 
Mean value 
95% confidence interval – model validated 
95 % confidence interval – model not validated 

Not-testable, i.e. less than 5 individuals inside  
or outside the thresholded SPAG   

Predicted genotype probability - threshold value 
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Projections under climate change 

We use the two goat datasets to present an application of the SPAG for predicting the distribution 
of adaptive genotype(s) under climate change. In order to predict the genotype frequency optimal 
for future conditions, we retrieved Worldclim data for the year 2070, corresponding to a strong 
climate change scenario from the Max Planck Institute Earth System Model (MPI-ESM-LR) (Gior-
getta et al., 2013) with a Representative Concentration Pathway equals to 8.5 (RCP 8.5). We 
then assume that the optimal genotype frequency for future conditions should be close to the 
genotype frequency currently observed in areas with climatic conditions resembling the future 
ones. We thus applied the current parameters of the logistic regressions on the future environ-
mental variables in order to derive the future SPAGs for the genotypes of interest. We then study 
the shift between the current and future SPAGs to identify vulnerable populations for which spe-
cific genotype frequencies should be much higher so that individuals can adapt to the future con-
ditions. 

4.3.4 Results 

Simulated results 

The 10 most significant genotype-environment associations obtained with the simulated datasets 
ranked on the basis of the likelihood ratio (G) are presented in Table 4-1. We observe that the 
three loci simulated as under selection (L0, L1, L2) are coherently identified as the most signifi-
cantly associated with the environmental variables under study. 

Table 4-1 – Most significant models – Simulated datasets 
10 most ignificant models obtained for the analysis of the simulated datasets, ranked based on the likeli-
hood ratio.  

ID Marker Locus Geno. Env. G score pG pW β0 β1  

S1 L1A0A0 L1 A0A0 X1 92.30 7.44E-22 9.41E-14 -0.46 2.65 
 

S2 L1A1A1 L1 A1A1 X1 90.49 1.86E-21 1.51E-12 -1.24 -2.94 
 

S3 L2A1A1 L2 A1A1 X2 68.63 1.19E-16 9.02E-11 -1.59 -4.37 
 

S4 L0A1A1 L0 A1A1 X0 65.69 5.29E-16 4.04E-11 -0.66 -2.35 
 

S5 L0A0A0 L0 A0A0 X0 64.95 7.69E-16 6.92E-11 -1.58 2.61 
 

S6 L2A0A0 L2 A0A0 X1 63.86 1.34E-15 1.37E-11 -0.55 2.04 
 

S7 L2A1A1 L2 A1A1 X1 61.04 5.59E-15 4.12E-10 -1.56 -2.40 
 

S8 L2A0A0 L2 A0A0 X2 60.94 5.88E-15 2.52E-10 -0.54 3.45 
 

S9 L0A0A0 L0 A0A0 X2 43.43 4.39E-11 2.81E-08 -1.41 3.11 
 

S10 L42A0A0 L42 A0A0 X0 42.44 7.30E-11 5.93E-09 0.06 1.67 
 

Geno = Genotype, Env=environmental predictor, pG=p-value associated with the G score, pW=p-value associated with 
the Wald score, β0 and β1 are the parameters of the logistic regression. 

Figure 4-3B presents the univariate SPAG for the model S1 (Locus L1, genotype A0A0 associated 
with the environmental variable X1). Since this locus was simulated as under selection with the 
east-west gradient X1, the resulting SPAG coherently shows a similar gradient. The results are 
validated by the validation graph for almost the entire range of probability values, except close to 
0.8, where the SPAG slightly overestimate the probability of presence of the genotype (the green 
line falls below the black one, i.e. the observed genotype frequency is lower than what predicted 
by the SPAG).   
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Figure 4-3 – SPAG – Simulated dataset 
Univariate and Multivariate Spatial Areas of Genotypes Probability for the simulated dataset. The identifiers 
of the presented models (S1, S4, S5, S7, S8) refers to Table 4-1. Please refer to Box 1 to interpret the 
validation graphs shown on the right of each map. 
  

A) Environmental gradients used for the simulations 
                        X0                       X1                      X2                 Selective pressure 

                                               
 

B) Univariate SPAG for S1 

                              
 

C) Intersection SPAG (I-SPAG) for S1 ∩ S5 ∩ S8  

                                
 

D) Union SPAG (U-SPAG) for S1 ∪ S5 ∪ S7 

                              
E) Percentage SPAG (K-SPAG) for 70% (S1, S4, S5, S8) 
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Figure 4-3C shows the intersection SPAG for the genotype A0A0 of the three loci under selection. 
It indicates a very low probability of finding them all simultaneously, except in the South-East of 
the simulated area (where all environmental gradients considered had values close to 1). Figure 
4-3D presents a union-SPAG of three genotypes. It shows that the probability of finding at least 
one of them is higher than 0.5 in most of the area. The validation graph indicates that the model 
tends to underestimate the probability of finding the genotypes for threshold values below 0.6 (the 
red line is above the black one, i.e. the genotype frequency outside the thresholded SPAG is 
higher than what predicted). Finally, Figure 4-3E depicts the probability of finding 70% of 4 geno-
types of interest, i.e. at least 3 of them. This probability is low, except in the South-East and North-
West part. Again, the validation graph indicates a good power of the SPAG to predict the proba-
bility of finding a set of genotypes of interest. 

Moroccan goats 

Population structure 

For the Moroccan dataset, the cumulated variance explained by the 10 first PCA components on 
the SNP markers represents only 8.1% of the total variance and the increase in variance ex-
plained is almost proportional to the number of components, which highlights that there is no clear 
sub-structure. We therefore do not include any population structure on the subsequent analysis 
and computed only logistic regressions without any covariates. 

Logistic regressions 

More than 483 million logistic association models were computed. After correction for false dis-
covery rate with a significant threshold of 5%, no model is significant according to the Wald score, 
but seven models are significant according to the G score (Annex A4.5). Among them, three 
models were strongly associated with the precipitation seasonality (bio15), which is a measure of 
the variation of monthly precipitation over the year. Following this initial result, we investigated in 
more details the adaptation to this bioclimatic variable. When considering only the associations 
involving bio15 (25,447,348 models), 78 models are significant after FDR-correction of G score, 
with a significant threshold of 5% (Annex A4.5). The SNPs involved in these models are located 
on seven different genomic regions (Table 4-2), corresponding to four annotated genes (DSG4, 
CDH2, KCTD1 and WRN) on the reference genome CHIR 1.0.  
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Table 4-2– Significant models – Moroccan datasets – Bio15 
Significant models obtained for the analysis of Moroccan datasets with precipitation seasonality (bio15) 
after FDR correction. 

ID Chr Start (BP) End (BP) Peak (BP) Geno GF G qG β0 β1 Genes 

M1 6 12'174'332 12'298'321 12'276'168 AA 21.74 38.74 0.004 -1.80 1.51 (LincRNA) 

M2 13 43'436'394 43'438'732 43'436'394 GG 10.56 29.02 0.042 -3.14 1.80  - 

M3 24 19'436'980 19'436'980 19'436'980 CC 76.40 34.75 0.008 1.55 1.29  - 

M4 24 25'852'900 25'860'754 25'860'754 AG 38.51 34.75 0.008 -0.29 -1.07 DSG4 

M5 24 28'799'029 28'833'762 28'833'253 TT 12.42 27.87 0.046 -2.72 1.58 CDH2 

M6 24 30'566'869 30'584'692 30'566'869 TT 2.48 27.99 0.046 -25.69 -15.44 KCTD1 

M7 27 25'930'079 25'933'133 25'930'079 GG 78.88 32.88 0.012 1.76 -1.35 WRN 
Chr=Chromosome, Start=Start in base pairs of the region identified as under selection, End=End in base pairs of the 
region, Peak SNP = SNP of the most significant model on that region, Geno = corresponding Genotype, GF=corre-
sponding Genotype Frequency, β0 and β1 = parameters of the logistic regression, G=G score (Log Likelihood ratio) of 
the model, qG=corresponding p-value corrected for FDR, Genes = Annotated genes on the genomic region. 

Spatial Areas of Genotype Probability 

Figure 4-4A shows the univariate SPAG for the genotype of model M1 presented in Table 4-2 
(see Annex A4.7 for the other univariate SPAGs). The predicted probability of presence of the 
genotype is the highest in the extreme southwest of the country, near the Sahara desert. In this 
region, the variations of precipitation are the greatest (the standard deviation of monthly precipi-
tation is more than 100% of the mean of monthly precipitation) and all goats carry the genotype 
of interest. In coastal areas, the predicted probability of finding the genotype is close to 0.5. In 
this area, the variations of precipitations are also high (more than 70%) and some of the sampled 
goats carry the genotype, while others do not. Finally, in the Atlas Mountains and in the northeast 
of the country, the probability of finding the genotype of model M1 is much lower (<0.2 in most 
areas). In these regions, variations of precipitation are less important (35-50%) and most of the 
goats sampled do not carry the genotype.  

Two other markers positively correlated with bio15 were highlighted by models M3 and M5 (Table 
4-2). Nevertheless, the I-SPAG presented in Figure 4-4B indicates that their simultaneous pres-
ence is very unlikely (probability <0.1 for most of the territory). On the contrary, the probability of 
finding at least one of the genotypes from the three models M1, M3 and M5, all positively associ-
ated with the coefficient of precipitation, is very high in many parts of the territory (U-SPAG, Figure 
4-4C). Finally the K-SPAG presented in Figure 4-4D shows the probability that goats carry at least 
50% of the four variants positively associated with the coefficient of precipitation (M1, M2, M3, 
M5), i.e. the probability to find at least two of them. This map is the most contrasted, showing a 
very high probability of presence near the coast and the Sahara desert (> 0.9) and a very low 
probability (<0.2) in the centre and northeast of the country. For all these multivariate cases, the 
mean AUC value for the testing dataset over the 10 runs is greater than 0.8. In addition, the 
validation graphs indicate that the SPAGs computed with 25% of the individuals generally enable 
a correct estimate of the probability of finding the genotype(s) of interest in the 75% remaining 
individuals. Only the U-SPAG (Figure 4-4C) tends to slightly overestimate the probability of pres-
ence since we observe a higher presence of the genotypes in the individuals located outside the 
thresholded SPAG as compare to what predicted by the SPAG (red line above the black line). 
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Figure 4-4 – SPAG – Moroccan dataset 
Univariate and Multivariate Spatial Areas of Genotypes Probability for the Moroccan dataset. The identifiers 
of the presented models (M1, M2, M3, M5) refers to Table 4-2. The maps show the average genotype(s) 
frequency(ies) based on the 10 runs computed with different random selection of training sets containing 
25% of the total number of individuals. AUCtest indicates the mean value of the AUC computed with the 
testing dataset over the 10 runs. Please refer to Box 1 to interpret the validation graphs shown on the right 
of each map. 

A) Univariate SPAG for model M1 

              
B) Intersection SPAG (I-SPAG) for M3 ∩ M5  

              
C) Union SPAG (U-SPAG) for M1 ∪ M3 ∪ M5 

             
D) Percentage SPAG (K-SPAG) for 50% (M1, M2, M3, M5) 
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Projections under climate change 

Figure 4-5 shows the differences between the current SPAGs presented in Figure 4-4 and their 
corresponding projections for 2070. In Morocco, the precipitation seasonality (bio15) is predicted 
to increase in the northwest of the country, with a maximum increase of 5 to 10% in the extreme 
northwestern region (Tangier-Tetouan, see region’s map in Annex A4.3) and to decrease in other 
areas, especially in the Atlas Mountains and near the Sahara (from -10 to -20%). The evolution 
of the univariate SPAG for model M1 (Figure 4-5A) consequently indicates the highest risk in the 
Tangier-Tetouan area, where the mismatch between the current and future SPAGs indicates that 
the probability of finding the genotype of interest should be 20% higher to find individuals well 
adapted to future conditions. However, many individuals in this area already carry the favourable 
genotype, and the risk for the population may thus be reduced thanks to natural gene flow. Nev-
ertheless, this is not the case in the southwest of this area (Rabat, Casablanca) where the prob-
ability of finding the genotype should also be 10-20% higher according to the SPAGs difference, 
and none of the goats sampled there currently carry the adaptive variant. Similar observations 
can be made as regards the I-SPAG of M3 and M5 (Figure 4-5B), two other markers that may 
potentially confer an adaptation to high variations of precipitation. However, the U-SPAG (Figure 
4-5C) highlights no vulnerable areas, which indicates that if the presence of at least one of the 
adaptive variants is sufficient to enable the adaptation to high variations of precipitation, no pop-
ulation may be at risk. Finally the K-SPAG (Figure 4-5D) also shows a risk area in the northwest 
of the country, where the probability of carrying the adaptive variants should be approximately 
20% higher. Again, individuals in the northernmost part of this risk area may be less threatened 
due to the close presence of goats already carrying the favourable genotypes, whereas the pop-
ulation from the Rabat-Casablanca area may be more threatened due to the current much lower 
presence of the adapted variants. 
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Figure 4-5 – Morocco - Predicted change in genotype probability for 2070 
Predicted SPAG difference for 2070 considering the MPI-ESM-LR climate change scenario with RCP 8.5, 
for the Moroccan goats. The identifiers of the presented models (M1, M2, M3, M5) refer to Table 4-2. The 
maps show the average difference in probabilities of finding the genotype(s) based on the 10 runs com-
puted with different selection of training sets. 
 

 

European goats 

Population structure 

For the European goats, the first component of the PCA explains 6.2% of the total variance while 
the second, third and fourth components explain 2.0%, 1.7% and 1.6% respectively. The low 
variance explained by each PCA component indicates the absence of a clear population structure. 
However, since the variance explained by the first component is much higher than that explained 
by the next ones, it is possible that the first component is partially related to the population struc-
ture. We therefore computed logistic regressions without covariates and then logistic regressions 
with a covariate corresponding to the coordinates of goat individuals on the first component of the 
PCA.  
  

A) Univariate SPAG for model M1 

 

B) I-SPAG for M3 ∩ M5 

 
C) U-SPAG for M1 ∪ M3 ∪ M5 

 

D) K-SPAG for 50% (M1, M2, M3,M5)  
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Logistic regressions 

More than 2.6 million logistic association models were computed, of which 4.9% were significant 
both without covariate and with the first PCA-component as covariate, according to both G score 
and Wald score corrected for a false positive rate of 5% (Annex A4.6). The ten genomic regions 
associated with the strongest G scores when computed without covariate are presented in Table 
4-3. The corresponding models involved two bioclimatic variables related to precipitation (bio13 
= precipitation of the wettest month, bio18 = precipitation of the warmest quarter) and two biocli-
matic variables related to temperature (bio3 = isothermality, bio8 = mean temperature of the wet-
test quarter). Seven annotated genes correspond exactly to one of the SNPs identified: KRT12, 
CSN1S2, CACNB2, PRDM5, LOC102174324, PALM and NAV3. 

Table 4-3– Significant models – European datasets 
Models corresponding to the 10 most significant genomic regions (based on G score of the model without 
covariate) obtained for the analysis of the European dataset, considering all bioclimatic variables.  

ID ENV CHR BP GENO GF qGpop qWpop qG0 qW0 β0 β1 Genes 

E1a bio18 19 40696776 GG 33.8 3.3E-09 3.9E-07 3.8E-17 1.2E-11 -1.41 1.30 KRT12 

E1b bio13 19 40696776 AA 40.3 4.3E-09 5.4E-07 1.4E-13 6.9E-10 -0.52 -1.07 KRT12 

E2 bio18 1 38183832 AA 31.7 3.0E-09 1.3E-07 1.6E-15 1.2E-11 -0.97 1.13  - 

E3a bio3 6 86081075 CC 31.2 3.5E-11 1.2E-08 3.1E-14 4.2E-11 0.65 -1.06 CSN1S2 

E3b bio18 6 86081075 CC 31.2 9.6E-11 6.9E-08 5.7E-14 5.0E-10 0.71 1.12 CSN1S2 

E4 bio8 13 32300758 GG 31.2 6.1E-10 9.0E-08 5.1E-14 5.6E-11 0.11 -1.02 CACNB2 

E5 bio18 5 23213822 GG 39.0 6.0E-10 4.1E-08 7.3E-14 5.6E-11 -0.52 1.02 - 

E6 bio8 6 4945809 AA 19.4 9.3E-07 7.9E-05 1.0E-13 9.2E-08 -2.06 1.55 PRDM5 

E7 bio18 16 76397454 GG 22.8 1.1E-10 5.3E-07 1.0E-13 8.0E-09 1.30 1.29 LOC102174324 

E8 bio18 7 67159272 CC 35.1 6.9E-10 1.3E-07 1.0E-13 2.3E-10 0.27 1.03 PALM 

E9 bio3 5 7093719 GG 39.8 7.0E-11 1.8E-08 1.0E-13 9.0E-11 -0.63 1.02 NAV3 

E10 bio18 14 85434737 AA 47.4 2.6E-09 1.6E-07 1.3E-13 2.2E-10 -0.16 -1.01 - 

Chr=Chromosome, BP=Position in base pairs, GENO=Genotype of interest, GF=Genotype Frequency, qGpop (resp. 
qWpop) = FDR-corrected p-values of Gscore (resp. Wald score) of the model with the first PCA-component as covari-
ate, qG0 (resp. qW0) = FDR-corrected p-values of Gscore (resp. Wald score) of the models without any covariate, β0 
and β1 = parameters of the logistic regression without covariate, Genes = Annotated genes on the genomic region. 

SPatial Areas of Genotype Probability 

Figure 4-6A shows the univariate SPAG for the genotype of model E10 presented in Table 4-3 
(see Annex A4.7 for the other univariate SPAGs). This genotype is negatively associated with 
precipitation of the warmest quarter (bio18). The predicted probability of finding this genotype is 
the lowest in the Swiss Alps (<0.1), slightly higher in the Jura, French Alps and Swiss Plateau 
(between 0.2 and 0.4) and above 0.5 everywhere else, with a maximum around 0.8 on the Medi-
terranean coast.  
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Figure 4-6 – SPAG – European dataset 
Univariate and Multivariate Spatial Areas of Genotypes Probability for the European dataset. The identifiers 
of the presented models (E10, E1d, E2, E3b, E5, E7) refers to Table 4-3. The maps show the average 
genotype(s) frequency(ies) based on the 10 runs computed with different random selection of training sets 
containing 25% of the total number of individuals. Note that since up to five individuals can be localised on 
the same site, a black dot indicates a presence if at least 50% of the individuals of the site carry the 
marker(s). Please refer to Box 1 to interpret the validation graphs shown on the right of each map. 
  

A) Univariate SPAG for model E10 

           
B) Intersection SPAG (I-SPAG) for E1b ∩ E10  

           
C) Union SPAG (U-SPAG) for E1b ∪ E10 

           
D) Percentage SPAG (K-SPAG) for 50% (E1b, E2, E3b AC, E5 AA, E7 AG) 
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The I-SPAG (Figure 4-6B) shows the probability of simultaneously finding this genotype (model 
E10) and the genotype from model E1b, associated with low precipitation during the wettest 
month (bio13). The two models E1b and E10 may therefore indicate an adaptation to low values 
of precipitation. However, the I-SPAG indicates that their simultaneous presence is not very likely 
(predicted frequency < 0.6 everywhere). The predicted probability is the highest in the centre-
north of France (regions Centre, Iles de France, East of Pays de la Loire, Normandie and South 
of Hauts de France, see Annex A4.3 for regions’ map) and in the southern part (Occitanie and 
West of Provence), whereas in the Alps, Jura and most of Switzerland, the probability of simulta-
neously finding these two genotypes is close to 0 and none of the sampled goats carry them both. 
The probability of finding at least one of these two variants, presented on the U-SPAG in Figure 
4-6C, indicates a trend similar to the probability of presence of E10 alone (Figure 4-6A), but with 
even stronger contrast between the Alps-Jura-Switzerland area (frequencies < 0.3) and the rest 
of the territory (frequencies > 0.7). Finally the K-SPAG (Figure 4-6D) shows the probability of 
finding at least 50% of five genotypes negatively associated with precipitation in the warmest 
quarter (bio18), i.e. the probability of finding at least three of them. Note that for the models pos-
itively associated with bio18 in Table 4-3, we used the alternative genotype that was the most 
significantly negatively correlated with bio18 (indicated after the model ID). The resulting SPAG 
is very close to the I-SPAG of E1b and E10 (Figure 4-6B). For all cases presented, the validation 
graphs indicate that the SPAGs computed with 25% of the individuals generally correctly predict 
the genotype frequency of the remaining 75% of individuals.  

Projection under climate change 

Figure 4-7 shows the differences between the current SPAGs presented in Figure 4-6 and their 
corresponding projections for 2070. The model E10 presented in Figure 4-6A was related to the 
precipitation of the warmest quarter (bio 18), which is projected to decrease by 20 to 180 mm 
over the whole study area until 2070. The projected precipitation loss is maximum in the Alps (-
120 to -180 mm), on the Mediterranean coast (-100 to -130) and in the centre-south of France 
(West of Auvergne and East of Nouvelle Acquitaine, -90 to -120 mm, see region’s map in Annex 
A4.3). As a consequence, the mismatch between current and future SPAGs for model E10 (Figure 
4-7A) indicates that all populations may be threatened by climate change, since the probability of 
finding the adaptive genotype should be 10 to 20% higher everywhere. None of the goats living 
in the Alps and Switzerland currently carry this adaptive genotype and these populations may 
thus be particularly vulnerable. When considering the I-SPAG of E10 and E1b (Figure 4-7B), a 
higher risk is highlighted in the centre-south of France (West of Auvergne and its surrounding), 
northeast of France (Alsace in East of Grand-Est), Swiss Plateau, and northwest of Italy. In cen-
tre-south of France and Swiss-Plateau, almost none of the goats sampled carry simultaneously 
the two genotypes and the populations may therefore be particularly threatened. The U-SPAG of 
the same genotypes (Figure 4-7C) shows results very similar to the univariate SPAG for E10 
alone (Figure 4-7A). If the presence of at least one of these two genotypes may be sufficient to 
allow adaptation to low precipitation, then the most threatened regions will again be the Alps and 
Switzerland, where both markers are currently absent. Finally, the evolution of the K-SPAG (Fig-
ure 4-7D) shows a high risk in a large part of France and northern Italy, where the SPAG’s mis-
match indicates that the probability of finding the adaptive genotypes should be more than 20% 
higher.  
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Figure 4-7 – Europe - Predicted change in genotype probability for 2070 
Predicted change in genotype probability for 2070 considering the MPI-ESM-LR climate change scenario 
with RCP 8.5, for the European goats. The identifiers of the presented models (E10, E1b, E2, E3b, E5a, 
E7) refer to Table 4-3. The maps show the average difference in probability of finding the genotype(s) based 
on the 10 runs computed with different random selection of training sets. 
 

4.3.5 Discussion 

Mapping genotype probabilities 

The first utility of SPAGs is to quantify the current probability of finding beneficial genotypes or 
the expression of favourable traits in plant and animal populations, even in regions where no 
individuals have been sampled. Our results show that with few training individuals (i.e. 50 simu-
lated individuals, 41 Moroccan or 96 European goats), a good estimate of the probability of finding 
genotype(s) of interest is possible. The univariate models presented here have already been ap-
plied to map the genotype frequencies of adaptive variants of the Scandinavian brown bears 
(Joost, 2006), Moroccan sheep (Rochat et al., 2016) and coral reefs (Selmoni et al., 2019). Mul-
tivariate models are presented here for the first time and, according to the validation procedure 
applied on a simulated dataset and two case studies, they appear to be powerful in estimating 
the combined probability of finding several genotypes potentially correlated with different environ-
mental variables. With the I-SPAG, the resulting probabilities may rapidly become very low, but 
this model could be used when we suspect that the simultaneous presence of some adaptive 
genotypes is needed to ensure the adaptation, or when we would like to highlight the probability 
of simultaneously finding variants that may confer an adaptive response to different environmental 

A) Univariate SPAG for model E10 
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variables (e.g. low precipitation and high temperature). At the other extreme, the U-SPAG may 
rapidly indicate high probabilities of presence in most parts of the territory, but it can be used 
when it is suspected that the presence of at least one of the genotypes may be sufficient to confer 
adaptive potential. Since it is generally difficult to know whether the simultaneous presence of 
adaptive genotypes is needed or whether an union is sufficient, K-SPAG offers an interesting 
compromise, allowing the identification of populations that retain a given percentage of variants, 
which can help delineate areas where there is the highest probability of finding individuals with 
high adaptive potential. 

From SPAG to conservation 

The study of the shift in SPAGs under climate change conditions can help identify 1) well-adapted 
populations, where individuals currently show adaptive genotypes that seem to be optimal under 
future conditions, 2) populations at risk where the current genotype frequency is not optimal, but 
where the favourable genotypes are already present in the population, thus potentially allowing a 
natural increase in genotype frequency through gene flow and 3) threatened populations where 
optimal variants are currently lacking but would be needed to ensure adaptation to future climate. 
These identifications may be of great value for conservation planning. Indeed, when prioritising 
conservation areas, success could be enhanced by choosing to preserve preadapted individuals 
that already carry functional variants conferring them good adaptation to future climate (Orr and 
Unckless, 2008). Moreover SPAGs can also be used to prevent the translocation of individuals 
that do not currently carry the variants favourable for future conditions at the target site, which 
would result in a reduction or loss of adaptive potential of the target populations (Weeks et al., 
2011). In addition, conservation plans can be developed to increase the survival capacity of 
threatened populations. This may involve assisted gene flow to import adaptive variants into a 
population where they are lacking (Aitken and Whitlock, 2013; Kelly and Phillips, 2016) or artificial 
selection of individuals already pre-adapted to future conditions (Hoffmann, 2010). However, this 
has to be undertaken carefully since the selection of locally adapted individuals can result in a 
loss of genetic diversity (Savage et al., 2018), which may decrease the potential of populations 
to adapt to new environmental changes. Kardos and Shafer (2018) therefore proposed that gene-
targeted conservation measures should only be taken with traits affecting vital processes of the 
species and when phenotypic variation is large enough to ensure a high probability of success. 
Finally, the SPAG maps presented could be integrated into decision-making frameworks consid-
ering the adaptive potential when defining the vulnerability of species (Bonin et al., 2007; Williams 
et al., 2008; Sgrò et al., 2011; Dawson et al., 2011; Razgour et al., 2018) or in more global deci-
sion frameworks that take into account other vulnerability factors such as the predation level or 
habitat loss. 

The goats example 

Several signatures of local adaptation where identified for the goats under study. In Morocco, 
three of the genes identified (DSG4, KCTD1 and CDH2) may be related to the development of 
hair (Kljuic et al., 2003; Ling et al., 2014; Wang et al., 2017; Zhang et al., 2019) or skin properties 
(Hayashi et al., 2007). These results suggest that goats confronted with high variations of precip-
itation may have adapted through a modification of hair or skin traits, which could for example 
ensure a better water repulsion. In Europe, two of the genes highlighted as potentially conferring 
an adaptation to drought conditions (KRT12 and PRDM5) may be related to properties of the 
cornea (Kao et al., 1996; Burkitt Wright et al., 2011). They could thus potentially highlight an 
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adaptation to higher UV-radiation associated with driest conditions. The other genes identified 
are related the casein content of the milk (CSN1S2, Ramunno et al., 2001), the calcium channel 
and energy pathway (CACNB2, Cardona et al., 2014) or the skin properties (PALM and NAV3, 
Kutzleb et al., 1998; Karenko et al., 2005). Many of the genes highlighted on the two case studies 
may therefore be associated with a function that can be influenced by climate, which reinforces 
the potential that they are true signatures of local adaptation. However, it is known that logistic 
regressions such as implemented here, as most of the other methods, may lead to the identifica-
tion of false positive (Stucki et al., 2017), and the results should thus be confronted with other 
methods available to detect signatures of natural selection. In addition, although previous studies 
show the power of genotype-environment associations to predict phenotype (Lasky et al., 2015; 
Vangestel et al., 2018) or fitness (Fournier-Level et al., 2011; Hancock et al., 2011), more inves-
tigations are needed to verify that the genotypes identified are really conferring an adaptive ad-
vantage (Funk et al., 2019).  

The Moroccan case study highlighted that goat populations from the surroundings of Rabat and 
Casablanca may lack adaptive genotypes potentially conferring an advantage to face high varia-
tion of precipitation. If the adaptive role of these genotypes is validated, goat populations in this 
region may be threatened. Because of the great economic and social importance of goats in 
Morocco, it is crucial to preserve viable populations. Indeed, in this country, agriculture contributes 
to 12 to 24% of the national GDP and employs 40% of the total active population (Boujenane, 
2005). Livestock farming, especially small ruminants, is the most important sector of agriculture 
and goat farms account for 20% of the total number of farms (Boujenane, 2005). It is therefore 
important to consider preserving or introducing the adaptive genotypes on each vulnerable pop-
ulation. This could be done for example by favouring crossbreeding with individuals from the 
southern or north-eastern part of the country, where adaptive genotypes are currently well pre-
sent, and by avoiding breeding or translocation with exotic goats or goats from the Atlas or Ori-
ental regions. In the northern part of Morocco (Tanger-Tetouan regions), goat populations repre-
sent 12% of the national goat populations (Chentouf, 2014), and they play an important role in 
preserving food security (Godber et al., 2016). In this region, crossbreeding with exotic breeds 
has been introduced to improve milk production (Boujenane, 2005; Godber et al., 2016). How-
ever, our results show that the frequency of adaptive genotypes should increase in the goat pop-
ulations from this region, and that it is therefore essential to maintain local individuals with the 
necessary adaptive genotypes. 

Limitations and perspectives 

The SPAG approach presented appears to be powerful for mapping the probability of finding 
locally adapted genetic variants in a landscape. However, the adaptation process is complex and 
often involves polygenic traits (Pritchard and Rienzo, 2010), for which the detection power of the 
genotype-environment associations may be reduced (Villemereuil et al., 2014; Harrisson et al., 
2014). In this case, it may be advisable to use multivariate genotype-environment association 
models (Forester et al., 2017) or to integrate other methods to identify SNPs related to polygenic 
adaptation (Zhou et al., 2013; Lasky et al., 2015). In addition, since the results of the shift under 
climate change may be highly dependent on the climate change scenario considered, computa-
tions should be performed with various scenarios and less weight should be given to the conclu-
sions not consistent within scenarios (Reside et al., 2018). Finally, in order to assess the real 
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vulnerability of populations, an analysis of connectivity should be carried out to highlight the po-
tential of natural gene flow to increase the probability of finding favourable genotypes in threat-
ened populations. 

SPAGs could also be used to predict the presence of genotype(s) associated with other pressures 
showing a spatial distribution, such as the presence of a parasite (Vajana et al., 2018) or a pred-
ator (Cousyn et al., 2001) or the urbanization level (Harris and Munshi-South, 2016). Very similar 
models can also be derived to predict allele frequencies instead of genotypes frequencies or to 
integrate other covariates (e.g. to consider autocorrelation or to use other indicators of population 
structure such as the Admixture coefficients). In addition, SPAGs are provided as maps, which 
enables a visual identification of threatened populations and could thus facilitate discussions be-
tween different conservation actors. SPAGs therefore constitute a valuable tool to support con-
servation decisions, especially under current changing climatic conditions. 

4.3.6 Code availability 

The main R codes developed for this study are available on GitHub:  
https://github.com/estellerochat/SPAG. 
 
 





121 

5.1 Combining modelling tools 

In the previous three chapters, we presented modelling approaches and tools using geo-environ-
mental data to identify vulnerable populations due to environmental changes. First, Ecological 
Niche Modelling (ENM) integrating the spatio-temporal variability of environmental predictors can 
be used to identify landscape suitability for a species under current and future environmental 
conditions. The difference between current and projected suitability values can be used to quan-
tify the extent to which species or populations are threatened by a reduction or degradation of 
their potential ecological niche. This can be referred to as the “exposure” of the species (Dawson 
et al., 2011). This exposure may result from the direct effect of environmental changes or from 
indirect effects related to increased suitability for invasive species, pathogens, predators or com-
petitors. Several studies directly used this measure as an index of threat to populations facing 
environmental changes (Elith and Leathwick, 2009). However, as previously mentioned, when 
populations are confronted with a reduction in the suitability of their territory, their vulnerability will 
depend on their dispersal and adaptive capacity (Dawson et al., 2011; Catullo et al., 2015). De-
spite this, few studies have addressed all these elements simultaneously (Beever et al., 2016; 
Waldvogel et al., 2020). In this chapter, we show how combining the various modelling tools pre-
sented before can help to integrate these different components for the identification of vulnerable 
populations.  

5.1.1 ENM and connectivity 

Landscape graphs can be used to estimate the potential for strongly exposed populations to move 
to more favourable habitats identified with ENM. Using the modelling tools presented in this the-
sis, an index of dispersal opportunity could be assigned to each population as a function of the 
number of paths leading from that population to other suitable habitats. The combination of ENM 
predictions with this dispersal opportunity index may enable the identification of threatened pop-
ulations that are facing high exposure with limited dispersal possibilities. Some studies have al-
ready implemented similar combinations of ENMs and connectivity analyses based on resistance 
maps (Brown, 2014; Razgour et al., 2018). Since the identified threatened populations are limited 
in their dispersal, they cannot move to more favourable habitats, and they are forced to adapt in-
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situ to avoid extinction. Genetic simulations based on landscape graphs and validated with em-
pirical genetic data can provide a first estimate of the adaptive capacity associated with the level 
of genetic diversity of the populations. Previous studies thus combined ENMs with genetic simu-
lations to identify vulnerable populations (Brown et al., 2016). However, such applications re-
mained limited. 

5.1.2 ENM and locally adapted genetic variants 

Few studies have suggested tools to consider local adaptation when identifying vulnerable popu-
lations with ENMs. The proposed methods are usually based on a subdivision of species occur-
rences into populations currently associated with different climatic conditions and the computation 
of one ENM per population. For example, Hällfors et al. (2016) divided occurrence data into two 
populations using a clustering method based on environmental data. They computed independent 
ENMs for each of these populations. Comparing the results with an ENM built with all occurrences 
simultaneously, they highlighted large differences in suitability values, indicating that the environ-
mental conditions important for modelling are population-specific, probably due to local adapta-
tion. Razgour et al. (2019) proceeded similarly, but used signatures of local adaptation to group 
individuals into populations. That way, they identified two distinct populations with different signa-
tures of local adaptation, one adapted to cold-wet and one to dry-hot climate. Again, they showed 
that population-ENMs lead to different results than a global ENM using all occurrence data. Their 
results demonstrated that when adaptive ability is not taken into account, ENMs predictions can 
overestimate the vulnerability of species due to the loss of suitable areas. Ruegg et al. (2018) 
used gradient forest modelling to calculate genomic vulnerability as a function of the mismatch 
between current and future genotype-environment associations (Fitzpatrick and Keller, 2015; Bay 
et al., 2018). They did not combine it directly with ENM, but showed a correlation between ge-
nomic vulnerability and current species abundance.  

In this thesis, we presented the SPAG tool, which can also be used to map the probability of 
presence of locally adapted genetic variants and to identify vulnerable populations due to a mis-
match between current and future projections. SPAG output, in the form of a raster layer, could 
easily be combined with other rasters, such as those obtained with ENM. This combination may 
help to identify populations facing high exposure and limited adaptive capacity due to the lack of 
locally adapted genetic variants favourable for future climatic conditions.  

5.1.3 Adaptation and connectivity 

Analysing the difference between current and projected SPAG enables the identification of pop-
ulations currently carrying genetic variants favourable to future conditions and populations lacking 
them. If dispersal is possible between these two populations, migration may enable the spread of 
favourable variants into maladapted populations, thus reducing their genomic vulnerability (Ex-
posito-Alonso et al., 2018). Analysing the connectivity between well-adapted and vulnerable pop-
ulations is thus an essential step to better assess the adaptive potential of populations. In this 
context, the combination of landscape graphs and SPAGs can enable a better estimate of popu-
lations’ vulnerability. Using landscape graphs, a favourable-dispersal index could be computed 
for each maladapted populations based on the number of potential paths leading to well-adapted 
ones. Populations facing simultaneously high exposure, low dispersal possibility, low genetic di-
versity, maladapted variants and low favourable-dispersal may thus be the most vulnerable to 
environmental changes.  
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5.1.4 Modelling framework 

Based on the combinations of modelling tools previously discussed, Figure 5-1 presents a frame-
work for identifying vulnerable populations in 11 steps: 

1. Build ENM to predict suitable areas for competitors/pathogen-host species under current 
and future environmental conditions. 

2. Build ENM to predict current and future suitable areas for the species under study, taking 
into account the predicted suitability for competitor or pathogenic species. 

3. Calculate the difference between current and future suitability to identify populations most 
affected by environmental changes. An exposure index could be assigned to each popu-
lation as a function of the amount of decrease in suitability values. 

4. Use the suitability values and environmental data to develop resistance maps and land-
scape graphs assessing the functional connectivity for the species. 

5. Compare ENMs and connectivity maps to identify the potential of highly-exposed popula-
tions to disperse to more favourable areas. An index of dispersal opportunity could be 
assigned to each population as a function of the number of dispersal paths leading to more 
favourable areas. 

6. Use genetic simulations to model gene-flow and estimate the evolution of genetic diversity 
as a function of landscape connectivity.  

7. Compute genetic diversity of populations based on current empirical data. 

8. Compare current simulated and empirical results of genetic diversity to validate the simu-
lations.  

9. Identify locally adapted genetic variants and compute the corresponding SPAGs.  

10. Combine SPAGs, genetic diversity and connectivity maps to identify the potential of pop-
ulations to adapt in-situ. An index of adaptive capacity could be derived for each popula-
tion at this stage. The highest adaptive potential should be assigned to populations with 
high genetic diversity and favourable locally adapted genetic variants. The lowest adaptive 
potential will define populations with low genetic diversity, a lack of locally adapted variants 
favourable to future conditions and an absence of connectivity with better adapted popu-
lations.  

11. Combine previous results to identify vulnerable populations facing simultaneously: 

a. High exposure (e.g. based on the exposure index defined in step 3). 

b. Low dispersal opportunity (e.g. based on the index of dispersal opportunity defined 
in step 5). 

c. Low adaptive capacity (e.g. based on the index of adaptive capacity defined in 
step 10). 

 

The integral application of such a framework to a case study has not been done in this thesis 
and remains to be achieved. 
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Figure 5-1 – Modelling framework 
Numbers 1 to 11 correspond to the steps presented in section 5.1.4 in the main text. Colours indicate the 
chapter of the thesis in which the modelling tools used are presented in detail. 

5.2 Applications in conservation 

Once vulnerable populations have been identified, conservation measures should be defined to 
preserve them. The results of the modelling steps presented in Figure 5-1 provide indications on 
the main reasons that limit the capacity of species to cope with environmental changes. This 
provides useful insights for identifying conservation measures to be planned.  

First, species facing high exposure may be vulnerable due to low dispersal opportunities. If ENMs 
results indicate the presence of favourable areas at a distance that can be reach by the species, 
conservation measures can focus on improving landscape connectivity to allow the migration of 
individuals to these more favourable areas. In this context, landscape graphs can be used to 
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identify barriers to dispersal, where it might be valuable to plan for the creation of dispersal corri-
dors or the restoration of stepping stones habitats. 

When possibilities to facilitate dispersal are limited, e.g. due to the lack of more favourable areas 
at a distance that can be reached by the species, conservation practices could focus on improving 
the adaptive potential of threatened populations. If genetic diversity is limited, conservation could 
focus first on favouring gene flow. Again, this can be done by increasing landscape connectivity. 
Where increasing landscape connectivity is not sufficient or not possible to favour genetic ex-
changes, conservation measures may include translocations or other assisted genetic rescues. 
In this context, genetic simulations combined with empirical data can be used to identify donor 
populations that are expected to present higher genetic diversity. 

Populations may also be threatened due to a lack of adaptive variant favourable to future condi-
tions. If better adapted populations are identified, conservation measures could focus on improv-
ing gene-flow between the vulnerable populations and the well-adapted, to favour the spread of 
favourable genetic variants. Again, this could be done by increasing landscape connectivity or 
through assisted genetic rescue. In this context, SPAGs can be used to identify suitable donor 
populations.  

Finally, depending on the conservation objectives, financial and time constraints, conservation 
measures could also focus on preserving populations that currently show a limited vulnerability 
or a good potential of adaptation to future environmental conditions and thus a greater chance of 
long-term viability. In this case, measures should focus on maintaining the existing favourable 
conditions, e.g. by avoiding a reduction in landscape connectivity or destruction of habitats. 
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6.1 Answer to research questions 

In this thesis, we presented modelling tools based on geo-environmental data to identify vulnera-
ble populations threatened by environmental changes. In the following paragraphs, we summa-
rize the main contributions of this thesis regarding the research questions we addressed in the 
introduction. 

“How can we build ecological niche models that integrate the spatio-temporal varia-
bility of the environmental predictors, and does this lead to better predictive perfor-
mance?” 

We presented a procedure using moving windows in the R programming environment to extract 
environmental variables in buffered areas around a sampling point and for various time periods 
preceding sampling date. Our results indicate that for the species studied (Ixodes ricinus ticks 
and Chlamydiales pathogens), model performance depends on the spatial area and time period 
considered. In particular, we demonstrated that models considering buffered areas around the 
sampling point are more powerful than models extracting environmental variables for only the 
sampling point. The choice of buffer size should be made in accordance with the species ecology. 
For I. ricinus, we identified that the most powerful buffer radius corresponded to the dispersal area 
of the tick hosts. Similarly, we showed that the performance of ENMs also depends on the period 
considered before the sampling date for extracting climatic variables. Again, the choice of this 
period should be made in accordance with the species ecology. For I. ricinus, the best performing 
period was thus obtained by considering the climatic conditions of the two or three years prior to 
sampling, which correspond to the tick’s life cycle duration. Finally, some species can be influ-
enced by environmental variables acting at different scales. We thus presented a procedure for 
combining environmental variables at different spatial and temporal scales. This approach has 
been identified as the most powerful for Chlamydiales bacteria. These results demonstrated that 
considering the spatio-temporal variability of environmental predictors is essential for building 
more powerful ENMs. When no information is available for estimating the spatial and temporal 
scale to consider, several values should be tested to retain the most powerful. 
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“Can we use common ecological niche models to estimate the nested niche of a path-
ogen within the niche of its host?” 

We showed how Maxent models can be used to derive host-pathogens distributions using a two-
step procedure. Based on the theory of conditional probabilities, we first used ENM to compute 
suitability values for the host (in our case, the tick Ixodes ricinus). Then, we computed ENM for 
the pathogen, by including a multiplication by the suitability values obtained for its host. This pro-
cedure enables us to automatically limit the suitability values for the pathogen in areas unsuitable 
for its host. Using this approach, we presented a first study of the environmental predictors affect-
ing the presence of Chlamydiales bacteria in their tick host in Switzerland, and we pictured the 
evolution of Chlamydiales distribution from 2009 to 2019. Such nested-niche models could be 
projected onto future environmental conditions and used to identify populations that may face an 
increased presence of pathogen in their ecological niche in the near future.  

 

“How can we use modelisation tools using geo-environmental data to complement 
empirical data and help identify populations threatened by reduced dispersal oppor-
tunities and a loss of genetic diversity?” 

We presented a combination of landscape graphs and genetic simulations to model connectivity 
and estimate the evolution of genetic diversity and population persistence in a fragmented land-
scape. We validated our results with empirical data collected in the same study area. This meth-
odology enabled us to identify populations showing low dispersal possibilities, reduced genetic 
diversity and limited persistence. The simulation tools used only require geo-environmental data 
and the definition of some parameters regarding the species’ ecology. Simulated genetic data 
can thus be computed at low costs and for several species. This can enable a first estimation of 
populations’ or species’ vulnerability in the face of environmental change, and can be used to 
highlight populations for which a more comprehensive vulnerability assessment should be con-
ducted.  

 

“How can we use signatures of local adaptation to identify populations threatened by 
climate change?” 

Based on logistic regressions and conditional probabilities, we have developed the new SPatial 
Areas of Genotypes Probability (SPAG) tool to map the frequency of locally adapted genetic 
variants. The projection of our models under the expected future climate enables us to identify 
populations lacking in adapted variants favourable to future climatic conditions. We have pre-
sented a univariate and three multivariate models that allow the consideration of several 
adapted variants associated with various environmental conditions. We hope that this new tool 
will facilitate a better consideration of the adaptive potential in conservation framework. 
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“How can the modelling tools presented be combined and implemented in a frame-
work dedicated to the identification of vulnerable populations?” 

We presented a conservation framework that integrates the various modelling tools to identify 
populations threatened by environmental changes. Currently, only a few studies consider the ex-
posure, dispersal ability and adaptive capacity together. The modelling tools presented and the 
associated conservation framework can thus enable a better understanding of the potential of 
species to response to environmental changes. Such an understanding is essential for planning 
conservation measures that are better targeted to vulnerable populations and that take into ac-
count the reasons why populations are unable to cope with environmental changes. 

6.2 Relevance of modelling for conservation 

The modelling tools presented in this thesis show several advantages for conservation measures. 
First, they enable the analyses of past and future changes. The ENMs have made it possible to 
visualise the evolution of the suitability of the Swiss territory for ticks and Chlamydiales over the 
last decade. The results showed a clear increase of suitability for ticks over the entire country of 
Switzerland, including an expansion towards higher altitudes. Such nationwide evolutions are 
very difficult to capture using measurements alone. Modelling is thus of particular interest for 
understanding changes on a large spatial scale. Second, the models could be projected onto 
future climatic conditions to estimate the future suitability of a territory. Similarly, landscape graphs 
can be used to project the influence of environmental modifications on dispersal possibilities, 
gene flow and genetic diversity. Last, SPAGs can be used to identify the mismatch between the 
current presence of locally adapted genetic variants and the future needs of populations. In these 
contexts, modelling is essential for estimating future impacts and anticipating conservation strat-
egies, which is crucial to ensure that measures are implemented early enough to be effective. 

The methodologies presented in this thesis involve several disciplines, including GIS, informatics, 
statistics and genetics (approach referred to as biogeoinformatics (Duruz, 2020)), and require the 
processing of very large datasets (thousands of high-resolution raster layers and several millions 
of SNP genetic data). This could be considered as a limitation to the application of the tools pre-
sented by conservation actors. Nevertheless, all the main tools developed in this thesis were 
computed in the R programming environment that is utilised by many biologists and scientists. R 
has proven to be powerful for the efficient and fast processing of our very large datasets, including 
raster data, without the need for storage in an external database. The new tools developed, no-
tably for extracting the spatio-temporal variability of the environmental predictors in ENMs and 
computing SPAGs (univariate and multivariate) are provided as R functions made available with 
the published papers. This should thus facilitate their use by several scientists familiar with R. It 
should also favour the consideration of geo-information and the processing of high resolution geo-
environmental data by scientists from different fields, without much experience in GIS or computer 
science.  

The modelling tools presented require 1) environmental data, 2) data on the occurrence of the 
species and eventually of some predators/competitors/pathogens, and 3) genetic data. High-res-
olution environmental data are becoming ever more easily accessible, and often provided free of 
charge, as a result of advances in remote sensing. However, the collection of occurrences and 
genetic data can remain time-consuming and costly. In this context, integrating citizen participa-
tion may be an effective way to collect occurrence data rapidly and at a reasonable cost (McKinley 
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et al., 2016). In this thesis, we used tick occurrence data collected via a participatory smartphone 
application. Although special attention must be paid to potential sampling bias, the collected data 
proved to be convenient for ENMs. In addition, occurrence data collected through citizen partici-
pation could allow for directly targeting areas for genetic data sampling, which can reduce the 
cost associated with sampling time.  

Finally, conservation actions involve not only scientists, but also conservation practitioners who 
may not have knowledge in genetics, modelling or GIS, nor be familiar with R programming. There 
is thus a need to provide results formatted such as to enable effective discussions among all 
conservation stakeholders, including non-scientist groups or experts from other disciplines (Bick-
ford et al., 2012). The results of the modelling tools presented in this thesis can all be summarised 
on raster or vector maps that allow easy visual identification of the degree of threat to populations 
or species and direct geo-localisation of the main problems (barriers to dispersal and gene-flow, 
fragmentation level, isolated populations, etc.). These results provided on maps should thus fa-
cilitate discussions between different actors without a genetic or modelling background and favour 
their practical implementation in conservation strategies. 

6.3 Perspectives 

The modelling tools presented in this thesis considered exposure, dispersal opportunity and ge-
netic adaptive capacity, but do not consider phenotypic plasticity. Even if this adaptation does not 
rely on genetic variations and thus does not necessarily ensure the persistence of the adaptation 
in future generations, it can help populations to face rapid environmental changes. This plastic 
adaptive capacity should thus be implemented into new modelling tools and integrated into the 
conservation framework presented. The degree of threat to species will also depend on the ve-
locity of climate or environmental changes, i.e. the speed at which the changes affect the land-
scape. This is another parameter that has not been considered in this thesis, but which can 
strongly influence the rate at which species will need to move or adapt (Catullo et al., 2015). This 
velocity should thus been taken into account, particularly when working with climate change sce-
narios (Brito-Morales et al., 2018; Kosanic et al., 2019).  

Each modelling step adds a level of uncertainty to the resulting predictions. These uncertainties 
arise from the environmental data used, the scenarios considered for future predictions, and the 
modelling tool itself. Methodologies to account for these uncertainties and to efficiently integrate 
them in modelling still need to be developed (Brown et al., 2016). This is an essential step to 
identify the uncertainty associated with the final predictions and the sensitivity of the results. An 
initial way to do this would be to perform sensitivity analyses with a large set of scenarios and 
modelling tools, such to estimate the robustness of the conclusions (Langford et al., 2009; Kujala 
et al., 2013; Eaton et al., 2019). 

Finally, the framework presented addresses the issue of identifying vulnerable populations within 
the same species. However, several tools presented could be used to first identify the most vul-
nerable species. In this context, ENMs derived for several species could be used to identify those 
facing the highest exposure. Landscape graphs and genetic simulations could be applied for iden-
tifying species particularly threatened by a loss of landscape connectivity and, consequently, ge-
netic diversity. In this context, landscape graphs could also be generalized to consider groups of 
species, for example by using general resistance values defined according to the dispersal mode 
(terrestrial displacement with different classes of dispersal distances, flying, crawling, etc). This 
may enable a first identification of groups of species that could be most impacted by the expected 
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land-use changes. Analysing the level of local adaptation of different species and their corre-
sponding SPAGs may enable to identify the environmental factors that have led to local adapta-
tion for different species. Species that have locally adapted to certain environmental conditions 
that are expected to change significantly may be the species whose adaptive capacity is most 
likely to be affected. 

To conclude, the conservation framework we presented using surface-based modelling of geo-
environmental data could be extended to take into account phenotypic plasticity, velocity of 
changes and uncertainties. However, this framework does provide tools that should facilitate the 
identification of populations or species that are particularly vulnerable to environmental changes, 
considering exposure, dispersal opportunity and adaptive capacity. The development of these 
modelling tools in the common R-programming environment and the presentation of results with 
maps should facilitate the implementation of our framework for practical conservation discussions.  
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A1. Maxent modelling parameters 

Selection of background points 

The user must select background locations that are representative of the environmental condi-
tions in the study area. However, one of the assumptions of the Maxent algorithm is that any 
location has the same probability of being reached by the species (Elith et al., 2010). Background 
locations should therefore only contain sites where the species could have dispersed and been 
sampled (Phillips et al., 2006). Merow et al. (2013) indicated that background sites can be se-
lected either throughout the entire territory or only within the species’ range. Other strategies exist, 
such as choosing the background location at some distance (in the geographical or environmental 
space) from the occurrence points, or outside the environmental domain favourable to the species 
(Chefaoui and Lobo, 2008; Lobo and Tognelli, 2011; Barbet‐Massin et al., 2012). However, back-
ground locations chosen too far from the presence points or under too different environmental 
conditions are less informative (Lobo and Tognelli, 2011; Acevedo et al., 2012; Barbet‐Massin et 
al., 2012). If possible, background locations should also present the same sampling bias as in the 
occurrence data (Phillips et al., 2009; Merow et al., 2013). 

Environmental features 

Instead of using only raw environmental variables, several features can be calculated and inte-
grated into the model. First, the use of a quadratic feature (square of the environmental variable) 
introduces the additional constraint that the variance of the environmental variable should be 
close to that observed in the training dataset. This can be used to model the tolerance of species 
to variation from optimal conditions (Phillips et al., 2006). Second, product features integrating 
each product of two (or more) environmental variables can be used to model complex integrations 
between the variables (Elith et al., 2010). Finally, threshold features can also be integrated to 
model environmental variables for which a known tolerance limit exists for the species under study 
(Merow et al., 2013; Wan et al., 2019). 

Regularisation parameter 

Phillips et al. (2006) have implemented in Maxent a regularization procedure that makes it possi-
ble to discriminate too complex models that have a high log-likelihood but are unlikely to gener-
alize well (Elith et al., 2006). They proposed a penalized maximum likelihood procedure and the 
user is invited to choose the value of a regularisation constant (the higher it is, the greater the 
penalization for complex models). Several values need to be tested and according to the perfor-
mance of the resulting models (Merow et al., 2013). This penalization could allow to automatically 
reduce the number of environmental variables, but it is still advisable to first select a set of mean-
ingful and uncorrelated predictors (Elith et al., 2010; Fourcade et al., 2018). 
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Output type 

Several alternatives are available in Maxent to rescale the raw suitability index. A linear relation-
ship is theoretically expected between the raw output and the local abundance, while a monotonic, 
but nonlinear, relationship is predicted between transformed outputs and the abundance (Phillips, 
2017). Among the available transformations, logistic output is based on a logistic model instead 
of an exponential one and it may be interpreted as the probability to find a species in a given site 
(Phillips and Dudík, 2008). However, this requires an assumption on the prevalence value, the 
default assumption being that there is a 50% of chance to observe a species in a typically suitable 
area (Elith et al., 2006; Phillips and Dudík, 2008). The “cloglog” transformation is closely related, 
but is derived from the interpretation of the Maxent model as a Poisson process, and therefore 
contains a stronger theoretical justification (Phillips et al., 2017). This form of output is bounded 
between 0 and 1 and can be interpreted as a probability of presence. However, this interpretation 
requires the assumption that a typical presence location will have a probability of 0.63 (Phillips, 
2017).  
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A2. Paper A: Supplementary material 

A2.1 Supp. File 1 – Prospective campaign 

In order to select the sites visited during the prospective campaign, we proceeded in four steps: 
1. Based on the already available ticks occurrences (data from the Swiss army field cam-

paign and data from the smartphone application for 2015 to 2017), we run a MAXENT 
model to obtain a first map of suitability for ticks. 

2. We performed a PCA on the environmental predictors extracted in the pixels predicted 
as potentially suitable for ticks (suitability from step 1 greater than 0.2). 

3. We computed a k-means classification on the components of the PCA. This allowed us 
to define 5 environmental clusters on the Swiss territory (Figure 1).  

4. We manually selected the sampling sites: 
o in areas defined as potentially suitable for ticks (suitability predicted at step 1 

greater than 0.2), 
o such as to sample sites in each environmental cluster defined at step 2, 
o such as to maximise the number of sites that can be visited during one day (i.e. 

the sites can be link together by roads or paths), 
o so as to complete the dataset already available regarding the presence of Chla-

mydiales bacteria (data from the Swiss army field campaign). 

As a result, 96 sites were visited and ticks were found in 81 of them, corresponding to 228 ticks. 
In addition, some relatives of the authors provided ticks they had collected. By this way, 28 addi-
tional ticks were received, from 14 new sites. In total, the prospective campaign therefore provided 
256 ticks from 95 sites. 
 

 
Figure 1: Map of the environmental clusters defined with the k-means performed on the PCA-components 
of the environmental predictors, and location of the sites visited during the prospective campaign. 
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A2.2 Supp. File 2 – Method 
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A2.3 Supp. File 3 – Environmental data 

Morphometry 

Initial data 
• SRTM Digital Elevation Model 
• Spatial resolution: 90 m 
• Source: NASA Shuttle Radar Topography Mission (https://www2.jpl.nasa.gov/srtm/), 

with hole-filled version processed by the CIAT Agroecosystems Resilience project (Jar-
vis, 2008)  

• URL: http://srtm.csi.cgiar.org/ 

Pre-processing 
• The two tiles covering Switzerland were downloaded and merged using the QGIS 2.14.7 

software (function merge from GDAL). 
• The merged dataset was then resampled at a 100-m resolution and cropped to the 

Swiss extent using the SAGA “resampling” tool accessed from QGIS 2.14.7 and using 
the interpolation method: mean value (cell-area weighted).  

• Null values were assigned for all pixels outside the Swiss borders. 

Slope, Aspect, General Curvature (GC) 
• Method: These indicators were computed in SAGA GIS 2.3. using the tool “Terrain Anal-

ysis > Morphometry > Slope, Aspect, Curvature”, with the method “9 parameter 2nd or-
der polynom” (Thorne et al., 1987) and the units defined in degrees. 

Morphometric Protection Index (MPI) 
• Definition: This indicator provides a dimensionless index expressing how well an area is 

protected from the surrounding relief, based on the analysis of the environment sur-
rounding each pixel up to a given distance. It is equivalent to the positive openness de-
scribed by Yokoyama et al. (2002). 

• Method: This indicator was computed in SAGA GIS 2.3.2 using the tool “Terrain Analy-
sis > Morphometry > Morphometric Protection Index and the default parameters (the re-
lief in the surrounding 2km of each pixel is taken into account). 

Terrain Ruggedness Index (RI) 
• Definition: This indicator compares the elevation of one pixel with the elevation of the 

neighbouring pixels to provide a measure of terrain heterogeneity (Riley et al., 1999). 
• Method: This indicator was computed in SAGA GIS 2.3.2 using the tool “Terrain Analy-

sis > Morphometry > Terrain Ruggedness Index" with the default parameters (Radius 
(Cells)=1 indicating that one neighbour cell is considered in each direction). 

Sky-view factor (SVF) 
• Definition: This indicator provides an indication of the portion of sky that is obstructed 

by the surrounding relief: 0 = completely obstructed, 1=completely visible (Böhner and 
Antonić, 2009, p. 8) 

• Method: This indicator was computed in SAGA GIS 2.3.2 using the tool “Terrain Analy-
sis > Lighting, Visibility > Sky view factor” with the default parameters (Maximum search 
radius = 10 km). 



Annexes 

158 

Topographic Wetness Index (TWI) 
• Definition: This indicator is defined from the ratio of the catchment area (area draining 

water to a given cell) to the local slope (indicator of the capacity to evacuate the water 
received) and is used as a proxy of soil moisture (Kopecký and Čížková, 2010). 

• Method: First we computed the specific catchment area in SAGA GIS 2.3.2 using the 
tool “Terrain Analysis > Hydrology > Flow Width and Specific Catchment Area” with the 
default parameters (Aspect method). The TWI was then computed in SAGA GIS 2.3.2 
using the tool “Terrain Analysis > Hydrology > Topographic Wetness Index” with the de-
fault parameters (Standard method). 

Land Cover 

Land cover classification 

• Land cover classification in 6 classes : artificial areas, grass and herb vegetation, brush 
vegetation, tree vegetation, bare land and watery areas  

• Spatial resolution : 100 m 
• Source: Swiss Federal Statistical Office (OFS, 2017) 
• URL: https://www.bfs.admin.ch/bfs/fr/home/statistiques/espace-environnement/nomen-

clatures/arealstatistik/nolc2004.html 
• Processing: the only processing was to rasterise the data using the function rasterise in 

QGIS 2.14.7 (the initial data was available as a .csv file) 

Percentage of coniferous in forest 

Initial Data 
• Raster file classifying the forests of Switzerland into four classes: pure coniferous, mixed 

coniferous, mixed broadleaved and pure broadleaved. 
• Spatial resolution: 25 m, but with a grid translated by 12.5m as compared to the other 

data. 
• Source: Swiss Federal Statistical Office (OFS, 2013) 
• URL: https://www.bfs.admin.ch/bfs/fr/home/services/geostat/geodonnees-statistique-fed-

erale/sol-utilisation-couverture/donnees-derivees-autres-donnees/mixite-forets.html 
Processing 

• First, the raster with a spatial resolution of 25m was resampled in QGIS 2.14.7 to a ras-
ter with a spatial resolution of 12.5 m using the function “resample” with the nearest 
neighbour method.  

• A percentage of conifers was then assigned to each 12.5m pixel according to the classi-
fication proposed by OFS:  

0 = no-forest => 0 % coniferous 
1 = coniferous forest => considered 100% coniferous 
2 = mixed forest predominantly coniferous => considered 70% coniferous 
3 = mixed forest predominantly broadleaved => considered 30% coniferous 
4 = broadleaved forest => considered 0% coniferous 
9 = unclassified => considered no forest => 0% coniferous 

• The 12.5 m raster was aggregated to a 100 m target grid, by computing for each target 
cell the average percentage of coniferous using the tool “zonal statistics” in QGIS 2.14.7. 

• The resulting grid was rasterised using the “rasterise” function in QGIS 2.14.7.  

https://www.bfs.admin.ch/bfs/fr/home/statistiques/espace-environnement/nomenclatures/arealstatistik/nolc2004.html
https://www.bfs.admin.ch/bfs/fr/home/statistiques/espace-environnement/nomenclatures/arealstatistik/nolc2004.html
https://www.bfs.admin.ch/bfs/fr/home/services/geostat/geodonnees-statistique-federale/sol-utilisation-couverture/donnees-derivees-autres-donnees/mixite-forets.html
https://www.bfs.admin.ch/bfs/fr/home/services/geostat/geodonnees-statistique-federale/sol-utilisation-couverture/donnees-derivees-autres-donnees/mixite-forets.html
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Distances to water areas 

Initial Data 
• Vector landscape model SwissTLM3D from 2016  
• Source: Swiss Federal Office of Topography (O’Sullivan et al., 2008) 
• URL: https://shop.swisstopo.admin.ch/en/products/landscape/tlm3D 

Processing 
• All the elements characterising watery areas were extracted from the landscape model 

o For running water: the lines “Fliessgewaesser” and the polygons 
“Fliessgewaesser” extracted from the LandCover (Bodenbedeckung) polygons 

o For stagnant water: the lines “Stehendes Gewasser” and the polygons “ “Stehen-
des Gewasser” extracted from the land cover (Bodenbedeckung) polygons 

o For the wetlands: the polygons “Feuchtgebiet” extracted from the land cover (Bo-
denbedeckung) polygons 

• The vector layers were rasterised using the “rasterise” function in QGIS 2.14.7. 
• For each pixel, the minimal Euclidean distance to each water category was then com-

puted using the function “Raster > Analysis > Proximity” in QGIS 2.14.7. This resulted in 
three raster layers, representing the minimum distance to running water elements, stag-
nant water and wetlands, respectively. 

• Finally, the minimum of the three raster files was used as the minimal distance to any 
watery element. 

Vegetation Indexes 

Initial Data 
• MODIS Terra 16-days composite NDVI 
• Definition: The 16-day composite NDVI is produced on 16-day intervals and provide an 

indicator of the greenness of the vegetation during these 16 days. NDVI is derived from 
the reflectance in the red and near-infrared (NIR) bands obtained from the images of the 
MODIS satellite.  

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅

 

A large amount of red wavelengths are absorbed by the vegetation during photosynthesis, while 
the near infrared is reflected, in a proportion that depends in particular on the leaf area index. 
Land covered by vegetation will therefore show a large difference between NIR and red reflec-
tance, resulting in high NDVI values.  

• Units: The valid range of value is -2000 to 10’000 with a scale factor of 0.0001 (i.e. a 
value of -2000 correspond to a NDVI of -0.2, whereas a value of 10’000 indicates a 
NDVI equals to 1.0) 

• Spatial resolution: 250 m 
• Source: NASA Moderate Resolution Imaging Spectoradiometer (MODIS) (Huete et al., 

1999) 
• URL: https://modis.gsfc.nasa.gov/data/dataprod/mod13.php 
• Download: https://search.earthdata.nasa.gov/ 

Processing 
• We downloaded all images for the years 2006 to 2019. 
• The hdf4 files were converted to .tif format using the “gdal_translate” function in R (R 

Development Core Team, 2008) 

https://modis.gsfc.nasa.gov/data/dataprod/mod13.php
https://search.earthdata.nasa.gov/
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• The MODIS data being in sinusoidal projection, rasters were reprojected in the 
CH1903/LV03 projection system using the “projectRaster” function of the “raster” pack-
age in R 

• The files were cropped and resampled to a 100m resolution using the “crop” and 
“resample” function from the “raster” package in R 

• For each pixel, the monthly mean values were then computed in R.  
• Finally, remaining null values were replaced by the average value of the neighbouring 

pixels using the “focal” function from the “raster” package in R. 
Derived variables 
Four indicators were derived for the period of interest (1, 3, 12, 24 or 36 months before the sam-
pling date). 

1. Average of monthly mean NDVI (meanNDVIm) 
2. Minimum of monthly mean NDVI (minNDVIm) 
3. Maximum of monthly mean NDVI (maxNDVIm) 
4. Range of monthly mean NDVI (RgeNDVIm) 

Climate 

Temperature and precipitation 

Initial Data 
• Monthly mean, maximum and minimum temperature and monthly sum of precipitation 
• Spatial resolution: 100 m 
• Source: grids computed by the Swiss Federal Institute for Forest, Snow and Landscape 

Research (WSL), based on data from MeteoSwiss weather stations and a 100 m resolu-
tion digital elevation model aggregated from the DHM25 of SwissTopo. The computation 
was performed using Daymet software (Thornton et al., 1997) and the reported mean 
absolute error (crossvalidation) is ~1°C for temperature and ~10-15% for precipitation 
(personal communication from WSL). 

• URL: https://www.wsl.ch/de/projekte/climate-data-portal.html 
DHM25 Swisstopo: https://shop.swisstopo.admin.ch/fr/products/height_models/dhm25 
MeteoSwiss: https://www.meteoswiss.admin.ch/home/measurement-values.html 

Derived variables 
First, 15 indicators were derived for the period of interest (1, 3, 12, 24 or 36 months before the 
sampling date). Some of these indicators are very close to the worldclim bioclimatic variables 
(https://worldclim.org/data/bioclim.html). They were computed in R using two custom R functions 
(one defined for the treatment of data frame and the other for raster layers). The two functions 
are available in: https://github.com/estellerochat/SDM-Chlamydiales. 
 

1. Average of the monthly mean temperatures over the period of interest (meantmean) 
2. Maximum of the monthly maximal temperatures over the period of interest (maxtmax) 
3. Minimum of the monthly maximal temperatures over the period of interest (mintmax) 
4. Maximum of the monthly minimal temperature over the period of interest (maxtmin) 
5. Minimum of the monthly minimal temperatures over the period of interest (mintmin) 
6. Average of the monthly range of temperatures (meanMoRge) 
7. Global range of temperature (maxtmax-mintmin) (tRge) 
8. Isothermality (100*meanMoRge / tRge) (isotherm) 
9. Temperature seasonality (standard deviation*100) (tseason) 
10. Mean temperature of the coldest month (mintmean) 
11. Mean temperature of the warmest month (maxtmean) 

https://www.wsl.ch/de/projekte/climate-data-portal.html
https://shop.swisstopo.admin.ch/fr/products/height_models/dhm25
https://www.meteoswiss.admin.ch/home/measurement-values.html?param=messwerte-lufttemperatur-10min
https://worldclim.org/data/bioclim.html
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12. Total sum of precipitation (sumprec) 
13. Maximum of the monthly sums of precipitation over the period of interest (maxprec) 
14. Minimum of the monthly sums of precipitation over the period of interest (minprec) 
15. Precipitation seasonality (Coefficient of Variation CV = sd/mean*100) (pseason) 

 
Secondly, 16 additional indicators were derived when the period of interest was exceeding 3 
months (i.e. 6, 12, 24 or 36 months) (CM=”consecutive months”) 
 

1. Average of the monthly mean temperature of the 3 coldest CM (meantmean3cold) 
2. Average of the monthly minimal temperature of the 3 coldest CM (meantmin3cold) 
3. Average of the monthly maximal temperature of the 3 coldest CM (meantmax3cold) 
4. Sum of precipitation of the 3 coldest CM (prec3cold) 
5. Average of the monthly mean temperature of the 3 warmest CM (meantmean3warm) 
6. Average of the monthly minimal temperature of the 3 warmest CM (meantmin3warm) 
7. Average of the monthly maximal temperature of the 3 warmest CM (meantmax3warm) 
8. Sum of precipitation of the 3 warmest CM (prec3warm) 
9. Average of the monthly mean temperature of the 3 wettest CM (meantmean3wet) 
10. Average of the monthly minimal temperature of the 3 wettest CM (meantmin3wet) 
11. Average of the monthly maximal temperature of the 3 wettest CM (meantmax3warm) 
12. Sum of precipitation of the 3 wettest CM (prec3wet) 
13. Average of the monthly mean temperature of the 3 driest CM (meantmean3dry) 
14. Average of the monthly minimal temperature of the 3 driest CM (meantmin3dry) 
15. Average of the monthly maximal temperature of the 3 driest CM (meantmax3dry) 
16. Sum of precipitation of the 3 driest CM (meantmean3dry) 

Humidity variables 

Initial Data 
• Daily mean, maximum and minimum temperature 
• Spatial resolution: 1 km 
• Source: MeteoSwiss 
• URL: https://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/raeumli-

che-klimaanalysen.html 
Processing 

• The daily grids were imported in R  
• The daily relative humidity was computed using the same procedure as in Zimmermann 

et al. (2001) 
o Compute the average daytime temperature following Running et al. (1987) 

𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑 = 0.394 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 + 0.606 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 
o Compute ambient vapour pressure using the Tetens equation for temperatures 

above 0°C (Murray, 1966) and minimum temperature as an approximation of dew 
point temperature (Running et al., 1987) 

𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎 = 610.78 exp �
17.269 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

237.3 +  𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
� 

o Compute the potential vapour pressure of saturated air for daytime temperature 
using the Tetens equation for temperatures above 0°C (Murray, 1966) and the 
previously computed average daytime temperature: 

https://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/raeumliche-klimaanalysen.html
https://www.meteoswiss.admin.ch/home/climate/swiss-climate-in-detail/raeumliche-klimaanalysen.html
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𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 = 610.78 𝑒𝑒𝑒𝑒𝑒𝑒 �
17.269 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑

237.3 +  𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑
� 

o Compute the relative Humidity (in %) 

𝑅𝑅𝑅𝑅 =
𝑉𝑉𝑉𝑉𝑎𝑎𝑎𝑎𝑎𝑎
𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠

∗ 100 

• The daily relative humidity grids were then aggregated to compute four monthly grids: 
1. Monthly mean of RH 
2. Monthly median of RH 
3. Monthly quantile 0.25 of RH 
4. Monthly quantile 0.75 of RH 

Derived variables 
22 indicators were derived for the period of interest (1, 3, 12, 24 or 36 months before sampling 
date). They were computed in R using two custom R functions (one defined for the treatment of 
data frame and the other for raster layers). The two functions are available in: 
https://github.com/estellerochat/SDM-Chlamydiales. 

1. Average of monthly mean RH (meanRHmean) 
2. Average of monthly median RH (meanRHq050) 
3. Minimum of monthly mean RH (minRHmean) 
4. Maximum of monthly mean RH (maxRHmean) 
5. Minimum of monthly 0.25 quantile of RH (minRHq025) 
6. Minimum of monthly 0.75 quantile of RH (minRHq075) 
7. Maximum of monthly 0.75 quantile of RH (maxRHq075) 
8. Range of monthly RH (RHrge) 
9. Average of the monthly ranges of RH (RHMoRge) 
10. Mean daily RH (meanRHD) 
11. Median daily RH (medRHD) 
12. Minimum daily RH (minRHD) 
13. Maximum daily RH (maxRHD) 
14. Range of daily RH (rangeRHD) 
15. Quantile 0.25 of daily RH (q025RHD) 
16. Quantile 0.75 of daily RH(q075RHD) 
17. Number of days with RH<70% (ndRHDinf70) 
18. Number of days with RH<80% (ndRHDinf80) 
19. Number of days with RH>90% (ndRHDsup90) 
20. Maximum number of consecutive days with RH< 70% (ncdRHDinf70) 
21. Maximum number of consecutive days with RH< 80% (ncdRHDinf80) 
22. Maximum number of consecutive days with RH>90% (ncdRHDsup90) 
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A2.4 Supp. File 4 – Background datasets 

Ixodes ricinus 

Sampling date 

Distribution of sampling dates (month and year) of the occurrence dataset (presences, 2293 
points) and selected background points below 1500 m (6050 points). 

 

Altitude 

Distribution of altitude values of the occurrence dataset (presences, 2293 points) selected back-
ground points below 1500 m (6050 points). 
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Chlamydiales 

Sampling date 

Distribution of sampling dates (month and year) of the occurrence dataset (presences, 186 points) 
and background points (1029 points). 

 

Altitude 

Distribution of altitude values of the occurrence dataset (presences, 186 points) and background 
points (1029 points). 
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A2.5 Supp. File 5 – Ixodes ricinus models 
This tab provides the list of all models tested for the distribution of Ixodes ricinus. The mean and standard 
deviation (sd) values over the 20 runs are given for each of the evaluation parameters. reg is the value of 
the regularization multiplier. features indicate the features used (l=linear, lp=linear and product, lq = linear 
and quadratic, lpq=linear product and quadratic). OE_test is the omission error on the testing dataset and 
OE_indep on the independent dataset. # coeff is the number of non-zeros coefficients estimated by the 
model. The ranks (1-4) correspond to the ranking procedure defined in the method section. The final rank 
gives the final ranking of the models (1=best model, parameters selected for the final modelling). 
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A2.6 Supp. File 6 – Ixodes ricinus suitability maps 

Maps of suitability predicted based on the “best” model presented in the paper.  
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A2.7 Supp. File 7 – Chlamydiales models 
This tab provides the list of all models tested for the distribution of Chlamydiales. The mean and standard 
deviation (sd) values over the 20 runs are given for each of the evaluation parameters. reg. Is the value of 
the regularization parameter. feat. indicates the features used (l=linear, lp=linear and product, lq = linear 
and quadratic, lpq=linear product and quadratic). med suit. P 2009 (resp. 2018) is the median of the suit-
ability predicted on presences points from 2009 (resp. 2018). med suit. "A" 2009 (resp. 2018) is the median 
of the suitability predicted at sites where no Chlamydiales were found ("absences") in 2009 (resp. 2018). # 
coeff is the number of non-zeros coefficients estimated by the model. The ranks (1-4) correspond to the 
ranking procedure defined in the method section. The final rank givse the final ranking of the models (1=best 
model, parameters selected for the final modelling). 
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A2.8 Supp. File 8 - Chlamydiales : T-test and selection of variables 

For the signification of the acronym names, please refer to Supp. File A2.3. 

T-test 

For each variable and buffer radius, the heatmap below shows the results of the T-test. Only 
results that were significant according to the p-value of the T-test are shown (grey area = no 
significant results). The numbers on the cells indicate the time period considered before sampling 
date (in number of months) which resulted in the highest T-value for the given combination of 
variable and buffer radius. Numerical values are available in the following table. 
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variable buffer time period 
(months) mean1 sd1 mean0 sd0 P-value T-

value 
SS10 B100m  7.76 11.79 16.76 25.282 6.49E-14 7.70 
maxNDVIm P 36 8335.76 530.03 8052.00 883.681 5.65E-09 -5.96 
SS40 B100m  62.72 21.58 53.03 32.526 4.12E-07 -5.16 
MFpr P  39.37 30.52 27.86 31.863 4.21E-06 -4.70 
meantmin3warm B1500m 36 12.87 0.95 13.21 1.040 1.52E-05 4.40 
ndRHDsup90 B200m 24 21.11 12.51 25.24 10.579 3.29E-05 4.23 
ncdRHDsup90 B100m 36 3.12 1.35 3.57 1.328 4.44E-05 4.16 
meanNDVIm P 1 7296.71 940.89 6985.76 1156.039 8.18E-05 -3.99 
RgeNDVIm P 12 6378.89 1537.42 5883.24 1788.431 1.02E-04 -3.94 
mintmin B1500m 12 -4.82 1.25 -4.43 1.277 1.31E-04 3.88 
prec3cold B1500m 24 24.16 11.73 20.70 7.944 1.44E-04 -3.87 
prec3cold B1500m 36 24.16 11.73 20.70 7.944 1.44E-04 -3.87 
RHrge B100m 12 31.09 4.69 32.52 4.758 1.62E-04 3.83 
minprec B1500m 6 2.80 0.97 2.50 1.022 1.62E-04 -3.83 
mintmean B1500m 12 -2.23 1.07 -1.90 1.114 1.87E-04 3.79 
prec3dry B1500m 36 13.99 3.25 13.00 3.443 2.00E-04 -3.77 
meantmean B1500m 12 9.14 1.13 9.47 1.200 2.60E-04 3.70 
rangeRHD B1500m 6 44.68 4.29 45.95 4.292 2.62E-04 3.70 
maxtmin B1500m 36 15.26 1.19 15.61 1.083 2.81E-04 3.69 
maxtmean B1500m 24 18.01 1.21 18.37 1.300 2.90E-04 3.67 
meantmean3warm B1500m 36 18.08 1.19 18.43 1.293 2.90E-04 3.67 
meantmax3cold B1500m 12 2.57 1.04 2.89 1.264 2.97E-04 3.66 
meantmean3cold B1500m 12 -0.36 1.09 -0.03 1.259 3.48E-04 3.62 
meantmax3wet B1500m 36 18.00 6.71 19.84 4.413 3.78E-04 3.61 
meantmin3wet B1500m 36 9.03 5.41 10.51 3.595 3.84E-04 3.61 
meantmean3wet B1500m 36 13.29 5.98 14.93 3.945 3.85E-04 3.61 
meantmin3cold B1500m 12 -3.12 1.20 -2.77 1.354 4.18E-04 3.57 
maxtmax B1500m 24 23.61 1.45 24.02 1.518 4.49E-04 3.55 
mintmax B1500m 12 0.59 1.00 0.88 1.133 4.54E-04 3.55 
ncdRHDinf80 P 3 29.71 9.04 27.14 9.929 5.31E-04 -3.51 
pseason B500m 12 47.02 10.59 44.24 8.316 8.06E-04 -3.40 
maxRHq075 P 24 87.44 3.05 88.22 2.569 1.15E-03 3.29 
maxRHD B1500m 24 94.83 1.67 95.24 1.330 1.68E-03 3.18 
meantmax3warm B1500m 36 23.81 1.42 24.16 1.498 1.89E-03 3.14 
DistWL B1000m  2554.14 2311.95 3163.80 3062.125 1.89E-03 3.13 
meantmean3dry B1500m 36 4.37 3.72 5.27 3.591 2.44E-03 3.06 
meantmin3dry B1500m 24 7.54 4.17 8.55 4.132 2.53E-03 3.05 
minRHq075 B1500m 6 67.80 2.81 67.12 3.235 3.19E-03 -2.97 
ncdRHDinf70 P 6 16.00 6.65 14.44 6.435 3.37E-03 -2.96 
meantmax3dry B1500m 36 0.90 3.47 1.71 3.268 3.59E-03 2.94 
minNDVIm B1000m 12 1562.21 1297.28 1866.53 1461.392 4.22E-03 2.89 
minRHq025 B1500m 12 56.33 3.66 55.49 3.983 4.66E-03 -2.85 
GC B1500m  0.00 0.00 0.00 0.000 4.76E-03 2.85 
RHMoRge B1500m 36 11.81 1.62 12.17 1.544 5.11E-03 2.83 
maxprec B1500m 6 16.33 6.61 14.89 4.944 5.19E-03 -2.82 
minRHD B1500m 6 49.55 3.37 48.82 3.792 7.75E-03 -2.68 

 

mean1 is the mean of the values for occurrences points, mean0 the mean of the values for background 
points, sd1 the standard deviation of the values for occurrences points and sd0 the standard deviation of 
the values for background points. 
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Uncorrelated variables used in the model 

1. MFpr_P 
2. ncdRHDinf80_P_3 
3. ncdRHDinf70_P_6 
4. maxRHq075_P_24 
5. SS10_B100m 
6. SS40_B100m 
7. ncdRHDsup90_B100m_36 
8. ndRHDsup90_B200m_24 
9. DistWL_B1000m 
10. GC_B1500m 
11. minRHq075_B1500m_6 
12. rangeRHD_B1500m_6 
13. prec3cold_B1500m_24 
14. maxRHD_B1500m_24 
15. prec3dry_B1500m_36 
16. meantmax3wet_B1500m_36 
17. meantmean3dry_B1500m_36 

A2.9 Supp. File 9 - Infection rates 

Infection rate prospective campaign: spatial distribution 

The infection rate indicates no spatial clustering. 
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CT value as a function of sampling date 

Results indicate no concentration of positive values for a given sampling date or a succession of 
dates. Negative results are also obtained for each sampling date. 

 
 

 
  



Annexes 

174 

CT value vs Plate 

Results indicate no concentration of positive values for some plates. Negative results are also 
obtained on each plate. 
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CT value vs DNA Extraction Date 

Results indicate no concentration of positive values for a given DNA-extraction date. Negative 
results are obtained for each extraction date. 
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A3. First applications of univariate SPAG 

A3.1 Ugandan Cattle 
Effect of climate change on the spatial distribution of genomic variants involved in 
the resistance to East Coast Fever in Ugandan cattle 
 
Abstract of a talk and poster presented in Evolutionary Biology Meeting, Marseille, 2015 
 
Estelle Rochat1*, Elia Vajana2*, Licia Colli2, Charles Masembe3, Riccardo Negrini2, Paolo Ajmone-
Marsan2, Stéphane Joost1  and the NEXTGEN Consortium  

1 Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and environmental 
Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland 
2 Institute of Zootechnics and BioDNA Research Centre, Faculty of Agricultural, Food and Environmental 
Sciences, Università Cattolica del S. Cuore, Piacenza, Italy 
3 Institute of Environment & Natural Resources, Makerere University, Kampala, Uganda 

* These authors contributed equally to this work 

East Coast Fever (ECF) is a major livestock disease caused by Theileria parva Theiler, 1904, an 
emo-parasite protozoan transmitted by the tick Rhipicephalus appendiculatus Neumann, 1901. 
This disease provokes high mortality in cattle populations of East and Central Africa, especially 
in exotic breeds and crossbreds (Olwoch et al., 2008). Here, we use landscape genomics (Joost 
et al., 2007) to highlight genomic regions likely involved into tolerance/resistance mechanisms 
against ECF, and we introduce SPatial Area of Genotype probability (SPAG) to delimit territories 
where favourable genotypes are predicted to be present. 

Between 2010 and 2012, the NEXTGEN project (nextgen.epfl.ch) carried out the geo-referencing 
and genotyping (54K SNPs) of 803 Ugandan cattle, among which 496 were tested for T. parva 
presence. Moreover, 532 additional R. appendiculatus occurrences were obtained from a pub-
lished database (Cumming, 1998). Current and future values of 19 bioclimatic variables were also 
retrieved from the WorldClim database (www.worldclim.org/). In order to evaluate the selective 
pressure of the parasite, we used MAXENT (Phillips et al., 2006) and a mixed logistic regression 
(Bates et al., 2014) to model and map the ecological niches of both T. parva and R. appendicu-
latus. Then, we used a correlative approach (Stucki et al., 2014) to detect genotypes positively 
associated with the resulting probabilities of presence and built the corresponding SPAG. Finally, 
we considered bioclimatic predictors representing two different climate change scenarios for 2070 
- one moderate and one severe - to forecast the simultaneous shift of both SPAG and vector/path-
ogen niches. 

While suitable ecological conditions for T. parva are predicted to remain constant, the best envi-
ronment for the vector is predicted around Lake Victoria. However, when considering future con-
ditions, parasite occurrence is expected to decrease because of the contraction of suitable envi-
ronments for the tick in both scenarios. Landscape genomics’ analyses revealed several markers 
significantly associated with a high probability of presence of the tick and of the parasite. Among 
them, we found the marker ARS-BFGL-NGS-113888, whose heterozygous genotype AG showed 
a positive association. Interestingly, this marker is located close to the gene IRAK-M, an essential 
component of the Toll-like receptors involved in the immune response against pathogens (Koba-
yashi et al., 2002). If the implication of this gene into resistance mechanisms against ECF is 

http://www.worldclim.org/
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confirmed, the corresponding SPAG (Figure 1) represents either areas where the variant of inter-
est shows a high probability to exist now, or areas where ecological characteristics are the most 
favorable to induce its presence under future climatic conditions. 

Beyond the results presented here, the combined use of SPAG and niche maps could help iden-
tifying critical geographical regions that do not present the favourable genetic variant in the pre-
sent, but where a parasite is likely to expand its range in the future. This may represent a valuable 
tool to support the identification of current resistant populations and to direct future targeted cross-
breeding schemes. 
 

Current conditions Conditions 2070 – severe climate change 

  
 
Figure 1 .- SPatial Area of Genotype probability (SPAG)  
SPAG for the genotype AG of the SNP "ARS-BFGL-NGS-113888" (ARS-11), highlighting areas where this 
genotype shows a high probability to be present (Current Conditions), and where it may be distributed in 
the future (Conditions 2070). As the presence of ARS-11_AG is positively correlated with the presence of 
the tick R. appendiculatus (alpha = 0.01; Efron pseudo R2 = 0.074), we can estimate the probability of 
presence of this genotype also in regions without sampling points and thus without genetic data. At present, 
the areas of high probability of presence of ARS-11_AG are mainly observed in the North-East and the 
South of Lake Victoria. However, when considering environmental conditions in 2070 (assuming severe 
climate change), these areas are expected to be mainly restricted to the North-East of Lake Victoria, where 
favorable conditions for the presence of R. appendiculatus are supposed to be maintained.  
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A3.2 Moroccan sheep 
Map of genotype frequency change in autochthonous Moroccan sheep breeds due 
to global warming  
 
Abstract of a talk presented in ConGenOmics conference, Vairão – Portugal, 2016 
 
Estelle Rochat1, Kevin Leempoel1, Elia Vajana2, Licia Colli2, Paolo Ajmone-Marsan2, Stéphane 
Joost1 and the NEXTGEN Consortium 
1 Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental 
Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland 

2 Institute of Zootechnics and BioDNA Research Centre, Faculty of Agricultural, Food and Environmental 
Sciences, Università Cattolica del S. Cuore, Piacenza, Italy 

In developing countries, small ruminants play a key role in the livelihood of farmers and conserv-
ing traditional, locally adapted breeds is of essential cultural and economic relief. However, global 
warming is inducing major changes in habitat conditions and it is therefore important to assess 
the possible consequences of climate change for these species. We studied the local adaptation 
of 160 Moroccan sheep based on whole genome sequence (WGS) data from the NEXTGEN 
project (nextgen.epfl.ch). We used various correlative approaches and identified a locus signifi-
cantly associated with precipitation. We then built the corresponding Spatial Areas of Genotype 
Probabilities (SPAG) to delimit the geographic regions where this genotype is currently present 
and finally used the Worldclim 2070 predictions for severe climate change (scenario GISS-E2-R, 
rcp 85, http://www.worldclim.com/) to map the predicted SPAG shift in the future. 

The locus identified is located in the gene MC5R, which codes for a protein likely involved in 
lanolin production (Chen et al., 1997). The CC genotype is positively correlated with precipitation 
whereas the presence of allele T shows a negative association with precipitation. CC could there-
fore favour the production of lanolin and prevent the lumpy wool disease while T could reduce 
this production and favour the adaptation to drought. In 2070, precipitation is likely to decrease in 
the Northern part of Morocco. The corresponding shift in CC’s SPAG therefore highlights critical 
regions where sheep currently show this genotype, but would probably need allele T in order to 
adapt to forthcoming drought. 
 

Current conditions Conditions 2070 – severe climate change 
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A4. Paper C : Supplementary material 

A4.1 Supp. File 1 – Method 

Multivariate models 

Intersection 

From the theory of conditional probabilities, we know that the probability of the simultaneous 
presence of two genotypes G1 and G2 can be written: 

𝑝𝑝(𝐺𝐺1  ∩  𝐺𝐺2) =  𝑝𝑝(𝐺𝐺1) 𝑝𝑝(𝐺𝐺2|𝐺𝐺1)  

Formula S1 

where 𝑝𝑝(𝐺𝐺1) is the probability of presence of the genotype G1, which can be computed using the 
univariate model (Formula 4-6), and 𝑝𝑝(𝐺𝐺2|𝐺𝐺1) is the conditional probability of G2 given G1. The 
computation of this second probability could be performed with a logistic regression where G1 is 
integrated as a covariate in the univariate model for G2 (Formula S2). 

𝑝𝑝(𝐺𝐺2|𝐺𝐺1)  =
𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥2+𝛽𝛽2𝐺𝐺1

1 + 𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥2+𝛽𝛽2𝐺𝐺1
 

Formula S2 

where x2 is the environmental variable associated with G2 and 𝛽𝛽0, 𝛽𝛽1 and 𝛽𝛽2 are the parameters 
of the logistic regression. However, as we would like to use this model to predict the probability 
of presence of the genotypes for any point of the region of interest, i.e also where values of G1 
are not know, we suggest to estimate G1 by 𝑝𝑝(𝐺𝐺1) which can be computed for the entire territory 
from the univariate SPAG of G1. We therefore approximated 𝑝𝑝(𝐺𝐺2|𝐺𝐺1) by 𝑝𝑝(𝐺𝐺2|𝑝𝑝(𝐺𝐺1)) with the 
logistic regression in formula S3. 

𝑝𝑝(𝐺𝐺2|𝐺𝐺1)  ≈
𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥2+𝛽𝛽2𝑝𝑝(𝐺𝐺1)

1 + 𝑒𝑒𝛽𝛽0+𝛽𝛽1𝑥𝑥2+𝛽𝛽2𝑝𝑝(𝐺𝐺1) 

Formula S3 

The final SPAG 𝑝𝑝(𝐺𝐺1  ∩  𝐺𝐺2) can therefore be computed in three steps:  

1. compute the SPAG corresponding to 𝑝𝑝(𝐺𝐺1)  across the entire territory, using an univariate 
model with the environmental variable x1 associated with G1. 

2. compute 𝑝𝑝(𝐺𝐺2|𝐺𝐺1) using a logistic model with the G2 as the dependent variable, the en-
vironmental variable x2 as the independent variable and the probability of presence p(G1) 
as a covariate (Formula S3). 

3. multiply the results of 𝑝𝑝(𝐺𝐺1) obtained in step 1 with p(G2|G1) computed in step 2 to derive 
the final 𝑝𝑝(𝐺𝐺1  ∩  𝐺𝐺2). 
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Using the associative property of the intersection (i.e. 𝑝𝑝(𝐺𝐺1  ∩  𝐺𝐺2  ∩  𝐺𝐺3) = 𝑝𝑝(𝐺𝐺3   ∩  (𝐺𝐺1  ∩  𝐺𝐺2 ) )), 
the procedure above can be extended to compute the probability of simultaneous presence of n 
genotypes of interest: 

4. compute 𝑝𝑝(𝐺𝐺3|(𝐺𝐺1 ∩ 𝐺𝐺2 )) using a logistic model with G3 as the dependent variable, the 
environmental variable x3 as the independent variable and the probability 𝑝𝑝(𝐺𝐺1  ∩  𝐺𝐺2) 
computed in step 3 as a covariate. 

5. multiply the results of 𝑝𝑝(𝐺𝐺1  ∩  𝐺𝐺2) obtained in step 3 with 𝑝𝑝(𝐺𝐺3|(𝐺𝐺1 ∩ 𝐺𝐺2 )) computed in 
step 4 to derive 𝑝𝑝(𝐺𝐺1  ∩  𝐺𝐺2  ∩  𝐺𝐺3). 

6. compute 𝑝𝑝(𝐺𝐺4|(𝐺𝐺1 ∩ 𝐺𝐺2 ∩ 𝐺𝐺3 )) using a logistic model with G4 as the dependent variable, 
the environmental variable x4 as the independent variable and the probability 
𝑝𝑝(𝐺𝐺1  ∩  𝐺𝐺2  ∩  𝐺𝐺3) computed in step 5 as a covariate. 

7. multiply the results of 𝑝𝑝(𝐺𝐺1  ∩  𝐺𝐺2  ∩  𝐺𝐺3) obtained in step 5 with 𝑝𝑝(𝐺𝐺1 ∩ 𝐺𝐺2 ∩ 𝐺𝐺3 ) com-
puted in step 6 to derive 𝑝𝑝(𝐺𝐺1  ∩  𝐺𝐺2  ∩  𝐺𝐺 3  ∩  𝐺𝐺4). 

8. Carry on until obtaining 𝑝𝑝(𝐺𝐺1  ∩  𝐺𝐺2  ∩  𝐺𝐺 3  ∩  𝐺𝐺4  ∩  … . .∩ 𝐺𝐺𝑛𝑛) for n genotypes of interest. 

Note that this approach allows for the integration of adaptive genotypes associated with various 
environmental variables since the environmental variable x1 used in step 1 to compute p(G1) can 
be different from the variable x2, x3, x4, etc. used in the following steps.  

We implemented this recursive approach to build generalised intersection models predicting the 
simultaneous presence of n genotypes of interest as a R function I-spag available at : 
https://github.com/estellerochat/SPAG. 

 

Union 

To compute the probability of presence of at least one of the adaptive variant, we use the exclu-
sion-inclusion principle, from which the probability of presence of genotypes G1 OR G2 can be 
written:  

𝑝𝑝(𝐺𝐺1  ∪  𝐺𝐺2) =  𝑝𝑝(𝐺𝐺1) + 𝑝𝑝(𝐺𝐺2) − 𝑝𝑝(𝐺𝐺1  ∩  𝐺𝐺2) 

Formula S4 

where p(G1) and p(G2) can be computed with univariate SPAGs and p(G1 ∩ G2) using the inter-
section SPAG. For three genotypes, this becomes 
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𝑝𝑝(𝐺𝐺1  ∪  𝐺𝐺2 ∪  𝐺𝐺3) =  𝑝𝑝(𝐺𝐺1) + 𝑝𝑝(𝐺𝐺2) + 𝑝𝑝(𝐺𝐺3) 
                                         −𝑝𝑝(𝐺𝐺1  ∩  𝐺𝐺2) − 𝑝𝑝(𝐺𝐺1  ∩  𝐺𝐺3) − 𝑝𝑝(𝐺𝐺2  ∩  𝐺𝐺3) 
                                        + 𝑝𝑝(𝐺𝐺1  ∩  𝐺𝐺2 ∩  𝐺𝐺3) 

Formula S5 

The generalisation for n genotypes is given by formula S6, and can be computed using the uni-
variate and intersection models. This general case was implemented as an R function U-spag 
available at https://github.com/estellerochat/SPAG. 

𝑝𝑝 ��𝐺𝐺𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� = �𝑝𝑝(𝐺𝐺𝑖𝑖) −�𝑝𝑝�𝐺𝐺𝑖𝑖�𝐺𝐺𝑗𝑗� + � 𝑝𝑝�𝐺𝐺𝑖𝑖�𝐺𝐺𝑗𝑗�𝐺𝐺𝑘𝑘� +
𝑖𝑖<𝑗𝑗<𝑘𝑘𝑖𝑖<𝑗𝑗

𝑛𝑛

𝑖𝑖=1

… + (−1)𝑛𝑛−1𝑝𝑝 ��𝐺𝐺𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� 

=> 𝑝𝑝 ��𝐺𝐺𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� = ��(−1)𝑘𝑘−1 � 𝑃𝑃(𝐺𝐺𝑖𝑖1 ∩ 𝐺𝐺𝑖𝑖2 ∩ … ∩ 𝐺𝐺𝑖𝑖𝑘𝑘)
1≤𝑖𝑖1<𝑖𝑖2<⋯<𝑖𝑖𝑘𝑘<𝑛𝑛

�
𝑛𝑛

𝑘𝑘=1

 

Formula S6 

K-Percentage 

To explain the K-Percentage method, we start with an example: if we have three genotypes, and 
would like to know the probability to carry at least 50% of them, this would be equivalent to the 
probability to carry at least two of the three genotypes. This can be expressed with Formula S7, 
which is the union of the probabilities of simultaneously carrying a combination of two genotypes 
chosen among the three. 

𝑝𝑝(50% 𝐺𝐺1,𝐺𝐺2,𝐺𝐺3) =  𝑝𝑝� (𝐺𝐺1  ∩  𝐺𝐺2)  ∪  (𝐺𝐺1  ∩  𝐺𝐺3 )  ∪  (𝐺𝐺2  ∩  𝐺𝐺3 )� 

Formula S7 

By developing the union operators and summarising the results, we obtain: 

𝑝𝑝(50% 𝐺𝐺1,𝐺𝐺2,𝐺𝐺3) =  𝑝𝑝(𝐺𝐺1 ∩  𝐺𝐺2) + 𝑝𝑝(𝐺𝐺1 ∩  𝐺𝐺3) + 𝑝𝑝(𝐺𝐺2 ∩  𝐺𝐺3)  −  3𝑝𝑝(𝐺𝐺1 ∩  𝐺𝐺2 ∩  𝐺𝐺3) 

By generalizing this approach, the probability to carry at least K% of n adaptive variant can be 
written: 

𝑝𝑝(𝐾𝐾% 𝐺𝐺𝑖𝑖=1….𝑛𝑛) =  𝑝𝑝�� � (𝐺𝐺𝑖𝑖1 ∩ 𝐺𝐺𝑖𝑖2 ∩ … ∩ 𝐺𝐺𝑖𝑖𝑘𝑘)
1≤𝑖𝑖1<𝑖𝑖2<⋯<𝑖𝑖(𝐾𝐾%∗𝑛𝑛+1)

𝑛𝑛

𝑖𝑖=1

� 

Formula S8 

Again, this can be computed using univariate and intersection models and the general case was 
implemented as an R function K-spag available at https://github.com/estellerochat/SPAG. 
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Selection of training samples 

In the cross-validation procedure, training individuals were not randomly selected, but were cho-
sen such to represent the entire distribution of the environmental variable of interest in the study 
area. We thus retrieved the maximum and minimum value of the environmental variable at the 
sampled sites and divided this range into N uniform intervals, where N corresponds to the number 
of training individuals (25% of the total number of individuals). Since individuals are not neces-
sarily sampled uniformly along the range of an environmental variable, we can obtain some inter-
vals without any individuals and others with more than one individual. We therefore selected ran-
domly one individual in each interval where individuals were present, and completed the training 
set with individuals randomly selected from all remaining individuals. We used this training set to 
calculate the SPAG. 

 
  



Annexes 

183 

A4.2 Supp. File 2 – CDPOP simulation parameters 
looptime 300  Femalepercent 50 

cdclimgentime 0  
Equalsexrati-
oBirth N 

matemoveno 1  TwinningPercent 0 
matemoveparA 0  popModel exp 
matemoveparB 0  r 1 
matemoveparC 0  K_env 0 
matemovethresh 25max  subpopmortperc 0 
sexans Y  muterate 0 
Freplace Y  mutationtype random 
Mreplace Y  loci 50 
philopatry N  intgenesans random 
multiple_pater-
nity N  allefreqfilename N 
selfans N  alleles 2 
Fdispmoveno 1  mtdna N 
FdispmoveparA 0  startGenes 0 
FdispmoveparB 0  cdevolveans M_X3_L3_A2_ModelX 
FdispmoveparC 0  startSelection 0 

Fdispmovethresh 25max  
betaFile_selec-
tion see Figure 1 (main text) 

Mdispmoveno 1  epistasis N 
MdispmoveparA 0  epigeneans N 
MdispmoveparB 0  startEpigene 0 
MdispmoveparC 0  betaFile_epigene N 
Mdispmovethresh 25max  cdinfect N 
offno 2  transmissionprob 0 
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A4.3 Supp. File 3 – Genetic data 

A - Moroccan Dataset 

 

 

B - European Dataset 
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A4.4 Supp. File 4 – Bioclimatic data 

 
BIO1   Annual Mean Temperature 
BIO2   Mean Diurnal Range (Mean of monthly (max temp - min temp)) 
BIO3   Isothermality (BIO2/BIO7) (* 100) 
BIO4   Temperature Seasonality (standard deviation *100) 
BIO5   Max Temperature of Warmest Month 
BIO6   Min Temperature of Coldest Month 
BIO7   Temperature Annual Range (BIO5-BIO6) 
BIO8   Mean Temperature of Wettest Quarter 
BIO9   Mean Temperature of Driest Quarter 
BIO10   Mean Temperature of Warmest Quarter 
BIO11   Mean Temperature of Coldest Quarter 
BIO12   Annual Precipitation 
BIO13   Precipitation of Wettest Month 
BIO14   Precipitation of Driest Month 
BIO15   Precipitation Seasonality (Coefficient of Variation) 
BIO16   Precipitation of Wettest Quarter 
BIO17   Precipitation of Driest Quarter 
BIO18   Precipitation of Warmest Quarter 
BIO19   Precipitation of Coldest Quarter 
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A4.5 Supp. File 5 – Results logistic regressions Morocco 
CHR=Chromosome, POS=Position in base pairs, GF=Genotype frequency, missGeno=Missing genotype frequency 
G=Gscore, qG=p-value of Gscore corrected for FDR, W=Wald score, pW=p-value of Wald score, qW=p-value of Wald 
score corrected for FDR. 
β0, β1=coefficients of the univariate logistic regression        
             

Marker CHR POS GF missGeno G qG W pW qW β0 β1 Gene CHIR 1.0 
ss1281060258_TT 6 12'174'332 17.39 0 27.93 0.046 19.97 7.89E-06 0.920 1.85 -1.26  
ss1281060321_GG 6 12'178'287 81.37 0 27.70 0.047 19.72 8.94E-06 0.920 1.90 -1.27  
ss1281060376_CC 6 12'180'068 81.37 0 27.70 0.047 19.72 8.94E-06 0.920 1.90 -1.27  
ss1281060384_CC 6 12'180'879 81.37 0 27.70 0.047 19.72 8.94E-06 0.920 1.90 -1.27  
ss1281060395_GG 6 12'181'286 81.37 0 27.70 0.047 19.72 8.94E-06 0.920 1.90 -1.27  
ss1281060520_CC 6 12'187'316 80.75 0 27.93 0.046 19.97 7.89E-06 0.920 1.85 -1.26  
ss1281061829_TT 6 12'242'353 28.57 0.01 32.02 0.016 24.60 7.06E-07 0.920 -0.60 1.06  
ss1281061965_CC 6 12'253'612 51.55 0 33.91 0.009 26.33 2.87E-07 0.824 0.08 -1.05  
ss1281061973_TT 6 12'254'244 28.57 0 37.01 0.005 25.82 3.74E-07 0.824 -1.22 1.28  
ss1281061973_AA 6 12'254'244 43.48 0 30.64 0.027 24.57 7.18E-07 0.920 -0.32 -0.99  
ss1281061986_AA 6 12'254'603 51.55 0 33.91 0.009 26.33 2.87E-07 0.824 0.08 -1.05  
ss1281062148_GG 6 12'254'883 51.55 0 33.91 0.009 26.33 2.87E-07 0.824 0.08 -1.05  
ss1281062154_CC 6 12'255'024 49.07 0 32.73 0.012 25.74 3.91E-07 0.824 -0.04 -1.03  
ss1281062169_AA 6 12'255'763 28.57 0.01 36.68 0.005 25.61 4.19E-07 0.824 -1.21 1.28  
ss1281062169_TT 6 12'255'763 43.48 0.01 29.79 0.035 24.03 9.50E-07 0.920 -0.30 -0.98  
ss1281062197_AA 6 12'256'813 28.57 0 37.01 0.005 25.82 3.74E-07 0.824 -1.22 1.28  
ss1281062197_GG 6 12'256'813 43.48 0 28.52 0.045 23.22 1.45E-06 0.920 -0.31 -0.95  
ss1281062229_GG 6 12'259'477 27.95 0.01 35.18 0.008 24.81 6.34E-07 0.920 -1.22 1.26  
ss1281062229_AA 6 12'259'477 43.48 0.01 27.66 0.047 22.62 1.97E-06 0.920 -0.31 -0.94  
ss1281062231_AA 6 12'259'667 43.48 0 28.52 0.045 23.22 1.45E-06 0.920 -0.31 -0.95  
ss1281062231_TT 6 12'259'667 28.57 0 37.01 0.005 25.82 3.74E-07 0.824 -1.22 1.28  
ss1281062238_TT 6 12'261'392 54.04 0.01 28.31 0.046 22.77 1.83E-06 0.920 0.22 -0.95  
ss1281062313_AA 6 12'275'892 19.88 0 27.83 0.046 20.05 7.55E-06 0.920 -1.79 1.23  
ss1281062317_AA 6 12'276'168 21.74 0 38.74 0.004 24.77 6.45E-07 0.920 -1.80 1.51  
ss1281062325_AA 6 12'276'649 27.95 0 30.39 0.027 22.64 1.96E-06 0.920 -1.19 1.13  
ss1281062327_TT 6 12'276'965 27.95 0 30.39 0.027 22.64 1.96E-06 0.920 -1.19 1.13  
ss1281062340_AA 6 12'277'790 27.95 0 30.39 0.027 22.64 1.96E-06 0.920 -1.19 1.13  
ss1281062347_TT 6 12'278'387 27.33 0.01 28.72 0.042 21.62 3.33E-06 0.920 -1.20 1.11  
ss1281062458_TT 6 12'285'400 21.12 0.01 36.13 0.006 23.52 1.23E-06 0.920 -1.79 1.47  
ss1281062466_CC 6 12'285'545 21.74 0 38.74 0.004 24.77 6.45E-07 0.920 -1.80 1.51  
ss1281062471_TT 6 12'285'617 21.74 0 38.74 0.004 24.77 6.45E-07 0.920 -1.80 1.51  
ss1281062473_AA 6 12'285'628 27.95 0 30.39 0.027 22.64 1.96E-06 0.920 -1.19 1.13  
ss1281062684_TT 6 12'298'321 31.68 0 27.92 0.046 22.58 2.01E-06 0.920 0.23 -0.94  
ss1370321332_GG 13 43'436'394 10.56 0 29.02 0.042 17.33 3.14E-05 0.920 -3.14 1.80  
ss1370321334_GG 13 43'436'661 10.56 0.01 28.92 0.042 17.25 3.28E-05 0.920 -3.13 1.80  
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ss1370321340_CC 13 43'436'953 11.80 0 28.08 0.046 17.71 2.57E-05 0.920 -2.84 1.64  
ss1370321349_AA 13 43'437'164 11.80 0 28.08 0.046 17.71 2.57E-05 0.920 -2.84 1.64  
ss1370321350_GG 13 43'437'201 11.80 0 28.08 0.046 17.71 2.57E-05 0.920 -2.84 1.64  
ss1370321365_CC 13 43'438'109 11.80 0 28.08 0.046 17.71 2.57E-05 0.920 -2.84 1.64  
ss1370321383_AA 13 43'438'732 11.80 0 28.08 0.046 17.71 2.57E-05 0.920 -2.84 1.64  
ss1382049031_CC 24 19'436'980 76.40 0 34.75 0.008 25.60 4.21E-07 0.824 1.55 1.29  
ss1382126510_AG 24 25'852'900 43.48 0.01 33.49 0.011 26.42 2.74E-07 0.824 -0.32 -1.07 DSG4 
ss1382126537_CT 24 25'854'278 39.13 0 34.54 0.008 26.92 2.12E-07 0.824 -0.32 -1.07 DSG4 
ss1382126564_CT 24 25'855'578 39.13 0 34.54 0.008 26.92 2.12E-07 0.824 -0.32 -1.07 DSG4 
ss1382126637_AG 24 25'860'754 38.51 0 34.75 0.008 27.04 1.99E-07 0.824 -0.29 -1.07 DSG4 
ss1382166785_CC 24 28'799'029 11.80 0.01 31.08 0.022 18.46 1.73E-05 0.920 -2.97 1.79  
ss1382166820_AA 24 28'802'199 11.80 0 31.32 0.021 18.57 1.64E-05 0.920 -2.97 1.79  
ss1382166868_GG 24 28'806'275 12.42 0 28.80 0.042 18.20 1.99E-05 0.920 -2.75 1.63  
ss1382166899_AA 24 28'807'953 12.42 0.01 29.11 0.042 18.38 1.81E-05 0.920 -2.74 1.63  
ss1382166919_TT 24 28'809'142 12.42 0 28.80 0.042 18.20 1.99E-05 0.920 -2.75 1.63  
ss1382166921_AA 24 28'809'151 12.42 0 28.80 0.042 18.20 1.99E-05 0.920 -2.75 1.63  
ss1382166933_TT 24 28'809'975 12.42 0 28.80 0.042 18.20 1.99E-05 0.920 -2.75 1.63  
ss1382166966_GG 24 28'811'723 12.42 0.01 28.70 0.042 18.13 2.07E-05 0.920 -2.74 1.62  
ss1382166968_TT 24 28'811'785 11.80 0.01 29.05 0.042 17.88 2.36E-05 0.920 -2.86 1.68  
ss1382166994_CC 24 28'813'854 13.66 0 32.00 0.016 19.68 9.17E-06 0.920 -2.65 1.67  
ss1382167001_TT 24 28'814'588 13.04 0.03 30.38 0.027 19.05 1.28E-05 0.920 -2.63 1.64  
ss1382167006_CC 24 28'815'234 13.66 0.01 31.90 0.017 19.60 9.54E-06 0.920 -2.64 1.66  
ss1382167049_CC 24 28'818'344 12.42 0 28.80 0.042 18.20 1.99E-05 0.920 -2.75 1.63  
ss1382167052_TT 24 28'818'565 12.42 0 28.80 0.042 18.20 1.99E-05 0.920 -2.75 1.63  
ss1382167091_CC 24 28'821'168 13.04 0 31.23 0.022 19.18 1.19E-05 0.920 -2.73 1.69  
ss1382167099_TT 24 28'821'948 12.42 0 28.80 0.042 18.20 1.99E-05 0.920 -2.75 1.63  
ss1382167101_CC 24 28'822'132 12.42 0 28.80 0.042 18.20 1.99E-05 0.920 -2.75 1.63  
ss1382167134_TT 24 28'825'056 12.42 0 28.80 0.042 18.20 1.99E-05 0.920 -2.75 1.63 CDH2 
ss1382167154_GG 24 28'827'375 12.42 0 28.80 0.042 18.20 1.99E-05 0.920 -2.75 1.63 CDH2 
ss1382167240_TT 24 28'833'253 12.42 0 27.87 0.046 17.91 2.31E-05 0.920 -2.72 1.58 CDH2 
ss1382167247_GG 24 28'833'762 12.42 0 27.87 0.046 17.91 2.31E-05 0.920 -2.72 1.58 CDH2 
ss1382188860_TT 24 30'566'869 2.48 0.01 27.99 0.046 3.80 5.14E-02 0.920 -25.69 -15.44 KCTD1 
ss1382188926_CC 24 30'574'708 2.48 0 28.04 0.046 3.80 5.14E-02 0.920 -25.69 -15.44  
ss1382188931_GG 24 30'575'137 2.48 0 28.04 0.046 3.80 5.14E-02 0.920 -25.69 -15.44  
ss1382188951_AA 24 30'576'834 2.48 0 28.04 0.046 3.80 5.14E-02 0.920 -25.69 -15.44  
ss1382188996_TT 24 30'581'083 2.48 0 28.04 0.046 3.80 5.14E-02 0.920 -25.69 -15.44  
ss1382189028_CC 24 30'584'345 2.48 0 28.04 0.046 3.80 5.14E-02 0.920 -25.69 -15.44  
ss1382189031_CC 24 30'584'536 2.48 0 28.04 0.046 3.80 5.14E-02 0.920 -25.69 -15.44  
ss1382189034_CC 24 30'584'692 2.48 0 28.04 0.046 3.80 5.14E-02 0.920 -25.69 -15.44  
ss1384075360_GG 27 25'930'079 78.88 0 32.88 0.012 22.49 2.11E-06 0.920 1.76 -1.35 WRN 
ss1384075361_TT 27 25'930'112 18.63 0 32.88 0.012 22.49 2.11E-06 0.920 1.76 -1.35 WRN 
ss1384075370_GG 27 25'930'994 78.88 0 32.88 0.012 22.49 2.11E-06 0.920 1.76 -1.35 WRN 
ss1384075403_TT 27 25'933'133 78.88 0 32.88 0.012 22.49 2.11E-06 0.920 1.76 -1.35 WRN 
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A4.6 Supp. File 6 - Results logistic regressions Europe 

Only the 50 first results are presented here. The complete table is available in the online supplemental material of the paper. 
ENV=Bioclimatic variable considered, CHR=Chromosome, POS=Position in base pairs, GF=Genotype frequency 
G=Gscore, pG=p-value of Gscore, qG=p-value of Gscore corrected for FDR, qW=p-value of Wald score corrected for FDR 
b0,b1=coefficients of the logistic regression         
            

Marker ENV CHR POS GF G pG qG qG qW b0 b1 
snp30075-scaffold33-107046_GG bio18 19 40224821 33.77 100.09 1.46E-23 3.85E-17 4.48E-18 1.18E-11 -1.41 1.30 
snp30075-scaffold33-107046_GG bio13 19 40224821 33.77 98.57 3.14E-23 4.15E-17 1.07E-17 1.20E-11 -1.40 1.30 
snp30075-scaffold33-107046_GG bio16 19 40224821 33.77 92.49 6.78E-22 5.96E-16 4.23E-17 2.79E-11 -1.36 1.23 
snp50723-scaffold731-463240_AA bio18 1 38282037 31.68 89.92 2.48E-21 1.64E-15 1.36E-17 1.20E-11 -0.97 1.13 
snp59445-scaffold980-395848_CC bio3 6 82779273 31.15 83.66 5.89E-20 3.11E-14 8.02E-17 4.23E-11 0.65 -1.06 
snp48982-scaffold7-715056_GG bio8 13 31676938 31.15 82.33 1.15E-19 5.07E-14 1.46E-16 5.59E-11 0.11 -1.02 
snp59445-scaffold980-395848_CC bio18 6 82779273 31.15 81.78 1.52E-19 5.74E-14 4.36E-15 5.00E-10 0.71 1.12 
snp38429-scaffold486-2542930_GG bio18 5 22749602 39.01 81.03 2.22E-19 7.33E-14 1.48E-16 5.59E-11 -0.52 1.02 
snp18702-scaffold189-886569_AA bio8 6 4000730 19.37 80.01 3.72E-19 9.99E-14 1.70E-11 9.20E-08 -2.06 1.55 
snp27880-scaffold299-2993589_GG bio18 16 75413714 22.77 79.78 4.18E-19 9.99E-14 3.65E-13 8.03E-09 1.30 1.29 
snp15175-scaffold1620-882429_CC bio18 7 39507171 35.08 79.68 4.41E-19 9.99E-14 1.03E-15 2.27E-10 0.27 1.03 
snp54026-scaffold822-338299_GG bio3 5 6878482 39.79 79.62 4.55E-19 9.99E-14 3.07E-16 9.00E-11 -0.63 1.02 
snp34534-scaffold406-140611_AA bio18 14 8680762 47.38 78.93 6.45E-19 1.31E-13 9.17E-16 2.20E-10 -0.16 -1.01 
snp30075-scaffold33-107046_AA bio13 19 40224821 40.31 78.51 7.98E-19 1.45E-13 7.15E-15 6.91E-10 -0.52 -1.07 
snp38429-scaffold486-2542930_GG bio16 5 22749602 39.01 78.44 8.23E-19 1.45E-13 1.26E-15 2.32E-10 -0.51 1.02 
snp32290-scaffold366-3455018_GG bio18 8 82171564 25.92 77.89 1.09E-18 1.80E-13 9.92E-14 3.44E-09 1.05 1.18 
snp38628-scaffold49-1755585_GG bio18 4 8330032 42.67 77.52 1.31E-18 2.03E-13 6.99E-16 1.85E-10 -0.92 1.03 
snp59445-scaffold980-395848_CC bio9 6 82779273 31.15 77.40 1.40E-18 2.03E-13 1.88E-16 6.20E-11 0.64 -0.99 
snp30075-scaffold33-107046_AA bio16 19 40224821 40.31 77.31 1.46E-18 2.03E-13 2.16E-14 1.30E-09 -0.53 -1.08 
snp18497-scaffold187-1352016_GG bio13 15 67044324 39.27 76.52 2.18E-18 2.78E-13 1.90E-15 2.95E-10 -0.23 0.99 
snp19007-scaffold191-2265122_AA bio13 21 46467445 36.39 76.39 2.33E-18 2.80E-13 1.64E-15 2.70E-10 -0.66 1.01 
snp23666-scaffold239-665888_GG bio18 25 22985571 16.75 76.29 2.45E-18 2.81E-13 1.67E-13 4.84E-09 -2.16 1.34 
snp50723-scaffold731-463240_AA bio13 1 38282037 31.68 75.81 3.13E-18 3.44E-13 2.40E-15 3.52E-10 -0.93 1.03 
snp47091-scaffold659-1663374_GG bio8 3 22450724 30.63 75.52 3.61E-18 3.70E-13 1.30E-15 2.32E-10 0.04 -0.97 
snp19007-scaffold191-2265122_AA bio16 21 46467445 36.39 75.48 3.69E-18 3.70E-13 3.14E-15 3.94E-10 -0.65 1.00 
snp32290-scaffold366-3455018_GG bio4 8 82171564 25.92 75.43 3.79E-18 3.70E-13 1.26E-14 9.02E-10 0.97 1.08 
snp32290-scaffold366-3455018_GG bio3 8 82171564 25.92 75.21 4.23E-18 3.98E-13 2.93E-15 3.86E-10 0.96 -1.04 
snp45539-scaffold622-316980_AA bio18 13 80308039 38.48 74.77 5.28E-18 4.80E-13 1.32E-15 2.32E-10 -0.55 0.97 
snp38429-scaffold486-2542930_GG bio13 5 22749602 39.01 74.13 7.31E-18 6.43E-13 3.44E-15 4.13E-10 -0.51 0.98 
snp18497-scaffold187-1352016_GG bio16 15 67044324 39.27 73.44 1.04E-17 8.63E-13 9.02E-15 7.44E-10 -0.23 0.97 
snp8477-scaffold1307-443595_GG bio18 1 10438434 27.23 73.36 1.08E-17 8.63E-13 5.42E-15 5.72E-10 -1.21 1.05 
snp15175-scaffold1620-882429_CC bio13 7 39507171 35.08 73.36 1.08E-17 8.63E-13 1.45E-14 1.01E-09 0.26 0.99 
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snp50723-scaffold731-463240_AA bio16 1 38282037 31.68 72.69 1.52E-17 1.17E-12 7.88E-15 6.93E-10 -0.92 1.00 
snp15175-scaffold1620-882429_CC bio16 7 39507171 35.08 72.64 1.56E-17 1.17E-12 3.53E-14 1.74E-09 0.26 1.00 
snp31095-scaffold344-317295_AA bio18 6 8456089 19.63 72.48 1.69E-17 1.24E-12 7.29E-14 2.92E-09 -1.81 1.19 
snp59488-scaffold980-1135359_AA bio16 6 83518784 41.88 72.37 1.79E-17 1.27E-12 1.06E-14 7.96E-10 -0.37 0.96 
snp3939-scaffold1122-2977302_AA bio18 9 24822549 29.84 72.20 1.94E-17 1.35E-12 5.37E-15 5.72E-10 -1.04 1.01 
snp59488-scaffold980-1135359_AA bio13 6 83518784 41.88 72.02 2.13E-17 1.44E-12 7.60E-15 6.91E-10 -0.38 0.96 
snp48982-scaffold7-715056_GG bio9 13 31676938 31.15 71.76 2.43E-17 1.60E-12 2.66E-15 3.70E-10 0.11 0.93 
snp32099-scaffold362-780050_GG bio18 4 92585577 31.68 71.35 2.99E-17 1.92E-12 3.63E-14 1.74E-09 0.50 0.99 
snp12587-scaffold148-3686817_AA bio18 6 32525693 76.18 71.21 3.21E-17 2.01E-12 2.28E-14 1.31E-09 1.45 -1.08 
snp16321-scaffold1719-579549_GG bio18 29 38690609 20.94 70.76 4.04E-17 2.48E-12 1.00E-14 7.96E-10 1.10 -1.01 
snp35670-scaffold43-2702091_AA bio18 18 21448746 37.43 70.71 4.15E-17 2.49E-12 5.74E-15 5.83E-10 -0.60 0.95 
snp59445-scaffold980-395848_CC bio11 6 82779273 31.15 70.56 4.47E-17 2.62E-12 2.62E-14 1.47E-09 0.66 -0.99 
snp23703-scaffold239-2312394_AA bio18 25 21339065 42.15 70.12 5.58E-17 3.14E-12 7.56E-15 6.91E-10 -0.36 0.93 
snp394-scaffold1009-1164506_AA bio13 1 112960571 16.75 70.05 5.79E-17 3.14E-12 4.61E-13 9.50E-09 -2.10 1.26 
snp3939-scaffold1122-2977302_AA bio13 9 24822549 29.84 70.04 5.80E-17 3.14E-12 1.89E-14 1.22E-09 -1.03 1.00 
snp23698-scaffold239-2103925_AA bio18 25 21547534 16.49 70.03 5.83E-17 3.14E-12 6.99E-13 1.21E-08 -2.14 1.27 
snp30075-scaffold33-107046_AA bio18 19 40224821 40.31 69.95 6.09E-17 3.21E-12 5.97E-14 2.50E-09 -0.51 -0.98 
snp21854-scaffold2142-76410_GG bio13 8 17321120 25.92 69.91 6.20E-17 3.21E-12 1.57E-14 1.06E-09 0.39 -0.94 
snp27836-scaffold299-994978_AA bio18 16 73415103 37.43 69.60 7.25E-17 3.65E-12 1.25E-13 3.93E-09 -0.66 -1.01 
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A4.7 Supp. File 7 – Univariate SPAG 

 
Figures on the following pages presented the Univariate Spatial Areas of Genotype Probability for all mod-
els presented in the tables in the main text. The maps show the average genotype(s) frequency(ies) based 
on the 10 runs computed with different random selection of training sets containing 25% of the total number 
of individuals. Please refer to Box 1 in main text to interpret the validation graphs shown on the right of 
each map and refer to Annex A4.2 for the list of bioclimatic variables. 
 
Legend valid for all maps 
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European dataset 
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