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Abstract
The development of energy-efficient transport vehicles is crucial in combating the impending

problem of global warming. Employing light-weight structural materials in automobile and

aerospace industries, until the transition to fully renewable energy sources, is one way towards

countering the global warming threat. Magnesium (Mg), the lightest structural metal and

abundant in Earth’s crust, can prove to be a key material in this regard. Large scale industrial

application of pure Mg is, nonetheless, hampered by low intrinsic ductility and low fracture

toughness at room temperature which is attributed to the underlying less symmetric and

plastically anisotropic hexagonal-close-packed (hcp) crystal structure. The edge/mixed part

of the pyramidal 〈c +a〉 dislocations are metastable on the easy-glide pyramidal planes and

undergo a thermally activated pyramidal-to-basal (PB) transition into lower energy immobile

basal-dissociated dislocations. The PB transition is driven by a net energy difference between

the high-energy pyramidal-dissociated and the low-energy basal-dissociated 〈c +a〉 disloca-

tions, occurs rapidly at room temperature and renders pure Mg devoid of slip-systems that

can accommodate the 〈c〉 axis plastic strain. The lack of pyramidal 〈c +a〉 slip results in the

strong basal texture, pronounced plastic anisotropy, high hardening rate, and low ductility in

wrought pure Mg components. The PB transition, thus, lies at the heart of low ductility in pure

Mg.

Solid solution alloying by adding small amounts of rare-earth elements (RE = Y, Gd, Ce, Nd, Er,

Dy, etc.) and other solutes such as Ca, Mn, and Zr have been shown experimentally to improve

ductility by a substantial amount. Increased ductility in these Mg alloys is, furthermore,

observed to be accompanied by the activation of much-required pyramidal 〈c +a〉 slip systems

that were absent in pure Mg. The research work presented in this thesis aims to uncover, via

conducting molecular dynamics/statics (MD/MS) simulations, the atomic-scale dislocation

mechanisms responsible for the enhanced activation of the pyramidal 〈c +a〉 dislocations in

certain ductile Mg alloys; and leverage the gleaned insight to devise a strategy for designing

new ductile Mg alloys.

This work focuses on the Mg-Y system as a representative of ductile Mg-RE alloys to perform

MD/MS simulations on in order to reveal the distinct atomic-scale effects of RE solutes on

various mechanisms associated with the pyramidal 〈c +a〉 dislocations. We start by testing

the hypothesis that RE solutes might stabilize the edge/mixed pyramidal 〈c +a〉 dislocations

on the easy-glide pyramidal planes by increasing the energy barrier of the detrimental PB

transition. The large scale finite temperature MD simulations in Mg-Y alloys, employing a

newly developed MEAM potential, clearly show that Y solute atoms are unable to alter the
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Abstract

energy barrier and transition time associated with the PB transition.

We, next, propose a new solute accelerated cross-slip based mechanistic theory to explain

the increased activity of the pyramidal 〈c +a〉 dislocations in ductile solid solution Mg alloys.

Cross-slip and double cross-slip of screw part of the pyramidal 〈c +a〉 dislocation loops are

capable of acting as a natural dislocation source, and thus a much faster cross-slip process

can extenuate the dislocation immobilization effects of the relatively slower PB transition.

The energy difference between the low-energy pyramidal II and the high-energy pyramidal I

〈c +a〉 dislocations in pure Mg leads to a slow cross-slip process which is ineffective in circum-

venting the PB transition. We show that small addition of certain favorable solute elements

can reduce the pyramidal 〈c +a〉 dislocations energy difference and accelerate the cross-slip

process to the levels much faster than the PB transition, and thus enable the enhanced slip

of the pyramidal 〈c +a〉 dislocations with a concomitant increase in ductility. The evidence

for the solute enhanced cross-slip process is presented from the transmission electron mi-

croscopy (TEM) observations in Mg-Y alloys. We, furthermore, develop a quantitative model

to establish the conditions for ductility as a function of alloys compositions.

With increasing concentration of favorable solutes, the pyramidal I 〈c +a〉 screw dislocations

can become energetically more stable than the pyramidal II 〈c +a〉 screw dislocations which

can significantly change the cross-slip path. The transition paths and energetics for double

cross-slip of the pyramidal I 〈c +a〉 dislocations are analyzed in the regime where the pyra-

midal I 〈c +a〉 dislocations are energetically more favorable than the pyramidal II. This is

achieved by conducting the nudged-elastic-band (NEB) simulations using a proxy MEAM

potential for Mg designed to favor the pyramidal I over the pyramidal II 〈c +a〉 dislocation.

In light of the obtained NEB results, the quantitative mechanistic model is extended into the

pyramidal I favorable regime.

We then apply the developed quantitative model to the binary, ternary, quaternary, and higher-

order dilute solid solution Mg alloys containing Ag, Zn, Al, Li, K, Sn, Mn, Sr, Ca, Zr, and RE as

solute elements. The predictions of the model are compared with the experimentally observed

ductility in a wide range of Mg alloys and found to be in an excellent agreement. The theory,

in particular, identifies Mn, Li, Sn, K, Ca, Sr, RE, and Zr solutes as effective in lowering the pyra-

midal 〈c +a〉 dislocation energy difference, accelerating the cross-slip process, randomizing

the basal texture, and improving ductility in resulting alloys. The model further predicts an

upper limit of concentrations of strongly favorable solutes such as REs, beyond which ductility

again begins to deteriorate in Mg alloys.

The research work performed in this thesis provides us an insight into the atomic-scale

origins of ductility in various solid solution Mg alloys and enables the computationally guided

systematic search for new compositions of high-ductile and high-formable Mg alloys.

Keywords: Mg alloys, ductility, pyramidal 〈c +a〉 dislocations, cross-slip, NEB, molecular

dynamics, MEAM potential.
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Résumé
Le développement de véhicules de transport efficaces d’un point de vue énergétique est

crucial pour lutter contre le problème imminent du réchauffement climatique. L’utilisation

de matériaux structurels légers dans les industries automobiles et aérospatiales, jusqu’à la

transition vers des sources d’énergie entièrement renouvelables, est un moyen de contrer la

menace du réchauffement climatique. A cet égard, le magnésium (Mg), qui est, le métal à

utilisation structurale le plus léger et abondant dans la croûte terrestre, peut s’avérer être un

élément clé. L’application industrielle à grande échelle du Mg pur est néanmoins entravée

par une faible ductilité intrinsèque et une faible ténacité à la rupture à température ambiante

attribuée à sa structure hexagonale compacte (hcp), moins symétrique et plus plastiquement

anisotrope que d’autres structures cristallines. Les arrêtes/composantes mixtes des dislo-

cations pyramidales 〈c +a〉 sont métastables sur la pente douce et subissent une transition

thermique activée ‘pyramidal-basal’ (PB), vers une faible énergie de dislocations immobilisées

et basales-dissociées. La transition PB est liée au coût énergétique élevé des dislocations

〈c +a〉 pyramidales dissociées par rapport aux mêmes dislocations basales dissociées ; elle

se produit rapidement à température ambiante et elle rend le magnésium pur dépourvu de

systèmes de glissement qui peuvent assister la déformation plastique le long de l’axe 〈c〉.
L’absence des systèmes de glissement pyramidal 〈c +a〉 implique une forte texture basale, une

forte anisotropie dans le comportement plastique, un taux de durcissement élevé et une faible

ductilité dans les pièces forgées en magnésium pur. La transition PB est donc au cœur de la

faible ductilité du magnésium pur.

Il a été montré expérimentalement que la création des solutions solides par ajout de petites

quantités d’éléments de terres rares (RE = Y, Gd, Ce, Nd,Er, Dy, etc.) et d’autres solutés tels que

Ca, Mn et Zr, a permis d’améliorer substantiellement la ductilité. Par ailleurs, on observe que

la ductilité accrue de ces alliages de magnésium s’accompagne de l’activation de systèmes de

glissement pyramidal 〈c +a〉 nécessaires mais absents dans le magnésium pur. Les travaux

de recherche présentés dans cette thèse visent à découvrir, en conduisant des simulations de

dynamique/statique moléculaire (DM/SM), les mécanismes à l’échelle atomique responsables

de l’ activation accrue des dislocations sur le plan pyramidal 〈c +a〉 dans certains alliages

ductiles de Mg et, utiliser les connaissances ainsi acquises pour concevoir une stratégie de

conception de nouveaux alliages de magnésium à haute ductilité.

Ce travail se concentre sur le système Mg-Y en tant que représentant des alliages ductiles

Mg-RE pour effectuer des simulations de DM/SM afin de révéler les différents effets à l’échelle

atomique des solutés RE sur divers mécanismes associés aux dislocations sur le plan pyramidal
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Résumé

〈c +a〉. Nous commençons par tester l’hypothèse que les solutés RE pourraient stabiliser les

arêtes/composantes mixtes des dislocations pyramidales 〈c +a〉 en augmentant la barrière

énergétique de la transition PB désavantageuse. Les simulations en DM des alliages Mg-Y à

grande échelle et à température déterminée, pour lesquelles on utilise un potentiel MEAM

nouvellement développé, montrent clairement que les atomes de soluté Y sont incapables de

modifier la barrière énergétique et les temps de transition associés avec la transition PB.

Nous proposons ensuite une nouvelle théorie mécanique basée sur un glissement dévié accé-

léré par la présence des solutés pour expliquer l’augmentation de l’activité des dislocations

pyramidales 〈c +a〉 dans les alliages de magnésium ductiles. Le glissement dévié simple et

double de la partie filetée des boucles de dislocation pyramidales 〈c +a〉 peuvent agir comme

une source naturelle de dislocations. Par conséquent, un processus de glissement dévié accé-

léré par rapport à la vitesse de la transition PB, peut atténuer l’immobilisation des dislocations

causée par la transition PB. La différence entre la basse l’énergie des dislocations pyramidales

II 〈c +a〉 et l’énergie élevée des dislocations pyramidales I 〈c +a〉 dans le magnésium pur

entraîne un processus lent de glissement dévié qui est inefficace contre la transition PB. Nous

montrons que l’ajout de certains éléments solutés favorables, en petite quantité, peut réduire

la différence d’énergie des dislocations sur les différents plans pyramidaux 〈c +a〉 et accélérer

le processus de glissement dévié en le rendant beaucoup plus rapide que la transition PB,

permettant ainsi un glissement facilité des dislocations pyramidales 〈c +a〉 avec une aug-

mentation concomitante de la ductilité. La preuve expérimentale du processus de glissement

dévié favorisé par la présence des solutés dans les alliages Mg-Y est obtenue par microscopie

électronique à transmission (MET). Nous développons ensuite un modèle quantitatif pour

établir les conditions de ductilité en fonction de la composition des alliages.

En augmentant a concentration des solutés favorables, les dislocations en vis pyramidales I

〈c +a〉 peuvent devenir énergétiquement plus stables que les dislocations en vis pyramidales

II 〈c +a〉, ce qui peut modifier considérablement le chemin de réaction du glissement dévié.

Les vitesses de transition et l’énergétique pour le double glissement dévié des dislocations

pyramidales I 〈c +a〉 sont analysées au régime où elles sont énergétiquement plus favorables

que les dislocations pyramidales II. L’analyse est réalisée par simulation avec la méthode «

Nudged Elastic Band » (NEB), en utilisant un potentiel MEAM pour le magnésium, conçu

spécialement pour favoriser les dislocations pyramidales I par rapport aux dislocations pyra-

midales II. Sur la base des résultats obtenus avec les simulations NEB, le modèle mécanique

quantitatif est étendu au régime pyramidal I favorable.

Nous appliquons ensuite le modèle quantitatif développé aux alliages de magnésium binaires,

ternaires, quaternaires et plus, contenant Ag, Zn, Al, Li, K, Sn, Mn, Sr, Ca, Zr et RE comme

éléments solutés. Les prédictions du modèle sont comparées aux mesures de ductilité obte-

nues expérimentalement pour une large gamme d’alliages de magnésium et avérées être en

excellent accord avec les données expérimentales. La théorie, en particulier, identifie les solu-

tés Mn, Li, Sn, K, Ca, Sr, RE et Zr comme efficaces pour abaisser la différence d’énergie entre

les dislocations 〈c +a〉, en accélérant ainsi le processus de glissement dévié, en randomisant

la texture basale et en améliorant la ductilité des alliages résultantes. Le modèle prédit, en

outre, une limite supérieure de concentrations de solutés fortement favorables tels que les RE
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Résumé

au-delà de la quelle la ductilité recommence à diminuer.

Le travail de recherche réalisé dans cette thèse nous donne un aperçu des phénomènes à

l’échelle atomique qui sont à l’origine de la ductilité dans divers alliages de magnésium en

solution solide et permet la conception, d’une façon systématique et computationnelle, de

nouveaux alliages de magnésium à haute ductilité et formabilité.

Mots clés : alliages de magnésium, ductilité, dislocations pyramidales 〈c +a〉, glissement

dévié, NEB, dynamique moléculaire, potentiel MEAM.
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1 Introduction and Background

Magnesium (Mg) is the lightest structural metal with high specific strength and is abundant

in the Earth’s crust, comprising nearly 2 % of the total weight. The density of Mg, 1.738

gm/cm3, is two-third of aluminum and one-fourth of the steel. Thus, Mg can be used in

the automotive and aerospace industry to build an energy-efficient transportation system

[77, 115, 125, 141, 161], and therefore contribute in combating the imminent problem of global

warming. Furthermore, the biocompatibility of Mg renders it very attractive for biomedical

applications [190, 195].

The large scale industrial applications of pure Mg are, however, impeded by its poor room-

temperature ductility and low fracture toughness. Since manufacturing processes such as

forming, extrusion, drawing, forging, etc. require good ductility and fracture toughness, the

applications of wrought Mg components are severely limited. Furthermore, the low fracture

toughness of Mg renders it unsuitable for use in critical structural components. The ductility

of solid solution Mg alloys, however, has been experimentally observed to improve with the

small addition of certain solute elements. For instance, Agnew et al. [6] and Sandlöbes et al.

[181, 182] show that rare-earth elements (RE = Y, Gd, Dy, Tb, Er, Ho, Ce, Nd), in particular,

stand out as very effective solute elements in significantly improving the room temperature

ductility of resulting Mg alloys. Moreover, Mg alloys containing Ca, Mn, Zr, Li, and other

solute elements also display enhanced room temperature ductility [6, 40, 49, 148, 243, 247].

Obtaining a mechanistic understanding of the specific role of the favorable solutes in enhanc-

ing Mg ductility will prove instrumental in designing new Mg alloys tailored to meet various

technological applications, and is the main focus of this thesis.

The ductility and toughness of a material depend on the plastic properties, i.e., ability to yield

and achieve a suitable level of strain hardening to prevent any localized deformation which

can result in catastrophic failure. The plastic deformation of crystalline materials, in turn, is

intimately connected with the evolution of dislocation microstructures. For example, the low

ductility of pure Mg originates from a detrimental thermally activated pyramidal-to-basal (PB)

transition [151, 155, 228] that markedly hinders the mobility of crucial pyramidal 〈c +a〉 dislo-

cations and exacerbates the plastic anisotropy of Mg crystal (discussed in details in Section 1.5).
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Chapter 1. Introduction and Background

Therefore, we first present a brief description of dislocations and Mg crystal structure before

we delve into the salient aspects of plasticity in Mg and its alloys. The following Sections 1.3

and 1.4 discusses the energy of a dissociated dislocation and temperature-dependent plasticity

originating from various thermally activated dislocation processes. Section 1.5 describes the

PB transition of pyramidal 〈c +a〉 dislocations as a primary cause for low ductility in pure Mg.

We, next, present the available experimental results on ductility and active dislocation systems

in Mg-RE alloys and evaluate various hypotheses put forward in order to explain the enhanced

ductility in these Mg alloys in Section 1.6. The final Section 1.7 of this chapter describes the

scope and general structure of the thesis.

1.1 Dislocation: carrier of plasticity in crystalline materials

A dislocation is a linear crystalline defect of which existence was posited to reconcile the

discrepancy between the theoretical estimate and experimentally observed strength of crys-

talline materials [89, 152, 160, 203]. The motion and evolution of these dislocations primarily

control plastic properties of metals and other crystalline materials [13, 19, 55, 114, 145, 170].

As depicted in Fig. 1.1, dislocations demarcate the boundary between the slipped and un-

slipped parts of the crystal. Their motions on specific crystallographic glide planes lead to the

progressive shearing of the crystal across the glide plane resulting in the plastic deformation.

Dislocations are essentially curved lines that are identified by a line direction ξ. The magnitude

and direction of the shear associated with a dislocation are characterized by its Burgers vector

b. Depending on the angle between the line direction and the Burgers vector, dislocations are

categorized into the edge, screw, and mixed dislocations. In an edge dislocation, Fig. 1.1(a),

the Burgers vector is perpendicular to the line direction; in a screw dislocation, Fig. 1.1(b), the

Burgers vector and line direction are parallel or anti-parallel to each other; all other intermedi-

ate cases belong to mixed dislocations. Dislocations are constrained to move on a glide plane

that contains both Burgers vector and line direction. This leads to a well-defined glide plane

for edge dislocations. On the other hand screw dislocations, as depicted in Fig. 1.1(b), can glide

on multiple planes owing to the fact that its Burgers vector and line direction do not define

a unique glide plane. Thus screw dislocations can change their glide planes to overcome an

obstacle or in response to the applied stress. This process of screw dislocations changing

their glide is termed cross-slip and has important consequences in the plastic deformation of

crystals [98, 110, 143, 191]. For a comprehensive exposition of dislocation theory, the readers

may consult Refs. [13, 44, 96].

The theory of linear elasticity can accurately describe the influence of a dislocation far from

the dislocation line. However, the region around the dislocation line, dislocation core, repre-

sents the breakdown of the elasticity theory and is resolved at the discrete atomic level. The

atomic structure of dislocation cores strongly affects the mobility and other various properties

associated with dislocations. For instance, in a crystal, dislocations glide preferentially on one

of the densely packed planes and have one of the lattice vectors of the unit cell as Burgers

vector. A dislocation on the closest packed plane with the closest packed lattice vector as its
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Figure 1.1 – Schematic depiction of dislocations gliding on a slip plane: (a) edge and (b)
screw dislocation. A dislocation is the boundary line between the slipped and unslipped parts
of the crystal. Edge dislocation has Burgers vector b and dislocation line ξ perpendicular to
each other, while these two vectors are parallel or anti-parallel in the case of a screw dislocation.
Plastic shear happens in the crystal with the dislocations moving from left to right. Screw
dislocation in (b) can continue glide on the primary plane or cross-slip to the plane that also
contains the dislocation line ξ and Burgers vector b.

Burgers vector requires the lowest stress to move. Given the importance of the crystal structure

in controlling the dislocation behavior, next Section 1.2 presents a brief description of the

crystal structure of Mg and various underlying active dislocation systems.

1.2 Crystal structure, dislocation systems and stacking faults in Mg

Solid-phase Mg has the hexagonal close-packed (hcp) crystal structure. Various crystallo-

graphic planes and directions associated with an hcp crystal structure are depicted in Fig. 1.2.

Different crystallographic planes and their Miller indices are: basal {0001}, prismatic I {101̄0},

prismatic II {112̄0}, pyramidal I {101̄1}, and pyramidal II {112̄2}. In hcp crystals, there are one

basal, three prismatic I, three prismatic II, twelve pyramidal I, and six pyramidal II planes.

Additionally, common crystallographic directions contained in these planes are: 〈a〉-〈112̄0〉,
〈c〉-〈0001〉, 〈c +a〉-〈112̄3〉. Three different 〈a〉, one 〈c〉, and six distinct 〈c +a〉 directions are

present in an hcp crystal. During plastic deformation, dislocations may glide on these planes

with one of the listed lattice vectors as their Burgers vector.

As discussed previously, dislocations tend to glide on the closest packed plane and prefer the

closest packed direction as their Burgers vector. In hcp crystal, only the basal plane is the close-

packed plane, and the 〈a〉 direction contained within it is the close-packed direction. Thus, the

basal 〈a〉 dislocations are found to be particularly active in pure Mg and occasionally observed

to cross-slip on prismatic I planes. Additionally, dislocations with Burgers vector 〈c +a〉 glide

predominantly on pyramidal II planes in pure Mg, and could cross-slip on pyramidal I plane

depending on the loading conditions [16, 240]. Compared to the cubic crystal structures −
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[21̄1̄0]/3

〈a〉

Basal (0001)
[0001]

Prismatic I (011̄0)

〈a〉 and 〈c〉 〈c〉

Prismatic II (12̄10)

[2̄113]/3

Pyramidal I (11̄01)

〈a〉 and 〈c + a〉

[1̄21̄3]/3

Pyramidal II (12̄12)

〈c + a〉

Figure 1.2 – Schematic illustration of different crystallographic planes and directions in an
hcp crystal: planes - basal, prismatic I, prismatic II, pyramidal I and pyramidal II; directions -
〈a〉, 〈c〉, and 〈c +a〉. The crystallographic directions mentioned below each figure are possible
Burgers vector for dislocations gliding on that plane.

face-centered (fcc) and body-entered (bcc) − hcp crystal structure is less symmetric. For

instance, hcp crystal has only one close-packed basal plane as opposed to the fcc crystal which

has four intersecting close-packed planes. The low symmetry of the hcp crystal structure leads

to the activation of multiple dislocation systems and twinning, and thus makes the plastic

behavior of Mg complex and scientifically fascinating [1, 23, 238].

Dislocation behavior is further affected by the presence of stable stacking faults in slip planes.

Stacking fault is an area defect that disrupts the normal stacking of atomic planes and emerges

during the shearing of the crystal across a well-defined crystallographic plane [216, 217]. To

understand the concept of stacking fault, we consider the upper half of a crystal as being rigidly

shifted with respect to the lower half across a specific crystallographic plane, and measure

the resultant additional energy per unit area compared to the original pristine crystal. This

additional energy per unit area is termed generalized stacking fault energy γ.

Fig. 1.3(a) demonstrates the generalized stacking fault energy arising from the shifting process

across the basal plane in Mg. We observe that a full lattice vector shift recovers the original

crystal without any change in the energy. However, as shown in Fig. 1.3(b), we may encounter

some fractional lattice vector shifts for which the resulting configuration is locally stable

but the energy is higher than the original pristine crystal. This location in the slip plane

is called the stable stacking fault. The basal plane contains such stable stacking fault at

position 1/3〈11̄00〉, which is known as I2 stacking fault. Basal I2 stacking fault changes the

stacking arrangement of the basal planes from .. .ABABABAB.. . to . . .ABABCACA.. . , where

A, B, and C denote the sequencing order of close-packed {111} planes in fcc crystal. On the

basal plane, two additional non-glide type stable stacking faults, i.e. they cannot appear

during the shifting process, can also arise from the precipitation of vacancies/interstitials:

basal I1 stacking fault corresponding to the stacking order . . .ABABACAC.. . ; basal extrinsic

stacking fault corresponding to the stacking order . . .ABABCABAB.. . . The existence of a stable

stacking fault on a slip plane encourages the dissociation of a dislocation with a full lattice

vector as its Burgers vector into two partials having fractional lattice vectors corresponding

to the stable stacking fault as their Burgers vectors. The two partials are connected by the
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1.2. Crystal structure, dislocation systems and stacking faults in Mg

Figure 1.3 – Basal stacking fault and dissociated basal 〈a〉 edge dislocation. (a) Generalized
stacking fault energy map γ arising from shifting of the upper half of Mg crystal relative to the
lower half across the basal plane. (b) Stacking fault energy curve obtained by relatively shifting
the two half of the crystal along [011̄1] direction. The plot clearly shows that there exists a
stable stacking fault at one-third shift along [011̄1] direction. (c) The atomic core structure
of a basal 〈a〉 dislocation in Mg dissociated into two partials bounded by a basal I2 stacking
fault in between. Atoms in (c) are colored according to its local crystal structure as identified
from the common neighbor analysis: blue - hcp; green - fcc; purple - bcc; yellow - unidentified
crystal structure.

stacking fault in between. For instance, basal I2 stacking fault causes the basal 〈a〉 dislocation

to dissociate in two Shockley type partials whose Burgers vectors are related according to:

1/3〈21̄1̄0〉 = 1/3〈101̄0〉+ I1 stacking fault +1/3〈11̄00〉.

Fig. 3.2 shows the positions of the stable stacking faults relevant to dislocation dissociation

on the basal, pyramidal I, and pyramidal II plane. The pyramidal I contains three stable

stacking faults: SF1 is relevant for 〈a〉 , and SF2 and SF3 are associated with the dissociation of

〈c +a〉 dislocation. The pyramidal II contains only one stable stacking fault which determines
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Chapter 1. Introduction and Background

the dissociation of 〈c +a〉 dislocations. In Chapter 3, we present the various stable stacking

fault energies in pure Mg by using different interatomic potentials employed in this work. For a

complete description of the stacking faults in hcp materials, readers are directed to Ref. [236].

1.3 Energy of a straight dissociated dislocation

The transformation of a system is often driven by energetic considerations. The system

evolves under external stimuli towards a state that minimizes a specific kind of free energy,

e.g., Helmholtz or Gibbs free energy, corresponding to the external constrains. Dislocation

is also treated as a physical system, and its transformations can be understood in terms

of its tendency to minimize the free energy under external loads. Several transformations

under investigations in this thesis, such as the PB transition discussed in Section 1.5 and

pyramidal 〈c +a〉 cross-slip, presented in Chapter 5, belong to this category. We, therefore,

briefly present in this section various contributions to the energy of a straight dissociated

dislocation by closely following the Stroh formalism of anisotropic elasticity, as presented in

Ref. [232].

x1

x1b1

b2

r12sta
cki

ng
fau

lt

r0

r0

radius = R

θ

total Burgers vector b = b1 + b2

Figure 1.4 – Schematic illustration of various components involved in the energy of a
straight dissociated dislocation. A straight dislocation of total Burgers vector b and dis-
location line ξ along the normal of the paper is dissociated into two partials of Burgers vectors
b1 and b2, with b = b1 +b2. The two partials are connected by an intervening stable stacking
fault of width r12. In the main text, we determine the energy per unit dislocation length
contained in an arbitrarily large cylinder of radius R.

Fig. 1.4 shows the geometry of a straight dislocation dissociated into two partials separated

by r12 and bounded by a stable stacking fault of energy per unit area γ. The line connecting

the two partials is inclined at an angle θ with respect to a predefined coordinate system. The

Burgers vectors of the two partials are b1 and b2, with Burgers vector of total dislocation
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1.3. Energy of a straight dissociated dislocation

b = b1 +b2. We are interested in determining the dislocation energy per unit length contained

in an arbitrarily large cylinder of radius R.

For the dissociated dislocation, we can write the total energy per unit dislocation length as the

sum of the core energies Ec of the two partials, elastic energy comprising self elastic energies

Ee of the partials and elastic interaction energy We12 between them, and energy Esf associated

with the intervening stacking fault, i.e.,

Etot(r ) = (Ec1 +Ec2)+ (Ee1 +Ee2 +We12)+Esf. (1.1)

The core energy Ec (r0) contains all the non-linear energy contribution arising due to the

discrete atomic structure within a cutoff radius r0 which can only be faithfully determined from

atomistic simulations. The self-energy Ec is the energy contained in the annular cylindrical

region beyond cutoff radius r0 and within R due to the elastic deformation caused by each

partial dislocations individually. The self elastic energies of the two partials are given as

Ee1 = K1 ln
R

r0
, Ee2 = K2 ln

R

r0
, (1.2)

where self energy prefactors are computed as

Ki = 1

2π
bT

i Im
{

B B T}
bi , (1.3)

where B is the 3×3 complex matrix determined by the material elastic stiffness tensor, and

Im{} function retains only the imaginary part of the complex number.

The elastic interaction energy between the two partials is written as

We12 = K12 ln
R

r12
−Eθ, (1.4)

where the first term on the right-hand side arises due to the radial interaction and the origin

of the second terms lies in the angular interaction between the partials. The two terms are

calculated by

K12 = 1

π
bT

2 Im
{

B B T}
b1, Eθ =

1

π
bT

2 Im
{

B〈ln(cosθ+pα sinθ)〉B T}
b1, (1.5)

where 〈 f (zα)〉 = diag[ f (z1), f (z2), f (z3)] denotes a 3×3 diagonal matrix, pα are the eigenvalues

with positive imaginary part which appear in the Stroh Formalism. The derivation and precise

expression of all these quantities are not relevant for the current discussion, and we refer the

readers to Ref. [205] for a detailed presentation on the Stroh formalism of anisotropic elasticity

and to Ref. [232] for its application to computing elastic energy associated with a dislocation.

The final contribution is the energy due to the intervening stacking fault of width r12 which is
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Chapter 1. Introduction and Background

simply given by

Esf = γr12, (1.6)

where γ is the stacking fault energy.

By collecting all the terms together, the total dislocation energy per unit length is expressed as

Etot(R) = Ec1(r0)+Ec2(r0)+K1 ln
R

r0
+K2 ln

R

r0
+K12 ln

R

r12
−Eθ+γr12,

= Ec (r0)+K ln
R

r0
−K12 ln

r12

r0
−Eθ+γr12,

(1.7)

where Ec (r0) = Ec1(r0)+Ec2(r0) is the combined core energy of the two partials, and K =
K1 +K2 +K12 = 1

2πbTIm
{

B B T
}

b is the energy prefactor for the full dislocation. We can further

represent the sum of energies Ec (r0)−K12 ln(r12/r0)−Eθ+γr12 as structure energy Estruc. Then

the total dislocation energy per unit length can be rewritten as

Etot(R) = Estruc(r0)+K ln
R

r0
. (1.8)

Written in this form, Eq. 1.8, the total dislocation energy can be interpreted as comprising two

parts: structural energy and elastic energy. Structural energy Estruc(r0) is the energy contained

in a cylinder of radius r0 centered on the dislocation that includes core energy of partials,

stacking fault energy, contributions from the interaction between the partials, and near-field

elastic energy. Essentially, Estruc(r0) contains all the structure-specific energy and can only be

accessed by the atomistic simulations. The second term in the right-hand side of the Eq. 1.8 is

the elastic self-energy due to the total dislocation in the annular cylinder of inner radius r0 and

outer radius R. This implies that r0 should be large enough such that the elastic description

of the dislocation should be valid beyond r0. Furthermore, since energy prefactor K only

depends on the material elastic constants, Burgers vector, and dislocation line of the total

dislocation contained within the radius r0, this elastic energy is independent of the exact

structure and arrangement of the dislocation. Thus the elastic energy cannot differentiate

between the specific dislocation core structures confined within radius r0.

In this thesis, we will often encounter dislocation transformations during which the Burgers

vector and line direction of the total dislocation content remain unchanged, and only the

dislocation core structures alter. The PB transition and the cross-slip are two prominent

examples of such dislocation transformations appearing in this thesis. These transformations

are driven and controlled by the change in the structure-specific energy Estruc(r0) of the two

dislocation arrangements since the elastic energies of the two dislocation arrangements are

the same.
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1.4. Dislocation controlled temperature-dependent plasticity

1.4 Dislocation controlled temperature-dependent plasticity

The plastic deformation of crystalline materials is generally temperature-dependent. For

instance, as shown in Fig. 1.5(a), the flow stress of bcc iron is experimentally observed to

decrease with increasing temperature [45, 116]; yielding of single-crystal Mg by the pyramidal

〈c +a〉 slip exhibits highly temperature-dependent behavior, i.e., as depicted in Fig. 1.5(b),

yield stress increases from 100 K up to 300 K and decreases onward [15, 240]; similarly, the

CRSS for the prismatic slips in hcp materials, as Fig. 1.5(c) demonstrates, are temperature

dependent [7, 8, 56–58]. Furthermore, atomic-diffusion through the vacancy migration from

one atomic site to another in a crystal is also temperature-dependent and plays an important

role in material transport and dislocation climb.

a b c

Figure 1.5 – Temperature-dependent plastic deformation of crystals. (a) Variation of the
yield stress τ in pure bcc Fe as obtained from the tensile tests (from Ref. [45]). (b) Temperature-
dependent yield stresses of pure hcp Mg, Mg-7.0at.%Li and Mg-0.1at.%Zn single crystals
stretched in the [112̄0] direction. These single crystals are reported to deform by the pyramidal
II 〈c +a〉 slip (from Ref. [15]). (c) Temperature-dependent CRSS for the prismatic slip in Ti
with two levels of interstitial impurities (from Ref. [8]).

As noted in Section 1.1, the plastic properties of crystalline materials are controlled mainly by

the motion and evolution of dislocations, and therefore it is natural to look into the influence

of temperature on dislocation behaviors in order to gain an insight into the temperature-

dependent crystal plasticity. Dislocations glide and evolve in a crystal by overcoming both long-

range elastic stress fields arising from the dislocation network and local short-range energy

barriers represented by solutes, precipitates, intrinsic lattice resistance, and transformation

of dislocation cores [19, 46, 108]. The long-range dislocation stress field depends on the

temperature only through the elastic constant of the crystal, and thus this mild temperature

dependence can be accounted for in an average way by modifying the elastic constant with

temperature.

The prominent effect of temperature on dislocation evolution emanates from overcoming

the local energy barriers. The short-range interaction of a dislocation with the local energy

barrier involves a relatively small number of atoms and is strongly influenced by the random
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Chapter 1. Introduction and Background

atomic vibration caused by the available thermal energy at finite temperature. The thermal

fluctuations assist the dislocation to overcome the local energy barrier and decrease the stress

level needed to maintain the dislocation glide and strain rate. In a crystal, the dislocations

remain trapped in a local energy minimum for a long time until a sufficient nudge from

random thermal fluctuation helps the dislocation cross the barrier to get trapped in the next

energy minimum. The crystal plasticity is, therefore, a result of the successive thermally

assisted overcoming of local energy barrier by dislocations.

The thermally activated processes, thus, are of fundamental importance and underlie almost

all the temperature-dependent plastic properties of materials. The most important quantity

concerning the thermally activated process is the transition rate at which an energy barrier is

overcome as a function of temperature and applied load. This transition rate then determines

the flow rate of materials under an applied load and temperature. A systematic characteri-

zation of thermally activated processes is performed under the transition state theory and

is presented in Section 2.2. For a comprehensive theoretical and experimental coverage of

various thermally activated dislocation mechanisms, readers are referred to Ref. [46].

1.5 Mechanistic origins of low ductility and emergence of strong

basal texture in wrought Mg

Low ductility of Mg is attributed to the lower symmetry of its underlying hcp crystal structure.

As discussed in the previous Section 1.2, plastic deformation in Mg is mainly caused by the

slip of the basal 〈a〉 dislocations. However, the basal 〈a〉 dislocations by themselves are unable

to satisfy the von Mises criterion of homogeneous plasticity in polycrystals. The von Mises

criterion demands the activation of at least five independent slip systems to accommodate ar-

bitrary plastic strains and to maintain the strain compatibility in neighboring gains. However,

the basal 〈a〉 dislocation represents two different slip systems, and even the activation of the

prismatic I 〈a〉 and the pyramidal 〈a〉 can provide at most four independent slip systems [238].

The motion of 〈a〉 dislocations, furthermore, cannot accommodate the 〈c〉-axis plastic strain.

Thus, to achieve the homogeneous plastic deformation dislocations having Burgers vectors

component in 〈c〉 direction must be operative. Pyramidal I and pyramidal II 〈c +a〉 disloca-

tions are such slip systems of which activation can satisfy von Mises criterion and improve

ductility.

The pyramidal 〈c +a〉 dislocations, nevertheless, are not particularly active in pure Mg. This

low activity of the pyramidal 〈c +a〉 dislocations primarily arises from an intrinsic thermally

activated pyramidal-to-basal (PB) transition of the pyramidal 〈c +a〉 dislocations [79, 151,

155, 200, 228, 229, 246]. We briefly present the mechanism and effects of the PB transition

on the evolution of the pyramidal II 〈c +a〉 dislocation loops as recently revealed by Wu and

Curtin [228] by conducting molecular dynamics (MD) simulations at temperatures 500 K, 600

K and 700 K. As shown in Fig. 1.6, the pyramidal II dissociated 〈c +a〉 edge dislocations are

metastable on their easy-glide pyramidal II plane. At finite temperatures, the 〈c +a〉 edge

10



1.5. Mechanistic origins of low ductility and emergence of strong basal texture in
wrought Mg

a

b

Figure 1.6 – Pyramidal-to-basal (PB) transition of the pyramidal II 〈c +a〉 edge dislocation
occurring at 500 K, as observed in the MD simulations. (a) The pyramidal II dissociated
〈c +a〉 dislocation transforms into the basal-dissociated 〈c +a〉 dislocation, where the final
dislocation structure involves the two 1/2〈c +a〉 partials connected by a basal I1 stacking fault.
(b) The pyramidal II dissociated 〈c +a〉 edge dislocation dissociates into the basal 〈c〉 and
the basal 〈a〉 dislocations. Two partials of the basal 〈c〉 dislocation are bounded by the basal
extrinsic stacking fault, and the two Shockley partials of the basal 〈a〉 dislocation involve
the basal I2 stacking fault between them. The last schematics in both (a) and (b) show the
Burgers vectors of the initial pyramidal II dissociated (in solid red) and final basal dissociated
dislocations (in dotted blue). In atomic figures, the colors denote the crystal structure of the
atoms as identified from the common neighbor analysis: blue - hcp; green - fcc; purple - bcc;
yellow - unidentified crystal structure. Adapted from [228].

dislocations transform into one of the three basal oriented dislocation structures depending on

the stresses available to perform work by gliding the basal 〈a〉 dislocation. Even at zero stress,

the pyramidal II 〈c +a〉 edge dislocations can transform into either the basal-dissociated

〈c +a〉 dislocation, as depicted in the last frame of Fig. 1.6(a) or the basal dissociated 〈c〉 and

〈a〉 as demonstrated in the last frame of Fig. 1.6(b). The PB transition is driven by the energy

difference of about 0.3 eV/Å between the high-energy pyramidal II and the low-energy basal-

dissociated 〈c +a〉 dislocation structures (see Eq. 1.8). Furthermore, the energy barrier of

0.5 eV associated with the thermally activated PB transition leads to a rapid rate at room

temperature.

The transformed basal-oriented dislocations which are capable of accommodating 〈c〉 axis

plastic strain contain non-glide basal stacking faults, i.e., either basal I1 or extrinsic stacking

fault, and therefore, are essentially sessile dislocations. At room temperature, the pyramidal

II 〈c +a〉 edge dislocation glide at around 10 MPa, whereas the basal-oriented 〈c +a〉 dis-

locations require about 330 MPa for the glide. The transformed basal-dissociated sessile
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Chapter 1. Introduction and Background

Figure 1.7 – TEM observation of the basal-oriented 〈c +a〉 dislocations. The 〈c +a〉 dislo-
cations are lying along the directions 〈101̄1〉 which are the intersection of the basal and the
pyramidal II planes. Reprinted from Obara et al. [151].

〈c +a〉 dislocations are observed experimentally as straight lines lying along the intersection

of the pyramidal II and the basal plane, i.e., [101̄0] crystallographic direction, as shown in

Fig. 1.7.

Because of the deleterious PB transition, the edge part of a pyramidal II 〈c +a〉 loop prevents

the expansion of the loop and undesirably hardens the pyramidal 〈c +a〉 slip system. This

further exacerbates the plastic anisotropy of pure Mg already existing due to the underlying

low symmetry hcp crystal structure. Experimentally, the critical resolved shear stress (CRSS)

of the pyramidal 〈c +a〉 are found to be two orders of magnitude higher than that of basal

〈a〉 slip [206]. Mg, therefore, deforms predominantly by the basal 〈a〉 dislocations and tension

twinning at room temperature that results in the development of strong characteristic basal

texture in polycrystal wrought Mg at room temperature [5, 182, 219]. In rolled Mg sheets, the

〈c〉-axis of grains align along the normal direction and in extruded Mg products, the 〈c〉-axes

aligns along the radial direction. These characteristic strong basal textures are the macroscopic

manifestations of lack of the pyramidal 〈c +a〉 slip, and indicative of poor ductility.

1.6 Enhanced ductility in wrought Mg alloys containing rare earth

solute elements

Due to the various promising properties of Mg-based alloys, empirically-based metallurgical

strategies [9, 32, 117, 154, 157, 241] have been actively pursued with an aim to increase the

ductility of Mg alloys. Fig. 1.9 shows the experimentally observed ductility, identified by the

failure strain in tensile tests, for a range of Mg alloys. The trend of increase in ductility with
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1.6. Enhanced ductility in wrought Mg alloys containing rare earth solute elements

the reduction in grain size is apparent across all Mg alloys. However, even at relatively large

grain sizes, rare-earth elements (RE = Y, Ce, Nd, Gd, Er, Ho, Tb, Dy), in particular, stands

out as excellent solute elements to improve ductility in Mg alloys [5, 95, 167, 179, 181, 182].

Sandlöbes et al. [181, 182] conduct extensive experiments on Mg-RE alloys and show that even

a small amount ( 3wt.%) of RE elements leads to a substantial increase in ductility of resulting

solid solution alloys. Furthermore, this increase in ductility is shown to be accompanied by a

low hardening rate and enhanced activity of the 〈c +a〉 dislocations on both pyramidal I and

pyramidal II planes [179, 181]. The pyramidal 〈c +a〉 slip systems are important and much

needed to enable homogeneous plastic deformation and avoid harmful strain localization.

The understanding of the activation of the pyramidal 〈c +a〉 dislocations in Mg-RE alloys

is thus crucial in searching for new and cost-effective alloying elements and optimizing the

mechanical properties of Mg alloys.

a b

Figure 1.8 – Plots of stress versus strain obtained from the tensile tests up to failure at
room temperature for pure Mg and Mg-RE solid solution alloys. Fig.(a) shows the result
for Mg-3wt.%Y and Fig.(b) shows results for Mg-3wt.%Er, Mg-3wt.%Ho, Mg-3wt.%Tb, and
Mg-3wt.%Dy. There is clear evidence of a substantial increase in ductility after the addition of
3 wt.% of RE solute elements. Reprinted (a) from Sandlöbes et al. [182] and (b) from Sandlöbes
et al. [181].

Apart from RE solutes, other solutes elements including Ca, Mn, Sr, Sn, Li, Zr etc. have also

been identified experimentally as favorable for inducing ductility in resulting solid solution

Mg alloys [40, 49, 148, 154, 198, 243, 247].

We now discuss several explanations that have been proposed in the literature to explain the

enhanced ductility in Mg-RE alloys. Various thermo-mechanical processing route to produce

ductile Mg alloys focus on randomizing the texture away from the strong basal textures. While

the basal texture may be used as an indicator of ductility, the development of crystallographic

textures itself is the result of the interplay between underlying deformation mechanisms.

Specifically, activation of the pyramidal 〈c +a〉 dislocation can explain the emergence of weak
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Chapter 1. Introduction and Background

Figure 1.9 – Variation of experimentally observed ductility in different Mg alloys as a func-
tion of grain size. Pure Mg has low ductility across all grain sizes. Alloys based on Al and Zn
show moderate ductility, and Mg-RE alloys show a significant increase in ductility.

basal texture in ductile Mg alloy [6, 219]. Agnew et al. [6] shows that during plane-strain

compression, representative of rolling processes, the slip of the pyramidal 〈c +a〉 dislocations

helps rotate the basal pole away from the normal direction towards the rolling direction. San-

dlöbes et al. [180, 181] suggest that RE solutes, Y in particular, reduce the basal I1 stacking fault

energy that in turn acts as a heterogeneous source of the pyramidal 〈c +a〉 dislocations, and

then based on this conjecture, propose a Y-like index for other solute elements to determine

their potency in inducing ductility [178]. Agnew et al. [2] analyze this mechanism and find

that exceedingly high stress is required for the basal I1 stacking fault to act as a pyramidal

〈c +a〉 dislocation source, which cannot be met easily in normal conditions. Furthermore, the

proposed special role of Y solutes on the basal I1 stacking faults is not supported by the first

principal quantitative comparative studies of the influence of Y (ductilizing), Al (moderately

ductile), and Zn (low ductility) solute additions [237]. Yoo et al. [239] suggest that new pyrami-

dal 〈c +a〉 dislocations can be formed at junctions of the 〈a〉 and the 〈c〉 dislocations. However,

as already been discussed in the previous Section 1.5, combining the basal-dissociated 〈c〉 and
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1.7. Scope and structure of the thesis

〈a〉 dislocations to form the pyramidal 〈c +a〉 dislocation is energetically highly unfavorable.

Ando and Tonda [17] suggest that the addition of favorable solutes might suppress the PB tran-

sition, and thus promotes the activation of the pyramidal 〈c +a〉 slips. However, experimental

results demonstrate a large number of the basal-dissociated 〈c +a〉 dislocations present in

ductile Mg-RE alloys [179]. Additionally, Agnew et al. [4] proposed a mechanism where solute

elements lower the stable pyramidal stacking fault energy and increase the basal stacking

fault, thereby decrease the driving force of the PB transition and increase the activation of the

pyramidal 〈c +a〉 dislocation. This mechanism is untested and will be investigated as a part of

the research presented in this thesis and presented in Chapter 4.

1.7 Scope and structure of the thesis

As described in the preceding sections, the PB transition of the pyramidal 〈c +a〉 dislocations

has been recognized to lie at the heart of low ductility and high hardening rate in pure Mg.

Furthermore, high ductility in certain Mg alloys is observed with a concomitant increase in

the activity of the pyramidal 〈c +a〉 dislocation. A fundamental mechanistic insight into the

roles of solute elements in enabling this increased pyramidal 〈c +a〉 slip would be essential to

facilitate designing, optimizing, and manufacturing of new technologically important ductile

Mg alloys. Illuminating and uncovering the underlying dislocation mechanisms responsible

for causing the ductility in Mg alloys is the central objective of this thesis.

The detrimental PB transition is essentially an atomic scale phenomenon, and thus the ame-

liorating impacts of the favorable solutes responsible for circumventing the PB transition

and activating the pyramidal 〈c +a〉 dislocations must also exist at the atomic scale. Chap-

ter 2 presents the basics of main computational methods, molecular dynamics simulation,

and nudged-elastic-band (NEB), employed in this research to gain insight into the various

atomic-scale dislocation mechanisms in pure Mg and Mg alloys.

The availability of a large number of experimental results makes Mg-Y alloys suitable to be

be used as a representative for ductile Mg alloys in order to unveil the atomic-scale effects

of favorable solutes on the pyramidal 〈c +a〉 dislocation. In atomistic simulations, full infor-

mation about any material is encoded into the interatomic potential. Chapter 3 discusses

the interatomic potentials for pure Mg and Mg-Y alloy used in this work and describes their

properties and validity for probing the dislocation mediated plasticity.

Chapter 4 focuses on testing the hypothesis, by conducting finite temperature MD simulations

in Mg-3at.%Y alloy, that favorable solute elements might stabilize the pyramidal-dissociated

〈c +a〉 dislocation, delay the PB transitions by raising the associated energy barrier and

thus enable the activation of the 〈c +a〉 dislocation on the easy-glide pyramidal planes. The

simulation results conclusively demonstrate that the energetic drive for the PB transition in

solid solution Mg-3at.%Y alloy is essentially unchanged and, hence, some other mechanisms

must be operative to enable the enhanced slip of the pyramidal 〈c +a〉 dislocations.
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Chapter 1. Introduction and Background

We, next, propose a new mechanism to explain the ductility of Mg alloys based on solute

accelerated cross-slip of the pyramidal 〈c +a〉 dislocation. To better understand the solute

effects on the pyramidal 〈c +a〉 cross-slip process, Chapter 5 describes the cross-slip processes

happening in pure Mg. The energetics and the minimum energy path for the pyramidal

〈c +a〉 cross-slip processes are computed using the NEB methods, considering both cases:

first, the pyramidal II 〈c +a〉 screw dislocation is energetically more, and the second, the

pyramidal I 〈c +a〉 screw dislocation is more stable. We, however, emphasize that the case

of the pyramidal II 〈c +a〉 screw dislocation being more stable is highly important as in

pure Mg, the 〈c +a〉 screw dislocation predominantly glides on the pyramidal II plane. The

pyramidal I favorable case may, nevertheless, arise in certain alloys. In light of the obtained

NEB results, a cross-slip model is proposed to compute the activation parameters for the

pyramidal 〈c +a〉 cross-slip process which constitutes one of the key components of the new

mechanism.

Chapter 6 expounds in full detail the various elements in the pyramidal 〈c +a〉 cross-slip

based ductility theory and accompanying mathematical model. The ductility mechanism is

premised on the ability of the cross-slip and double cross-slip processes to act as a natural

source for generating new dislocation loops. Ductility is decided by the competition between

the beneficial cross-slip process associated with the screw part and deleterious PB transition

associated with the edge/mixed part of the pyramidal 〈c +a〉 dislocation loop. The disloca-

tion energy difference between the high-energy pyramidal I and the low-energy pyramidal II

〈c +a〉 screw dislocation renders the cross-slip process ineffective. Particular solute elements,

nonetheless, can accelerate the cross-slip process by reducing the dislocation energy differ-

ence. This chapter finishes by presenting the experimental observation of increased pyramidal

cross-slip process in Mg-Y alloy with increasing concentration of Y solutes.

Chapter 7 presents the prediction of the ductility model for various dilute binary ternary,

quaternary Mg alloys comprising mainly a wide spectrum of non-RE solute elements (Al, Zn,

Ag, Sn, Ca, Sr, Sn, Zr, K, Mn, Li). The comparison of the ductility prediction by the model

in a wide range of Mg alloys are shown to be in remarkable agreement with the available

experimental observations. The model predictions are, furthermore, presented in convenient

forms to allow the identification of ductile compositions of Mg alloys in a way that could

enable the use of other theories and models in order to optimize other properties including

ductility, strength, fracture toughness, creep, corrosion, cost, etc.

Chapter 8 recapitulates and discusses the main findings of the research of this thesis, and

finally, Chapter 9 discusses the possible ways in which the current research could be extended

in the future.
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2 Computational Methods

In this chapter, we briefly discuss the computational methods used in conducting the research

work presented in this thesis. The multiscale nature of phenomena underpinning materials

properties in general, and dislocation mediated plasticity in particular, spans several orders of

magnitude in length and time scales, and thus necessitates the development and application

of multiple computational tools each focusing on specific scales [38, 59, 76, 201, 211, 222], or

coupling several scales in one unified framework [12, 60, 61, 90, 91, 248].

The structure of dislocation cores and chemistry of dislocation-solute interactions are resolved

at the electronic level and are accurately computed by employing the density functional

theory (DFT) calculations [82, 120, 207]. The mobility and other short-range mechanisms

associated with the dislocations are atomic-scale in nature, and so are probed efficiently by

using molecular dynamics (MD) or Markov chain Monte Carlo simulations [48, 142, 165, 245].

Furthermore, the kinetics of some thermally activated dislocation processes, such as mobility

of screw dislocation in bcc crystals, involve timescale beyond the capability of atomistic

simulations. Kinetic Monte Carlo techniques are most suitable to handle these problems [43,

64, 189]. Dislocation dynamics are next in the hierarchy of computational methods that

simulate the behavior of an ensemble of dislocation lines evolving under an applied load

and provide useful insight into the hardening of single crystals [20, 39, 114]. Crystal plasticity

resolves the problem at grain level in a polycrystalline material by considering the evolution of

average dislocation populations instead of tracking individual dislocations [92, 109, 174, 175].

Finally, finite element methods reside at the highest level of the hierarchy and deal with the

macroscopic plasticity [153].

The choice of a computational tool must be informed by the length and time scale involved in

the dislocation mechanisms of interest [59]. Since we know that low ductility of pure Mg arises

from the thermally activated PB transition of the pyramidal 〈c +a〉 dislocations occurring at

length and time scale amenable to atomistic simulation, we extensively employ MD, along

with its static variant molecular static (MS), simulations in this work. A brief exposition of MD

and MS simulation is the subject of Section 2.1
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Another important aspect of the crystal plasticity, as discussed in Section 1.4, is the ther-

mally activated dislocation processes occurring at the atomic scale. The PB transition of the

pyramidal 〈c +a〉 dislocations and cross-slip of the screw dislocations, two main dislocation

mechanisms of focus in this thesis, are thermally activated. Section 2.2 is devoted to the dis-

cussion of the transition state theory which provides a framework to characterize a thermally

activated process. This section further provides an introduction to the nudged-elastic-band

(NEB) method that is used to determine the energy barrier associated with various thermally

activated dislocation processes featuring in this research.

2.1 Elements of molecular dynamics and static simulations

Molecular dynamics (MD) is a simulation method designed to keep track of motion of every

atom in a system evolving under prescribed conditions. The core component of the MD

simulation is the numerical integration of Newtonian equation of motion. Consider that N

atoms are interacting with each other according to an underlying potential energy function

U (r 1,r 2, . . . ,r N ) that depends on the position of every atom. Further suppose that at time

tn the position and velocity of each atom are (r n
1 ,r n

2 , . . . ,r n
N ) and (v n

1 , v n
2 , . . . , v n

N ), respectively.

MD simulation then enables us to compute the position and velocity of every atom at time

tn+1 = tn +∆t , i.e. after a time step of ∆t .

From the knowledge of potential energy function, we first determine the force acting on each

atoms at time tn , which for atom i is given by

F n
i =−∂U (r n

1 ,r n
2 , . . . ,r n

N )

∂r n
i

. (2.1)

The acceleration of this atom ai at tn then simply is

an
i = F n

i

mi
, (2.2)

where mi is the mass of atom with index i . We then obtain the positions and velocity of each

atom at time tn+1 by using a simple velocity Verlet algorithm as

r n+1
i = r n

i +v n
i ∆t + 1

2
an

i ∆t 2, (2.3a)

v n+1
i = v n

i +
(

an
i +an+1

i

2

)
∆t . (2.3b)

It is clear from Eq. 2.3(b), that in order to update the atomic velocities, the information

about accelerations at time tn+1 is required. To accomplish this we first update the positions

according to Eq. 2.3(a), and then compute the updated accelerations by using Eqs. 2.1 and

2.2. The two steps of force computation and update of positions and velocities are iterated

for a specified number of time steps. This is the basic machinery of MD simulation, which is
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2.2. Transition state theory and the Nudged Elastic Band method

further extended to simulate the canonical and isothermal-isobaric ensembles [201, 210].

Molecular static (MS) simulation, on the other hand, is essentially energy minimization that

is employed to find the atomic configurations corresponding to local minima in potential

energy surface U (r 1,r 2, . . . ,r N ). MS simulations involve one of the widely used minimization

algorithms, such as gradient descent, conjugate gradient, and damp dynamics to iteratively

update the atomic positions until the force on every atom is less than a predefined cutoff

value. MS simulations are extremely useful in obtaining the 0 K properties of the materials

and finding the configurations and energetics of dislocations and other crystalline defects. For

a more detailed exposition of MD/MS simulations and related statistical mechanical concepts,

readers are referred to Refs. [11, 38, 75, 201, 210, 222].

In both MD and MS simulations, the interatomic potential energy function U (r 1,r 2, . . . ,r N ) is

the most important component. The potential energy function is the representation of the

material, and thus the results of simulations are as accurate as the interatomic potential being

employed. Although in principle, the potential energy for an atomic configuration can be

determined accurately by the first principle methods, such as the DFT, the enormous amount

of computational resources required for the DFT calculations makes adopting such paths

unfeasible. Therefore, a vast body of research in computational materials science is devoted to

designing empirical interatomic potentials that accelerate the force calculation part of MD/MS

simulations. These empirical interatomic potentials are functions that map a configuration of

atomic positions to the corresponding energy. The commonly used interatomic potentials

generally involve several free parameters which are fitted to describe the specific properties of

materials under investigation [73, 201]. The embedded-atom method (EAM) and modified

embedded-atom method (MEAM) are two widely used frameworks of interatomic potentials to

describe metals in MD/MS simulations [28, 62, 63, 137]. We present the details and properties

of the interatomic potentials used in this work in the next Chapter 3.

All the MD/MS simulations in this research work are conducted by using an open-source

massively parallel MD code LAMMPS [159]; the visualization and post-processing of the results

of the atomistic simulations are performed in OVITO [196].

2.2 Transition state theory and the Nudged Elastic Band method

It is often more useful to represent a system comprising N atoms as a point in a 3N -dimensional

‘configurational space’ instead of N points in the three-dimensional coordinate space. A point

in the configurational space is represented by R that contains the 3N coordinates of the atoms,

i.e. R = (r 1,r 2, . . . ,r N ). Thus each axis in the configurational space specifies one Cartesian

coordinate of a particular atom.

The potential energy surface U (R) for any real system comprising N atoms is a non-convex

hypersurface in the configurational space that contains an exponentially large number of

local minima. The potential energy surface can be visualized as a landscape consisting of a

19



Chapter 2. Computational Methods

large number of valleys separated by ridges. The states in the valleys represent the different

metastable states of the system. At finite temperature, the system remains in one valley for a

long time until a random thermal fluctuation provides sufficient energy to cross a ridge-barrier

and allows the system to go into the next valley. The path through which the transforma-

tion is achieved from initial to final metastable states is called the minimum energy path

(MEP). To continue with our landscape analogy, the MEP can be thought of as a mountain

pass connecting the two valleys through a saddle point in between. The state associated

with the saddle point is called the transition state which has the maximum potential energy

on the MEP. The energy barrier or activation energy of the transformation, that controls the

transformation rate, is then the energy difference between the initial metastable state and the

transition state. Such transformations are called thermally activated transformations/transi-

tions/processes owing to the critical role of the random thermal fluctuations in assisting the

transformations [71, 208].

The presence of a relatively large energy barrier prevents the investigation of such thermally

activated processes by using plain MD simulations. A thermally activated process with an

energy barrier of 0.5 eV would take on average about 50 micro-seconds to take place even

once. To gather enough statistics of the transition, at least a hundred times longer simulations

are required. Due to the requirement of resolving atomic vibrations, a typical MD simulation

would need to perform 1011 time-steps to achieve the time-scale of the transition which is

beyond the capability of existing computational resources. However, this difference of time-

scale between atomic vibration and the thermally activated transition allows one to estimate

the transition rate by utilizing the statistical theories [71, 215, 223].

2.2.1 Transition state theory

Transition state theory [71, 215] uses equilibrium statistical mechanics to determine the rate

of a thermally activated process occurring between two metastable states in a 3N -dimensional

configuration space. Fig. 2.1 schematically shows the two such metastable states A and B for a

two-dimensional surface. In configurational space, the two metastable states are identified by

vectors RA and RB. The potential energy surface is partitioned into two regions corresponding

to the two metastable states with a surface SD dividing the two regions. The two regions are

labeled as region A and region B. The dividing surface SD passes through the transition state

P and is perpendicular to the contour of the potential energy. We consider that the system

starts in the region A and transitions into the region B with the help of thermal fluctuations.

The transition state theory involves the following assumptions: the system is in thermal

equilibrium at temperature T , and spends all the time in either region A or region B with the

occasional jump between the two; there is a clear separation between the time scales of the

atomic vibration and that of the transition between the two states, i.e. the transition time is

much longer than the time period of atomic vibration to enable the equilibration of the system

after each transition; a trajectory starting in the region A cannot return in the same region

after passing through the dividing surface with velocity directed in the direction of region B.
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Figure 2.1 – An illustration of a thermally activated processes between two metastable
states. States A and B are the two metastable states, and P is the transition state situated
at the saddle point of the potential energy surface. (a) The contour plot of a two-dimensional
potential energy surface demonstrates the metastable states and transition state. The yellow
dashed line shows the minimum energy path connecting the two metastable states, and the
green dash-dotted line is the surface SD dividing the potential energy surface into two regions
corresponding to the states A and B. (b) A three-dimensional representation of the potential
energy surface.

By considering the canonical (NV T ) distribution of microstates, Vineyard [215] worked out

the following exact expression for the frequency of transition νTST
A→B from state A to state B

happening at temperature T under the transition state theory

νTST
A→B =

√
kT

2πm

∫
SD

exp
(
−U (R)

kT

)
dR∫

A exp
(
−U (R)

kT

)
dR

, (2.4)

where k is the Boltzmann constant; m is the atomic mass; the numerator of the second term

in the right side is obtained by integrating over the dividing surface SD , and the denominator

is obtained by performing integration over the region A. The above expression Eq. 2.4, how-

ever, cannot be computed easily for any complex potential energy surface as it requires the

information about the shape of the surface. To obtain a tractable expression for the transition

rate, Vineyard [215] assumed that the harmonic terms of the potential energy surface near the

minimum A and the saddle point P represent the dominant contribution to the two integrals

of Eq. 2.4. This harmonic assumption is equivalent to assuming materials properties indepen-

dent of temperatures which originate from the anharmonic structure of the potential energy

surface and considers entropic barrier resulting from harmonic vibrations. The harmonic

transition state theory leads to the following simplified expression for the transition frequency

νHTST
A→B =

∏3N
i=1ν

A
i∏3N−1

i=1 νP
i

exp

(
−∆E

kT

)
, (2.5)

where νA
i and νP

i , respectively, are the normal frequency modes arising from the harmonic
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form of the potential surface near initial state A and transition state P, and∆E =U (RP)−U (RA)

is the energy barrier associated with the transition and is simply the energy difference between

initial and transition states.

Under the harmonic transition state theory, we need the energy barrier ∆E (to be discussed in

the next section) and the frequencies of the normal modes near state A and P to determine the

transition frequency. To further simplify the expression, the prefactor in Eq. 2.5 is taken to be

the Debey frequency ν0 = 1013 s−1 for thermally activated transitions happening in crystalline

materials [169, 214, 228]. Finally, the transition reduces to the simple Arrhenius form

νA→B = ν0 exp

(
−∆E

kT

)
. (2.6)

The Arrhenius form of Eq. 2.6 has been successfully applied to investigate several thermally

activated dislocation mechanisms [69, 70, 99, 169, 221, 228, 249]. The applicability of the

Arrhenius expression in dislocation mechanisms is justified by the negligible contribution of

entropy in the free energy of a dislocation [55]. In this work we use the Eq. 2.6 to determine

the rate of various thermally activated processes associated with dislocations. Some disloca-

tion mechanisms, such as dislocation nucleation, involve significant changes in the atomic

arrangements and entropic barrier stemming from the anharmonic effects can no longer be

neglected [149, 176, 177, 220].

For more elaborate and detailed discussions on the transition state theory with a focus on

thermally activated dislocation mechanisms, the readers are referred to Refs. [108, 162, 185,

186].

2.2.2 Nudged elastic band method

The energy barrier ∆E of a thermally activated process is an important quantity to determine

the transition rate, Eqs. 2.5 and 2.6, which requires the information about the initial and

associated transition state. We often have access to the initial and the final metastable states

involved in the transition and want to find the MEP connecting the two. The MEP then

allows us to identify the transition state and, consequently, the energy barrier associated

with the transition. Nudged elastic band (NEB) [100], and string methods [68, 212] are two

computational techniques widely used in computing the MEP from the knowledge of the

initial and the final states. In this work, we use the NEB method for computing the MEP of

dislocation processes and is briefly presented bellow following Jónsson et al. [100].

The NEB method provides a discrete representation of the MEP with the help of intermediate

replicas (images) connecting the initial and the final metastable states. We consider that

the MEP is discretized by using M +2 replicas denoted by positions R0,R1,R2, . . . ,R M+1 in

the configurational space. In the string of M +2 replicas, first R0 = RA corresponds to the

initial metastable state A and final R M+1 = RB corresponds the final metastable state B. The
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2.2. Transition state theory and the Nudged Elastic Band method

remaining M intermediate states R1,R2,R3, . . . ,R M are initialized by using some interpolation

scheme. The intermediate replicas are connected to immediate neighbors by a spring of

natural length zero. The end replicas are kept fixed and intermediate replicas are allowed to

evolve towards the MEP under a combined force arising from the underlying potential energy

and connecting springs. The force due to potential energy tries to attract the replica towards

the nearest metastable state, and the spring force seeks to maintain equal separation between

the replicas. A naive way would be to consider the force on i th (1 ≤ i ≤ M) intermediate replica

as

F i =−∇U (R i )+F S
i for 1 ≤ i ≤ M , (2.7)

where the first term on the right side represents force due to the potential energy, and the

second term F S
i = k s(R i+1 −2R i +R i−1) is force due to the spring having the force constant k s .

Figure 2.2 – A schematic illustration of different forces involved in NEB calculation for a two
dimensional potential energy surface. The total NEB force on i th image F NEB

i is composed
of perpendicular to tangentτ̂i component of potential force F⊥

i and parallel to tangent com-

ponent of spring force F S||
i . Under the influence of the NEB force F NEB

i , the images converge
to the MEP of the transition. From Ref. [187].

The naive method of determining the force acting on intermediate replicas leads to undesirable

effects on replicas distribution. If the spring constant k s is too high, the replicas cut the corner

and avoid going through the saddle point. However, a small value of spring constant results in a

lower resolution of replicas near the saddle point. The NEB method alleviates this shortcoming

by keeping a specific projection of the two forces either along or perpendicular to the path
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tangent τ̂i at replica i . The local tangent at replica i can be computed as

τ̂i = R i+1 −R i−1

|R i+1 −R i−1|
for 1 ≤ i ≤ M . (2.8)

The form of local tangent influences the convergence of the calculation, and many other

improved estimations of the tangent direction have been proposed in the literature [87]. The

modified force on the replica i is next computed by retaining the perpendicular component of

the force due to the potential and the parallel component of the spring force, i.e.

F NEB
i = F⊥

i +F S||
i for 1 ≤ i ≤ M , (2.9)

where F⊥
i =−∇U (R i )+ (∇U (R i ) · τ̂i ) τ̂i is the component of the potential force perpendicular

to the path tangent, and F S||
i = (

F S
i · τ̂i

)
τ̂i is the component of the spring force parallel to

the local path tangent on i th image. Finally, a force based minimization algorithm is used to

determine the converged replicas representing the MEP of the transition. Fig. 2.2 shows a

schematic of the of the various forces involved in the NEB calculations.

We have described only the basic and essential concepts involved in the NEB method above.

Several improvements and extensions of the method have been proposed, and we refer to

Refs [87, 87, 88, 128, 146, 187] for a comprehensive exposition of the NEB method used in

practice. In this work, we use the NEB method as implemented in the MD code LAMMPS.

Numerous thermally activated dislocation mechanisms have been investigated and char-

acterized by using the NEB method. For instance, to report a few, Vegge et al. [214] and

Esteban-Manzanares et al. [70] studied the cross-slip processes of screw dislocations; Zhu

et al. [249] investigated the mechanism of the surface dislocation nucleation; Rodney [169]

characterized the activation parameters of the kink-pair mechanism of the dislocation glide;

and Esteban-Manzanares et al. [69] probed the interaction of dislocation with GP zone in Al-Cu

alloys. Furthermore, comparative studies of the accuracy and applicability of several transition

state methods in application to the dislocation mechanisms can be found in Refs. [183, 184].
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3 Interatomic potentials employed in
the atomistic simulations

This chapter is in part extracted from the following publications

1. Ahmad R., Groh S., Ghazisaeidi M., and Curtin W. A. (2018). Modified embedded-

atom method interatomic potential for Mg-Y alloys. Modelling Simul. Mater. Sci.

Eng., 26: 065010.

2. Ahmad R., Wu Z. and Curtin W. A. (2020). Analysis of double cross-slip of pyrami-

dal I 〈c +a〉 screw dislocations and implications for ductility in Mg alloys. Acta

Mater., 183: 228-441.

Interatomic potentials are the only description of the materials accessed by an atomistic

simulation. Thus a reasonably accurate interatomic potential is essential for understanding,

investigating, characterizing, and uncovering various atomistic mechanisms and phenomena

associated with the material under consideration. This chapter presents the interatomic

potentials to study Mg and Mg-Y alloys, and their predictions related to properties important

for plastic behavior.

Numerous efforts to understand various atomic-level mechanisms underlying mechanical

properties have spawned several interatomic potentials for both Mg and Mg-RE alloys. For

example, Liu et al. [122] Sun et al. [199] and Pei et al. [156] developed pure Mg interatomic

potential in the EAM framework. However, these EAM potentials fall short of describing

the generalized stacking fault energy, dislocation core structure, Peierls barrier, twinning

dislocation, and basal surface energy [81, 188, 231, 235]. The EAM potential developed by Pei

et al. [156] predicts the fcc phase of Mg to be more stable than the hcp phase. Kim et al. [105]

proposed a new pure Mg interatomic potential in the framework of MEAM that is capable

of producing reasonable core structures of various dislocations but fails in the investigation

of fracture properties. Wu et al. [231] presented a new and improved MEAM interatomic

potential for the study of plasticity and fracture properties of pure Mg. This work extensively

employs the MEAM potential of Wu et al. [231] in conducting the atomistic simulations in
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Chapter 3. Interatomic potentials employed in the atomistic simulations

pure Mg.

Similarly, many interatomic potentials have been proposed for various Mg alloys [102, 103, 105,

156] in the MEAM framework. However, all of these potentials are largely untested for plastic

properties. Since we focus on the Mg-Y as a model for the Mg-RE alloy system to gain insight

into the influence of RE solute elements on the various dislocation mechanisms, we focus on

the recent Mg-Y potential developed by Kim et al. [102], hereafter referred to as Kim potential.

The misfit volume of Y solute in Mg is predicted to be much smaller than experiments and DFT.

The Kim potential is also unable to capture the interaction of Y solute with various stacking

faults. All these properties are crucial in dictating the dislocation behavior in Mg-Y alloys. The

limitations of Kim potential justify the development of a new and well-validated interatomic

potential to investigate the plastic properties of Mg-Y alloys, and is presented in Section 3.2.

All the atomistic simulations performed in this work use the MEAM framework to describe

the interactions between atoms in both pure Mg and Mg-Y solid solutions alloys. Therefore, a

brief description of the MEAM formalism for pure element and binary alloy system has been

provided in Appendix A. We here present different parameters of MEAM potentials for pure

Mg and Mg-Y alloys along with their selected predictions.

3.1 Two pure Mg MEAM interatomic potentials: MEAM_I and MEAM_II
1

A full description of a pure element in the MEAM framework requires 16 parameters (see

Appendix A for detail). Four parameters (cohesive energy Ec , equilibrium nearest-neighbor

distance re , bulk modulus B , and an adjustable parameter d to fit ∂B/∂P ) are obtained from

the universal equation of state [172]. Seven parameters (decay lengths (β(0),β(1),β(2),β(3)), and

weight factors (t (1), t (2), t (3))) describe the electron density for embedding. One parameter A

is used in the embedding function, and two parameters (Cmin,Cmax) account for many-body

screening effects. Cutoff radius, rc and smoothing radius ∆r control the extent and decay of

the potential near cutoff radius, respectively.

Table 3.1 – Parameters for the MEAM_I and the MEAM_II potentials for pure Mg used in this
work. The units of Ec , re , rc and ∆r are eV, Å, Å and Å, respectively.

Ec re α A β(0) β(1) β(2) β(3) t (1) t (2) t (3) Cmin Cmax d rc ∆r

MEAM_I 1.51 3.18 5.59 0.52 2.00 1.30 1.30 1.00 5.55 3.00 -7.40 0.49 2.80 0.00 5.88 1.88
MEAM_II 1.52 3.18 5.61 0.79 2.35 1.46 2.30 1.15 6.82 1.50 -7.09 0.36 2.38 0.00 7.89 6.60

In this work, we use two different MEAM potentials to describe the interatomic interaction

in pure Mg. The first one is that presented in Wu et al. [231], and we refer to it by MEAM_I

potential hereafter. This MEAM_I potential has been well validated and shown to predict

1The MEAM_II potential is developed in collaboration with Prof Zhaoxuan Wu from City University Hongkong,
China.
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the pure Mg properties pertaining to plasticity and fracture in good agreement with the

DFT calculations. In particular, the MEAM_I potential predictions of the lattice and elastic

constants, generalized stacking fault energies on different planes, core structure, and Peierls

stress of various dislocations in Mg are in excellent accord with the DFT computations. The

second MEAM potential used in this work for pure Mg is obtained by reparameterization of the

MEAM_I potential. We refer to this new Mg potential as MEAM_II potential hereafter in this

thesis. The parameters for both the MEAM_I and MEAM_II potentials are listed in Table 3.1.

Different properties of pure Mg, as predicted by both the MEAM_I and the MEAM_II potentials,

are shown in Table 3.2, and compared with the corresponding DFT values. The values of the

lattice and elastic constants as predicted by the two potentials are very close to each other

and consistent with the first principle values. Both potentials predict similar stable basal I2

stacking fault energy which are smaller than the DFT value.

The two potential, however, differ with each other in the prediction of the pyramidal I and

the pyramidal II stable stacking faults, and also in the prediction of the relative stability of the

two pyramidal 〈c +a〉 screw dislocations. Since the two pyramidal 〈c +a〉 screw dislocations

have the same Burgers and the line direction, the dislocation energy difference will arise, as

discussed in Section 1.3, due to the different dislocation core structures, and would be con-

stant per unit dislocation length. The MEAM_I potential yields the pyramidal II 〈c +a〉 screw

dislocation to be more stable than the pyramidal I 〈c +a〉 screw dislocation, with energy

difference E I-II
Mg = 27meV/nm; and the MEAM_II potential predicts the 〈c +a〉 screw dislo-

cation to be more stable on pyramidal I than on pyramidal II plane, with energy difference

E I-II
Mg =−28meV/nm. The core structures of the pyramidal I and the pyramidal II 〈c +a〉 screw

dislocations, obtained from the two potentials, are shown in Fig. 3.1(a) which agree quite well

with each other and with those obtained from the DFT [81, 231].

We will be using the MEAM_I potential extensively in this work to investigate the properties

of the pyramidal 〈c +a〉 screw dislocation, as numerous experimental observations point

towards the 〈c +a〉 screw dislocation being more stable on the pyramidal II plane than on the

pyramidal I plane [17, 155, 200]. On the other hand, the MEAM_II potential will be employed

specifically in Chapter 5 in order to understand and elucidate the cross-slip process of the

pyramidal 〈c +a〉 screw dislocation in the case where the pyramidal I 〈c +a〉 screw dislocation

is more stable than the pyramidal II 〈c +a〉 screw dislocation. This reversal of relatively

dislocation stability is particularly relevant for various Mg alloys.

3.2 Mg-Y MEAM interatomic potential2

In this section, we present a new MEAM interatomic potential for Mg-Y alloys. Description

of a binary alloy within the MEAM formalism first requires interatomic potentials of the

constituent elements. For pure Mg, we use the MEAM_I potential presented in the previous

2The Mg-Y potential is developed in collaboration with Dr Sébastien Groh from University of Basel, Switzer-
land.
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Table 3.2 – Properties of the MEAM_I and the MEAM_II interatomic potentials for
pure Mg including lattice constants (a and c/a), cohesive energy (Ec ), elastic constants
(C11,C12,C13,C33,C44), various stable stacking fault energies(SFE) and dislocation energy dif-
ference between the pyramidal I and the pyramidal II dissociated 〈c +a〉 screw dislocations
(∆E I−II

Mg ). The potential predictions are compared with the corresponding DFT results from
Ref. [236]

Properties MEAM_I MEAM_II DFT[236]

a (Å) 3.187 3.187 3.189
c/a 1.623 1.622 1.627
Ec (eV/atom) -1.51 -1.51 -1.51
C11 (GPa) 64.3 65.4 61
C12 (GPa) 25.5 24.8 26
C13 (GPa) 20.3 21.9 20
C33 (GPa) 70.9 69.4 63
C44 (GPa) 18.0 19.5 18
SFE (basal I2) (mJ m−2) 23 21 34
SFE (pyramidal I) (mJ m−2) 169 161 161
SFE (pyramidal II)(mJ m−2) 200 188 165
∆E I−II

Mg (meV/nm) 27 -28 —

section. An MEAM potential for pure Y was developed by Ko and Lee [106] and describes

structural and mechanical properties in good agreement with experimental data. We retain all

the parameters of Y potential with the exception of the decay parameters β(1) and β(3) which

are adjusted to better describe the interaction energies of Y solutes with the various stacking

faults of Mg.

Table 3.3 – Parameters for the MEAM potentials to describe pure Y used in this work. The units
of Ec , re , rc and ∆r are eV, Å, Å and Å, respectively.

Ec re α A β(0) β(1) β(2) β(3) t (1) t (2) t (3) Cmin Cmax d rc ∆r

Y 4.37 3.607 4.37 0.90 2.00 5.00 1.00 1.00 8.00 8.00 -8.50 0.36 2.80 0.00 5.88 1.88

To describe the interaction between the two elements of binary alloys, 13 additional parame-

ters are needed. Four parameters (Ec , re , B , d) are related to the universal equation of state

for a reference intermetallic compound. Eight parameters related to screening (C ) and one

parameter related to the electron density scaling parameter (ρMg
0 :ρY

0) are introduced. Potential

parameters are fitted using structural and elastic properties of reference B2-MgY structure, the

heat of formation of B2-MgY, and the position-dependent single-solute interaction energies

with the stable stacking faults on the basal (I2), the pyramidal II, and the pyramidal I (SF2)

planes. The fitted parameters for the binary Mg-Y system are shown in Table 3.4. We use radial

cutoff distance rc of 5.875 Å and smoothing radius ∆r of 1.875 Å. In the following sections, we

analyze the properties of the potential against available experimental and DFT data.
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Figure 3.1 – Atomic structures of the pyramidal I and the pyramidal II 〈c +a〉 screw disloca-
tion cores in pure Mg, as obtained from (a) the MEAM_I and (b) the MEAM_II interatomic
potentials. The MEAM_I predicts that the pyramidal II 〈c +a〉 screw dislocation is more stable,
whereas the MEAM_II predicts the 〈c +a〉 screw dislocation is more stable on the pyramidal
I plane. Atoms are colored according to their local crystal structures as identified by the
common neighbor analysis: blue, hcp; yellow, other.

Table 3.4 – The MEAM potential parameters developed for the binary Mg-Y alloy system. The
units of Ec , re and are eV and Å, respectively.

Parameters Values Parameters Values

Reference B2-type Mg-Y Cmin(Mg,Y,Mg) 0.60
Ec 3.075 Cmin(Y,Mg,Y) 0.36
re 3.2575 Cmin(Mg,Mg,Y) 0.00
α 4.46 Cmin(Mg,Y,Y) 1.20
d 0.00 Cmax(Mg,Y,Mg) 2.80

ρ
Mg
0 :ρY

0 1:1.4 Cmax(Y,Mg,Y) 2.80
Cmax(Mg,Mg,Y) 1.63
Cmax(Mg,Y,Y) 2.80

3.2.1 Misfit strain and misfit volume

The first important property of a solute related to the mechanical properties of alloys is the

solute misfit strain tensor and the associated solute misfit volume. Following Refs. [22, 54, 213],

misfit strains are calculated using the dipole tensor. In simulations, one Mg atom in the perfect

hcp lattice is replaced by one Y atom, and all atomic positions are then relaxed keeping the
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periodic cell vectors fixed using periodic boundary conditions. The relaxation leads to the

development of stress σi j in the simulation box containing a solute. The dipole tensor Pi j of

the solute is related to stress σi j and total volume of the simulation box V as

Pi j =−Vσi j . (3.1)

The misfit strain of the solute εmisfit
i j is then computed from dipole tensor Pi j using anisotropic

elasticity as

εmisfit
i j = 1

V0
Si j kl Pkl , (3.2)

where Si j kl is the anisotropic compliance tensor of Mg, and V0 is the volume of one Mg atom in

its hcp bulk. The misfit strains are calculated in the coordinate system where x1 is along [21̄1̄0],

x2 along [011̄0], and x3 is along [001] direction. The misfit volume of the solute, normalized by

the atomic volume of Mg, ∆V /V0 is the trace of the misfit strain tensor, i.e. ∆V /V0 = tr(εmisfit).

For the current MEAM potential, we obtain the non-zero misfit strain components εmisfit
11 =

εmisfit
22 = 0.205 and εmisfit

33 = 0.183 for Y in Mg. As reported in Table 6.1, the DFT misfit strain

components of Y in Mg, in the same coordinate system, are εmisfit
11 = εmisfit

22 = 0.223 and εmisfit
33 =

0.120. The DFT misfit strain tensor is thus slightly more anisotropic than that of the MEAM.

Previous works on Y usually report only the misfit volume. For the current MEAM potential,

the misfit volume is ∆V /V0 = 0.593, in good agreement with the DFT values of 0.567 [237],

0.580 [181], and 0.636 [234]. In contrast, the Kim potential yields a value of only 0.240, less

than one-half the DFT value. Since the misfit volume is related to the interaction energy of a

dislocation with the solute, it is necessary that the potential predicts this quantity accurately

for application to many problems in plasticity.

3.2.2 Solute-stacking fault interaction energy

The interaction of solute atoms with stacking fault constitutes an appreciable part of solute

interaction with a dissociated dislocation. The solutes situated between the two partials

interact with the intervening stacking fault and influence the energetics of different dislocation

mechanisms.

Computational details

To compute solute-stacking fault interaction energies, we adopt the simulation box geometry

and methodology used in recent DFT studies of the same problem by Yin et al. [237]. For each

slip system, a primitive cell is defined by a set of three vectors (a1, a2, a3) as shown in Figure

3.2 with (a1, a2) defining the stacking fault plane and a1, a2 and a3 usually not mutually

orthogonal. A periodic simulation cell of pure Mg is built by replicating the primitive cell Ni

times in the ai (i = 1,2,3) directions to obtain a parallelopiped simulation cell with periodic
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repeat vectors (N1a1, N2a2, N3a3). The Ni s are chosen large enough such that periodic solute-

solute interactions are negligible in order to remain in the limit of dilute concentrations. We

use the coordinate system such that the x1 − x2 plane lie in stacking fault plane, and the x3

axis is normal to the stacking fault plane.

a1

a2

a3

a) Basal

a1

a3

a2

b) Pyramidal I
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c) Pyramidal II
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Figure 3.2 – Positions of different stable stacking faults in the basal, pyramidal I, and pyra-
midal II planes. The upper row shows the three lattice vectors a1, a3 and a3 used to build the
simulation boxes. The lower row depicts the coordinate system used in the simulation, (a)
basal, (b) pyramidal I, and (c) pyramidal II slip planes along with positions of stable stacking
faults contained within.

We consider the intrinsic Basal I1 fault and the extrinsic E stacking fault, neither of which

can be generated by slip processes, and the intrinsic basal I2, pyramidal I, and pyramidal II

faults that are formed by slip processes. Simulation cells for the basal I1 and E stacking faults

are constructed by arranging close-packed basal planes as (AB)N3/2-(AC)N3/2 and (AB)N3/2-

C-(AB)(N3−2)/2-C, respectively, where A,B and C are the stacking sequence of close-packed

(111) planes in fcc crystals (. . .ABCABC.. . ). As shown in Figure 3.3a, two such stacking faults

are generated in each simulation box because of the periodic boundary condition used. The

relaxed structures of these stacking faults are obtained by relaxing the simulation cell only in

direction x3 normal to the fault plane. The slip stacking faults are generated using the tilted-

box method [236] in which the simulation cell vector N3a3 is shifted laterally by the stacking

fault vector t , as depicted in Figure 3.3b. Relaxation of the simulation cell is subject to σi 3 = 0

(i = 1,2,3) while holding the N1a1 and N2a2 repeat vectors fixed. The in-plane positions
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of the various stable stacking faults are depicted in Figure 3.2. An important advantage of

the tilted-box method is that it allows full relaxation of all atoms, in contrast to solely out of

stacking fault plane relaxation in the conventional method. The tilted-box method yields only

stable stacking faults, if they exist, in the corresponding stacking fault plane.

x3

x1

i = 1

i = 2

i = 3

i = −2

i = −3
...

...

t

a Non slip SF (Basal I1) b Slip SF (Basal I2)

i = 1

i = 2

i = −1

i = −2

...

...

Figure 3.3 – Schematics of the simulation cells used to compute various stacking fault en-
ergies and solute-stacking fault interaction energy. (a) Basal I1 stacking fault as a represen-
tative non-slip stacking fault. (b) Basal I2 stacking fault as an example using the tilted box
method for creating slip stacking faults. In (b), the solid black lines denote the initial simu-
lation cell of perfect Mg and the dashed lines show the simulation box tilted by the stacking
fault vector t , leading to the formation of stacking fault. Index i refers to the solute position
with respect to the stacking fault plane. Red and green atoms denote the hcp and fcc atoms,
respectively.

To measure the solute-stacking fault interaction energies, we start with the corresponding

relaxed stacking fault structure in the pure Mg. One Mg is then replaced by one Y solute atom

at each unique atomic position at height ri with respect to stacking fault plane as shown

in Figure 3.3. The simulation box is then relaxed only in the out-of-plane x3 direction; this

prevents the motion of the stacking fault. The interaction energy Eint(ri ) of a solute at distance

ri from the stacking fault plane is then computed as

Eint(ri ) = (E A
SF −E A

B )− (E Mg
SF −E Mg

B ), (3.3)

where E A
SF and E Mg

SF are the energies of the alloy (one Y atom at ri from stacking fault) and
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3.2. Mg-Y MEAM interatomic potential

pure Mg with the stacking fault, respectively. Note that these energies are total energies, not

energies per unit area. E A
B and E Mg

B are the bulk energies of the hcp structure with and without

the Y solute, respectively.

In the dilute limit (neglecting solute-solute interaction), we use the interaction energies to

calculate the average stacking fault energy γA (energy per unit area) in the alloy as follows. The

absence of any interaction between the solutes would lead to the uniform random distribution

of solutes. For a solute concentration of c << 1, every atomic site is equally likely to be

occupied by the solute, with a probability c . Thus, the stacking fault energy of the alloy can be

written as

γ̃A = E A
SF −E A

B

A
,

= E Mg
SF −E Mg

B +∑
i
∑

j s j
i Eint(ri )

A
,

= E Mg
SF −E Mg

B

A
+ 1

A

∑
i

∑
j

s j
i Eint(ri ),

(3.4)

where E A
B and E A

SF are the total energies of bulk alloy and alloy with the stacking fault and A is

the total area of the stacking fault. In the second line of the above equation, we make use of

Eq. 3.3 to write the change in alloy energy due to the introduction of the stacking fault in terms

of the change in pure Mg energy upon creating the stacking fault and solutes-stacking fault

interaction energies. s j
i is the occupation variable which is 1 if the atomic site identified by the

indices i and j is occupied by the solute, and 0 otherwise. Index i identifies the planes with

respect to the stacking fault, and index j denotes the atomic site within the i th plane. Thus, i

run over all the plane and j runs over the number of atoms contained within the plane which

is A/A0, with A0 being the effective atomic area of one Mg atom corresponding to the stacking

fault plane. Further, recognizing that E Mg
SF −E Mg

B /A = γMg is the stacking fault energy in the

pure Mg, we can express the alloy stacking fault energy as

γ̃A = γMg + 1

A

∞∑
i=−∞

A/A0∑
j=1

s j
i Eint(ri ). (3.5)

We now compute the average stacking fault energy in the alloys by noting that s j
i is a Bernoulli

random variable which is 1 with probability equal to the solute concentration c and 0 with

probability 1− c, which leads to the average value of 〈s j
i 〉 = c. Then, the average alloy stacking

fault energy is computed as

γA = 〈γ̃A〉 = γMg + 1

A

∞∑
i=−∞

A/A0∑
j=1

〈s j
i 〉Eint(ri ),

= γMg + c

A

A

A0

∞∑
i=−∞

Eint(ri ),

= γMg + c

A0

∞∑
i=−∞

Eint(ri ).

(3.6)
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Above Eq. 3.6 can be written as

γA = γMg +kc, (3.7)

where k = (
∑∞

i=−∞ Eint(ri ))/A0 is the coefficient characterizing the effects of solutes on the the

stacking fault energy.

Results

The interactions of Y atoms versus position for each of the stable basal (I1, I2 and E ), pyramidal

I (SF2 and SF3), and pyramidal II stacking faults in Mg are shown in Figure 3.4. Also shown

are the DFT results of Yin et al. [237] that were used for fitting of the MEAM Mg-Y potential.

Also shown in each figure is the coefficient k as computed using the MEAM potential and DFT.

For all planes, the interaction between a Y atom and the stacking fault becomes negligible

after a few atomic layers from the stacking fault plane. For basal stacking faults, the MEAM

energies are always negative (attraction) whereas the DFT energies are negative for the first

few planes but then become positive at larger distances. The basal intrinsic I1, I2 and extrinsic

E stacking fault energies decrease with Y concentration but the MEAM potential yields k

values that are approximately 50% smaller than the DFT results. The Y interactions with the

pyramidal I SF2 show the same alternation in sign with positions in alternate layers, consistent

with the variations in out-of-plane atomic relaxation in successive atomic layers in pure Mg

[236]. But the MEAM values are again smaller in magnitude than the DFT values, leading to a

smaller value of the coefficient k. There are no DFT results for the basal E and pyramidal I SF3

stacking faults. The Y interactions with the Pyramidal II stacking fault are in reasonably good

agreement with the DFT results in trend and magnitude. However, the MEAM value in the first

plane is somewhat lower than the DFT value. This leads to a value for the coefficient k that

is slightly smaller than, but comparable to, the DFT value. The MEAM and DFT values of k

for the various stacking faults are shown again in Table 3.5 along with the predictions of the

Kim potential. The new MEAM potential is generally more accurate than the Kim potential in

terms of signs and magnitudes, especially for the pyramidal I faults.

3.2.3 Y interactions with the pyramidal II 〈c +a〉 edge dislocation

Slip of the 〈c +a〉 dislocations in Mg is crucial for achieving plastic strain in the 〈c〉 direction.

This motivated a recent DFT study of the interaction of Y solutes with the pyramidal II edge

core [36].

Computational details

In the DFT study, the simulation box has a periodic length of ∼ 1nm along the line direction

[36]. The computation yields the total energy Etot(xi ,1, xi ,2) of the DFT cell containing the Mg

dislocation and a solute at position (xi ,1, xi ,2) relative to the center of the dislocation core.
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Figure 3.4 – Interaction energy of Y solute with various stacking faults in Mg, as computed
using the current MEAM potential and using the DFT [237], as a function of distance from
stacking fault plane: (a) basal I1 (b) basal I2 (c) basal E (d) pyramidal I SF2 (e) pyramidal I SF3
(f) pyramidal II. The size of the simulation cell N1 ×N3 ×N3 for the corresponding stacking
fault, used in MEAM calculation, is indicated in parentheses.

The interaction energy is the difference between the solute at (xi ,1, xi ,2) and the reference

energy Eref of a solute far from the dislocation in the perfect crystal Mg lattice, Eint(xi ,1, xi ,2) =
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Table 3.5 – Properties of Y solute atom in Mg as calculated by the current MEAM potential,
the DFT, and the Kim potential. ∆V /V0 is the normalized Y misfit volume of Y and k is the
coefficient for the average effect of solute concentration on the stacking fault energy (units of
mJ/m2).

MEAM Kim Potential DFT

∆V /V0 0.593 0.240 0.567a, 0.580b, 0.636c

k(basal I1) -65.83 -2.41 -145.52a

k(basal I2) -132.54 -5.33 -210.93a

k(basal E) -199.22 -8.26
k(pyramidal I SF2) -187.34 -19.08 -675.43a

k(pyramidal I SF3) -140.74 73.32
k(pyramidal II) -163.92 -250.45 -214.02a

a : Yin et al. [237]
b : Sandlöbes et al. [181]
c : Yasi et al. [234]

Etot(xi ,1, xi ,2)−Eref. Due to the small size of the DFT computational cell, it is not possible

to compute Eref in the same geometry. Uncertainties in the total energy computation also

make it inaccurate to use a separate simulation of a solute in a periodic perfect crystal as

the reference energy. A reference energy is therefore estimated by averaging the energies of

the dislocation with solutes at all sites on the two planes on either side of the dislocation

slip plane, Eref = (1/N )
∑

i Etot(xi ,1, xi ,2). For interaction energies governed only by the elastic

interaction between the edge dislocation pressure field p and the solute misfit volume ∆V ,

Eint(xi ,1, xi ,2) = p(xi ,1, xi ,2)∆V , the sum above should be nearly zero. Consistency of the

estimated value of Eref and the DFT results can be further assessed by comparing the DFT

energies to the elasticity predictions for atomic sites away from the core, where the elasticity

prediction becomes increasingly accurate and the field of interaction energies versus atomic

position should be smooth. The use of the short periodic length combined with the low Peierls

stress of the dislocation (and presumably of the individual partial dislocations) also leads to

an inability to measure the interaction energy Eint(xi ,1, xi ,2) at sites whose neighbors along

the glide plane have much lower (more negative) interactions. When a solute is placed in such

a site, one or both partials glide such that the solute position relative to the dislocation core is

in the energetically-favorable site.

Simulation of the dislocation using the MEAM potential follows a standard method. We start

with a large pure Mg simulation cell (lx1 × lx2 × lx3 ∼ 30nm×30nm×1nm) with x1 −x3 as the

glide plane, x3 axis parallel to the dislocation line, and x2 axis normal to the glide plane. A

straight dislocation is introduced at the origin by applying the anisotropic elastic displacement

field [13] corresponding to the Volterra dislocation. Relaxation of atomic positions is then

carried out while holding fixed those atoms within two times the cutoff radius (2rc ) from

the outer boundary. Periodic boundary conditions are used in the dislocation line direc-

tion. Relaxation is performed using the conjugate gradient method until the forces on all

atoms are less than 10−6 eV/Å. A single solute is then introduced at (xi ,1, xi ,2), the system

is relaxed and the total energy is computed. The interaction energy is then computed as
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3.2. Mg-Y MEAM interatomic potential

Eint(xi ,1, xi ,2) = Etot(xi ,1, xi ,2)−Eref. Here, Eref can be computed either by placing a solute

far from the dislocation (but not near the outer boundary) or in a separate perfect-crystal

simulation. As in the DFT simulations, the high-energy solute sites are not always measurable

because the dislocation can glide such that the solute resides in a lower energy site relative to

the final position of the dislocation. In atomistic simulations, which are not limited to small

sizes, this issue can sometimes be mitigated by using a longer dislocation line length. However,

for longer line lengths, the dislocation may still glide locally near the solute while remaining in

the original locations further away, i.e. the dislocation becomes bowed. Thus, the computed

energy may still not reflect the true interaction energy of a solute with a straight dislocation.
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Figure 3.5 – Interaction energy of Y solute with pyramidal II 〈c +a〉 edge dislocation. (a)
Core structure of pyramidal II 〈c +a〉 edge dislocation in pure Mg obtained from the MEAM
potential. Yellow atoms correspond to non-hcp core atoms as identified from common
neighbor analysis. Atomic sites are marked for which interaction energies are listed in Table
3.6. (b) Interaction energy map for different atomic sites around the dislocation with lx3 ∼6.5
nm, as computed from the MEAM potential. For the site highlighted by the cyan outline, the
interaction energy of -0.563 eV is beyond the range of the indicated scale.

Results 3

The interaction energies of Y solutes for all of the atomic sites around the edge dislocation

as computed using the Mg-Y MEAM potential are shown in Figure 3.5a for dislocation line

length ∼ 6.5 nm. Specific MEAM and DFT values for the sites studied by DFT are listed in

Table 3.6. The table indicates those sites that are unstable and the final relative position of

the solute due to dislocation glide during relaxation. MEAM computations are carried out for

two lengths, lx3 ∼ 1,6.5 nm. For cases where solutes are stable at both lengths, the difference

reflects solute-solute interactions at a separation of ∼ 1 nm. For cases where the solutes are

unstable at lx3 ∼ 1 nm, the energies at lx3 ∼ 6.5 nm are estimates including energy of a possible

local dislocation bowing.

The interaction energies calculated from the MEAM potential with lx3 ∼ 6.5 nm are generally

in good agreement with the DFT values. The sign of interaction energies − indicating the

attractive and repulsive sites − at each site are the same in both DFT and MEAM calculations

3The DFT values presented in this section were provided by Prof. Maryam Ghazisaeidi from the Ohio State
University, USA.
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except for the site 4. Moreover, in both DFT and MEAM calculations, the most stable sites

around both partials (site 3 around left partial and site 6′ around right partial) are the same. In

DFT, site number 7′ has a very large positive interaction energy which is unusual given that

the neighboring sites (4′,10′) have negative interaction energies and so the dislocation would

be expected to glide to one of these substantially lower-energy sites. The typical absolute

deviation in interaction energy, excluding sites 4 and 7′, is ∼0.04 eV, with a maximum of 0.107

eV for site 2′. The absence of any systematic difference suggests that the reference energy

used in the DFT is reasonable. The deviations also might not be crucial because dislocation

properties are influenced by the collective solute field in a random alloy [121]. Finally, the

interactions of Y with the left partial dislocation (around x1 = -3a in Figure 3.5b) are observed

to be stronger than around the right partial dislocation (at around x1 = 3a in Figure 3.5b),

which is consistent with the wider spreading of the right partial dislocation core. The wider

spreading of the right partial core is also presumably associated with a lower Peierls stress that

leads to a larger number of atomic sites being unstable to glide that partial.

Table 3.6 – Interaction energy, in eV, of Y with the pyramidal II 〈c +a〉 edge dislocation in Mg
at various atomic sites around the dislocation core, as calculated from the current MEAM
potential and using DFT for lx3 ∼1 nm. The atomic sites of Y solute are marked in Figure 3.5a.
Asterisk(∗) means that the dislocation configuration is unstable for solutes at that site, and the
dislocation partial glides to put the solute on the site mentioned in parentheses.

Site# Interaction Energy (eV) Site# Interaction Energy (eV)

MEAM DFT MEAM DFT

lx3 ∼ 1 nm lx3 ∼ 6.5 nm lx3 ∼ 1 nm lx3 ∼ 1 nm lx3 ∼ 6.5 nm lx3 ∼ 1 nm

1 ∗(→4) 0.034 0.081 1′ ∗(→ 6′) -0.187 -0.211
2 ∗(→5) -0.344 ∗ 2′ ∗(→ 11′) -0.327 -0.220
3 -0.558 -0.563 -0.475 3′ ∗(→ 6′) -0.289 -0.278
4 -0.056 -0.033 0.180 4′ -0.095 -0.068 -0.090
5 -0.445 -0.446 -0.385 5′ ∗(→ 4′) -0.011 ∗
6 ∗(→3) -0.482 ∗ 6′ -0.333 -0.340 -0.280
7 ∗(→4) -0.003 ∗ 7′ ∗(→ 4′) 0.022 1.183
8 0.043 0.017 0.054 8′ ∗(→ 12′) 0.074 0.048
9 -0.341 -0.342 -0.308 9′ ∗(→ 13′) 0.135 0.074

10′ ∗(→ 14′) -0.099 -0.074
11′ -0.384 -0.376
12′ -0.111 -0.112
13′ 0.047 0.042
14′ -0.147 -0.151

3.2.4 Discussion on the applicability of the Mg-Y MEAM potential

The Mg-Y MEAM potential makes predictions that are generally in reasonable agreement

with experiments and/or DFT. However, as with all potentials, the agreement is not perfect.

Since plastic deformation in Mg involves many different dislocation phenomena (solute

strengthening of various slip systems, pyramidal-to-basal transformation, pyramidal cross-

slip), it is thus important to carefully identify those problems for which the potential is useful
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and those problems where the potential remains insufficient for obtaining realistic semi-

quantitative results.

First, the MEAM solute misfit volume is well-captured. This is important for solute inter-

actions with the pressure field of a dislocation. These interactions tend to dominate solute

strengthening [120, 121, 234]. The role of the solute interaction with the basal I2 stacking fault

in the solute strengthening of basal slip appears small [204], suggesting that the potential is

suitable for the study of basal solute strengthening. The full interactions with the pyramidal

II 〈c +a〉 edge dislocation around the core are also reasonably good (with the exception of

one unusual site energy in the DFT results). Along with the good misfit volume, this indi-

cates that the potential should be suitable for semi-quantitative assessment of pyramidal

II solute strengthening. Together, these enable some assessment of the plastic anisotropy

as characterized by the ratio of pyramidal II to basal Peierls stresses. The interactions of Y

with the pyramidal I 〈c +a〉 and prismatic 〈a〉 dislocations have not been examined, and so

applications to the strengthening of these slip systems are not yet validated.

The solute interactions with the pyramidal II stacking fault are also well-captured. This is

encouraging since the pyramidal II 〈c +a〉 dislocations are energetically preferred to the

pyramidal I 〈c +a〉 dislocations, such that the study of the pyramidal II 〈c +a〉 is probably

more important than the study of the pyramidal I 〈c +a〉. The MEAM solute interactions with

the basal faults are reasonable, but not quite strong enough. The resulting k values are then

too small in comparison to the corresponding value for the pyramidal II stacking fault. This

suggests some inaccuracy in using the potential to examine the PB transition of the pyramidal

II edge dislocation. However, at low solute concentrations, the absolute difference in basal

stacking fault energy will be small and the pyramidal-to-basal transition is not dominated by

the energy of the I1 stacking fault [232]. Thus, the potential may provide some insights into

any role of Y solutes in modifying the energy barrier for this transformation.

The major deviation for the Mg-Y MEAM potential is in the value of k for the pyramidal I SF2

stacking fault. The MEAM potential predicts this value to be comparable to the k value for the

pyramidal II, whereas the DFT value for the pyramidal I k is approximately 3 times larger than

that of the pyramidal II. The MEAM potential therefore cannot be used to fully investigate the

change in the pyramidal II to the pyramidal I cross-slip energy barrier, which holds the key to

understanding ductility in Mg alloys, as will be discussed in Chapter 6. However, the potential

can be used to assess the role of specific solute configurations in reducing the pyramidal

II-I cross-slip barrier. Specifically, since the solute-stacking fault interactions at individual

sites around the pyramidal II and the pyramidal I faults can be computed with reasonable

accuracy using the MEAM potential, the energies of the pyramidal II and the pyramidal I

screw dislocations in the presence of specific solute configurations can be analyzed, and the

cross-slip barrier between the pyramidal II and the pyramidal I computed. The correlation

of local solute energies, even if approximate, with a corresponding change in the cross-slip

barrier, would enable testing of assumptions underlying the model presented in Chapter 6.

39



Chapter 3. Interatomic potentials employed in the atomistic simulations

The application of any interatomic potential must always be undertaken with care. Researchers

may identify other valuable phenomena for which atomistic studies of Mg-Y could be insight-

ful. The current potential may be useful for examining such problems, especially for testing

mechanistic models. However, we advocate that researchers examine the properties of this

Mg-Y potential in detail to validate, quantitatively, or qualitatively, its applicability to any

specific phenomenon. We also encourage further validation and testing of the potential to

reveal any additional positive features or to expose any flaws that would make the potential

unsuitable for certain problems.
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4 Pyramidal-to-Basal Transition of
〈c +a〉 Dislocations in Mg-Y Alloys

This chapter is extracted from the following publication

1. Ahmad R., Wu Z., Groh S. and Curtin W. A. (2018). Pyramidal II to basal transfor-

mation of 〈c +a〉 edge dislocations in Mg-Y alloys. Scr. Mater., 155: 114-118.

Experimental studies on Mg-RE alloys, discussed in Section 1.6, show that enhanced ductility

of Mg-RE alloys is caused by the increased activity of 〈c +a〉 dislocations on pyramidal planes

that enable the plastic deformation in 〈c〉 axis direction. Understanding the origins of the

activation of pyramidal 〈c +a〉 dislocations in Mg-RE alloys, thus, is the key to lay out a path

for designing new high ductile Mg alloys. Previous research works [4, 228] have suggested

a plausible explanation that increased activation of pyramidal 〈c +a〉 dislocation might re-

sult from RE solutes affecting the stability of the easy-glide pyramidal 〈c +a〉 dislocations

against the PB transition. If RE solute-dislocation interaction decreases the energy difference

between the easy-glide pyramidal dissociated and the sessile basal-oriented 〈c +a〉structures,

it would typically decrease the energetic driving force and increase the energy barrier for the

deleterious PB transformation. This would delay the transformation to longer times or higher

temperatures, allowing much more glide of 〈c +a〉 dislocation on the easy-glide pyramidal

planes, a reduced apparent CRSS for 〈c +a〉 slip, and an increase in 〈c〉 axis strain and overall

ductility. A comprehensive investigation into this proposed mechanism by performing finite

temperature MD simulations in Mg-3at.%Y, a model for Mg-RE alloys, is the focus of the

present chapter.

4.1 Computational details

Here, we examine the stability of edge 〈c +a〉 dislocation on the pyramidal II plane in a model

Mg-3at.%Y alloy. We focus on the pyramidal II 〈c +a〉 dislocation as Mg is observed to deform

predominantly by 〈c +a〉 dislocations moving on pyramidal II plane [17, 155, 200]. Addition-

ally, since pyramidal I 〈c +a〉 mixed dislocation is more susceptible to the PB transition [229],
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〈c +a〉 dislocations have a higher probability to be stabilized on easy-glide pyramidal II plane

by RE solutes. We use three times the concentration of Y solutes at which enhanced ductility is

observed in experiments to magnify any effects of Y on the PB transformation. To describe the

interatomic interaction, We use the MEAM interatomic potential for Mg-Y alloys presented

in Section 3.2. As shown in Table 3.5 and Fig. 3.4, this Mg-Y MEAM potential yields a larger

negative k (solute effect on stacking fault energy) than that of DFT for pyramidal II stacking

faults and a smaller negative k for the basal faults; these differences favor the stability of the

pyramidal II easy-glide dislocation structure as compared to the basal-oriented dislocation

structures. The MEAM potential for Mg-Y is thus suitable for investigating the concerned

mechanism.

MD simulations are performed using the procedures similar to those used previously [227,

228]. Initial cells are perfect hcp lattice of size ∼60 nm × 60 nm × 2 nm oriented with 〈c +a〉 di-

rection along x axis, the pyramidal II plane normal along y axis, and 〈1̄010〉 along z axis. The

simulation cell size along the dislocation line direction is large enough to accommodate the

critical 3D nucleus of the thermally activated PB transition state [228]. Mg-3at.%Y is created

by randomly substituting 3 % of the Mg atoms with Y atoms. A 〈c +a〉 edge dislocation with

Burgers vector in x and line direction in z is created by displacing all atoms according to the

anisotropic linear elastic Volterra solution [13] with periodicity along z . The system is then

relaxed using the conjugate gradient method while holding all atoms within 2rc (rc = potential

cutoff radius) of the outer boundary fixed.

In dilute random solid solution alloys under quasi-static loading at room temperature, plas-

ticity is generated as the easy-glide dislocations move, via thermal activation, from one local

favorable solute environment to another. The local favorable solute environments lower the

total energy of the dislocation, which may then also energetically stabilize the easy-glide

dislocations relative to the sessile basal-oriented structure. To capture these local favorable

solute environments, we introduce the dislocation line at 30 successive locations separated

by 1 nm along the glide direction, relax the entire simulation cell as described above, and

measure the energy within a cylinder of radius 6|c +a| centered on the core and aligned along

z . We select the lowest-energy configuration as the starting configuration for subsequent MD

simulations of the PB transformation.

For MD simulations at finite temperatures of 500, 600, and 700 K, we extract a cylindrical

simulation cell of radius 15 nm centered at the dislocation core from the initial larger cell,

rescale the simulation cell size and atom positions to match the finite-temperature lattice

parameters of Mg-3at.%Y, fix the boundary atoms and initialize atom velocities using a Gaus-

sian distribution corresponding the desired temperature. The integration of the equations of

motion is then performed using the velocity-Verlet algorithm with a time-step of 1 fs and a

Nose-Hoover thermostat to maintain the temperature [159]. All simulations are performed

under zero applied stress.
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4.2. Results

4.2 Results

In this section, we report the results obtained from the MD simulations carried out in Mg-

3at.%Y alloy and compare them with that in pure Mg. We consider seven Mg-3at.%Y samples

with different random Y distributions and corresponding favorable pyramidal II 〈c +a〉 edge

dislocation configurations.

4.2.1 Transition mechanism
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Figure 4.1 – Pyramidal-to-basal (PB) transition of pyramidal II 〈c +a〉 edge dislocation in
Mg-3at.%Y alloy at a temperature of 500 K leading to (a) basal-dissociated 〈c +a〉 dislocation
and (b) basal-dissociated 〈c〉+〈a〉 dislocation. Smaller atoms are Mg and bigger atoms are
Y. Atoms are colored according to their local crystal structures identified by the common
neighbor analysis (CNA) [72]: blue - hcp, green - fcc, purple - bcc, yellow - others; occasional
appearances of yellow atoms away from the dislocation core structure are due to temporary
changes of CNA values caused by atomic vibrations at 500 K.

In all cases, the 〈c +a〉 edge dislocation dissociated on the pyramidal II plane undergoes a

transformation to one of the two basal-dissociated structures (basal-dissociated 〈c〉+ 〈a〉 and

dissociated 〈c +a〉 connected by a basal I1 stacking fault) as shown in Fig. 4.1. Transitions to

the final structure are always preceded by the nucleation of a Shockley partial 〈a〉 dislocation

on the basal plane from one of the pyramidal II 〈c +a〉 partial dislocations as shown in the

second column of both rows of Fig. 4.1. This is the main rate-limiting process in the entire

PB transition. The nucleated Shockley partial is connected to the rest of the dislocation

structures by an I2 stacking fault on the basal plane. Subsequently, another Shockley 〈a〉partial

dislocation is nucleated from the remaining dislocation structure. The next stage of the PB

transition may happen in two ways. First, the nucleated dislocations stay close to each

other and combine to form climb dissociated 〈c +a〉 dislocation partials connected by an
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I1 sacking fault on the basal plane as shown in Fig. 4.1(a). The separation between the two

partials and thus the width of I1 stacking fault is kinetically limited and varies from 1.5b to

5b among different simulation runs. It should be noted that equilibrium separation between

the climb dissociated partial is much larger, but increasing the partial separation requires a

self-compensated climb. In the second transformation route shown in Fig. 4.1(b), the second

nucleation of Shockley 〈a〉 partial leads to the clear separation of 〈c〉 from 〈a〉 dislocation. The

whole dissociated 〈a〉, comprising the two Shockley partials connected by an I2 stacking fault,

glides away leaving behind the 〈c〉 dislocation. The remaining 〈c〉 dislocation is dissociated

into two half 〈c〉 dislocations that are delimited by an extrinsic basal stacking fault. Both the

rate-limiting process and final structures are those observed in pure Mg [228]. Y solutes thus

have no systematic effects on either the PB transition mechanism or the final dislocation core

structures.
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Figure 4.2 – Mean transition time t̄ of the pyramidal-to-basal transition versus temperature
for both Mg-3at.%Y and pure Mg. The simulations are performed at 500 K, 600 K, and 700
K temperatures, and plots are shifted around those temperatures for clarity purpose only.
Each diamond marker corresponds to a different random spatial distribution of Y solutes.
Error bars show the 95% confidence interval of mean transition times for each random solute
distribution.
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4.2.2 Transition time

We measure the mean transition time as the average of ten nominally identical MD simulations

for each sample, using different random initial atom velocity assignments. Fig. 4.2 shows

the mean transition time t̄ measured in various Mg-3at.%Y samples at three temperatures.

The results of pure Mg are also shown for comparison. No significant effect of Y on the

average transition time is seen. Small fluctuations are found among the different random

alloy realizations. The 95% confidence interval indicated are associated with the stochastic

nature of thermally-activated transitions, and are similar to those in pure Mg. We observed no

systematic effect of Y on stabilizing the easy-glide 〈c +a〉edge dislocation dissociated on the

pyramidal II plane.
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Figure 4.3 – Energies of the pyramidal II dissociated and the basal-oriented 〈c +a〉 dislo-
cation structures in pure Mg and Mg-3wt.%Y alloy. (a) Dislocation energy within a radius
of cylinder r for different dislocation structures in both Mg-3at.%Y and pure Mg, and (b)
corresponding dislocation structures in Mg-3at.%Y. Error bars show the standard deviation of
dislocation energy measured in alloys with different random Y distributions. For color scheme
in (b), refer to Fig. 4.1.
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4.2.3 Energetic force driving the PB transition

The thermally-activated PB transition is driven by the reduction of the total dislocation energy

upon transformation into different core structures. As shown in Section 1.3, the energy per

unit dislocation length within a cylinder of radius r can be divided into two parts

Etot(r ) = Estruc +Eelastic(r ), (4.1)

where Estruc is the energy within a distance rmin from the center of the dislocation and includes

the core energy, stacking fault energy, interaction energy between partials, near-core elastic

energy, and near-field solute energies. Eelastic(r ) is the far-field elastic energy outside of rmin

ad given by

Eelastic(r ) = K ln(r /rmin), (4.2)

where K is a function of the total Burgers vector b, the dislocation line direction ξ, and the

anisotropic elastic constants [232]. Eelastic(r ) is thus independent of the core structure within

rmin and so is identical for all cores. The total energy differences among dislocations with

different core configurations then depends on ∆Estruc, which is equal to the difference in total

energy ∆Etot(r ) at any r > rmin, aside from small effects of solute fluctuations.

Fig. 4.3 shows Etot(r ) versus ln(r /rmin) with rmin = 6b for the different structures when

quenched to T = 0 K for both Mg-3at.%Y and pure Mg. For the alloys, the average and standard

deviation across the seven different solute environments are shown. The total energy Etot(r )

scales linearly with ln(r /rmin) as expected, aside from some fluctuations due to the random Y

solute distributions. In pure Mg, ∆Estruc ≈−0.3 eV/Å between the initial and lowest-energy

transformed structures [228]. The favorable solutes interacting with the initial pyramidal II

dissociated 〈c +a〉 dislocation do lower the energy. However, perhaps surprisingly, for the

same spatial solute distribution, the transformed structure can also find a lower-energy posi-

tion. The total energies of the basal-oriented sessile dislocations are thus also reduced relative

to pure Mg. At 3 at.% Y with this Mg-Y potential, the average energy reductions are ∼0.06 eV/Å

(initial pyramidal-dissociated 〈c +a〉), ∼0.11 eV/Å (basal-dissociated 〈c +a〉), and ∼0.05 eV/Å

(basal dissociated 〈c〉+ 〈a〉). Evidently, while the initial dislocation was chosen specifically as

a local low-energy configuration, the transformation process at finite temperatures enables

the final dislocation to find a comparably lower-energy final state. Thus, Y solutes lower the

energy of all relevant dislocation structures and therefore do not reduce the average driving

force for the transition process. There is then no expectation that the average energy barrier

should be changed, consistent with the direct simulations of the transition time.

We conclude that the mechanism of increased Mg ductility via stabilization of the easy-glide

〈c +a〉 through favorable solute fluctuations is thus unlikely to operate. Since experiments

on Mg-3wt.%RE alloys show increased 〈c +a〉 activity and ductility, some other, dominant

mechanism(s) must be activated upon addition of dilute RE solutes. In the following chapters,

we present a cross-slip based mechanism to explain the enhanced slip of the pyramidal
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〈c +a〉 dislocations and experimental observations of ductility in different Mg alloys.
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5 Cross-Slip Mechanism of Pyramidal
〈c +a〉 Screw Dislocations in Mg

This chapter is in part extracted from the following publication

1. Ahmad R., Wu Z. and Curtin W. A. (2020). Analysis of double cross-slip of pyrami-

dal I 〈c +a〉 screw dislocations and implications for ductility in Mg alloys. Acta

Mater., 183: 228-241.

Before expounding on the full mechanistic theory responsible for the activation of the pyrami-

dal 〈c +a〉 dislocations and resultant increased ductility in certain Mg alloys, we first need to

understand the energetics and mechanisms associated with the cross-slip of the pyramidal

〈c +a〉 screw dislocations in Mg that help circumvent the detrimental PB transition and forms

the core component of the ductility theory to be presented in Chapter 6.

The 〈c +a〉 screw dislocations can dissociate and glide either on the pyramidal I or on the

pyramidal II planes of the hcp crystal structure. Due to residing on different crystallographic

planes, the two 〈c +a〉 screw dislocations have different dislocation core structures and differ-

ent energies. Experimental observations and results from atomistic simulations demonstrate

that in pure Mg, the 〈c +a〉 dislocations is more stable on the pyramidal II than on the pyra-

midal I plane. Furthermore as shown in Fig. 5.1, no two pyramidal II planes in hcp crystal

intersect with each other along a common 〈c +a〉 direction, and thus cross-slip of the pyra-

midal II 〈c +a〉 screw dislocation in pure Mg can be accomplished only by going through

the high-energy pyramidal I plane. The atomistic mechanism underlying the pyramidal II-

pyramidal I cross-slip has been investigated in detail through NEB computations by Wu and

Curtin [230] and presented briefly below in Section 5.1.

The energy difference between the high-energy pyramidal I and the low-energy pyramidal

II 〈c +a〉 dislocations is 27 meV/nm in pure Mg and the relative stability between the two

dislocations can be altered by introducing solute elements which will be discussed in Sec-

tion 6.2. Therefore, to understand the cross-slip behavior of the pyramidal 〈c +a〉 dislocations

in Mg alloys, we also need to gain an insight into the cross-slip mechanism when pyramidal I

49



Chapter 5. Cross-Slip Mechanism of Pyramidal 〈c +a〉 Screw Dislocations in Mg
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Figure 5.1 – Schematic illustration of the pyramidal I and the pyramidal II planes in the
hcp crystal structure. The planes shown here intersect each other along a common 〈c +a〉 di-
rection and thus are accessible to the pyramidal 〈c +a〉 dislocations through the cross-slip
process. The cross-slip of the 〈c +a〉 screw dislocations residing on the pyramidal II plane is
accomplished by going through the pyramidal I plane. On the other hand, the 〈c +a〉 screw
dislocation residing on the pyramidal I plane has the option to cross-slip either directly to the
pyramidal I plane or to the pyramidal II plane.

〈c +a〉 screw dislocation is more stable than pyramidal II. The existence of the two pyramidal

I and one pyramidal II planes intersecting with each other along the 〈c +a〉 direction leads

to the various possible paths for the cross-slip process. We present and analyze various pos-

sible routes of the cross-slip process in the pyramidal I favorable regime by means of NEB

calculations in Section 5.2. We, however, emphasize that the pyramidal II favorable regime is

more important due to the pyramidal II 〈c +a〉 screw dislocation being more stable in pure

Mg. The pyramidal I favorable regime is relevant only at higher concentrations of the solutes

that reduce the energy difference between the pyramidal I and the pyramidal II 〈c +a〉 screw

dislocations.

Based on the results gleaned from the NEB calculations, a model for computing the activation

parameters of the pyramidal 〈c +a〉 cross-slip process is presented in Section 5.3.

5.1 Cross-slip of 〈c +a〉dislocation in pyramidal II favorable regime

Wu and Curtin [230] perform extensive NEB computations to reveal and elucidate the atomistic

mechanism associated with the cross-slip of 〈c +a〉 dislocations in the pyramidal II favorable

regime. They employ the pure Mg potential MEAM_I presented in Table 3.1 that predicts

pyramidal II 〈c +a〉 screw dislocation more stable than pyramidal I.

Fig. 5.2 shows the mechanism and energetics associated with cross-slip of 〈c +a〉 disloca-

tion in the pyramidal II favorable regime. The atomic configurations along the MEP of the
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Figure 5.2 – Energetics and mechanism of the 〈c +a〉 cross-slip from the low-energy pyra-
midal II to the high-energy pyramidal I plane. Atomic configurations of dislocation encoun-
tered during the NEB calculations are shown for (a) dislocation length of 146 Å, (b) dislocation
length of 292 Å. The numbers above atomic configurations indicate the reaction coordinates
shown in (c) and (d). Various cross-slip stages are marked in both (a) and (b). Energy-changes
during the cross-slip processes for various dislocation lengths as a function of reaction coordi-
nate are shown with (c) pyramidal II and (d) pyramidal I 〈c +a〉 screw dislocation as reference.
In (c) and (d), the cross-slip barrier associated with different dislocation lengths are denoted
as ∆GII-I and ∆GI-II. Only non-hcp atoms involved in dislocations cores are shown. The atoms
are colored according to local crystal structure identified by the common neighbor analysis:
purple, bcc; yellow, others. From Wu and Curtin [230].

cross-slip process from pyramidal II to pyramidal I plane is shown in Fig. 5.2(a) and (b) for

dislocation lengths of 146 and 292 Å, respectively. Fig. 5.2(c) and (d) present the energy change

of dislocation structures as a function of reaction coordinate during the cross-slip process

with pyramidal II and pyramidal I 〈c +a〉 dislocations as reference states, respectively. The

reaction coordinate (RC) is a measure of the cumulative distance of the replicas along the MEP
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starting from 0 at replica k=1. For replica k > 1, RC(k) =∑k
j=2 |R j −R j−1| where R j is the 3N

dimensional vector in configuration space of the atomic positions in replica j and N is the

total number of atoms in each replica.

The NEB results show that the cross-slip mechanism is accomplished in three stages marked

in Fig. 5.2(a) and (b): nucleation, propagation, and annihilation. The first stage (0<RC<17) is

the nucleation of jog/kink pair that transfers a part of the pyramidal II 〈c +a〉 dislocation on

thepyramidal I plane. The energy change associate with this stage is length independent and

depicted in Fig. 5.2(c) as the shaded region. During the second stage (17<RC<63 for dislocation

length 292 Å), the incipient jog/kink pair move in opposite directions along the dislocation

length gradually transferring the increasing length of the 〈c +a〉dislocation from the pyramidal

II to the pyramidal I plane. The energy change during this stage is length-dependent and arises

solely due to the energy difference between the two pyramidal 〈c +a〉 screw dislocations. In

the last stage (17<RC<63 for dislocation length 292 Å), the two ends of the jog/kink pair come

very close to each other due to the periodic boundary condition, and annihilate each other.

The energy change in this stage is length independent, and the same as that associated with

the first stage.

The main findings of the NEB calculations are following. First, the cross-slip of pyramidal

〈c +a〉 proceeds via a unique mechanism that does not involve any dislocation constriction as

in the Friedel-Escaig mechanism of cross-slip in fcc metals [74, 173]. Secondly, the total energy

barrier for 〈c +a〉 cross-slip from the low-energy pyramidal II to the high-energy pyramidal

I plane is length-dependent and can only be accomplished in presence of a driving stress

that reduces the cross-slip free energy by performing work on the cross-slipped dislocation

as discussed in Section 5.3. Thirdly, the energy barrier involved in the 〈c +a〉 cross-slip from

the high-energy pyramidal I to the low-energy pyramidal II is length independent and is the

intrinsic barrier associated with the nucleation of jog/kink pair. Thus, the double cross-slip of

〈c +a〉 dislocation from one pyramidal II to another pyramidal II plane is controlled by the

energy barrier of the cross-slip from pyramidal II to pyramidal I plane.

5.2 Cross-slip of 〈c +a〉 dislocation in pyramidal I favorable regime

In the solute regime where 〈c +a〉 screw dislocation is more stable on pyramidal I than on

the pyramidal II plane, the cross-slip behavior could become much more interesting due

to the fact that as shown in Fig. 5.1, two pyramidal I and one pyramidal II planes contain a

common 〈c +a〉 Burgers vector. Due to the availability of two equivalent pyramidal I planes for

cross-slip, 〈c +a〉 dislocation residing on the low-energy pyramidal I plane may not necessarily

be required to cross-slip first onto the high-energy pyramidal II plane.

In the pyramidal I plane favorable regime, there are four possible 〈c +a〉 double cross-slip

paths, as shown in Fig. 5.3. The first possible path (Fig. 5.3(a)) requires cross-slip onto a

higher-energy pyramidal II plane, glide by some distance on the pyramidal II plane, and then

cross-slip back to a pyramidal I plane parallel to the original plane. A second plausible cross-
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slip path (Fig. 5.3(b)) is similar to the first except that the dislocation cross-slips onto the other

accessible pyramidal I plane after some glide on the pyramidal II plane. The third possibility is

that the dislocation gliding on a pyramidal I plane cross-slips directly onto the next adjacent

parallel pyramidal I plane shifted by only the pyramidal I interplanar distance, as shown in

Fig. 5.3(c). In this cross-slip mechanism, the dislocation thus has to form a pair of atomic-

scale jogs on the pyramidal II plane connecting the two pyramidal I planes. Unlike the case in

Fig 5.3(a), the dislocation does not fully dissociate onto the pyramidal II plane during the cross-

slip process. Therefore, the energy barriers for the cases in Fig. 5.3(a) and 5.3(c) are different.

The fourth possibility (Fig. 5.3 (d)) involves 〈c +a〉 dislocation cross-slipping directly from

the original pyramidal I plane to the other accessible pyramidal I plane by forming a jog/kink

pair. Since the cross-slip paths are different, solute effects could change dramatically along

the different paths and in the two regimes. Quantitative prediction thus first requires detailed

calculations of these possible transition paths and associated energy barriers, followed by an

analysis of the rates of the cross-slip and PB transition in the regime where pyramidal I slip

is dominant (i.e., in Mg alloys with some sufficiently high concentrations of solutes strongly

favoring the pyramidal I 〈c +a〉 screw dislocation).

In this section, we examine and compare the energetics of these four possible cross-slip paths

using the NEB calculations. We show that the first path (Fig. 5.3(a)) has the lowest cross-slip

barrier so that the cross-slip process is simply the reverse of the process in the pyramidal II

favorable regime.

5.2.1 Computational details

For the mechanism of interest in this work, we are interested in the potential for which the

pyramidal I screw is favorable relative to the pyramidal II screw. In a real alloy, this condition is

created by the average effects of the solutes on the two pyramidal stacking fault energies [237].

Thus the MEAM_II potential provided in Table 3.1 is the most suitable one for this work. This

MEAM_II potential yields an energy difference ∆E I−II
Mg ≈ −28 meV/nm, as compared to the

value ∆E I−II
Mg ≈+27 meV/nm given by the MEAM_I potential. Thus, essentially, this potential is

a proxy for average Mg-Y alloy regarding pyramidal 〈c +a〉 cross-slip. The core structures of

the two pyramidal I and one pyramidal II 〈c +a〉screw dislocations, accessible to each other

by the cross-slip process, are shown in Fig. 5.4.

Introducing solutes into pure Mg has two effects on the cross-slip barrier. The first effect,

mentioned above, is a change in the average dislocation energy difference ∆E I−II
Mg which scales

linearly with solute concentrations [237]. The interatomic potential used here is thus equiva-

lent to an alloy with solutes at concentrations that would give an average effect of∆E I−II
Mg ≈−28

meV/nm. One such alloy would be, according to the DFT predictions, Mg-1.3at%Y. The second

effect of solutes is associated with fluctuations in the local solute concentration that lead

to an additional change in the local cross-slip barrier. This is not captured by the present

interatomic potential, but in fact, need not be. The path and the intrinsic barrier of the un-
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Figure 5.3 – Schematic illustration of possible cross-slip or double cross-slip paths for
〈c +a〉 screw dislocation between two pyramidal I planes. The crystallographic relation
among the different pyramidal I and pyramidal II planes accessible through the cross-slip pro-
cess, i.e. containing a common 〈c +a〉 direction, is also shown. The color code is: pyramidal I
(red), pyramidal II (blue). Dashed lines in (a), (b), (c), and (d) represent the configuration of
〈c +a〉 dislocation lying on the primary pyramidal I plane just before cross-slip, and solid lines
show the dislocation lines during the cross-slip process. (a) and (b), respectively, show the
possibility of 〈c +a〉 dislocation cross-slipping from one pyramidal I plane to the parallel and
other accessible pyramidal I planes after gliding on the high-energy pyramidal II plane. (c)
and (d) depict the accomplishment of the cross-slip from one pyramidal I plane to the parallel
and other accessible pyramidal I planes, respectively, without going through the pyramidal II
plane.

pyr
I pyr II

pyr I

a b c

Figure 5.4 – Core structures of 〈c +a〉 screw dislocations that are accessible through the
cross-slip process, i.e. having common Burgers vector, as determined from the MEAM_II
potential. Dislocation cores shown in (a) and (c) are of equal energy and dissociated on the two
distinct intersecting pyramidal I planes; and dislocation core in (b) is dissociated on the only
intersecting pyramidal II plane. Blue atoms denote atoms with hcp lattice environment and
yellow atoms represent the non-hcp environment as identified from the common-neighbor
analysis [72, 197]. The magenta line in all three figures indicates the pyramidal I or pyramidal
II slip plane on which dislocation is dissociated.
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derlying cross-slip process can be identified only by the average solute effects. The effects of

fluctuations in the random alloy are added subsequently as discussed in Section 6.2. We also

note that the applicability of an effective single atom potential to represent a random alloy has

already been demonstrated and applied to study dislocation cross-slip in random FCC solid

solution alloys [150].

Typical NEB calculations to obtain the minimum energy path (MEP) and associated energy

barrier require the configurations of the initial and final states. Here, the initial state is a

fully-relaxed 〈c +a〉 screw dislocation dissociated on the initial pyramidal I plane. The final

state is a fully relaxed 〈c +a〉 screw dislocation dissociated on the final pyramidal I plane.

For the processes shown in Fig. 5.3(a) and (b), the final plane could be at some arbitrary

glide distance away from the initial plane. NEB calculations are performed at temperature

T = 0 K, and hence the MEP and barriers will also involve the (high) Peierls barrier for the

glide of the pyramidal II screw dislocation at T = 0 K. Such barriers are not small but are not

relevant for the real problem of interest. Under realistic conditions, the glide of the pyramidal

II dislocation occurs over a Peierls barrier that is reduced by whatever applied resolved shear

stress needed to enable plastic flow at experimental strain rates and temperatures. The

reduced glide barriers are much smaller than the cross-slip barriers. Therefore, in our NEB

computations at T = 0 K, the final pyramidal I plane is chosen such that the glide distance on

the pyramidal II plane is minimal. In NEB calculations for the case of Fig. 5.3(a), the glide of

pyramidal II 〈c +a〉 dislocation is restricted to the adjacent pyramidal I planes. Furthermore,

the glide of the pyramidal II dislocation in Fig. 5.3(b) is eliminated entirely, and cross-slip

of the 〈c +a〉 dislocation from the initial pyramidal I to pyramidal II, and then to the final

pyramidal I plane, is accomplished at the same position. Finally, the cross-slip path shown in

Fig. 5.3(d) does not involve glide on the pyramidal II plane.

Since the cross-slip paths in Fig. 5.3(b), after elimination of pyramidal II glide, and Fig. 5.3(d) do

not entail dislocation glide and occur at the same position, we study these two cross-slip cases

in a simulation supercell with periodic boundary conditions in the dislocation line direction

and fixed boundary conditions in the other two directions. We first create the pyramidal II

〈c +a〉 screw dislocation in an effectively infinite elastic medium by applying the anisotropic

displacement field of the corresponding Volterra dislocation, followed by minimizing the

system energy using the conjugate gradient algorithm while keeping the boundary atoms

(within twice the potential cut-off radius from the outer boundary) fixed. We then perform MD

simulations at 100 K and the 〈c +a〉screw dislocation cross-slips to the lower energy pyramidal

I plane as given by the MEAM_II potential. The 〈c +a〉 dislocation on the other accessible

pyramidal I plane is obtained by running MD simulations at 100 K and with a non-glide shear

stress of ≈200 MPa applied in the direction that promotes dissociation of the dislocation

on the other pyramidal I plane orientation [230]. The pyramidal I 〈c +a〉 dislocation cores

thus obtained are further relaxed using the same initial boundary conditions as that of the

pyramidal II dislocation. Thus we obtain three 〈c +a〉 screw dislocations which are shown in

Fig. 5.4: one on the high-energy pyramidal II plane and two of equal energy on the low-energy

pyramidal I planes. The three screw dislocations have the same Burgers vector, share the same
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boundary conditions, and are thus accessible to each other by cross-slip processes.

The minimum energy paths and associated energy barriers of the cross-slip processes are

next probed using the NEB method as implemented in LAMMPS [87, 88, 128, 146, 159]. The

size of the simulation box for these cases is lx × ly × lz ≈ 40×40×21 nm3, where the x axis

is along the [101̄0] direction, z axis along the dislocation line direction [112̄3], and y axis

along the normal of the pyramidal II plane. For the case in Fig. 5.3(b), with pyramidal II glide

eliminated, we use 128 replicas in which two pyramidal I 〈c +a〉 screw dislocations are at the

initial and final replicas with the intermediate replicas initialized by linearly interpolating the

atomic positions of the two end replicas. In the case of Fig. 5.3(d), we use 64 replicas that

are created by splicing the initial and final configurations of different lengths such that the

replicas gradually transform from the initial configuration to the final configurations. We

run the NEB minimization in the two cases until the maximum force on any atom across all

replicas falls below 2 meV/Å.

On the other hand, the cross-slip process shown in Fig. 5.3(a) requires gliding of the disloca-

tion along the pyramidal II plane. To eliminate the image forces due to the fixed boundary

conditions, we investigate this cross-slip path in a simulation box periodic in both the disloca-

tion line and glide directions, i.e. along the x − z pyramidal II glide plane, and with traction

free boundary conditions in the direction (y) perpendicular to the pyramidal II plane. The

coordinate system used in this case is the same as that described above, and the size of the

simulation box is lx × ly × lz ≈ 50×32×21 nm3. We first create two configurations each con-

taining a 〈c +a〉 dislocation on the pyramidal II plane shifted by the minimum glide distance

of
p

3a, a being the lattice constant, along the x direction. The initial and final configurations,

each with a 〈c +a〉 screw dislocation on the pyramidal I plane, are obtained by performing MD

simulations of the two pyramidal II configurations at 100 K. The two pyramidal I 〈c +a〉 screw

dislocations obtained in this way are dissociated on the same type of parallel adjacent pyra-

midal I planes and are connected by the glide of
p

3a on the pyramidal II plane. For the

NEB calculations here, we use a total of 64 replicas with intermediate replicas initialized by

linearly interpolating the atomic positions of the initial and final replicas. This setup of the

NEB calculation also enables us to gauge the feasibility of the cross-slip path shown in the

Fig. 5.3(c), since the minimum energy path will select whether to first cross-slip onto the

pyramidal II plane or directly cross-slip to the adjacent parallel pyramidal I plane.

5.2.2 Cross-slip transition paths and barriers

The results of the NEB calculations are presented as the total excess system energy versus the

reaction coordinate (RC) along the MEP path.

Fig. 5.5 shows the MEP and corresponding energies of the intermediate dislocation structures

for the case shown in Fig. 5.3(b) with glide on the pyramidal II plane eliminated. In this case

the 〈c +a〉 screw dislocation cross-slips from one pyramidal I plane to the other accessible

pyramidal I plane via the pyramidal II plane. The cross-slip occurs in many stages and involves
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5.2. Cross-slip of 〈c +a〉 dislocation in pyramidal I favorable regime
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pyrI-pyrII cross-slip transfer of pyrII dislocation to the upper adjacent pyrII plane pyrII - pyrI cross-slip

Figure 5.5 – Energy difference versus reaction coordinate, as determined in NEB calcula-
tion of the minimum energy path of the cross-slip process between two pyramidal I planes
accomplished through the route where the pyramidal I dislocation cross-slips to other ac-
cessible pyramidal I plane via a high-energy pyramidal II plane. The cross-slip process is
accomplished in three stages as mentioned at the top of the figure. Three steps involved in
each transformation stages are shown: nucleation is the formation of the incipient jog/kink
pairs; spreading is the lateral motion of the kink/jog pair along dislocation length and energy
change in this step is dislocation length dependent; annihilation is the mutual cancellation of
the kink/jog pair forced by the periodic boundary along dislocation length. Atomistic pictures
of intermediate metastable dislocation core structures encountered during the cross-slip pro-
cess −with their reaction coordinates − are shown by drawing only non-hcp near core atoms
identified using common neighbor analysis. The brown cross-hairs plotted on the dislocation
cores are for the purpose of indicating the motion/glide/transformation of dislocation cores
against a static background. A schematic diagram of the cross-slip process, i.e. Fig. 5.3(b), is
depicted in the upper right corner.

several intermediate metastable dislocation structures. Fig. 5.5 also identifies the nucleation,

spreading along dislocation line length, and annihilation of kink/jog pair which accompany

every stage. The intrinsic barrier is involved in these nucleation and annihilation steps. Energy

changes in the nucleation and annihilation steps are dislocation length independent, while

that in the spreading step may depend on the dislocation length (controlled by the energy

difference of the two connected metastable core structures). Furthermore, the enthalpy

change in the spreading part can be reduced by applying a resolved shear stress which does

work in the bowing out of the dislocation. In the first stage, the pyramidal I dislocation

transforms onto the pyramidal II plane (at RC ≈ 44). This process is essentially the same as

that of the cross-slip of the low-energy pyramidal II 〈c +a〉 dislocation to the high-energy

pyramidal I 〈c +a〉 dislocation in pure Mg [230]. The energy barrier in this stage depends

on the dislocation length and is ≈ 0.9 eV for the dislocation length used here (21 nm). This

dislocation core obtained at RC 44 could glide on pyramidal II plane under resolved shear
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Chapter 5. Cross-Slip Mechanism of Pyramidal 〈c +a〉 Screw Dislocations in Mg

stresses which is not considered in the present calculations. The next stage involves the

shuffling of atoms in order to migrate the pyramidal II 〈c +a〉 dislocation from one pyramidal

II plane to the adjacent pyramidal II plane just above ( RC 44 to 187). The energy barrier

(≈ 0.55 eV) for this stage depends weakly on the dislocation length as it goes through slightly

higher-energy metastable dislocation structures (at RC ≈ 86,146). In the final stage, the

pyramidal II 〈c +a〉 dislocation cross-slips back to the pyramidal I plane with an associated

length-independent, the intrinsic energy barrier of ≈ 0.3 eV required to form the cross-slip jog.

For cross-slip of the current dislocation of length 21 nm, the total energy barrier is ≈ 1.15 eV.
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Figure 5.6 – Energy difference versus reaction coordinate, as determined in NEB calcula-
tion of the minimum energy path of the cross-slip process between two pyramidal I planes
accomplished through the route where the pyramidal I dislocation cross-slips directly to
other accessible pyramidal I plane by nucleating a pair of jogs and without ever residing
on the high-energy pyramidal II plane. Three steps of the cross-slip process are shown: nu-
cleation is the formation of the incipient jog/kink pairs; spreading is the lateral motion of the
kink/jog pair along dislocation length and energy change in this step is dislocation length
dependent; annihilation is the mutual cancellation of the kink/jog pair forced by the periodic
boundary along dislocation length. Atomistic pictures of intermediate metastable dislocation
core structures encountered during the cross-slip process −with their reaction coordinates
− are shown by drawing only non-hcp near core atoms identified using common neighbor
analysis. A schematic diagram of the cross-slip process, i.e. Fig. 5.3(d), is depicted in the upper
right corner.

Fig. 5.6 shows the second possible MEP and associated energetics for cross-slip between two

different pyramidal I planes as shown Fig. 5.3(d). In this MEP, the first step (RC 1-20) is the

nucleation of a pair of dislocation jogs which transforms a small dislocation segment from

the primary pyramidal I plane to the cross-slip pyramidal I plane. During the second step

(RC 20-84), the cross-slipped jogs expand laterally along the dislocation line and gradually

transforming the dislocation in the process. In the third and last step (RC 84-105), due to the
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5.2. Cross-slip of 〈c +a〉 dislocation in pyramidal I favorable regime

periodic boundary conditions, the two jogs come very close and finally annihilate each other,

transforming the whole dislocation to the cross-slip pyramidal I plane. The energy barrier of

this MEP is the intrinsic energy of formation of the initial cross-slip jogs, ≈ 1.0 eV, and hence is

independent of the dislocation length.
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Figure 5.7 – Energy difference versus reaction coordinate, as determined in NEB calcula-
tion of the minimum energy path of the cross-slip process between two pyramidal I planes
accomplished through the route where the pyramidal I dislocation first cross-slips to a
high-energy pyramidal II plane, and goes back to a parallel pyramidal I plane after gliding
some distance on a pyramidal II plane. The cross-slip process is accomplished in four stages
as mentioned at the top of the figure. The first stage (cross-slip of right partial, and cross-slip
and glide of left partial) is completed by multiple nucleation events which are not well sepa-
rated from each other. Three steps involved in other three transformation stages are shown:
nucleation is the formation of the incipient jog/kink pairs; spreading is the lateral motion
of the kink/jog pair along dislocation length and energy change in this step is dislocation
length dependent; annihilation is the mutual cancellation of the kink/jog pair forced by the
periodic boundary along dislocation length. Atomistic pictures of intermediate metastable
dislocation core structures encountered during the cross-slip process −with their reaction
coordinates − are shown by drawing only non-hcp near core atoms identified using common
neighbor analysis. The brown cross-hairs plotted on the dislocation cores are for the purpose
of indicating the motion/glide/transformation of dislocation cores against a static background.
A schematic diagram of the cross-slip process, i.e. Fig. 5.3(a), is depicted in the upper right
corner.

Fig. 5.7 shows the variation of the energy and the transformation of the dislocation structures

for the cross-slip path in Fig. 5.3(a), where the initial pyramidal I dislocation cross-slips onto,

and glides on, a pyramidal II plane and then cross-slips back onto a pyramidal I plane parallel

to the original pyramidal I plane. The whole process is accomplished in multiple stages

as indicated in Fig. 5.7. We observe that during the first stage (RC from 0 to 66), the right

partial of the 〈c +a〉 screw dislocation cross-slips to the pyramidal II plane, and the left partial
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Chapter 5. Cross-Slip Mechanism of Pyramidal 〈c +a〉 Screw Dislocations in Mg

dislocation cross-slips to and glides on the pyramidal II plane. This stage involves multiple

nucleation events that are not sharply demarcated from each other, thus we cannot determine

the intrinsic barrier for this forward process. This nucleation process is length-dependent

with an intrinsic barrier of at least ≈ 0.23 eV which is the energy change during the RC 63-

66. In the second stage of the process (RC from 66 to ∼ 107), the right partial glides on the

pyramidal II plane. Because the dislocation goes from a low-energy configuration to high-

energy configurations, the energy barrier in this stage is dislocation-length dependent with an

intrinsic barrier of ≈ 0.23 eV. The third stage (RC from 107 to 130) involves the transfer and

a little glide of right partial on the final pyramidal I plane. The energy barrier in this stage is

length-dependent with a small intrinsic barrier of ≈ 0.06 eV. In the last stage (RC from 130 to

172), the right partial further glides on the pyramidal I plane, and the left partial glides on the

pyramidal II plane followed by transfer onto the pyramidal I plane. The intrinsic barrier of this

last stage is ≈ 0.06 eV. The total energy barrier for the overall process is ≈1.49 eV.

5.2.3 Implications for double pyramidal I cross-slip

As briefly discussed in the Introduction and presented in detail in the next Chapter 6, the

ductility-enhancement mechanism envisions that high ductility can be achieved by sustained

plastic strain in the 〈c〉 direction through the generation of 〈c +a〉 dislocation loops at a rate

fast enough to counter the immobilization of 〈c +a〉 dislocations due to the PB transition. The

generation of 〈c +a〉 dislocation loops is accomplished by the double cross-slip of the screw

segments of each dislocation loop. Here, we analyse the cross-slip barriers when the solute

concentration is high enough such that for the 〈c +a〉 screw dislocation, the pyramidal I plane

is energetically more favorable than the pyramidal II plane. In this case, cross-slip occurs by

one of the processes examined using NEB in the previous section.

The cross-slip process shown in Fig. 5.5 involves cross-slip onto the higher-energy pyramidal II

plane followed by cross-slip back onto another available pyramidal I plane. The barrier for this

process includes an intrinsic barrier of at least ≈ 0.45 eV, associated with the initial cross-slip

to the pyramidal II plane and the migration of the pyramidal II dislocation one layer above

the original plane, plus an additional barrier arising from the pyramidal II/I energy difference

per unit dislocation length. The latter length-dependent part of the barrier can be reduced by

the application of a resolved shear stress on the glide plane but the intrinsic barrier remains.

Therefore, this double cross-slip path is not effective in alleviating the deleterious effects of

the PB transition that has a barrier of only 0.3 eV [229].

Two distinct pyramidal I planes intersect each pyramidal II plane along a common 〈c +a〉 di-

rection, as shown in Fig. 5.3. Therefore, starting from a pyramidal II 〈c +a〉 dislocation, there

are two different pyramidal I planes available for the cross-slip process. It can be inferred from

Fig. 5.5 that the two pyramidal I planes associated with a pyramidal II plane are not equivalent

with respect to the cross-slip of the 〈c +a〉 screw dislocation. For instance, beginning from the

pyramidal II 〈c +a〉 dislocation at RC 44, the energy barrier to the pyramidal I dislocation at
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5.2. Cross-slip of 〈c +a〉 dislocation in pyramidal I favorable regime
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Figure 5.8 – Energetics and minimum energy path of the most favorable cross-slip path
between pyramidal I planes, as inferred from the NEB results shown in Figs. 5.5, 5.6 and
5.7. The pyramidal I 〈c +a〉 dislocation cross-slips first to the pyramidal II plane and after
gliding some distance on a high-energy pyramidal II plane, again cross-slips back to a parallel
pyramidal I plane.Three steps involved in the two cross-slip stages are shown: nucleation is
the formation of the incipient jog/kink pairs; spreading is the lateral motion of the kink/jog
pair along dislocation length and energy change in this step is dislocation length dependent;
annihilation is the mutual cancellation of the kink/jog pair forced by the periodic boundary
along dislocation length. Atomistic pictures of intermediate metastable dislocation core
structures encountered during the cross-slip process −with their reaction coordinates − are
shown by drawing only non-hcp near core atoms identified using common neighbor analysis.
A schematic diagram of the cross-slip process, i.e. Fig. 5.3(a), is depicted in the upper right
corner.

RC 0 (≈ 0.3 eV) is significantly lower than that on the other pyramidal I plane at 230 (≈ 0.5 eV).

In the same way, for the pyramidal II dislocation at RC 187, the energy barrier to the pyramidal

I dislocation at RC 230 is smaller (≈ 0.3 eV) than that on the pyramidal I plane at RC 0 (≈
0.5 eV). This should be a general conclusion regardless of the specific interatomic potential

because of the fact that the pyramidal II plane lacks mirror symmetry across the slip plane.

The direct cross-slip between two pyramidal I planes without ever residing on a higher-energy

pyramidal II plane (Fig. 5.6) has an energy barrier of ≈ 1 eV, which is more than three times

that of the corresponding PB transition barrier on pyramidal I planes. Therefore, this path is

not effective in circumventing the detrimental PB transition either.

The cross-slip process shown in Fig. 5.7 involves cross-slip onto a pyramidal II plane followed

by cross-slip back onto a parallel pyramidal I plane. The processes of cross-slip and glide on

pyramidal II are accomplished simultaneously for each partial successively. This particular

energy path includes the rather high Peierls barrier of the screw 〈c +a〉 dislocation on the
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Chapter 5. Cross-Slip Mechanism of Pyramidal 〈c +a〉 Screw Dislocations in Mg

pyramidal II plane at 0 K temperature. A separate NEB calculation (not shown here) computes

a Peierls barrier of ≈ 1 eV for the screw 〈c +a〉 dislocation of ≈ 21 nm gliding on the pyramidal

II plane. At non-zero temperatures under applied glide shear stresses, the glide of the screw

dislocation is expected to have much lower energy barriers. The independent cross-slip of

the individual partials is also caused by the nearly identical Burgers vectors and cores of the

partials dissociated on the pyramidal I and pyramidal II planes [97]. Thus, the barrier for

cross-slip onto the pyramidal II plane is the controlling barrier for double cross-slip with an

intrinsic barrier of ≈ 0.3 eV. This process is basically the same as that occurring when the

pyramidal II plane is energetically favorable, and so is suitable for mitigating the detrimental

effects of the PB transition. To be effective, however, this process must be assisted by a net

resolved shear stress acting on the pyramidal II plane to remove the length-dependent portion

of the energy barrier. Since the initial pyramidal I dislocation does not go directly to the

adjacent parallel pyramidal I plane, this computation further indicates the implausibility of

the cross-slip path shown schematically in Fig. 5.3(c).

On the basis of the above discussion, we conclude that in the regime where solutes make

the pyramidal I 〈c +a〉 dislocations energetically more favorable, cross-slip to generate new

〈c +a〉 dislocation loops occurs by the process shown in Fig. 5.8. Specifically, the pyramidal

I dislocation first cross-slips onto a pyramidal II plane following the path of RC from 0 to 44

(pyramidal I to pyramidal II 〈c +a〉 cross-slip) of Fig. 5.5. Subsequently, after an arbitrary

amount of thermally activated glide along the pyramidal II plane, 〈c +a〉 screw dislocation

cross-slips back onto the similarly orientated pyramidal I plane, which is essentially the reverse

of the forward cross-slip process from pyramidal I to pyramidal II plane.

5.3 Model for pyramidal 〈c +a〉 cross-slip barrier

Based on the results obtained from the NEB computations of pyramidal 〈c +a〉 dislocation,

we now present a model for computing the energy barrier for 〈c +a〉 cross-slip happening

from lower energy plane to higher energy plane. We note that the energy barrier associated

with the cross-slip occurring from the higher energy plane onto the lower energy plane is the

intrinsic energy change involved with the nucleation of the jog/kink pair. Thus, the energy

barrier for cross-slip from lower to higher energy plane is the rate-controlling process, and its

computation is the goal of the proposed model.

The cross-slip model presented here is applicable in both pyramidal II and pyramidal I fa-

vorable regime. We, here, however, consider the pyramidal II favorable regime to explain the

essential feature of the model, and application of the model to pyramidal I favorable regime is

straightforward.

Cross-slip of a 〈c +a〉 screw dislocation from the low-energy pyramidal II slip plane to the

high-energy pyramidal I slip plane cannot occur spontaneously, because the final state (a long

straight pyramidal I screw dislocation) has hugely higher energy (increasing in proportion

to the dislocation length) than the original pyramidal II screw dislocation. The cross-slip
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lCXSr

s
Pyr I plane

Pyr II plane
b

lnuc/2
lnuc/2

lXS = lCXS + lnuc

Figure 5.9 – Schematic illustration of cross-slip of 〈c +a〉 screw dislocation from pyramidal
II to pyramidal I plane in pyramidal II favorable regime. Quantities relevant to the analysis
of the cross-slip barrier ∆GXS are indicated. Note that lnuc is the length of the cross-slipped
pyramidal I dislocation at the pyramidal I/pyramidal II junction that does not bow out under
driving stress ∆τ.

must thus be driven by a net resolved shear stress ∆τ on the pyramidal I plane [230]; this

driving/net stress is essentially the local resolved shear stress above the Peierls stress for

pyramidal I 〈c +a〉screw dislocation. When a nascent pyramidal I loop is created along the

pyramidal II dislocation, the net resolved shear stress ∆τ can do work by bowing-out the

pyramidal I segment, reducing the total energy of the system and allowing the loop to expand.

However, the creation of the initial loop requires energy to form two pyramidal II/pyramidal I

intersections/jogs and to pay the energy cost of the pyramidal I segment relative to the original

pyramidal II segment. As the loop bows out, there is an additional elastic energy cost for the

additional pyramidal I line length and an energy gain by the work done by the applied stress

acting over the area of the bow-out. Fig. 5.9 shows a schematic of the nucleation process.

All of the above processes are captured by expressing the cross-slip barrier, as a function of

cross-slipped length, within a line tension model following Refs. [164, 230] as

∆GXS (l ) =∆GXS,i +∆E I−II (l + lnuc)+Γ∆s(l )−∆τb A(l ), (5.1)

where l + lnuc is the initial length of the cross-slipped pyramidal I segment before bowing-out.

The intrinsic nucleation length lnuc = 2.5 nm is the length of 〈c +a〉 screw dislocation that has

cross-slipped to the pyramidal I plane at the conclusion of formation of the initial cross-slip

jog/step, corresponding to reaction coordinate of ≈ 10 (Fig. 6.6(a)). And l is the length of

the pyramidal I dislocation which bows-out under the influence of resolved shear stress ∆τ.

∆GXS,i = 0.23 eV [230] is the intrinsic cross-slip barrier associated with initial nucleation of

the cross-slipped segment including the two pyramidal II-pyramidal I intersections, ∆E I−II is

the energy difference per unit dislocation length between the pyramidal I and pyramidal II

〈c +a〉 screw dislocations, Γ=µb2/4 is the screw dislocation line tension [101] withµ the shear

modulus,∆s(l ) is the increase in pyramidal I line length due to bowing out of the cross-slipped

segment of length l and A(l ) is the area swept out during bowing-out. In the line-tension

model, the bow-out configuration is a circular arc having radius of curvature r satisfying the
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equilibrium condition r = Γ/(b∆τ). ∆s(l ) and A(l ) are then determined by geometry as

∆s(l ) = 2r sin−1
(

l

2r

)
− l , (5.2a)

A(l ) = r 2 sin−1
(

l

2r

)
− r l

2

√
1−

(
l

2r

)2

, (5.2b)

The critical bowed-out cross-slip length lCXS, at a given stress ∆τ, is the value of l that min-

imizes ∆GXS(l ). Once the barrier is reached, the cross-slipped segment on pyramidal I can

expand indefinitely, lowering the total energy of the system due to the work done by the

applied stress. Setting ∂∆GXS /∂lXS = 0, lCXS is found to be

lCXS = 2
√
∆E I-II(2Γ−∆E I-II)

b∆τ
. (5.3)

The total operative critical cross-slip length, including bowed-out length and nucleation

length, is lXS = lCXS + lnuc. The cross-slip barrier is then

∆GXS =∆GXS,i +∆E I−II lXS +Γ∆s(lCXS)−∆τb A(lCXS). (5.4)

To apply the model in the pyramidal I favorable regime, we need to make sure that ∆E I−II < 0,

and then use the absolute value of energy difference in Eqs. 5.3 and 5.4. Another quantity to

modify is ∆τ, which now is the local resolved shear stress minus the critical resolved shear

stress for cross-slipped pyramidal II 〈c +a〉 screw dislocation. Thus we need to have the

information about the dislocation energy difference and driving-stress in order to compute

the cross-slip barrier. The extension of the model in random solid solution Mg alloy and

estimation of the quantities involved in the model are discussed in the following Chapter 6.
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6 Cross-Slip Driven Ductility in Dilute
Mg Alloys: Theory

This chapter is in part extracted from the following publications

1. Wu Z., Ahmad R., Yin B., Sandlöbes S., and Curtin W. A. (2018). Mechanistic origin

and prediction of enhanced ductility in magnesium alloys. Science, 359: 447-452.

2. Ahmad R., Yin B., Wu Z. and Curtin W. A. (2019). Designing high ductility in

magnesium alloys. Acta Mater., 172: 161-184.

3. Ahmad R., Wu Z. and Curtin W. A. (2020). Analysis of double cross-slip of pyrami-

dal I 〈c +a〉 screw dislocations and implications for ductility in Mg alloys. Acta

Mater., 183: 228-241.

It is established, both experimentally and computationally as discussed in Section 1.5, that low

ductility in pure Mg originates primarily from the immobilization of the pyramidal 〈c +a〉 dis-

locations caused by the PB transition. In order to enhance the pyramidal 〈c +a〉 slip, a

mechanism is required that can circumvent/overcome the harmful PB transition and enable

the pyramidal 〈c +a〉 dislocation systems to operate. Cross-slip and double cross-slip of screw

dislocations between the pyramidal I and pyramidal II planes represent such mechanisms that

can naturally act as the multiplying source for dislocations. The PB transition and cross-slip

are both thermally activated processes and the ductility is then controlled by the compe-

tition between them. If the cross-slip process is rapid enough to defeat the PB transition,

new pyramidal 〈c +a〉 dislocations would be generated faster than PB transition could arrest

them, enabling enhanced ductility. Different solute elements then alter the energy difference

between the two pyramidal 〈c +a〉 dislocations, affects the cross-slip rate, and thus change

the ductility level of resulting solid solution alloys.

In this chapter, we present a novel cross-slip based ductility model that successfully ratio-

nalizes broad experimental observations of ductility in a range of dilute solid solution Mg

alloys.
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6.1 Mechanistic model of enhanced ductility

We first outline the mechanistic model and the resulting ductility condition. To explain the

essential concepts involved in the model, we choose to work here in pyramidal II favorable

regime, however, the model can readily be extended into the pyramidal I favorable regime.

We will describe along the way the necessary modifications for the model to be applied in

the pyramidal I favorable regime. To start, we consider a pyramidal II 〈c +a〉 dislocation loop

of arbitrary dimensions L ×L as shown in Fig. 6.1. The edge-like segments of the loop are

susceptible to the PB transition to sessile structures. If this transition is nucleated along an edge

segment, it will expand immediately along the entire edge portion because the basal-oriented

structure has a much lower energy [228]. Growth of the loop, and hence plastic strain, will be

limited to motions of the screw-like segments while near-edge segments, as they are created by

such motion, will quickly rotate and convert to the sessile basal-oriented structure. The result

of the above PB-transition is long, straight, basal-oriented, immobile edge 〈c +a〉 dislocations,

as reported in many experiments [79, 151, 155]. Some experiments [79, 80] also show a very

high density of basal-oriented 〈c +a〉 dislocation loops; the mechanistic origin by which the

loops form remains largely unknown at this time but is not important for the present problem.

The screw segments of the loop can undergo cross-slip onto the coincident pyramidal I plane,

followed by cross-slip back onto another pyramidal II plane (Fig. 6.1). This double-cross-slip

process is inhibited by the high energy cost of the pyramidal I screw relative to that of the

pyramidal II screw, and so is not fast in pure Mg. However, if this process can be accelerated,

dislocation loops can then multiply, and these loops can expand and generate 〈c +a〉 plastic

strain contributing slips in the 〈c〉 direction. Furthermore, the individual pyramidal II loops

are now isolated from one another by the intervening pyramidal I segments remaining after

the double cross-slip. Thus, the PB transition in one loop does not lead to starvation of mobile

〈c +a〉 dislocations or immobilization of other loops. While all loops are susceptible to the PB

transition, the isolation means that, even in the presence of the same total dislocation density,

many more PB transition events are required to immobilize that density.

Therefore, to sustain 〈c +a〉 slip and achieve high plastic strains and consequent ductility,

we assert that the cross-slip rate of the screw segments must be much faster than the rate

of the PB transition. Both processes are thermally activated with activation energies ∆GXS

and ∆EPB, respectively, and initiated by nucleation over critical nucleation lengths lXS and lPB

(see below), respectively. High ductility can be achieved if the total cross-slip nucleation rate

RXS, due to all possible L/lXS nucleation sites along the screw segment, is much faster than

the total PB transition rate RPB, due to all possible L/lPB nucleation segments along the edge

segment. Using Arrhenius expression for the two rates, enhanced ductility at temperature T is

thus predicted to be achievable when

RXS À RPB,

ν0
L

lXS
exp

(
−∆GXS

kT

)
À ν0

L

lPB
exp

(
−∆EPB

kT

)
,

(6.1)
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where ν0 is attempt frequency, k is the Boltzmann constant and T is the absolute temperature.

To quantify the ductility potency of any alloy composition, we introduce a “ductility index"

χ such that the cross-slip rate RXS exceeds the PB transition rate RPB by a factor of 10χ, i.e.

RXS = 10χRPB. Eq. 6.1 can then be rewritten to compute χ as

χ= 1

ln10

[
ln

(
lPB

lXS

)
+ ∆EPB −∆GXS

kT

]
. (6.2)

We consider χ= 1 sufficient for ductility, i.e. a cross-slip rate that is ten times as fast as the PB

transition rate can enable sufficient 〈c +a〉 plastic slip and ductility. For χ> 1, high ductility

is also achieved. However, much larger χ does not imply higher ductility; once the ductility

condition is satisfied, the actual ductility is determined by many other factors, and primarily

the work hardening rate that is not studied here. Once the ductility condition is achieved, the

alloy is expected to fail in a normal “ductile” manner according to, for instance, the Considère

criterion for the onset of necking in elastic-plastic materials. Conversely, χ< 0 corresponds to

poor ductility, i.e. the rate of cross-slip is slower than that of PB transition and so is insufficient

to create enough plastic strain to overcome the detrimental immobilization caused by the PB

transition.

The ductility index χ can be increased either by increasing ∆EPB or by decreasing ∆GXS. The

PB transition is so energetically favorable (∼0.3 eV/Å [228]) that alloying with a dilute solute

is very unlikely to sufficiently increase ∆EPB. As shown in Chapter 4, there is no systematic

change in the average PB transition time across various realizations of a model Mg-3at.%Y

random alloy, and thus the PB energy barrier remains close to that in pure Mg. In fact, there

are perhaps larger variations in the transition time suggesting that solute fluctuations could

slightly accelerate the process. Therefore in subsequent calculations, we use∆EPB = 0.5 eV and

lPB = 2 nm [228] for pyramidal II favorable regime. In pyramidal I favorable regime, the cross-

slip process need to compete with PB transition associated with pyramidal I 〈c +a〉 mixed

dislocation, which has even lower energy barrier ∆EPB = 0.3 eV and the same critical length

lPB = 2 nm [229].

We thus aim to increase the ductility index χ by lowering the cross-slip barrier ∆GXS by means

of solid solution alloys. The solutes alter the dislocation energy difference ∆E I-II by interacting

with the two pyramidal dislocations participating in the cross-slip process. As described

in Section 5.3, the cross-slip barrier is sensitively dependent on the energy difference, and

therefore, certain solutes could enable high ductility in Mg alloys by lowering the energy

difference ∆E I-II. The effects of solutes on dislocation energy difference ∆E I-II, affecting the

cross-slip barrier ∆GXS and ductility index χ, is the focus of following sections.

6.2 Solute effects on pyramidal I/II energy difference: dilute limit

The cross-slip barrier ∆GXS , Eq. 5.4, is controlled by some intrinsic properties of Mg and by

the pyramidal I/II screw dislocation energy difference ∆E I−II . In pure Mg, ∆E I−II is small (e.g.

67



Chapter 6. Cross-Slip Driven Ductility in Dilute Mg Alloys: Theory

Figure 6.1 – Schematic depiction of the mechanistic theory that involves the PB transition
and cross-slip process associated with pyramidal 〈c +a〉 dislocations. The two thermally
activated processes operate during the expansion of a 〈c +a〉 dislocation loop of size L ×L
lying on the pyramidal II plane, and the competition between them determines the ductility.
The detrimental PB transition of the edge segment locks the loop by generating a basal
oriented sessile segment. Cross-slip of the screw part from pyramidal II to pyramidal I, and
again double cross-slip back to pyramidal II, generates a new dislocation loop that can expand
and counteract the effect of the PB transition on the original loop. Accompanying atomistic
figures show non-hcp coordinated atoms colored by common-neighbor analysis with green =
face-centered cubic, purple = body-centered cubic, and yellow = all others.

∆E I−II = 27 meV/nm predicted by an accurate MEAM interatomic potential [230] and ∆E I−II =

7 ± 20 meV/nm estimated from DFT studies) but crucial in increasing the cross-slip barrier

∆GXS . At the relevant stress ∆τ (see Section 6.4), the cross-slip barrier ∆GXS in pure Mg is

0.6-0.9 eV, significantly exceeding the PB transition barrier ∆EPB. Thus, χ< 0 and the ductility

in pure Mg is predicted, and observed to be, poor. However, if this energy difference ∆E I−II

can be reduced by introducing appropriate solute elements at sufficient concentrations, then

the cross-slip rate is enhanced and the ductility condition χ > 1 can be achieved. We thus

consider a random substitutional multicomponent solid solution Mg alloy comprising solutes

of types m solute having atomic concentrations cm in the dilute limit cm ¿ 1 and
∑

m cm ¿ 1.

In the random solid solution alloy, the total system energy is modified by the interactions

between the solute atoms and the dislocations. This interaction can have contributions from

the solute interactions with the dislocation elastic stress field, the stacking fault in between

the two dissociated partials of the 〈c +a〉 dislocation, and the cores of the two partials. We

neglect the solute-solute interaction due to the dilute concentrations of solute elements. In

the present problem, we have two different dislocations, pyramidal I and pyramidal II screw

〈c +a〉 dislocations. For a solute of type m at atomic site j , we denote the interaction energies
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6.2. Solute effects on pyramidal I/II energy difference: dilute limit

with the pyramidal I and pyramidal II screw dislocations as U I,m
j and U II,m

j , respectively. The

cross-slip process transforms the pyramidal II dislocation into a pyramidal I dislocation,

occurring within the pre-existing field of random solutes at the atomic sites j . Thus, for

a segment of length l , there is a change in the total system energy ∆E I-II
tot due to both the

fundamental difference in pyramidal I and II energies and the solute/dislocation interactions

that can be expressed as

∆E I-II
tot =∆E I-II

Mgl +∑
m

∑
j

sm
j ∆U I-II,m

j , (6.3)

where ∆U I-II,m
j =U I,m

j −U II,m
j . Here, sm

j is a site-occupancy variable for a type m solute, with

sm
j = 1 if a solute of type m exists at atomic site j and 0 otherwise. The sum is performed over

all sites j within an arbitrarily large cylinder centered on the dislocation having an axis of

length l along the dislocation line direction. In the random alloy, the average of sm
j over all

sites j is the concentration cm . cm is also the probability of finding any one particular site

occupied by a type m solute.

Far from cross-slip/dislocation core sites, the interaction between dislocation and a solute

is purely elastic. Having the same Burgers vector and line direction, both pyramidal I and

pyramidal II 〈c +a〉 screw dislocations have the same far-field elastic stresses due to the partial

dislocations, and hence have the same interaction energies with the solutes. Therefore, solutes

that are far from the dislocations do not affect the dislocation energy difference or the cross-

slip barrier. There are then only some finite number of distinct atomic sites − here denoted by

NT− per unit b of line length that contribute to the dislocation energy difference. The sum

over j in the above can thus be restricted to the NT different sites per b, with l /b identical sites

of each type along the line length l .

We can rewrite the above energy in terms of an average effect, in which there is a probability

cm of finding an m atom on every possible site j around the dislocation, plus a fluctuation

associated with the actual random distribution of solutes along any one segment of length l .

Eq. 6.3 is thus written as

∆E I-II
tot =∆E I-II

Mgl +∑
m

∑
j

cm∆U I-II,m
j︸ ︷︷ ︸

average effect

+∑
m

∑
j

(sm
j − cm)∆U I-II,m

j︸ ︷︷ ︸
fluctuation effect

,

=∆E I-II
Mgl + l

b

∑
m

∑
i∈NT

cm∆U I-II,m
i +∑

m

∑
j

(sm
j − cm)∆U I-II,m

j ,

= 〈∆E I-II〉l +F
[
∆E I−II(l )

]
, (6.4)

69



Chapter 6. Cross-Slip Driven Ductility in Dilute Mg Alloys: Theory

where

〈∆E I-II〉 =∆E I-II
Mg +

1

b

∑
m

cm
∑

i∈NT

∆U I-II,m
i (6.5)

is the average energy difference per unit length between the pyramidal I and pyramidal II

〈c +a〉 screw dislocations in the alloy, and

F
[
∆E I−II(l )

]=∑
m

∑
j

(sm
j − cm)∆U I-II,m

j . (6.6)

The sum over i in the Eqs. 6.4 and 6.5 is over the distinct NT atom sites within one Burgers

vector b of dislocation length.

During cross-slip of dislocations in an alloy, the critical cross-slip length lXS must enable the

cross-slipped dislocation to expand. Local fluctuations in solutes could assist nucleation

locally but the cross-slip nucleus would be unable to expand into the surrounding higher-

energy regions. Thus, the relevant cross-slip nucleation length must be computed based

only on the average effect of the solute atoms. Local fluctuations will then lower the barrier,

but the nucleated segment will be able to expand through other local environments where

nucleation would not typically be possible. The nucleation length is thus computed using

only the average term 〈∆E I-II〉 in Eq. 6.5, and the cross-slip length lXS is then given by Eq. 5.3.

Since there are L/lXS statistically independent cross-slip nucleation segments across the entire

screw part of the dislocation loop of length L, the total rate of cross-slip is

RXS =
L/lXS∑
k=1

ν0 exp

(
−∆Gk

XS

kT

)
, (6.7)

where ∆Gk is the cross-slip barrier of the kth segment

∆Gk
XS =∆GXS,i +〈∆E I−II〉lXS +Fk [

∆E I−II(lXS)
]+Γ∆s −∆τb A,

= 〈∆GXS〉+Fk [
∆E I−II(lXS)

]
.

(6.8)

The quantity 〈∆GXS〉 =∆GXS,i+〈∆E I−II〉lXS+Γ∆s−∆τb A is the average cross-slip barrier and is

the same for all segments. The quantity Fk
[
∆E I−II(lXS)

]
is the fluctuation contribution arising

from the local spatial configuration of solutes in segment k. The total cross-slip rate can then

be written as

RXS = ν0 exp

(
−〈∆GXS〉

kT

)L/lXS∑
k=1

exp

(
−Fk

[
∆E I−II(lXS)

]
kT

)
. (6.9)

The fluctuation contribution Fk
[
∆E I−II(lXS)

]
, Eq. 6.6, depends on the actual random occu-

pancy of the solutes in the atomic sites j by solute atoms m around the kth cross-slip segment.

The distribution of these fluctuation is a Gaussian distribution with zero mean and standard
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deviation σ(F) given as

σ(F) =
√

lXS

b

∑
m

∑
i∈NT

σ2
[
sm

i

](
∆U I-II,m

i

)2
. (6.10)

Inserting the definition of F, with only the Bernoulli random variables sm
i and the lXS/b

identical sites of each type along the length lXS, leads to

σ[lXS] =σ(F) =
√

lXS

b

∑
m

cm
∑

i∈NT

(
∆U I-II,m

i

)2
. (6.11)

Here, we use the variance of sm
i given by σ2[sm

i ] = cm(1− cm) ≈ cm in the dilute limit.

Across the screw dislocation, there are L/lXS independent dislocation segments where cross-

slip nucleation can initiate. The thermally activated cross-slip at one segment can trigger

the cross-slip process across the entire dislocation length. The cross-slip barrier, therefore, is

controlled by those segments having the most favorable fluctuation of solutes for reducing the

barrier. Thus, the cross-slip might be an extreme value problem but here we consider only

typical frequent fluctuations by considering barriers reduced by one standard deviation σ[lXS],

which occurs on average in ≈ 1/6 of the segments and is a conservative measure. Our final

expression for cross-slip rate of a length L of screw dislocation is then, using Eqs. 6.9 and 6.11,

RXS = ν0
L

lXS
exp

(
−〈∆GXS〉−σ[lXS]

kT

)
. (6.12)

Recalling the ductility index χ defined as RXS = 10χRPB, the ductility index χ including average

and fluctuation effect is

χ= 1

ln10

[
ln

(
lPB

lXS

)
+ ∆EPB − (〈∆GXS 〉−σ[lXS])

kT

]
. (6.13)

In the pyramidal I favorable regime of solute concentration, i.e. when 〈∆E I−II〉 < 0, we use

absolute value of 〈∆E I−II in Eqs. 5.3 and 6.8 to determine the barrier for the cross-slip from

pyramidal I to pyramidal II plane. The contribution from the fluctuation of the solute elements,

nevertheless, remains same as computed by Eq. 6.11.

The above analysis pertains to the dilute limit, cm ¿ 1 as noted earlier. However, there is a

lower limit to the concentration at which our statistical analysis above applies. The limit is

easily identified in a binary alloy as follows. At a solute concentration c∗ = b/(lXSNT), there

is, on average, only one solute among all the NT type-sites over the entire critical cross-slip

dislocation length lXS. The statistical analysis above only applies to concentrations above this

limit. The concentration c∗ is thus the boundary between the dilute limit and the ultra dilute

limit. The ultra dilute limit can be one of technological relevance, recalling that ductility is

achieved in Mg-Ce alloys at ≈ 0.03 at.% Ce that is deep into the ultra dilute limit [138]. We thus

address the ultra dilute limit in Section 6.5.
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6.3 Solute-dislocation interaction energies

The mechanistic theory developed in previous subsections requires, as inputs, the site-specific

solute-dislocation interaction energies. These energies can be computed, in principle, by

atomistic simulations using semi-empirical potentials or first-principles methods such as DFT.

However, there are no existing interatomic potentials for Mg alloys that have anywhere near the

accuracy and scope needed for implementing the theory fully. In addition, the computational

cost of DFT is prohibitive given the number of atomic sites that must be explored and the

number of different solute elements that are of interest. This motivates careful consideration

of the different possible contributions to the solute-dislocation interaction energies and

approaches for their calculations.

Solute-dislocation interactions can be envisioned to arise from three main contributions:

solutes interacting with the dislocation cores, elastic stress field, and stacking fault. Fig. 6.2

(a), (b) show the atomistic structures of the pyramidal II and pyramidal I screw dislocations,

respectively, as computed using the MEAM_I interatomic potential for pure Mg. Despite

different glide planes and stacking faults, the cores have nearly the same partial Burgers

vectors and are quite similar. Comparing Figs. 6.2 (a), (b), which indicate non-hcp atoms

as determined by common neighbor analysis [72, 209], the pyramidal I and pyramidal II

core structures differ only by non-hcp atoms at the peripheries of the cores. The solute-core

interactions, which are by far the most difficult to compute [36], may thus be similar and are,

also, restricted to a limited number of atoms compared to the overall number of atomic sites

around the entire dislocation structure.

The solute-stacking fault interaction is well-defined and computable in DFT. For the pyramidal

faults in Mg, these interactions extend several atomic layers above and below the stacking

fault plane [237]. A solute in each distinct plane has specific interaction energy with the fault.

Figs. 6.2 (a), (b) indicate the planes above and below the two dislocations, respectively, noting

that the pyramidal I plane has pairs of closely-spaced atom layers. The net solute-stacking

fault interaction, per unit stacking fault area, is the sum of the interactions of the solutes on all

planes near the fault plane. In the dilute limit, solute-solute interactions are neglected and

each solute contributes independently from the other solutes. Ignoring the dislocation for the

moment, the solute-stacking fault interactions change the average stacking fault energy as

γ(c) = γMg +kc, (6.14)

where γMg is the stacking fault energy in pure Mg and k characterizes the average effect of the

solute on the stacking fault [237]. The quantity k is computed as k = 1/A0
∑

i USF(di ) where

USF(di ) is the interaction energy of a single solute in the layer at di
th plane from the stacking

fault/slip plane (see Appendix C.2), and A0 is the unit atomic area in the stacking fault plane.

The values of kI and kII for the pyramidal I and II stacking faults, respectively, are computed

in this manner for each solute using USF(di ) from DFT. The details of the DFT computations

and results for solute-stacking fault interaction energies for various solutes are presented in
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Figure 6.2 – Change in correspondence of solute positions with respect to the two pyrami-
dal 〈c +a〉 dislocations during the cross-slip. The core structure of (a) 〈c +a〉 screw disloca-
tion dissociated on the pyramidal I plane and on (b) the pyramidal II plane as obtained from
the MEAM_I potential. Non-hcp core atoms, identified by the cna analysis, are colored in
yellow. The dashed lines denote the position of atomic layers with respect to the stacking
faults. a = 3.19 Å is lattice parameter of Mg. (c) Atom correspondences with respect to initial
pyramidal II and final cross-slipped pyramidal I dislocation in pure Mg. In the calculation
of fluctuation and ultra dilute solute concentrations, the near core atoms consist mainly of
those colored in orange and cyan. Atoms colored in cyan designate the atomic sites for which
interaction energies in the ultra dilute limit require modification (see text). The first and
second number of the number pair (r /s) placed on each atom denote, respectively, its position
with respect to initial pyramidal II and final pyramidal I stacking fault planes, both of which
are indicated by dashed lines. (d) The degeneracy g (r /s) of each pair (r /s) as determined from
Fig. (c).

73



Chapter 6. Cross-Slip Driven Ductility in Dilute Mg Alloys: Theory

Appendix C.

For cross-slip, we require the change in dislocation energy upon cross-slip. Fig. 6.2(c) shows

the pyramidal II and I dislocations together, which are connected through the cross-slip.

The notation r /s indicates the change in identification of a given atom position from being

associated with the stacking fault plane r in the pyramidal II fault to plane s in the pyramidal

I fault that occurs due to cross-slip. Sites with no r /s, or with r /− or −/s, designation are

considered outside the influence of the stacking fault(s). Each atomic site i thus has an

associated pair of initial/final planes r /s. Different physical sites i can have the same r /s,

and Fig. 6.2(d) shows the number of sites, or degeneracy g (r /s), for each r /s for the atomistic

structure of the MEAM_I Mg dislocations in Figs. 6.2 (a), (b), and (c). The change in total

solute-dislocation interaction energy due to the cross-slip can then be written as∑
i∈NT

∆U I−II,m
SF,i = ∑

(r /s)
g (r /s)∆U I−II,m

SF,(r /s), (6.15)

where ∆U I−II,m
SF,(r /s) =U I,m

SF,s −U II,m
SF,r is the difference in interaction energies of type m solute with

pyramidal I and pyramidal II stacking faults, with solute being at sth plane from pyramidal I

fault and at r th plane from pyramidal II fault.

The above specific results pertain to the core structure of the MEAM_I interatomic potential.

The pure Mg stacking fault energies in the MEAM_I potential are close to but not precisely

those computed by more-accurate DFT (see Table 3.2), however, so that the partial dislocation

spacing in the MEAM_I potential differs slightly from the spacing observed in DFT studies/e-

lasticity calculations. Thus, while illustrative (and used below for some atomistic studies

for single solutes), this does not quite capture the expected Mg stacking fault contribution

fully. We thus adopt a continuum description of the average energy difference as follows. As

stated above, we consider here only the solute/stacking fault interaction. Using anisotropic

elasticity [232], we compute the partial separation distance wSF (stacking fault width), for

both pyramidal I and pyramidal II screw dislocations. The energy due to the stacking fault is

then wSFγ(c) for each dislocation. In the dilute limit, the results can be expanded to lowest

order in the solute concentration, using Eq. 6.14, as wSF(γMg +kc). Thus the solutes lead to

additional energy of wSFkc relative to pure Mg. In pure Mg, the stacking fault width wSF is

wSF = K12/γMg where K12 is an anisotropic elasticity energy prefactor completely determined

by the anisotropic elastic constants, Burgers vector, and dislocation line direction. The effect

of dilute solutes in changing the partial separation is second order in concentration, hence

neglected. As detailed in Appendix D, considering only the stacking fault contribution to the

pyramidal I/II energy difference, we obtain

〈∆E I−II〉 =∆E I−II
Mg +∑

m

[
K I

12kI
m

γI
Mg

− K II
12kII

m

γII
Mg

]
cm ,

=∆E I−II
Mg +∑

m
∆E I−II,m

avg,SF cm ,

(6.16)
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where we have generalized to multiple solutes in the dilute limit, and∆E I−II,m
avg,SF =

[
K I

12k I
m

γI
Mg

− K II
12k II

m

γII
Mg

]
represents the average effect on the dislocation energy difference due to interactions of stack-

ing fault and solute type m. The random spatial distribution of solutes leads to fluctuations in

the energy difference due to solute-stacking fault energies. Following the notation introduced

earlier, the standard deviation of the energy difference σ[lXS] within dislocation length lXS is

obtained by

σ[lXS] =
√

lXS

b

∑
m

cm
∑

(r /s)
g (r /s)

(
∆U I−II,m

SF,(r /s)

)2
,

=
√

lXS

b

∑
m

cm

(
∆E I−II,m

fluc,SF

)2
,

(6.17)

where ∆E I−II,m
fluc,SF =

√∑
(r /s) g (r /s)

(
∆U I−II,m

SF,(r /s)

)2
characterizes the intrinsic fluctuation of solute

type m contributing in the cross-slip barrier. We report the characteristic average effect

∆E I−II,m
avg,SF and fluctuation effect∆E I−II,m

fluc,SF of various solutes, considered in this work, in Table 6.1,

obtained from DFT computations of USF(di ).

The elastic interaction of the solute misfit strain tensor with the dislocation elastic stress field

is frequently the most important contribution for solid solution strengthening [234], and even

in the core regions. In principle, the elastic contributions can be computed using the elastic

field created by the Burgers vector distribution of slip, as in a Peierls-Nabarro model. This

elastic energy is then added to the contribution from the solute/stacking fault interactions [36,

204, 234]. However, in practice, the pyramidal stacking faults have a significant out-of-plane

dilation and in-plane strains relative to the perfect hcp crystal. These strain fields generate

additional elastic stresses around the actual dislocation but they cannot easily be disentangled

from the computation of solute-stacking fault interactions. Hence, the simple addition of

energies due to solute elastic (mechanical) and stacking fault (chemistry) interactions involves

some uncontrolled double-counting of the elastic effects. It is thus not reliable to additively

include the elastic interactions into the model. Fortunately, for most solutes, the elastic

interaction energy is small compared to the stacking fault interaction energy.

While not generally included in the model, we show here the calculations of the solute-

dislocation elastic interaction energy for hcp Mg. A solute of type m generates a tetragonal

misfit strain εmisfit
m when introduced into the bulk hcp lattice. In the coordinate system of the

standard hcp unit cell where x1 is along [12̄10], x2 along [101̄0] and x3 along [0001] directions,

there are then three misfit strain compents εmisfit
11,m = εmisfit

22,m and εmisfit
33,m . These misfit strain

components have been computed via first-principles DFT and are presented in Table 6.1.

A solute at site i has an elastic interaction energy with the dislocation stress field σi of −V0σi :

εmisfit
m where V0 is the atomic volume of bulk Mg. For a random distribution of solutes, the

average and fluctuation of pyramidal I/II energy difference induced by the solute misfit strain-

dislocation interaction are then the averaged sum and fluctuation of the differences over all

75



Chapter 6. Cross-Slip Driven Ductility in Dilute Mg Alloys: Theory

sites,

〈∆EP〉 =−V0

b

∑
m

∑
i∈NT

cm

[(
∆σI−II

11,i +∆σI−II
22,i

)
εmisfit

11,m +∆σI−II
33,iε

misfit
33,m

]
, (6.18)

σ[lXS] =
√√√√ lXSV 2

0

b

∑
m

∑
i∈NT

cm

[(
∆σI−II

11,i +∆σI−II
22,i

)
εmisfit

11,m +∆σI−II
33,iε

misfit
33,m

]2
, (6.19)

where ∆σI−II
i =σI

i −σII
i , and the summation over i includes all distinct NT atomic sites within

one Burgers vector length b of dislocation line.
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Figure 6.3 – Average and fluctuation contributions of solutes in dislocation energy differ-
ence. Fig. (a) presents the variation of the average effect, and Fig. (b) shows the variation
of the intrinsic fluctuation with various solutes concentrations. In (a), slopes of Zn, Sn, and
Ce are decreased marginally for clarity, as their curves coincide with that of Ag, K, and Nd,
respectively. Moreover, the precise values of slopes are presented in Table 6.1. For all solutes,
except Al, the interaction is approximated by solute/stacking fault interaction; for Al, solute
misfit/dislocation interaction is considered in determining the average and fluctuation effect.

As an example, the total stress difference
∑

i∈NT
∆σi computed for the dislocations predicted

by the MEAM_I potential (see Fig. 6.2(a), (b)), using the atomic virial stress and the refer-

ence perfect-crystal atomic volume, are (V0/b)
∑

i∈NT

[
∆σI−II

i ,11 +∆σI−II
i ,22

]
=−6.107 eV/nm, and

(V0/b)
∑

i∈NT
∆σI−II

i ,33 = 7.317 eV/nm. For an isotropic misfit strain, the two contributions nearly

cancel. However, the misfit strain tensor for solutes in Mg is generally tetragonal, leading to
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less cancellation. With the misfit strain components shown in Table 6.1, the elastic interaction

is found to be small in comparison to the solute-stacking fault interaction for most solutes,

and thus can be neglected. For those solutes where the average solute-stacking fault interac-

tion is small (Al, Li, K, Sn), the elastic contribution, although still small, is not negligible by

comparison. However, due to an unknown degree of double-counting of the elastic effects,

the elastic contribution should not be added to the stacking fault contribution.

We further compare the solute-stacking-fault interaction energy for each solute position,

as computed by DFT, with the interaction energy arising from the interaction of the solute

misfit strain with the stacking fault stress. The solute misfit strain is determined from DFT

computations, and the local stacking fault stresses are computed using the MEAM_I potential.

Among Al, Li, K, and Sn, the DFT results and elastic results match well only for Al, as shown in

Fig. C.1. Therefore, in Al and only in Al, we can neglect the DFT solute-stacking fault interaction

and use the solute misfit strain-dislocation stress contribution for the total interaction energy.

For all other solutes, only solute-stacking fault interaction can be used, which automatically

contains the misfit strain-stacking fault stress interaction energy.

Table 6.1 – Properties of various solutes in Mg. Characteristic average ∆E I−II
avg,SF and fluctu-

ation ∆E I−II
fluc,SF contribution, as defined in Eqs. 6.16 and 6.17 , of all solutes, except Al, are

determined using DFT computed solute/stacking fault interaction. For Al, we employ solute
misfit/dislocation stress interaction energy. Misfit strain and misfit volume are computed
from DFT.

Solute ∆E I−II
avg,SF

(meV/nm)

∆E I−II
fluc,SF (meV) Misfit strain

(εmisfit
11 ,εmisfit

33 )
Misfit volume

Ag 1297 715 (-0.179, -0.168) -0.526
Zn 1295 707 (-0.151, -0.166) -0.468
Al 361 386 (-0.108, -0.139) -0.355
Li 15 247 (-0.055, -0.069) -0.179
K -126 1013 (0.394, 0.370) 1.158

Sn -134 328 (0.030, -0.020) 0.040
Mn -991 418 (-0.173, -0.255) -0.601
Sr -1528 1273 (0.425, 0.368) 1.218
Ca -1659 978 (0.265, 0.223) 0.753
Y -4131 1291 (0.223, 0.120) 0.566

Nd -4711 1450 (0.307, 0.191) 0.805
Ce -4754 1506 (0.355, 0.232) 0.942
Zr -5386 1141 (0.046, -0.148) -0.056

Fig. 6.3(a) shows the effects of various solutes on the average energy difference of pyrami-

dal 〈c +a〉 screw dislocations. Solutes decreasing the energy difference would promote the

cross-slip process, enabling ductility. Thus, on the basis of the average effect we can readily

categorize Ag and Zn as strongly unfavorable; Sr, Ca, REs and Zr as highly favorable; and Mn

as moderately favorable. Solutes such as Al, Li, Sn, K have very weak effects on the average

energy difference, and therefore, fluctuation effects could prove to be crucial in deciding the

overall ductility at a particular concentration. Furthermore, since Al, on average, tends to

increase the energy difference, we expect low ductility at high Al concentrations. Fig. 6.3(b)
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shows the concentration-dependent favorable intrinsic fluctuation of the same solutes, which

is identified as −∆E I−II
fluc,SF

p
c. This plot demonstrates the relative fluctuation effect of the

solutes. We use negative sign to stress that fluctuation is always favorable in assisting the

cross-slip process. REs, Sr, Zr, and Ca have large fluctuation which further shows the potency

of these solutes in achieving ductility. One interesting case is that of K, which has almost no

average effect but large fluctuation, making it a favorable solute. Zn and Ag have intermediate

fluctuation which could mitigate the detrimental average effect at smaller concentrations.

Al, Sn, and Li have weaker average as well as fluctuation effects of which combined effect

may produce ductility at some intermediate concentration ranges. Mn is the solute with a

moderate average and relatively small fluctuation effects. Nonetheless, it could be effective

in enabling ductility. These plots help us roughly identify unfavorable and favorable solutes,

which agree with broad experimental observations. However, precise quantitative prediction

requires additional information and consideration, and is presented in the next Chapter 7.

6.4 Net shear stress∆τ driving the cross-slip process

The cross-slip model the cross-slip model requires, as input, the value of resolved shear stress

∆τ that drives bow-out of the 〈c +a〉 screw dislocation on higher energy slip-plane. This

section determines ∆τ, for both pyramidal II and pyramidal I favorable regimes, in relation to

the pyramidal I and pyramidal II Peierls stresses and the texture, for uniaxial loading along the

rolling direction for common rolling textures.

For plastic deformation at quasi-static strain rates, dislocations are always nearly stationary at

positions of local equilibrium (zero net resolved shear stress on each segment), independent of

the applied stress. The applied stress τapp can increase above the fundamental lattice Peierls

stress τP and additional stresses due to pinning by forest dislocation junctions, precipitates,

solute fields, and long-range dislocation interactions. For forest junctions and precipitates, the

dislocation is pinned only in certain segments but then bows out until all segments along the

line experience zero force (equilibrium). These additional stresses are collectively represented

by a local “backstress" τb acting on the dislocation segment. Dislocations then move, and

plasticity occurs, by thermal activation of the dislocations over the barriers created by these

obstacles and fields. “Dislocation dynamics”, i.e. the kinetics of dislocation glide, is thus rarely

actually important, except in situations where dislocation mobilities are very slow (such as

bcc crystals at low temperatures).

6.4.1 Pyramidal II favorable regime

In the pyramidal II favorable regime, we assume that 〈c +a〉 screw dislocation glides on

pyramidal II in local equilibrium. At local equilibrium, the total shear stress on a pyramidal II

dislocation segment due to the applied resolved shear stress and all backstresses is then equal

to the Peierls stress,

τII = τapp −τb = τII,P. (6.20)
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6.4. Net shear stress∆τ driving the cross-slip process

When the pyramidal II dislocation is in equilibrium, cross-slip is driven by the net resolved

shear stress ∆τ acting on a possible pyramidal I dislocation at the same position. As shown

in Fig. 6.4 (a), we consider one pyramidal II and two cross-slip pyramidal I planes described

in a coordinate system where x1, x2 and x3 are oriented along a([21̄1̄0]), c ×a([011̄0]) and

c([0001]) directions, respectively.

x1

x3

x2

〈c
+
a〉

a

x1

x3

x2

σ

ψ

φ

φ′

b

Figure 6.4 – Representation of coordinate system and applied load during the cross-slip
process. (a) Schematic of the pyramidal I and the pyramidal II planes available to the
〈c +a〉 dislocations for cross-slip. (b) The coordinate system and direction of applied uniaxial
stress σ are used in the calculation of net driving stress. The coordinate system is the same as
that used in (a).

A uniaxial stress of magnitude σ is assumed to be applied as shown in Fig. 6.4(b). This uniaxial

stress σ − generating shear stresses τapp and τb − is at an angle φ from x3(〈c〉) axis and whose

projection on basal plane (x1−x2) is at angleψ from the x1(〈a〉) axis. The resolved shear stress

on the shown pyramidal II plane is

τII =σ
(
0.446sin2φcos2ψ−0.452sinφcosφcosψ−0.446cos2φ

)
, (6.21)

and the resolved shear stresses acting on the cross-slip pyramidal I planes accessible to this

pyramidal II segment are

τI =σ
(
0.4sin2φcos2ψ−0.405sinφcosφcosψ−0.4cos2φ

±0.231sin2φsinψcosψ∓0.376sinφcosφsinψ
)

. (6.22)

Substituting Eq. 6.29 and τII = τII,P into the above, and denoting the pyramidal I Peierls stress

as τI,P, lead to the net driving stress acting on the pyramidal I plane, for the shown triplets, as

a function of orientation of load axis (φ,ψ)

∆τ̃(φ,ψ) = 0.89τII,P −τI,P +σ
∣∣0.231sin2φsinψcosψ−0.376sinφcosφsinψ

∣∣ , (6.23)
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where we consider the pyramidal I plane with the larger of the two possible stresses, leading

to the absolute value term. Furthermore, we note that there are other five similar triplets of

pyramidal II/pyramidal I planes, situated π/3 degrees apart about x3 axis. Thus for a given

orientation of load (φ,ψ), the net resolved shear stress is the maximum of all six triplets, which

is

∆τ(φ,ψ) = max{∆τ̃(φ,ψ+kπ/3) : k = 0,1, · · · ,5}. (6.24)

The typical net driving shear stress ∆τ for pyramidal II/I cross-slip in a polycrystalline sample

then depends on the polycrystalline texture.

We first consider strong basal texture, typical of rolled Mg [84, 219], where the 〈c〉 axes of the

grains are predominantly aligned along the normal direction of the sheet. The uniaxial load σ

is applied along the rolling direction, which lies along some random directions in the basal

plane. For this case, φ= π/2 while ψ ∈ (−π,π] varies randomly from grain to grain. The net

driving shear stress is then estimated by averaging over the angle ψ which, due to symmetry

of the six triplets of pyramidal II/I planes, reduces to

∆τ= 3

π

∫ π/6

−π/6
∆τ(φ=π/2,ψ)dψ,

= 0.89τII,P −τI,P +0.11σ.

(6.25)

At the onset of yielding, σ= τII,P/0.446 and hence

∆τ= 0.89τII,P −τI,P +0.247τII,P = 1.137τII,P −τI,P. (6.26)

The MEAM_I Peierls stresses for the screw dislocation at T =300 K are τII,P ≈ 45 MPa and

τI,P ≈ 35 MPa. These lead to single crystal 〈a〉 axis tension yield stress of 100 MPa comparable

to experiments [18]. For these values, we obtain ∆τ= 16 MPa. As an example, for lower values

τII,P ≈ 20 MPa and τI,P ≈ 10 MPa, we estimate ∆τ= 13 MPa.

We next consider a polycrystal with basal texture split into two lobes and tilted toward the

rolling direction - so called DPRD (double-peak basal pole tilted in the rolling direction) texture

- which is commonly observed in Mg alloys [3, 6, 84, 126, 182]. For a basal pole tilted at ±15◦

towards the rolling direction, φ= 75◦. Again, averaging over the in-plane angle ψ ∈ (−π/6,π/6]

and using σ= τII,P/0.446, yields

∆τ= 1.269τII,P −τI,P. (6.27)

For the same values τII,P = 45 MPa and τI,P = 35 MPa, we obtain ∆τ= 22 MPa. This value is

rather larger than the value of ∆τ= 16 MPa obtained for the strong basal texture, indicating

that cross-slip should be much more favorable, and ductility much higher, in polycrystals

possessing the DPDR texture. In fact, we would argue that it is the solute-accelerated double

cross-slip process itself that enables the 〈c +a〉 slip that creates the DPDR texture, which is
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then naturally leading to enhanced ductility.

The above analysis also highlights that increasing the stress level could increase the ∆τ, and

thus decrease the cross-slip barrier, and in turn, initiate increased slip of pyramidal I 〈c +a〉 dis-

locations. This may explain the observed onset of pyramidal I slip in single-crystal deformation

of pure Mg at stresses somewhat above the initial yield stress [14, 167]. Furthermore, the tilting

of basal pole due to DPRD texture results in higher net driving shear stress ∆τ, which can

enable the cross-slip process even in alloys possessing DPRD texture and unfavorable solutes

such as Zn.

6.4.2 Pyramidal I favorable regime

We now estimate the driving stress ∆τ when pyramidal I is more stable than pyramidal II

〈c +a〉 screw dislocation. We assume the pyramidal I glide to happen in equilibrium, i.e., at

zero net stress. At equilibrium, the total shear stress on a pyramidal I dislocation segment due

to applied stresses and backstresses τb is equal to the Peierls stress,

τI = τapp −τb = τI,P. (6.28)

Following the same coordinate system shown in Fig. 6.4, the resolved shear stress on the shown

pyramidal II plane is

τII =σ
(
0.446sin2φcos2ψ−0.452sinφcosφcosψ−0.446cos2φ

)
, (6.29)

and the resolved shear stresses acting on the cross-slip pyramidal I planes accessible to this

pyramidal II segment are

τI =σ
(
0.4sin2φcos2ψ−0.405sinφcosφcosψ−0.4cos2φ (6.30)

±0.231sin2φsinψcosψ∓0.376sinφcosφsinψ
)

, (6.31)

Substituting Eq. 6.31 and τI = τI,P into the∆τ̃= τII−τII,P, and denoting the pyramidal II Peierls

stress as τII,P, lead to the net driving stress acting on the pyramidal II plane, for the shown

triplets, as a function of orientation of load axis (φ,ψ)

∆τ̃(φ,ψ) = 1.125τI,P −τII,P +1.125σ
∣∣0.231sin2φsinψcosψ−0.376sinφcosφsinψ

∣∣ , (6.32)

where we consider the pyramidal I plane with the larger of the two possible stresses, leading

to the absolute value term. Following the same procedure, as was performed in pyramidal II

favorable regime, i.e. averaging over the angle ψ, we obtain the driving stress for strong basal

texture as
∆τ(φ,ψ) = max{∆τ̃(φ,ψ+kπ/3) : k = 0,1, · · · ,5},

∆τ= 3

π

∫ π/6

−π/6
∆τ(φ=π/2,ψ)dψ,

= 1.125τI,P −τII,P +0.124σ.

(6.33)
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For σ = 100 MPa, which is comparable to experimental yield stresses of Mg alloys, the net

resolved shear stress on pyramidal II plane is ∆τ= 1.125τI,P −τII,P +12.4. The MEAM_I Peierls

stresses for the screw dislocation at T =300 K leads to ∆τ ≈ 7 MPa. At higher stress level

of σ = 200 MPa, the net resolved shear stress becomes ∆τ ≈ 19 MPa. Furthermore, solute

strengthening on dislocations in Mg-Y alloy would modify the net resolved shear stress. Since

the interaction of RE solutes with pyramidal I stacking fault is stronger than that with pyramidal

II stacking fault, we expect the net resolved shear stress to increase with solute concentrations.

Next, for the basal pole tilted ±15◦ towards the rolling direction, φ= 75◦. Again averaging over

ψ ∈ (−π/6,π/6] yields

∆τ= 1.125τI,P −τII,P +0.19σ. (6.34)

For the tilted basal pole using τII,P ≈ 45 MPa, τI,P ≈ 35 MPa andσ= 100 MPa, we obtain∆τ= 13

MPa.

The magnitude of the driving stress ∆τ is estimated to be close in both pyramidal I and

pyramidal II favorable cases, and so ∆τ = 20 MPa is used in the subsequent calculations

presented in Chapter 7.

6.5 Solute effects on dislocation energy difference ∆E I−II : ultra di-

lute limit

Any single solute within the NT distinct types of sites around the pyramidal II/I dislocations

can change the dislocation energy difference and thus change the cross-slip barrier. NT = 45 is

taken in this work which is estimated by looking at the number of sites around dislocations

having appreciable interaction energy difference ∆U I−II
i . Single solute arises in the ultra dilute

limit and requires special treatment because the previous statistical analyses in the dilute

limit fail. To clearly demonstrate the effects of solutes in the ultra dilute limit, the discussion

here focuses on binary alloys; ternary and quaternary alloys are discussed in the Appendix B.

Similar reasoning can be easily extended to analyze other higher-order alloys.

At solute concentrations below c∗, i.e. the ultra dilute limit, there will be one solute or no

solute among the NT sites, on average, somewhere within each cross-slip length lXS. For a

dislocation of length L with L/lXS cross-slip nucleation segments, a fraction c/c∗ contain

one solute while the remaining fraction (1− c/c∗) are solute-free. The latter have a cross-slip

activation barrier equal to that of pure Mg, ∆GMg
XS . The cross-slip rate RXS in the dislocation
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length L is then the sum of the rates over all segments,

RXS =
(
1− c

c∗
)

L
lXS∑

k=1
ν0 exp

(
−∆GMg

XS

kT

)
︸ ︷︷ ︸

pure Mg

+
c

c∗
L

lXS∑
k=1

ν0 exp

(
−∆Gk

XS

kT

)
︸ ︷︷ ︸

segments containing on solute

,

=
(
1− c

c∗
) L

lXS
ν0 exp

(
−∆GMg

XS

kT

)
+

c
c∗

L
lXS∑

k=1
ν0 exp

(
−∆Gk

XS

kT

)
.

(6.35)

For the cross-slip segments containing one solute, the probability of containing two solutes is

∼ c2, which is negligible. Thus, it suffices to examine one segment of length lXS containing a

single solute. The total energy difference between pyramidal I and II dislocations of length lXS

having one solute among NT sites is

∆E I−II
tot =∆E I−II

Mg lXS +
∑

i∈NT

si∆U I−II
i , (6.36)

where si = 1 for the site i containing the solute and si = 0 for all other sites (〈si 〉 = 1/NT and

σ2[si ] ≈ 1/NT∀i ). To be consistent with the dilute limit, we separate this into average and

fluctuation parts as

∆E I−II
tot =∆E I−II

Mg lXS + 1

NT

∑
i∈NT

∆U I−II
i + ∑

i∈NT

(
si − 1

NT

)
∆U I−II

i ,

= 〈∆E I−II
tot 〉+F[∆E I−II

tot ],

(6.37)

where F[∆E I−II
tot ] =∑

i∈NT

(
si − 1

NT

)
∆U I−II

i is the additional fluctuation term. Considering all the

different segments k, the total cross-slip rate becomes

RXS =
(
1− c

c∗
) L

lXS
ν0 exp

(
−∆GMg

XS

kT

)
+ν0 exp

−∆GMg
XS + 1

NT

∑
i∈NT

∆U I−II
i

kT

 c
c∗

L
lXS∑

k=1
exp

(
−Fk [∆E I−II

tot ]

kT

)
.

(6.38)

As before, we take a typical fluctuation corresponding to the standard deviation of the energy,

σ=
√

1

NT

∑
i∈NT

(
∆U I−II

i

)2
. (6.39)

The total cross-slip rate is then

RXS = L

lXS
ν0 exp

(
−∆GMg

XS

kT

)1+ c

c∗

exp

−
1

NT

∑
(r /s) g (r /s)∆U I−II

(r /s) −
√

1
NT

∑
(r /s) g (r /s)

(
∆U I−II

(r /s)

)2

kT

−1


 .

(6.40)
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The ductility index χ is then computed by setting RXS = 10χRPB. This result bridges naturally

to the dilute limit and involves no additional quantities. Care must be taken for certain sites,

however, as discussed in the next section.

6.5.1 Cross-slip of pyramidal 〈c+a〉 screw dislocations in the presence of a single
solute

In the previous Eq. 6.40, the summation includes all the NT atomic sites. If the single solute

is located in a position such that the energy change is unfavorable for cross-slip (∆U I-II
i =

U I
i −U II

i > 0), then the cross-slip barrier will always increase by that energy change. Such sites

are irrelevant since cross-slip nucleation will occur in some other regions of the dislocation.

If the solute is located in a position such that the energy change is favorable for cross-slip

(∆U I-II
i = U I

i −U II
i < 0), then cross-slip nucleation will begin in the vicinity of this solute.

However, if the favorable solute is located at a position that is far from the initial stages of the

nucleation process, which occurs at the intersection of the pyramidal planes (see below), then

such a favorable solute cannot lower the activation barrier below a limiting value, independent

of the solute/dislocation interaction energy difference. The relevant sites lying far from the

initial cross-slip nucleation are indicated as the cyan-colored sites in Fig. 6.2(c); these are also

the sites with the largest negative interaction energy, i.e those having the greatest potential

reduction of the cross-slip energy barrier. In spite of their very favorable energies for pyramidal

I, these solutes only enter the cross-slip nucleation process in the latter stages when the cross-

slipped segment becomes close to, and then envelopes, the solute. The solutes at such sites

therefore can not reduce the cross-slip barrier below the intrinsic barrier associated with the

initial jog nucleation. The effect of these solutes on the nucleation barrier is then to reduce

the barrier down to the value to ∆U I−II
eff = max(∆U I−II,∆GXS,i −∆GMg

XS ).

To justify the above analysis, we execute the nudged elastic band (NEB) calculations of the

cross-slip process in a model Mg-Y alloy containing a single Y atom at selected sites. In the

NEB computations, the initial state is a pyramidal II 〈c +a〉 screw dislocation in a large cylin-

drical simulation box with dislocation line direction along z axis, obtained by applying the

anisotropic Volterra displacement field on all atoms followed by relaxation while holding all

atoms within 2rc (rc being the cutoff radius of the potential) of the outer boundary fixed at the

anisotropic Volterra displacements. The final state is a pyramidal I 〈c +a〉 screw dislocation

obtained by first applying a tensile stress of 800 MPa normal to the pyramidal II plane and

running a molecular dynamics simulation at T = 77 K. This large non-glide stress decreases

the energy difference ∆E I−II and favors the pyramidal I over pyramidal II 〈c +a〉 screw disloca-

tion [230]. After the transition to pyramidal I is achieved, the structure is relaxed at zero stress

and zero temperature while continuing to hold the boundary atoms fixed. NEB calculations

are carried out using a cylindrical simulation box of radius 150 Å and of axis length lz = 150 Å.

Each NEB calculation is performed under stress-free conditions using 64 replicas, and conver-

gence is assumed when the maximum of the force magnitude acting on all of the atoms across

all replicas reaches less than or equal to 2×10−4eV/Å.
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Figure 6.5 – Map of difference between interaction energy ∆U I−II of Y solute atom with
pyramidal I and pyramidal II 〈c +a〉 screw dislocations. The dotted lines show the positions
of the stacking faults corresponding to initial pyramidal II and final pyramidal I dislocations.
Sites marked with 1,2,3 and 4 are substituted with Y atoms for subsequent NEB calculations,
and are referred to in Fig. 6.6 and Fig. 6.7.

The Mg-Y potential used in this work, as discussed in Section 3.2, is not perfect, deviating from

DFT results for some crucial properties. The potential predictions for the average interaction

energy of Y with the Pyramidal I stacking fault is much weaker than DFT values, which renders

this potential unsuitable for the investigation of the cross-slip model in general. Nevertheless,

the potential can be employed to test the assumptions of the proposed model by carefully

selecting individual atomic sites into which Y is substituted for Mg. To this end, we compute

the difference ∆U I−II =U I −U II of a Y solute at any specified atomic position relative to the

cross-slipped pyramidal I and initial pyramidal II 〈c +a〉 screw dislocations. To compute the

interaction energy of Y at a particular site around a dislocation, we first note the energy of the

relaxed dislocation structure with Y substituted with Mg at that site. The interaction energy is

then the energy of this dislocation structure minus the energy of a reference structure. The

energy of the reference structure is obtained by making use of the fact that the interaction of

a solute situated far from the core is purely elastic. The dislocation line length is sufficient

to avoid any effects of the periodic images of the Y atoms along the line. Fig. 6.5 shows the

computed ∆U I−II for all atomic sites around the dislocations. Y solutes at atomic sites having

a negative value of ∆U I−II will decrease the energy difference ∆E I−II and thus assist the cross-

slip process from pyramidal II to pyramidal I plane. Sites having positive ∆U I−II will increase

∆E I−II and thus suppress the cross-slip process. We refer to sites having negative and positive

values of ∆U I−II as favorable and unfavorable sites, respectively. For the NEB calculations of

the cross-slip process in Mg-Y alloys, we choose the four atomic sites numbered in Fig. 6.5.

Sites #1 and #3 are favorable sites situated, respectively, near and far from the intersection of

pyramidal planes. Sites #2 and #4 are unfavorable sites located, respectively, near and far from

the pyramidal planes intersection.

Fig. 6.6 shows the transformation of the dislocation cores and Fig. 6.7 shows the corresponding

energy changes along the MEP of the cross-slip process from a pyramidal II to a pyramidal I
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Figure 6.6 – MEPs for the cross-slip of 〈c +a〉 screw dislocations from pyramidal II to pyra-
midal I plane in Mg and Mg-Y alloys: (a) pure Mg and (b)-(e) Mg-Y. All the NEB calculations
are performed for a dislocation line length of ∼ 150 Å. The numbers written below each figure
depict the reaction coordinates shown in Fig. 6.7. Only non-hcp atoms are shown to represent
the core structures: yellow atoms denote Mg atom and blue atoms denote Y atom. Mg atoms
in the first frame of (e) are rendered transparent to show the position of Y atom which is
embedded in between the Mg atoms. In (b)-(e), Mg at marked sites, shown in Fig. 6.5, are
substituted with Y atoms.

plane, as obtained from the NEB calculations. We now examine the cross-slip evolution for

the specific Y solutes #1 - #4. Fig. 6.6 shows that nucleation of the cross-slip process occurs

near the solute for favorable solutes #1 and #3, and avoids the solute for unfavorable solutes

#2 and #4, as claimed earlier. For the unfavorable solutes, the cross-slipped dislocation only

envelops the solute at the very end of the process, which is forced by the imposed final state

of full cross-slip. For the favorable solute #1 near the pyramidal I/II intersection, the solute

is intimately involved in the early-stage nucleation. For the favorable solute #3 far from the

pyramidal I/II intersection, the solute does not influence the initial nucleation process.

The features seen in the atomistic pictures in Fig. 6.6 are reflected in the quantitative results

for the energy versus reaction coordinate shown in Fig. 6.7. For the unfavorable solutes #2
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Figure 6.7 – Energy variation along the MEP associated with the pyramidal II-pyramidal I
cross-slip of 〈c +a〉 screw dislocations in pure Mg and Mg-Y. Results are shown for a dislo-
cation line length of ∼ 150 Å. In all figures, blue curves are for pure Mg, orange curves are
for Mg-Y having a Y solute near the pyramidal I-pyramidal II plane intersection, and brown
colored curves correspond to Y at a site far from the intersection of the pyramidal planes. Y
solutes in (a) are at the favorable sites and in (b) at the unfavorable sites. The energy for each
curve is referenced to the initial energy of the solute plus pyramidal II dislocation energy in
order to compare the interaction energy difference with the change in the cross-slip barrier.
Non-hcp atoms, identified by the common neighbor analysis, comprising core structures of
the two pyramidal 〈c +a〉 screw dislocations in pure Mg are shown in (a). Curves for Mg-Y are
labeled with corresponding site numbers of Y shown in Figs. 6.5 and 6.6.

and #4, the first two stages of cross-slip are the same as those in pure Mg, as demonstrated in

Fig. 6.7(b). The cross-slip barrier in the presence of the unfavorable solutes either increases or

remains the same with respect to pure Mg. Fig. 6.7(a) shows clearly that during cross-slip in

presence of favorable solute #1, situated near the pyramidal plane intersection, the energy

(orange curve) of cross-slipped structure starts to decrease as compared to pure Mg (blue

curve) right from the nucleation stage. Also shown in Fig. 6.7(a) is that the energy curve (brown

colored) for site #3, which is far from the pyramidal plane intersection, closely follows the

curve for pure Mg (blue colored) till reaction coordinate ∼10 which coincides with the end of

the first nucleation stage of the cross-slip. Therefore, it can be concluded that if a solute is far

from the intersection of the pyramidal planes, the favorable solute cannot pay for the intrinsic

barrier associated with the initial jog nucleation. Moreover, Fig. 6.7(a) also depicts that the

decrease in the cross-slip barrier for the solute in both site #1 and #3 with respect to pure Mg is

very close to the interaction energy difference ∆U I−II. This validates the assumption made in

the previous model relating total energy change after cross-slip to the change in the activation

energy for cross-slip.
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6.6 Experimental observation of the solute accelerated pyramidal

cross-slip in Mg-Y alloys 1

We now demonstrate the direct physical evidence for the operation of the pyramidal 〈c +a〉 cross-

slip process accelerated by Y solutes. Fig. 6.8 show the initial {0001} and {101̄0} pole figures,

stress-strain curves, and TEM observation of dislocation microstructures in pure Mg, Mg-

1wt.%(0.28at.%)Y, and Mg-3wt.(0.84at.%)%Y solid solution alloys deformed under uniaxial

tensile loading at room temperature. All samples are process-controlled to yield similar grain

sizes and the strong basal texture typical of pure Mg, with all TEM observations performed

in grains having close-to-basal orientation as confirmed by selected area diffraction, making

direct comparisons appropriate.

Upon yielding, the alloys have much lower hardening rates that could be due to both the

slightly weaker texture (favoring more basal slip) and enhanced 〈c +a〉 slip. We thus ex-

amine the deformation microstructures at the same 3% strain (Fig. 6.8 (b)-(d)). The stress

level for pure Mg is much higher than for the two alloys. The alloys exhibit a clear increase

in both 〈c +a〉 dislocation cross-slip and overall 〈c +a〉 activity: Connected 〈c +a〉 disloca-

tion segments are increasingly found on both pyramidal I and II planes with increasing Y

concentrations, with pyramidal II slip being dominant. This is consistent with earlier obser-

vations of slip traces on both pyramidal I and II planes in Mg–3wt.%Y [179]. In pure Mg, the

〈c +a〉 dislocations are primarily dissociated on the basal plane, with some indications of

limited cross-slip involving either pyramidal II or I slip. These observations indicate that, in

the alloys, 〈c +a〉 slip operates and contributes to the lower hardening even at the very early

stages of plastic straining, consistent with the theory that posits continued 〈c +a〉 genera-

tion and slip at lower stresses. We attribute the presence of some pyramidal I segments to

the high tensile stress level in pure Mg, which is consistent with single-crystal studies [16]

and atomistic simulations [230]. The role of easy 〈c +a〉 slip is perhaps more critical at the

later stages of deformation (strain > 10% where further extension twinning is limited). In

pure Mg polycrystals with grain sizes > 10 mm, excessive basal slip without 〈c〉-axis strain

accommodation can quickly build up strain incompatibility and high constraint stresses,

leading to damage initiation and limiting ductility [51]. In the Mg-Y alloys, the stress-strain

curves clearly have a longer range of stable plastic flow at relatively normal hardening rates,

indicating that sufficient plastic deformation mechanisms are activated until the onset of

macroscopic plastic instability (e.g., the Considére criterion) is reached. These controlled

experiments demonstrate that Y solutes do enhance 〈c +a〉 dislocation cross-slip, slip, 〈c〉-axis

strain accommodation, and ductility with increasing Y concentration, in excellent agreement

with our predictions.

1The experimental results presented in this section were provided by Dr. Stefanie Sandlöbes from institut für
Metallkunde und Metallphysik at RWTH (Rheinisch- Westfälische Technische Hochschule) Aachen University,
Germany.

88



6.6. Experimental observation of the solute accelerated pyramidal cross-slip in Mg-Y
alloys

Figure 6.8 – Experimental results for pure Mg and Mg-Y alloys under tensile deformation
at room temperature. (a) Stress-strain curves for pure Mg and two Mg-Y solid solution alloys
containing 1 wt.% and 3 wt.% Y atoms. (b-d) show initial {0001} and {101̄0} pole figures and
bright-field TEM of corresponding dislocation microstructures at 3% strain for (b) pure Mg,
(c) Mg-3wt.%Y and (d) Mg-1wt.%Y. In (b) to (d), dislocations visible under diffraction vector
g = 0002 are 〈c +a〉 dislocations based on two-beam g ·b = 0 visibility analysis (b is the Burg-
ers vector); the insets show the corresponding crystallographic plane traces identified using
diffraction analysis, enabling determination of the crystal planes of the observed 〈c +a〉 dis-
locations. In (b), 〈c +a〉 dislocation segments are lying on basal and pyramidal II planes;
areas, where dislocations change from the pyramidal II to the basal planes, are highlighted by
turquoise arrows and circles. In (c) and (d), 〈c +a〉 dislocation segments are predominantly
on pyramidal II planes, with frequent plane changes to either pyramidal I (highlighted by red
arrows and circles) or basal (highlighted by turquoise arrows and circles) planes. In (c), for
Mg–3wt.% Y, high-frequency 〈c +a〉dislocation switching between pyramidal II and I planes
(double cross-slip) is evident.
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7 Cross-Slip Driven Ductility in Dilute
Mg Alloys: Results

This chapter is in part extracted from the following publications

1. Ahmad R., Yin B., Wu Z. and Curtin W. A. (2019). Designing high ductility in

magnesium alloys. Acta Mater., 172: 161-184.

2. Ahmad R., Wu Z. and Curtin W. A. (2020). Analysis of double cross-slip of pyrami-

dal I 〈c +a〉 screw dislocations and implications for ductility in Mg alloys. Acta

Mater., 183: 228-241.

In this chapter, we present the predictions of the model for ductility in a range of binary,

ternary and quaternary solid solution Mg alloys at room temperature T = 300 K. We place

particular emphasis on the Mg alloys free of RE solute elements. These results presented in

this chapter could facilitate the computationally guided search for the compositions of high

ductile dilute Mg alloys.

We first discuss the choice of parameters used in making predictions. We then apply the model

in the pyramidal II favorable regimes, relevant for low solute concentrations, of Mg alloys, and

compare the model predictions with the available experimental observations. Finally, results

for pyramidal I favorable regime, relevant for a relatively larger amount of favorable solutes, of

Mg alloys are presented and compared with the experiments.

7.1 Determination of model parameters

The ductility condition, Eq. 6.13, requires as inputs the interaction energy of solutes with

pyramidal I and pyramidal II 〈c +a〉 screw dislocations, the net cross-slip driving shear stress

∆τ, and the dislocation energy difference ∆E I−II
Mg in pure Mg. In the current model approxi-

mations, the solute-dislocation interactions are limited to solute-stacking fault interactions,

which are computed accurately using DFT. The energy difference in pure Mg ∆E I−II
Mg and net

driving stress ∆τ are two crucial inputs in the ductility model that are not accessible with high
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precision. In this section, we compare model predictions versus experimental observations

for various values of ∆E I−II
Mg and ∆τ, and choose that pair which best capture the experimental

features related to ductility and pyramidal slip in Mg alloys.

A reasonable range for the net driving shear stress ∆τ was discussed in Section 6.4. Values

for ∆E I−II
Mg have been estimated previously. A DFT calculation [97] using quadrupolar arrange-

ments of pyramidal I or pyramidal II 〈c +a〉 screw dislocation in a small periodic cell leads

to an estimated energy difference of ∆E I−II
Mg = 7±20 meV/nm. In this calculation the simu-

lation cell is sheared to negate the average shear strain developed by the dislocations [42],

creating large stresses throughout the cell which can alter the apparent energies of the dislo-

cations [230]. Such undesirable/extrinsic additional stresses arising from the small periodic

cell can be eliminated by simulating a single dislocation in a large simulation cell; this is

challenging in DFT because the uncertainty in total energy grows with the number of atoms,

making it hard to extract the small difference between the two types of screw dislocations. We

instead use the MEAM_I potential of Mg [231] that has been comprehensively tested for vari-

ous properties related to dislocations. The computed energy difference ∆E I−II
Mg = 27 meV/nm is

within the uncertainty of the DFT calculation. Within the context of the model, if ∆E I−II
Mg is too

small, then pyramidal I slip could easily occur in pure Mg, which is not broadly observed in

experiments. If ∆E I−II
Mg is too large, then cross-slip cannot become favorable in various alloys

at the concentrations studied experimentally.

To examine the dependence of the model predictions to the above material parameter values,

we apply the model to three representative binary Mg alloys Mg-Zn, Mg-Al, and Mg-Y for a

range of values of ∆E I−II
Mg and ∆τ. Zn, Al, and Y are chosen as representatives of solutes that are

highly unfavorable, intermediate, and highly favorable, respectively, for achieving ductility.

Fig. 6.3(a) shows the effect of the solute concentrations on the average energy difference of

pyramidal 〈c +a〉 screw dislocations in Mg alloys. Al and Zn solutes increase the dislocation

energy difference and thus hamper the cross-slip process on average. Y is a favorable solute,

decreasing the dislocation energy difference and thus accelerating the cross-slip process.

The Y concentration at which the average energies of pyramidal I and II 〈c +a〉 screw dis-

locations become equal depends on ∆E I−II
Mg . This concentration can be roughly estimated

from experiments. The observation of slip traces in single-crystal tensile tests of Mg-Y alloys

by Rikihisa et al. [167] indicates that pyramidal I slip becomes predominant in the range of

0.6-1.1at.%Y. Slip traces observed in tensile tests of a Mg-0.9at.%Y polycrystal also indicated

higher activity of pyramidal I 〈c +a〉 dislocations than pyramidal II 〈c +a〉 dislocation. On the

other hand, over the same concentration range, TEM observations presented in Fig. 6.8 show

higher pyramidal II dislocation content. This concentration also cannot be too low, because

then at higher Y concentrations where pyramidal I is the lowest-energy plane, the necessary

cross-slip from the low-energy pyramidal I onto higher energy pyramidal II would again have

a high barrier, enabling the detrimental PB transition on pyramidal I plane to dominate and

preventing high ductility. These considerations suggest that the concentration of Y at which

〈c +a〉 screw dislocations become equal on pyramidal I and pyramidal II planes is around 0.6
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Figure 7.1 – Predictions of the cross-slip barrier ∆GXS, including fluctuation, and ductility
index χ in binary Mg alloys, containing Zn, Al, and Y, as function of solute concentration
for various values of ∆E I−II

Mg and ∆τ: a) ∆E I−II
Mg = 10 meV/nm and ∆τ= 4 MPa, b) ∆E I−II

Mg = 15

meV/nm and ∆τ = 9 MPa, c) ∆E I−II
Mg = 25 meV/nm and ∆τ = 20 MPa, and d) ∆E I−II

Mg = 30
meV/nm and ∆τ= 25 MPa.

at.%, which, from Fig. 6.3(a) implies that ∆E I−II
Mg ≈ 25 meV/nm; this is just within the range of

the DFT value [97] and close to the MEAM_I value [230]. Thus, values in and around this range

are considered.

Table 7.1 – Properties of Mg relevant to the pyramidal I and the pyramidal II stacking faults.
b, γMg, and A0 are calculated using DFT [236]. ∆GXS,i and lnuc are determined from atom-
istic simulation using the MEAM_I potential [231]. K12 is determined in the framework of
anisotropic elasticity utilizing the DFT data, and ∆EPB and lPB are computed employing MD
simulations using the MEAM_I potential.

Properties b µ ∆EMg ∆GXS,i ∆τ γMg K12 A0 ∆EPB lPB lnuc NT
(Å) (GPa) (meV/nm) (eV) (MPa) (mJ/m2) (eV/Å) (Å2) (eV) (Å) (Å)

Pyramidal I 6.09 18 25 0.23 20 163.648 0.159 18.759 0.3 20 25 45
Pyramidal II 6.09 18 25 0.23 20 167.572 0.180 16.833 0.5 20 25 45

Fig. 7.1 shows the predicted cross-slip barrier versus solute concentration for Zn, Al, and Y

solutes for four pairs of (∆E I−II
Mg , ∆τ). The net driving stress ∆τ are within the estimated range

and chosen to produce fairly similar predictions across the four values of energy difference
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∆E I−II
Mg . All four parameter sets predict that χ<−2 for pure Mg, severely failing to satisfy the

ductility criterion. Y solutes are predicted to produce good ductility above some very small

concentration. For Zn and Al, χ < 1, such that these alloys can not achieve high ductility

in general (submicron polycrystals with weak textures may still show certain ductility). Al

is widely used in commercial Mg alloys, with a plethora of experimental studies of Mg-Al

alloys. We thus examine Mg-Al more carefully. Mg-Al alloys exhibit wide variability in the room

temperature ductility [93] over the concentration range of 2.5-5.5 at.%. This indicates that χ

should be close in the range 0 <χ< 1, which is the domain where details such as processing

routes, textures, grain sizes, etc. could greatly affect the resulting ductility. Huang et al. [93]

show that increasing the Al concentration in Mg-0.17at.%Mn alloy from 2.6 at.% to 5.2 at.%

weakens the basal texture and increases the ductility, while for higher Al concentrations, the

basal texture is increased and ductility begins to decrease. These experimental results are

most consistent with ∆E I−II
Mg = 25 meV/nm and ∆τ = 20 MPa. Interestingly, this pair match

quite well the values estimated by independent considerations. We thus use these values in

presenting subsequent results. Additional parameters required in the model are tabulated in

Table 7.1.

7.2 Prediction for binary Mg alloys

We now make predictions of the cross-slip energy barrier and ductility index χ for binary Mg-X

alloys containing a wide range of solute atoms.

Fig. 7.2 shows the combined average and fluctuation effects of solutes on the cross-slip barrier

and ductility index χ. We note that χ > 1, at which the cross-slip rate is ten times the PB

transition rate, is taken to be sufficient in achieving ductility. The model predicts that all

RE alloys reach χ> 1 at dilute concentrations. Only 0.035 at.% Ce is sufficient for inducing

ductility, consistent with the experimental observation of weak basal texture and high ductility

[50, 85, 138]. Zr turns out to be quite efficient at low concentrations [40, 154]. Ca and Sr are

predicted to be similarly effective in turning Mg ductile at concentrations c > 0.1 at.%. This

result is consistent with the addition of dilute Ca and Sr inducing weak basal texture and

increasing the ductility of Mg alloys [34, 35, 49, 53, 132]. The addition of a small quantity of

K is predicted to induce ductility, however, making a Mg-K alloy is challenging on account

of the boiling temperature of K being close to the melting temperature of Mg. For Mn, the

ductility condition is fulfilled at concentrations > 0.3 at.% in accordance with the observed

good ductility and formability at 0.35 at.% [193, 194, 242]. Ductile Mg-Sn alloys require a

concentration of Sn more than 0.8 at.% which may be beyond its practical solubility limit.

Additions of Li at concentrations more than ∼2 at.% are expected to be ductile, agreeing

with the experiments on ∼3, 10, 15 at.% Li [5, 6]. Binary Mg alloys comprising Zn and Ag

never fulfill ductility condition χ = 1, so theses alloys are never expected to be sufficiently

ductile in general. Another observation is that Ag and Zn solutes are practically the same, and

subsequent ternary and quaternary results presented for Zn can also be applied as it is for

Ag. For Al, the ductility condition χ> 1 is never achieved and reaches to the maximum value
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Figure 7.2 – Variation of the cross-slip barrier, including average and fluctuation, and duc-
tility index χ with the concentration of the solutes in binary alloys. Sudden change in the
slopes of the curves at around 0.08 at.% for REs, Zr, Sr, Ca, and K is the signature of the
beginning of the ultra dilute limit.

χ= 0.1 at 2.4 at.% (see Fig. 7.1(c)). Thus Al is expected to have moderate effects consistent with

the experimentally observed moderate ductility [41, 52, 53]. We can further identify ductile

binary Mg alloys comprising at least 2.5 at.% Li or 1.1 at.% Sn or 0.4 at.% Mn or 0.15 at.% K or

0.12 at.% Ca or 0.07 at.% Sr or 0.04 at.% Zr.

7.3 Predictions for ternary Mg alloys

For Mg alloys to be competitive in structural applications, the ultimate goal is to achieve high

ductility and high strength. In Mg, strengthening is best achieved through age-hardening, i.e.

precipitation of hard phases that resist dislocation motion. Identifying higher order alloys

ductile in the solid solution state thus opens the possibility of subsequent age-hardening

processes, as well as delicate control of strength and ductility. Alloy processing may also be

facilitated by the addition of some solutes for reasons not directly connected with strength

and ductility. Thus, it is valuable to move beyond simple binary alloys and consider ternary

and quaternary alloys.

Figs. 7.3 and 7.5 show ductility predictions for a wide range of non-RE ternary Mg alloys, with

Al, Zn, and Li as one of the two alloying elements. As shown in Fig. 7.2, since Zn and Al cannot

achieve the ductility condition by itself and that these are the main alloying elements used

in industrial alloys, we present here the ternary alloys based on Al, Zn, and Li with favorable
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Figure 7.3 – Variation of ductility index χ as a function of the concentrations of solutes in
ternary Mg alloys. These Al, Zn, and Li based ternary alloys contain one of K, Mn, or Sn as
second alloying elements. The compositions of alloys lying in the green region, for which χ> 1,
are predicted to be ductile.

solutes K, Mn, Sn, Zr, Ca and Sr. In these figures, the green region (χ> 1) corresponds to the

ductile composition and the red region (χ<−1) denotes the composition expected to exhibit

poor ductility. The first observation is that as the amount of Zn is increased, the ductility of

the resulting alloys starts to decrease, consistent with the experimental trend [40, 53, 123, 194,

247]. Secondly, the addition of ∼0.4 at.% Zn seems to be optimum which is generally used

in industrial alloys. The addition of Mn along with Zn (0.3at.%Zn-0.45at.%Mn, 0.6at.%Zn-

0.45at.%Mn, 0.9at.%Zn-0.45at.%Mn) has been shown to increase ductility [192, 194], which is

in the predicted ductile range. The addition of Sn and K are predicted to result in ductile alloys.

Adding a dilute amount of Ca, Zr and Sr can turn the Mg-Zn alloys ductile and weaken the

basal texture which indeed has been observed experimentally [40, 49, 53, 132]. Ca and Sr have

similar effects on ductility. From this analysis, we identify Mg0.5Zn0.7Sn, Mg0.5Zn0.2Mn, Mg-
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Figure 7.4 – Variation of ductility index χ as a function of the concentrations of solutes in
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second alloying elements. The compositions of alloys lying in the green region, for which
ductility χ> 1, are predicted to be ductile. The abrupt change in the slopes of the curves is
due to the ultra dilute limit.

0.5Zn0.1K, Mg0.5Zn0.07Ca, Mg0.4Zn0.04Sr, and Mg0.04Zn0.01Zr (concentration in at.%) to be

potential ductile ternary Mg alloys containing Zn and optimum amount of second alloying

element.

Mg-Al alloys itself remain very close to satisfying the ductility condition, so a small addition of

favorable solutes can tip the balance in favor of ductility. Mg-Al-Mn alloys with ∼0.18 at.% Mn

are shown to be ductile over a wide range of Al concentrations [93, 124] and ductility of alloys

decreases with Al content at high Al concentrations [93], consistent with the predicted trend.

Replacements of Zn with Sn in AZ alloys have been shown to induce higher ductility [198].

Additions of Ca and Sr in Mg-Al alloys have successfully been shown to weaken the basal
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Figure 7.5 – Variation of ductility index χ as a function of the concentrations of solutes in
ternary Mn based Mg alloys. The second alloying element is one of Sn, Ca, Sr, K, or Zr. The
compositions of alloys lying in the green region, for which ductility χ> 1, are predicted to be
ductile. Discontinuity in the slopes of the χ curves is due to the ultra dilute limit.

texture and improve ductility [24, 53, 178]. Furthermore, according to the model, Mg2Al0.6Sn,

Mg2Al0.17Mn, Mg1.5Al0.1K, Mg2Al0.06Ca, Mg2Al0.03Sr, Mg2Al0.005Zr (concentration in at.%)

are predicted to be ductile Al based ternary Mg alloys. Since the χ curves are shallow at around
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Figure 7.6 – Prediction of ductility in quaternary alloys based on Al-Zn solutes. Fig. (a)
shows the variation of ductility index χ with Al and Zn concentrations. χ always remains less
than 1, indicating not enough ductility for any composition of ternary Mg-Al-Zn alloys. The
rest of the figures (b), (c), and (d) show the effect of a third solute (Mn, K, Sr, Zr, Ca, Sn, and Li)
on the ductility index. Each line, marked with the atomic concentration (at. %) of the third
solute, indicates the compositions at which χ= 1. The compositions of alloys away from χ< 1
in the lower-left region for each line are predicted to yield good room temperature ductility.
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Figure 7.7 – Prediction of ductility in quaternary alloys based on Li-Al solutes. Fig. (a) shows
the variation of ductility index χ with Li and Al concentrations. χ> 1 indicates the regions
of good ductility. The rest of the figures (b) and (c) show the effect of a fourth solute (Mn, K,
Sr, Zr, Ca, and Sn) on the ductility index. Each line, marked with the atomic concentration
(at. %) of the third solute, indicates the compositions at which χ= 1. The compositions of
alloys towards χ> 1 in the lower-right region for each line are predicted to yield good room
temperature ductility.

2 at.% Al concentration, the Al amount in the predicted composition can be varied in the range

of 1-3 at.% without much change in the value of χ.

Li is another potential element to be used in forming ductile Mg alloys which, however, exhibit

low strength [226] (Li is also currently relatively expensive). The low strength of Mg-Li alloys

can be overcome by the additions of ternary elements without sacrificing ductility. Alloying

with Al [126, 135, 226], Zn [135, 226], Ag [226], Ca [226] has been shown experimentally to
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Figure 7.8 – Prediction of ductility in quaternary alloys based on Li-Al solutes. Fig. (a) shows
the variation of ductility index χ with Li and Zn concentrations. χ> 1 indicates the regions of
good ductility. The rest of the figures (b) and (c) show the effect of a third solute (Mn, K, Sr, Zr,
Ca, and Sn) on the ductility index. Each line, marked with the atomic concentration (at. %) of
the third solute, indicates the compositions at which χ= 1. The composition of alloys towards
χ> 1 in the lower-right region for each line are predicted to yield good room temperature
ductility.

demonstrate good ductility in the compositions predicted by our theory. The theory also

predicts that small addition of effective second alloying elements such as Ca, Sr, Zr in Mg-Li

can afford the concentration of Li to be less than 1 at.%. We should also note that Li, if exceeds

∼19 at.% concentration, can form the bcc β phase in Mg alloys [10] and that the present theory

is applicable for solid solution state, the Li level should be below that critical concentration.

Mn as an alloying element is gaining attention to improve the ductility of Mg alloys, which is
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discussed above in relation to Mg-Al-Mn, Mg-Zn-Mn, and Mg-Li-Mn alloys. We show in Fig. 7.4

the combination of Mn with other favorable solutes. This shows that two favorable solutes can

be mixed together in very small quantity, allowing both to remain in their solubility limits, to

achieve good ductility in Mg alloys. Mg0.06Ca0.17Mn, Mg0.03Sr0.1Mn, Mg0.03K0.25Mn, and

Mg0.01Zr0.1Mn (concentration in at.%) are a few examples of such potential alloys.

7.4 Predictions for quaternary Mg alloys

Fig. 7.6 shows the predicted ductility index χ and ductility inducing compositions for qua-

ternary alloys based on Al-Zn with favorable solutes Sr, Mn, K, Sn, Ca, and Zr. Fig. 7.6(a)

shows the result for ternary alloys, and in the rest of the figures (b), (c), and (d), the plotted

lines, corresponding to the labeled amount of third solute element, show the boundary of

composition with χ= 1. For any line labeled with the amount of third solute elements, the

compositions of the two base solute elements away from χ< 1 in Fig. 7.6 indicate the alloy

composition expected to be ductile.

Ternary Al-Zn alloys do not show sufficient ductility, so we show that the addition of a third

favorable solute can turn these alloys into ductile. The addition of a small amount of Mn in

AZ31 alloys can bring the ductility index χ∼ 0 by negating the detrimental effect of Zn. Many

commercially used alloys contain Mn exhibiting good ambient temperature ductility [94, 111,

124, 133] consistent with the theory prediction. The addition of Ca in AZ31 alloy [131] has been

used to increase the ductility, in agreement with the prediction of the theory. The theory also

predicts that the addition of Li will bring the ductility index χ> 1 producing ductility which is

corroborated by experiments [126, 135, 224, 225]. According to the theory, the additions of

solute elements Sr, Sn, and Zn can generate ductility in AZ alloys.

Figs. 7.7 and 7.8 show the ductility index χ of quaternary alloys based on Li-Al and Li-Zn.

In these figures, (a) shows the result of ternary alloys, and in the rest of the figures (b) and

(c), the plotted lines, corresponding to the labeled amount of third solute element, show the

boundary of composition with χ = 1. For any line labeled with the amount of third solute

elements, the compositions of the two base solute elements towards χ> 1 indicate the alloy

composition expected to be ductile. The theory provides the range of compositions that are

expected to be ductile. Moreover, the possibility of adding three solute elements provides us

with a greater degree of freedom in composition space to optimize the alloy properties specific

to the application, such as ductility, strength, toughness, formability, extrudability, density,

creep resistance, corrosion resistance, bio-compatibility, and cost to name a few.

7.5 Predictions in pyramidal I favorable regime

Until now, we have presented the results for the dilute concentration of solutes where 〈c +a〉 screw

dislocations, on average, are more stable on pyramidal II than on pyramidal I plane. However,

the addition of favorable solutes above a specific amount will reverse the stability order, as

102



7.5. Predictions in pyramidal I favorable regime

shown in Fig. 6.3, and then cross-slip from the pyramidal I plane to the pyramidal II plane

compete with the PB transition of pyramidal I 〈c +a〉 mixed dislocation. This pyramidal I

favorable regime is particularly relevant RE solutes that have a very strong average effect and

high enough solubility limit [171].

Fig. 7.9(a) shows the variation of average energy difference between pyramidal I and pyramidal

II dislocations with RE solute concentrations. In Fig. 7.9, c̄ is the concentration at which

the energies of both dislocations become equal in the binary alloys, and in Fig. 7.9(b), the

concentration is normalized with respect to c̄ for each solute. As we gradually increase the

solute concentration up to c̄ (Er : 0.62 at.%, Y : 0.61 at.%, Gd : 0.56 at.%, Nd : 0.53 at.%, Ce

: 0.53 at.%), the dislocation energy difference decreases, which in turn increases the rate of

cross-slip process.

Fig. 7.9(b) shows the predicted cross-slip energy barrier versus solute concentrations. The RE

elements lead to a rapid decrease in the pyramidal 〈c +a〉 cross-slip barrier at low solute con-

centrations. At concentrations for which χ> 1, the generation of new pyramidal II dislocation

loops is deemed sufficiently fast to enhance ductility in spite of the on-going detrimental PB

transitions. These predictions were shown to be consistent with a host of experimental studies

performed on Mg-RE alloys [5, 84, 138, 167, 179, 181, 182]. At concentrations c > c̄, further

addition of RE solutes makes pyramidal I more stable and increases the average pyramidal

I-II energy difference. The average solute effect will thus drive the cross-slip barrier higher.

However, the effect of solute fluctuations is increasing and continues to reduce the overall

cross-slip barrier. Ultimately, however, with increasing solute concentrations, the increasing

average effect of the solutes counteracts the fluctuation effect and the cross-slip barrier begins

to increase again. Since the PB transition of the mixed pyramidal I dislocation has a much

lower energy barrier than that of the pyramidal II edge dislocation, the increasing cross-slip

barrier re-enters the less-ductile (χ< 1) domain at concentrations ≈ 3−3.5 times the concen-

trations at which pyramidal I and pyramidal II are energetically equal. Ductility is predicted to

be rapidly reduced with the further addition of solutes, as χ decreases toward 0 and further

to χ=−1. Therefore, we predict an upper limit to the ductilizing effects of the RE solutes, in

the vicinity of 1.5 at% for the RE elements, beyond which the alloys are predicted to have low

ductility. This is the main result of the current work, which has practical implications in the

future design of new ductile Mg alloys.

We now compare our prediction with some recent experiments on high concentration Mg-RE

alloys. Rikihisa et al. [167] investigated the dominant slip systems in designed single-crystal

Mg-Y alloys at 0.6 at.%, 0.9 at.%, 1.1 at.%, and 1.3 at.% Y concentrations. Their findings suggest

that pure Mg yields by pyramidal II slip while all these Mg-Y alloys yield by pyramidal I slip

except the Mg-1.3 at.% Y alloy where yield is evidently dominated by prismatic slip. This is

in agreement with the result shown in Fig. 7.9(a), where pyramidal I dislocation becomes

more favorable at around 0.6 at.% Y. Furthermore, deformation studies of polycrystal Mg-

0.9at.%Y alloy indicate higher activity of pyramidal I 〈c +a〉dislocations, with concomitant

good ductility, in accordance with the results shown in Fig. 7.9(b).
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Figure 7.9 – Prediction of ductility in Mg-RE binary alloys including the pyramidal I favor-
able regime. (a) Variation of the average energy difference between the pyramidal I and
pyramidal II screw 〈c +a〉 dislocations as a function of solutes concentrations. (b) Cross-slip
barrier, including fluctuation, and ductility index χ as a function of concentrations normalized
by c̄ at which the energies of the pyramidal I and pyramidal II dislocations become equal.
Value of c̄ (at.%)- Er : 0.62, Y : 0.61, Gd : 0.56, Nd : 0.53, Ce : 0.53. Mg alloys with χ> 1 (in the
green region) are predicted to be ductile, and not ductile with χ < 0 (in the red region). At
concentrations lower than c̄ , pyramidal II is more stable and cross-slip from the pyramidal II to
pyramidal I planes competes with the PB transition of the pyramidal II 〈c +a〉edge dislocation
(with barrier of∆EPB = 0.5 eV). Beyond c̄ , pyramidal I becomes more stable and now cross-slip
from the pyramidal I to pyramidal II planes competes with even faster PB transition of the
pyramidal I mixed 〈c +a〉 dislocation (with barrier of ∆EPB = 0.3 eV).
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Gao et al. [78] studied the deformation of solution treated polycrystal Mg-Gd cast alloys and

found decreasing ductility with increasing Gd contents. In their experiments, as the Gd con-

centration is increased from 0.5 at.% to 3.63 at.%, the alloy ductility is reduced with an increase

in yield strength. This loss of ductility may, however, be due to normal ductility reduction with

increasing strength, according to the Considère criterion. However, the experiments are not

inconsistent with our findings. Data from the same work shows low ductility in ternary Mg-

1.82Gd-1.02Y(at.%), Mg-1.48Gd-1.13Y(at.%), and Mg-1.07Gd-1.77Y(at.%). Since Gd and Y have

similar effects, our binary predictions are approximately appropriate for these ternaries at the

total Gd+Y content. All of these alloys have a Gd+Y concentration around 1.6-1.8 at.%, which

is above the level where we predict a transition back to low ductility. Nonetheless, caution

is needed in interpreting the observation because ductility can also be influenced by other

factors such as texture, grain boundary segregation and precipitation, and grain sizes. For

example, in these experiments, cast alloys were studied and these microstructures presumably

would not have strong texture and presumably basal 〈a〉dislocation could accommodate some

plastic strain and thus lead to some ductility.

Finally, we discuss the experiment performed by Wang et al. [218] on rolled and extruded Mg-

1.8Gd-0.9Y-0.1Zr(at.%) alloys. Again, interpretation of ductility measurements in experiments

is not straightforward, since ductility is not an intrinsic material property and depends on

many factors. Nevertheless, the experiment shows that the as-rolled and as-extruded alloys

have low ductility. This is consistent with our theory since the amount of RE elements is 2.7

at.%, well beyond the ductility limit according to Fig. 7.9(b). This low ductility may also arise

due to hard precipitate formation since the excessive formation of hard precipitates would

increase yield/flow strength and decrease ductility. However, the alloy ductility increased

after aging, which might be due to the depletion of RE solutes in the matrix when forming the

precipitates, and restoring the matrix concentration of RE elements back into the ductile range.

Thus, the experimental observations here are broadly consistent with the present theory.
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8 Discussion and Conclusion

In this thesis, we investigate in detail the underlying atomistic mechanisms operative in certain

Mg alloys that circumvent the harmful PB transition of the pyramidal 〈c +a〉 dislocations, the

primary cause for low ductility in pure Mg. We choose the Mg-Y alloy as a model ductile Mg

alloys to perform the atomistic simulations, exposing the influence of the favorable solutes

on the various mechanisms associated with pyramidal 〈c +a〉 dislocations. To this end, we

develop a new Mg-Y interatomic potential in the MEAM framework for the specific purpose of

examining the plastic deformation of this alloy family.

We first test the hypothesis that Y and other favorable solutes might suppress the inimical PB

transition by increasing the associated energy barrier and stabilizing the 〈c +a〉 dislocations on

the easy-glide pyramidal planes. Extensive finite temperature MD simulations in random solid

solution Mg-3at.%Y alloy show that Y solutes decrease the energies of both initial pyramidal-

dissociated and final basal-oriented dislocations, and do not have any appreciable effect on the

transition time. The simulation results showing the basal-dissociated core having even lower

energy than the pyramidal-dissociated core even suggest a trend toward solutes enhancing

the PB transition. Statistically-rare solute fluctuations may exist and these fluctuations may

reduce the energy of the basal-dissociated 〈c +a〉 dislocation even more than seen here.

Since the PB transition is a nucleation event, such rare fluctuations somewhere along an

extended dislocation line could lead to a faster net PB transition rate than in pure Mg. This

would act against ductility, increasing the CRSS for the 〈c +a〉 slip in single-crystal Mg alloys.

Furthermore, the results presented here are in full agreement with the elasticity estimates of

the RE solute effects on the PB transition [237], and experimental observation of the profuse

〈c +a〉 dislocations dissociated on the basal plane in Mg-RE alloys [181, 182].

After establishing that the solute elements are not able to delay the detrimental PB transition,

we propose a new mechanism to explain the enhanced activity of the pyramidal 〈c +a〉 disloca-

tions in ductile Mg alloys. In pure Mg, the energy difference between the low-energy pyramidal

II 〈c +a〉 screw dislocation and the high-energy pyramidal I 〈c +a〉 screw dislocation leads to

very a slow cross-slip process. The favorable solutes, however, reduce the dislocation energy

difference, and thus accelerate the cross-slip and double cross-slip process of the pyramidal
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〈c +a〉 dislocations. The accelerated cross-slip process then acts as a source for generating

new dislocation loops rapidly enough to extenuate the harmful effects of the PB transition. The

mechanistic theory is accompanied by a mathematical model that identifies and predicts the

ductile compositions of Mg alloys based on the DFT computed interaction energies between

the solutes and the pyramidal I and the pyramidal II stacking faults. The mechanistic theory

has been validated by the experimental observation of increased dislocation cross-slip in Mg-Y

alloys, and the predictions of the model have been shown to be in accordance with experi-

mental results for a large number of binary, ternary and higher order of Mg alloys containing a

range of solute elements (Ag, Zn, Al, Li, K, Sn, Mn, Sr, Ca, Zr, and RE).

One notable success of the theory is in quantitatively explaining the emergence of good

ductility and concomitant weak basal texture in Mg alloys containing trace amounts of

REs. Hantzsche et al. [85] and Griffiths [84] show that binary Mg alloys containing a mere

∼0.01 at.% Ce or ∼0.02 at.% Nd or ∼0.06 at.% Y start to show weaker basal texture; both studies

confirm Ce to be the most effective and Y to be the relatively least effective solute in terms

of amounts required to weaken the basal texture. These concentration limits coincide with

the predicted concentrations of corresponding solutes at which χ≈ 1 for Mg-Ce, Mg-Nd, and

Mg-Y binary alloys.

Although we mainly focus on the binary and ternary alloys containing Al and Zn where an

additional favorable solute is needed to counteract the negative effects of Al and Zn, the

ductile Mg alloys comprising many favorable solutes have been examined experimentally

and are in accordance with the prediction of the theory. For instance, Mg alloys containing

(Sr, Mn, Li, Al) can be inferred from the presented data to be ductile, in agreement with

the experiment [233]. Likewise, for alloys made of (Ca,Sr,Mn) [148, 202], (Al,Ca,Mn) [147],

(Al,Zn,Mn,Ca) [104] and (Zn,Sr,Mn) [154], the ductility index χ would be more than 1, thus

predicting good ductility. This data reaffirms the ability of the theory in suggesting ductile Mg

alloy compositions. We could further predict that ternary or higher-order Mg alloys containing

a combination of favorable solutes (out of Ca, Sr, Sn, Mn, K, and Zr) in small amounts exhibit

good room temperature ductility.

The theory predicts Mg-K binary alloys to be ductile at K concentrations more than 0.15

at.%. In general, the addition of K in other higher-order alloys comprising unfavorable solute

produces good ductility. These K containing Mg alloys are hitherto unexplored and could

serve as further tests of the predictive power of the mechanistic model. However, because

the boiling temperature of K is close to the melting temperature of Mg, manufacturing Mg-K

alloys are challenging.

For favorable solutes (reducing the average dislocation energy difference), the situation may

arise where beyond a critical solute concentration, the pyramidal I 〈c +a〉 dislocations become

energetically stable compared to the pyramidal II 〈c +a〉 dislocations. In this scenario, cross-

slip from the pyramidal I to the pyramidal II (leading to the 〈c +a〉 dislocation multiplication)

would be required to circumvent the PB transition of the pyramidal I 〈c +a〉 mixed disloca-
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tion. The energy barrier associated with the PB transition of the pyramidal I 〈c +a〉 mixed

dislocations (∼0.3 eV [229]) is even less than that associated with the PB transition of the

pyramidal II 〈c +a〉 edge dislocation (∼0.5 eV [228]). All of these point to the existence of a

maximum concentration of favorable solute beyond which the resulting alloys are not ductile.

This discussion is more relevant to alloys containing RE elements that have strong average

effects and moderate/high solubility.

The presence of two different pyramidal I and one pyramidal II planes intersecting each other

along a common 〈c +a〉 direction leads to several cross-slip pathways in the pyramidal I

favorable regime. A comparison of energetics among the possible cross-slip routes obtained

by NEB calculations reveals that the 〈c +a〉 dislocation residing on the pyramidal I plane

first cross-slips onto a pyramidal II plane and then cross-slips back to a parallel pyramidal

I plane. Based on the results gleaned from the NEB computations, we extend the ductility

model in the pyramidal I favorable regime, applying it to the binary Mg alloys containing RE

solute elements. We find that increasing the RE solute concentration, which increases the

stability of the pyramidal I 〈c +a〉 dislocations relative to the pyramidal II 〈c +a〉 dislocations,

ultimately increases the barrier for cross-slip to levels that are too high for double cross-slip to

overcome the detrimental effects from the transition of the pyramidal I mixed dislocations

to immobile basal-dissociated structures. Thus, there is an upper limit of approximately 1.5

at.% concentration of RE solutes beyond which high ductility in Mg-RE alloys is lost. This is

perhaps a surprising result, but not inconsistent with limited experimental data available. Our

findings motivate further experiments on the Mg-RE alloys at higher concentrations, in the

solutionized state that have not been probed thoroughly, and where some implications of our

findings for the design of strong and ductile Mg alloys have been identified.

An important and sensitive parameter required in this model is the energy difference between

the pyramidal I and the pyramidal II 〈c +a〉 screw dislocations which in this work is inferred

by the analysis of experimental studies of ductility of various Mg alloys. Further, the first

principles calculations are required to precisely calculate this crucial parameter. The overall

success of the theory in predicting broad trends in ductility across various solid solution alloys,

however, suggests that the energy difference should be close to that used in this work.

Our analysis is based on the solid solution model and does not consider the solubility of solute

elements in Mg. For the cross-slip mechanism to be effective, the solutes at concentrations

indicated in the figures in Chapters 6 and 7 must be in a solid solution state. Whether this

solid solution concentration range is attainable is determined by alloy thermodynamics. Ther-

modynamics calculation can be performed to estimate the solute solubility limits in Mg alloys

at various temperatures and processing stages, for example before and after precipitation.

Mg alloys suitable for industrial applications must possess both high ductility and high

strength. Strength is most effectively achieved through age-hardening/precipitation. Precipi-

tation depletes solutes in the matrix material. However, high ductility according to the present

model requires maintenance of sufficient solute concentration in the lattice to accelerate the
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cross-slip. Therefore, alloys that are ductile in the solid-solution state may have much lower

ductility, although much higher strength, after age-hardening. Thermodynamic calculations

on the alloys can be used to estimate residual solute concentrations after aging. The current

analysis, which focuses on dilute to ultra dilute solute concentrations, can determine whether

the matrix material is expected to remain ductile after aging/peak-aging. The results presented

here are useful for identifying alloys that are ductile not only in the solid-solution state but

also in the precipitate-strengthened state.

Increasing the alloy strength by increasing the RE solute content is counterproductive in the

pursuit of high strength and high ductility alloys. Common alloying elements that can enable

ductility, such as Zr, Ca, and Mn, are not soluble at high concentrations and so would not be

affected by the present findings. Other high-solubility non-RE elements such as Li and Sn do

not cause a transition to pyramidal I dominance at moderate concentrations (10% or less). At

moderate concentrations, these solutes could be particularly useful additions for providing

good ductility along with some solute strengthening, and with the addition of other dilute

solutes that enable precipitate formation might enable strengthening (due to precipitation)

while maintaining ductility (due to high remaining Li and Sn concentrations in the Mg lattice).

The research work performed as part of this thesis allows us to gain a mechanistic understand-

ing of the origins of ductility in various solid solution Mg alloys and enables us to identify the

different solute elements across the periodic table and their concentrations that can impart

ductility in Mg. Along with rationalizing the existing experimental results, this theory also

suggests some hitherto untested potential solute elements and compositions. This theory can

be used in conjunction with other theories, such as solute strengthening theory [120, 204] to

optimize the properties and cost of Mg alloys by combining the different solute elements in

suitable proportions. Finally, we note that while the mechanistic theory presented in this thesis

can be useful for the design of ductile Mg alloy compositions, the thermo-mechanical pro-

cessing, and other metallurgical strategies are equally important in achieving technologically

useful Mg alloys for structural applications.
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9 Outlook

The ductility model presented in this research is successfully validated against experimental

observations. The ductility mechanisms based on the solute effect on the pyramidal cross-slip

barrier are inherently atomistic in nature, and thus its various aspects could, in principle, be

clarified and tested by means of atomistic simulations. The effects of a single solute on the

cross-slip barrier have indeed been demonstrated by NEB calculations in this work. However,

a complete treatment of the ductility model is not possible at this stage due to the lack of

a sufficiently accurate interatomic potential for Mg alloys. The recent surge of interest in a

new class of machine learning potentials [25, 29–31, 65, 86, 144, 163] has a potential to fill this

gap, especially for alloy systems. Supervised machine learning potentials have been applied

successfully to investigate various mechanical properties of metals and alloys [67, 107, 129].

Thus the development of machine learning potential for pure Mg and Mg alloys could be the

focus of future studies.

This work sought to unveil the atomic-scale mechanisms associated with a single dislocation.

The plastic deformation of a crystal is, however, controlled by the multiscale evolution of a

large number of dislocations subject to external stresses. The evolution and patterning of a

dislocation network are influenced as much by the short-range atomic-scale mechanisms

as by the elastic interactions induced by dislocations situated relatively far away. Due to the

heavy computational resources involved, atomistic simulations are unsuitable for probing the

evolution of dislocation networks in order to make meaningful observations and prediction

of resulting crystal plasticity. Dislocation dynamics (DD) simulations are particularly useful

to investigate the mesoscale dislocation plasticity [20, 83, 244]. DD simulations ignore the

atomic nature of dislocations and explicitly follow the evolution of individual dislocations

represented as line segments interacting elastically with each other. DD simulations, however,

are prescriptive as opposed to the descriptive nature of atomistic simulations. The rules for

short-range interactions associated with dislocations such as cross-slip, junction formation,

junction destruction, dislocation splitting, and PB transition, etc. are described a priori [20,

37, 130, 166]; dislocation evolution and resulting plastic deformation are the output of the DD

computations [39, 66, 127]. Essential and important steps towards performing DD simulations
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in hcp crystals have been taken by many researchers [21, 47, 140]. Further efforts are, however,

needed to incorporate the insights obtained from the atomistic simulations of the thermally

activated processes, such as the PB transition and the pyramidal 〈c +a〉 cross-slip process.

DD simulations will then be able to directly show the effect of the competition between the PB

transition and cross-slip of the pyramidal 〈c +a〉 dislocations on the hardening behavior of

Mg single crystal under various loading conditions, providing input for higher scale crystal

plasticity models.

Another intriguing aspect of Mg plasticity is that the CRSS for the pyramidal II 〈c +a〉 dislo-

cations drops significantly at higher temperatures beyond around 416 K, [15, 151, 155], and

ductility of pure Mg increases [134]. A basic understanding of the mechanisms associated

with the high-temperature plastic deformation of Mg is still missing. A number of thermally

activated rate-controlling mechanisms may be operative at higher temperatures: activation of

the pyramidal 〈c +a〉 dislocations, cross-slip, and climb of the 〈a〉 and the 〈c〉 dislocations,

grain boundary sliding, and diffusional flow. The atomistic simulation could play a key role in

clarifying the high deformation mechanism in pure Mg [168]. One immediate and important

step in this direction is to compute the free energy difference between the pyramidal I and

the pyramidal II 〈c +a〉 dislocations as a function of temperature. This free energy difference

controls the efficacy of the cross-slip process in countering the PB transition and activating

the pyramidal 〈c +a〉 dislocation systems. A decrease in the free energy difference indicates

the possibility of higher activation of pyramidal 〈c +a〉 dislocations, softening of the pyrami-

dal slip systems, and increased ductility. More extensive research in the high-temperature

behavior of various dislocation types is necessary in order to clarify the high-temperature

plastic deformation of pure Mg.
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A The MEAM potential framework for
elemental and binary alloy system

The MEAM interatomic potential framework was first proposed by Baskes [27, 28] as a modifi-

cation of the EAM potential method to account for the directionality of near-neighbor atomic

bonding. The MEAM was later modified to overcome some critical shortcomings of the origi-

nal formalism [118, 119], primarily by including second-nearest-neighbor interactions. The

description given below draws from Refs. [118, 119].

A.1 Formalism for pure element

Under the framework of the MEAM potential, energy of a atomic system comprising pure

element is given as

E =∑
i

[
F

(
ρ̄i

)+ 1

2

∑
j ( 6=i )

φi j
(
Ri j

)]
, (A.1)

where F is the embedding function, ρ̄i is the background electron density at site i , φi j is

the pair interaction between atoms at sites i and j with a distance Ri j between them. The

embedding function takes the form

F
(
ρ̄
)= AEc

ρ̄

ρ̄0 ln
ρ̄

ρ̄0 , (A.2)

where A is an element-dependent adjustable parameter, Ec is the cohesive energy, and ρ̄0 is

the background electron density for a reference structure which is usually the equilibrium

structure. The background electron density ρ̄i comprised spherically symmetric partial con-

tribution ρ(0)
i and angular partial contributions ρ(1)

i , ρ(2)
i and ρ(3)

i , which are expressed as
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(
ρ(0)

i

)2 =
[ ∑

j (6=i )
ρa(0)

j

(
Ri j

)
Si j

]2

, (A.3a)

(
ρ(1)

i

)2 =∑
α

[ ∑
j ( 6=i )

Rα
i j

Ri j
ρa(1)

j

(
Ri j

)
Si j

]2

, (A.3b)

(
ρ(2)

i

)2 = ∑
α,β

 ∑
j (6=i )

Rα
i j Rβ

i j

R2
i j

ρa(2)
j

(
Ri j

)
Si j

2

− 1

3

[ ∑
j ( 6=i )

ρa(2)
j

(
Ri j

)
Si j

]2

, (A.3c)

(
ρ(3)

i

)2 = ∑
α,β,γ

 ∑
j (6=i )

Rα
i j Rβ

i j Rγ

i j

R3
i j

ρa(3)
j

(
Ri j

)
Si j

2

− 3

5

∑
α

[ ∑
j ( 6=i )

Rα
i j

Ri j
ρa(3)

j

(
Ri j

)
Si j

]2

, (A.3d)

where ρa(h)
j (Ri j ) denote the atomic electron densities from a site j at a distance Ri j from site

i , Rα
i j is the α component of distance vector between atoms at sites j and i , and Si j is the

screening between atoms at sites i and j as described below. Several expressions have been

proposed to combine the partial electron densities to obtain the total background electron

density [26]. We use the following expression in the present work

ρ̄i = ρ(0)
i G(Γi ), (A.4a)

G(Γ) = 2

1+exp(−Γ)
, (A.4b)

Γi =
3∑

h=1
t (h)

[
ρ(h)

i

ρ(0)
i

]2

, (A.4c)

where t (h) are adjustable parameters. The atomic electron density is computed as

ρa(h)
j

(
Ri j

)= ρ0 exp

[
−β(h)

(
Ri j

re
−1

)]
, (A.5)

where ρ0 is element-dependent density scaling factor, β(h) are adjustable parameters, and re

is the nearest neighbor distance in the equilibrium reference structure.

After determining the embedding function, we turn our attention to the pair potential contri-

bution φ(R) in the total energy given by Equation A.1. In MEAM, no specific functional form is

given to pair potential φ(R), instead, it is determined from the known values of total energy

and embedding function. The energy per atom for the reference structure is obtained from
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the universal equation of state by Rose et al. [172] as a function of nearest-neighbor R

E u(R) =−Ei c (1+a∗+d a∗3)exp(−a∗), (A.6a)

a∗ =α
(

R

re
−1

)
, (A.6b)

α=
√

9BΩ

Ec
, (A.6c)

where d is an adjustable parameter, B is the bulk modulus, andΩ is equilibrium atomic vol-

ume. Considering the second nearest-neighbor interaction, energy per atom in the reference

structure is written by using A.1

E u(R) = F
[
ρ̄(R)

]+ Z1

2
φ(R)+ Z2S

2
φ(aR), (A.7)

where ρ̄(R) is the background electron density, Z1 and Z2 are, respectively, number of the

first and second nearest-neighbor atoms, a is the ratio between the second and first nearest-

neighbor distance, and S is the screening on the second nearest-neighbor interaction. Another

function ψ(R) is introduced to write Equation A.7 as

E u(R) = F
[
ρ̄(R)

]+ Z1

2
ψ(R), (A.8a)

ψ(R) =φ(R)+ Z2S

Z1
φ(aR). (A.8b)

Now,ψ(R) can be calculated as a function of R from Equation A.8a and then,φ(R) is computed

as function of R by using following relation

φ(R) =ψ(R)+ ∑
n=1

(−1)n
(

Z2S

Z1

)n

ψ(anR), (A.9)

where summation is performed until the correct value of energy is obtained.

Now we discuss the final component of elemental-MEAM potential, the screening function

Si j between the atoms at sites i and j . Screening function is built such that Si j = 1 for

completely unscreened atoms within the cutoff radius rc of the potential, and Si j = 0 for atom

pair completely screened or outside the cutoff radius. For partial screening, it takes a value

between 0 and 1. The total screening function is the product of the radial cutoff function and
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three body terms. The expression for screening function is

Si j = S̄i j fc

(
rc −Ri j

∆r

)
, (A.10a)

S̄i j =
∏

k( 6=i , j )
Si k j , (A.10b)

fc (x) =


1 x ≥ 1,[
1− (1−x)4

]2
0 < x < 1,

0 x ≤ 0,

(A.10c)

where ∆r is parameter to smoothen the radial cutoff of potential which has a cutoff radius rc .

Three body screening function Si k j , amount of screening between atoms at i and j due to

atom at k, is determined from a simple geometrical construction. Imagine an ellipse in x − y

plane passing through atoms i , j and k with the atoms i and j on the x axis

x2 + y2

C
=

(
Ri j

2

)2

, (A.11)

where the value of C is computed for every atom k. Two adjustable limiting values Cmin and

Cmax (Cmax >Cmin) are defined for every possible triplet (i , j ,k). If atom k is located outside

the ellipse defined by Cmax, that is , C >Cmax, the atom k does not provide any screening. If

atom k is inside the ellipse defined by Cmin, that is, C <Cmin, the atom k completely screens

the interaction between i and j . On the other hand, if Cmin < C < Cmax, there will be only

partial screening. Following is the expression for three body screening function Si k j which

satisfies the conditions mentioned above

Si k j = fc

(
C (i ,k, j )−Cmin(i ,k, j )

Cmax(i ,k, j )−Cmin(i ,k, j )

)
, (A.12)

C (i ,k, j ) = 1+
2
(
R2

i j R2
i k +R2

i j R2
j k −R4

i j

)
R4

i j −
(
R2

i k −R2
j k

)2 . (A.13)

A.2 Formalism for binary system

Interatomic potential of binary system, under MEAM framework, is constructed upon the

potential of individual constituents. In addition to individual elements, pair interaction

between different elements is required. Considering an ordered binary intermetallic as the

reference structure (here we assume having 1
2 i atom + 1

2 j atom), the total energy per atoms

E u
i j (R) as a function of nearest-neighbor distance R is given as

E u
i j (R) = 1

2

[
Fi

(
ρ̄i

)+F j
(
ρ̄ j

)+Z i j
1 φi j (R)+ 1

2
Z i j

2

{
Siφi i (aR)+S jφ j j (aR)

}]
, (A.14)
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where E u
i j is determined from the equation of state [172] using experimentally determined

cohesive energy Ec , bulk modulus B , atomic volume Ω and parameter d . The embedding

functions Fi and F j can always be computed. Z i j
1 and Z i j

2 are, respectively, number of the first

and second nearest-neighbor atoms in the reference structure,φi i andφ j j are pair interaction,

respectively between i atoms and between j atoms, and a is the ratio between the second and

first nearest-neighbor distances. Therefore, the pair interaction between the different types of

atoms is calculated as

φi j (R) = 1

Z i j
1

[
2E u

i j (R)−Fi (ρ̄i )−F j (ρ̄ j )− 1

2
Z i j

2

{
Siφi i (aR)+S jφ j j (aR)

}]
. (A.15)

The values of Cmax and Cmin are needed to be specified for all possible triplet of atom types.

For pure elements, there is only one possible triplet, however, for binary system there are

four possible types of triplet. Additionally, the density scaling factor ρ0, see Equation A.5,

also becomes important for binary alloys. This is an arbitrary value having no effect on the

calculation for pure elements. However, for alloy systems, especially for systems where the

constituent elements have different coordination numbers, the scaling factor (the ratio of the

two values) has a great effect on calculations.
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B Ultra Dilute Limit for Higher Order
Alloys

In this appendix, we discuss the way to treat the computation of cross-slip rates in ternary and

quaternary alloys where at least one solute concentration is in ultra dilute limit, ie. there is not

more than one that particular solute in the critical cross-slip length.

B.1 The ultra dilute limit in ternary alloy

Here we consider ternary Mg-alloy having two solute types 1 and 2 with concentrations c1 and

c2, respectively. Interaction energies of type 1 solute at site i with pyramidal I and pyramidal

II dislocations, respectively, are U I,1
i and U II,1

i , and interaction energies of type 2 solute are

U I,2
i and U II,2

i . The ultra dilute limit in the case of ternary alloy needs to be divided into two

regimes: First, only one of the solute types is in the ultra dilute limit; second, both solutes are

in the ultra dilute limit. These cases are treated in the following sections.

B.1.1 Type 1 in the dilute and type 2 in the ultra dilute limit (c1 ≥ c∗ and c2 < c∗)

In this case we assume that type 1 solute is in the dilute limit, c1 ≥ c∗, while concentration

of type 2 solute lies in the ultra dilute limit, c2 < c∗. Therefore, as in the case of binary al-

loy, cross-slip in fraction c2/c∗ of the L/lXS segments occurs in the presence of type 1 solute

with concentration c1 and type 2 solute with effective concentration of c∗, while the remain-

ing fraction 1− c2/c∗ of the L/lXS of cross-slip segments contain only solute of type 1 with

concentration c1.

For segments containing only type 1 solute, the average and standard deviation of cross-slip

barrier, 〈∆G (1)
XS 〉 andσ(1)[lXS], respectively, are calculated using Eqs. 6.8-6.11. Average cross-slip

barrier 〈∆G (12)
XS 〉 of the segments containing both type 1 and type 2 solutes with concentrations

c1 and c∗, respectively, can be computed as

〈∆G (12)
XS 〉 = 〈∆G (1)

XS 〉+
1

NT

∑
i
∆U I-II,2

i . (B.1)
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And, standard deviation results in

σ[∆GXS(12), lXS] =
√

c1lXS

b

∑
i

(
∆U I-II,1

i

)2 + 1

NT

∑
i

(
∆U I-II,2

i

)2
. (B.2)

Thus, total nucleation rate of cross-slip over dislocation line of length L becomes

RXS =
(
1− c2

c∗
)[

Lν0

lXS
exp

(
−〈∆G (1)

XS 〉−σ(1)[lXS]

kT

)]
︸ ︷︷ ︸

having only type 1 solute

+ c2

c∗

[
Lν0

lXS
exp

(
−〈∆G (12)

XS 〉−σ(12)[lXS]

kT

)]
︸ ︷︷ ︸

having both type of solutes

,

= Lν0

lXS
exp

(
−〈∆G (1)

XS 〉
kT

)[(
1− c2

c∗
)

exp

(
σ(1)[lXS]

kT

)
+ c2

c∗
exp

(
−

1
NT

∑
i ∆U I-II,2

i −σ(12)[lXS]

kT

)]
.

(B.3)

B.1.2 Both solutes are in the ultra dilute limit (c1 < c∗ and c2 < c∗)

When both solutes are in the ultra dilute limit, critical cross-slip length lXS would encounter

either both solutes or one of the solutes or zero solute. Probability of these cases can be

calculated as

P (0) =
(
1− c1

c∗
)(

1− c2

c∗
)

probability of no solute, (B.4a)

P (12) = c1c2

(c∗)2 probability of finding both solutes, (B.4b)

P (1) = c1

c∗
(
1− c2

c∗
)

probability of finding only type 1 solute, (B.4c)

P (2) = c2

c∗
(
1− c1

c∗
)

probability of finding only type 2 solute. (B.4d)

Next, we need to compute the average and standard deviation of cross-slip energy barrier for

the cases listed above. The average cross-slip energy barrier can be obtained as

〈∆G (0)
XS 〉 =∆GXS,i +Γ∆s −∆τb A =∆GMg

XS , (B.5a)

〈∆G (12)
XS 〉 =∆GMg

XS + 1

NT

∑
i
∆U I-II,1

i + 1

NT

∑
i
∆U I-II,2

i , (B.5b)

〈∆G (1)
XS 〉 =∆GMg

XS + 1

NT

∑
i
∆U I-II,1

i , (B.5c)

〈∆G (2)
XS 〉 =∆GMg

XS,i +
1

NT

∑
i
∆U I-II,2

i . (B.5d)
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And the corresponding standard deviations are calculated as

σ(0)[lXS] = 0 (B.6a)

σ(12)[lXS] =
√

1

NT
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(
∆U I-II,1

i

)2 + 1

NT
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i
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, (B.6b)

σ(1)[lXS] =
√
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NT
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(
∆U I-II,1

i

)2
, (B.6c)

σ(2)[lXS] =
√

1

NT

∑
i

(
∆U I-II,2

i

)2
. (B.6d)

Total rate of cross-slip is then the weighted sum of rate of cross-slip of the aforementioned

cases

RXS = Lν0

lXS

[
P (0) exp

(
−〈∆G (0)

XS 〉−σ(0)[lXS]

kT
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kT

)]
,
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lXS
exp

(
−∆GMg

XS
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)[(
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)(
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)
+ c1c2

(c∗)2 exp
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NT
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i + 1
NT
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i −σ(12)[lXS]

kT

)

+ c1

c∗
(
1− c2

c∗
)

exp

(
−

1
NT

∑
i ∆U I-II,1

i −σ(1)[lXS]

kT

)
+ c2
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(
1− c1
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)

exp

(
−

1
NT

∑
i ∆U I-II,2

i −σ(2)[lXS]

kT

)]
.

(B.7)

As discussed in the case of binary alloy in Section 6.5, interaction energies of solutes situated

near the pyramidal I plane and far from pyramidal II plane are modified since they can not

lower the cross-slip barrier in the initial stages of cross-slip nucleation.

B.2 The ultra dilute limit in quaternary alloy

In this section we consider quaternary Mg alloy having three type of solutes 1,2 and 3 with

concentrations c1, c2 and c3, respectively. We consider here two cases: (i) type 1 in the ultra

dilute limit and type 2 and 3 in the dilute limit; (ii) both type 1 and 2 in the ultra dilute limit

and type 3 in the dilute limit. Further cases can be dealt with by following the same line of

reasoning.
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Appendix B. Ultra Dilute Limit for Higher Order Alloys

B.2.1 One solute (type 1) in the ultra dilute limit (c1 < c∗, c2 ≥ c∗, c3 ≥ c∗)

In this case, cross-slip segments would either contain one type 1 solute with effective con-

centration c∗, type 2 solute with c2 and type 3 solute with c3 concentrations, or only type 2

and type 3 solutes with c2 and c3 concentrations, respectively. These probabilities can be

expressed as

P (23) =
(
1− c1

c∗
)

probability of finding only type 2 and 3 solutes, (B.8a)

P (123) = c1

c∗
probability of finding one type 1 2 and 3 solutes. (B.8b)

The average cross-slip energy is given as

〈∆G (23)
XS 〉 =∆GXS,i + c2lXS

b

∑
i
∆U I-II,2

i + c3lXS

b

∑
i
∆U I-II,3

i +Γ∆s −∆τb A, (B.9a)

〈∆G (123)
XS 〉 = 〈∆G (23)

XS 〉+ 1

NT

∑
i
∆U I-II,1

i . (B.9b)

The corresponding standard deviations of the cross-slip energy barrier are

σ(23)[lXS] =
√

c2lXS
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∑
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(
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)2 + c3lXS
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, (B.10a)
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Total rate is calculated as

RXS = Lν0

lXS
exp

(
−〈∆G (23)

XS 〉
kT

)[(
1− c1

c∗
)

exp

(
σ(23)[lXS]
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)
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(
−

1
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∑
i ∆U I-II,1

i −σ(123)[lXS]

kT

)]
.

(B.11)

B.2.2 Two solutes (type 1 and 2) in the ultra dilute limit (c1 < c∗,c2 < c∗,c3 ≥ c∗)

In this case, critical cross-slip length lXS would encounter either one type 1 (c∗), one type 2

(c∗) and type 3 (c3) solutes or one of the type 1 or 2 solute along with type 3 or only type 3
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solute. Probability of these cases are

P (3) =
(
1− c1

c∗
)(

1− c2

c∗
)

probability of finding only type 3 solute, (B.12a)

P (123) = c1c2

(c∗)2 probability of finding all three types of solutes, (B.12b)
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(
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)

probability of finding only type 1 and type 3 solute, (B.12c)

P (23) = c2
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(
1− c1
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)

probability of finding only type 2 and type 3 solute. (B.12d)

The average cross-slip energy barrier can be obtained as

〈∆G (3)
XS 〉 =∆GXS,i + c3lXS

b
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And the corresponding standard deviations are calculated as
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Total rate of cross-slip is then computed as
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. (B.15)

Following the same approach, we can calculate the rate of cross-slip for other higher order

alloys with some of the solutes in the ultra dilute limit and remaining in the dilute limit.
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C DFT Computation and Solute-
Stacking Fault Interaction Energy

C.1 Details of DFT computations 1

First-principles calculations are carried out within the DFT framework, as implemented in the

Vienna Ab initio Simulation Package (VASP) [112, 113]. The exchange-correlation functional is

treated using generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof

(PBE) parametrization [158] and the core electrons are replaced by the projector augmented

wave (PAW) pseudopotentials [33]. The valence states of all elements studied in this work are

listed in Table S1A. The valence-electron eigenstates are expanded using a spin-free (except

Mn) plane-wave basis set with a cutoff energy 400 eV. A second-order Methfessel-Paxton

method [136] with 0.2 eV is used to smear the occupancy of the eigenstates. In reciprocal

space, Γ-centered Monkhorst-Pack [139] k-mesh is used. The density of the k-mesh is kept

as consistent as possible in various supercell geometries, where the interval between two

neighbouring k-mesh points along any reciprocal lattice bi is set to be 0.01 Å−1(ai ·b j = δi j , as

in Ref. [237]). Atoms are relaxed until the maximum atomic force is below 1 meV/Å. Further

details of the DFT calculations are described in Ref. [237].

C.2 Solute-stacking fault interaction energy

The solute-stacking fault interaction energy depends on the solute position, i.e. the atomic

layer di relative to the stacking fault plane, as shown in Fig. C.1. This interaction energy,

USF(di ), is calculated using DFT for solutes in all possible planes di . Details of such calcula-

tions, including DFT parameters, method, supercell geometry, and structure optimization, can

be found in our recent work [237]. Here we emphasize that the calculation of solute interaction

energy with the pyramidal II stacking fault is delicate and requires special procedures. In

this case, the stacking fault spontaneously migrates toward or away from the solute when

the solute is placed at some sites close to the stacking fault. This prevents calculation of the

1Most of the first principle DFT computations used in this work were performed by Dr. Binglun Yin who was
at the time a postdoctoral researcher in the Laboratory for Multiscale Mechanics Modeling at EPFL, Switzerland.
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Appendix C. DFT Computation and Solute-Stacking Fault Interaction Energy

solute-stacking fault interaction energy for all possible solute positions. The easy migration

is due to the unique atomic structure of the pyramidal II plane and stacking fault, and is

accomplished by small atomic shuffling nearly perpendicular to the slip direction. In order

to obtain the interaction energy between a single solute and a flat stacking fault plane for

all possible solute positions, constraints must be applied in the calculation. Here, we use a

method that fixes the relative distance in selected pairs of atoms below the stacking fault. This

constraint prevents stacking fault migration with only small constraint energy. Comparisons

with other constraint methods and details are presented in Yin et al. [237]. The final computed

DFT results on solute-stacking fault interaction energy are shown in Figs. C.1 and C.2. The

properties of the solutes are presented in Table 6.1.
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Figure C.1 – The single solute-stacking fault interaction energies USF with pyramidal I and
pyramidal II stacking faults are plotted as a function of the solute-stacking fault distance
for Ag, Zn, Al, Li, K, and Sn. Distances are measured from the slip plane situated in the
middle of two neighboring atom layers. For Al, both the DFT solute-stacking fault interaction
energy (circles) and the solute misfit-stacking fault stress interaction energy (squares) are
shown. Determination of the average and fluctuation effect of solutes includes data up to
7 Å (indicated by the vertical thick dashed lines), corresponding to atom layers d1 −d6 for
pyramidal I stacking fault and d1 −d5 for pyramidal II stacking fault.
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Figure C.2 – The single solute-stacking fault interaction energies USF with pyramidal I and
pyramidal II stacking faults are plotted as a function of the solute-stacking fault distance
di for Mn, Sr, Ca, Y, Nd, Ce, and Zr. Distances are measured from the slip plane situated in the
middle of two neighboring atom layers. Determination of the average and fluctuation effect of
solutes includes data up to 7 Å (indicated by the vertical thick dashed lines), corresponding to
atom layers d1 −d6 for pyramidal I stacking fault and d1 −d5 for pyramidal II stacking fault.
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D Dislocation Energy Difference associ-
ated with Pyramidal Cross-Slip

We start by considering the total energy E per unit length of a single straight dislocation, either

pyramidal I or II, when dissociated into two partial dislocations. As discussed in Section 1.3,

total dislocation energy E can be written as a sum of core energies of the partials, elastic energy

including self-energy, radial and angular elastic interaction energies of the two partials, and

stacking fault energy between the partials [232], i.e.

E = [Ec1(r0)+Ec2(r0)]+
[

K ln
R

r0
+K12 ln

r0

r12
−Eθ

]
+γr12, (D.1)

where r0 is the core radius for each partial dislocation, R is the radius of an (arbitrarily large)

outer cylindrical domain, r12 is the partial dislocation separation, and K and K12 are prefactors

completely determined by the material elastic constants, dislocation line direction, and

Burgers vectors of the partial dislocations. The angular interaction energy Eθ varies with

the relative orientation between the two partials in the hcp structure, their Burgers vectors,

and the elastic constants. The equilibrium separation between the two partials minimizes

the total energy with respect to r12, leading to r12 = K12/γ. Substituting r12 into Eq. D.2 and

combining the core energy of the two partials give

E = Ec (r0)+K ln
R

r0
+K12 ln

r0γ

K12
+K12 −Eθ, (D.2)

where Ec (r0) = Ec1(r0)+Ec2(r0) is the sum of the core energy of the two partials.

Cross-slip of the 〈c +a〉 dislocations from pyramidal II to pyramidal I can be considered as a

transformation of the screw dislocation from the pyramidal II initial state to the pyramidal I

final state. The energy difference per unit length between the pyramidal I and pyramidal II

screw dislocations is then

∆E I−II = [
E I

c (r0)−E II
c (r0)

]+[
K I

12 ln
r0γ

I

K I
12

−K II
12 ln

r0γ
II

K II
12

]
+ [

K I
12 −K II

12

]+ [
E II
θ −E I

θ

]
. (D.3)

The long-range elastic field prefactor K is identical for the pyramidal I and the pyramidal II
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Appendix D. Dislocation Energy Difference associated with Pyramidal Cross-Slip

〈c +a〉 screw dislocations and thus does not contribute to the energy difference.

In dilute solute concentrations, the average effects of solute on elastic constants and disloca-

tion Burgers vectors are small [237]. The cores of the 〈c +a〉 screw partials on the pyramidal I

and II planes are also similar (42, 44). Therefore, solutes have similar interaction energy with

all partial cores. The mean energy differences in the core and angular part of the elastic energy,

i.e. the first and last groups in Eq. D.3, are thus approximately independent of solute concen-

trations. However, solutes change the stacking fault energies as γ(c) = γMg +kc where γMg is

the stacking fault energy of pure Mg and k is a solute-dependent constant characterizing the

average potency of a solute in changing the stacking fault energy as discussed in Section 3.2.2.

Substituting γ(c) into Eq. D.3 gives the average dislocation energy difference per unit length

due to solute-stacking interactions as a function of solute concentration c in the dilute limit as

∆E I−II =[
E I

c (r0)−E II
c (r0)

]
+

K I
12 ln

r0γ
I
Mg

(
1+ k Ic

γI
Mg

)
K I

12

−K II
12 ln
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II
Mg

(
1+ k IIc

γII
Mg

)
K II

12


+ [

K I
12 −K II

12

]+ [
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θ −E I

θ

]
,

=[
E I
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c (r0)
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12 ln
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=∆E I−II
Mg +
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K I
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Mg
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−K II
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1+ kIIc

γII
Mg
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,

≈∆E I−II
Mg +

[
K I

12kI

γI
Mg

− K II
12kII

γII
Mg

]
c.

, (D.4)

where ∆E I−II
Mg is the energy difference in pure Mg.
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École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Advisor: Dr. William Curtin

Investigation into disentanglement of polymer chains in a glassy amorphous polymer through molecular
dynamics simulations
M.Tech. Thesis Jul 2015 - Jun 2016
Indian Institute of Technology, Kanpur, India
Advisor: Dr. Sumit Basu

149



Academic
Projects

Kinetc Monte Carlo simulation of screw dislocation mobility in BCC metals Feb - Jun ‘19

Updated Lagrangian Finite Element Formulation Aug - Nov ‘14

Effect of Initial Stresses on the Wave Propagation in Arteries Aug - Nov ‘14

Static Equilibrium of a Red Blood Cell Aug - Nov ‘14

Wave Propagation in Initially Stressed Elastic Solids Aug-Nov ‘14

Minimum Energy Path of a Reaction Using Nudge Elastic Band Method Jan-Apr ‘14

Relevant
Courses

- Non-Linear Vibration - Rheology and Structure of Complex Fluids
- Fracture Mechanics - Molecular Modelling in Chemistry
- Topics in Topology - Non-Linear Finite Element Method
- Wave Propagation in Elastic Solid - Mechanics of Biological Membrane
- Finite Element Method - Advanced Mechanics of Solid
- Theory of Elasticity - Vibration and Control
- Linear Algebra and Ordinary Diff Eqns - Complex Analysis and Partial Diff Eqns
- Real Analysis and Calculus - Nature and Properties of Materials
- Fourier Analysis and Boundary Value Problems - Computational Multiscale Modeling of Solid

Teaching
Experiences

Teaching Assistant, EPFL

- Solid Mechanics Spring Semesters 2018, 2019, 2020
- Introduction to Structural Mechanics Spring Semester 2017

Teaching Assistant, IIT Kanpur

- Basic Electrical Engineering Fall Semesters 2016
- Engineering Graphics and Design Spring Semester 2015

150


	Acknowledgements
	Abstract (English/Français)
	Contents
	List of Figures
	List of Tables
	Introduction and Background
	Dislocation: carrier of plasticity in crystalline materials
	Crystal structure, dislocation systems and stacking faults in Mg
	Energy of a straight dissociated dislocation
	Dislocation controlled temperature-dependent plasticity
	Mechanistic origins of low ductility and emergence of strong basal texture in wrought Mg
	Enhanced ductility in wrought Mg alloys containing rare earth solute elements
	Scope and structure of the thesis

	Computational Methods
	Elements of molecular dynamics and static simulations
	Transition state theory and the Nudged Elastic Band method
	Transition state theory
	Nudged elastic band method


	Interatomic potentials employed in the atomistic simulations
	Two pure Mg MEAM interatomic potentials: MEAM_I and MEAM_II The MEAM_II potential is developed in collaboration with Prof Zhaoxuan Wu from City University Hongkong, China.
	Mg-Y MEAM interatomic potentialThe Mg-Y potential is developed in collaboration with Dr Sébastien Groh from University of Basel, Switzerland.
	Misfit strain and misfit volume
	Solute-stacking fault interaction energy
	Y interactions with the pyramidal II <bold0mu mumu ccdottedcccc+bold0mu mumu aadottedaaaa> edge dislocation
	Discussion on the applicability of the Mg-Y MEAM potential


	Pyramidal-to-Basal Transition of <bold0mu mumu ccdottedcccc+bold0mu mumu aadottedaaaa> Dislocations in Mg-Y Alloys
	Computational details
	Results
	Transition mechanism
	Transition time
	Energetic force driving the PB transition


	Cross-Slip Mechanism of Pyramidal <bold0mu mumu ccdottedcccc+bold0mu mumu aadottedaaaa> Screw Dislocations in Mg
	Cross-slip of <bold0mu mumu ccdottedcccc+bold0mu mumu aadottedaaaa> dislocation in pyramidal II favorable regime
	Cross-slip of <bold0mu mumu ccdottedcccc+bold0mu mumu aadottedaaaa> dislocation in pyramidal I favorable regime
	Computational details
	Cross-slip transition paths and barriers
	Implications for double pyramidal I cross-slip

	Model for pyramidal <bold0mu mumu ccdottedcccc+bold0mu mumu aadottedaaaa> cross-slip barrier

	Cross-Slip Driven Ductility in Dilute Mg Alloys: Theory
	Mechanistic model of enhanced ductility
	Solute effects on pyramidal I/II energy difference: dilute limit
	Solute-dislocation interaction energies
	Net shear stress  driving the cross-slip process
	Pyramidal II favorable regime
	Pyramidal I favorable regime

	Solute effects on dislocation energy difference EI-II  : ultra dilute limit
	Cross-slip of pyramidal "42683AD c+a"52693AE  screw dislocations in the presence of a single solute

	Experimental observation of the solute accelerated pyramidal cross-slip in Mg-Y alloys The experimental results presented in this section were provided by Dr. Stefanie Sandlöbes from institut für Metallkunde und Metallphysik at RWTH (Rheinisch- Westfälische Technische Hochschule) Aachen University, Germany. 

	Cross-Slip Driven Ductility in Dilute Mg Alloys: Results 
	Determination of model parameters
	Prediction for binary Mg alloys
	Predictions for ternary Mg alloys
	Predictions for quaternary Mg alloys
	Predictions in pyramidal I favorable regime

	Discussion and Conclusion
	Outlook
	The MEAM potential framework for elemental and binary alloy system
	Formalism for pure element
	Formalism for binary system

	Ultra Dilute Limit for Higher Order Alloys
	The ultra dilute limit in ternary alloy
	Type 1 in the dilute and type 2 in the ultra dilute limit (c1 c* and c2 < c*)
	Both solutes are in the ultra dilute limit (c1 < c* and c2 < c*)

	The ultra dilute limit in quaternary alloy
	One solute (type 1) in the ultra dilute limit (c1 < c*, c2 c*, c3 c*)
	Two solutes (type 1 and 2) in the ultra dilute limit (c1 < c*, c2 < c*, c3 c*)


	DFT Computation and Solute-Stacking Fault Interaction Energy
	Details of DFT computations Most of the first principle DFT computations used in this work were performed by Dr. Binglun Yin who was at the time a postdoctoral researcher in the Laboratory for Multiscale Mechanics Modeling at EPFL, Switzerland.
	Solute-stacking fault interaction energy

	Dislocation Energy Difference associated with Pyramidal Cross-Slip 
	Bibliography
	Curriculum Vitae



