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Abstract
The development of new solid-state electrolytes is a key step in improving the performance

and safety of battery technology. Although the use of first-principle methods has proved

invaluable in better understanding the process at play in these materials, these methods

remains extremely costly and limit the ability to model the diffusion phenomena as this one

is often happening over large time-scales. To solve this issue and unlock larger time-scale

and supercells, the use of force-fields has proven to be an effective solution. In particular,

polarizable force-fields have been shown to be effective at reproducing accurate diffusion

results. To this effect, a methodology is proposed here for the training of such polarizable

force-fields using a Self-Adaptive Differential Evolution algorithm. The constant optimization

of the shell positions is avoided by using its optimal position with respect to the error on

cores. Furthermore, the generation of synthetic training sets is proposed through the use

of Monte-Carlo dynamics and random thermal displacements. The potential of force-field

modeling is then demonstrated by investigating the effect of tungsten doping on garnet type

electrolytes. This investigation shows the importance of averaging over dopant distributions

and highlights the complex interplay between the various effects resulting of the insertion

of doping species. These various effects are isolated through the use of two distinct doping

models, an implicit model where the extra positive charge is introduced as a background

charge and an explicit one where the dopant is explicitly introduced. Finally the computation

of the electrochemical stability of solid-state electrolytes is introduced. The different methods

used to compute it are discussed and their results for relevant Li- and Na-based solid-state

electrolytes are compared.
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Résumé
Le développement de nouveau électrolytes solides est une étape clé pour l’amélioration

des performances et de la sûreté des batteries. Bien que l’utilisation de méthodes ab initio

s’est révélée inestimable afin de mieux comprendre les processus actifs dans ces matériaux,

ces méthodes demeurent extrêmement couteuses et limitent la possibilité de modéliser les

phénomènes de diffusion car ils se produisent souvent sur de grandes échelles de temps.

Pour résoudre ce problème et donner accès à de plus grandes échelles de temps et de plus

grand systèmes, l’utilisation de champ de forces s’est avérée être une solution efficace. En

particulier, les champs de forces polarisables se sont révélés efficaces pour reproduire avec

précision des résultats pour la diffusion. À cet effet, une méthodologie est proposée pour

la paramétrisation de tel champs de force polarisables à l’aide d’un algorithme d’évolution

différentielle auto-adaptif. La constante optimisation de la position des coques électroniques

est évitée en utilisant une position optimale pour la minimisation de l’erreur sur les noyaux.

En outre, l’utilisation de set de référence synthétique est proposée. Ces sets sont générés à

l’aide de la méthode de Monte-Carlo et de l’utilisation de déplacement thermiques aléatoires.

Le potentiel de la modélisation à l’aide de champ de force est ensuite démontré en explorant

les effets du dopage au tungstène sur les électrolytes de type grenat. Cette étude démontre

l’importance de faire une moyenne sur les distributions de dopants et souligne l’interaction

complexe entre les divers effets résultant de l’insertion d’espèces dopantes. Ces différents

effets sont isolés en utilisant deux modèles de dopage distincts, un modèle implicite dans

lequel la charge positive supplémentaire est introduite en tant que charge de fond et un

modèle explicite où le dopant est explicitement introduit. Finalement le calcul de la stabilité

électrochimique des électrolytes solides est introduit. Les différentes méthodes utilisées pour

son calculer sont discutées et leurs résultats pour différent électrolytes solides pertinents sont

comparés.
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1 Introduction

The lithium-ion battery technology has matured over the last two decades, driven by the

high requirements of the 3C market – computers, consumer electronics and cameras. The

development of new markets and the drive for ever smaller batteries with larger capacities

have changed the landscape. Beside consumer electronics becoming ever more smaller and

powerful, requiring always higher capacities, the rise of hybrid and electric powered vehicles

has pushed for batteries with higher than ever energy densities. With the current growth of

these new markets and no indication that the demand will stagnate or decline, as shown with

the yearly battery sales in Fig. 1.1, the motivation for new advances in the Li-ion and beyond

Li-ion technologies is stronger than ever.

Figure 1.1 – Worldwide Lithium-ion sales for electronics, industrial and automotive applica-
tions, and others (namely power tools, e-bikes, medical devices, etc) from 2000 to 2016. [1]

Lithium-ion is widely believed to be reaching soon its limits in terms of specific energies
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Chapter 1. Introduction

and energy densities, casting a doubt on the technology’s ability to cope with the increasing

requirements [4, 5, 6]. In this context, intense efforts has been put in evaluating alternative

battery technologies, including Li/O2, Li/S systems and batteries substituting lithium for

single (Na+ and K+) or multivalent (Mg2+ and Ca2+) ions. These technologies are however far

from mature and important research efforts are still needed to unlock the potential of the next

generation of batteries.

Lithium Batteries

The research in the field of lithium batteries started with the pioneering work of Lewis [7] on

lithium electrodes in 1912. 50 years later, Harris [8] noticed the stability of metallic lithium

in a number of non-aqueous electrolytes, opening the door to the development of lithium

batteries. In the wake of this discovery, the 1960s witnessed the fabrication and commer-

cialization of a variety of the first non-rechargeable primary lithium batteries. In the early

70s, the discovery of reversible insertion of alkali metal ions into iron cyanide compounds

by Armand [9] allowed the development of the first rechargeable secondary lithium-metal

batteries. Lithium metal technology however faced major safety concerns preventing any

commercial breakthrough after their first investigations [10, 11] in the 90s. Later proposed in

the second half of the 70s by Armand, the concept of lithium-ions batteries, a battery using

two different intercalation compound at each electrodes was demonstrated in the 80s. Both

primary and secondary lithium batteries have become widely used in the modern world.

Active research and development helped discover new alternative electrode materials allowing

for smaller and lighter batteries with ever increasing energy density.

Today’s rechargeable battery technology however still faces challenges. As the Li-ion tech-

nology slowly reaches its limit, the need for alternative technology has increased. Among

the possible candidates, lithium-air and lithium-sulphur batteries have attracted a particular

interest. Their reliance on metalic lithium anodes [12, 13, 14, 15, 16, 17] has however been

an important drawback as the safety issues associated with the metallic lithium anodes have

not disappeared. During the charging process, lithium is deposited non-homogeneously to

form high surface area lithium (HSAL), often referred as "dendrites". Beside the continual

consumption of the electrolytes during the re-formation of the solid electrolyte interface (SEI),

this phenomenon poses safety concerns due to textiti) the high reactivity of HSAL with the

electrolyte and (ii) the possibility of short circuits in the electrochemical cell if the dendrite

grows through the electrolytes and reaches the cathode. These risks are important obstacles to

the development of new technologies. Beyond the safety threats, liquid electrolytes also poses

environmental concerns through the potential of leakage and containment issues during

production and recycling. As the liquid organic electrolytes are central to the issues faced,

substitution of the liquid electrolytes by safer and more convenient alternatives has been

explored.
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Ionic liquids Ionic salts are organic salt composed of ionic species. They offer a high thermal

stability, good electrochemical stability, and are recyclable and non-flammable. Their organic

nature allows for their physico-chemical properties to be easily tailored through substitu-

tion and functionalization [18]. All these advantages would make of ionic liquids the ideal

electrolytes if it wasn’t for their high viscosity resulting in extremely low ionic conductivity.

Polymer electrolytes First investigated by Fenton et al. in the early 70s, polymer electrolytes

were later recognized by Armand [19] for their potential application in lithium batteries. The

high conductivity achieved in recent development as well as their mechanical properties

makes them interesting replacement for liquid organic electrolytes. Among them, polyvinyli-

dene fluoride (PVdF) is the most commonly used today [20]. They however suffer from poor

interfacial stability and are not stable against metallic lithium, preventing their use in the

higher capacity Li-metal batteries.

Solid State Electrolytes

After early reports of the mobility of ions such as Ag+, O2 – or F – in solids in the nineteenth

century, solid states electrolytes gained traction with the rise of the transistors and electronics,

promising relatively high voltage power sources with low total current. These investigation

led to multiple designs proposal for primary batteries [21, 22, 23, 24]. Several inorganic

compounds have been investigated since as potential solid-state electrolytes with candidates

ranging from oxides to non-oxides, and from crystalline to amorphous.

Figure 1.2 – Crystal structure of NaZr2(PO4)3, the base structure of NaSICON-type electrolytes
with the P centers represented as purple tetrahedra and the Zr ones as green octahedra. Figure
generated using the VESTA software [2].
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NaSICON type electrolytes Na SuperIonic CONductors (NaSICON) were first reported in

1976 by Goodenough and Hong [25, 26]. Of the form Na1+xZr2SixP3 – xO12 (0 ≤ x ≤ 3), they

are derived from the NaM2(PO4)3 structure, presented in Fig. 1.2, by partial substitution of Si

for P. Substitution of the Na by Li does not affect the structure of the material and produces

an isostructural lithium conductor. It’s conductivity is however reduced when compared

to the sodium one. The decrease in conductivity results from the too large ionic channels

and the stronger bonding energy between the Li and O atoms. Aluminium doping allows

the conductivity of NaSICON-type electrolytes to be tuned. Li1+xAlxTi2 – x(PO4)3 (LATP) and

Li1+xAlxGe2 – x(PO4)3 (LAGP) exhibit room temperature conductivity of up to 10−3 [27] and

10−2 Scm−1 [28] respectively.

Figure 1.3 – Crystal structure of γ-Li3PO4, the base structure of LiSICON-type electrolytes with
the P centers represented as purple tetrahedra. Figure generated using the VESTA software [2].

LiSICON type electrolytes With a structure similar to γ-Li3PO4, shown in Fig 1.3, the Li

SuperIonic CONductor (LiSICON) family results from the substitution of aliovalent cation for

the P ones. The first reported example by Hong [29] in 1978, Li14Zn(GeO4)4 had a conductivity

of 0.13Scm−1 at 300◦C . Although LiSICON are well suited to operate at high temperature, their

extremely low ionic conductivity has resulted in a limited number of reported compounds.

Thio-LiSICON and LGPS-type electrolytes In 2000, Kanno [30] substituted S for O and

reported the thio-LiSICON family. The high polarizability of the S – 2 anion weakens the

interaction with the lithium and leads to a higher conductivity. Of particular interest among

these is the LGPS family – Li4 – xGexP1 – xS4 – for which the highest conductivity was reported

with x = 0.75, 2.17 ·10−3 Scm−1 at 26◦C [31]. More recently, Kanno’s group reported a new

thio-LiSICON compound Li9.54Si1.74P1.44S11.7Cl0.3 [32]. It’s structure is related the one of LGPS

and it possesses a remarkably high ionic conductivity, 2.5 ·10−2 Scm−1.
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Perovskite electrolytes After first report of ionic conductive perovskites, ABO3, by Taka-

hashi and Iwahara [33] in the early 70s, Inaguma et al. discovered materials of general formula

Li3xLa2/3 – xTiO3 (LLTO), with ionic conductivity as high as 10−3 Scm−1 [34] at room tempera-

ture. Despite their high conductivity at room temperature, the application of LLTO remains

limited by its tendency to undergo rapid Li insertion, with consequent Ti reduction from Ti4+

to Ti3+, when in contact with metallic lithium resulting in high electronic conductivity.

Lithium Tantalate

Figure 1.4 – Crystal structure of Li7LaO6. Figure generated using the VESTA software [2].

Hexaoxometalates have first been described by Scholder [35] in 1958, describing iso struc-

tural compounds of formula Li8MO6 (M –– Sn, Pb, Zr, Hf) and Li7MO6 (M –– Nb, Ta, Sb, Bi). The

presence of Li vacancies in the Li7 structures allowed for a higher conductivity and their inves-

tigation as solid states electrolytes. In 1979, Delmas et al. [36] reported a room temperature

conductivity of 4.3 ·10−8 Scm−1 for Li7TaO6, shown in Fig. 1.4, with an activation energy of

0.66eV.

In a more recent study, Muhle et al. [37] reported a phase transition in the Arrhenius plots

of various hexaoxometalates, including Li7TaO6 around 700K with a dramatic drop in the

activation energy to 0.28eV for Li7TaO6. Since they couldn’t observe any changes in the X-ray

diffraction patterns concurrent with the transition, they assign it to a melting of the lithium

sublattice allowing a greater mobility.

5



Chapter 1. Introduction

Garnet-type electrolytes

Figure 1.5 – Crystal structure of Li5La3Ta2O12. The La centers are represented in blue and the
Ta ones in brown. Li sites are represented in green. Figure generated using the VESTA software
[2].

After the discovery of LLTO, a strong effort was put in the search for materials with similar

constituents but with a higher electrochemical stability. Attempts to substitute Zr for Ti

failed due to the thermodynamically favorable formation of a non conductive pyrochlore

phase. Reported in the late 80s by Abbattista [38], Hyooma [39] and Mazza [40], Li5La3B2O12,

B = Nb,Ta is one such structure, which forms a cubic garnet-like phase shown in Fig. 1.5.

Garnets are orthosilicates of general composition A3B2(SiO4)3 in which A and B are eight-

and six-coordinated cations. Lithium containing garnets substitute lithium for silicon and

are separated in two groups: conventional lithium garnets, A3B2(LiO4)3, and stuffed lithium

garnets, LixA3B2(LiO4)3. The lithium cations occupy the 24d tetrahedral sites labeled as Li1

in Fig. 1.6. In stuffed garnets, the tetrahedral sites are saturated and the lithium is force to

occupy the 96h sites with a distorted octahedral coordination and labeled as Li2 in Fig. 1.6. In

2003, Thangadurai et al. [41], first investigated the structure for its ionic conductivity. The high

versatility of the garnet structure, allowing various substitution of alio- and hypervalent cations

for both A and B lead to numerous attempts to improve the conductivity and stability of the

system. In 2007, Murugan et al. reported a new electrolyte of the garnet family, Li7La3Zr2O12

(LLZO) with relatively high ionic conductivity, 10−4 Scm−1, and excellent stability against

metallic lithium [42].
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Figure 1.6 – Crystal environment of the lithium in the garnet structure. The most stable site is
the Li1, 24d , tetrahedral site. In stuffed garnets, two degenerate Li2, 96h, distorted octahedral
sites are then occupied. The two degenerate sites are situated next to the ideal 48g octahedral
Li3 site. Figure generated using the VESTA software [2].

Complete ordering of the lithium content in LLZO can occur in the case of tetragonally

distorted garnets[43], reducing the intra- and inter-grain conductivity by about three orders of

magnitude. Later investigations by Geiger et al. [44] show that the tetragonal, non-conducting

phase is the lower energy phase and the more stable one at room temperature. They also

suggested that the stability of the cubic phase at room temperature in the seminal reports by

Murugan et al. is the result of Al contamination from the aluminium crucible used for the

synthesis.

Substantial studies have taken place since then to optimize the stability and conductivity of

garnet electrolytes through doping.

Simulation of Solid-State Electrolytes

The potential of solid-state electrolytes has not only fueled intensive experimental work but

also many theoretical studies. These theoretical works, starting in the mid-70s, have been

focused on the understanding of the mechanism of superionic conductivity to better drive

the discovery of new and better performing materials. In 1976, Rahman [45] first investigated

the self-diffusion of F – ions in CaF2 crystals using tabulated potential reported earlier by Kim

et al. [46]. Further studies using diverse classical force fields, molecular and Monte Carlo

dynamics, followed the development in the field. They included the simulation of various

halides [47, 48, 49, 50, 51, 52], Li3N [53] and α- and β′′ – Al2O3 [54, 55, 56, 57].

It was however not before 2006 that Wood et al. were able to use first-principle methods,

namely Car-Parinello molecular dynamics, to model the diffusive phenomenon in α-AgI [58].
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Simulation of garnet-type electrolytes

First-principle based simulations

In 2012, Xu et al. investigated the structure and diffusion mechanism using DFT [3]. In

particular they were interested in the analysis of the lithium site occupation after structure

relaxation and of the diffusion mechanism using the nudged elastic band (NEB) method.

They report high occupation of the tetrahedral sites for the lower lithium concentrations

investigated, Li3La3Te2O12 and Li5La3Nb2O12. For the higher concentration, Li7La3Zr2O12, the

tendency is reverse after relaxation, their simulation favoring the occupation of the octahedral

sites. They also suggest two main diffusion mechanisms for that structure. The first one is

done by the migration of a lithium ion from an octahedral site to another going through the

connecting tetrahedral site. They report an activation energy of about 0.25eV for each of the

two steps of the process. The second mechanism bypasses the tetrahedral site and exhibits a

higher activation energy of 0.8eV. Both mechanisms are presented in Fig. 1.7.

Figure 1.7 – Representation of the two mechanisms proposed by Xu et al.. The octahedral sites
and the tetrahedral one are respectively represented in red and blue [3].

Simultaneously Bernstein et al. [59] used first-principles molecular dynamics (FPMD) in

an isothermal-isobaric ensemble to understand the impact of the Li concentration on the

structure of LLZO. In particular they demonstrate that the removal of Li from the stoichiometric

structure lowers the critical temperature of the transition from the tetragonal phase to the

cubic one by increasing the overall entropy of the system and reducing the gain in free energy

achieved by ordering the lithium in the tetragonal phase.

Later in 2013, Jalem et al. [60] used FPMD to investigate the superionic phenomenon in

cubic LLZO. In particular they focused the determination of the diffusion coefficient from the

lithium self-diffusion and on the average occupation of the different sites. They postulate a

concerted migration mechanism governed by restriction on neighboring site occupation and

the unstable residence of the lithium ion in the tetragonal site. Although the value obtained

for the activation energy is consistent with experimental results, the length of simulation used,

30ps, is extremely short and it is difficult to asses the convergence of the presented diffusion

coefficients.

Miara et al. [61] studied the impact of Rb and Ta doping on the topology and ionic conductivity
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of LLZO. They used dopant distribution optimized to minimize coulombic repulsion in a

1×1×1 cell to model conductivity in trajectories lasting from 40 to 100ps. They conclude that

the primary effect of the doping is the change in lithium concentration rather than the size or

nature of the migration path.

Meier2014 et al. [62] introduced the use of metadynamics to reach a better understanding of

the conductivity of LLZO and more specifically to contrast the different mechanism present in

the cubic and tetragonal phase. Though they observe a collective motion of the ions in the

case of the tetragonal phase, there observations for the cubic phase describes a sequence of

asynchronous single-ion jumps leading to the apparent collective motion of a few ions. This

result contrast with the observation of Jalem et al. described earlier [60].

Rettenwander et al. investigated the the site occupation of Al3+ dopant using DFT calculations

[63]. Their results indicate that the 24d site is energetically favored, although they do report

shallow minima for a tetrahedral coordination on the 96h site and for an octahedral one on the

48g site. Despite previous neutron diffraction studies proposing the occupation of the 48g site

by Al3+ by Li et al. [64], the NMR shift predicted for the site was not observed in experimental

NMR spectra. In a later publication [65] they further investigated the effect of Ga3+ and Al3+

on the local potential of the neighboring lithium sites through DFT.

In a joint experimental and theoretical study, Mukhopadhyay et al. [66] used neutron diffrac-

tion (ND), X-ray diffraction (XRD) measurements and Raman spectroscopy in conjunction

with DFT calculations to investigate the effect of Ta and Al doping on the crystal structure.

They observed smaller experimental lattice constants than the one expected from their first-

principles calculations. They postulated that this is the result of an higher than nominal Ta

content in the structure. They further suggest that O vacancies are formed to keep the charge

balance neutral. They also investigated Ta and Al doping in term of the effect the dopant has

on Li channel size, i.e. Li1 and Li2 site sizes and size of the neck that Li must pass through to

travel between them. They observed that Ta enlarges all three quantities, while Al leaves the

site sizes unchanged but enlarges the neck.

In a recent work, Klenk et al. investigated the impact of various GGA functionals on the

predicted lattice parameters and phase transition of LLZO [67]. They report errors within

10% from the experimental results for all functionals and a stabilization of the cubic phase

at a temperature of 1000◦C when using PBE2, SOGGA and PBESol as exchange correlation

functional.

Force-field based simulations

Adams et al. reported in 2012 [68] a combined experimental and theoretical study, in which

they used classical modeling based on a Morse-type potential to gain a better understanding of

the lithium dynamics in LLZO and Ta5+– and Nb5+–doped structures. An initial bond-valence

(BV) analysis lead the authors to conclude that no low energy interstitial site should play a
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role in the Li+ transport in garnet electrolytes as proposed by Xu et al. [3]. They report a phase

transition in good agreement with their experimental observations. Later experimental studies

[69, 70] however report critical temperature for the phase transition (650◦C ) higher than the

one reported here (450◦C ). Their work underlined the advantages of classical modeling for

the research in the field of solid state electrolytes. The cell used for all simulations was a

2×2×2 supercell, greatly improving the statistical significance of the results. Furthermore, the

timescale of the simulation allows to converge conductivity for lower temperatures, e.g. > 1ns

at 323K.

Wang et al. [71] used a polarizable Buckingham potential to investigate the lithium distribution

in tetragonal and in cubic Ta-doped LLZO. They modeled both O and Ta ions using a core-shell

model. They observed an increase of the Li+ ion ordering for higher lithium composition

until total ordering is reached for Li7. Based on their simulations, they also predicted lower

occupation of the tetragonal sites than what was previously reported [72, 73].

Effects of Ga3+–doping on the structure and conductivity of LLZO was investigated by Jalem et

al. [74] using a non-polarizable Buckingham potential. Their model successfully describe the

stabilization of the cubic phase by the decrease in lithium content induced by the Ga dopant.

It is however unable to fully reproduce the tetragonal phase. They did not observe any lattice

change due to the substitution and predict Ga diffusion above 1200K. They finally observed

two regimes in the conductivity behavior with respect to the lithium content: an initial

decrease for 0 ≤ x ≤ 0.1 followed by a flat trend for 0.1 ≤ x ≤ 0.3. This first behavior is explained

by the initial increase in inaccessible sites occupied by Ga ions. At higher dopant concentration

they suggested that the increase in Li vacancies allows ions to conserve momentum in the

percolated pathways.

In a first paper, Klenk et al. [75] used a polarizable Buckingham potential to investigate the

local structure and dynamics of LLZO. They analysed van Hove correlation functions and

mean square displacement and concluded that the lithium dynamics in the cubic phase

predominantly consists of what they call "structured diffusion", a combination of oscillation

and random-walk diffusion. When looking at the phase transition their results are aligned with

previous studies and hint at an entropic stabilisation of the cubic phase at higher temperature.

They finally investigated the presence of local clusters of Li ions and find few regularly occuring

clusters in both tetragonal and cubic phases. They believe that these mostly symmetrical

clusters lead to a "center-pass" mechanism dominating the diffusion phenomena through

these bottlenecks.

In a second paper, Klenk et al. [76] investigated, this time with a non polarizable Buckingham

potential, the convergence of the structure parameter and conductive behavior of LLZO with

respect to the size of the system used. Although they did not observe large variation in the cell

parameters, conductivity or Haven ratio, they recommend the use of a 3×3×3 supercell for

an optimal trade-off between accuracy and performance.

Burbano et al. presented long-time simulation of both tetragonal and cubic phase LLZO using
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a DIPole Polarizable Ionic Mode (DIPPIM) potential [77]. They performed runs of up to 87.4ns

to effectively sample the diffusion phenomenon in the low conductive tetragonal phase. Of

particular interest to them was the identification of strings, chains of ions diffusing in concert.

They identified in tetragonal LLZO a strong bias towards 8 membered strings, corresponding

to a cyclic excitation event. This preference for long diffusive chains is not preserved in the

cubic phase where the probability of observing a long string decays exponentially with the

length of the chain. These observations are consistent with the observations made by Meier et

al. [62] in regards to the collective aspect of ionic motion in cubic and tetragonal LLZO.

More recently, Chen et al. [78] used a combination of classical and DFT modeling to investigate

Ta doping of LLZO. They investigated the change in structure between the cubic and tetragonal

phase in term of Li-Li pair distribution function and lithium density maps. They then investi-

gated the different conduction pathways in term of temperature-dependent site occupancy

and explained the site preference as a consequence of the DFT site energy difference. They

finally investigated the effect of the doping on the lithium distribution. They observed an

increase in the occupancy of the tetrahedral with doping that they attribute to a stabilization

of the tetrahedral site by the Ta ions.

Problematic

Computational investigations targeted at solid-states electrolytes aim at creating a deeper un-

derstanding of the various phenomena that control and influence the conductivity of a crystal.

Although this type of investigation is often presented as the promise of the identification of

better materials, most new electrolytes are still discovered by intuition or serendipity. This

stems from the numerous issues still present for the simulation of solid-states electrolytes,

raising a host of interwoven choices, with the balance between accuracy and performance

at its core. First-principle methods have proven their efficacy in accurately modeling such

solid since the first reported modeling of ionic diffusion by Wood et al. [58]. However due

to the high cost of the method, DFT studies have remained limited to static modeling, small

simulation cells and short time scales. This is particularly problematic when studying less

conductive structures such as the tetragonal phase of LLZO where the diffusive process is

driven by rare events. Enhanced sampling methods such as metadynamics can be used to

improve the understanding of the processes at stake, as shown by Meier et al. [62] but not

without a trade-off with the loss of information relative to time-scale central to the idea of

diffusion. Given these limitations, force-field modeling has proved its role as an essential tool

in understanding and predicting the conductivity of solid state electrolytes.

In particular polarizable force fields have shown to be able to provide increased accuracy in the

description of some complex systems. In the first part of the thesis, the goal is to demonstrate

the use of classical polarizable force-field to improve the understanding of some of the issues

related to the modeling of doped systems solid-state electrolytes. To this end, a prototypical

system, W doped LLZO, of formula Li7 – 2xLa3Zr2 – xWxO12, is used. A comparison between
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two doping models, an implicit scheme and an explicit one, is made to identify the different

impact of the doping on the stability and the Li-ion dynamics of the system.

The second part focuses on methodologies used for the development of classical polarizable

force-fields, with a particular focus on methodologies applicable in the scope of material

screening and identification of potential solid-state electrolytes. To make the use of force-field

in such procedure, it is important to have convenient tools available for the parametrization

of the force-field. A general framework for the unsupervised parametrization of polarizable

force-fields is developed using the AiiDA platform [79] and tested on lithium tantalate.
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2 Methods

Molecular dynamics simulation

Molecular dynamics (MD) is a technique used to compute equilibrium and transport prop-

erties of systems of classical particles. In many regards, it is very similar to real experiments,

where a sample of the material that one wishes to study is first prepared and then measure-

ments are carried out using various instruments to determine a quantity of interest during

a certain time interval. In molecular dynamics, a model system composed of particles is

assembled and Newton’s equations of motion are integrated for the system until the properties

of the system do not change with time, i.e. the system has reached equilibrium. In the case

of equilibrium properties, the measurements of the property of interest are then taken. In

both experimental and theoretical cases, the measurements are subject to statistical noise

and the more data is collected, the more accurate the measurements will become. Computer

simulations therefore act as a bridge between the microscopic time and length scales and the

macroscopic world of lab experiments.

Integrating the equation of motion

When considering a system of N atoms described by the 3N coordinates r = {ri }, by the

potential U (r) and by the 3N momenta p = {
pi

}
, the total energy of the system can be defined

as the hamiltonian H
(
r,p

) =U (r)+K
(
p
)
, where K

(
p
) = ∑3N

i
|pi |2/2mi . The evolution of the

system then follows the classical equations of motion

d

d t
ri = pi

mi
and

d

d t
pi =− ∂

∂ri
U (r) = fi (2.1)

The most common technique used to integrate the equations of motion of a system is the

Verlet algorithm. By using a Taylor series on the updated coordinates after and before a
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timestep ∆t , the following equations can be written for the coordinate i

ri (t +∆t ) = ri (t )+ d

d t
ri (t )∆t + d 2

d t 2

ri (t )

2
∆t 2 + d 3

d t 3

ri (t )

6
∆t 3 +O

(
∆t 4)

= ri (t )+ pi (t )

mi
∆t + fi (t )

2mi
∆t 2 + d 3

d t 3

ri (t )

6
∆t 3 +O

(
∆t 4)

ri (t −∆t ) = ri (t )− d

d t
ri (t )∆t + d 2

d t 2

ri (t )

2
∆t 2 − d 3

d t 3

ri (t )

6
∆t 3 +O

(
∆t 4)

= ri (t )− pi (t )

mi
∆t + fi (t )

2mi
∆t 2 − d 3

d t 3

ri (t )

6
∆t 3 +O

(
∆t 4) (2.2)

When added together, the momentum and third-order derivative of the coordinates can be

removed from the equation:

ri (t +∆t )+ ri (t −∆t ) = 2ri (t )+ fi (t )

mi
∆t 2 +O

(
∆t 4) . (2.3)

It is then easy to rewrite the equation to define the updated coordinates as a function of the

previous and current coordinates and of the forces

ri (t +∆t ) ≈ 2ri (t )− ri (t −∆t )+ fi (t )

mi
∆t 2. (2.4)

As demonstrated, the Verlet algorithm doesn’t need the momenta to compute the updated

coordinates. The momenta are however necessary to keep track of the total energy of the

system. By reusing Eq. 2.2 it is however possible to define the evolution of the momenta. This

time, by subtracting the two equations, we can eliminate the the current position, forces and

forth-order terms.

ri (t +∆t )− ri (t −∆t ) = 2
pi (t )

mi
∆t +O

(
∆t 3) . (2.5)

Rewriting the equation, leads to the expression for the updated momenta

pi (t ) = ri (t +∆t )− ri (t −∆t )

2∆t
+O

(
∆t 2) . (2.6)

Momenta calculated this way are however only accurate to order ∆t 2 and can only be com-

puted on ri (t +∆t ) is known. Alternative schemes allow to obtain more accurate estimates of

the velocities and remove the necessity of knowing the next updated positions. The Velocity-

Verlet algorithm is one of these. Its derivation is very similar to the one of the Verlet. One starts

with a Taylor series around the momentum at time t .

pi (t +∆t ) = pi (t )+ d

d t
pi (t )∆t + d 2

d t 2

pi (t )

2
∆t 2 +O

(
∆t 3)

= pi (t )+ fi (t )∆t + d 2

d t 2

pi (t )

2
∆t 2 +O

(
∆t 3) . (2.7)
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Unlike in the case of the Verlet algorithm, this first expansion is not sufficient since no ex-

pression is known for the second-order derivative of the momentum. A second Taylor series

describing the first derivative of the momentum around time t , is used.

d

d t
pi (t +∆t ) = d

d t
pi (t )+ d 2

d t 2 pi (t )∆t +O
(
∆t 2) . (2.8)

By isolating the second-order derivative of the momentum in Eq. 2.8 and multiplying it by ∆t/2,

one obtains an expression for the second-order term of Eq. 2.7:

d 2

d t 2

pi (t )

2
∆t 2 = ∆t

2

(
d

d t
pi (t +∆t )− d

d t
pi (t )

)
+O

(
∆t 3) . (2.9)

Substituting Eq. 2.9 into Eq. 2.7 gives the final expression for the updated momenta as a

function of the initial momenta and of the forces at times t and t +∆t .

pi (t +∆t ) = pi (t )+ d

d t
pi (t )∆t + ∆t

2

(
d

d t
pi (t +∆t )− d

d t
pi (t )

)
+O

(
∆t 3)

= pi (t )+ ∆t

2

(
fi (t +∆t )+ fi (t )

)+O
(
∆t 3) (2.10)

The integration of the equation of motion using the Velocity-Verlet method is done in four

steps:

1. calculate ri (t +∆t ) = ri (t )+ pi (t )/mi∆t + fi (t )/2mi∆t 2,

2. calculate pi
(
t + 1/2∆t

)= pi (t )+ 1/2 fi (t )∆t ,

3. evaluate fi (t +∆t ) =−∂/∂ri U (r (t +∆t )),

4. calculate pi (t +∆t ) = pi
(
t + 1/2∆t

)+ 1/2 fi (t +∆t )∆t .

Generalized Langevin Equation Thermostat

The integration of the equation of motion leads to a sampling of the microcanonical constant-

energy ensemble. Real-life experiment are however done at constant temperature, not con-

stant energy. Several approach have been proposed to achieved such simulations, a few

examples are listed here. Andersen’s thermostat rescales the momenta of the particles to

respect a Maxwell-Boltzmann distribution at the desired temperature [80]. Nosé-Hoover’s

thermostat uses the momentum of a fictitious particle as a heat bath [81, 82]. Nosé-Hoover’s

chains improve on Nosé-Hoover’s thermostat by using a chain of fictitious particles instead of

a single one [83]. Velocity rescaling uses a constant α to enforce a target temperature [84], a

more recent version includes a properly chose randomness to the rescaling factor [85].

In this work, constant temperature simulations are performed using a non-Markovian Langevin

equation based thermostat [86]. When considering a system of particles described by the
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coordinates r = {ri }, momenta p = {
pi

}
and masses m = {mi } and interacting via a potential

U (r), the colored Langevin equations are defined as

d

d t
ri (t ) = pi (t )/mi

d

d t
pi (t ) =− fi (t )−

∫ t

0
K

(
t − t ′

)
pi

(
t ′

)
dt ′+ξi (t ) (2.11)

where fi =−∂U/∂ri are the forces, K is a memory kernel and ξ (t ) is a vector of independent

Gaussian noises. Of particular interest, if the noise term ξ is related to the memory kernel K

by the fluctuation-dissipation theorem
〈
ξi (t )ξ j

(
t ′

)〉= δi j mi T K
(
t − t ′

)
, the temperature of

the system can be set to T .

Though the non-Markovian Eq. 2.11 seem too complex for practical application, the use of

memory kernel of a rather general form K =K
∑

k ck e−t(γk+iωk ) with γk > 0, allows to rewrite

Eq. 2.11 into an equivalent Markovian form by introducing a set of auxiliary momenta:

d

d t
ri (t ) = s0i (t )/mi

d

d t
si (t ) =


fi (t )

0
...

0

−A ·s (t )+B ·ηi (t ) (2.12)

where si =
(
pi , si 1, ..., si N

)T is a N +1 dimensional vector, whose first component is associated

with the i -th degree of freedom of the system, and ηi is a vector of Gaussian white noise

satisfying
〈
ηi k (t )ηi k ′

(
t ′

)〉 = δi jδ
(
t − t ′

)
δkk ′ . The matrices A and B are the drift and diffu-

sion matrices. They are related to the static covariance matrix [87] C = 〈(p,s
)T (

p,s
)〉 by the

equation

AC+CAT = BBT . (2.13)

Ref. [87] shows that the use of C = kBT is sufficient to satisfy the fluctuation-dissipation

theorem. As a consequence, for a given A, B can be derived.

Ab-Initio Molecular Dynamics

In the previous parts, the basics for the integration of the equations of motion needed for

molecular dynamics was discussed. One aspect has however been mentioned multiple times

but never discussed in details. The calculation of the forces from the system’s potential is

the most time-consuming part of most molecular dynamics simulations. Different level of

theories can be used to compute them giving rise to trajectories of various cost and accuracy.

By far the most accurate but most expensive way of computing these forces relies on the
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theories of quantum mechanics.

In 1926, Erwin Schrödinger introduced a new way to describe a particle of mass m in an

external potential V , by what is now know as the Schrödinger equation [88].(
− ~2

2m
∇2 +V

)
Ψ (r, t ) = i~

∂

∂t
Ψ (r, t ) (2.14)

where Ψ (r, t ) is a complex function of time and the particle position and whose square is a

probability distribution function:∫
S
|Ψ (r, t )|2 dr = 1 (2.15)

where the integral is made over the whole space. If the potential V only depends on the

position of the particle r, and assuming the functionΨ can be separated into the product of a

time dependent and a position dependent function

Ψ (r, t ) = u (r) f (t ) , (2.16)

Eq. 2.14 can be split into a time-dependent and a time-independent part:

1

u (r)

(
− ~2

2m
∇2 +V

)
u (r) = i~

f (t )

∂

∂t
f (t ) . (2.17)

This equality can only be valid, if both sides of the equation are equal to a constant. Calling

this constant E , Eq. 2.17 can be split into the following two equations:

Ĥu (r) =
(
− ~2

2m
∇2 +V

)
u (r) = Eu (r) (2.18)

i~
∂

∂t
f (t ) = E f (t ) , (2.19)

where Ĥ represents the Hamiltonian operator, the operator for the total energy of the system.

The solution of Eq. 2.19, called the time-dependent Schrödinger equation, is a pure phase

factor

f (t ) =βe
i Et
~ (2.20)

whereβ is a constant. The only way to obtain the total energy of the system is therefore to solve

Eq. 2.18, known as the time-independent Schrödinger equation. In the case of a many-body

system, the equation can be rewritten as(
−∑

i

~2

2mi
∇2

i +
∑
i< j

qi q j∣∣ri − r j
∣∣
)

u (r) = Eu (r) (2.21)

where mi and qi are the mass and charge of the particle i and the second summation is over
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all pairs i , j . The simplicity of Eq. 2.21 is deceptive and the problem needs to be simplified in

order to be solved.

In 1927, Born and Oppenheimer observed that due to the extreme difference in the mass of

the electrons and nuclei, one could assume the electron dynamics to happen at timescales

where the nuclei are frozen in place. In mathematical terms, this means that the nuclear and

electronic wavefunctions can be separated,

Ψ=ψnuclear ·ψelectronic. (2.22)

To solve for the electronic wavefunction, one includes the nuclei as a fixed external potential

in the equation(
− ~2

2m

n∑
i
∇2

i +
n∑
i

N∑
I

qI e2

|ri − rI |
+ ∑

i< j

e2∣∣ri − r j
∣∣
)
ψelectronic = Eelectronicψelectronic (2.23)

where the sum
∑n

i sums over all electrons, the sum
∑N

I over all nuclei and the sum
∑

i< j over

all electron pairs, m is the electron mass and qI is the charge of the nucleus I .

The development of a self-consistent approximation for the resolution of the Schrödinger

equation by Hartree and the later introduction by Slater and Fock of anti-symmetric wave-

functions provide a simplified framework to easily solve Eq. 2.23, the Hartree-Fock method

(HF). Despite the HF method being accurate enough to provide satisfactory starting points to

the description of many properties, its costs remains high. To go further, two quantities must

be defined. The error in energy due to the use of antisymmetric wavefunctions is called the

exchange energy, EX, and the difference between the many-body energy and the HF energy is

called the correlation energy, EC.

Density Functional Theory

Systems composed of n electrons have so far been described by a 3n coordinates plus n

spins wavefunction, ψ
(
x1, y1, z1,σ1, ..., xn , yn , zn ,σn

)
. A physical property, A, of the system

corresponding to a one-electron operator, Â, can be expressed as

A =
n∑
i

∫
· · ·

∫
ψ∗ (x1, ...,σn) Â

(
xi , yi , zi

)
ψ (x1, ...,σn)dτ1...dτn

=
∫ ∫ ∫

Â
(
x, y, z

)
ρ

(
x, y, z

)
dxdydz. (2.24)

where

ρ
(
x, y, z

)= n
∫

· · ·
∫
ψ∗ (x1, ...,σn)ψ (x1, ...,σn)dτ1...dτn (2.25)
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is the probability of finding an electron in the volume dxdydz around the point
(
x, y, z

)
and

where dτi = dxi dyi dzi dσi is used for the integration over the spatial coordinates xi , yi and zi ,

and the summation over the spin coordinate σi .

This formalism is useful since it only requires the knowledge of the electron density and not

of the wavefunction itself. It however wasn’t thought to work in this form for the case of

more-than-one-electron operators, the Hamiltonian operator being one of them. In 1964,

Hohenberg and Kohn presented a solution to this issue. First they showed that the ground-

state energy, as well as all other ground-state properties, could be expressed as a function of

the ground state electron density:

E = E
[
ρ
]

(2.26)

where the use of square brackets is the standard notation to denote the integral involving

ρ
(
x, y, z

)
. They then showed that Eq. 2.26 is variational, i.e.

E0 = E
[
ρ0

]≤ E
[
ρ
]

(2.27)

where E0 and ρ0 denote the ground-state energy and electron density and ρ denotes any trial

electron density.

The main issue with the first Hohenberg-Kohn theorem (Eq. 2.26 is that it is simply an existense

theorem. Though they rigorously proved that it is possible to express the ground-state energy

as a functional of the electronic density, the exact functional needed is not known. The Kohn-

Sham formalism attempts to solve this issue by introducing an artificial reference system of

non-interacting electrons yielding the exact same electron density as the fully interacting

system. The electronic energy can then be partitioned into four contributions:

Eelectronic
[
ρ
]= TS

[
ρ
]+V

[
ρ
]+ J

[
ρ
]+Exc

[
ρ
]

(2.28)

where T
[
ρ
]

is the kinetic energy of the non-interacting reference system, V
[
ρ
]

the interaction

energy with the potential created by the nuclei, J
[
ρ
]

the Coulomb interactions of the electrons

and Exc
[
ρ
]

is the exchange-correlation effects of the system, i.e. it contains all the non-

classical electron-electron interactions as well as the difference in kinetic energy between the

non- and fully-interacting systems.

The Local Density Approximation

The Local Density Approximation (LDA) is historically and often practically the most important

type of approximation for the exchange-correlation energy. Systems of interest such as atoms,

molecules or solid are simultaneously inhomogeneous (the electric field produced by the

nuclei is not spatially homogeneous) and interacting (the electrons interact with each other

through Coulomb interactions). In order to simplify the problem, LDA splits it into two simpler

though non trivial problems: one non-interacting inhomogeneous (TS
[
ρ
]
, V

[
ρ
]

and J
[
ρ
]
)
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and the other interacting homogeneous Exc
[
ρ
]
. The exchange-correlation term can be split

into an exchange and a correlation term: Exc = Ex +Ec. The derivation of the exchange part is

straightforward. The per volume exchange energy for an homogeneous electron gas is known

exactly as

E hom
x

(
ρ
)=−3q2

4

(
3

π

)1/3

ρ
4/3 . (2.29)

The total exchange energy for the system is therefore

E LDA
x

[
ρ
]=−3q2

4

(
3

π

)1/3
∫ ∫ ∫

ρ
(
x, y, z

)
dxdydz. (2.30)

The derivation of the correlation energy is however more problematic as the correlation energy

for a homogeneous electron gas is not known exactly. Early approximations of E hom
c (n) derived

from perturbation theory have now been replace by more modern version parametrized using

data obtained using Quantum Monte Carlo methods. The final expression becomes

Exc
[
ρ
]≈ E LDA

xc

[
ρ
]= ∫ ∫ ∫

E hom
xc

(
ρ
)

dxdydz

∣∣∣∣
ρ→ρ(x,y,z)

=
∫ ∫ ∫

E hom
xc

(
ρ

(
x, y, z

))
dxdydz

(2.31)

where E hom
xc = E hom

x +E hom
c . This approximation has proven to be effective even for system

quite different from the reference system that is the homogeneous electron gas. Partial

explanation for the success of LDA is a systematic error cancellation between the LDA’s

tendency to underestimate Ec and overestimate Ex. This systematic error cancellation results

in unexpectedly good Exc values.

The Generalised Gradient Approximation

Within the LDA, one assumes a locally homogeneous electron density for every point in

space. Real systems are however inhomogeneous. It can be easily seen that including

information about the gradient of the electron density can be useful. A first attempt at

it, the Gradient-Expansion Approximation (GEA) applied gradient-corrections of the form∣∣∇ρ (
x, y, z

)∣∣, ∣∣∇ρ (
x, y, z

)∣∣2, ∇2ρ
(
x, y, z

)
, etc. to LDA. However, this type of correction almost

never improved on the LDA and often worsens it. Following these trials, it was realized

that more general function of ρ
(
x, y, z

)
and ∇ρ (

x, y, z
)

could be used instead of the power-

series-like GEA. This new approach, known as Generalised Gradient Approximation (GGA),

introduces functionals of the general form

E GGA
xc

[
ρ
]= ∫

f
(
ρ

(
x, y, z

)
, ∇ρ (

x, y, z
))

dxdydz. (2.32)

Unlike different LDA functionals where the difference resides in the way of parametrizing

a similar expression E hom
xc

(
ρ
)
, GGA functionals differs in the method used to construct the

20



function f
(
ρ, ∇ρ)

. In general, GGA improves on LDA, particularly in the description of all

main types of chemical bonds.

Bloch’s theorem

Previous sections have introduced the basic concepts of DFT to describe systems of atoms

in term of single electron wavefunctions. When considering solid phases, the number of

electrons is infinite. The need for a new representation of the problem is therefore needed. In

1929, Bloch provided a solution to the issue. He stated that in a periodic potential

V (r ) =V (r +L) (2.33)

where L is the lattice vector, the electronic wavefunction can be expressed as the product of a

cell-periodic part and a wave-like part

ψk (r ) = e i k·r f (r ) . (2.34)

Bloch’s theorem transform the problem of an infinite number of electrons into expressing

a single-electron wavefunction in term of an infinite number of reciprocal space vectors, k,

within the first Brioullin zone of the crystal.

Since f is periodic, it can be expanded in term of a Fourier series

f (r ) =
∑
G

cG e iG·r (2.35)

where G are the reciprocal lattice vectors defined by G ·L = 2πm, where m is an integer, and

cG are the plane wave expansion coefficients. Though the number of plane-wave needed is

infinite, truncation of the series for plane-waves with higher energies is possible since their

coefficients are typically much smaller. The one-electron wavefunction can be written as

ψk (r ) =
∑
G

ck+G e i (k+G)·r . (2.36)

Despite having traded an infinity of electrons for an infinity of reciprocal lattice vectors k, the

wavefunction is stable for close values of k. This means that only a finite number of k-points

need to be used to sample the Brioullin zone.

The use of plane waves is also possible in the density functional theory framework. Starting

from the Kohn-Sham equation[
− ~

2m
∇2 +V (r )+ J (r )+Vxc (r )

]
ψ (r ) = εψ (r ) (2.37)
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The Fourier transform of the potentials V , J and Vxc, give

F (G) =
∫

S

1

ν
e−iG·r F (r ) d3r (2.38)

where G is the reciprocal lattice vector, ν the unit cell volume and F is one of V , J and Vxc and

the integral is done over the whole unit cell.

Substituting Eq. 2.36 and the inverse Fourier transform F (r ) =∑
G F (G)e iG·r into Eq. 2.37 gives

∑
G ′

ck+G ′

[( ~
2m

|k +G|2 −ε
)

e i(k+G ′)·r +∑
G ′′

(
V

(
G ′′)+ J

(
G ′′)+Vxc

(
G ′′))e i(k+G ′+G ′′)·r

]
= 0. (2.39)

By multiplying Eq. 2.39 by 1/νe−i (k+G)·r and integrating over r , one obtains

1

ν

∑
G ′

ck+G ′

∫ [( ~
2m

|k +G|2 −ε
)

e i(G ′−G)·r +∑
G ′′

(
V

(
G ′′)+ J

(
G ′′)+Vxc

(
G ′′))e i(G ′+G ′′−G )·r

]
d3r = 0.

(2.40)

Eq. 2.40 can further be simplified by taking advantage of
∫

e i k·r d3r ≡ δq,0:

∑
G ′

ck+G ′

[( ~
2m

|k +G|2 −ε
)
δG ,G ′ +∑

G ′′

(
V

(
G ′′)+ J

(
G ′′)+Vxc

(
G ′′))δG ′′,G−G ′

]
= 0

∑
G ′

ck+G ′

[( ~
2m

|k +G|2 −ε
)
δG ,G ′ +V

(
G −G ′)+ J

(
G −G ′)+Vxc

(
G −G ′)]= 0 (2.41)

Finally, from Eq. 2.41, one obtains the Kohn-Sham equation in the reciprocal space:

∑
G ′

[ ~
2m

|k +G|2δG ,G ′ +V
(
G −G ′)+ J

(
G −G ′)+Vxc

(
G −G ′)]ck+G ′ = ck+Gε (2.42)

Force-Field based Molecular Dynamics

Despite the progress made to speed up DFT-based MD by means of the Car-Parrinello ap-

proach [89] and the more recent wavefunction extrapolation methods [90], DFT-MD simula-

tions of medium to large molecular systems (100-500 atoms) are still limited to the ps time

scale. For this reason, DFT-MD is poorly suited for the calculation of slow thermodynamics

properties such as ionic conductivity in solid-state electrolytes at lower temperatures or in

larger supercells. To overcome these difficulties, first-principle techniques need to be comple-

mented by more approximate but more efficient approaches based on model Hamiltonians.

Among these, force-field based MD (FFMD) is certainly one of the most successful methods for

the calculation of long trajectories (µs-ms time scales) and the sampling of the configuration

space. As such, it is of particular interest for the purpose of this work, namely the evaluation

of the ionic diffusion coefficients in solid-state electrolytes.
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FFMD methods were first introduced by Alder and Wainwright [91] in 1957 for the modeling

of the phase transition of hard spheres. Although the core concepts remains essentially un-

changed, the force-field Hamiltonians and their parameterization have improved substantially

in the last decades, turning FF-MD into the method of choice in the simulation of chemical

inert molecular and solid state systems.

The FF Hamiltonian is generally composed of several two- (Coulomb and van der Waals

interactions, bonds), three- (angles) and four-body terms (dihedrals) of immediate physical

meaning. When considering inorganic solids, the common practice has been to consider all

atoms in their fixed ionic state and to describe the energy of the system by means of purely non-

bonded potentials, i.e. long-range Coulomb and short range van der Waals interactions. This

work also considers the polarization of the anions through an extra term in the Hamiltonian.

HFF = HCoulomb +HVdW +HPol (2.43)

Short range van der Waals potentials

A first approximation of the short range van der Walls interactions was proposed by Jones in

1924 [92]:

VLJ
(
ri j

)= 4ε

[(
σ

ri j

)12

−
(
σ

ri j

)6]
= ε

[(
rm

ri j

)12

−2

(
rm

ri j

)6]
, (2.44)

where ri j is the distance between the considered particles i and j , ε is the depth of the

potential, σ the finite distance at which the potential is equal to zero and rm is the distance

at which the potential reaches its minimum value. However since rm and σ are connected

through r 6
m = 2σ6, this potential lacks some flexibility. To account for this Buckingham

proposed in 1938 an improved and more flexible version of the potential in which the r 12

repulsive term is replaced by a decaying exponential term [93].

VBuck
(
ri j

)= ε( 6

α−6
e
α

(
1− ri j

rm

)
− α

α−6

(
rm

ri j

)6)
(2.45)

where ε and rm still control the depth and minimum energy distance andα is a third parameter

introduced by Buckingham to control the steepness of the potential around the minimum

energy distance. Eq. 2.45 can be rewritten using the following relations

A = 6ε

α−6
eα, ρ = rm

α
and C = αε

α−6
r 6

m (2.46)
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to yield a simplified form of the Buckingham potential

VBuck
(
ri j

)= Ae−
ri j
ρ − C

r 6
i j

. (2.47)

This second form allows more flexibility in the parametrization of the potential by decoupling

its repulsive and attractive parts and has been preferred in the past.

Polarizability

Polarizability is integrated into the FF Hamiltonian by using the core-shell model introduced in

1958 by Dick and Overhauser [94]. Observing that previous studies had demonstrated that the

polarizability of ions were mostly due to the electrons of the outermost shells, the one in the

inner shells being tightly bound to the nucleus, they proposed to model the ions using a shell

of n valence electrons and a core consisting of the nucleus and the remaining core electrons.

Exposed to an electric field, the system becomes polarized through the displacement of the

shell with respect to the position of the core. To ensure the polarizability is finite, an harmonic

potential with spring constant k acts between the shell and the core. A representation of the

core-shell model is proposed in Fig. 2.1. The polarizability of such a system can easily be

related to its parameters n and k using the basic definitions of polarizability, of the Coulomb

force and of the restoring force of a harmonic potential:

Figure 2.1 – Schematic representation of the core-shell model. The shell is trapped in a
harmonic potential centered on the core of the atom.

p =αE , E = FE

q
and Fk =−kx (2.48)

where E is an electric field,α is the polarizability of the system and p is electric dipole produced

by the field in the system, FE is the force applied by an electric field on a charge q , and Fk is
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the force resulting of the harmonic potential with spring constant k for a displacement x.

If the coordinates of the nucleus is considered as the origin of the coordinate system, the

dipole describing the core-shell system is equal to pcs = x (ne), where e is the charge of an

electron. At equilibrium, the force resulting of the shell interaction with the electric field and

the one resulting of the displacement of the shell must cancel each other

|FE | = E(ne) = kx = |Fk | (2.49)

by substituting in the system dipole and polarizability, the equation becomes

x(ne)2

α
= kx (2.50)

that can be reduced to

α= (ne)2

k
(2.51)

This equality gives an opportunity to parametrize the core-shell model, assuming that the

polarizability of the ion is known. By considering the charge of the shell as a parameter, we

can express the spring constant as a function of said charge and polarizability.

k (n) = (ne)2

α
(2.52)

Although the core-shell model dates, its usage was for a long limited by its computational cost

as it dramatically increases the number of particles in the system. Initial implementations

were based on the self-consistent optimization of the position of massless shells between each

integration step of the dynamics. To improve the performance of the model, the dynamics

of the shells were later integrated to the the system by borrowing some mass from the cores.

This method however requires smaller integration steps for the dynamics as the shells mass

remains extremely small and therefore prone to large integration error.

Measuring Diffusion

Conductivity

The conductivity, σa , of a system is related to the mobility of its charge carrier λa by

σa = Na qa λa (2.53)

where Na and qa are the number of carriers and their charge. This applies as much for electrical

conductors than for the ionic ones. Though the conductivity can be observed experimentally

using impedance spectroscopy, there is no easy way to derive ionic conductivity directly from
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molecular dynamics simulations. The Nernst-Einstein equation provides a solution to this

problem by connecting the ionic mobility of the charge carrier to its diffusion coefficient, Da ,

λa

Da
= qa

kBT
(2.54)

Eq. 2.54 can be derived by considering a system "blocked" between two electrodes with an

electric potential φ applied to it. As a result of the potential, the charge carriers will experience

a force that will push them to accumulate in the region of low potential. An equilibrium state

will be reached when the diffusional flow following the carrier concentration gradient cancels

out the flow resulting of the potential.

D I
a
∂Ca (x)

∂x
=−Ca (x) λa

∂φ

∂x
(2.55)

where D I
a is the intrinsic diffusion coefficient of the carrier and Ca is the fraction of sites

occupied. For simplicity, it will be assumed that D I
a and λa are constants. It follows that

D I
a = Da , where Da is the self-diffusion coefficient of the carrier. Integrating Eq. 2.55 gives

Ca = K e
−λaφ

Da (2.56)

Eq. 2.56 can be compared to the well known prediction of the Maxwell-Boltzmann distribution

Ca = K e
−qaφ
kBT . (2.57)

Equating the members in the exponential lead to the Nernst-Einstein equation

λa

Da
= qa

kBT
(2.58)

McKee [95] showed how the exact same result can be found when removing the assumption

that D I
a and λa are constants. The ionic conductivity can be directly linked to the diffusion

coefficient by combining Eq. 2.54 and 2.53

σ= Na q2
aDa

kBT
= na z2F 2Da

RT
(2.59)

More generally, to remove the dependency on the sample size, the molar number of carriers

na is replaced by its concentration, ca in the system yielding

σ= ca z2F 2Da

RT
(2.60)
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Diffusion coefficient

It was shown in the previous part that the conductivity of a system could be expressed as a

function of the self-diffusion coefficient of the charge carrier. It remains to show how that

quantity can be expressed from a molecular dynamics trajectory. The self-diffusion coefficients

can be obtained through one of two equivalent ways.

The first one uses the Green-Kubo relations to give an exact mathematical expression of the

diffusion coefficient D in term of an integral of the velocity autocorrelation function

D = 1

d

∫ ∞

0
〈v (t0)v (t0 + t )〉t0

dt (2.61)

where d is the dimensionality of the system.

The second approach uses the displacement of the particles rather than their velocities:

r (t )− r (t0) =
∫ t

t0

v
(
t ′

)
dt ′. (2.62)

The square of the displacement is therefore equal to

(r (t )− r (t0))2 =
∫ t

t0

∫ t

t0

v
(
t ′′

)
v
(
t ′

)
dt ′′dt ′. (2.63)

By taking an ensemble average, substituting t ′′ = t ′+ s and integrating over t ′, one obtains:

〈
(r (t )− r (t0))2〉= 2

∫ t

0
(t − s)〈v (t0)v (t0 + s)〉t0

ds. (2.64)

By taking the derivative with respect to t , one finally recover the integral of the velocity

autocorrelation function:

∂

∂t

〈
(r (t )− r (t0))2〉= 2

∫ t

0
〈v (t0)v (t0 + s)〉t0

ds. (2.65)

Substituting Eq.2.65 back into Eq. 2.61, one obtains

D = 1

2d

∂

∂t

〈
(r (t )− r (t0))2〉 (2.66)

In the limit where t →∞, Eq. 2.66 is equivalent to the Einstein equation:

D = 1

2d

〈
(r (t )− r (t0))2

〉
t

(2.67)

When considering the self-diffusion of charged particles, as is the case with solid-state elec-

trolytes, two different perspective can be used to observe the displacements of the charge

carrier. In the first one, r (t ) refers to the individual positions of the particles at time t and
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the ensemble average is taken over all particles. In the second point of view, r (t ) represent

the position of the center of mass of the carrier and already contains the ensemble average

over all particles. The resulting diffusion coefficients are named tr acer and char g e diffusion

coefficients.

DTr = lim
t→∞

1

2d

〈
(ri (t0 + t )− ri (t0))2

〉
i ,t0

t
(2.68)

Dσ = lim
t→∞

1

2d

〈(〈ri (t0 + t )〉i −〈ri (t0)〉i
)2

〉
t0

t
(2.69)

where ri represent the position of the particle i and 〈· · · 〉X represents a mean over the quantity

X .

Activation energy

Although the previous chapters have shown that it is possible to compare the experimental

conductivity of materials to the one of their simulations, there is often a discrepancy in the

results. Another value that can provide valuable information is however the activation energy

of the diffusive process.

In chemistry, the rates of rate-limited thermally activated processes follow the Arrhenius law

k = A e
−Ea
kBT (2.70)

where k is the reaction rate, A is a reaction dependent pre-exponential factor and Ea is the

activation energy of the reaction. Since diffusion is also a rate-limited thermally activated

process, a similar equality can be observed for the diffusion coefficient where

D = D◦ e
−Ea
kBT (2.71)

Consequently, when plotting the logarithm of the diffusion coefficient against the inverse

temperature one should obtains a linear relation

logD = logD◦− Ea

kBln10

1

T
. (2.72)

The values of the activation energy of simulated system is often much more accurate than

the absolute values of the conductivity. It is therefore an interesting value to compute and

compare to experiment.
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3 Lithium dynamics in LLZO

Introduction

This chapter aims at deepening the understanding of the issues related to the use of classical

modelling in the description of the LLZO systems, and in particular of doped structures. The

physics of W-doped systems, with formula Li7 – 2xLa3Zr2 – xWxO12 is investigated, from both

a kinetic (barriers and conductivity) and thermodynamic (phase stability) standpoint. The

choice of the system was motivated by the experimental results provided by Li et al. [96], where

several dopant concentrations and temperatures were explored with a consistent synthesis

approach. The work mainly differs from previous analysis [68, 71, 74, 75, 76, 77, 78] by its focus.

The target is to resolve the effects on the dynamics resulting from the change in charge carrier

concentration and from the introduction of the doping agents. To this end, the comparison

between two doping models is made: (i) an implicit model using a uniform background charge

to compensate for the change in lithium ion concentration and (ii) an explicit model using

substitution of hypervalent ions. For the second model, an additional averaging over the

positions of the W ions is introduce to account for the frozen noise of the dopant distribution.

The results are also analyzed within the framework of spin glass theory. Results shows that

doping affects the conductivity both through a change of the charge carriers density and

an increased potential barrier for the hopping by the hypervalent dopants. The delicate

interplay between these two effects is what makes the physics of doped SSE very challenging

for experimental and theoretical studies alike. Doping also influences the thermodynamic

stability of the conductive cubic phase through entropic stabilization of the more disordered

cubic structure.

This chapter is adapted from the article [97] published in the journal Physical Review Materi-

als.

29



Chapter 3. Lithium dynamics in LLZO

Computational methods

Classical molecular dynamics was performed using long range Coulomb interactions, short

range Buckingham potentials of the form

U
(
Ri j

)= Ae−
Ri j
ρ − C

R6
i j

(3.1)

for all oxygen- and metal-oxygen pairs (i , j ) within a cutoff distance Ri j = 10Å, and a Dick–

Overhauser core–shell model [94], defined by a shell charge, Y , a shell mass, m, and a harmonic

constant k, to describe the polarization of the O atoms, as implemented in the LAMMPS [98]

code for molecular dynamics simulations. The parameters for the polarization of the oxygen,

i.e. the core-shell charge splitting, Y , and spring constant, k were fitted to the atomic polariza-

tion computed in the crystal environment at density functional theory (DFT) level of theory.

The Buckingham parameters for the metal-oxygen pairs, Li – O, La – O and Zr – O, refined from

the one used by Klenk et al. [75], and the value of the unit charge q were optimized using a

fitting procedure based on first-principle data evaluated using DFT. The refinement of the

parameters was carried out using a gradient based minimization of the error on the forces and

energies as well as the correlation between the reference and computed forces, with the shells

position being updated between every optimization step. All reference DFT calculations were

carried out using the plane wave CPMD software package [99, 100]. The PBE functional and

norm-conserving Goedecker pseudopotentials [101] were used in conjunction with a cutoff

of 150 Ry. Only the repulsive part of the metal-oxygen pairs is considered with all other C

parameters being set to 0. The parameters for the W – O pair were obtained using the same

methodology by using random substitutions of Zr ions in LLZO trajectories. All parameters

used for this work are listed in Table 3.1. The error on the force as well as a comparison

between the equation of state of LLZO are displayed in Fig. 3.1 and 3.2.

Pair A (eV) ρ (Å) C (eVÅ6) Charge and shell
Li – O 461.30 0.3074 - q (e) = 0.962
La – O 4420.23 0.2980 -
Zr – O 1269.33 0.3499 - m(a.u.) = 0.2
W – O 1397.76 0.3549 - Y (e) =−2.75

O – O 22764.30 0.1490 27.63 k
(
eVÅ−2

)
= 30.2

Table 3.1 – Summary of the polarizable Buckingham force field used to investigate the dynam-
ics of LLZO.

All MD simulations were carried out in the isothermal-isobaric (NPT) and canonical (NVT)

ensembles, with an integration timestep of 0.25fs, using a 2× 2× 2 supercell. A colored

noise or generalized Langevin equation (GLE) thermostat for core-shell models [86, 87] was

used to control the temperature of the system. The choice of the thermostat was motivated

by non-negligible drifts observed in the energy when using the Nosé-Hoover thermostat

with hypervalent ions present in the structure. The colored noise thermostat maximizes
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Figure 3.1 – Comparison between the DFT and force-field forces on Li, La, Zr, and O evaluated
for the initial training set used for the parametrization of the force-field.

Figure 3.2 – Comparison between the reference DFT and force-field energies as a function of
the strain applied to the system.

the adiabatic separation of the dynamics of the lightweight shells from the one of the ions
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Chapter 3. Lithium dynamics in LLZO

while minimizing the impact on the shell dynamics. To account for a small energy transfer

to the shells and maintain a stable dynamics over long simulation times, a zero temperature

memory-less friction thermostat is coupled to the shells [86]. Fig. 3.3 shows that the use of

the colored-noise thermostat as described here has only a minimal impact on the dynamical

Figure 3.3 – Left Comparison between the NVE and NVT convergence of the charge and
tracer diffusion coefficient of the Li ion with respect to the time lag in the LLWZO system
with x = 0.15. Right The resulting Arhenius plots corresponding to the t−1 fits of the diffusion
coefficient show little to no effect on the activation energy by only slightly shifting the curve
up or down.

quantities of interest. In the case of the NPT simulations, a Berendsen barostat was used for

the pressure control with a damping parameter of 25ps. The phase diagrams (Fig. 3.6) were

computed using temperature increments of 120K from 200 to 1400K, in both directions. In

the temperature range where a phase transition took place, a finer sampling was performed

using temperature increments of 25K. At each temperature step, the system was equilibrated

for 250ps and statistics were collected over the subsequent 750ps of dynamics. For the

computation of the conductivity, the temperature was increased to the target temperature

over 250ps. After 250 more ps of equilibration, the positions were recorded every 0.1ps for a

duration of 4ns. Block-averaging analysis was used to estimate the error for all the quantities

computed along the trajectories. This technique relies on the division of the trajectory into
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long enough blocks, each block providing an independent estimate of the quantity of interest

(e.g. lattice parameter, diffusion coefficient). The final error is derived from the standard

error of the mean, reflecting the spread of the quantity measured throughout the different

blocks [102].

Doping is used to vary the concentration of charge carriers in the structure. Each substitution

introduces extra electrons/holes whose charges have to be compensated by the addition/re-

moval of the corresponding number of Li-ions. The substitution of W6+ ions for Zr4+ ones

is investigated here. To shed light on the origin of the observed changed in the material

properties and identify whether they are triggered by the presence of hypervalent cations or

by the change in carrier concentration, two models are compared: an implicit and an explicit

doping protocol. In the implicit model the concentration of the charge carrier is changed

without introducing the hypervalent cations. The extra charge is compensated by a positive

background charge or gellium which does not influence the atomic forces during the dynamics.

The explicit model incorporates the substitutions explicitely. Note that only the latter model

is able to capture, in an approximate way, the local changes of the lithium potential energy

surface due to the presence of the dopant. Comparison between the results of the two models

can shed light on the different static and dynamical aspects at play in the doping of the garnet

electrolytes.

The addition of a small fraction of dopants rises the issue of their distribution in the unit cell

considered. This is particularly important since the position of the dopants remains frozen

over the time of the simulations. This situation is reminiscent of the fixed disorder distribution

in spin-glasses [103]. To account for the disorder of the dopant distribution, in addition to the

block and time average, an additional average is introduced for all measured properties over a

set of structures with different dopant distributions. The expectation value of an observable J

therefore becomes

[〈J〉]av =
∑
ΓD

(∑
R

e−βEΓD (R)

ZΓD

JΓD (R)

)
·PΓD , (3.2)

where R is the collective array of the nuclear coordinates, and ZΓD is the partition function for

a given realization of the disorder ΓD, distributed with the propability PΓD . In the ergodic limit

and using the fact that the ΓD degrees of freedom are frozen

[〈J〉]av =
∑
ΓD

(
lim

t→∞
1

t

∫ t

0
JΓD

(
R(t ′)

)
dt ′

)
·PΓD . (3.3)

The Boltzmann probability PΓD is evaluated using a Monte-Carlo simulation in the ionic space

composition [104], according to which Zr and W atoms are swapped at an effective tempera-

ture of 1200K to mimic the dopant distribution at the usual sintering temperatures. Fig 3.4

presents the W – W radial distributions obtained for the Boltzmann distributed ionic configura-

tion evaluated at two different doping concentrations, x = 0.15 and 0.25. It is important to note

that the W – W pair distribution obtained from a random substitution of W ions for the Zr ones
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Chapter 3. Lithium dynamics in LLZO

would result in a distribution overlaping the original Zr – Zr pair distribution corresponding to

an undoped system. A depletion can be observed for the shortest distance pairs as a result of

the increased Coulomb repulsion between the hypervalent W6+ ions. For the later presented

results, when considering explicit doping, all reported properties are obtained averaging over

an ensemble of Boltzmann-weighted structures unless otherwise stated.

Figure 3.4 – Radial distributions of the Zr-Zr (red) and W-W (blue) pairs respectively in the
undoped and Boltzmann-distributed doped structures with doping fraction x = 0.15 (top) and
0.25 (bottom). The shortest distance pairs are absent at low doping concentration structure
due to the increased Coulomb repulsion between the hypervalent cations. Increasing the
concentration saturates the structure enough that the shortest distances are forced to be
occupied but longer distances remain favoured compared to the original bcc Zr structure. The
green curve represents the integral of the W-W radial distribution function.

Results

Structure analysis

In order to assess the quality of the polarizable force-field Hamiltonian and the effects intro-

duced by the use of the GLE thermostat, the simulation results are compared to experimental

measurements, namely X-Ray diffraction (XRD) and lattice parameters measurements. In

Fig. 3.5, XRD pattern computed for doped structures (x = 0.15) from NVT trajectories are

compared to the corresponding experimental values as reported by Li et al. [96]. The position

and amplitude of the peaks are well reproduced, despite a systematic shift. This is likely due to

differences in the lattice parameters and effective charges on the atoms. Nevertheless, these
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first results show that the overall structure of the crystal is conserved by the model and ensure

a good level of trust in the interpretation of the following simulations. Fig. 3.6 shows the

Figure 3.5 – XRD pattern of the Li6.7La3Zr1.85 W0.15O12 computed from the 300K trajectories
averaged over the dopant distribution. The pattern replicates the use of CuKα radiation with
2θ in the range of 10−80◦. For comparison the position and amplitude of the peaks reported
by Li et al. [96] for the same structure are displayed.

lattice parameters obtained from the NPT simulations. In the case of the undoped system two

different curves are presented, the first obtained from a heating process from 200K upwards

and the second from a cooling one from 1400K downwards. The transition from the cubic

to the tetragonal phase can clearly be observed between 800 and 900K and is characterized

by a small hysteresis. The difference between the two transition temperatures is however

smaller than the temperature step used. Most importantly, in the case of the doped structures,

both the implicit and explicit doping models at x = 0.15 are able to describe the stabilization

of the cubic structure at low temperature. This suggests that the stabilization of the cubic

phase induced by doping is a result of the change in the lithium concentration rather than

of electrostatic effects induced by the presence of the dopant itself. This is in agreement

with previous studies on the subject [78]. The model predicts quantitatively the experimental

split between the lattice parameters despite a systematic shift towards smaller values. The

discrepancy between the simulation and experimental measurement (as well as previously

reported simulations [75, 76]) may be associated with the different force-field parametrization

and with the use of the colored noise thermostat in the simulations.

Fig. 3.7 shows the radial distribution functions for the Zr-Li and W-Li pairs at various tempera-

tures and their integrals for a doping of x = 0.15. The first coordination shell is well defined
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Figure 3.6 – Lattice parameters as a function of the temperature for an undoped structure
(green and purple) and doped (blue implicit and red explicit) with a doping fraction x = 0.15.
The brown circles are experimental values reported by Larraz et al. [69]. The brown squares
are the same experimental values shifted as to align the cubic lattice parameters. The phase
transition can be observed between 800 and 900K for the undoped structure with a small
hysteresis. Both doped models succesfully stabilize the cubic structure at low temperature.

and located at the distance corresponding to the nearest two octahedral sites, respectively

2.94 and 3.13Å. Around Zr centers, no further coordination shell is well resolved indicating a

liquid like behavior or the ions. Around the W centers, the lithium density located beyond the

first shell is pushed back by the higher coulombic repulsion and forms a second shell near

the next-nearest octahedral sites at a distance of 4.7Å. Fig. 3.8 shows the lithium distribution

around a Zr and W center sampled during 8ns of simulation. The changes observed in Fig 3.7

are reflected here in the depletion of the lithium at the tetrahedral sites, cutting the lithium

density into six blobs centered around the octahedral sites.

Dynamics and diffusion analysis

Velocity autocorrelation functions are valuable sources of insight for characterization of the

dynamics of a system. The single-particle velocity autocorrelation of the lithium ions is first

considered. It is defined as

C Li
v (t ) = [〈vi (t0 + t )vi (t0)〉i ,t0

]
av (3.4)
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Figure 3.7 – a) Radial distribution function of the Li-M pairs, M = W (solid) and Zr (dotted) for
x = 0.150 at temperatures between 300 and 500K. The vertical lines indicate the distances to
the neighboring octahedreal, 96h, (dash-dotted) and tetrahedral, 24d , (solid) crystallographic
sites. b Integral of the radial distribution functions presented in a.

where vi (t ) is the velocity of a tagged lithium i at time t and brackets 〈·〉X are used to represent

the averaging over the variable X . Note that by ergodicity the average over the initial time, t0,

is equivalent to an ensemble average over initial configurations. Although the autocorrelation

function displays a very fast decay, order of a few picoseconds, typical of liquid systems [105]

and other fast ionic conductors [106], the diffusive process is reflected in the long time tails.

The velocity autocorrelation functions in the garnet material follow a power law decay of the

form τ−a . In the considered simulations, a value of a = 2 is obtained for the undoped cubic

structure and the explicitely doped material, and a = 3 for the implicitely doped one. This

difference in the kinetics between the explicit and implicit model can be explained by the

introduction of the hypervalent W6+ cations in the explicit models introducing new obstacles

constraining the motion of the charge carriers, since the decrease of the carrier concentration

is identical. These observation are in line with the effect of the W centers on the lithium

distribution in Fig. 3.7 and 3.8. The Fourier transform of C Li
v (t), i.e. the Li power spectrum,

C Li(ω), shows two very broad peaks at frequencies of 130 and 270 cm−1 for the explicitly doped

system. The peaks can be connected to the presence of the two nonequivalent lithium sites in

the structure (see Fig. 1.6).

Central to the analysis of the dynamical effects of doping is the calculation and comparison

of the diffusion coefficients. To this end the behaviors of the charge, Dσ, and tracer diffusion
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Figure 3.8 – Representation of the lithium distribution sampled during 8ns of simulations
around a central Zr (left) and W (right) ion. The lithiums are displayed in red when within
a 3.75Å distance of the central atom and blue otherwise. The sites of the crystallographic
structures are overlaid in orange. The figure illustrates the depletion in lithium density around
the tetrahedral sites already observed in Fig. 3.7 (r = 3.6Å).

coefficients, DTr are compared. Both quantities can be estimated by the derivative of the

long time limit of the mean-squared displacements of, respectively, the center of mass of the

particles and the particles,

Dσ =
[

lim
t→∞

NLi

6

∂

∂t

〈|〈xi (t0 + t )〉i −〈xi (t0)〉i |2
〉

t0

]
av

(3.5)

DTr =
[

lim
t→∞

1

6

∂

∂t

〈|xi (t0 + t )−xi (t0)|2〉i ,t0

]
av

(3.6)

with NLi the number of Li ions in the simulation cell and xi (t ) the position of the Li ion i at time

t . In particular, Dσ is directly proportional to the ionic conductivity [106]. The polynomial

decay of the velocity autocorrelation function leads to a slow-down of the convergence of both

the charge and particles mean square displacements used in the evaluation of the transport

coefficients. The derivative of the mean square displacement can successfully be fitted to a

D∞+ ct−(a−1) function that can be used to evaluate the asymptotic values of the diffusion

coefficients.

When performing explicit doping, large variations of the measured diffusion coefficients can

be observed as a function of the dopant distribution. This effect is particularly strong at low

temperatures. The convergence of the diffusion coefficient as a function of the dopant distribu-

tion is evaluated in the following way. Starting from an ensemble of 50 Boltzmann distributed

dopant configurations, 50 independent trajectories were simulated and the corresponding

charge diffusion coefficients, Dσ,i with i = 1, . . . 50 (using Eq. 3.5) computed. The average over

these values is taken as the reference diffusion coefficient Dσ,∞ = 〈
Dσ,i

〉
i . To estimate the
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Figure 3.9 – Relative error of Dσ,n , the estimator of the charge diffusion coefficient using
a subset of n structures of formula Li6.5La3Zr1.75 W0.25O12, with respect to Dσ,50, used as an
estimate of Dσ,∞ at 300, 400 and 500K.

convergence as a function of the number of dopant configurations k, the diffusion coefficients

within Nk subsets of trajectories were averaged: D (2)
σ,I to D (49)

σ,I , where D (k)
σ,I , with I = 1, . . . Nk ,

is an average diffusion coefficient computed using k trajectories sampled from the initial

pool of 50 trajectories. Since the number of possible combinations grows extremely fast as(50
k

) = 50!
k !(50−k)! , a cutoff is applied to Nk (Nk ≤ 10000). The relative error for the estimated

diffusion coefficients (as compared to Dσ,∞) is then defined as Z (k)
I = |D (k)

σ,I −Dσ,∞|/Dσ,∞. The

corresponding mean values, Z (k) = 〈Z (k)
I 〉I , and standard deviations of Z (k)

I as a function of k

are reported in Fig. 3.9. For these values to be meaningful, the error measured as the result of

the dopant distribution, the configurational noise, must be independent and discernible from

the error in the convergence of the simulations, the sampling noise. The sampling noise, which

is the only on that needs to be considered in simulations of undoped materials [107, 102, 108]

and in the implicit model, can be numerically estimated using block analysis [102] and is

expected to decay with the simulation time T as 1p
T

. In the case of the doped structures used

here, the sampling error can be estimated by averaging the sampling error on the diffusion

coefficient of each trajectory over all dopant distribution

σSAMP
tlag

≡
[
σSAMP

tlag,ΓD

]
av

. (3.7)

The configurational noise on the other hand, is the average error of the diffusion coefficient,
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Dσ,i , with respect to the reference diffusion coefficient, Dσ,∞,

σDOP
tlag

= [∣∣Dσ,ΓD −Dσ,∞
∣∣]

av . (3.8)

Fig. 3.10 shows a comparison between the configurational noise and the sampling noise

Figure 3.10 – Log-log plot of the configurational noise, σDOP
tlag

(T ), and of the sampling noises

estimations, σSAMP
tlag

(T ) as a function of the simulation time T and for a lag time, tlag, of 22.5ps.

A linear decay of the sampling noise can be observed, compatible with the theoretical T −1/2

behavior. The stabilization of the estimator of the configurational noise at a much higher
value shows that the simulations time T is large enough to guarantee σSAMP

tlag
(T ) ¿σDOP

tlag
.

as a function of the simulation time T with a fixed time lag, tlag. It can be observed that

the simulation has reached a regime where the sampling noise decays linearly. This regime

correspond to the expected theoretical T −1/2 behavior. On the other hand, the configurational

noise, σDOP
tlag

, has reached a plateau for the longer simulation time with σSAMP
tlag

(T ) ¿ σDOP
tlag

.

Under these conditions, it is possible to estimate the configurational spread and clearly

distinguish between configurational and sampling noise. These results clearly suggest that,

from a statistical perspective, the average over the different dopant configurations is indeed

needed in order to fully converge the results and to compare them with experiments.
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Diffusion coefficients

Figure 3.11 – Tracer (solid) and charge (dashed) diffusion coefficients for doping concentra-
tions x = 0.15 (left) and x = 0.25 (right). Simulations considering explicit and implicit doping
are reported and compared with ones of the cubic undoped structure. Activation energies are
reported in the text.

The diffusion coefficients obtained after averaging over the dopant distributions at 300, 350,

400, 450 and 500K are summarized in Fig. 3.11. At all temperatures the results are compatible

with a linear Arrhenius behavior. For comparison, the values obtained for the undoped

material constrained in the cubic geometry are also shown as a reference (green lines). The

tracer diffusion coefficients, DTr, are first considered (solid lines in Fig. 3.11). The activation

energy is estimated to be around 0.16eV. However, since this structure is unstable at room

temperature, it can only be compared with values extrapolated from higher temperature

(900− 1400K) measurements. The results are in good agreement with the corresponding

experimental activation energy estimated to be about 0.18eV [70]. In the implicit scheme the

values of the activation energies decrease compared to the undoped case to 0.13 (x = 0.15)

and 0.08eV (x = 0.25). The decrease in the number of charge carriers also correlates with an

increase in the overall conductivity. This is most likely due to the increased number of empty

sites allowing greater mobility of the ions. When considering the explicit model, the activation

energies increase to 0.20 and 0.25eV respectively, with an overall decrease in conductivity.

This is coherent with the picture emerging from Fig. 3.7 and 3.8 where the hypervalent W ions

displace some of the Li density around them creating obstacles to the diffusion. Compared to

the experimental values of 0.44 and 0.42eV reported by Li et al. [96], although the activation

energy is underestimated, the model correctly yields a qualitative increase in the activation

energy to values similar to those expected for Ta doping [109]. Similar observations can be
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made for the charge diffusion coefficients (dashed line in Fig. 3.11).

The ratio between the tracer and charge diffusion coefficients is named Haven ratio and

provides information about the motion of carriers in the system [110, 111, 106, 112] . A

Haven ratio, H , of 1 corresponds to uncorrelated Brownian motion, whereas lower values

are an indication of coherent collective movements. Furthermore, a constant temperature

Haven ratio implies an equality between the activation energies related to tracer diffusion and

ionic conductivity. In LLZWO, a similar behavior to that of the thio-lisicon-type electrolyte

Li10GeP2S12 [106] is observed, displaying comparable activation energies. In the case of the

undoped systems, H ∼ 0.3 is observed, a value compatible with other recent simulation

results [76, 112]. The same value is obtained for the Haven ratio of the implicitly and explicitly

doped system. As discussed in Ref. [112] using nudged elastic bands (NEB) calculations,

there is an understanding that diffusion events involving the simultaneous movement of

different particles are much more favorable than single ion jumps. A similar conclusion can

be reached considering the low value of the Haven ratio, which proves that the most probable,

and therefore energetically favored, diffusion events involve a coherent particle motion. These

result suggests that the same conclusion applies in the case of doped systems and therefore

we can conclude that the local defects introduced by the dopant are not strong enough to

decorrelate particle motion, even though they are able to change the energetics of the overall

process. Only in the unphysical case of the implicit doping model can a slight decrease of H

and a small temperature dependence of the Haven ratio be found, however neither of these

observation change the overall interpretative picture.

Site occupancy auto-correlation function

Finally, in order to shed further light on the mechanism and dynamics of the Li diffusion in

doped and undoped LLZO structures, the correlation of the occupancy of the Li sites described

in Fig. 1.6 is also investigated. To this end, the set of binary variables σI (τ) associated with the

occupation of a given site I at time τ (−1 when unoccupied and 1 when occupied) is mapped

to the spin variables of an Ising model (down and up). The autocorrelation function is then

averaged over the different realizations of the dopant distribution, as done in spin glass theory.

For a single realization, the autocorrelation function is defined as

Cσ (t ) = 〈〈σI (t0)σI (t0 + t )〉t0
−〈σI (t0)〉2

t0

〉
I

(3.9)

where σI (τ) is, as previously defined, the instantaneous occupancy of the site I with value in

{−1,1} and 〈σI (t0)〉t0
corresponds to the time averaged occupancy of the site I and defines the

initial departure from 1 at t = 0.

The calculation of the site occupancies was done using the following algorithm. The tetrahe-

dral sites are first defined as the center of mass of the four oxygen atoms coordinating the sites.

Each Li-ion is then assigned to either a single or a pair of tetrahedral sites using a distance

cutoff of 3.1 Å. The ions assigned to pairs correspond to the ones occupying an Li3 octahedral
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site located between the two considered tetrahedral sites 1

At t = 0, the auto-correlation function is equal to

Cσ (0) = 〈
1−〈σI (t0)〉2

t0

〉
I

(3.10)

It is to be noted that this site occupancy does not correspond to the one reported in crys-

tallographic measurements since (i) the occupancy of an empty site is set to −1 rather than

to 0 and (ii) the number of crystallographic sites does not match the one resulting from the

assignment methods where octahedral sites are degenerate.

In Fig. 3.12 is reported the disorder-averaged autocorrelation curves [Cσ (t )]av computed for

the undoped model, the implicit doping model with x = 0.15 and the explicit doping model

with different doping fractions (x = 0.15 and 0.25) at three temperatures: 300, 400 and 500K.

The curves are presented averaged over all sites (global) and resolved into partial-averages

over tetrahedral and octahedral sites.

The autocorrelation functions show two distinct decay processes. The first one is extremely

fast with a characteristic time of a few picoseconds and can be successfully fitted with a power

law decay that takes the autocorrelation function to a plateau c(t ) = qd . The second process is

much slower and fixes the time scale of the long time decay. This process shows a stronger

temperature dependence and is best fitted with an exponential decay, typical of an ergodic

diffusive behaviour [113]. The two regimes can be summarized as follows:

c (t ) ≈ qd + ca t−a for c (t ) > qd ,

c (t ) ≈ cβ e−βt for c (t ) < qd . (3.11)

The parameters of the fits for the first and second decays, a and β respectively, are given in

Table 3.2 and show interesting trends as a function of the dopant concentration.

Doping
fraction

a β / ps−1

300K 400K 500K 300K 400K 500K
x = 0 1.015 0.673 0.514 0.011 0.058 0.139
x = 0.15 1.403 1.139 0.960 0.006 0.031 0.102
x = 0.25 1.882 1.469 1.157 0.002 0.004 0.017
x = 0.15 0.861 0.744 0.647 0.020 0.047 0.116

Table 3.2 – Fitting of the autocorrelation function of the site occupancies (Fig. 3.12) according
to the model in Eq. 3.11. The first three lines report results for the explicit doping scheme,
while the last one refers to the implicit doping model.

The decay associated with the first process occurs on too fast a time-scale for it to be associated

1This method is not able to resolve the two individual octahedral sites. However, because of the close proximity
of the two sites, the probability of them both being occupied is extremely low. This shortcoming is therefore not an
issue.

43



Chapter 3. Lithium dynamics in LLZO

Figure 3.12 – Global and site-type resolved autocorrelation functions of the site occupancy
σi at 300K, 400K and 500K for the undoped (blue), x = 0.15 (orange) and x = 0.25 (green)
explicit doping, and x = 0.15 (red) implicit doping.

44



with the diffusive motion of the Li ions. It is better interpreted as the result of a fast non-

diffusive scattering of the lithium ions around the different sites. In the explicit doping model,

the increment of the dopant concentration correlates with an increase of the decay rate of

the first process. This accelerated decay of the site occupacy correlation is consistent with

increased scattering of the trapped lithium ions around the octahedral sites described in

Fig. 3.7 and 3.8. This interpretation is further supported by the fact that the change in carrier

concentration alone cannot account for the increased decay rate as the implicit model displays

an opposite trend. The second, exponential decay of the autocorrelation function is instead

related to the long scale diffusive process. Its dependence on doping concentration and

doping scheme is coherent with the behavior observed for the diffusion coefficient and ionic

conductivity as presented in Fig. 3.11. The implicit doping facilitates the long time diffusion

by decreasing the cluttering through lowering of the concentration of charge carriers, leading

to the faster decay of the autocorrelation function. Similarly to the first process, the trend

is reversed in the explicit model where the correlation time is increased by the presence of

the dopant hindering the diffusive process. These observations are coherent with the change

similarly observed in the velocity autocorrelation function.

Conclusion

The thermodynamic and kinetic properties of doped LLZO were investigated in this chapter

by means of molecular dynamics simulations based on an ab-initio parametrized polarizable

force-field.

The results show that the overall quality of the force-field description is particularly good at

characterizing both the thermodynamic and kinetic aspects of the diffusion process in LLZO.

This was achieved despite some discrepancies observed during the direct comparison of the

activation energies of the doped systems with experimental data [114, 96]. While experiments

point towards activation energies around 0.45eV, close to the activation energy of the undoped

tetragonal phase, values between 0.20 and 0.25eV are observed, closer to the high temperature

experimental activation energy of the cubic phase. However, a word of caution is always

needed when directly comparing simulations to experiments. In fact, while real materials

are composed by nanostructures arranged in a disordered array, the simulations deal with

perfectly periodic systems with no grain boundaries. In addition, the extraction of activation

energies from experimental data also requires the use of models and therefore it cannot be

unequivocally compared to the outcome of the simulations. The aim of this chapter is a

qualitative understanding of the different trends associated with the increase of the dopants

concentration, namely W ions and the isolation of the different contributions by means of

specific analysis tools and theoretical ‘experiments’, e.g. the use of explicit versus implicit

doping models. Despite the above mentioned discrepancies, the overall experimental trends

are confirmed by the simulations.

The first observation is the fact that the distribution of the W dopant atoms affects the effi-
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ciency of the charge transport process. For this reason, in addition to the canonical ensemble

average, it is critical to consider the use of an average over different realizations of the dopants

distribution using an approach derived from spin glass theory. Overall, the results lead to the

identification of two main effects induced by the introduction of the dopant, significantly

affecting the conductivity of LLZO. The first is of a thermodynamic nature and relates to

the stabilization of the conducting cubic phase at lower temperatures, which can clearly be

identified as an effect of the lowering of the concentration of the charge carriers exclusively.

The second, kinetic, is affected by both the change in the concentration of the carrier and the

local modification of the potential energy landscape felt by the Li ions. The first contribution

is isolated through the use of the implicit model, smearing the additional positive charge of

the dopant uniformly over the entire simulation box. The analysis of the conductivity reveals

a substantial decrease of the activation energy compared to the reference one, namely the

undoped structure. This shows that the decrease of the Li concentration induced by doping

results in the decongestion of the network of channels allowing a higher mobility of the Li. In

addition, when considering the nature of the defects induced by the hypervalent dopants (W

centers in the explicit model), the additional coulombic repulsion promotes further scattering

of the Li ions, causing an overall decrease of the conductivity and an increase of the activation

energy, similar to the proton trapping effect in hydrogen conductors [115, 116]. This is also

evident from the analysis of the Li ions distribution around the dopants, which shows a de-

pletion after the first coordination shell associated with the breaking of the Li "wire" (Fig. 3.7

and 3.8). Interestingly, the analysis of the autocorrelation functions of the site occupancies

(Fig. 3.12) confirms that the long term diffusive process slows down considerably as a result of

the scattering W centers whereas the short time oscillation between neighboring sites is in

general accelerated by the presence of the dopant.

In conclusion, the atomistic simulations reveal a very complex behavior of the LLZO conductiv-

ity as a function of the dopant concentration. While a quantitative description of the diffusion

process is probably still beyond the capabilities of the model, the approach is nonetheless

able to capture the different trends due to both temperature and dopant concentration. This

offers valuable insights into the interplay between thermodynamic phase stabilization and

kinetic slow down mechanisms happening in the doped systems.
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4 Molecular Dynamics based Force-
Field Parametrization

Introduction

The accuracy of any force-field based molecular dynamics simulation is completely reliant on

the quality of the parameters used in the force-field. The parametrization of these parameters

is therefore a critical first step to obtain reliable results. Initial efforts to parametrize force-

fields relied heavily on the use of experimental data [117, 118]. Such training not only relies

on molecular or crystal structure but also benefit from information about the curvature

of the potential energy surface around the equilibrium, information that can be provided

through various quantities such as the elastic constant, bulk moduli, piezoelectric constants

or phonon frequencies in solid-state structures. The development of first principle methods

and the lowering of their cost has then led to an increased amount of data being available

for the purpose of parametrization. Consequently force-matching algorithm [119] quickly

took advantage of this trove of data and took the spotlight. The use of computed references

provide an advantage as they not only increase the amount of reference data available for

fitting but also provide access to structures that have not yet been synthesized or characterized

experimentally.

The fitting of a force-field is based on the minimization of a cost function defined for the

system. The most commonly used form of cost function is the sum of square error on the

system observables:

C =
N∑
i
ωi |xi −Xi |2 (4.1)

where xi is an observable quantity, Xi is the respective reference value, ωi is the weight of

the contribution of observable xi and the sum is made over all observable quantities i in the

system. When fitting parameters to first principles data, the most commonly used observables

are the forces and the energy. One can isolate the different components of the loss function

47



Chapter 4. Molecular Dynamics based Force-Field Parametrization

based on the type of observable considered

C =ωF CF +ωE CE (4.2)

where ωF , ωE and CF , CE , are respectively the weights and loss functions relative to the atomic

forces and the system potential energy. Eq. 4.1 cannot always be used as such as direct

comparison between observable and reference is not always possible. When considering the

potential energy of a system, the relative values of the different configurations of the systems

are what matters and therefore only relative measurements can be compared. One way to do

so is to compare the difference in energy between the different structures used in the training

set. A normalization factor can also be introduced.

CE =
∑N

i , j

∣∣(εi −ε j
)− (

Ei −E j
)∣∣2∑N

i , j

∣∣Ei −E j
∣∣2 (4.3)

where εi and Ei are the force-field and reference first-principle energies derived for the struc-

ture i and the sum is done over all pairs of structures.

Alternatively, forces can be directly compared as they correspond to the derivative of the

potential with respect to the individual positions. A similar normalization factor can be

introduced to reduce the difference in amplitude between the different parts of the cost

function

CF =
∑N

i |fi −Fi |2∑N
i |Fi |2

(4.4)

Other measures of the fitness of the parameters can be used, such as the alignment of the

reference and calculated forces [120]. This can be measured by calculating the correlation

coefficient CC ,

CC =
∑

i fi ·Fi√∑
i |fi |2

√∑
i |Fi |2

(4.5)

where fi and Fi are the computed and reference forces on atom i .

Atomic polarization

A particular difficulty of the fitting a polarizable force-field to first principle data is the the

absence of correspondence between the shells of the core-shell model and any objects in the

reference first-principle structure. The exact position at which the shells should be located

is therefore initially unknown. Past attempts have initially tried to fit polarizable force-fields

while fixing the shells on top of the cores. These attemps have however resulted in potentials

tuned to minimize the polarization of the system by minimizing the shell displacements.

Current solution to the problem are to update the positions of the shell during the fit. Two

48



schemes have been used to this effect. The first one optimize the position of the shells before

each evaluation of the cost function. The second approach, named simultaneous fitting,

considers the coordinates of each shells extra parameters added to the optimization. The shell

position being optimized as the fitting procedure proceeds.

State-of-the-art methodologies

Two tools have come up as state-of-the-art for the derivation of forces fields: the General

Utility Lattice Program (GULP) and DFTFIT.

Developed in the group of Prof. J. Gale in Curtin University, the General Utility Lattice Program

(GULP) [121, 122, 123] is a tool used to perform a variety of types of simulation on molecules

and materials. GULP includes a wide range of potentials and the option to fit them to a variety

of observables, including energy, stress, forces and many other experimental properties.

Though GULP uses analytic derivatives of up to the second degree for the computation of

the forces and properties, the software relies on numerical derivatives for the optimization of

the force-field parameters. GULP fully support the use and training of core-shell model and

implements the simultaneous fitting of the force-field and shell positions.

DFTFIT is a python based fitting library leveraging Lammps to allow the fit of multiple poten-

tials using DFT training data. It offers an extensive set of single- and multi-objective functions,

inherited from its use of the nlopt[124] and pagmo[125] libraries. Despite the many positive

aspects and the flexibility of DFTFIT, the lack of support for polarizable force-fields, limits its

usefulness in this work.

Global optimization

Although GULP only present options for local optimization of the force-fields parameters,

DFTFIT also provides methods for the global optimization of the parameters through the

use of genetic algorithm also known as evolutionary algorithm. Evolutionary algorithm are

general-purpose stochastic methods that search for the global optimum of a function. They

are inspired by natural selection and evolution in biological systems. They mainly differ from

other optimization methods such as Simulated Annealing [126] by conserving a population of

solution to the problem rather than a single one.

Introduced in 1995 by Storn and Price [127], the Differential Evolution (DE) method is one such

algorithm. Similar to Genetic Algorithms [128], they demark themselves by using arithmetic

combination of individuals to generate new generations. The mutation operator of DE initially

favors the exploration of the solution space. As the evolution progress, it will shift towards

the exploitation of the favorable traits discovered. DE require little parameter tuning [129]

while exhibiting fast convergence [130]. It has been successfully applied to a wide range of

optimization problems and is generally considered reliable, accurate and robust.

49



Chapter 4. Molecular Dynamics based Force-Field Parametrization

The key idea of DE is for each parent xi (t ) of generation t , an offspring x ′
i (t ) is generated as

follow. Three individuals xi 1 (t ), xi 2 (t ) and xi 3 (t ) are randomly selected with i 1 6= i 2 6= i 3 6= i .

A random integer r ∈ {1, ..., Nd } is selected, with Nd the number of parameters or traits of an

individual. For each trait j = 1, ..., Nd , let

x ′
i , j (t ) =

xi 3, j (t )+F
(
xi 1, j (t )−xi 2, j (t )

)
, if U (0,1) < Pr or j = r

xi , j (t ) , otherwise
(4.6)

where xi , j (t ) and x ′
i , j (t ) represent the j -th paremeter of the offspring, F is a positive scaling

factor and Pr is the probability of reproduction. If the value of the loss function with the

offspring’s parameter is better than for the parent, the offspring replace the parent in the next

generation, otherwise the parent remains.

Though little tuning is required, control parameters, F and Pr , still have to be selected for each

problem and finding the optimal values can be time-consuming. To circumvent this issue,

Omran et al. proposed in 2005 a Self-adaptive version of DE (SDE or SADE) [131].

For the self-adaptive scheme the generation of the offspring is altered in two ways. First, Pr is

drawn from a normal distribution N (0.5,0.15). Second, the scaling factor is now inherited

from the parent generation.

x ′
i , j (t ) =

xi 3, j (t )+Fi (t )
(
xi 1, j (t )−xi 2, j (t )

)
, if U (0,1) <N (0.5,0.15) or j = r

xi , j (t ) , otherwise
(4.7)

where

Fi (t ) = Fi 4 (t )+N (0,0.5)(Fi 5 (t )−Fi 6 (t )) (4.8)

with i 4, i 5, i 6 randomly drawn from the parent generation. The scaling factor for the initial

population is again drawn from a normal distribution N (0.5,0.15).

Shells and global optimization

Although the use of genetic algorithm provides a opportunity to discover parameters sets

without the need to provide starting values, they create difficulties when dealing with the core

shell model.

The first approach described above relies on the continuous relaxation of the shell position

throughout the optimization process. However, in the case of genetic algorithm, two diffi-

culties are introduced here. Firstly, the whole parameter population need to have its shell

positions optimized, leading to the optimization of the shell positions for many "unfit" indi-

viduals. Secondly, there is no guarantee that the individuals will generate force-fields where

the shell positions can be optimized quickly.
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The second approach is not faring much better since adding the shell position as extra traits

on the individuals dramatically increase the complexity of the optimization problem.

To account for these issues, a new methodology is proposed to deal with the shells.

As the Buckingham potentials are traditionally applied to the shells, and not to the cores, the

only forces acting on the cores are the Coulombic forces and the harmonic force of the shell

fcore = fCoul + fk (4.9)

Rephrased, this means that the harmonic forces needed to minimize the errors on the cores

are known

fk = FDFT − fCoul (4.10)

The position of the shells can therefore be updated self-consistently to reduce the error on

the cores to the level of accuracy needed. Given that this position should be considered as

the optimal position for the shells, the goal is then to minimize the forces on the shells. This

method allows the position of the shells to be fixed at the start of the optimization and reduce

the complexity of the problem.

Local optimization and gradients

In the various fitting software packages available the gradients of the loss function is achieved

using the finite difference method to allow for more flexibility in term of the form of the force-

field and fitted observables. Although this method gives good approximate gradients and

allow for a good flexibility, the resulting gradients can be noisy. However, if the fit is restricted

to observables that can be derived from the energy and its first derivative, such as the forces or

stress, and to a finite set of potentials, it is fairly easy to derive the analytic gradient of the loss

function with respect to the various parameters at play.

Considering a force-field based on Coulomb interactions, on the interactions of Buckingham

pairs potentials and by the harmonic potentials of the core-shell model. The total potential

energy of a system described by this model is defined as the sum of the Coulomb, Buckingham

and harmonic potentials

U =UCoul
(
{ri } ,

{
qi

})
+UBuck

(
{ri } ,

{
AI J

}
,
{
ρI J

}
,
{
C I J

})
(4.11)

+UShell ({δri } , {ki })

where ri are the position of the atoms of the system and qi their charge, AI J , ρI J and C I J

are the parameters of the pair of atoms i and j of respective atomic types I and J , δri the

displacement of the shell i and ki is the spring constant for the core-shell pair i . The gradients

of the individual component can be considered with respect to the different parameters they

51



Chapter 4. Molecular Dynamics based Force-Field Parametrization

depend on. The Buckingham contribution, UBuck, is a function of the parameters of the

considered pairs. On the other hand the Coulomb potential and the shell potentials, UCoul

and UShell can be considered together.

Buckingham gradients

The Buckingham contribution to the total gradient is defined as

UBuck
(
{ri } ,

{
AI J

}
,
{
ρI J

}
,
{
C I J

})=∑
i , j

AI J e−
ri j /ρI J − C I J

r 6
i j

(4.12)

where AI J , ρI J and C I J are the parameters of the pair of atoms i and j of respective atomic

types I and J , and ri j is the inter atomic distance between the two atoms i and j . The forces,

the derivative of the energy with respect to the coordinates, are

fβ,i ,Buck =− ∂

∂βi
UBuck =

∑
j

βi AI J

ri j ρI J
e−

ri j /ρI J − 6βi C I J

r 8
i j

(4.13)

where βi is one of the cartesian coordinates x, y or z of atom i .

From there, the gradients of the energy and forces with respect to the parameters AX Y , ρX Y

and CX Y of the potential between two atoms of types X and Y are easily derived as

∂

∂AX Y
UBuck =

∑
i∈X , j∈Y

e−
ri j /ρX Y

∂

∂ρX Y
UBuck =

∑
i∈X , j∈Y

AX Y ri j

ρ2 e−
ri j /ρX Y (4.14)

∂

∂CX Y
UBuck =

∑
i∈X , j∈Y

− 1

r 6
i j

for the energies as defined in Eq. 4.12 and

∂

∂AX Y
fβ,i ,Buck =

∑
j∈Y

βi

ri j ρI J
e−

ri j /ρX Y

∂

∂ρX Y
fβ,i ,Buck =

∑
j∈Y

AX Y βi

ri j ρ
3
I J

(
ri j −ρX Y

)
e−

ri j /ρX Y (4.15)

∂

∂CX Y
fβ,i ,Buck =

∑
j∈Y

−6βi

r 8
i j

for the forces defined in Eq. 4.13. Analogous formula can be defined for the original form of
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the Buckingham potential (Eq. 2.45)

∂

∂εX Y
fβ,i ,Buck =

(
∂AX Y

∂εX Y

∂

∂AX Y
+ ∂CX Y

∂εX Y

∂

∂CX Y

)
fβ,i ,Buck

= 1

αX Y −6

(
6eαX Y

∂

∂AX Y
+αX Y r 6

m,X Y
∂

∂CX Y

)
fβ,i ,Buck

∂

∂αX Y
fβ,i ,Buck =

(
∂AX Y

∂αX Y

∂

∂AX Y
+ ∂CX Y

∂αX Y

∂

∂CX Y
+ ∂ρX Y

∂αX Y

∂

∂ρX Y

)
fβ,i ,Buck

=
(

6εX Y (αX Y −7)

(αX Y −6)

∂

∂AX Y
+ 6εX Y

(αX Y −6)2 r 6
m,X Y

∂

∂CX Y
− rm

α2
X Y

∂

∂ρX Y

)
fβ,i ,Buck

∂

∂rm,X Y
fβ,i ,Buck =

(
∂r hoX Y

∂rm,X Y

∂

∂r hoX Y
+ ∂CX Y

∂rm,X Y

∂

∂CX Y

)
fβ,i ,Buck

=
(

1

αX Y

∂

∂r hoX Y
+ 6αX Y εX Y

αX Y −6
r 5

m,X Y
∂

∂CX Y

)
fβ,i ,Buck (4.16)

The derivatives of the different components of the loss functions with respect to the Bucking-

ham parameter χ are then defined as

∂

∂χ
CE = 2

NS

NS∑
I ,J

∣∣(εI −εJ
)− (

E I −E J
)∣∣( ∂

∂χ
εI ,Buck −

∂

∂χ
εJ ,Buck

)
∂

∂χ
CF = 2

NF

NF∑
i
|fi −Fi | · ∂

∂χ
fi ,Buck (4.17)

∂

∂χ
CF = 1√∑

i |Fi |2 ∑
i |fi |2

√∑
i
|fi |2

(∑
i

Fi · ∂
∂χ

fi

)
−

(∑
i

fi ·Fi

) ∑
i fi · ∂

∂χ fi√∑
i |fi |2


These derivatives can then be used in the analytic derivative of the loss function.

Coulomb and Core-Shell gradients

The unit charge q̂ , is introduced as a parameter of the system. The charge of any species in

the system is then define as the product between this unit charge and the oxidation state of

the species, qX = q̂nX. This formulation is convenient to consider the Coulomb potential and

forces since q̂ can be isolated from the rest of the equations:

UCoul
(
q̂
)= q̂2UCoul (1) (4.18)

and

fCoul,i
(
q̂
)= q̂2fCoul,i (1) (4.19)

where UCoul (1) and fCoul,i (1) represent the potential and forces with a unit charge of 1. The

scaling of the shell charge however has an adverse effect on polarization. In Eq. 2.51, we

defined the polarization, as a function of the shell charge. To keep the polarizability of the
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core-shell model constant, the spring constant of the model must be adapted as well:

k
(
q̂
)= q̂2 (ne)2

α
= q̂2k (1) (4.20)

where n is the shell oxidation state, α the polarizability of the modeled ion and k (1) is the

spring constant defined for a unit charge of 1. The resulting potential and forces are

UShell
(
q̂
)=∑

i

q̂2

2
ki (1) |δri |2 = q̂2UShell (1) (4.21)

and

fShell,i
(
q̂
)=−q̂2ki (1)δri = q̂2fShell,i (1) . (4.22)

The derivative of the total potential depending on the unit charge and its derivatives can then

easily be derived as

∂

∂q̂
U = 2q̂(UCoul (1)+UShell (1)) (4.23)

and

∂

∂q̂
fi = 2q̂(fCoul,i (1)+ fShell,i (1)). (4.24)

Regularization

Due to the use of the second formulation of the Buckingham potential introduced in Eq. 2.47

U
(
Ri j

)= Ae−
Ri j
ρ − C

R6
i j

, (4.25)

and the decoupling of the repulsive part from the attractive one, it is possible to derive

potentials which are unbound, without barriers. This is particularly likely if the information

concerning shorter distances is lacking in the training set. As a consequence, the dynamics

can become unstable with shells being affected by large forces leading in their ejection far

from their cores. In order to prevent this behavior, a regularization of the optimization can be

introduced to guarantee the presence of a sufficiently repulsive barrier in the fitted potentials.

One such regularization scheme can achieved by enforcing a specific minimum barrier for the

pair potentials. By defining ∆U as the difference between the potential value at the top of the

barrier and the minimum potential value after the barrier, as shown in Fig. 4.1. The constraint
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Figure 4.1 – With small variations of the A parameter, the repulsive barrier of the O – O
Buckingham pair used in Chap. 4 vanishes and result in a purely attractive potential. The
barrier ∆U is shown for the initial parameters.

becomes

CR =
K , if ∆U <∆Umin

0, otherwise
(4.26)

where K is the penalty. The constraint will penalize individuals with too low or nonexistent

barriers. This approach works very well with global optimization methods but lacks a proper

gradient for its use in local optimization. This can be circumvented by replacing the step by a

function with a define derivative such as the hyperbolic tangent

CR = K

2
(1+ tanh(α (∆U −∆Umin))) (4.27)

where the α parameter controls the width of the step.

Computational methods

The fitting of a force-field for lithium tantalum oxide was used to investigate the efficiency

of the methodology. The force-field comprises three pair potentials: Li-, Ta- and O-O. A

core-shell model is used to represent the oxygen atoms. The loss function

C =ωECE +ωFCF −ωCCF (4.28)
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is initially optimized using the Self-adaptive Differential Evolution algorithm implemented in

the pygmo [125] library. The initial population is made of 100 individuals randomly drawn

from the parameter spaces listed in Table 4.1. Because the optimization of the position of

the shells with random parameters is problematic, the cost function is computed with shells

placed in their idealized position, minimizing the error on the forces applied to the oxygen

cores. The fitting is performed on three phases of lithium tantalate. Each phase is represented

by 80 structures drawn from a DFT trajectory at regular intervals.

Li-O Ta-O O-O
Min Max Min Max Min Max

A 0.00 10000.00 0.00 10000.00 0.00 30000.00
ρ 0.05 1.00 0.05 1.00 0.05 1.00
C 0.00 25.00 0.00 25.00 0.00 50.00

Table 4.1 – Parameter space used for the initial global optimization of the lithium tantalate
force-field.

The best individuals obtained in the first global optimization step are then optimized locally

using the low-storage BFGS implementation of NLopt [124]. The computation of the gradients

for the local optimization is achieved using the analytic gradients of the energy and forces as

defined in 4.14 and 4.15. These were implemented for the Buckingham pair styles in LAMMPS

as a compute.

It is important to note that the error on the forces of the cores will increase with the variation

of the unit charge parameter. Assuming that the position was optimized using a unit charge

q0, the error on the forces is defined as

∆fi
(
q
)= (

q2 −q2
0

)
fi (1) . (4.29)

If the mean error on the shells becomes greater than that on the other species, the position of

the shells should be updated to better fit the current state of the force-field.

To assess the validity of the gradients, the comparison between the numerical and analytic

gradients is made. Fig. 4.2 shows the atomic forces on one of the oxygen atoms of the training,

and the respective numeric and analytic derivatives with respect to each parameter. The

advantage of using analytic derivatives is particularly visible when considering the derivative

with respect to ρ where the amplitude of the noise is highest in the numeric gradient. Similarly,

Fig. 4.3 shows the loss function for the forces, CF , and its derivative, as defined in Eq. 4.4

and 4.17 respectively, the noise observed in the derivative of the forces is propagated to the

numerical derivative of the loss function.
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Figure 4.2 – Atomic forces on an oxygen atom (top) as a function of the parameters A, ρ and
C of the Li-, Ta- and O-O pairs. (bottom) Graphs of the numerical and analytic derivatives of
the three components of the forces with respect to each of the parameters of the pair. The
numerical derivatives are characterized by an important noise, in particular visible on the
middle panel.

Figure 4.3 – Normalized value of CF as a function of the parameters A, ρ and C of the Li-,
Ta- and O-O pairs. The bottom figures show the numerical and analytic derivative of the
upper functions. The numerical are characterized by a consequent noise carried over from
the derivative of the forces.

Global Optimization

As shown in Fig. 4.4, the global optimization process is able to rapidly optimize the value of

the loss function within few hundreds of iterations after which progress becomes extremely

slow. The red line, indicative of the median value of the loss function is located closer to the

minimum value of the window, showing that the algorithm quickly explores interesting areas
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of the phase space before exploiting the traits to optimize further these individuals.

Figure 4.4 – Progress of the SADE population throughout the optimization

Paying closer attention to the top individuals of the population, the fittest one being investi-

gated in Fig. 4.5, one can see that the forces are overall well fitted to the reference data when

considering the ions. The result is not so straightforward when looking at the shells. The shells

have a mean square error on the forces of 1.19 eV2 Å−2, almost five times higher than the one

of the ionic species at 0.25 eV2 Å−2. To try to understand how this error will affect the position

of the shells, and therefore the forces on the core particles and more widely on the whole

system, it is interesting to relax the shells. Fig. 4.6 shows the updated forces for the structure

with relaxed shells. This relaxation has its most visible impact on the force correlation of the

oxygen cores. The mean square error for all ionic species however remains overall stable with

a slight increase to 0.29 eV2 Å−2. On the other hand, the mean square error on the shells goes

down to 0.02 eV2 Å−2, a value in line with the convergence criteria set for this initial relaxation.

These relatively small changes in the oxygen core forces and the narrowing of the Li and Ta

forces are a good indication that the force-field should already be able to successfully drive

insightful molecular dynamics simulations.

Local Optimization

The second step of the optimization using the low-memory BFGS algorithm only marginally

changes the parameters of the force-field. Fig. 4.7 and 4.8 show the resulting forces, before

and after a relaxation of the shells, in a similar way to Fig. 4.5 and 4.6. The local optimization

was not able to yield improved parameters though with a mean square error on the forces

growing to 0.32 and 0.39 eV2 Å−2 before and after relaxation. The gradients observed for the

various parameters are small and resulting in oscillation of the parameters, with BFGS failing

to converge in most cases.
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Figure 4.5 – Correlation of the reference DFT forces with the one computed using the trained
force field. The latter ones are computed with the shells at positions minimizing the error
on the oxygen, with a tolerance of 1 eVÅ−1. For all core species, a good agreement is shown
between the reference and fitted forces. The error on the forces of the shells are the only one
staying relatively high.

Figure 4.6 – Correlation of the reference DFT forces with the one computed using the trained
force field. The latter ones are computed with the shells having been relaxed from their initial
positions. The quality of the correlation remains high despite a tendency to underestimate the
forces on the oxygen cores. The error on the forces of the shells is greatly reduced to the level
of accuracy of the other forces.
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Figure 4.7 – Correlation of the reference DFT forces with the one computed using the locally
optimized force field starting from the result of the global optimization. The latter ones are
computed with the shells at positions minimizing the error on the oxygen, with a tolerance
of 1 eVÅ−1. No noticeable improvement can be seen compared to the results of the globally
optimized parameters shown in Fig. 4.5.

Figure 4.8 – Correlation of the reference DFT forces with the one computed using the trained
force field. The latter ones are computed with the shells having been relaxed from their initial
positions. Again, no noticeable improvement can be seen compared to the results of the
globally optimized parameters shown in Fig. 4.6.
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Conclusion

Global optimization methods have long been reliable tools in the optimization of complex

multivariate problems. The fitting of force-field falls clearly in the problem definition and

previous work has already shown the potential of genetic algorithms in the training of non-

polarizable force-fields. In this chapter, a methodology for the application of differential

evolution to the training of polarizable force-fields was demonstrated. It relies on the initial

optimization of the shell position with respect to the error on the cores. This methodology

reduces the problem to the more simple one of training a non-polarizable force-field.

The capacity of the methodology was demonstrated through the training of a force field for

lithium tantalate. The resulting forces correlates well with the first-principle forces despite

a failure to completely negate the forces on the shells. Further relaxation of the shells to

their true equilibrium positions has however only lead to minor effects on the quality of the

force correlation for the other elements. This shows that the method is a viable candidate

for the generation of parameter sets for polarizable force-fields from first-principles data set.

This is particularly interesting in the case of pairs where no previous polarizable force-field is

reported. In the case of highly charged, ions the refinement of parameters from non polarizable

force-field can be difficult. This was the case for the W – O pair described in Chap. 4 where

the optimization of the parameters resulted in force-fields that were later unstable during

simulations. A global optimization approach would have greatly helped to reduce the effort

needed to produce a working force-field.

Efforts to improve the accuracy of the globally optimized parameters through the use of

gradient-based local optimization was unsuccessful. Despite the successful reproduction of

the numeric gradient through analytic means, in order to obtain smoother gradients, the small

norm of the gradients with respect to the parameters of the O – O pair is problematic as this

pair should plays a key role in the correction of the error on the shell forces.
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5 Synthetic Training Set based Force-
Field Parametrization

Introduction

The generation of training sets for the parametrization of a force-fields is usually done by

running short first-principle trajectories [132] or force-field based ones with approximate

parameters [133, 134]. The first method is extremely costly since it requires long trajectories

to guarantee the presence of uncorrelated frames in the training sets. The second one allows

to generate trajectories much faster. However, it still requires the input of a preexisting ap-

proximate force-field. Being able to generate training sets without the cost of such lengthy

simulations or initial input of parameters is highly desirable for large scale training of param-

eters in the context of automated and unsupervised screening of material databases. The

training sets used in Chapters 3 and 4 were generated using respectively the approximate

force-field method and the first-principles based one.

Different approaches have already been attempted to take on the issue of the sampling of

training structures. Of particular interest is the idea of approaching the training of the force-

field self-consistently, using weaker versions of the force-field to generate trajectories through

molecular dynamics. Structures are then selected during the trajectory and their forces com-

puted using the reference first principles method. These new forces are then used to refine

the parameters of the force-field. This scheme, named adaptive force-matching method [135]

(AFM) was introduced by Akin-Ojo et al. in 2008 and its potential is demonstrated on the

development of a force-field for water, a particularly difficult task. The authors suggest in par-

ticular that this methodology could be applied using QM/MM systems where representative

QM clusters are used to refine the force-field parameters of the MM domain on-the-fly.

A different approach was discussed by Fracchia et al. [134], whose proposed methodology is

based on the optimal selection of the set of training structures from a trajectory. Focusing on

the solvation of metal salts into water, they make use of a metal-centric dissimilarity score

to tackle the case. They use a greedy randomized adaptive search procedure (GRASP) to

optimize the dissimilarity score of a training set drawn from trajectories generated using

parallel tempering. This methodology however does not solve the issues discussed previously
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since it concentrates on the optimal selection of the structures to be used for the training

rather than their generation.

Here, a methodology is proposed for the unsupervised generation of a training set with high

resemblance to molecular dynamics trajectories and their use for the training of a force-field.

The procedure uses the addition of random thermal fluctuations to crystallographic structures

to generate a training set with structural descriptor similar to a molecular dynamics trajectory.

The forces and energies of these structures are then computed and used for the training of a

force-field. The presence in most solid-state electrolytes of partially occupied sites stands as

an obstacle to the direct use of this methodology. To circumvent it, a procedure is proposed

to build a library of possible realization of these partially occupied structures using an initial

Monte-Carlo simulation. This simulation is driven by the Coulomb interaction between the

atoms in the structure, considered as point charges.

To allow the use of the procedure described above in an automated and unsupervised fashion,

it was implemented as a plugin for the AiiDA [79] platform. AiiDA is an interactive infrastruc-

ture and database designed for the automation of computational science. The framework

is based on the so-called ADES model, ADES standing for the four pillar on which it is built:

Automation, Data, Environment and Sharing. The first pillar, Automation, is responsible for

the abstraction of all low-level tasks such as the preparation, submission, monitoring, and

retrieval of computations on remote high performance computers, as well as the the storage

of the results of these computations. The second pillar, Data, focuses on the modeling of the

data and the management of its storage. In particular the issues of provenance is emphasized

by organizing the data into an acyclic directional graph that allows users to follow and even

reproduce the flow of data and computations that led to a specific result. While the two first

pillars relates to the abstraction of low-level concepts, the third pillar, Environment, provides a

higher-level, user facing environment designed to leverage the two first pillars. Two important

aspects of this environment are the the plugins and the workchains. Plugins allow to enrich

the environment by interfacing with various computational packages such as QUANTUM

ESPRESSO [136]. On the other hand, a workchain is a structure allowing developers and

users to implement a scientific workflow into the AiiDA environment. Workchains allow the

creation of checkpoints, the access to other workflows, or the submission of calculations.

These operations can be done asynchronously, allowing the parallelization of operations

operations. The fourth and last pillar, Sharing, is dedicated to the creation of an infrastructure

for the sharing of scientific results and workflows through the standardization of data and

the creation of repositories. The last point is exemplified by the use of AiiDA to power the

Materials Cloud platform (https://www.materialscloud.org), a platform developed for the

sharing of resources in computational materials science. The implemented workchains are

available on GitHub (https://github.com/zrl-aiida-toolbox/zrl-aiida-toolbox).

To demonstrate the capabilities of the methodology, the training of a force-field for lithium

tantalates is achieved in this chapter. The starting points for the training are three structures

available in the Inorganic Crystal Structure Database (ICSD). The three structures, with collec-
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tion codes 74949[137], 74950 [137] and 423372 [37] are from that point referred as structures

A, B and C. The structures A and B are the ones initially reported by Wehrum et al. in 1994.

A is a highly symmetric rhombohedral crystal (R3̄) with a partially occupied Li site and B

is a less symmetrical rhombohedral crystal (P3) with all its sites fully occupied. Finally, C

was reported by Mühle et al. in 2004. Though they observe a similar cell structure to the one

reported by Wehrum et al. for Li7BiO6, they report a triclinic one (P 1̄) for Li7TaO6. The training

is done using all three structures. To assess the quality of the resulting force-field, various

structural and dynamic properties are investigated and compared to previous experimental

and computational results.

Methodology

Figure 5.1 – Diagram of the implemented fitting procedure.

The fitting procedure presented in the introduction and summarized in Fig. 5.1 was split

into five workchains and a calculation plugin implemented using the AiiDA platform. More

details on the implementation of the ShakeWorkChain and PartialOccupancyWorkChain are

discussed further in the chapter. Fig. 5.2 shows the typical graph resulting from the execution

of the FitterWorkChain.
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Figure 5.2 – Representation of the typical directed graph resulting of the use of the Fitter-
WorkChain. WorkChains and Calculations are represented by orange boxes, structures by
blue circle, input dictionaries by light orange circles and results by green circles. Supercell*
represent a supercell with no partial occupancy and Supercell** one with added thermal noise.

Partial occupation

To handle the partial occupation of sites in a structure, the sites with non integer occupancy

are first grouped based on their composition, i.e. similar elements with similar occupations

are grouped together. This first step allows the conservation of the occupancy for each type

of site. Each groups are then randomly filled with atoms the needed number of atoms to

respect its occupancy. Finally, to select favorable configurations, a Monte-Carlo simulation

is run. Each step corresponds to the random move of a ion from one site to another one

in the same group. The energy of each visited configuration is approximated by the energy

resulting of the Coulombic interactions between all atoms, considered as point charges. The

new configurations are accepted if energetically favorable, i.e.:

min
(
1,e−β∆E

)
> r (5.1)

where ∆E is the difference between the energy of the old and new configuration, β= (kBT )−1

with kB, the Boltzmann constant and T is the effective temperature and r is a random number

drawn from a uniform distribution, U (0,1). Long enough trajectory will result in Boltzmann

distributed sets of structures.

The correctness of the distribution will however only hold if the selection criterion used for

the Monte Carlo trajectories is accurate enough. This will be the case if the change in the

approximated energy used, i.e. the Coulombic potential of the structure, is proportional to

the actual change in energy. To establish this equivalence, Fig. 5.3 shows, for several known

solid-state ionic conductors, a comparison between the energies of randomly drawn structures
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Figure 5.3 – DFT versus Coulombic energy for random structures of 5 classes of ionic conduc-
tors (LATP, LISICON, LGPS, LLTO and LLZO) showing high correlation between both models.

computed using the Coulombic approximation and their DFT energies. The data shows a high

degree of correlation between the two methods allowing a linear fit of the data

ECoul =αE +β, (5.2)

demonstrating the validity of the approach in the selection of lower energy domains of the

phase space. Some substructures can be observed in the case of LLZO, more likely related to

the two independent partially occupied lithium sites.

The slope α is however larger than 1 for all fits but the one of LLZO. This will lead to an

overestimation of the change in energy between the structures when using the Coulombic

model

∆ECoul =α∆EDFT. (5.3)

Overestimating the change in energy will skew the trajectory towards lower energy struc-

tures and prevent a correct reproduction of the structure distribution. Scaling the effective

temperature in Eq. 5.1 by the same factor α can restore the distribution.

This algorithm is implemented in the PartialOccupancyWorkChain. Three schemes are made

available for the selection of a subset of the structures visited during the simulation. Two
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simple schemes select either the last or lowest energy structures visited during the trajec-

tory. Though these schemes can be useful in specific cases, they will cancel the distribution

observed during the trajectory. The final scheme uses reservoir sampling to select random

structures from the trajectory. Reservoir sampling is a useful algorithm allowing to randomly

sample a stream without the need to store it or to know its length. It works in the following

way. To select n random structures from a trajectory, the n first visited structures are selected

and stored in a size-n array. Each structure visited afterwards is then selected if U (0,1) < n
i . In

case the structure is selected, it will replace a structure in the array at random. This schemes

guarantees the probability of keeping any of the visited structures has an equal probability,

no matter how long the trajectory. A schematic representation of the process is presented in

Fig. 5.4.

Figure 5.4 – Schematic representation of the PartialOccupancyWorkChain with Reservoir
sampling. Each Monte Carlo step correspond to numerous swap attempts within the different
group of sites. After the step, the structure is selected or discarded with probability i /n, with i
the current step and n the target number of selection leading to an equiprobable selection of
all the visited structures.

Thermal fluctuations

The addition of thermal fluctuation to the atomic positions is central to the replication of the

structural properties of the training data since it is essential to reproduce a distribution of

interatomic distances comparable to that observed in a molecular dynamics trajectory. Fig. 5.5

show the distribution of the displacement of the particles from their average position in a first

principle based trajectory of lithium tantalate. The trajectories are the ones used in Chapter 4

for the parametrization of the force-field.
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Figure 5.5 – Distribution of the displacement of each ionic species from their mean position in
trajectories at 300, 600 and 900K. The dashed line shows the Maxwell-Boltzmann distributions
parametrized to minimize the mean square error.

Along the observed distributions, Maxwell-Boltzmann distributions parametrized to minimize

the mean square error of the distribution with respect to the simulated one are shown. These

distributions are the best fits for the distribution though they underestimate their tails. This

is particularly true for the displacement of lithium at higher temperatures. This last point is

likely linked to the diffusive behavior of the lithium which will not be reproduced by simply

adding noise to the equilibrium positions.

The ShakeWorkChain allows to add to a provided structure thermal fluctuations corresponding

to the desired distribution. For each atom in the structure, a random displacement is added.

This displacement is defined by a direction and a norm. The direction is defined by a random

vector of norm 1. The norm is defined by a random number, drawn from a user defined

distribution, the Maxwell-Boltzmann distribution in this specific case.

Force calculation and fitting

The force calculation is done using QUANTUM ESPRESSO through the PwBaseWorkChain. An

energy cutoff of 70Ry and 560Ry for the wavefunction and electron density respectively are

used for the computation of the energy and forces of the lithium tantalate structures.

The global optimization was accomplished with various population sizes and regularizations.

The parameters were restricted to ranges detailed in Table 5.1.
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Pair Li – O Ta – O O – O
Parameter Min Max Min Max Min Max
A [eV] 0.000 5000.000 0.000 5000.000 0.000 30000.000
ρ [Å] 0.100 0.900 0.100 0.900 0.100 0.900

C [eV Å6] 0.000 10.000 0.000 10.000 0.000 50.000

Table 5.1 – Parameter ranges for the reported training.

Results

Partial occupation

Of the three structures used for the training, only A and C, exhibit partially occupied sites in

their crystallographic structures. To compute the scaling factor α for their Coulomb potential,

random structures were drawn for each phase and their purely Coulombic and DFT energies

were computed. Fig. 5.6 shows the correlation between those two energies. The linear fit of

the data is also included with scaling factors α of 3.627 and 3.346.

Figure 5.6 – DFT versus Coulombic energy of randomly selected structures for the two phases
of lithium tantalate with partially occupied sites. The orange line show the slope, α of the
linear fit of the data.

Fig. 5.7 shows 6 Monte-Carlo trajectories computed for each of the two phases at effective

temperatures of 300, 600 and 900K with a common α value of 3.5 for both structures. Each

trajectory is composed of 5000 rounds of equilibration followed by 20000 rounds of simulation

where each round is composed of 100 selection step with 1, 3 or 5 swaps. The energy of the

systems shows an initial drop during the equilibration of the system away from the high energy

random initial structures. The system then converges to low energies configurations. The two

structures then show quite different behavior. Structure A shows the expected behavior with

what resemble the expected Maxwell-Boltzmann distribution of energies. Structure B however

remains stuck in two low energy levels with only the higher 900K temperature being able to

reach higher energies. The issue here lies with the algorithm used for the selection of the

site groups. Structure B presents 4 different Li sites with occupancy 0.875 which are grouped
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Figure 5.7 – Energy along Monte-Carlo trajectories used to resolve the occupancy of partially
occupied sites of structures A (left) and B (right), corresponding to the ICSD entries 74949 [137]
and 413372 [37] respectively. Three temperatures, 300K (blue), 600K (orange) and 900K
(green) are shown. Next to the energy is displayed the energy distribution of the visited states
after the initial equilibration.

together in the current methodology. A quick fix is to add small variations to these sites

occupancy. Similar trajectories were computed with occupancy guaranteeing the segregation

of the four lithium sites. The resulting trajectories are presented in Fig. 5.8. The change

made in the site grouping is results in the reproduction of a Boltzmann like distribution

of energies throughout the trajectory. The methodology successfully yields structures with

energies following a Boltzmann like distribution if the sites are correctly grouped. Random

sampling from the trajectory can therefore be used to generate a representative set of fully

defined structures for the training sets.

Figure 5.8 – Energy along Monte-Carlo trajectories of structure C, corresponding to the ICSD
entry 413372 [37] with the sites correctly grouped to guarantee the occupancy of all four
lithium sites at three temperature, 300K (blue), 600K (orange) and 900K (green). Next to the
energy is displayed the energy distribution of the visited states after the initial equilibration.

Thermal fluctuations

A random subset of the structures from the Monte Carlo trajectories are used to generate the

training structures. Noise is added to the atomic positions to simulate thermal fluctuations.

71



Chapter 5. Synthetic Training Set based Force-Field Parametrization

Figure 5.9 – Radial distribution function, g (r ), of lithium tantalate structures generated
using Monte-Carlo and artificial thermal noise. Three distributions of the thermal noise are
compared with various standard deviations: Maxwell-Boltzmann (left), normal (center) and
exponential (right). The radial distribution function of a first-principle trajectory is also drawn
for reference.

The norm of the noise is drawn from a Maxwell-Boltzmann distribution of mean 0.1 and

0.2Å. The radial pair distribution of the resulting structures is shown in Figure 5.9 along with

the ones of the reference trajectories. The pair distributions match relatively well the ones

present in the first-principle dynamics. The lithium containing pairs are the least accurately

represented with some missing finer features. These discrepancies are most likely caused

by the absence of lithium density in the diffusive pathways of the structures as mentioned

earlier. Instead, the ions are solely located around their equilibrium positions around the

crystallographic sites. The rest of the pair distributions are better approximations of the pair

distributions of the reference trajectory, despite relatively small under- and overestimation

of the width of some of the peaks. From these results, one can expect that the generated

structures are sufficiently representative of the reference trajectories and should be a good

approximation for the training of the force field.

Atomic forces

With a set of structures showing good agreement with the reference trajectories in term of

pair distributions, it is important to consider whether the reference data, the forces, is also

appropriately reproduced. The distribution of amplitude of the forces on the different species

in the synthetic set is compared to the reference trajectory in Fig. 5.10. The distribution

is well reproduced in the case of the lithium ions. In the case of the heavier tantalum and

oxygen however, the synthetic set falls short. The structures contained in the training set show
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Figure 5.10 – Distribution of the amplitude of the atomic forces in the reference DFT trajec-
tories (green) compared to the ones generated using a mean displacement of 0.1 (blue) and
0.2Å (orange). The distributions are shown for lithium (left), tantalum (center) and oxygen
(right) particles.

forces with lower amplitude for these two atoms. This discrepancy can be due to the lack

of correlation in the random displacement of the particles and in particular the absence of

any vibrational modes or concerted movement which might push the system further out of

equilibrium. This however should not have any negative impact on the fitting of the short-

range potential. The good reproduction of the radial distribution of the O-X pairs should

guarantee a good sampling of the potential.

Global optimization

Fig. 5.11 shows the potential obtained by global optimization of the parameter using minimum

barrier of 5, 10, 20, and 40eV. Although the different optimizations were initialized with

different random parameter populations, they converge to very similar potentials, with little

influence of the height of the barrier. Table 5.2 shows the parameters of the force-fields trained

using a population size of 100. The various parameters are stable with the largest differences

being present in the O – O pair where the difference in the potential and its relation to the

minimum enforced barrier is clearly visible in Fig. 5.11. It is interesting to note that the

divergence of the O – O potentials occurs below the 2.5Å corresponding to the first solvation

shell of the O – O pair. The difference in the three potentials should therefore have minimal

effect. For both the Li – O and Ta – O pairs, the attractive part of the potential is negligible

compared to the repulsive one. For both the Ta – O and O – O pairs, the C parameter finds itself

"saturated", at the border of the range of allowed values.

Given the similarity of the parameters, it comes as no surprise that the energies and forces

computed using these force-fields are very similar. Fig. 5.12 and 5.13 show the correlation

between the reference DFT energies and forces and the computed force-field ones after

relaxation of the shell positions. The computed energies are in good agreement with their

reference counterpart while the forces have some divergence with a general underestimation

of the forces by the force-field, the largest departure with the reference forces happening for
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Figure 5.11 – Pair potentials parametrized for the Li – O, Ta – O and O – O pairs with enforced
barriers of 5, 10, 20 and 40eV and parameters described in Table 5.1. The parameter for all
potentials can be found in Table 5.2.

Pair Parameter ∆U = 5eV ∆U = 10eV ∆U = 20eV ∆U = 40eV

Li – O
A [eV] 349.392 349.849 350.773 352.149
ρ [Å] 0.29930 0.29920 0.29900 0.29870

C [eV Å6] 0.000 0.000 0.000 0.000

Ta – O
A [eV] 854.414 855.000 856.119 857.701
ρ [Å] 0.37910 0.37900 0.37880 0.37850

C [eV Å6] 10.000 10.000 10.000 10.000

O – O
A [eV] 29892.060 29983.081 29978.320 29930.250
ρ [Å] 0.15690 0.15820 0.16080 0.16430

C [eV Å6] 50.000 50.000 50.000 50.000

Table 5.2 – Parameters of globally optimized force-field using populations of 100 individu-
als and starting from different random populations. The Li – O and Ta – O pair parameters
converge to very similar values while the O – O pair shows the largest difference.

the forces of the oxygen.

To further gauge the quality of the force-field, NPT trajectories where run between 300 and

900K with increments of 50K for the force-fields obtained with minimum barriers of 5, 10

and 20eV. Fig. 5.14 shows averaged structural parameters i.e. volumes, lattice vector lengths

and angles for each of the three structures A, B and C. The reference crystallographic values

are indicated by horizontal dashed lines. As suggested earlier the minimum barrier used
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Figure 5.12 – Correlation plot between the reference DFT energies and the one given by the
force-field after relaxation of the shells.

for the regularization does not seem to play any role with the three force-field giving very

similar results and highest variations in the low temperatures. The trajectories starting from

the two hexagonal cells, structures A and B, behave in a very similar fashion with the a

and b vectors being fairly well reproduced while the c vector contracts slightly compared to

the crystallographic data. The cell volume is overall well respected with an error of about

3% compared with the experimental crystallographic volume. The angles are again well

conserved with the structure keeping its hexagonal shape. The reproduction of structure C

is less successful. Though the volume is underestimated with a similar amplitude. The cell

geometry however changes dramatically from its crystallographic reference. Its angles α and

β change from the reported values of 120◦ to about 90◦, while the γ angle increases from 63◦

to approximately 70◦.

The mean square displacement of the lithium ions during the 750ps of NPT trajectories are

computed with a maximum lag time of 200ps and displayed in Fig. 5.15. The force-field does

not show much influence on the mean squared displacement, which is not very surprising

given the similar structural result shown by the three force-field reported here. The diffusion

coefficients are computed from the mean squared displacement of the lithium ions in the

NPT trajectories where the lag time was superior to 150ps, The resulting diffusion coefficient

are plotted in the Arrhenius plots in Fig. 5.16. The diffusion coefficients follow the expected

Arrhenius behavior with activation energies between 0.23 and 0.30eV. These values are much

lower than the experimental value of 0.66eV [36]. They are however similar to the one reported

by Muhle et al. [37] for the high-temperature behavior of the system, i.e. 0.28eV. Previous first

principle and force-field dynamics have described similar values. This points to the lithium

in the system being much more mobile than in the experiment, mirroring more the high

temperature behavior described by Muhle et al. with a liquid like lithium sublattice. This

overestimation of the lithium mobility is also reflected in the absolute value of the conductivity.

Muhle et al. report a conductivity between 10−7 and 0.2Scm−1 for temperatures between 300
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Figure 5.13 – Correlation plot between the reference DFT forces and the ones given by the
force-field after relaxation of the shells.

and 800K with the phase transition occuring around 700K. In comparison the values obtained

by simulation are situated between 10−2 and 10Scm−1 for temperatures between 300 and

700K.

The mean square displacement and diffusion coefficient were also computed using constant

volume trajectories with the averaged structure parameters presented in Fig. 5.14. This time

only the two rhombohedral structures A and B were used since the force-field was not able to

correctly reproduce the structure of C. Fig. 5.17 present the mean square displacements at

constant temperature and energy for the force-fields optimized with minimum energy barrier

of 10 and 20eV. The resulting mean square displacements in NVT trajectories are very similar

to the ones of the initial NPT trajectories showing no significant effect of the volume change

on the lithium diffusion. On the other hand, the NVE trajectories display an increased mean

square displacement by a factor 1.5 with respect to the constant temperature trajectories. This

shows that the GLE thermostat has a visible effect on the lithium dynamics and diffusion in the
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Figure 5.14 – Volumes, lattice parameters and angles averaged over NPT trajectories between
300 and 900K using the force-field obtained with a minimum barrier ∆U of 5, 10 and 20eV.
The volume shows a linear increase without phase change. Similarly, the length of the lattice
vectors and angle stay stable throughout the simulations. Each point is averaged over 750ps
of simulation and the error is estimated using bloc averages over blocs of 150ps.
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Figure 5.15 – Mean square displacement at temperatures between 100 and 700K for 750ps of
NPT trajectories with a maximum lag time of 200ps. The trajectories were produced using the
globally optimized force-field with minimum barriers of 5 10 and 20eV. The MSD is presented
for three phases of lithium tantalate described by their ICSD collection ids.

system. However, when comparing the diffusion coefficient of both NVT and NVE trajectories

shown in Fig. 5.18, the two Arrhenius plots appear shifted with similar activation energies

showing that the mechanisms are slowed down rather than blocked or modified.

Conclusion

The use of the Monte-Carlo sampling of partially occupied structures was demonstrated for

lithium tantalate structures. Although the currently implemented mechanism for the site

grouping needs updated to be better able to identify true crystallographic sites, potentially

through the use of symmetry based detection, the results show that the methodology is able to

successfully sample the configurational space of the structure to yield Boltzmann distributed

samples that can be used for the training of force-fields.

The use of purely random displacement to mimic thermal displacement during the trajec-

tory works successfully as a first approximation though improvement could be achieved
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Figure 5.16 – Comparison of the diffusion coefficients corresponding to the mean square
displacements shown in Fig. 5.15 with their respective activation energies.

through the use of the structure’s phonons to provide a better approximation of the expected

displacements.

The use of a synthetic training set for the parametrization of the force-field parameters was

successfully demonstrated in the case of lithium tantalate crystals. The resulting force-field

is able to reproduce structural parameters of the rhombohedral phases within reasonable

margin of error in a relatively short time. The resulting force-fields is also able to reproduce

diffusion values and activation energies at par with previous description of first-principle and

force-field molecular dynamics.

Despite the overall success of the force-field training in the case of the rhombohedral struc-

tures. The procedure failed at successfully stabilize and reproduce the correct structure for

the trigonal phase. As both phases have been used to describe the same system, this could be

due to a difficulty to stabilize both systems with a unique force-field as a result of their close

structural similarity.

Although the results presented here for lithium tantalates are only partially successful, consid-

ering the issues to correctly model the rhombohedral phase, the methodology still remains an

improvement over supervised training methods. Furthermore the it is likely that such issue

would not occur in systems such as LLZO where the phase transition is dictated by entropic

effects rather than a deeper change in structure and interactions.
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Figure 5.17 – Mean square displacement at temperatures between 100 and 900K for 750ps
of NVT and NVE trajectories. The trajectories were produced using the globally optimized
force-field with minimum barriers of 10 and 20eV.
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Figure 5.18 – Diffusion coefficients at temperatures between 100 and 900K computed from
NPT trajectories of 750ps. The trajectories were produced using the globally optimized force-
field with minimum barriers of 10 and 20eV.
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6 Comparison of computational meth-
ods for the electrochemical stability
window of solid-state electrolyte ma-
terials

Although conductivity remains on of the key element of a good solid-state electrolyte, other

factors come into play. In particular its electrochemical stability is an important aspect that

determines its potential stability against electrodes and the probability of creating a solid-

electrolyte interphase (SEI) that could lower the overall conductivity of the electrochemical

cell.

In this article, three computational methods used to evaluate the electrochemical stability

window of solid-state electrolytes were reviewed, the HOMO-LUMO method, the stoichiome-

try stability method and the phase stability method. All three methods were implemented for

material screening as AiiDA workflows. The results of all three methods for several solid-state

electrolytes is compared.

The version presented is a preprint version of the article published in the Journal of Materials

Chemistry A [138]. The supplementary information of the article are included in Appendix

A.1.

6.1 Introduction

Solid-state electrolyte (SSE) materials, i.e. materials that provide ionic but no electronic

conductivity, are key components of all-solid-state batteries (ASSBs), which are regarded
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as promising candidates for next generation Li- or Na-ion batteries. State-of-the-art Li-ion

batteries are based on liquid organic electrolytes, which are flammable and furthermore ther-

modynamically unstable against the low-potential electrode, e.g. metallic Li. Their operation

is possible only because of the formation of a passivating layer between the electrode and the

liquid electrolyte, termed the “solid electrolyte interphase”1 (SEI) [139, 140]. In comparison to

liquid electrolytes, many SSE materials offer superior stability against reduction and oxidation.

Nevertheless, only few SSE materials provide true thermodynamic stability against the corre-

sponding metallic anode [141, 142]. Therefore, interfacial stability between the electrode and

the solid-state electrolyte is a focus topic in current ASSB research [143, 144]. For many SSE

materials, a passivating interphase layer forms between the metallic low-potential electrode

and the SSE [145, 141, 143, 144], which consists of SSE decomposition products, similar to the

SEI layer in liquid electrolyte Li-ion cells. Although such a “metal–solid electrolyte interphase

(MSEI) layer” [145] can render an ASSB meta-stable due to passivation and also provide a

certain ionic conductivity to sustain battery operation, the battery performance will be deteri-

orated because of the reduced ionic conductivity of the interphase layer. The same conclusion

holds for passivating interphase layers between SSE and high-potential electrode [142]. Thus,

for ASSBs to unfold their full potential, stability of the SSE against both electrodes is desirable

to avoid the formation of interphase layers.

The interface stability properties of an SSE material in contact with an electrode are best

described by its electrochemical stability window. We refer to “electrochemical stability” as

the stability of an SSE material against reactions that contain transfer of mobile species atoms,

e.g. Li- or Na-atoms. It must be emphasized that only the transfer of neutral atoms represents

an SSE instability. In contrast, the transfer of mobile species ions, e.g. Li+ or Na+, across the

electrode–SSE interface is part of the normal battery operation and it does not alter the SSE

composition or structure.

This definition of “electrochemical stability” comprises both potential-driven SSE instability

processes in a closed-circuit cell and direct reactions between SSE and electrodes under

exchange of mobile species atoms that can also proceed in an open-circuit cell. In fact, both

types of processes are equivalent: In an electrochemical process, the electrode represents

an electron reservoir and electron transfer occurs across the electrode–electrolyte interface.

If only electrons are transferred, the build-up of charge quickly stops the process. Thus, for

an instability reaction to proceed, charge neutrality must be preserved i.e. the electronic

charge transfer must be compensated by the movement of mobile ions to/from the instability

reaction interface RI, cf. Figure 6.1. In a closed-circuit electrochemical cell, Figure 6.1a, the

compensating ions are supplied to interface RI through the SSE by the counter-reaction at the

opposite electrode CE. However, in an ASSB the electro-active electrode materials are also ion

1Strictly speaking, the orignial term was chosen to denote the solid “phase” of the passivating layer with a
certain ionic conductivity, i.e. a “solid electrolyte phase” in between the electrode and the liquid electrolyte.
Nowadays, however, also the term “solid–electrolyte interface” is commonly used for SEI, i.e. the layer at the
“interface” between the solid electrode and the liquid electrolyte. The use of the abbreviation SEI allows to neglect
these subtle differences in terminology.
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������! A+
<latexit sha1_base64="+zh0LETMr4W2jDPgPngsC30y8d0=">AAACEXicbZC7SgNBFIZnvRtvq5Y2g0EICmFXBC29NJYKxgSyMcxOTrKDsxdmzqph2Vew8VVsLBSxtbPzbZwkW2jiDwMf/zmHM+f3Eyk0Os63NTU9Mzs3v7BYWlpeWV2z1zeudZwqDjUey1g1fKZBighqKFBCI1HAQl9C3b89G9Trd6C0iKMr7CfQClkvEl3BGRqrbVe8ByV6ATKl4vvMC3TCOOxmbnWfh3lOPYQHzE7ym722XXaqzlB0EtwCyqTQRdv+8joxT0OIkEumddN1EmxlTKHgEvKSl2owy25ZD5oGIxaCbmXDi3K6Y5wO7cbKvAjp0P09kbFQ637om86QYaDHawPzv1ozxe5RKxNRkiJEfLSom0qKMR3EQztCAUfZN8C4EuavlAdMMY4mxJIJwR0/eRKu96uu4cuD8vFpEccC2SLbpEJcckiOyTm5IDXCySN5Jq/kzXqyXqx362PUOmUVM5vkj6zPH+b8naY=</latexit><latexit sha1_base64="+zh0LETMr4W2jDPgPngsC30y8d0=">AAACEXicbZC7SgNBFIZnvRtvq5Y2g0EICmFXBC29NJYKxgSyMcxOTrKDsxdmzqph2Vew8VVsLBSxtbPzbZwkW2jiDwMf/zmHM+f3Eyk0Os63NTU9Mzs3v7BYWlpeWV2z1zeudZwqDjUey1g1fKZBighqKFBCI1HAQl9C3b89G9Trd6C0iKMr7CfQClkvEl3BGRqrbVe8ByV6ATKl4vvMC3TCOOxmbnWfh3lOPYQHzE7ym722XXaqzlB0EtwCyqTQRdv+8joxT0OIkEumddN1EmxlTKHgEvKSl2owy25ZD5oGIxaCbmXDi3K6Y5wO7cbKvAjp0P09kbFQ637om86QYaDHawPzv1ozxe5RKxNRkiJEfLSom0qKMR3EQztCAUfZN8C4EuavlAdMMY4mxJIJwR0/eRKu96uu4cuD8vFpEccC2SLbpEJcckiOyTm5IDXCySN5Jq/kzXqyXqx362PUOmUVM5vkj6zPH+b8naY=</latexit><latexit sha1_base64="+zh0LETMr4W2jDPgPngsC30y8d0=">AAACEXicbZC7SgNBFIZnvRtvq5Y2g0EICmFXBC29NJYKxgSyMcxOTrKDsxdmzqph2Vew8VVsLBSxtbPzbZwkW2jiDwMf/zmHM+f3Eyk0Os63NTU9Mzs3v7BYWlpeWV2z1zeudZwqDjUey1g1fKZBighqKFBCI1HAQl9C3b89G9Trd6C0iKMr7CfQClkvEl3BGRqrbVe8ByV6ATKl4vvMC3TCOOxmbnWfh3lOPYQHzE7ym722XXaqzlB0EtwCyqTQRdv+8joxT0OIkEumddN1EmxlTKHgEvKSl2owy25ZD5oGIxaCbmXDi3K6Y5wO7cbKvAjp0P09kbFQ637om86QYaDHawPzv1ozxe5RKxNRkiJEfLSom0qKMR3EQztCAUfZN8C4EuavlAdMMY4mxJIJwR0/eRKu96uu4cuD8vFpEccC2SLbpEJcckiOyTm5IDXCySN5Jq/kzXqyXqx362PUOmUVM5vkj6zPH+b8naY=</latexit><latexit sha1_base64="+zh0LETMr4W2jDPgPngsC30y8d0=">AAACEXicbZC7SgNBFIZnvRtvq5Y2g0EICmFXBC29NJYKxgSyMcxOTrKDsxdmzqph2Vew8VVsLBSxtbPzbZwkW2jiDwMf/zmHM+f3Eyk0Os63NTU9Mzs3v7BYWlpeWV2z1zeudZwqDjUey1g1fKZBighqKFBCI1HAQl9C3b89G9Trd6C0iKMr7CfQClkvEl3BGRqrbVe8ByV6ATKl4vvMC3TCOOxmbnWfh3lOPYQHzE7ym722XXaqzlB0EtwCyqTQRdv+8joxT0OIkEumddN1EmxlTKHgEvKSl2owy25ZD5oGIxaCbmXDi3K6Y5wO7cbKvAjp0P09kbFQ637om86QYaDHawPzv1ozxe5RKxNRkiJEfLSom0qKMR3EQztCAUfZN8C4EuavlAdMMY4mxJIJwR0/eRKu96uu4cuD8vFpEccC2SLbpEJcckiOyTm5IDXCySN5Jq/kzXqyXqx362PUOmUVM5vkj6zPH+b8naY=</latexit>

e�  ����
<latexit sha1_base64="vtaTIRflOb8Q52B3eY4ungUL4/Q=">AAACEHicbZBNS8NAEIY3flu/oh69LBZRBEsigj2KXjwq2FZoYtlsJ+3i5oPdiVpCfoIX/4oXD4p49ejNf+O25qDVFxYe3plhdt4glUKj43xaE5NT0zOzc/OVhcWl5RV7da2pk0xxaPBEJuoyYBqkiKGBAiVcpgpYFEhoBdcnw3rrBpQWSXyBgxT8iPViEQrO0Fgde9tDuMMciqs96t1JCJEpldzmXl+njMNu7tTqPCqKjl11as5I9C+4JVRJqbOO/eF1E55FECOXTOu266To50yh4BKKipdpMBuuWQ/aBmMWgfbz0UEF3TJOl4aJMi9GOnJ/TuQs0noQBaYzYtjX47Wh+V+tnWFY93MRpxlCzL8XhZmkmNBhOrQrFHCUAwOMK2H+SnmfKcbRZFgxIbjjJ/+F5n7NNXx+UD06LuOYIxtkk+wQlxySI3JKzkiDcHJPHskzebEerCfr1Xr7bp2wypl18kvW+xdCXZ1U</latexit><latexit sha1_base64="vtaTIRflOb8Q52B3eY4ungUL4/Q=">AAACEHicbZBNS8NAEIY3flu/oh69LBZRBEsigj2KXjwq2FZoYtlsJ+3i5oPdiVpCfoIX/4oXD4p49ejNf+O25qDVFxYe3plhdt4glUKj43xaE5NT0zOzc/OVhcWl5RV7da2pk0xxaPBEJuoyYBqkiKGBAiVcpgpYFEhoBdcnw3rrBpQWSXyBgxT8iPViEQrO0Fgde9tDuMMciqs96t1JCJEpldzmXl+njMNu7tTqPCqKjl11as5I9C+4JVRJqbOO/eF1E55FECOXTOu266To50yh4BKKipdpMBuuWQ/aBmMWgfbz0UEF3TJOl4aJMi9GOnJ/TuQs0noQBaYzYtjX47Wh+V+tnWFY93MRpxlCzL8XhZmkmNBhOrQrFHCUAwOMK2H+SnmfKcbRZFgxIbjjJ/+F5n7NNXx+UD06LuOYIxtkk+wQlxySI3JKzkiDcHJPHskzebEerCfr1Xr7bp2wypl18kvW+xdCXZ1U</latexit><latexit sha1_base64="vtaTIRflOb8Q52B3eY4ungUL4/Q=">AAACEHicbZBNS8NAEIY3flu/oh69LBZRBEsigj2KXjwq2FZoYtlsJ+3i5oPdiVpCfoIX/4oXD4p49ejNf+O25qDVFxYe3plhdt4glUKj43xaE5NT0zOzc/OVhcWl5RV7da2pk0xxaPBEJuoyYBqkiKGBAiVcpgpYFEhoBdcnw3rrBpQWSXyBgxT8iPViEQrO0Fgde9tDuMMciqs96t1JCJEpldzmXl+njMNu7tTqPCqKjl11as5I9C+4JVRJqbOO/eF1E55FECOXTOu266To50yh4BKKipdpMBuuWQ/aBmMWgfbz0UEF3TJOl4aJMi9GOnJ/TuQs0noQBaYzYtjX47Wh+V+tnWFY93MRpxlCzL8XhZmkmNBhOrQrFHCUAwOMK2H+SnmfKcbRZFgxIbjjJ/+F5n7NNXx+UD06LuOYIxtkk+wQlxySI3JKzkiDcHJPHskzebEerCfr1Xr7bp2wypl18kvW+xdCXZ1U</latexit><latexit sha1_base64="ck8pdC+ekZH4nUmSP+ZG7r8lEyk=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odOn4MoA7ncAFXEMIN3MEDdKALAhJ4hXdv4r15H6uuat66tDP4I+/zBzjGijg=</latexit><latexit sha1_base64="aN87uxzI8xLpZdm6GrodJFSXRjE=">AAACBXicbZDLSgMxFIbPeK31Nrp1ExRRBMuMG10KblxWsK3QqSWTnmlDMxeSM2oZ5hHc+CpuXCjiK7jzbUxrF95+CHz8f8LJ+cNMSUOe9+HMzM7NLyxWlqrLK6tr6+7GStOkuRbYEKlK9VXIDSqZYIMkKbzKNPI4VNgKh2fjvHWD2sg0uaRRhp2Y9xMZScHJWl13LyC8owLL60MW3CmMiGud3hbBwGRc4EHh1U5EXJZdd8ereROxv+BPYQemqnfd96CXijzGhITixrR9L6NOwTVJobCsBrlBO2HI+9i2mPAYTaeYLFSyXev0WJRqexJiE/f7i4LHxozi0N6MOQ3M72xs/pe1c4pOOoVMspwwEV+DolwxStm4HdaTGgWpkQUutLR/ZWLANRdkO6zaEvzfK/+F5lHNt3zhQQW2YBv2wYdjOIVzqEMDBNzDIzzDi/PgPDmvX3XNONPeNuGHnLdPgRCb2Q==</latexit><latexit sha1_base64="aN87uxzI8xLpZdm6GrodJFSXRjE=">AAACBXicbZDLSgMxFIbPeK31Nrp1ExRRBMuMG10KblxWsK3QqSWTnmlDMxeSM2oZ5hHc+CpuXCjiK7jzbUxrF95+CHz8f8LJ+cNMSUOe9+HMzM7NLyxWlqrLK6tr6+7GStOkuRbYEKlK9VXIDSqZYIMkKbzKNPI4VNgKh2fjvHWD2sg0uaRRhp2Y9xMZScHJWl13LyC8owLL60MW3CmMiGud3hbBwGRc4EHh1U5EXJZdd8ereROxv+BPYQemqnfd96CXijzGhITixrR9L6NOwTVJobCsBrlBO2HI+9i2mPAYTaeYLFSyXev0WJRqexJiE/f7i4LHxozi0N6MOQ3M72xs/pe1c4pOOoVMspwwEV+DolwxStm4HdaTGgWpkQUutLR/ZWLANRdkO6zaEvzfK/+F5lHNt3zhQQW2YBv2wYdjOIVzqEMDBNzDIzzDi/PgPDmvX3XNONPeNuGHnLdPgRCb2Q==</latexit><latexit sha1_base64="gCWPhEu/zDZcAIGM9AF27+AzrgY=">AAACEHicbZA9SwNBEIb3/DZ+nVraLAZRBMOdjSmDNpYRTBRyZ9jbzJnFvQ9259Rw3E+w8a/YWChia2nnv3GTXKHGFxYe3plhdt4glUKj43xZU9Mzs3PzC4uVpeWV1TV7faOtk0xxaPFEJuoyYBqkiKGFAiVcpgpYFEi4CG5OhvWLW1BaJPE5DlLwI3Ydi1Bwhsbq2rsewj3mUFwdUO9eQohMqeQu9/o6ZRz2c6dW51FRdO2qU3NGopPgllAlpZpd+9PrJTyLIEYumdYd10nRz5lCwSUUFS/TYDbcsGvoGIxZBNrPRwcVdMc4PRomyrwY6cj9OZGzSOtBFJjOiGFf/60Nzf9qnQzDup+LOM0QYj5eFGaSYkKH6dCeUMBRDgwwroT5K+V9phhHk2HFhOD+PXkS2oc11/CZU20cl3EskC2yTfaIS45Ig5ySJmkRTh7IE3khr9aj9Wy9We/j1imrnNkkv2R9fANBHZ1Q</latexit><latexit sha1_base64="vtaTIRflOb8Q52B3eY4ungUL4/Q=">AAACEHicbZBNS8NAEIY3flu/oh69LBZRBEsigj2KXjwq2FZoYtlsJ+3i5oPdiVpCfoIX/4oXD4p49ejNf+O25qDVFxYe3plhdt4glUKj43xaE5NT0zOzc/OVhcWl5RV7da2pk0xxaPBEJuoyYBqkiKGBAiVcpgpYFEhoBdcnw3rrBpQWSXyBgxT8iPViEQrO0Fgde9tDuMMciqs96t1JCJEpldzmXl+njMNu7tTqPCqKjl11as5I9C+4JVRJqbOO/eF1E55FECOXTOu266To50yh4BKKipdpMBuuWQ/aBmMWgfbz0UEF3TJOl4aJMi9GOnJ/TuQs0noQBaYzYtjX47Wh+V+tnWFY93MRpxlCzL8XhZmkmNBhOrQrFHCUAwOMK2H+SnmfKcbRZFgxIbjjJ/+F5n7NNXx+UD06LuOYIxtkk+wQlxySI3JKzkiDcHJPHskzebEerCfr1Xr7bp2wypl18kvW+xdCXZ1U</latexit><latexit sha1_base64="vtaTIRflOb8Q52B3eY4ungUL4/Q=">AAACEHicbZBNS8NAEIY3flu/oh69LBZRBEsigj2KXjwq2FZoYtlsJ+3i5oPdiVpCfoIX/4oXD4p49ejNf+O25qDVFxYe3plhdt4glUKj43xaE5NT0zOzc/OVhcWl5RV7da2pk0xxaPBEJuoyYBqkiKGBAiVcpgpYFEhoBdcnw3rrBpQWSXyBgxT8iPViEQrO0Fgde9tDuMMciqs96t1JCJEpldzmXl+njMNu7tTqPCqKjl11as5I9C+4JVRJqbOO/eF1E55FECOXTOu266To50yh4BKKipdpMBuuWQ/aBmMWgfbz0UEF3TJOl4aJMi9GOnJ/TuQs0noQBaYzYtjX47Wh+V+tnWFY93MRpxlCzL8XhZmkmNBhOrQrFHCUAwOMK2H+SnmfKcbRZFgxIbjjJ/+F5n7NNXx+UD06LuOYIxtkk+wQlxySI3JKzkiDcHJPHskzebEerCfr1Xr7bp2wypl18kvW+xdCXZ1U</latexit><latexit sha1_base64="vtaTIRflOb8Q52B3eY4ungUL4/Q=">AAACEHicbZBNS8NAEIY3flu/oh69LBZRBEsigj2KXjwq2FZoYtlsJ+3i5oPdiVpCfoIX/4oXD4p49ejNf+O25qDVFxYe3plhdt4glUKj43xaE5NT0zOzc/OVhcWl5RV7da2pk0xxaPBEJuoyYBqkiKGBAiVcpgpYFEhoBdcnw3rrBpQWSXyBgxT8iPViEQrO0Fgde9tDuMMciqs96t1JCJEpldzmXl+njMNu7tTqPCqKjl11as5I9C+4JVRJqbOO/eF1E55FECOXTOu266To50yh4BKKipdpMBuuWQ/aBmMWgfbz0UEF3TJOl4aJMi9GOnJ/TuQs0noQBaYzYtjX47Wh+V+tnWFY93MRpxlCzL8XhZmkmNBhOrQrFHCUAwOMK2H+SnmfKcbRZFgxIbjjJ/+F5n7NNXx+UD06LuOYIxtkk+wQlxySI3JKzkiDcHJPHskzebEerCfr1Xr7bp2wypl18kvW+xdCXZ1U</latexit><latexit sha1_base64="vtaTIRflOb8Q52B3eY4ungUL4/Q=">AAACEHicbZBNS8NAEIY3flu/oh69LBZRBEsigj2KXjwq2FZoYtlsJ+3i5oPdiVpCfoIX/4oXD4p49ejNf+O25qDVFxYe3plhdt4glUKj43xaE5NT0zOzc/OVhcWl5RV7da2pk0xxaPBEJuoyYBqkiKGBAiVcpgpYFEhoBdcnw3rrBpQWSXyBgxT8iPViEQrO0Fgde9tDuMMciqs96t1JCJEpldzmXl+njMNu7tTqPCqKjl11as5I9C+4JVRJqbOO/eF1E55FECOXTOu266To50yh4BKKipdpMBuuWQ/aBmMWgfbz0UEF3TJOl4aJMi9GOnJ/TuQs0noQBaYzYtjX47Wh+V+tnWFY93MRpxlCzL8XhZmkmNBhOrQrFHCUAwOMK2H+SnmfKcbRZFgxIbjjJ/+F5n7NNXx+UD06LuOYIxtkk+wQlxySI3JKzkiDcHJPHskzebEerCfr1Xr7bp2wypl18kvW+xdCXZ1U</latexit><latexit sha1_base64="vtaTIRflOb8Q52B3eY4ungUL4/Q=">AAACEHicbZBNS8NAEIY3flu/oh69LBZRBEsigj2KXjwq2FZoYtlsJ+3i5oPdiVpCfoIX/4oXD4p49ejNf+O25qDVFxYe3plhdt4glUKj43xaE5NT0zOzc/OVhcWl5RV7da2pk0xxaPBEJuoyYBqkiKGBAiVcpgpYFEhoBdcnw3rrBpQWSXyBgxT8iPViEQrO0Fgde9tDuMMciqs96t1JCJEpldzmXl+njMNu7tTqPCqKjl11as5I9C+4JVRJqbOO/eF1E55FECOXTOu266To50yh4BKKipdpMBuuWQ/aBmMWgfbz0UEF3TJOl4aJMi9GOnJ/TuQs0noQBaYzYtjX47Wh+V+tnWFY93MRpxlCzL8XhZmkmNBhOrQrFHCUAwOMK2H+SnmfKcbRZFgxIbjjJ/+F5n7NNXx+UD06LuOYIxtkk+wQlxySI3JKzkiDcHJPHskzebEerCfr1Xr7bp2wypl18kvW+xdCXZ1U</latexit><latexit sha1_base64="vtaTIRflOb8Q52B3eY4ungUL4/Q=">AAACEHicbZBNS8NAEIY3flu/oh69LBZRBEsigj2KXjwq2FZoYtlsJ+3i5oPdiVpCfoIX/4oXD4p49ejNf+O25qDVFxYe3plhdt4glUKj43xaE5NT0zOzc/OVhcWl5RV7da2pk0xxaPBEJuoyYBqkiKGBAiVcpgpYFEhoBdcnw3rrBpQWSXyBgxT8iPViEQrO0Fgde9tDuMMciqs96t1JCJEpldzmXl+njMNu7tTqPCqKjl11as5I9C+4JVRJqbOO/eF1E55FECOXTOu266To50yh4BKKipdpMBuuWQ/aBmMWgfbz0UEF3TJOl4aJMi9GOnJ/TuQs0noQBaYzYtjX47Wh+V+tnWFY93MRpxlCzL8XhZmkmNBhOrQrFHCUAwOMK2H+SnmfKcbRZFgxIbjjJ/+F5n7NNXx+UD06LuOYIxtkk+wQlxySI3JKzkiDcHJPHskzebEerCfr1Xr7bp2wypl18kvW+xdCXZ1U</latexit>

e�  ������
<latexit sha1_base64="RosRWn1XPg/JkNcusZTR8vB8iDw=">AAACEHicbZBNS8NAEIY3ftb6FfXoZbGIIliSIuhR9OKxglWhiWWznbSLmw92J2oJ+Qle/CtePCji1aM3/43bmoNWX1h4eGeG2XmDVAqNjvNpTUxOTc/MVuaq8wuLS8v2yuq5TjLFocUTmajLgGmQIoYWCpRwmSpgUSDhIrg+HtYvbkBpkcRnOEjBj1gvFqHgDI3Vsbc8hDvMobjapd6dhBCZUslt7vV1yjjs5G69waOi6Ng1p+6MRP+CW0KNlGp27A+vm/Asghi5ZFq3XSdFP2cKBZdQVL1Mg9lwzXrQNhizCLSfjw4q6KZxujRMlHkx0pH7cyJnkdaDKDCdEcO+Hq8Nzf9q7QzDAz8XcZohxPx7UZhJigkdpkO7QgFHOTDAuBLmr5T3mWIcTYZVE4I7fvJfOG/UXcOne7XDozKOClknG2SbuGSfHJIT0iQtwsk9eSTP5MV6sJ6sV+vtu3XCKmfWyC9Z7186t51P</latexit><latexit sha1_base64="RosRWn1XPg/JkNcusZTR8vB8iDw=">AAACEHicbZBNS8NAEIY3ftb6FfXoZbGIIliSIuhR9OKxglWhiWWznbSLmw92J2oJ+Qle/CtePCji1aM3/43bmoNWX1h4eGeG2XmDVAqNjvNpTUxOTc/MVuaq8wuLS8v2yuq5TjLFocUTmajLgGmQIoYWCpRwmSpgUSDhIrg+HtYvbkBpkcRnOEjBj1gvFqHgDI3Vsbc8hDvMobjapd6dhBCZUslt7vV1yjjs5G69waOi6Ng1p+6MRP+CW0KNlGp27A+vm/Asghi5ZFq3XSdFP2cKBZdQVL1Mg9lwzXrQNhizCLSfjw4q6KZxujRMlHkx0pH7cyJnkdaDKDCdEcO+Hq8Nzf9q7QzDAz8XcZohxPx7UZhJigkdpkO7QgFHOTDAuBLmr5T3mWIcTYZVE4I7fvJfOG/UXcOne7XDozKOClknG2SbuGSfHJIT0iQtwsk9eSTP5MV6sJ6sV+vtu3XCKmfWyC9Z7186t51P</latexit><latexit sha1_base64="RosRWn1XPg/JkNcusZTR8vB8iDw=">AAACEHicbZBNS8NAEIY3ftb6FfXoZbGIIliSIuhR9OKxglWhiWWznbSLmw92J2oJ+Qle/CtePCji1aM3/43bmoNWX1h4eGeG2XmDVAqNjvNpTUxOTc/MVuaq8wuLS8v2yuq5TjLFocUTmajLgGmQIoYWCpRwmSpgUSDhIrg+HtYvbkBpkcRnOEjBj1gvFqHgDI3Vsbc8hDvMobjapd6dhBCZUslt7vV1yjjs5G69waOi6Ng1p+6MRP+CW0KNlGp27A+vm/Asghi5ZFq3XSdFP2cKBZdQVL1Mg9lwzXrQNhizCLSfjw4q6KZxujRMlHkx0pH7cyJnkdaDKDCdEcO+Hq8Nzf9q7QzDAz8XcZohxPx7UZhJigkdpkO7QgFHOTDAuBLmr5T3mWIcTYZVE4I7fvJfOG/UXcOne7XDozKOClknG2SbuGSfHJIT0iQtwsk9eSTP5MV6sJ6sV+vtu3XCKmfWyC9Z7186t51P</latexit><latexit sha1_base64="RosRWn1XPg/JkNcusZTR8vB8iDw=">AAACEHicbZBNS8NAEIY3ftb6FfXoZbGIIliSIuhR9OKxglWhiWWznbSLmw92J2oJ+Qle/CtePCji1aM3/43bmoNWX1h4eGeG2XmDVAqNjvNpTUxOTc/MVuaq8wuLS8v2yuq5TjLFocUTmajLgGmQIoYWCpRwmSpgUSDhIrg+HtYvbkBpkcRnOEjBj1gvFqHgDI3Vsbc8hDvMobjapd6dhBCZUslt7vV1yjjs5G69waOi6Ng1p+6MRP+CW0KNlGp27A+vm/Asghi5ZFq3XSdFP2cKBZdQVL1Mg9lwzXrQNhizCLSfjw4q6KZxujRMlHkx0pH7cyJnkdaDKDCdEcO+Hq8Nzf9q7QzDAz8XcZohxPx7UZhJigkdpkO7QgFHOTDAuBLmr5T3mWIcTYZVE4I7fvJfOG/UXcOne7XDozKOClknG2SbuGSfHJIT0iQtwsk9eSTP5MV6sJ6sV+vtu3XCKmfWyC9Z7186t51P</latexit>
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<latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit><latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit><latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit><latexit sha1_base64="ck8pdC+ekZH4nUmSP+ZG7r8lEyk=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odOn4MoA7ncAFXEMIN3MEDdKALAhJ4hXdv4r15H6uuat66tDP4I+/zBzjGijg=</latexit><latexit sha1_base64="wCeQQCf8nwiepXrEfdaZhmQ3aQw=">AAACBHicbZDLSsNAFIZPvNZaNbp1EyyKuCiJG10KblxWsBdoSplMJ83QuYSZiVpC3sCNr+LGhSI+gzvfxknbhbYeOPDx/zOcc/4oZVQb3/92VlbX1jc2K1vV7drO7p67X2trmSlMWlgyqboR0oRRQVqGGka6qSKIR4x0ovF16XfuidJUijszSUmfo5GgMcXIWGngnoQcmSSK8/BR0VFikFLyIQ8TnSJMznK/EWBeFMXArfsNf1reMgRzqMO8mgP3KxxKnHEiDGZI617gp6afI2UoZqSohpkmdsQYjUjPokCc6H4+vafwjq0y9GKpbAvjTdXfP3LEtZ7wyL4st9eLXin+5/UyE1/2cyrSzBCBZ4PijHlGemU43pAqgg2bWEBYUburhxOkEDY2wqoNIVg8eRna543A8q0PFTiEIziFAC7gCm6gCS3A8AQv8AbvzrPz6nzM4lpx5rkdwJ9yPn8AYxWb2Q==</latexit><latexit sha1_base64="wCeQQCf8nwiepXrEfdaZhmQ3aQw=">AAACBHicbZDLSsNAFIZPvNZaNbp1EyyKuCiJG10KblxWsBdoSplMJ83QuYSZiVpC3sCNr+LGhSI+gzvfxknbhbYeOPDx/zOcc/4oZVQb3/92VlbX1jc2K1vV7drO7p67X2trmSlMWlgyqboR0oRRQVqGGka6qSKIR4x0ovF16XfuidJUijszSUmfo5GgMcXIWGngnoQcmSSK8/BR0VFikFLyIQ8TnSJMznK/EWBeFMXArfsNf1reMgRzqMO8mgP3KxxKnHEiDGZI617gp6afI2UoZqSohpkmdsQYjUjPokCc6H4+vafwjq0y9GKpbAvjTdXfP3LEtZ7wyL4st9eLXin+5/UyE1/2cyrSzBCBZ4PijHlGemU43pAqgg2bWEBYUburhxOkEDY2wqoNIVg8eRna543A8q0PFTiEIziFAC7gCm6gCS3A8AQv8AbvzrPz6nzM4lpx5rkdwJ9yPn8AYxWb2Q==</latexit><latexit sha1_base64="znspkTXC6F4vh6lCzpMpFBTYdFY=">AAACD3icbVC7TsNAEDyHVwgvAyWNRQRCFJFNA2UEDWWQyEOKreh8Ocen3MO6OwOR5T+g4VdoKECIlpaOv+GcuICEkVYazexqdydMKFHadb+tytLyyupadb22sbm1vWPv7nWUSCXCbSSokL0QKkwJx21NNMW9RGLIQoq74fiq8Lt3WCoi+K2eJDhgcMRJRBDURhrYxz6DOg6jzH+QZBRrKKW4z/xYJRDh08xteIjleT6w627DncJZJF5J6qBEa2B/+UOBUoa5RhQq1ffcRAcZlJogivOanypsVozhCPcN5ZBhFWTTf3LnyChDJxLSFNfOVP09kUGm1ISFprO4Xs17hfif1091dBFkhCepxhzNFkUpdbRwinCcIZEYaToxBCJJzK0OiqGESJsIayYEb/7lRdI5a3iG37j15mUZRxUcgENwAjxwDprgGrRAGyDwCJ7BK3iznqwX6936mLVWrHJmH/yB9fkDI0WdTw==</latexit><latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit><latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit><latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit><latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit><latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit><latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit>

SSE + x A
<latexit sha1_base64="l+7MYEgyZg4b44s8VZo1hjlKwvM=">AAACBXicbZDLSsNAFIYn9VbrLepSF4NFEJSSiKDLqgguK7UXaEKZTKft0MmFmRNpCdm48VXcuFDEre/gzrdx2mahrT8MfPznHM6c34sEV2BZ30ZuYXFpeSW/Wlhb39jcMrd36iqMJWU1GopQNj2imOABqwEHwZqRZMT3BGt4g+txvfHApOJhcA+jiLk+6QW8yykBbbXNfQfYEJJq9SZ1MD528NA5wVPvMm2bRatkTYTnwc6giDJV2uaX0wlp7LMAqCBKtWwrAjchEjgVLC04sWIRoQPSYy2NAfGZcpPJFSk+1E4Hd0OpXwB44v6eSIiv1Mj3dKdPoK9ma2Pzv1orhu6Fm/AgioEFdLqoGwsMIR5HgjtcMgpipIFQyfVfMe0TSSjo4Ao6BHv25Hmon5ZszXdnxfJVFkce7aEDdIRsdI7K6BZVUA1R9Iie0St6M56MF+Pd+Ji25oxsZhf9kfH5A95Pl4Q=</latexit><latexit sha1_base64="l+7MYEgyZg4b44s8VZo1hjlKwvM=">AAACBXicbZDLSsNAFIYn9VbrLepSF4NFEJSSiKDLqgguK7UXaEKZTKft0MmFmRNpCdm48VXcuFDEre/gzrdx2mahrT8MfPznHM6c34sEV2BZ30ZuYXFpeSW/Wlhb39jcMrd36iqMJWU1GopQNj2imOABqwEHwZqRZMT3BGt4g+txvfHApOJhcA+jiLk+6QW8yykBbbXNfQfYEJJq9SZ1MD528NA5wVPvMm2bRatkTYTnwc6giDJV2uaX0wlp7LMAqCBKtWwrAjchEjgVLC04sWIRoQPSYy2NAfGZcpPJFSk+1E4Hd0OpXwB44v6eSIiv1Mj3dKdPoK9ma2Pzv1orhu6Fm/AgioEFdLqoGwsMIR5HgjtcMgpipIFQyfVfMe0TSSjo4Ao6BHv25Hmon5ZszXdnxfJVFkce7aEDdIRsdI7K6BZVUA1R9Iie0St6M56MF+Pd+Ji25oxsZhf9kfH5A95Pl4Q=</latexit><latexit sha1_base64="l+7MYEgyZg4b44s8VZo1hjlKwvM=">AAACBXicbZDLSsNAFIYn9VbrLepSF4NFEJSSiKDLqgguK7UXaEKZTKft0MmFmRNpCdm48VXcuFDEre/gzrdx2mahrT8MfPznHM6c34sEV2BZ30ZuYXFpeSW/Wlhb39jcMrd36iqMJWU1GopQNj2imOABqwEHwZqRZMT3BGt4g+txvfHApOJhcA+jiLk+6QW8yykBbbXNfQfYEJJq9SZ1MD528NA5wVPvMm2bRatkTYTnwc6giDJV2uaX0wlp7LMAqCBKtWwrAjchEjgVLC04sWIRoQPSYy2NAfGZcpPJFSk+1E4Hd0OpXwB44v6eSIiv1Mj3dKdPoK9ma2Pzv1orhu6Fm/AgioEFdLqoGwsMIR5HgjtcMgpipIFQyfVfMe0TSSjo4Ao6BHv25Hmon5ZszXdnxfJVFkce7aEDdIRsdI7K6BZVUA1R9Iie0St6M56MF+Pd+Ji25oxsZhf9kfH5A95Pl4Q=</latexit><latexit sha1_base64="l+7MYEgyZg4b44s8VZo1hjlKwvM=">AAACBXicbZDLSsNAFIYn9VbrLepSF4NFEJSSiKDLqgguK7UXaEKZTKft0MmFmRNpCdm48VXcuFDEre/gzrdx2mahrT8MfPznHM6c34sEV2BZ30ZuYXFpeSW/Wlhb39jcMrd36iqMJWU1GopQNj2imOABqwEHwZqRZMT3BGt4g+txvfHApOJhcA+jiLk+6QW8yykBbbXNfQfYEJJq9SZ1MD528NA5wVPvMm2bRatkTYTnwc6giDJV2uaX0wlp7LMAqCBKtWwrAjchEjgVLC04sWIRoQPSYy2NAfGZcpPJFSk+1E4Hd0OpXwB44v6eSIiv1Mj3dKdPoK9ma2Pzv1orhu6Fm/AgioEFdLqoGwsMIR5HgjtcMgpipIFQyfVfMe0TSSjo4Ao6BHv25Hmon5ZszXdnxfJVFkce7aEDdIRsdI7K6BZVUA1R9Iie0St6M56MF+Pd+Ji25oxsZhf9kfH5A95Pl4Q=</latexit>

�!<latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit><latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit><latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit><latexit sha1_base64="ck8pdC+ekZH4nUmSP+ZG7r8lEyk=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odOn4MoA7ncAFXEMIN3MEDdKALAhJ4hXdv4r15H6uuat66tDP4I+/zBzjGijg=</latexit><latexit sha1_base64="wCeQQCf8nwiepXrEfdaZhmQ3aQw=">AAACBHicbZDLSsNAFIZPvNZaNbp1EyyKuCiJG10KblxWsBdoSplMJ83QuYSZiVpC3sCNr+LGhSI+gzvfxknbhbYeOPDx/zOcc/4oZVQb3/92VlbX1jc2K1vV7drO7p67X2trmSlMWlgyqboR0oRRQVqGGka6qSKIR4x0ovF16XfuidJUijszSUmfo5GgMcXIWGngnoQcmSSK8/BR0VFikFLyIQ8TnSJMznK/EWBeFMXArfsNf1reMgRzqMO8mgP3KxxKnHEiDGZI617gp6afI2UoZqSohpkmdsQYjUjPokCc6H4+vafwjq0y9GKpbAvjTdXfP3LEtZ7wyL4st9eLXin+5/UyE1/2cyrSzBCBZ4PijHlGemU43pAqgg2bWEBYUburhxOkEDY2wqoNIVg8eRna543A8q0PFTiEIziFAC7gCm6gCS3A8AQv8AbvzrPz6nzM4lpx5rkdwJ9yPn8AYxWb2Q==</latexit><latexit sha1_base64="wCeQQCf8nwiepXrEfdaZhmQ3aQw=">AAACBHicbZDLSsNAFIZPvNZaNbp1EyyKuCiJG10KblxWsBdoSplMJ83QuYSZiVpC3sCNr+LGhSI+gzvfxknbhbYeOPDx/zOcc/4oZVQb3/92VlbX1jc2K1vV7drO7p67X2trmSlMWlgyqboR0oRRQVqGGka6qSKIR4x0ovF16XfuidJUijszSUmfo5GgMcXIWGngnoQcmSSK8/BR0VFikFLyIQ8TnSJMznK/EWBeFMXArfsNf1reMgRzqMO8mgP3KxxKnHEiDGZI617gp6afI2UoZqSohpkmdsQYjUjPokCc6H4+vafwjq0y9GKpbAvjTdXfP3LEtZ7wyL4st9eLXin+5/UyE1/2cyrSzBCBZ4PijHlGemU43pAqgg2bWEBYUburhxOkEDY2wqoNIVg8eRna543A8q0PFTiEIziFAC7gCm6gCS3A8AQv8AbvzrPz6nzM4lpx5rkdwJ9yPn8AYxWb2Q==</latexit><latexit sha1_base64="znspkTXC6F4vh6lCzpMpFBTYdFY=">AAACD3icbVC7TsNAEDyHVwgvAyWNRQRCFJFNA2UEDWWQyEOKreh8Ocen3MO6OwOR5T+g4VdoKECIlpaOv+GcuICEkVYazexqdydMKFHadb+tytLyyupadb22sbm1vWPv7nWUSCXCbSSokL0QKkwJx21NNMW9RGLIQoq74fiq8Lt3WCoi+K2eJDhgcMRJRBDURhrYxz6DOg6jzH+QZBRrKKW4z/xYJRDh08xteIjleT6w627DncJZJF5J6qBEa2B/+UOBUoa5RhQq1ffcRAcZlJogivOanypsVozhCPcN5ZBhFWTTf3LnyChDJxLSFNfOVP09kUGm1ISFprO4Xs17hfif1091dBFkhCepxhzNFkUpdbRwinCcIZEYaToxBCJJzK0OiqGESJsIayYEb/7lRdI5a3iG37j15mUZRxUcgENwAjxwDprgGrRAGyDwCJ7BK3iznqwX6936mLVWrHJmH/yB9fkDI0WdTw==</latexit><latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit><latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit><latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit><latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit><latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit><latexit sha1_base64="4pBcafeNfQGzTyhpRR3mughtyH8=">AAACD3icbVDLSsNAFJ34rPUVdekmWBRxURIRdFl047KCfUATymQ6aYbOI8xM1BLyB278FTcuFHHr1p1/46TNQlsPXDiccy/33hMmlCjtut/WwuLS8spqZa26vrG5tW3v7LaVSCXCLSSokN0QKkwJxy1NNMXdRGLIQoo74eiq8Dt3WCoi+K0eJzhgcMhJRBDURurbRz6DOg6jzH+QZBhrKKW4z/xYJRDhk8yte4jled63a27dncCZJ15JaqBEs29/+QOBUoa5RhQq1fPcRAcZlJogivOqnypsVozgEPcM5ZBhFWSTf3Ln0CgDJxLSFNfORP09kUGm1JiFprO4Xs16hfif10t1dBFkhCepxhxNF0UpdbRwinCcAZEYaTo2BCJJzK0OiqGESJsIqyYEb/bledI+rXuG35zVGpdlHBWwDw7AMfDAOWiAa9AELYDAI3gGr+DNerJerHfrY9q6YJUze+APrM8fJIWdUw==</latexit>

D1 + D2 + · · ·
<latexit sha1_base64="rD6CwwAOgZtFN5xWwV+dBh5x6tc=">AAACC3icbVDLSsNAFJ34rPUVdelmaBEEoSRF0GVRFy4r2Ac0oUwm03boJBNmbsQSunfjr7hxoYhbf8Cdf+O0jaCtBwbOPede7twTJIJrcJwva2l5ZXVtvbBR3Nza3tm19/abWqaKsgaVQqp2QDQTPGYN4CBYO1GMRIFgrWB4OfFbd0xpLuNbGCXMj0g/5j1OCRipa5c8YPeQXY1dD594+Keqmgp7NJSgcdcuOxVnCrxI3JyUUY561/70QknTiMVABdG64zoJ+BlRwKlg46KXapYQOiR91jE0JhHTfja9ZYyPjBLinlTmxYCn6u+JjERaj6LAdEYEBnrem4j/eZ0Ueud+xuMkBRbT2aJeKjBIPAkGh1wxCmJkCKGKm79iOiCKUDDxFU0I7vzJi6RZrbiG35yWaxd5HAV0iEroGLnoDNXQNaqjBqLoAT2hF/RqPVrP1pv1PmtdsvKZA/QH1sc31kqZnw==</latexit><latexit sha1_base64="rD6CwwAOgZtFN5xWwV+dBh5x6tc=">AAACC3icbVDLSsNAFJ34rPUVdelmaBEEoSRF0GVRFy4r2Ac0oUwm03boJBNmbsQSunfjr7hxoYhbf8Cdf+O0jaCtBwbOPede7twTJIJrcJwva2l5ZXVtvbBR3Nza3tm19/abWqaKsgaVQqp2QDQTPGYN4CBYO1GMRIFgrWB4OfFbd0xpLuNbGCXMj0g/5j1OCRipa5c8YPeQXY1dD594+Keqmgp7NJSgcdcuOxVnCrxI3JyUUY561/70QknTiMVABdG64zoJ+BlRwKlg46KXapYQOiR91jE0JhHTfja9ZYyPjBLinlTmxYCn6u+JjERaj6LAdEYEBnrem4j/eZ0Ueud+xuMkBRbT2aJeKjBIPAkGh1wxCmJkCKGKm79iOiCKUDDxFU0I7vzJi6RZrbiG35yWaxd5HAV0iEroGLnoDNXQNaqjBqLoAT2hF/RqPVrP1pv1PmtdsvKZA/QH1sc31kqZnw==</latexit><latexit sha1_base64="rD6CwwAOgZtFN5xWwV+dBh5x6tc=">AAACC3icbVDLSsNAFJ34rPUVdelmaBEEoSRF0GVRFy4r2Ac0oUwm03boJBNmbsQSunfjr7hxoYhbf8Cdf+O0jaCtBwbOPede7twTJIJrcJwva2l5ZXVtvbBR3Nza3tm19/abWqaKsgaVQqp2QDQTPGYN4CBYO1GMRIFgrWB4OfFbd0xpLuNbGCXMj0g/5j1OCRipa5c8YPeQXY1dD594+Keqmgp7NJSgcdcuOxVnCrxI3JyUUY561/70QknTiMVABdG64zoJ+BlRwKlg46KXapYQOiR91jE0JhHTfja9ZYyPjBLinlTmxYCn6u+JjERaj6LAdEYEBnrem4j/eZ0Ueud+xuMkBRbT2aJeKjBIPAkGh1wxCmJkCKGKm79iOiCKUDDxFU0I7vzJi6RZrbiG35yWaxd5HAV0iEroGLnoDNXQNaqjBqLoAT2hF/RqPVrP1pv1PmtdsvKZA/QH1sc31kqZnw==</latexit><latexit sha1_base64="ck8pdC+ekZH4nUmSP+ZG7r8lEyk=">AAAB2XicbZDNSgMxFIXv1L86Vq1rN8EiuCozbnQpuHFZwbZCO5RM5k4bmskMyR2hDH0BF25EfC93vo3pz0JbDwQ+zknIvSculLQUBN9ebWd3b/+gfugfNfzjk9Nmo2fz0gjsilzl5jnmFpXU2CVJCp8LgzyLFfbj6f0i77+gsTLXTzQrMMr4WMtUCk7O6oyaraAdLMW2IVxDC9YaNb+GSS7KDDUJxa0dhEFBUcUNSaFw7g9LiwUXUz7GgUPNM7RRtRxzzi6dk7A0N+5oYkv394uKZ9bOstjdzDhN7Ga2MP/LBiWlt1EldVESarH6KC0Vo5wtdmaJNChIzRxwYaSblYkJN1yQa8Z3HYSbG29D77odOn4MoA7ncAFXEMIN3MEDdKALAhJ4hXdv4r15H6uuat66tDP4I+/zBzjGijg=</latexit><latexit sha1_base64="mkCqu8oRgoo5j7EvOHohohu5ybk=">AAACAHicbZDLSgMxFIbPeK216ujWTWgRBKHMdKNLQRcuK9gLdIaSyWTa0MyF5IxYhu7d+CpuXCjiU7jzbUwvgrYeCHzn/3NIzh9kUmh0nC9rbX1jc2u7tFPereztH9iHlbZOc8V4i6UyVd2Aai5FwlsoUPJupjiNA8k7wehq6nfuudIiTe5wnHE/poNERIJRNFLfrnrIH7C4nrgeOfPIT9cwHfFYmKImfbvm1J1ZkVVwF1CDRTX79qcXpiyPeYJMUq17rpOhX1CFgkk+KXu55hllIzrgPYMJjbn2i9kuE3JilJBEqTInQTJTf08UNNZ6HAfmZkxxqJe9qfif18sxuvALkWQ58oTNH4pySTAl02BIKBRnKMcGKFPC/JWwIVWUoYmvbEJwl1dehXaj7hq+daAEx1CFU3DhHC7hBprQAgaP8Ayv8GY9WS/W+zyuNWuR2xH8KevjGzztmCk=</latexit><latexit sha1_base64="mkCqu8oRgoo5j7EvOHohohu5ybk=">AAACAHicbZDLSgMxFIbPeK216ujWTWgRBKHMdKNLQRcuK9gLdIaSyWTa0MyF5IxYhu7d+CpuXCjiU7jzbUwvgrYeCHzn/3NIzh9kUmh0nC9rbX1jc2u7tFPereztH9iHlbZOc8V4i6UyVd2Aai5FwlsoUPJupjiNA8k7wehq6nfuudIiTe5wnHE/poNERIJRNFLfrnrIH7C4nrgeOfPIT9cwHfFYmKImfbvm1J1ZkVVwF1CDRTX79qcXpiyPeYJMUq17rpOhX1CFgkk+KXu55hllIzrgPYMJjbn2i9kuE3JilJBEqTInQTJTf08UNNZ6HAfmZkxxqJe9qfif18sxuvALkWQ58oTNH4pySTAl02BIKBRnKMcGKFPC/JWwIVWUoYmvbEJwl1dehXaj7hq+daAEx1CFU3DhHC7hBprQAgaP8Ayv8GY9WS/W+zyuNWuR2xH8KevjGzztmCk=</latexit><latexit sha1_base64="yQ0d/tgKAQnbzuDE0fES6crPI2Y=">AAACC3icbVDLSsNAFJ3UV62vqEs3Q4sgCCXpRpdFXbisYB/QlDKZTNqhk0yYuRFL6N6Nv+LGhSJu/QF3/o3TNoK2Hhg495x7uXOPnwiuwXG+rMLK6tr6RnGztLW9s7tn7x+0tEwVZU0qhVQdn2gmeMyawEGwTqIYiXzB2v7ocuq375jSXMa3ME5YLyKDmIecEjBS3y57wO4hu5q4Hj718E9VMxX2aCBB475dcarODHiZuDmpoByNvv3pBZKmEYuBCqJ113US6GVEAaeCTUpeqllC6IgMWNfQmERM97LZLRN8bJQAh1KZFwOeqb8nMhJpPY580xkRGOpFbyr+53VTCM97GY+TFFhM54vCVGCQeBoMDrhiFMTYEEIVN3/FdEgUoWDiK5kQ3MWTl0mrVnUNv3Eq9Ys8jiI6QmV0glx0huroGjVQE1H0gJ7QC3q1Hq1n6816n7cWrHzmEP2B9fEN1QqZmw==</latexit><latexit sha1_base64="rD6CwwAOgZtFN5xWwV+dBh5x6tc=">AAACC3icbVDLSsNAFJ34rPUVdelmaBEEoSRF0GVRFy4r2Ac0oUwm03boJBNmbsQSunfjr7hxoYhbf8Cdf+O0jaCtBwbOPede7twTJIJrcJwva2l5ZXVtvbBR3Nza3tm19/abWqaKsgaVQqp2QDQTPGYN4CBYO1GMRIFgrWB4OfFbd0xpLuNbGCXMj0g/5j1OCRipa5c8YPeQXY1dD594+Keqmgp7NJSgcdcuOxVnCrxI3JyUUY561/70QknTiMVABdG64zoJ+BlRwKlg46KXapYQOiR91jE0JhHTfja9ZYyPjBLinlTmxYCn6u+JjERaj6LAdEYEBnrem4j/eZ0Ueud+xuMkBRbT2aJeKjBIPAkGh1wxCmJkCKGKm79iOiCKUDDxFU0I7vzJi6RZrbiG35yWaxd5HAV0iEroGLnoDNXQNaqjBqLoAT2hF/RqPVrP1pv1PmtdsvKZA/QH1sc31kqZnw==</latexit><latexit sha1_base64="rD6CwwAOgZtFN5xWwV+dBh5x6tc=">AAACC3icbVDLSsNAFJ34rPUVdelmaBEEoSRF0GVRFy4r2Ac0oUwm03boJBNmbsQSunfjr7hxoYhbf8Cdf+O0jaCtBwbOPede7twTJIJrcJwva2l5ZXVtvbBR3Nza3tm19/abWqaKsgaVQqp2QDQTPGYN4CBYO1GMRIFgrWB4OfFbd0xpLuNbGCXMj0g/5j1OCRipa5c8YPeQXY1dD594+Keqmgp7NJSgcdcuOxVnCrxI3JyUUY561/70QknTiMVABdG64zoJ+BlRwKlg46KXapYQOiR91jE0JhHTfja9ZYyPjBLinlTmxYCn6u+JjERaj6LAdEYEBnrem4j/eZ0Ueud+xuMkBRbT2aJeKjBIPAkGh1wxCmJkCKGKm79iOiCKUDDxFU0I7vzJi6RZrbiG35yWaxd5HAV0iEroGLnoDNXQNaqjBqLoAT2hF/RqPVrP1pv1PmtdsvKZA/QH1sc31kqZnw==</latexit><latexit sha1_base64="rD6CwwAOgZtFN5xWwV+dBh5x6tc=">AAACC3icbVDLSsNAFJ34rPUVdelmaBEEoSRF0GVRFy4r2Ac0oUwm03boJBNmbsQSunfjr7hxoYhbf8Cdf+O0jaCtBwbOPede7twTJIJrcJwva2l5ZXVtvbBR3Nza3tm19/abWqaKsgaVQqp2QDQTPGYN4CBYO1GMRIFgrWB4OfFbd0xpLuNbGCXMj0g/5j1OCRipa5c8YPeQXY1dD594+Keqmgp7NJSgcdcuOxVnCrxI3JyUUY561/70QknTiMVABdG64zoJ+BlRwKlg46KXapYQOiR91jE0JhHTfja9ZYyPjBLinlTmxYCn6u+JjERaj6LAdEYEBnrem4j/eZ0Ueud+xuMkBRbT2aJeKjBIPAkGh1wxCmJkCKGKm79iOiCKUDDxFU0I7vzJi6RZrbiG35yWaxd5HAV0iEroGLnoDNXQNaqjBqLoAT2hF/RqPVrP1pv1PmtdsvKZA/QH1sc31kqZnw==</latexit><latexit sha1_base64="rD6CwwAOgZtFN5xWwV+dBh5x6tc=">AAACC3icbVDLSsNAFJ34rPUVdelmaBEEoSRF0GVRFy4r2Ac0oUwm03boJBNmbsQSunfjr7hxoYhbf8Cdf+O0jaCtBwbOPede7twTJIJrcJwva2l5ZXVtvbBR3Nza3tm19/abWqaKsgaVQqp2QDQTPGYN4CBYO1GMRIFgrWB4OfFbd0xpLuNbGCXMj0g/5j1OCRipa5c8YPeQXY1dD594+Keqmgp7NJSgcdcuOxVnCrxI3JyUUY561/70QknTiMVABdG64zoJ+BlRwKlg46KXapYQOiR91jE0JhHTfja9ZYyPjBLinlTmxYCn6u+JjERaj6LAdEYEBnrem4j/eZ0Ueud+xuMkBRbT2aJeKjBIPAkGh1wxCmJkCKGKm79iOiCKUDDxFU0I7vzJi6RZrbiG35yWaxd5HAV0iEroGLnoDNXQNaqjBqLoAT2hF/RqPVrP1pv1PmtdsvKZA/QH1sc31kqZnw==</latexit><latexit sha1_base64="rD6CwwAOgZtFN5xWwV+dBh5x6tc=">AAACC3icbVDLSsNAFJ34rPUVdelmaBEEoSRF0GVRFy4r2Ac0oUwm03boJBNmbsQSunfjr7hxoYhbf8Cdf+O0jaCtBwbOPede7twTJIJrcJwva2l5ZXVtvbBR3Nza3tm19/abWqaKsgaVQqp2QDQTPGYN4CBYO1GMRIFgrWB4OfFbd0xpLuNbGCXMj0g/5j1OCRipa5c8YPeQXY1dD594+Keqmgp7NJSgcdcuOxVnCrxI3JyUUY561/70QknTiMVABdG64zoJ+BlRwKlg46KXapYQOiR91jE0JhHTfja9ZYyPjBLinlTmxYCn6u+JjERaj6LAdEYEBnrem4j/eZ0Ueud+xuMkBRbT2aJeKjBIPAkGh1wxCmJkCKGKm79iOiCKUDDxFU0I7vzJi6RZrbiG35yWaxd5HAV0iEroGLnoDNXQNaqjBqLoAT2hF/RqPVrP1pv1PmtdsvKZA/QH1sc31kqZnw==</latexit><latexit sha1_base64="rD6CwwAOgZtFN5xWwV+dBh5x6tc=">AAACC3icbVDLSsNAFJ34rPUVdelmaBEEoSRF0GVRFy4r2Ac0oUwm03boJBNmbsQSunfjr7hxoYhbf8Cdf+O0jaCtBwbOPede7twTJIJrcJwva2l5ZXVtvbBR3Nza3tm19/abWqaKsgaVQqp2QDQTPGYN4CBYO1GMRIFgrWB4OfFbd0xpLuNbGCXMj0g/5j1OCRipa5c8YPeQXY1dD594+Keqmgp7NJSgcdcuOxVnCrxI3JyUUY561/70QknTiMVABdG64zoJ+BlRwKlg46KXapYQOiR91jE0JhHTfja9ZYyPjBLinlTmxYCn6u+JjERaj6LAdEYEBnrem4j/eZ0Ueud+xuMkBRbT2aJeKjBIPAkGh1wxCmJkCKGKm79iOiCKUDDxFU0I7vzJi6RZrbiG35yWaxd5HAV0iEroGLnoDNXQNaqjBqLoAT2hF/RqPVrP1pv1PmtdsvKZA/QH1sc31kqZnw==</latexit>

A �
<latexit sha1_base64="wrRrw9qc0y+LBHOrKXDqLC603aM=">AAACDnicbZA9SwNBEIb34leMX6eWNoshIBbhLghaRm0sI5gYyIWwt5kzi3sf7M5pwnG/wMa/YmOhiK21nf/GTUyhiS8sPLwzw+y8fiKFRsf5sgoLi0vLK8XV0tr6xuaWvb3T0nGqODR5LGPV9pkGKSJookAJ7UQBC30J1/7t+bh+fQdKizi6wlEC3ZDdRCIQnKGxenbFQxhidppTbyghQKZUfJ95A50wDoeZU63xMM97dtmpOhPReXCnUCZTNXr2p9ePeRpChFwyrTuuk2A3YwoFl5CXvFSD2XDLbqBjMGIh6G42OSenFeP0aRAr8yKkE/f3RMZCrUehbzpDhgM9Wxub/9U6KQYn3UxESYoQ8Z9FQSopxnScDe0LBRzlyADjSpi/Uj5ginE0CZZMCO7syfPQqlVdw5dH5frZNI4i2SP75IC45JjUyQVpkCbh5IE8kRfyaj1az9ab9f7TWrCmM7vkj6yPb8nqnIs=</latexit><latexit sha1_base64="wrRrw9qc0y+LBHOrKXDqLC603aM=">AAACDnicbZA9SwNBEIb34leMX6eWNoshIBbhLghaRm0sI5gYyIWwt5kzi3sf7M5pwnG/wMa/YmOhiK21nf/GTUyhiS8sPLwzw+y8fiKFRsf5sgoLi0vLK8XV0tr6xuaWvb3T0nGqODR5LGPV9pkGKSJookAJ7UQBC30J1/7t+bh+fQdKizi6wlEC3ZDdRCIQnKGxenbFQxhidppTbyghQKZUfJ95A50wDoeZU63xMM97dtmpOhPReXCnUCZTNXr2p9ePeRpChFwyrTuuk2A3YwoFl5CXvFSD2XDLbqBjMGIh6G42OSenFeP0aRAr8yKkE/f3RMZCrUehbzpDhgM9Wxub/9U6KQYn3UxESYoQ8Z9FQSopxnScDe0LBRzlyADjSpi/Uj5ginE0CZZMCO7syfPQqlVdw5dH5frZNI4i2SP75IC45JjUyQVpkCbh5IE8kRfyaj1az9ab9f7TWrCmM7vkj6yPb8nqnIs=</latexit><latexit sha1_base64="wrRrw9qc0y+LBHOrKXDqLC603aM=">AAACDnicbZA9SwNBEIb34leMX6eWNoshIBbhLghaRm0sI5gYyIWwt5kzi3sf7M5pwnG/wMa/YmOhiK21nf/GTUyhiS8sPLwzw+y8fiKFRsf5sgoLi0vLK8XV0tr6xuaWvb3T0nGqODR5LGPV9pkGKSJookAJ7UQBC30J1/7t+bh+fQdKizi6wlEC3ZDdRCIQnKGxenbFQxhidppTbyghQKZUfJ95A50wDoeZU63xMM97dtmpOhPReXCnUCZTNXr2p9ePeRpChFwyrTuuk2A3YwoFl5CXvFSD2XDLbqBjMGIh6G42OSenFeP0aRAr8yKkE/f3RMZCrUehbzpDhgM9Wxub/9U6KQYn3UxESYoQ8Z9FQSopxnScDe0LBRzlyADjSpi/Uj5ginE0CZZMCO7syfPQqlVdw5dH5frZNI4i2SP75IC45JjUyQVpkCbh5IE8kRfyaj1az9ab9f7TWrCmM7vkj6yPb8nqnIs=</latexit><latexit sha1_base64="wrRrw9qc0y+LBHOrKXDqLC603aM=">AAACDnicbZA9SwNBEIb34leMX6eWNoshIBbhLghaRm0sI5gYyIWwt5kzi3sf7M5pwnG/wMa/YmOhiK21nf/GTUyhiS8sPLwzw+y8fiKFRsf5sgoLi0vLK8XV0tr6xuaWvb3T0nGqODR5LGPV9pkGKSJookAJ7UQBC30J1/7t+bh+fQdKizi6wlEC3ZDdRCIQnKGxenbFQxhidppTbyghQKZUfJ95A50wDoeZU63xMM97dtmpOhPReXCnUCZTNXr2p9ePeRpChFwyrTuuk2A3YwoFl5CXvFSD2XDLbqBjMGIh6G42OSenFeP0aRAr8yKkE/f3RMZCrUehbzpDhgM9Wxub/9U6KQYn3UxESYoQ8Z9FQSopxnScDe0LBRzlyADjSpi/Uj5ginE0CZZMCO7syfPQqlVdw5dH5frZNI4i2SP75IC45JjUyQVpkCbh5IE8kRfyaj1az9ab9f7TWrCmM7vkj6yPb8nqnIs=</latexit>

E
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Figure 6.1 – The same SSE instability reaction in a closed-circuit cell (a) and open-circuit cell
(b). CE = counter electrode, RI = reaction interface, E = electrode, A = mobile species (Li, Na,
. . . ).

reservoirs. Therefore, the compensating ions for the instability reaction can also be provided

in an open-circuit ASSB from electrode E itself across the same electrode–SSE interface RI as

the electrons. The combination of electron and ion transfer represents a transfer of neutral

mobile atoms between electrode and SSE, Figure 6.1b.

According to this reasoning, a general electrochemical SSE instability reaction is written

SSE + x A −→ D1 + D2 + ·· · (6.1)

where A = Li, Na, ... denotes the mobile species within an SSE material and D1, . . . denotes

different decomposition products. The coefficient x can be positive or negative, depending on

the direction of A-transfer. Reaction (6.1) represents the overall cell reaction of Figure 6.1. The

electrochemical character becomes more obvious from the corresponding half-cell reaction at

the electrode–SSE interface RI,

SSE + x A++ x e− −→ D1 + D2 + ·· · (6.2)

Thus, for x > 0 the instability reaction is an SSE reduction, and for x < 0 an SSE oxidation. If an

A-metal counter electrode is used, the counter half-cell reaction is simply given by

x A −→ x A+ + x e− (6.3)

i.e. A-metal oxidation for x > 0 or plating for x < 0. The equilibrium potential of the electro-

chemical SSE instability reaction (6.2) versus the reference electrode reaction (6.3) is expressed

by the Nernst equation in terms of the Gibbs free energy of the overall cell reaction (6.1), cf.

85



Chapter 6. Comparison of computational methods for the electrochemical stability
window of solid-state electrolyte materials

Supporting Information for derivation,

Φeq =−∆G

e x
=−1

e

(
GD1 +GD2 +·· ·−GSSE

x
−GA

)
(6.4)

where Gi denotes the Gibbs free energy of compound i . For x > 0 (SSE reduction), reaction (6.2)

proceeds if the SSE material is in contact with an electrode potential Φ < Φeq. Vice versa,

for x < 0 (SSE oxidation), reaction (6.2) proceeds if the SSE material is in contact with an

electrode potentialΦ>Φeq. The equilibrium potentials of all possible SSE instability reactions

of type (6.1) yield an electrochemical series of SSE reduction and oxidation potentials. The

limiting SSE reduction potentialΦred is given by the maximum of all equilibrium potentials

for reactions with x > 0,Φred = max({Φeq,i |xi > 0}), and the limiting SSE oxidation potential

Φox by the minimum of all equilibrium potentials for x < 0, Φox = min({Φeq, j |x j < 0}). For

electrode potentials Φred <Φ<Φox, no reduction or oxidation of the SSE occurs. Therefore,

the potential range [Φred ,Φox] is the electrochemical stability window of the SSE material.

Different computational methods have been applied to determine the electrochemical stability

window. The positions of the electronic HOMO and LUMO states, i.e. the valence and

conduction band edges, provide an estimate of the electrochemical stability window [146, 147,

148]. In this approach, the electrode in contact with the SSE is regarded as “electron reservoir”

and only electron transfer between electrode and SSE is considered. The “HOMO–LUMO

method” allows for a rather quick estimation of the width of the stability window in terms of

the electronic band gap. However, its absolute position with respect to a reference electrode

is difficult to determine with this methodology [147] because of the dipole at the electrode–

SSE interface that shifts the relative positions of electronic states. Furthermore, because the

electrode is assumed chemically inert, the HOMO–LUMO gap is considered only an upper

bound for the electrochemical stability window [148, 142].

The interface dipole problem is avoided by considering combined electron and ion transfer

between SSE and electrode, i.e. transfer of neutral mobile Li- or Na-atoms, as described by

reactions (6.1) and (6.2). The dipole does not affect the energies of charge-neutral states. Thus,

the absolute position of the stability window w.r.t. a reference potential can be conveniently

determined from bulk computations. Two different cases are distinguished corresponding to

two different methods to compute the stability window.

The first method considers reactions of type (6.1) in the limit of small x where the only prod-

uct is the same SSE phase with a changed stoichiometry of the mobile species. Accordingly,

we denote it “stoichiometry stability method” in the following. Such processes are similar

to Li-insertion or Li-extraction reactions in electro-active electrode materials. Whereas in

the latter case such reactions are part of the required function, for an SSE they represent

an instability. This method was applied to compute the Li-insertion potentials of various

garnet-type Li-SSE materials [149], the Li-insertion and Li-extraction potentials of LGPS [150],

and the Na-extraction potentials of various Na-SSE materials [151]. A similar defect chemistry-

derived perspective on SSE stability was adopted to investigate the instability of Li4P2S6 SSE
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against metallic Li [152]. Although this type of instability reaction is sometimes referred to

as “topochemical” or “topotactic”, we believe that this terminology must be used with care,

because, strictly speaking, the latter terms denote an insertion reaction “that results in signifi-

cant structural modifications to the host”, as defined by IUPAC [153]. In contrast, apart from

some local relaxation, the SSE structure is usually considered unchanged when computing

the insertion/extraction potentials of mobile species by filling/generating vacancies within

the SSE host structure.

On the contrary, the “phase stability method” considers reactions of type (6.1) that result in

major decomposition of the SSE phase into several different product phases. This is typically

done by constructing the grand canonical phase diagram of the SSE and identifying the critical

values of the mobile species chemical potential that define the limiting SSE reduction and

oxidation potentials [154, 148, 141]. Because the phase stability method takes into account a

set of instability reactions that is disjoint from the stoichiometry stability method, the corre-

sponding stability windows are complementary in the sense that the overall electrochemical

stability window of an SSE material is the intersection of the stoichiometry stability window

and the phase stability window. It is commonly assumed that the phase stability window is

generally narrower than the stoichiometry stability window [151], so that the overall stability

window is determined by the former. However, to the best of our knowledge, no rigorous proof

for this assumption exists to date. In contrast to the HOMO–LUMO method, both the stoi-

chiometry stability method and the phase stability method yield a reliable absolute position

of the electrochemical stability window w.r.t. a reference electrode potential, however at the

expense of an increased computational effort.

In the present work, we analyse the relation between the different methods with a focus on

the stoichiometry stability method. We provide computational implementations in an open-

source repository and we compare the results for a set of relevant Li- and Na-SSE materials.

6.2 Methodology

In the following, we indicate with A = Li, Na, . . . , the mobile species within an SSE material. We

first discuss the stoichiometry stability method, then its connection with the HOMO–LUMO

method, and finally the phase stability method.

6.3 Stoichiometry stability window

We denote as AnM the stable composition for a unit cell of an SSE material, where the meaning

of “stable” is further specified below. As explained in the Introduction, the stoichiometry
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stability method considers A-insertion/extraction reactions to/from the SSE structure,

εA+AnM −→ An+εM (6.5)

AnM −→ An−εM+εA (6.6)

where ε is small compared to n. The critical difference between these instability processes and

the transfer of A+ ions during normal battery operation is the fact that the former change the

SSE stoichiometry and the oxidation state of certain species in the M-matrix. They represent

redox-reactions between SSE and the respective electrode material: SSE reduction (6.5) and

SSE oxidation (6.6).

For a general SSE stoichiometry An+zM that deviates by z from the stable composition, reac-

tions (6.5) and (6.6) read

An+z M ± εA ←→ An+(z±ε)M (6.7)

The equilibrium potential Φeq of reaction (6.7) vs. the reference potential of the A-metal

oxidation process (6.3) is a function of the deviation z from the stable stoichiometry, and,

according to equation (6.4), it is given by

Φeq(z) =−1

e

(
GAn+(z±ε)M −GAn+z M

±ε −GA

)
(6.8)

=−1

e

(
µA

SSE(z)−µA
A

)
(6.9)

Here, µA
A = GA is the chemical potential of A-metal, i.e. its Gibbs free energy per atom, and

µA
SSE(z) corresponds to the chemical potential of neutral species A in the SSE composition

An+zM,

µA
SSE(z) = lim

ε→0

GAn+(z+ε)M −GAn+z M

ε
= dG

dz
(6.10)

which is equal to the derivative of the Gibbs free energy G(z) := GAn+z M as a function of the

stoichiometry deviation z. Equation (6.8) is identical to the general relation for the A-insertion

potential of electro-active battery materials [155, 156, 157].

In general, the stable SSE composition AnM corresponds to a stoichiometry where all con-

stituting ions are formally in an electronic closed-shell configuration. Consequently, SSE

materials have a band gap E LUMO
An M −E HOMO

An M > 0 and are electronic isolators as required for their

function as electrolyte. There exists a qualitative difference between adding A to and extracting

A from the stable composition AnM: The electrons of added A populate LUMO states of AnM,

whereas the electrons of extracted A are removed from HOMO states of AnM. Therefore, the

stable stoichiometry n separates two distinct energetic manifolds with the consequence that

the chemical potential µA
SSE(z) has a discontinuity at z = 0 with limz→0+ µA

SSE being strictly

larger than limz→0− µA
SSE. Consequently, we obtain two different equilibrium potentials: The
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potential of A-insertion (SSE reduction) into the stable SSE stoichiometry AnM,

Φstoi
red =−1

e

(
lim

z→0+µ
A
SSE −µA

A

)
=−1

e

(
dG

dz+

∣∣∣∣
z=0

−µA
A

)
(6.11)

and the potential of A-extraction from the stable SSE stoichiometry AnM,

Φstoi
ox =−1

e

(
lim

z→0−µ
A
SSE −µA

A

)
=−1

e

(
dG

dz−

∣∣∣∣
z=0

−µA
A

)
(6.12)

For electrode potentials Φstoi
red <Φ <Φstoi

ox , the SSE stoichiometry is stable and fixed at AnM,

and the valencies of the SSE constituent ions remain constant. Therefore, we call the potential

range [Φstoi
red ,Φstoi

ox ] the stoichiometry stability window of the SSE material.

Two simple models that grasp the essential behaviour of the SSE A-stoichiometry as a function

of the electrode potential are presented in the Supporting Information. Similar models exist

for the Li-insertion into electro-active materials [158]. The resulting SSE stoichiometry vs.

electrode potential curves are plotted in Figure 6.2 for generic values of the model parameters

given in the Supporting Information. Within [Φstoi
red ,Φstoi

ox ], the A-stoichiometry is fixed at

n. Outside the stoichiometry stability window, the SSE stoichiometry quickly changes by

inserting (forΦ<Φstoi
red ) or extracting (forΦ>Φstoi

ox ) A-atoms. In this region, the behaviour of

the A-stoichiometry is determined by the configurational entropy of A-site occupation, which

produces a steep step of the stoichiometry within a narrow potential range: The SSE turns

into an electro-active material with a plateau of the equilibrium potential as a function of

A-stoichiometry, cf. Figure 6.2 rotated by 90◦.

6.3.1 Stoichiometry stability window: Relevance for ASSB application

The stable stoichiometry AnM corresponds to an electronic insulator with a band gap. How-

ever, addition of A to the material introduces electrons into the conduction band. Similarly,

extraction of A generates electron holes in the valence band. Therefore, even small stoichiom-

etry changes of the SSE material can significantly increase its electronic conductivity with the

consequence of an electronic short circuit between anode and cathode via the SSE. Electronic

short-circuit of the electrodes causes self-discharge of an ASSB via combined electron and

ion migration through the SSE. Of course, the extent of electronic conductivity increase due

to A-stoichiometry changes is strongly material-specific, because it depends on whether the

additional electronic charge carriers occupy mobile states within the conduction or valence

band, or whether they get trapped by in-gap states.

Furthermore, local changes of the SSE stoichiometry at one or both of the SSE–electrode

interfaces can result in a chemical short circuit between the electrodes and a diffusion-driven

self-discharge of the ASSB. At both contact interfaces, the SSE stoichiometry equilibrates with

the respective electrode potential. If both the anode potentialΦA and the cathode potentialΦC

lie inside the potential window [Φstoi
red ,Φstoi

ox ], the SSE stoichiometry deviation z is equal to zero
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Stoichiometry stability 
potential window
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Figure 6.2 – The stoichiometry deviation z in the general SSE composition An+zM as a function
of the electrode potentialΦ as derived from two simple models for generic values of the model
parameters, cf. Supporting Information.

everywhere, cf. Figure 6.2. If, however, ΦA <Φstoi
red and/or ΦC >Φstoi

ox , the SSE stoichiometry

deviation zA at the anode contact interface will be different from the value zC at the cathode

contact interface, with zA > zC . This causes an A-concentration gradient across the SSE layer

and triggers diffusion of neutral A-species from the anode side to the cathode side. This

mechanism can also proceed at open-circuit and result in self-discharge of the ASSB via

mobile species diffusion.

The speed of the diffusion self-discharge depends critically on the value of the diffusion

coefficient of neutral A within the non-stoichiometric An+zM SSE phase. We consider an ASSB

with an SSE layer thickness of dSSE = 100µm. Assuming a small relative SSE stoichiometry

gradient of ∆z/n = 0.05 between the anode interface and the cathode interface, we estimate a

gradient of mobile ion density ∆nA/dSSE = nA (∆z/n)/dSSE = 5×1021 cm-4 for a typical mobile

ion density nA = 1021 cm-3. According to Fick’s law of diffusion, an A-diffusion coefficient

D A = 10−7 cm2s-1 yields an A-diffusion flux of | j A| = D A∆nA/dSSE = 5×1014 cm-2s-1, which is

equivalent to an electrical self-discharge current of | jel | = e | j A| ≈ 0.08mA cm-2. A typical Li-

ion battery contains approx. 20mg cm-2 active cathode material with specific capacitance of

approx. 150mAh/g, yielding an area-specific battery capacitance of approx. 3mAh cm-2. Such

a battery would be entirely self-discharged within approx. 1.5days. Even for D A = 10−8 cm2s-1,

a complete self-discharge time of approx. two weeks is obtained.

Values of 10−8–10−7 cm2s-1 are common for the ionic diffusion coefficient in SSE materials

with high ionic conductivity. However, ionic diffusion of A+ is different from the diffusion
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of neutral A considered here: The latter is equivalent to a parallel diffusion of both A+ ions

and electrons as described by Maier [159]. If the electronic mobility is large, the diffusion

coefficient of neutral A will be essentially equal to the ionic one. This is clearly not fulfilled for

an SSE material in its stable stoichiometry which is an electronic isolator. But, as discussed

above, the electronic conductivity of the non-stoichiometric SSE can be significantly increased.

Thus, whether diffusion self-discharge can be relevant depends on the SSE material at hand

and on the electronic conductivity properties of its non-stoichiometric phase.

6.3.2 Stoichiometry stability window: Computational Implementation

We implemented the stoichiometry stability method in the Python workflow environment

AiiDA [160] utilizing methods of the Python Materials Genomics (pymatgen) module [161]. We

provide the stoichiometry stability plug-in in the ZRL-AiiDA-toolbox repository on GitHub [162].

The potential limits Φstoi
red and Φstoi

ox of the stoichiometry stability window are given by equa-

tions (6.11) and (6.12), respectively. We choose a large supercell of the SSE structure with a

stable stoichiometry ANM and we approximate the derivatives of the Gibbs free energy by

the energy differences of adding/removing one A atom to/from the supercell, respectively,
dG
dz±

∣∣∣
z=0

≈ ±(E min
AN±1M − E min

ANM). Here, we neglect the pV term, entropic contributions, and

thermal contributions to the internal energy, which is well justified if an error of ±0.1V is

acceptable on the calculated stability potential window. SSE materials contain both occu-

pied and unoccupied A-sites. Every distribution i of the A-atoms over the available A-sites

has a distinct energy. We take the minimum over all configurations, i.e. the configurational

ground-state energies E min
ANM = min({E i

ANM | i ∈ confANM}) and analogously E min
AN±1M. Again, the

contribution of thermally activated configurations can be neglected if an error of ±0.1V is

acceptable. Then the potential limits read

Φstoi
red =−1

e
(E min

AN+1M −E min
ANM −E A

A ) (6.13)

Φstoi
ox =−1

e
(E min

ANM −E min
AN−1M −E A

A ) (6.14)

Here, the chemical potential of A-metal µA
A, which is equal to the Gibbs free energy per atom,

is approximated by the energy per atom of the relaxed A-metal structure, µA
A ≈ E A

A .

Monte Carlo sampling. An efficient sampling method is required to find the configurational

ground-state energies, because a complete sampling of all configurations is not possible, and

because the energies can vary significantly between different configurations. We use a Monte

Carlo sampling algorithm based on purely electrostatic Ewald energies to identify a number of

candidate configurations for the configurational ground-state. A random initial distribution

of A-atoms over the available A-sites is generated according to the occupancies defined in the

SSE material .cif-file. Every Monte Carlo step consists of swapping a randomly chosen A-atom
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to an unoccupied A-site. The swap is accepted according to the Metropolis criterion with a

probability p = min(1,exp(−∆E/(kB T ))), where ∆E is the Ewald energy difference of the swap,

kB is the Boltzmann constant, and T is the temperature chosen. The corresponding Ewald

energies are computed from the formal charges of each species given in the .cif-file using the

pymatgen Python module [161]. The Monte Carlo process runs until equilibration is reached.

We then use the final configurations of approximately 30 independent Monte Carlo runs to

compute their density functional theory (DFT) energies including structural relaxation. Finally,

the minimum of the relaxed DFT energies is determined. The entire process is performed

separately for the three compositions ANM, AN+1M, and AN – 1M to determine E min
ANM, E min

AN+1M,

and E min
AN−1M, respectively.

The sampling method is based on the assumption that configurations with minimum DFT

energies also have electrostatic Ewald energies close to the minimum, which has also been

used by other authors [148]. To further verify this assumption, we plot Ewald energies vs. DFT

energies in Supporting Information Figure S2 for the SSE materials LGPS, LIPON, LLZO, LLTO,

LATP, LISICON, and NASICON. For each of the compositions AN – 1M, ANM, and AN+1M, we

selected 100 random configurations. A linear correlation is observed in most cases. Typical

slopes of the order of 10 indicate the dielectric screening properties of the materials, which

are neglected in Ewald energies. Based on the slopes and the scattering of the energy–energy

plots, we chose a temperature of 5000 K for the Monte Carlo runs.

DFT details. DFT computations were performed using the Quantum ESPRESSO software

package [163]. The generalized gradient approximation (GGA) of the exchange-correlation

functional in PBE form [164] was used along with pseudopotentials from the SSSP Efficiency

library[165, 166]. We chose the double of the cutoff values suggested by SSSP for wavefunctions

and density. Because of the usage of supercells, k-point sampling was restricted to the Γ-point.

The convergence of the results was confirmed by certain computations using a 2x2x2 k-point

mesh. If possible, the magnetization, i.e. the population difference ∆n between up- and

down-spin, was allowed to relax. In case of failure, it was fixed at∆n = 0 for ANM (closed-shell)

and at ∆n = 1 for AN±1M (single unpaired electron). We further used Marzari-Vanderbilt

smearing [167] with 0.005 Ry.

We also tested the influence of hybrid functionals using HSE06 [168] with an exact exchange

fraction of 0.25 together with SG15 ONCV pseudopotentials [169, 170]. We used a wavefunction

cutoff of 100 Ry for LATP and LLTO, and 60 Ry for LLZO (because of its very large cell). The

density cutoff was four times the wavefunction cutoff.

6.3.3 Stoichiometry stability window and HOMO–LUMO method

The SSE stoichiometry stability window is determined by the discontinuity in the chemical

potential of neutral A at the stable stoichiometry. This discontinuity originates from the
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electronic HOMO–LUMO gap (or band gap). Therefore, a very close relation exists between

the stoichiometry stability method and the HOMO–LUMO method. In fact, the chemical

potential of neutral A in the SSE phase, cf. equation (6.10), is equal to the sum of e – and A+

chemical potentials,

µA
SSE = dG

dz
= ∂G

∂ze−
+ ∂G

∂zA+
= µe−

SSE +µA+
SSE (6.15)

where z, ze− , and zA+ are the changes in neutral A, e – , and A+ numbers, respectively. The ionic

chemical potential µA+
SSE essentially contains the interaction between A+ and the SSE crystal

field, i.e. the Madelung potential of the A-sites [156]. Therefore, we assume that the ionic

chemical potential is continuous at the stable SSE composition, limz→0− µA+
SSE = limz→0+ µA+

SSE.

From equations (6.11) and (6.12), we then obtain for the width of the stoichiometry stability

window

∆Φstoi =Φstoi
ox −Φstoi

red = −1

e

(
lim

z→0−µ
A
SSE − lim

z→0+µ
A
SSE

)

= −1

e

(
lim

z→0−µ
e−
SSE − lim

z→0+µ
e−
SSE

)

= 1

e
(IPSSE −EASSE) (6.16)

where we used the definitions of ionization potential IP =− limz→0− µe−
SSE and electron affinity

EA =− limz→0+ µe−
SSE [171]. We see that the width of the stoichiometry stability window is equal

to the fundamental gap of the SSE [172]. If the potential limits are computed from finite A

number differences as in equations (6.13) and (6.14), relation (6.16) remains approximately

valid up to small energetic differences between addition/removal of one A+ ion and interaction

terms between the added/removed A+ and e – .

An estimation of the fundamental gap from the HOMO–LUMO gap of Kohn-Sham DFT orbitals

is non-trivial. The HOMO–LUMO gap ∆E N
HL = E N

LUMO −E N
HOMO of the system with stable A-

stoichiometry N gives a very poor estimate of the fundamental gap, because of a discontinuity

in the DFT exchange-correlation (xc) potential [172, 173, 174]. Long-range corrected DFT

xc-functionals are known to approximately fulfil Koopmans’ theorem and yield much better

estimates of IP and EA from Kohn-Sham HOMO and LUMO energies [174]. We therefore also

compute ∆E N
HL for a few materials using hybrid functional DFT, cf. details given above for the

stoichiometry stability method.

6.4 Phase stability window

The electrochemical stability of an SSE material against major decomposition of the SSE

phase is typically assessed by computing its A-grand canonical phase diagram [154, 148, 141].

The electro-active material of the electrode represents an A-reservoir. The corresponding
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A-chemical potential µA is fixed by the electrode potentialΦ via the relationΦ=−(µA −µA
A)/e,

which is analogous to equation (6.9), with the A-metal reference chemical potential µA
A.

We compute the phase stability window of an SSE in an equivalent, but slightly different

way. For an SSE material with composition AaBbCcDd, we consider all known compounds

that contain one or several of the elements A, B, C, or D, and we construct all possible SSE

decomposition reactions of type (6.1). For each decomposition reaction i , we then compute

the corresponding equilibrium potential Φeq,i from equation (6.4). Tolerating errors of the

order of 0.1 V on the equilibrium potentials, we approximate the Gibbs free energies G by the

energies E after structural relaxation. The equilibrium potentials are grouped according to

the type of reaction, i.e. either SSE reduction if xi > 0, or SSE oxidation if xi < 0. If xi = 0,

the decomposition reaction is not electrochemical, because it does not involve electron

and ion transfer, cf. Introduction. Then, the potential limits of the phase stability window

[Φphase
red ,Φphase

ox ] are given byΦphase
red = max({Φeq,i |xi > 0}) andΦphase

ox = min({Φeq, j |x j < 0}).

The combinatorics of relevant decomposition reactions SSE → d1 D1+·· ·+dm Dm −x A are

restricted, because the maximum number m of decomposition products in a given reaction is

equal to the number of distinct elements in the SSE minus one. We represent the SSE and all

products by composition vectors with one dimension for each distinct element, e.g. an SSE

material AaBbCcDd by the vector (a,b,c,d). Then the reaction stoichiometry coefficients d1,

. . . , dm , and −x are equal to the expansion coefficients of the SSE vector (a,b,c,d) in a basis

given by the set of product vectors, including the vector (1,0,0,0) representing A-metal. The

total number of basis vectors is equal to the dimension, i.e. the number of distinct elements.

Because the vector representing A-metal is always present, the number m of additional basis

vectors is equal to the number of distinct elements minus one. Any reaction with more than

m decomposition products can be written as a superposition of such “basic” reactions, which

proceed independently. Therefore, it is sufficient to consider only basic SSE decomposition

reactions. This restriction is analogous to Gibbs’ phase rule that restricts the number of

coexisting equilibrium phases. Furthermore, only decomposition reactions with stoichiometry

coefficients d j ≥ 0 must be taken into account, because the only reactants are the SSE and, in

case of SSE reduction, the A-metal reference.

Computational details. We provide our implementation of the phase stability method as

an AiiDA [160] plug-in in the ZRL-AiiDA-toolbox repository on GitHub [162]. For every investi-

gated SSE material, we considered all possible decomposition products from the Inorganic

Crystal Structure Database (ICSD) [175, 176]. For every product, we created a supercell and

computed the DFT energy after structural relaxation. The same DFT parameters were used as

given above for the stoichiometry stability method. For products with partial occupancies, we

used the Ewald energy-based Monte Carlo algorithm to generate a favourable configuration,

cf. implementation of the stoichiometry stability method.
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Material Origin of .cif Structure Supercell composition
LGPS ICSD-188886 Ref. [178] tetragonal Li40Ge4P8S48

LIPON Ref. [177] orthorhombic Li45P24O51N21

LLZO ICSD-422259 Ref. [179] cubic Li56La24Zr16O96

LLTO ICSD-82671 Ref. [180] tetragonal Li6La10Ti18O54

LATP ICSD-253240 Ref. [181] hexagonal Li16Al4Ti20P36O144

LISICON ICSD-100169 Ref. [182] orthorhombic Li82Zn7Ge24O96

NASICON ICSD-473 Ref. [183] monoclinic Na24Zr16Si16P8O96

Table 6.1 – Input .cif-files, structures, and supercells for the investigated SSE materials.

6.5 Results and Discussion

Comparison of stoichiometry stability and phase stability windows. We compare our com-

puted stoichiometry stability windows with published [141] phase stability windows for a set

of important Li-SSE materials: Li10GeP2S12 (LGPS), O-doped Li2PO2N (LIPON), Li7La3Zr2O12

(LLZO), Li0.33La0.56TiO3 (LLTO), Li1.33Al0.33Ti1.67(PO4)3 (LATP), and Li3.42Zn0.29GeO4 (LISI-

CON). Because the precise LIPON composition Li2PO2N does not contain accessible Li-

vacancies [177], we generated Li-vacancies by slightly changing the composition to Li1.875PO2.125N0.875.

In addition, we investigated the Na-SSE material Na3Zr2Si2PO12 (NASICON), for which we

computed also the phase stability window using our own implementation. Table 6.1 summa-

rizes the origin of .cif-files, the corresponding crystal structures, and the supercell composi-

tions used in our computations.

To validate our implementation of the phase stability method, we also computed the phase

stability windows of LGPS and LLZO and compared the results with the published ones [141].

For LGPS, we obtained a phase decomposition reduction potential of Φphase
red, LGPS = (1.97±

0.15) Vvs. Li and an oxidation potential of Φphase
ox, LGPS = (1.87±0.23) Vvs. Li. Our values for both

potentials agree well with the respective values of 1.71 and 2.14 Vvs. Li previously reported [141].

Within error margins, both potential limits are equal meaning that the phase stability window

of LGPS is essentially zero. Errors on the potentials were propagated from an estimated general

error of 1.0 eV on the total DFT energy of the supercells. Decomposition reactions with errors

> 1.0 V on the corresponding equilibrium potentials were excluded. Such large errors are

encountered for very small x in equation (6.4), i.e. for decomposition reactions with very little

Li-exchange that are close to the ‘non-electrochemical’ limit.

For LLZO, we obtained a phase decomposition reduction potential of Φphase
red, LLZO = (0.02±

0.03) Vvs. Li and an oxidation potential of Φphase
ox, LLZO = (2.16± 0.37) Vvs. Li. Our value for the

reduction potential agrees very well with the value of 0.05 Vvs. Li previously reported [141]. The

previously reported value of 2.91 Vvs. Li for the oxidation potential is slightly larger than our

value, but, given the larger error margin, we still regard it as reasonable agreement.

Table 6.2 summarizes the computed stoichiometry stability windows for the investigated SSE

materials. Our values of the Li-insertion and extraction potentials of LGPS agree well with
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Figure 6.3 – Stoichiometry stability windows and phase stability windows for various Li-SSE
materials (a) and NASICON (b). *For Li-SSE materials (a), published phase stability windows
from Ref [141] are plotted. For NASICON (b) the phase stability window was computed with
our own implementation.
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Material Φstoi
red / Vvs. A Φstoi

ox / Vvs. A ∆Φstoi / V ∆E N
HL / eV

LGPS 1.08 2.85 1.77 2.21
LIPON 0.00 4.11 4.11 5.13
LLZO −0.83 3.52 4.35 4.34
LLTO 1.65 4.46 2.81 2.56
LATP 0.66 3.13 2.47 2.48
LISICON −0.32 3.54 3.86 3.63
NASICON −0.17 3.41 3.58 4.34

Table 6.2 – Results from DFT computations with PBE functional and SSSP Efficiency pseudopo-
tentials: Lower and upper limitsΦstoi

red / ox and corresponding width ∆Φstoi of the stoichiometry
stability windows for the investigated SSE materials. Potential limits are given vs. the reference
potential of A-metal oxidation (A=Li for Li-SSE materials, A=Na for NASICON). Also given are
the electronic HOMO–LUMO gaps ∆E N

HL of the systems with stable A-stoichiometry N.

previously published values [150] of 0.78 and 2.97 Vvs. Li, respectively. Figure 6.3a presents a

comparison for the Li-SSE materials with the corresponding phase stability windows published

in Ref. [141], which were also computed from DFT energies with PBE xc-functional. The

phase stability window of NASICON shown in Figure 6.3b was computed using our own

implementation of the method. We obtained a phase decomposition reduction potential

of Φphase
red, NASICON = (1.50±0.23) Vvs. Na (with decomposition products ZrO2, Na4P2O7, P, and

Na2ZrSi2O7), and an oxidation potential of Φphase
ox, NASICON = (2.30±0.47) Vvs. Na (with products

ZrO2, Na4P2O7, Na2ZrSi6O15, and O2), where we included an entropic contribution −T S =
−0.638 eV to the free energy of gaseous O2 at 300 K and 1 bar computed from NIST reference

data [184].

In most cases, we find that the phase stability window is more limiting than the stoichiom-

etry stability window, thus supporting the common assumption [151]. However, we find an

exception for the upper stability limit of LATP, where our value for the stoichiometry oxidation

potential is less than the reported phase decomposition oxidation potential [141]. Also, in

many cases the difference between stoichiometry stability limit and phase stability limit is

rather small, especially when taking into account realistic error margins of few hundred meV.

This is the case for the lower potential limits of LGPS, LIPON, LLZO, and LLTO and for the

upper potential limits of LGPS, LLZO, LLTO, and LISICON. We thus find a correlation between

stoichiometry stability window and phase stability window.

LGPS was experimentally found stable at least from 0.0 to 5.0 Vvs. Li [185], which is significantly

wider than both its phase stability window and its stoichiometry stability window. This wide

experimental stability window of native LGPS was confirmed in another study [186]. After

mixing LGPS with carbon, the same authors observed redox processes around 0.0–0.5 Vvs. Li and

around 1.6–2.7 Vvs. Li, respectively. However, we are careful with attributing these potentials

either to phase or to stoichiometry stability limits of LGPS, because it appears unclear to us

whether the observed redox processes result from LGPS decomposition alone, from carbon, or

from an interaction between both.
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Experimental studies of LIPON found an electrochemical stability window from 0.0 to about

5.0–5.5 Vvs. Li [187, 188], which agrees quite well with our computed stoichiometry stability

window. Other authors, however, report decomposition of amorphous LIPON in contact with

metallic Li observed by X-ray photoemission spectroscopy (XPS) [189], which is compatible

with the positive lower limit of the phase stability window [141].

Stability of LLZO versus metallic Li was experimentally demonstrated [190, 191] in agreement

with the computed lower limits / 0.0 Vvs. Li of both phase and stoichiometry stability windows.

In one study, LLZO was observed to be stable against oxidation up to very high potentials [192].

Other authors report an onset of LLZO oxidation at around 4.0 Vvs. Li [193], which is very close

to the upper limit of our computed stoichiometry stability window, especially from hybrid

functional DFT results, cf. Table 6.3. However, also in this study carbon was mixed with the

LLZO so that other oxidation reactions could also be responsible for the experimental result.

LLTO is a very interesting case, because the lower limits of both the phase stability win-

dow [141] and the stoichiometry stability window are almost identical at ≈ 1.7 Vvs. Li. This

perfectly agrees with experimental observations: A careful experimental study demonstrated

LLTO reduction below 1.7 Vvs. Li [194]. Because the amount of transferred Li agreed well with

the number of available Li vacancies inside the LLTO lattice, insertion of Li into the LLTO

host lattice was concluded. At lower potentials, more Li was consumed, which was attributed

to the formation of secondary decomposition phases. Thus, this study demonstrated that

the stoichiometry stability window defined the lower stability limit of LLTO. A similar LLTO

reduction potential was experimentally determined also by other authors [195].

Another interesting case is LATP, where our computed upper limit of the stoichiometry stability

windowΦstoi
ox is significantly less than the previously reported phase stability limitΦphase

ox [141].

This result even holds for our hybrid functional DFT results, cf. Table 6.3. Unfortunately, to

the best of our knowledge, no experimental study on electrochemical LATP oxidation exists to

date that could confirm whether the stoichiometry stability window is indeed defining the

upper LATP stability limit.

For LISICON, we find almost identical upper limits of our computed stoichiometry stability

window and the previously published phase stability window [141]. However, a negative value

of the lower limit of the stoichiometry stability window indicates stability against metallic

Li, whereas the phase stability window predicts instability. Experimentally, a strong reaction

between LISICON and Li metal was observed [196, 197], clearly demonstrating that the lower

phase stability limit is critical.

Turning to the results for NASICON, the negative value ofΦstoi
red indicates stoichiometric stability

of NASICON against a Na metal electrode, whereas our computed phase decomposition

reduction potentialΦphase
red, NASICON = (1.50±0.23) Vvs. Na predicts NASICON to be unstable against

Na metal in agreement with experimental findings [198]. However, other authors reported that

no reaction was observed between NASICON and metallic Na [199]. Recently, an experimental

study reported a very wide electrochemical stability window for Ca-doped NASICON [200].
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Figure 6.4 – Width ∆Φstoi of the stoichiometry stability windows in comparison with the
HOMO–LUMO gap ∆E N

HL for the investigated SSE materials.

The wider experimental stability windows compared to computed phase stability windows ob-

served for many SSE materials were convincingly explained with passivation due to interphase

layers of decomposition products between electrode and SSE [141]. A complementary possible

explanation is a kinetic sluggishness of phase decomposition reactions [141]. It was proposed

that the A-insertion/extraction potentials, i.e. the stoichiometry stability window, provide hard

limits for the SSE stability, because the transfer of single A-atoms between electrode and SSE

is likely to be fast [151]. Furthermore, the insertion or extraction of single A-atoms into/from

the SSE structure might represent the first step in the mechanism of SSE phase decomposition

reactions. Therefore, even when strict thermodynamic stability is defined by the phase stability

window, the stoichiometry stability window could represent a “kinetic” stability window up to

which SSE phase decomposition reactions are kinetically hindered. This interpretation could

explain why in many cases better agreement is found between experimental stability windows

and the stoichiometry stability window rather than the phase stability window.

Comparison of stoichiometry stability window and HOMO–LUMO gap. The electronic

HOMO–LUMO gaps ∆E N
HL of the systems with stable A-stoichiometry N are compiled in

Table 6.2. Figure 6.4 presents a comparison of the widths ∆Φstoi of the stoichiometry stability

window with the HOMO–LUMO gaps ∆E N
HL for the investigated SSE materials. As expected

from equation (6.16) and the discussion thereafter, a very good agreement is observed for

LGPS, LLZO, LLTO, LATP, and LISICON. Only for LIPON and NASICON, ∆E N
HL is significantly

larger than ∆Φstoi. The latter discrepancies can result from electronic states of the conduction

band that are shifted down into the band gap upon insertion of the additional A+ ion in the

N+1 stoichiometry system.
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The HOMO–LUMO method [146, 147, 148] considers only electron transfer between electrode

and SSE. Consequently, the electrochemical stability window is assessed from the ionization

potential and electron affinity of the SSE. Transfer of A+ ions is neglected and the electrode is

considered to be chemically inert. Therefore, the HOMO–LUMO gap is generally considered

to provide only an upper bound for the true stability potential window of an SSE material [148,

142]. However, according to relation (6.16) and supported by our computational results, the

HOMO–LUMO gap is essentially identical to the width of the stoichiometry stability window.

Therefore, both methods implicitly consider the same physical process, i.e. an infinitesimal

exchange of A between electrode and SSE. Consequently, as discussed above, exceptional cases

can exist where the limiting stability window of an SSE material is defined by its stoichiometry

stability potentials, i.e. its HOMO–LUMO gap. The advantage of the stoichiometry stability

method over the HOMO–LUMO method is that the former directly yields the absolute position

of the stability window vs. a reference potential.

Influence of hybrid functional DFT. We calculated the phase stability window of LLZO

at the hybrid functional DFT level. Using the HSE06 functional, we recomputed only the

reaction energies of the limiting reduction and oxidation decomposition reactions that were

obtained from our implementation of the phase stability method with PBE functional. The

respective decomposition products are Li2O, La, Li6Zr2O7 for the limiting reduction reaction,

and Li2O2, La2O3, Li6Zr2O7 for the limiting oxidation reaction. We obtained Φphase, HSE06
red, LLZO =

0.00 Vvs. Li and Φ
phase, HSE06
ox, LLZO = 2.84 Vvs. Li. Also, we recomputed the stoichiometry stability

windows of LLZO, LLTO, and LATP using the HSE06 hybrid functional for the minimum

energy configurations obtained from the stoichiometry stability workflow with PBE functional.

Results are summarized in Table 6.3 and presented in Figure 6.5a. Note that we had to

use different pseudopotentials (SG15 ONCV) for hybrid DFT computations than the SSSP

Efficiency pseudopotentials used in the phase stability and stoichiometry stability workflows.

For direct comparability, we also recomputed the critical PBE DFT energies with the SG15

ONCV pseudopotentials for the PBE results shown in Figure 6.5a, which, therefore, slightly

differ from the results presented in Figure 6.3.

We find that the hybrid functional has only minor influence on the reduction potential limits

of the investigated phase stability window and stoichiometry stability windows. In these

cases, a reliable prediction of SSE stability against a metallic Li electrode is obtained at PBE

level. However, PBE results significantly underestimate the oxidation potential limits of the

stoichiometry stability windows compared to HSE06. Also the oxidation potential limit of the

LLZO phase stability window is increased using HSE06. Thus, the computation of reliable

oxidation potentials appears more demanding than for reduction potentials. This difference

might originate from the difference between anionic vs. cationic redox behaviour, because

SSE reduction largely corresponds to cationic reduction processes, whereas SSE oxidation can

affect both cation and anion valencies.

Figure 6.5b presents a comparison of the widths of stoichiometry stability windows and
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Figure 6.5 – Comparison of stability windows computed with PBE and with HSE06 DFT
functionals. (a) Phase stability windows and stoichiometry stability windows. (b) Width ∆Φstoi

of the stoichiometry stability windows and HOMO–LUMO gaps ∆E N
HL.
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Material Φstoi
red / Vvs. Li Φstoi

ox / Vvs. Li ∆Φstoi / V ∆E N
HL / eV

LLZO −1.08 3.92 5.00 5.81
LLTO 1.44 5.36 3.92 4.28
LATP 0.75 4.03 3.28 4.19

Table 6.3 – Results from hybrid functional DFT computations with HSE06 functional and SG15
ONCV pseudopotentials: Lower and upper limits Φstoi

red / ox and corresponding width ∆Φstoi

of the stoichiometry stability windows, and the electronic HOMO–LUMO gaps ∆E N
HL of the

systems with stable A-stoichiometry N.

HOMO–LUMO gaps obtained with PBE and HSE06 functionals for LLZO, LLTO, and LATP. In

all cases, both the width of the stoichiometry stability window and the HOMO–LUMO gap

increase going from PBE to HSE06, which is expected because GGA functionals are known to

underestimate band gaps whereas hybrid functionals yield better estimates [201]. Surprisingly,

however, the agreement between the widths of stoichiometry stability windows and the

HOMO–LUMO gaps is significantly reduced at HSE06 level.

6.6 Conclusion

We analysed the relation between three different methods to compute the electrochemical

stability window of solid-state electrolytes, namely the HOMO–LUMO method, the phase

stability method, and the stoichiometry stability method. We found that the latter represents a

link between the former two methods. Whereas the phase stability method takes into account

the equilibrium potentials of SSE phase decomposition reactions, the stoichiometry stability

method considers the insertion and extraction of single A-atoms (A = Li, Na) into/from the

intact SSE structure. Because these sets of instability reactions are disjoint, the corresponding

phase and stoichiometry stability windows are complementary. We further provided compu-

tational implementations of the methods and we compared the results for the relevant Li- and

Na-SSE materials LGPS, LIPON, LLZO, LLTO, LATP, LISICON, and NASICON. In most cases,

the phase stability window is stricter than the stoichiometry stability window. However, we

also found exceptions to that rule. Comparison with reported experimental stability windows

revealed an ambiguous picture: Whereas for some SSE materials the experimental observa-

tions agree with computational phase stability windows, for other SSE materials experimental

stability windows are wider and in better agreement with the computational stoichiometry

stability windows.
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Supplementary information

Derivation of Nernst equation; Simple model for stoichiometry stability window; Extended

model for stoichiometry stability window.
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7 Conclusion

Summary

This thesis focused on the description of solid-state electrolytes using polarizable force-fields

and the facilitation of their use through a novel procedure for the training of such force-fields.

The value of polarizable force-fields for the study of solid-state electrolytes was demonstrated

using LLZO as a case study showing that valuable insights that can be obtained both for static

and dynamic properties. In particular, the effects of the adition of tungsten as a dopant on the

structural and dynamic properties of LLZO were investigated. To reach a better understanding

of the origin of the changes resulting of the introduction of dopants, two models were com-

pared. An implicit doping model, where the additional positive charges is introduced as a

background effect and an explicit one where the tungsten centers are explicitly considered.

The importance of an ensemble averaging of the properties over distributions of the possible

tungsten arrangement was demonstrated. Two competing effects of the doping on the ionic

conductivity of LLZO were identified. The first one is thermodynamic and relates to the stabi-

lization of the conducting phase by the depletion of the lithium. The second one affects the

dynamics of the lithium ions around the doping centers by creating barriers that limits the

diffusion of the ions. Overall, the results reveal a complex interplay of effects and behaviors

acting on the ionic conductivity of LLZO as a function of its doping.

The training of polarizable force-fields is a more complex problem than the one of their non-

polarizable counterparts. The increased complexity mostly resides in the need to adjust the

position of the shells used to model the polarizability as the training progresses. This constant

update of the shell position is probably the highest barrier in the use of global optimization

schemes for polarizable force-fields. In this thesis, a method using an optimal placement of the

shells to minimize the error on their associated cores is used to avoid the need for a relaxation

of the shells for each new set of parameters. These methods allows the use of global algorithms

such as Differential Evolution and Self-Adaptive Differential Evolution to be used. A set of

force-fields was generated for lithium tantalate from first-principles trajectories. The resulting

parameter sets are able to reproduce well the reference first-principle forces. Further attempts
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to optimize these sets through gradient based method showed little to no improvements.

The use of analytical gradients was also demonstrated resulting in smoother gradients to no

avail. The most problematic component of the force-field remained the O – O Buckingham

potential due to its small value and gradient. The methodology was implemented in the AiiDA

framework through several workchains allowing the full automation of the training process

starting from individual cif files.

Global optimization provides a mean to generate force-fields without the input of approxi-

mate solutions. The generation of training sets however still relies either on expensive first-

principles trajectories or the use of approximated sets of parameters. To remove this initial

dependency on expensive methods or parameters, a methodology was developed to generate

training structures from a generic crystal structures. The methodology leverages Monte-

Carlo sampling to resolve partially occupied structures. An approximate force-field based

solely on Coulombic interactions is used throughout this procedure. The method allows the

generation of Boltzmann distributed set of structures to be used in the training. Random

displacements are used to mimic thermal displacements in the generated training sets. The

method is successful at reproducing well enough the radial pair distributions observed in

molecular dynamics trajectories. Force-fields are generated for lithium tantalate using the

procedure. The force-fields obtained using the methodology are able to effectively reproduce

the structural parameter of rhombohedral lithium tantalates and its dynamic properties with

conductivity values and activation energies similar to those found in previous studies using

force-fields and first-principles. The difficulty to fully optimize the parameters is most likely

still related to the difficulty to optimize the potential of the O – O pair.

Although conductivity is one of the key properties that needs to progress for solid-states elec-

trolytes to be able to fully replace current technologies, the electrochemical stability of these

materials remains another key barrier to their development. Three methodologies available

for the computation of the electrochemical stability windows of materials are presented and

reviewed: the HOMO-LUMO method, the stoichiometry stability method and the phase sta-

bility method. All three methods were implemented within the AiiDA framework as workflows.

Comparison of the predicted stability windows are presented for several relevant Li- and

Na-based solid-state electrolytes. Further comparison with available experimental values was

done when such data was available. This showed an ambiguous picture with experimental

observations agreeing for some materials with the narrower phase stability method and for

others with the wider stoichiometry stability one.

Future work

The work described in this thesis demonstrate the value of using polarizable force-fields

to describe thermodynamic and kinetic properties of solid-state electrolytes. Although the

computed properties do not reach a quantitative accuracy, their contribution to a better

understanding of the systems is invaluable.
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However insightful the information presented concerning about the effects of doping on LLZO

is, investigation of more dopants and systems is necessary to build a more comprehensive

picture of the field. A better understanding of these various effects is critical for a more efficient

knowledge driven design of new solid-state electrolytes through doping. This will allow to

better focus the effort of experimental teams. To this goal the work achieved here stands as a

stepping stones as it provides a mean of preparing the force-fields necessary for those studies

in an unsupervised fashion allowing for the evaluation of libraries of structures and dopants.

Improvements to the procedures have already been mentioned in the Chap. 5 and would most

likely prove to be valuable upgrades to the described methodology.
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A Supporting Information

A.1 Comparison of computational methods for the electrochemi-

cal stability window of solid-state electrolyte materials

Derivation of Nernst equation

We derive the Nernst equation for the cell reaction

SSE + x A ←→ D1 + D2 + ·· · (A.1)

The corresponding half-cell reactions are the SSE reaction at the working electrode (WE)

interface

SSE + x A++ x e− ←→ D1 + D2 + ·· · (A.2)

and the A-metal counter electrode (CE) reaction

x A ←→ x A+ + x e− (A.3)

For electrochemical equilibrium of reactions (A.2) and (A.3), the conditions must be fulfilled

that the stoichiometric sums of the chemical potentials of reactants and of products are equal,

µSSE + xµA+ + xµWE
e− = µD1 + µD2 + ·· · (A.4)

xµA = xµA+ + xµCE
e− (A.5)

In equilibrium, the chemical potential µA+ of A+ is constant throughout the electrolyte and

therefore identical at CE and WE. The equilibrium potential of reaction (6.2) vs. the reference

potential defined by reaction (6.3) is given by the difference of the electron chemical potentials
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of WE and CE divided by the electron charge,

Φeq = 1

−e
(µWE

e− −µCE
e− )

= 1

−e x
(µD1 +µD2 +·· ·−µSSE −xµA)

= −∆G

e x
(A.6)

In the first step, we resolved and inserted equations (A.4) and (A.5) for the electron chemical

potentials of WE and CE, respectively. In the second step, we used the fact that the chemical

potential of a compound is equal to its Gibbs free energy per unit.

Equation (A.6) is not the Nernst equation in its typical form, which expresses the equilibrium

potential as a function of the activities ai of reactants and products. The typical form of

the Nernst equation is simply obtained from equation (A.6) by inserting the definitions of

the reactant and product activities µi = µ0
i +kB T log(ai /a0), with Boltzmann constant kB ,

temperature T , standard activity a0, and standard chemical potential µ0
i .

Stoichiometry stability window: Simplest model

We develop a simple model for the dependence of the SSE stoichiometry An+zM (where A =

Li, Na, . . . ) as a function of the electrode potential Φ that the SSE is in contact with. Very

similar models were derived for the Li-insertion into electro-active materials [158]. We first

derive a simplified expression of the Gibbs free energy G(z) :=GAn+z M for |z|¿ n, i.e. for small

deviations from the stable composition. For this purpose, the Gibbs free energy (per unit

cell) G =U +pV −T S is first approximated by G = E0 −T Sconf, in which only the energy E0

at T = 0K and the configurational entropy Sconf of A-site occupation are taken into account.

The configurational entropy carries the dominant part of the dependence of the Gibbs free

energy on the A-stoichiometry. It therefore cannot be neglected for deriving z as a function

ofΦ. Other contributions like the pV term, the vibrational zero-point energy, the vibrational

internal energy, and the vibrational entropy are neglected, which is well justified if an error of

±0.1V is acceptable on the calculated stability potential window.

For |z| ¿ n, the energy of adding one A to the general composition An+zM is approximately

constant, i.e. E0 ≈ E 0
0 +∆E+/−

0 z, for z ≷ 0, respectively. Here, as explained in detail in the main

article, it is taken into account that the energy ∆E+/−
0 of adding A is discontinuous at z = 0,

resulting in two different constant values ∆E+
0 >∆E−

0 for z ≷ 0, respectively.

Within this simplified 1-type A-site model, it is assumed that all A-sites are energetically

equivalent. In the next section, a more general 2-type A-site model is derived. Assuming a

total number n +m of A-sites, either occupied or unoccupied, per unit cell of the material

An+zM, the configurational entropy Sconf results from the combinatorics of filling n+z out of a
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total of n +m sites:

Sconf =
1

Nc
kB log

(
Nc (n +m)

Nc (n + z)

)
(A.7)

≈ kB ((n +m) log(n +m)− (n + z) log(n + z)− (m − z) log(m − z)) (A.8)

where kB is the Boltzmann constant and where Stirling’s approximation was applied, because

the total number Nc of unit cells in the entire crystal is very large.

According to the equations derived in the main article, we obtain for the A-chemical potential

in the SSE

µA
SSE(z) = dG

dz
=∆E+/−

0 −kB T log
(n +m

n + z
−1

)
(A.9)

where the +/− refer to z > 0 and z < 0, respectively, and for the corresponding equilibrium

potential

Φeq =−1

e

(
µA

SSE(z)−µA
A

)
(A.10)

=ΦI/II + kB T

e
log

(n +m

n + z
−1

)
(A.11)

where

ΦI/II :=−(∆E+/−
0 −µA

A)/e (A.12)

again for z > 0 and z < 0, respectively, and withΦI <ΦII because ∆E+
0 >∆E−

0 .

Vice versa, for a given electrode potentialΦ, the equilibrium stoichiometry deviation z of the

SSE in contact with the respective electrode is obtained by resolving Equation (A.11) with

Φeq =Φ:

z =



(n+m)
1+exp((Φ−ΦI)/γ) −n ,Φ<ΦI +δ

0 ,ΦI +δ≤Φ≤ΦII +δ
(n+m)

1+exp((Φ−ΦII)/γ) −n ,ΦII +δ<Φ

(A.13)

where γ= kB T
e and δ= γ log(m/n). Thus, the limits of the stoichiometry stability window are

given by Φstoi
red =ΦI +δ and Φstoi

ox =ΦII +δ. For an acceptable error of ±0.1V on the stability

limits, the shift δ can be neglected: For a practical SSE material, the number of occupied and

unoccupied A-sites will be of the same order of magnitude. Even for m/n = 10±1, it follows

|δ| ≈ 2γ with γ= 0.025V for T ≈ 300K.

Figure A.1 plots the deviation z as a function of the electrode potential Φ as described by
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Figure A.1 – The stoichiometry deviation z in the general SSE material An+zM as a function of
the potentialΦ as derived from the two models in the limit |z|¿ n: The ‘1 type A-site model’
considers all A-sites energetically equivalent, whereas the ‘2 type A-site model’ takes into
account two energetically different types of A-sites. The values of the model parameters used
for the plotted curves are given in the text.

Equation (A.13) for an arbitrary choice of n = 1, m = 1, Φstoi
red = −0.5V, Φstoi

ox = +0.5V, and for

γ= 0.025V corresponding to T ≈ 300K. The stoichiometry dramatically changes in two steep

steps below and above Φstoi
red and Φstoi

ox , respectively, the width of each step being defined by

the scale γ. The step belowΦstoi
red corresponds to SSE reduction, whereas the step aboveΦstoi

ox

corresponds to SSE oxidation. Within the stoichiometry stability window, i.e. for potentials

Φstoi
red ≤Φ≤Φstoi

ox , the stoichiometry deviation is equal to zero, z = 0, and the SSE is stable in

the composition AnM.

Within the present model we assume that all n +m A-sites within the SSE material AnM are

energetically equivalent, i.e. every distribution of the n A over the n +m sites has the same

energy. However, in general, there will be energetic variations between different distributions.

In the following section, we present an extended model which takes into account two different

classes of A-sites in the material AnM: one class of n occupied ground-state sites, and another

class of m vacant excited-state sites.

Stoichiometry stability window: Model with two classes of A-sites

We consider a general solid-state electrolyte (SSE) material with n occupied and m unoccu-

pied A-sites per unit cell, the latter unoccupied sites referred to as vacancies V, in its stable

stoichiometry. Further, it is assumed that the occupied and unoccupied A-sites are separated

by a non-zero energy gap, which is plausible if the vacancies correspond to interstitial sites

or if they are generated by a dopant. In order to distinguish these two classes of A-sites, the
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m unoccupied ‘excited’ state sites are denoted on the left-hand side, whereas the n occupied

‘ground’ state sites are denoted on the right-hand side of the composition formula VmMAn.

If more A is added to the stable configuration VmMAn, it has to occupy vacant sites of the class

of ‘excited’ state sites. Consequently, the additional A is added on the left-hand side to yield

AδVm –δMAn. Vice versa, if A is extracted from the stable configuration VmMAn, vacancies are

generated among the previously occupied ‘ground’ state sites denoted on the right-hand side

to yield VmMAn – εVε. Of course, also combinations of both processes are possible, such that

the general state of the SSE material can be described by the formula AxVm – xMAn+yV – y , where

0 ≤ x ≤ m and −n ≤ y ≤ 0. Furthermore, as discussed for the simpler model in the main article,

the total stoichiometry n + x + y of A must be compared against the stable stoichiometry n,

since the latter separates two distinct energetic manifolds for compositions with A-excess, i.e.

x + y > 0, and A-deficiency, i.e. x + y < 0, respectively.

According to the equations derived in the main article, the equilibrium potential of the A-

exchange reactions with a general electrode material is given by

Φeq =−1

e

(
µA

SSE(z)−µA
A

)
(A.14)

where µA
A is the chemical potential of A-metal defining the reference potentialΦref =−µA

A/e.

The chemical potential µA
SSE of species A for the general SSE composition AxVm – xMAn+yV – y

is given by the derivative of the Gibbs free energy G(x, y) := GAx Vm−x MAn+y V−y w.r.t. the total

A-stoichiometry deviation z = x + y ,

µA
SSE(z) = dG

dz
(A.15)

= px (z)
∂G

∂x

∣∣∣∣
(x(z),y(z))

+py (z)
∂G

∂y

∣∣∣∣
(x(z),y(z))

(A.16)

where px = dx/dz and py = dy/dz = 1−px are the thermodynamic weights of the excited state

sites and ground state sites, respectively. For given z = x + y , the values of x(z), y(z), px (z),

and py (z) are fixed by the thermodynamic equilibrium requirement of minimum G(x, y), as

calculated below.

In the following, an expression for the Gibbs free energy G(x, y) is derived for |x|, |y | ¿ n,

i.e. for small deviations from the stable composition. As for the simpler model presented in

the previous section, the total Gibbs free energy G = U +pV −T S is first approximated by

G = E0 −T Sconf, i.e. only the energy E0 at T = 0K and the configuration entropy Sconf of the

combinatorics of A-site occupation are taken into account. For |x|, |y |¿ n, the energies ∆E e
0

and ∆E g
0 of adding one A either to the excited state or to the ground state class of A-sites in

AxVm – xMAn+yV – y, respectively, are approximately constant. Furthermore, in the same way as

for the simpler model, the energy discontinuity between x + y < 0 and x + y > 0 must be taken

into account by a term ∆E+/−
0 (x + y), resulting in an expression for the total energy in the limit
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|x|, |y |¿ n,

E0 ≈ E 0
0 +∆E e

0 x +∆E g
0 y +∆E+/−

0 (x + y) (A.17)

for x + y ≷ 0, respectively.

The configuration entropy has two contributions, Sconf = Se +Sg , resulting from the combina-

torics of filling excited state or ground state A-sites, respectively:

Se = 1

Nc
kB log

(
Nc m

Nc x

)
(A.18)

≈ kB (m log(m)−x log(x)− (m −x) log(m −x)) (A.19)

where Stirling’s approximation has been applied, 0 ≤ x ≤ m, and kB is the Boltzmann constant.

Likewise,

Sg ≈ kB (n log(n)− (n + y) log(n + y)− (−y) log(−y)) (A.20)

where −n ≤ y ≤ 0.

In order to find the thermodynamic weights px/y , first the thermodynamic equilibrium value of

x for a fixed value of the total stoichiometry deviation z = x + y must be derived that is defined

by the minimum of the function G(x, y = z −x), i.e. by the condition dG(x, y = z −x)/dx = 0,

which is equivalent to the condition ∂G/∂x = ∂G/∂y or

y = −n(m −x)

x exp(∆E/kB T )+ (m −x)
(A.21)

where ∆E =∆E e
0 −∆E g

0 is the energy difference between excited and ground state sites. Insert-

ing y = z −x and resolving for x, we obtain

x = z (e∆E/kB T −1)−n −m

2(e∆E/kB T −1)
+

+
√

(z (e∆E/kB T −1)−n −m)2 +4m(n + z)(e∆E/kB T −1)

2(e∆E/kB T −1)
(A.22)

where the positive solution of the quadratic equation has been used according to the require-

ment 0 ≤ x. Thus, the following expression is obtained for px = dx/dz,

px = 1

2
+ 1

2

m −n + z (e∆E/kB T −1)√
(z (e∆E/kB T −1)−n −m)2 +4m(n + z)(e∆E/kB T −1)

(A.23)
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The chemical potential as a function of z follows from Equation (A.16),

µA
SSE,+/− = ∆E+/−

0 +px∆E e
0 +py ∆E g

0 −px kB T log
(m

x
−1

)
−py kB T log

(
n

n + y
−1

)
(A.24)

for z > 0 and z < 0, respectively, where x as a function of z is given by Equation (A.22), y = z−x,

px is given by Equation (A.23), and py = 1−px . The corresponding equilibrium potentialΦeq

as a function of z is obtained from Equation (6.4),

Φeq = ΦI/II +px∆Φe +py ∆Φg +px
kB T

e
log

(m

x
−1

)
+py

kB T

e
log

(
n

n + y
−1

)
(A.25)

whereΦI/II =−(∆E+/−
0 −µA

A)/e for z > 0 and z < 0, respectively, and ∆Φe/g =−∆E e/g
0 /e.

Unlike for the simpler model presented in the main article, expression (A.25) cannot be

analytically resolved to obtain the equilibrium stoichiometry deviation z as a function of an

applied potential Φ. Nevertheless, the latter can be plotted as shown in Figure A.1 for an

arbitrary choice of m = n = 1,ΦI/II =∓0.5V, ∆Φe/g =∓0.15V, and for kB T = 0.025eV. The main

qualitative features of the simpler model are preserved, i.e. the stoichiometry changes in two

steep steps starting at approximatelyΦI/II, the width of each step being defined by the scale

kB T /e. However, the energetic splitting between excited and ground state sites results in a

smoother shape of the steps around ΦI/II and the turning points of the steps are shifted to

approximatelyΦI/II +∆Φe/g .
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