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Abstract

In this paper we lay the groundwork for a robust cross-device comparison of data-driven dis-

ruption prediction algorithms on DIII-D and JET tokamaks. In order to consistently carry on

a comparative analysis, we define physics-based indicators of disruption precursors based on

temperature, density, and radiation profiles that are currently not used in many other machine

learning predictors for DIII-D data. These profile-based indicators are shown to well-describe

impurity accumulation events in both DIII-D and JET discharges that eventually disrupt.

The univariate analysis on the features used as input signals in the data-driven algorithms ap-

plied on both tokamaks data statistically highlights the differences in the dominant disruption

precursors. JET with its ITER-like wall is more prone to impurity accumulation events, while

DIII-D is more subject to edge cooling mechanisms that destabilize dangerous MHD modes.

Even though the analyzed datasets are characterized by such intrinsic differences, we show

through few examples that the inclusion of physics-based disruption markers in data-driven

algorithms is a promising path toward the realization of a uniform framework to predict and

interpret disruptive scenarios across different tokamaks. As long as the destabilizing precur-

sors are diagnosed in a device-independent way, the knowledge that data-driven algorithms

learn on one device can be re-used to explain a disruptive behavior on another device.

Keywords — Disruptions, Machine Learning, DIII-D, JET.
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I. INTRODUCTION

As the fusion community is focusing to develop intrinsically stable scenarios for reliably safe

operations, disruptions in tokamak plasmas still pose serious challenges. The sudden loss of plasma

energy and its confinement can cause deleterious damage to plasma facing components, as well as

imposing mechanical stresses on the device. In view of future devices, like ITER [1] or SPARC [2],

for which such generated forces will represent an unbearable obstacle to safe operations, disrup-

tion mitigation and avoidance has become an active and pressing area of research [3–5]. The

statistical analysis of disruptive instabilities reported in [6] has also enabled many data-driven

applications [7–10] to predict disruptions with enough warning time to more efficiently enable

avoidance strategies, and some of these solutions [11–13] are also being developed to operate in the

Plasma Control System (PCS). Nevertheless, the goal of disruption prediction research is not only

to provide predictions of impending disruptions early enough but also to inform the PCS on the

offending feature(s), or plasma descriptors, in order to steer the plasma away from the disruptive

boundary. For example, if shaping parameters are found to be dangerously contributing to push

the plasma toward a disruptive scenario, a continuous monitoring of such drivers through PID con-

trollers can stabilize and optimize plasma behavior. Identifying the actual causes of disruptions

and therefore their precursors, is the ideal path toward a successful extrapolation to future devices.

To this aim, it is extremely important to focus on uniform physics-based markers when developing

data-driven applications, i.e. adopting dimensionless or device-independent plasma descriptors as

input features in our models enables more reliable domain adaptation and knowledge extraction

across tokamaks.

In this work we aim at reporting some preliminary analysis that include 1D/2D profile infor-

mation to identify earlier precursors in the disruptive chain of events. Contrary to deep learning

strategies for feature extraction from profiles using Convolutional Neural Networks [14,15], we fo-

cus on more classical feature engineering. Deep learning methods may be attractive for they tend

to generalize better and have shown highly accurate predictive capabilities, but it comes at a high

cost: the accessible interpretability of the model and the features learnt by it. Even though some

techniques do exist to try and interpret neural networks, such as sensitivity analysis [16] or ax-

iomatic attribution [17] methods, these are notoriously harder than other classical machine learning
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approaches. By imposing (or engineering) the characteristics of the features that the model will

learn, we can enhance its interpretability and at the same time connect the model’s predictions

with the disruptive precursors dynamics. Therefore, following the method outlined in [18], we map

the profile diagnostics onto flux surfaces or specific core/edge/divertor regions to reduce the feature

dimensionality and obtain peaking factors to use in data-driven disruption prediction algorithms.

The peaking factors obtained in this way can be regarded as device-independent indicators and

are extremely suitable for cross-device analysis, as they are able to isolate the physics of interest

independently from the type of diagnostics or geometry of the device.

The paper is structured as follows: in Section II we discuss the peaking factors and the

methodology applied to synthesize them from DIII-D data and diagnostics. Then in Section III

we show that the univariate analysis on the most relevant features, such as the temperature profile

peaking factor and the Greenwald density fraction, reveals intrinsic differences between DIII-D and

JET precursors’ dynamics. Section IV discusses the first applications of classical machine learning

predictors such as Random Forest (RF) and Generative Topographic Mapping (GTM), trained

on DIII-D and tested on JET discharges and vice-versa. In particular, we discuss the predictive

output of these data-driven models can be interpreted, also thanks to the information given by the

profile peaking factors, thus connecting machine learning predictors with the underlying disrup-

tive mechanisms. Finally, in Section V we draw our conclusions and lay out the future research

directions.

II. PEAKING FACTOR ENGINEERING

Many data-driven analyses in fusion research tend to use databases of 0D parameters to make

inferences about the plasma state. However, higher dimensional information is often relevant to

the problem and ought to be included in some way. In the case of disruption prediction, changes

in kinetic and radiative profiles are often connected with the development of destabilizing physics

mechanisms, e.g. magnetohydrodynamic (MHD) precursors [19–21]. In order to include the radial

profiles of Te, ne, and Prad in data-driven analyses, 0D peaking factor (PF) metrics have been

synthesized on DIII-D following the method outlined in [18]. The PFs for Te and ne compare

the average value in the plasma core to the average value over the entire profile. Two additional
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PFs for Prad are defined so as to decouple contributions from the core and divertor regions of the

plasma.

Fig. 1. Peaking factor and profile evolution during DIII-D shot 175697, with tomographic recon-
structions of bolometer emissivity at 4 different times of interest; in the bottom three panels, ρ
refers to the normalized effective radius given in Eq. 6 and the channel number is that of the lower
fan as shown in Fig. 2.

In Figure 1 we show an example of the evolution of all 4 peaking factors for a specific DIII-D

discharge. For this particular discharge, an impurity concentration was injected at ∼ 2.5 s, causing

an increase in Prad at the plasma edge and a corresponding decrease in the Prad divertor peaking

factor. As power is radiated away, the edge begins to cool and the temperature profile becomes

more peaked, causing an increase in the Te peaking factor. There is then a transition from H-mode

to L-mode at ∼ 2.73 s as the ne pedestal is lost, causing a change in the baseline of the ne peaking

factor. Finally, starting at ∼ 2.9 s the impurities penetrate into the core and radiate power there,
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correlating with an increase in the Prad core peaking factor and a decrease of the Te peaking,

signaling a central cooling.

The calculation of each of these peaking factors relies on a set of diagnostics that can fre-

quently and robustly measure Te, ne, and Prad for a large number of shots. Since the types of

diagnostic systems available and their attributes vary amongst devices, the peaking factor defini-

tions must be changed accordingly. In the following sections, the methodology used to calculate

each of these peaking factors on DIII-D is explained in detail.

II.A. Prad Peaking Factor Calculations

Measurements of the radiated power distribution on DIII-D are acquired using two bolometer

arrays consisting of 24 channels each, as shown on the left in Fig. 2. In order to define a ‘core

vs all’ (CVA) and ‘divertor vs all’ (X-DIV) peaking factor for Prad following a similar method to

that used in [18], we restrict our analysis to lower single null plasmas (where the active X-point

is on the lower divertor) and use the lower fan as shown on the right in Fig. 2. Nevertheless, this

methodology can be extended to upper single null and double null configurations as well.

Fig. 2. (Left) Bolometer arrays on DIII-D; (Right) Lower fan channel setup, with divertor channels
L1− L7 shown in red.
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As described in [22], the power Pj radiated along the viewing chord of channel j ∈ [L1, . . . , L24]

is calculated by scaling the power radiated onto the detector by a geometric factor specific to that

channel. These measurements are then divided into bins based on the region of coverage of the

corresponding channel. For the divertor bin D, channels L1 − L7 were chosen to provide a fixed

region of coverage for the lower divertor and X-point region:

D = {Pj for j ∈ [L1, . . . , L7]} (1)

For coverage of the plasma core, channels that intersect near the magnetic axis are chosen. This

is done by calculating the vertical position Zj at which each channel j intersects the vertical R =

Rmag and choosing channels for which |Zj − Zmag| is below some threshold, where (Rmag, Zmag)

is the position of the magnetic axis as shown in Fig. 2. The intersection point Zj of each channel

j is then

Zj = Zdj + (Rmag −Rdj) tan θj (2)

where (Rdj , Zdj) is the jth detector position and θj is its orientation (measured counter-clockwise

from the positive R-axis). The ‘core’ bin C is then defined as

C = {Pj for which |Zj − Zmag| < 0.06× L} (3)

where L = 3 m is the vertical length scale of the DIII-D plasma cross section. The 6% threshold was

chosen to provide a robust margin based on analyzing several example discharges and accounting

for typical variation in Zmag, so this threshold may need to be changed for other devices. Since

Rmag and Zmag both vary during operation, their values must be obtained from a concurrent EFIT

and the number of channels in C will fluctuate.

With the C and D bins chosen to cover specific spatial locations, we can now calculate the

two Prad peaking factors by taking ratios of channel measurements Pj using these bins. The ‘core

vs all’ (CVA) peaking factor is given by

Prad CV A =
mean(C)

mean(ALL Pj for j /∈ D)
(4)
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while the ‘divertor vs. all’ (XDIV) peaking factor is

Prad XDIV =
mean(D)

mean(ALL Pj for j /∈ C)
(5)

Since the denominators in equations 4 and 5 exclude channels from the alternate bin of interest,

evolution of Prad in the core and divertor regions is decoupled. This can in principle allow detection

of events like MARFEs [23] and impurity accumulations, which are marked by movement of the

radiated power distribution into and out of these regions.

II.B. Te and ne Peaking Factor Calculations

The density and temperature peaking factors rely on measurements from the Thomson scat-

tering diagnostic [24] on DIII-D, which uses three separate laser systems to measure Te and ne

at specific locations along the laser path. Two of these systems are used for our peaking factor

calculations - one which covers the plasma core and another covering the plasma edge (see Fig. 3).

Fig. 3. (Left) geometry of Thomson scattering systems on DIII-D used for this study; (Right)
typical density and temperature profiles on DIII-D, with core bin channels in red.

For each measurement location (Rj , Zj), we obtain a value ρj representing the normalized
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effective radius. The effective radius ρ is related to the toroidal flux φ via

φ = BT0πρ
2 (6)

where BT0 is the toroidal field on axis, and the normalized effective radius is simply ρj = ρ/ρbdry,

where ρbdry is the value of ρ at the last closed flux surface. The core bin is then defined as

C = {j|ρj < 0.3} (7)

which essentially includes all channels within 30% of the effective radius of the plasma boundary.

With this in mind, the two ‘core vs all’ peaking factors for temperature and density are given by

Tepf =
mean(Tj |j ∈ C)

Tavg
and nepf =

mean(nj |j ∈ C)

navg
(8)

where the denominators Tavg and navg represent the mean values of electron temperature and

density for all channels across the entire profile. Since there were no major changes to the Thomson

diagnostic during the campaigns from which our dataset was drawn, these average values are not

significantly affected by large numbers of missing channels. However, the averages should be

defined using a more robust method when a larger dataset is used, taking into account changes in

channels available due to diagnostic upgrades or system failures. This may include incorporating

a correction factor for missing channels, or defining a volume average by interpolating onto a fixed

set of virtual channels.

III. DATA-DRIVEN ALGORITHMS FOR DISRUPTION PREDICTION

Being well-diagnosed experiments, laboratory plasmas are ideal testbeds for data-driven ap-

plications since many years of historical data are available for each of the existing operating fusion

devices. A lot of effort has been devoted to develop reliable databases for disruption prediction [25],

that usually contain information regarding many zero-dimensional features relevant for disruptive

dynamics. Previous publications documented in Section I have shown how we can leverage such

data abundance to develop predictive algorithms for disruption classification.

The Disruption Prediction via Random Forest (DPRF) algorithm is a supervised binary
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classifier currently embedded in both DIII-D and EAST PCS. DPRF is a portable tool, so far tested

on DIII-D, C-Mod, and EAST, and it was shown [12] how by using a shot-by-shot framework for

simulating alarms in PCS it is possible to unravel dramatic differences in performance for disruption

prediction on different tokamaks.

The Generative Topographic Mapping (GTM) is an unsupervised manifold algorithm that

can trace a mapping from a latent, low-dimensional space onto the high-dimensional input space,

by preserving the topology of the latter. The GTM tool has been applied to JET data to map

operational boundaries for disruption prediction and to analyze the trajectory of the plasma dis-

charge in the parameter space of interest [10].

Building on the previous work, we incorporate the peaking factor information in DPRF and

verify that such engineered features are useful markers of specific disruption precursors, such as

impurity accumulation events. Indeed, Figure 1 shows one example of the evolution of the 4

peaking factors on DIII-D and how their behavior closely tracks the disruption dynamics.

In the following we report on the univariate analysis of the plasma signals used for such application,

by also detailing the dataset adopted. In addition, we will describe how we are gradually moving

away from a fixed time threshold definition for the transition from a non-disruptive to a disruptive

operational space, when describing discharges that eventually disrupt.

III.A. Univariate analysis on the input features

The DIII-D dataset used for this study was crafted from a set of thousands of discharges

from the 2015-2016 campaigns, including both disruptive and non-disruptive discharges. Inten-

tional disruptions and those caused by hardware failures and prematurely forced rampdowns were

discarded, but all remaining disruptions were included regardless of the type. Additionally, only

lower single null plasmas were used in order to consistently compare the Prad peaking factors to

those on JET. After applying these restrictions, the dataset consists of the flattop portions of 1293

shots, of which 310 were disruptions occurring during the flattop phase of the plasma current.

The JET database, as reported in [10], has been built from the first ITER-like wall (ILW) exper-

imental campaigns (2011-2013), and consists of 114 non-disruptive discharges and 132 disrupted

ones.
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Conversely to what has been adopted in previous work from the authors [12,25], we illustrate

here a different scheme for classifying time records in the dataset. Individual time samples from

each discharge are labeled as either ‘non-disruptive’ or ‘unstable’. All ‘non-disruptive’ time samples

belong to non-disruptive discharges, whereas all ‘unstable’ time samples are taken from disruptive

shots and have time t > tunstable, where tunstable marks the time at which the event chain leading

to disruption begins.

Fig. 4. Time slices in DIII-D dataset are classified based on the type of discharge they are from and
(if disruptive) when they occur; both classes used in this study, i.e. ‘non-disruptive’ and ‘unstable’,
are shown. t0 and tf define the beginning and the end of the plasma current flattop.

tunstable is not a fixed threshold in time as a function of the disruption event, but rather

changes from shot to shot depending on the initiating cause of the disruption itself. The identifica-

tion of tunstable, i.e. the time of the first observable disruption precursor, was conducted for each

disrupted discharge using a manual analysis. Generally, several attempts can be found in literature

to define the beginning of the unstable phase in disruptive discharges through automatic proce-

dures [9]. For example, in [26] the authors test several measures of similarity between probability

density functions to statistically define the divergence of the unstable phase in disruptive discharges

with respect to the non-disruptive parameter space. The manual identification of tunstable is based

on the analysis conducted by Pau et al. [10,18], using the standardized precursor event descriptions

first reported in a survey of disruption causes at JET [27]. As an example, we show in Figure 5 a
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particular chain of events for DIII-D discharge 161238 that begins with a large drop in auxiliary

power. This is followed by the start of an ELM-free H-mode phase in which impurities accumulate

in the core, increasing the core radiation. Plasma performance drops significantly afterward, as an

H-L back transition follows before the shot ultimately disrupts when a locked mode occurs. For

this discharge, tunstable is thus defined as the time of the auxiliary power step-down, since this is

the first event in the relevant chain of disruption precursors.
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Fig. 5. Chain of disruption precursor events for DIII-D discharge #161238. The first event in the
chain, marking tunstable, is shown in red. The two- and three-letter event codes from [27] are used
to identify each disruption precursor: namely, a drop in the auxiliary power (AUX), an influx of
impurity (IMP) together with an H-to-L back-transition (HL), and finally a mode lock (ML).

In current analyses, all other time slices from disruptive discharges occurring in a stable

phase at times prior to the beginning of the disruptive chain of events, i.e. with t < tunstable, are

excluded from the training datasets. This also allows a consistent comparison with the previous

work on JET data [10], when investigating the univariate distributions of the input features used

to train the algorithms presented in Section IV.

To support the hypothesis of an unstable phase in disruptive discharges, quite distinguishable
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from the non disruptive flattop phase, we report in Figure 6 and 7 the univariate analysis on two

of the most significant features used in the applications reported in this manuscript. Furthermore,

we compare the behavior of such features, i.e. the peaking factor for the electron temperature and

the Greenwald density fraction, for DIII-D and JET data.

Fig. 6. Histograms of the Te peaking factor (Left) for DIII-D and (Right) for JET data. In green
the non-disruptive flattop data and in red the unstable data from disruptive shots. The different
trends correlate with different statistically dominant precursors, i.e. core impurity accumulation
in JET-ILW versus edge cooling mechanisms in DIII-D.

Fig. 7. Histograms of the Greenwald density fraction (Left) for DIII-D and (Right) for JET data.
In green the non-disruptive flattop data and in red the unstable data from disruptive shots.
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Even if the distributions for the two classes tend to be relatively well separated, it is possible

to notice that the separation trend is exactly the opposite when comparing JET with DIII-D

data. This highlights the very different dynamics in terms of the dominant precursors in the

disruptive chain of events for the two devices: one, with its ITER-like wall (Beryllium for the main

chamber wall and Tungsten for the divertor), is more prone to impurity accumulation events and

therefore hollow or less peaked Te profiles [18, 28], and the other one (with a vessel fully armored

with graphite tiles) is more subject to edge cooling mechanisms, hence higher Te peaking factors,

correlated with dangerous MHD instabilities [29]. DIII-D is indeed characterized by a high error

field and low-density operations (statistically frequent as shown by the Greenwald density fraction

histogram in Fig. 7) allow the error field to penetrate more easily, causing locked islands that in

turn flatten the temperature profile, thus cooling the peripheral regions of the plasma (see Figure

6(d) in [29]).

The probability density functions shown in Figures 6 and 7 correlate with statistically-

dominant precursors that are different for the two devices, and also very dependent on the ex-

perimental dataset chosen for this application: disruptions driven by core impurity accumulation

dominate JET-ILW data while MHD instabilities cause most of the analyzed DIII-D disruptions.

Nevertheless, the refined definition of tunstable, which is assigned to different plasma discharges

according to the initial precursor in the disruptive chain of events, is capable to separate (in JET

better than on DIII-D) the unstable scenarios from non-disruptive data. Physics-based labeling of

samples for data-driven applications is extremely important to develop more robust algorithms, ca-

pable of discovering in a high-dimensional features space the boundaries between unstable regions,

while successfully mapping the non-linear relationships among all the input features.

IV. PRELIMINARY ANALYSIS ON DIII-D AND JET

An efficient way to explore the predictive capability of the peaking factor metrics is to analyze

them along with other relevant physics-based indicators using machine learning algorithms, which

can facilitate the identification of specific recurring patterns in high-dimensional data spaces. Two

disruption prediction algorithms developed by the authors, the Disruption Prediction with Random

Forests (DPRF) algorithm [12] and the Generative Topographical Map (GTM) [18], are used here

in an attempt to show commonalities and differences between disruption precursors on both JET
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and DIII-D. In the following, we will show a few representative cases.

TABLE I
List of zero-dimensional signals used as input features in DPRF. The signal’s description is given
together with the associated name of the variable as it appears in this work. The last column
reports the data source. All data used for the applications reported in this manuscript comes from
offline data sources.

Signal description Name Source
Plasma current error fraction (Ip − Iprog)/Iprog Rogowski Coil
Poloidal beta βp EFIT
Greenwald density fraction ne/nG Interferometer and EFIT
Safety factor at 95% of minor radius q95 EFIT
Plasma internal inductance li EFIT
Radiated power fraction Pfrac = Prad/Pinput Bolometer and Heating System
Locked mode proxy LM Magnetics
Te peaking factor Tepf Thomson Scattering
ne peaking factor nepf Thomson Scattering
Prad peaking factor - Core Prad CV A Bolometer
Prad peaking factor - Divertor Prad XDIV Bolometer

In the first example of interest, DPRF is trained only on DIII-D discharges using 11 di-

mensionless or normalized signals that are relevant to disruption precursors, including the four

peaking factors introduced in Section II. These signals, or input features, are reported in Table I.

To attempt to test the portability of the algorithm and of the engineered features, DPRF is then

applied to JET discharge 82657 (see Figure 8), which disrupted due to an impurity accumulation

event. Note that the algorithm’s output, or disruptivity, begins to rise substantially above the

baseline value as the peaking factor marking the radiated power in the core begins to increase,

as shown in the bottom panel of Fig. 8. The disruptivity is to be intended as the probability of

class membership (unstable vs non-disruptive phase) and it is a dimensionless value that ranges

between 0 and 1.
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Fig. 8. JET discharge 82657 is analyzed by DPRF. Top panel shows the plasma current (black)
together with the programmed Ip (dashed black) and the disruptivity prediction. DPRF is trained
only using dimensionless or normalized DIII-D data as reported in Table I. Middle panel shows
the feature contributions, while the peaking factor from temperature, density, and radiation are
shown in the bottom panel.

An advantage of using DPRF is that its predictive output can be expressed as a sum of feature

contributions [13] with the intent to reveal the extent to which each individual input feature drives

the prediction. Examining these in the second panel of Fig. 8, we see that the top contributing fea-

ture during the last ∼2 s of the discharge is the Prad CV A peaking factor, indicating that DPRF is

responding to an impurity accumulation in the core with a higher disruption probability. Only the

most relevant contributing features are highlighted in color, while all the others are reported in grey.

In the second example, we use a slightly different set of signals (see Table II) to match the

set used to train on JET-ILW discharges [10], to project a DIII-D discharge onto the latent space

(i.e. lower-dimensional data-manifold) provided by the GTM algorithm.
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TABLE II
List of zero-dimensional signals used as input features in the GTM. The signal’s description is
given together with the associated name of the variable as it appears in this work. The last
column reports the data source. All data used for the applications reported in this manuscript
comes from offline data sources.

Signal description Name Source
Safety factor at magnetic axis qAX EFIT
Plasma internal inductance Li EFIT
Radiated power fraction Pfrac Bolometer and Heating System
Te peaking factor Tepf Thomson Scattering
ne peaking factor Nepf Thomson Scattering
Prad peaking factor - Core Radpf−CV A Bolometer
Prad peaking factor - Divertor Radpf−XDIV Bolometer

Figure 9 shows the behavior of DIII-D discharge 161238, which disrupts due to three subse-

quent influxes of impurities: (1) at ∼2.5 s there is a transition to H-mode; analyzing the discharge’s

behavior on the latent space’s map, it is possible to notice that the trajectory is initially evolving

close to the boundary (upper left corner) due to peaked temperature and current density profiles

(reported in the multi-panel plot on the right). After that, the discharge undergoes a relatively

long, and stable phase away from the boundary (∼2s). Then, after the neutral beams power steps

down at ∼4.5 s (not shown in figure), (2) an ELM-free H-mode phase initiates, causing an influx of

impurities to flow in the plasma core, as indicated by the complementary behavior of the radiation

peaking factors, shown in the set of panels on the right in Figure 9. The radiation leaves the X-

point location and begins moving up toward the core plasma, with a final impurity accumulation

killing definitely the discharge at 5 seconds.
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Fig. 9. 3-element figure showing (top left) the GTM latent space trained on JET-ILW data [10]
with the DIII-D discharge trajectory overlaid in black with dots up to the disruption, (right) 0-D
profile indicators for DIII-D discharge 161238, and (bottom left) class membership function for
the same DIII-D discharge. On the right, the time traces of the input features used for the GTM,
Table II describes the signals in detail.

V. DISCUSSION AND CONCLUSIONS

The preliminary analysis reported in this paper aims to lay out the groundwork for success-

fully developing data-driven cross-device predictors, by also preserving their interpretability. The

inclusion of physics-based indicators tracking specific disruption precursors in a more uniform and

device-independent framework, allows more reliable domain adaptation and knowledge extraction

across very different tokamaks. The univariate analysis discussed in Section III.A illustrates how

the dominant causes characterising the analysed JET-ILW and DIII-D disruption databases are

statistically not the same. Despite the different frequency of occurrence of dominant precursors in

the two devices, it is still possible to find a comparable ensemble of physics mechanisms leading
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to disruptions, where the analogous causes can be described similarly in a unified framework of

physics-based indicators. The different statistical picture for disruptions in JET-ILW and DIII-D

is due to several factors, such as different plasma-facing component materials and device geome-

tries, different control schemes and experimental programs. Nevertheless, we have shown how the

reduction from 1D/2D profile information to 0D physics-based indicators can be used to describe

specific disruption precursors that are extremely relevant also for ITER, such as impurity accu-

mulation events, on the two very different tokamaks. In particular, through two representative

examples reported in Section IV, we have shown how data-driven algorithms optimized for best

performances on one device’s data can still be used (with no re-training) to explain disruptive be-

havior on another, very different device, as long as the destabilizing precursors are diagnosed using

a common definition. This is an encouraging result in view of more extended study to validate

cross-device transferability of the data-driven predictors: for machines with different dominant

disruptive chain of events, it may not be possible to directly transfer machine learning classifiers,

even with physics-based features, without the use of at least some data from the new machine [15]

(or possibly simulation data to capture the projected physics). With that being said, the inclusion

of engineered profile-based features in data-driven models reveals to improve their interpretability,

by tracking additional disruptive precursors, and is well suited for real-time applicability. The PCS

for current and future devices will benefit from predictive models that are capable to inform on

the causes of impending disruptions so that avoidance schemes can be identified. The computation

of the peaking factors from 1D/2D profiles is very simple, and they are currently calculated in

real-time for both JET and DIII-D: in particular, the computation of the peaking factors and the

latent space on JET PCS occurs in approximately 200 microseconds. On DIII-D, recent upgrades

to DPRF have included the real-time computation of the peaking factors as well [30]: to calculate

in real-time the algorithm’s disruptivity output and the feature contributions takes an average of

200 microseconds, similarly to the JET case.

The analyses reported in this paper leverage a more classical feature engineering approach to

properly identify and simply describe the disruption mechanisms on different tokamaks through the

same features and/or combination of features. The manual identification of tunstable to mark the

beginning of loss of control that eventually leads to a disruption allows machine learning to be used
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for event-based predictions rather than to result in a generic black-box application. Such paradigm,

among other things, is compatible with the most advanced control techniques currently being ex-

plored and developed for ITER. As described in [31], the supervisory layer is tokamak-agnostic

and designed as a task-based approach, with an actuator manager taking high-level decisions for

handling different control tasks, such as those associated to off-normal events defined in the frame-

work of disruption avoidance.

Possible future research directions include work to combine unsupervised (GTM) and super-

vised (DPRF) algorithms for disruption prediction, and leverage the existing abundance of data

coming from many other existing tokamaks, such as Alcator C-Mod, TCV, EAST and KSTAR,

to develop a more global framework that would encompass JET and DIII-D, for extrapolation to

ITER.
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[8] Rattá G, Vega J, Murari A, Vagliasindi G, Johnson M and de Vries P 2010 Nucl. Fusion 50

025005 ISSN 0029-5515 URL http://stacks.iop.org/0029-5515/50/i=2/a=025005?key=

crossref.6240d82066621bd84181169f23e7fdb9

22

https://doi.org/10.1088%2F0029-5515%2F50%2F1%2F014002
https://doi.org/10.1088%2F0029-5515%2F50%2F1%2F014002
https://linkinghub.elsevier.com/retrieve/pii/S0920379603003223
https://linkinghub.elsevier.com/retrieve/pii/S0920379603003223
http://iopscience.iop.org/article/10.1088/1741-4326/ab15de
https://doi.org/10.1016/j.fusengdes.2019.03.050
http://stacks.iop.org/0029-5515/49/i=5/a=055011?key=crossref.8d24467ee731fdf43d48442fbabb5f86
http://stacks.iop.org/0029-5515/49/i=5/a=055011?key=crossref.8d24467ee731fdf43d48442fbabb5f86
http://stacks.iop.org/0029-5515/46/i=7/a=002?key=crossref.b5d25ce338667207f051f507afd6d691
http://stacks.iop.org/0029-5515/46/i=7/a=002?key=crossref.b5d25ce338667207f051f507afd6d691
http://stacks.iop.org/0029-5515/50/i=2/a=025005?key=crossref.6240d82066621bd84181169f23e7fdb9
http://stacks.iop.org/0029-5515/50/i=2/a=025005?key=crossref.6240d82066621bd84181169f23e7fdb9


[9] Berkery J W, Sabbagh S A, Bell R E, Gerhardt S P and LeBlanc B P 2017 Phys. Plasmas

24 056103 ISSN 1070-664X URL http://aip.scitation.org/doi/10.1063/1.4977464

[10] Pau A, Fanni A, Carcangiu S, Cannas B, Sias G, Murari A and Rimini F 2019 Nucl. Fusion

59 106017 ISSN 0029-5515
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Fig. 1: Peaking factor and profile evolution during DIII-D shot 175697, with tomographic recon-

structions of bolometer emissivity at 4 different times of interest [credit pyTomo - T. Odstrcil]; in

the bottom three panels, ρ refers to the normalized effective radius given in Eq. 6 and the channel

number is that of the lower fan as shown in Fig. 2.

Fig. 2: (Left) Bolometer arrays on DIII-D; (Right) Lower fan channel setup, with divertor channels

L1− L7 shown in red.

Fig. 3: (Left) geometry of Thomson scattering systems on DIII-D used for this study; (Right)

typical density and temperature profiles on DIII-D, with core bin channels in red.

Fig. 6: Histograms of the Te peaking factor (Left) for DIII-D and (Right) for JET data. In green

the non-disruptive flattop data and in red the unstable data from disruptive shots. The different

trends highlight different dominance in precursors, i.e. impurity accumulation in the divertor in

JET-ILW versus edge cooling mechanisms in DIII-D.

Fig. 7: Histograms of the Greenwald density fraction (Left) for DIII-D and (Right) for JET data.

In green the non-disruptive flattop data and in red the unstable data from disruptive shots.

Fig. 4: Time slices in DIII-D dataset are classified based on the type of discharge they are from and

(if disruptive) when they occur; both classes used in this study, i.e. ‘non-disruptive’ and ‘unstable’,

are shown.

Fig. 8: JET discharge 82657 is analyzed by DPRF. Top panel shows the plasma current (black)

together with the programmed Ip (dashed black) and the disruptivity prediction. DPRF is trained

only using dimensionless or normalized DIII-D data as reported in Table I. Middle panel shows

the feature contributions, while the peaking factor from temperature, density, and radiation are

shown in the bottom panel.

Fig. 9: 3-element figure showing (top left) the GTM latent space trained on JET-ILW data [10],

(right) 0-D profile indicators for DIII-D discharge 161238, and (bottom left) class membership

function for the same DIII-D discharge. Note that on the GTM latent space is reported the DIII-

D discharge trajectory, showing how it evolves towards a final disruption.On the right, the time

traces of the input features used for the GTM, Table II describes the signals in detail.

TABLE I: List of zero-dimensional signals used in DPRF. The signal’s description is given together

with the the associated name of the variable as it appears in this work. The last column reports

the data source.
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TABLE II: List of zero-dimensional signals used as input features in the GTM. The signal’s de-

scription is given together with the the associated name of the variable as it appears in this work.

The last column reports the data source.
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