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Abstract— In this study, we present an analytical solution for the 
resistance of a hemispheric grounding electrode located on the top 
of a mountain. The mountain is modeled as a truncated cone with 
a finite height. Recently, a closed-form solution for the grounding 
resistance was derived first for a hemispheric electrode on top of a 
cone, and later for a more realistic case of a truncated cone with a 
flat region at its top. The height of the cone was considered infinite 
in those studies. Here, we extend these studies for the case of a 
truncated cone with finite height. The analytical solution is 
compared with numerical simulations and the results agree 
reasonably well. 
 

Index Terms— Lightning, grounding resistance, hilly terrain, 
elevated terrain, grounding electrode, finite height 

I. INTRODUCTION 
ountain tops are ideal locations for placing either 
telecommunication towers to obtain line of sight, or wind 

turbines to maximize the generated power. These locations have 
a higher risk of being struck by lightning due to the 
geographical elevation and the height of the tower itself [1-3]. 
Furthermore, tall structures located on mountaintops can also 
initiate upward flashes [4]. Furthermore, these areas being often 
characterized by low soil conductivities, lightning protection of 
these structures is a challenging task [5,6]. 
 The effectiveness of a grounding system depends mostly on 
its geometry and its surrounding soil properties, such as the 
electrical properties of the ground, their frequency dependence 
and the soil stratification (e.g., [7,8 and 9]), as well as soil 
ionization [e.g., 10]. 

It has recently been shown that the grounding resistance can 
be significantly increased in the case of a non-flat terrain that 
effectively reduces the conductive volume for the injected 
current [11]. A similar degree of increase was obtained for both, 
hemispheric grounding electrodes [11] and vertical rods [12], 
suggesting that the increase in the grounding resistance is 
mostly governed by the soil geometry and not by the geometry 
of grounding electrode. Remote grounding can be one effective 
way of reducing the grounding resistance of structures located 
on mountaintops [13]. 

Analytical solutions for the calculation of the grounding 
resistance of electrodes buried in the soil are available in the 
case of a flat terrain (e.g. [14-17]). Recently, analytical 
solutions for the low-frequency response of a hemispheric 
grounding electrode buried on the top of a cone-shaped 
mountain characterized by its apex angle were derived [11, 18]. 

In these studies, the height of the mountain was assumed to be 
infinite.  

In this letter, we present an analytical solution for the 
grounding resistance of a hemispheric grounding electrode 
located on the top of a truncated cone, characterized by a finite 
height.  

II. ANALYTICAL SOLUTIONS 
Fig. 1 presents three different simplified geometries 
representing a hemispheric grounding electrode located on the 
top of a mountain. The models shown in Fig. 1-a and Fig. 1-b 
have been considered in [11]. In these models, the height of the 
cone-shaped mountain was assumed to be infinite. In this study, 
we will relax this assumption and consider the geometry shown 
in Fig. 1-c, in which the finite height of the mountain is taken 
into account. 
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Fig. 1. Hemispheric grounding electrode in three different geometries of the 
soil. (a) Electrode buried on the top of a truncated cone-shaped ground. The top 
radius of the cone is assumed to be equal to the radius of the electrode (b) Same 
as in (a) but the top radius of the cone is bigger than the radius of hemispheric 
electrode (c) Same as in (b) but considering a cone-shaped mountain with a 
finite height. 
  
The analytical solution for the grounding resistance for the 
simplified model shown on Fig. 1-a is given in [11]: 

𝑅𝑅𝑎𝑎 =
1

2𝜋𝜋𝜎𝜎𝑅𝑅0(1 − cos (𝜑𝜑))(1 + 𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑))
 (1) 

where φ is the apex angle of the cone, 𝜎𝜎 is the soil conductivity, 
and 𝑅𝑅0 is the radius of hemispheric electrode. 
In [18], the solution for the model shown in Fig. 1-b was 
obtained, splitting the soil into two subsections and summing 
the respective potentials. The two subsections are illustrated in 
Fig. 1-b The potential of the first subsection is governed by 
equations related to a flat ground, while the potential for the 
second one is governed by the same set of equations 
corresponding to the geometry of Fig. 1-a [11]. The derived 
expression for the grounding resistance is [18]:  
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 (2) 

in which 𝑅𝑅𝑡𝑡1 is the distance from the center of the hemisphere 
S’ to the edge of the cone (see Fig. 1-b). 

Using a similar approach as the one used in [18], one can 
divide the geometry in Fig. 1-c into three subsections. Each 
subsection in the figure is an annulus sector formed by the space 
between two arcs of the same circle as follows: Subsection 1, 
labeled SUB1 in Fig. 1-c, is the annulus sector centered at S’ 
and bounded by the arcs with radii 𝑅𝑅0 and 𝑅𝑅𝑡𝑡1 (the latter not 
labeled explicitly in the figure). Subsection 2 is the annulus 
sector centered at S and bounded by the circular arcs with radii 
𝑅𝑅𝑡𝑡1(1 − cos(𝜑𝜑)) and 𝑅𝑅𝑡𝑡2(1 − cos(𝜑𝜑)). Finally, subsection 3 is 
the annulus sector centered at S’’ and bounded by the arcs of 
radii 𝑅𝑅𝑡𝑡2 and ∞. 

As can be seen from Fig. 1-c, the first and third subsections 
are governed by the equations associated with a flat ground. The 
second subsection is governed by the equations associated with 

the geometry presented in Fig. 1-a and given in [11] with the 
origin of the coordinate system at the tip of the cone.  Note that 
the region between subsections one and two shown in white in 
Fig. 1-c is not part of any of the considered subsections and it 
is the result of the adopted approximation. On the other hand, 
the region delimited by the start of subsection 3 and the end of 
subsection 2 belongs to both, subsections 2 and 3. In the 
following analysis, the potential will be calculated along the 
curve 𝐶𝐶1 (shown in Fig. 1-c.) in order to avoid these undefined 
regions. 

 
The electrode potential with respect to the remote earth can be 
obtained as: 

𝑉𝑉∞ ≈ � 𝐸𝐸�⃗  ∙ 𝑑𝑑𝑑𝑑′�����⃗  
𝑟𝑟′=∞

𝑟𝑟′=𝑅𝑅0
 (3) 

This voltage can be obtained by integrating the electric field 
along the curve  𝐶𝐶1 and splitting the domain into the three 
subsections as shown in Fig. 1-c. 
 
First, the voltage drop along 𝐶𝐶1 in the first subsection can be 
obtained using the flat ground voltage expression with the 
origin of the coordinate system being the center of the 
hemisphere electrode marked with S’ (Fig 1-c): 
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where I is the injected current. 
The voltage drop along 𝐶𝐶1 in the second subsection can be 
obtained using the expression derived in [11], considering the 
origin of the coordinate system at the tip of the cone marked 
with S (Fig 1-c):  
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(5) 

 
Finally, the voltage drop along 𝐶𝐶1  in the third subsection can 
be approximated using the flat earth expression considering the 
origin of the coordinate system shown with S” (Fig 1-c): 
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 (6)          

The total electrode potential is equal to the sum of these three 
terms: 

𝑉𝑉∞ = 𝑉𝑉1 + 𝑉𝑉2 + 𝑉𝑉3 
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(7) 
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in which 𝑅𝑅𝑡𝑡2 is: 

𝑅𝑅𝑡𝑡2 = 𝑡𝑡𝑡𝑡𝑡𝑡(𝜑𝜑)𝐻𝐻 + 𝑅𝑅𝑡𝑡1   (8) 

Dividing (7) by the current, one can obtain the expression for 
the grounding resistance as: 
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(9) 

It can readily be shown that when the mountain height tends to 
infinity, (8) tends to infinity as well, so that (9) reduces to (2). 
Furthermore, it can easily be shown that imposing Rt1=R0, (2) 
will be reduced to (1). 
 

III. VALIDATION WITH NUMERICAL SIMULATIONS 
In this section, we present a comparison between the derived 

analytical solution (9) and numerical simulations obtained 
using the commercial software COMSOL [19]. More details 
about simulations can be found in [11]. Table 1 presents the 
numerical results considering different values for the height and 
apex angle for the studied geometry (Fig. 1-c). It can be seen 
that the assumption of an infinite mountain height results in an 
overestimation of the grounding resistance. Note that we only 
considered a single conductivity of 0.001 S/m in our 
calculations. The grounding resistance has a linear dependency 
with the soil conductivity, as can be readily seen in the 
analytical equation (9) and confirmed by numerical evaluation. 

As the apex angle increases toward the limit of 90° and the 
height to the limit of zero, the grounding resistance will tend to 
the value corresponding to a flat ground:  

𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 =
1

2𝜋𝜋𝜎𝜎𝑅𝑅0
 (10) 

which is equal to 31.8 Ω for the observed case. 
The relative errors of equation (9) are presented in Table 2. 

We can observe that the results obtained using the analytical 
solutions agree reasonably well with the reference numerical 
results.  

 
 
TABLE 1. Grounding resistance simulation for σ=0.001 S/m, R0=5 m, 

Rt1=10 m, and Rflat=31.8 Ω  

Apex 
angle 
(𝜑𝜑) 

Resistance (Ω)  

H = 10 m H = 25 m 
H = 100 

m 
H = 250 

m H = ∞ 

45 32 35.7 39.2 41.3 46.2 
30 36.3 44.4 54 57.5 62.9 
15 42.2 60.3 92.2 105.8 121 
10 44.7 69.1 121.2 148.6 188.7 
      
Fig. 2 presents a plot of the increase of the grounding 

resistance as a function of the cone height and apex angle 
compared to the case of a flat ground. The grounding resistance 
was obtained analytically using (5). As the value of the apex 

angle increases, the results converge to those corresponding to 
the case of a flat ground. In a similar way, decreasing the height, 
the results converge to those of a flat ground. For the case of an 
apex angle of 30° and a height of about 100 m, the increase of 
the grounding resistance is almost a factor of two.  
 

TABLE 2. Grounding resistance relative error of eq. (9) for σ=0.001 S/m, 
R0=5 m, Rt1=10 m, and Rflat=31.8 Ω  

Apex 
angle 
(𝜑𝜑) 

Resistance (Ω)  

H = 10 m H = 25 m 
H = 100 

m 
H = 250 

m H = ∞ 

45 7.6% 1% -3.6% -1.8% 6.7% 
30 11.5% 6.12% 1.9% 1.6% 5.6% 
15 6% 5.8% 4.6% 3.8% 5.27% 
10 -8.1% 0.3% 3.6% 3.1% 8.35% 
       

 
Fig. 2. Increase of the grounding resistance predicted by the derived analytical 
formula as a function of the height of the truncated cone and its apex angle, for 
a 5-m radius hemispheric electrode. The top radius of the truncated cone is 10 
m. 

IV. CONCLUSION 
Recently, closed-form solutions for the grounding 

resistance have been derived first for a hemispheric electrode 
on top of a cone, and later for a more realistic case of a truncated 
cone with a flat region at its top. The height of the cone was 
considered infinite in those studies.  

In this paper, we derived an analytical solution for the 
grounding resistance of a hemispheric electrode located on a 
mountaintop represented by a truncated cone, taking into 
account its finite height. The derived analytical solution was 
validated using as reference numerical simulations.  

The effect of the cone height and apex angle on the resulting 
grounding resistance was discussed. The relative error 
incurred in when using the derived approximate analytical 
expression for the grounding resistance is much smaller than 
10% for the cases studied in this paper with the exception of a 
single case for which the error was of the order of 10%. 
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