## Table of Content:

Full Reference 5 and 7 ..... S2
General Methods ..... S3
Ligand Synthesis ..... S5
Substrate Synthesis ..... S9
Nickel-Catalyzed Enantioselective Indole and Pyrrole C-H Functionalization ..... S20
Mechanistic Studies ..... S48
NMR-Spectra ..... S52

## Full lists of authors for references 5 and 7:

[5] M. Gallant, C. Beaulieu, C. Berthelette, J. Colucci, M. A. Crackower, C. Dalton, D. Denis, Y. Ducharme, R. W. Friesen, D. Guay, F. G. Gervais, M. Hamel, R. Houle C. M. Krawczyk, B. Kosjek, S. Lau, Y. Leblanc, E. E. Lee, J.-F. Levesque, C. Mellon, C. Molinaro, W. Mullet, G. P. O'Neill, P. O'Shea, N. Sawyer, S. Sillaots, D. Simard, D. Slipetz, R. Stocco, D. Sørensen, V. L. Truong, E. Wong, J. Wu, H. Zaghdane, Z. Wang, Bioorg. Med. Chem. Lett., 2011, 21, 288-293.
[7] R. Snoeck, G. Andrei, B. Bodaghi, L. Lagneaux, D. Daelemans, E. de Clercq, J. Neyts, D. Schols, L. Naesens, S. Michelson, D. Bron, M. J. Otto, A. Bousseau, C. Nemecek, C. Roy, Antiviral Res. 2002, 55, 413-424.

## General Methods

## Experimental Procedures, Reagents and Glassware

All reactions were carried out under an atmosphere of nitrogen in oven-dried glassware with magnetic stirring, unless otherwise indicated. Toluene, THF and $\mathrm{Et}_{2} \mathrm{O}$ were purified by an Innovative Technology Solvent Delivery System. Chemicals were used as obtained from the suppliers unless otherwise stated. Solvent compositions are given in (v/v).

## Chromatography

Flash chromatography was performed with Silicycle silica gel 60 (0.040-0.063 $\mu \mathrm{m}$ grade). Analytical thin-layer chromatography was performed with commercial glass plates coated with 0.25 mm silica gel (E. Merck, Kieselgel 60 F254). Compounds were visualised under UV-light at 254 nm .

## NMR Spectroscopy

Proton nuclear magnetic resonance ( ${ }^{1} \mathrm{H} N M R$ ) data were acquired at 400 MHz on a Bruker AVANCEIII- 400 spectrometer, 500 MHz on a AVANCENEO-500, 600 MHz on a Bruker DRX600 or at 800 MHz on a AVANCEII-800 spectrometer. Chemical shifts ( $\delta$ ) are reported in parts per million (ppm) relative to residual chloroform (s, 7.26 ppm ). Proton decoupled Carbon-13 nuclear magnetic resonance $\left({ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\right)$ data were acquired at 101 MHz on a Bruker AVANCEIII-400 spectrometer, 126 MHz on a AVANCENEO-500, 151 MHz on a Bruker DRX600 or at 201 MHz on a AVANCEII-800 spectrometer. Chemical shifts are reported in ppm relative to residual chloroform ( 77.16 ppm ). The assignment of proton and carbon signals was assisted by COSY, HSQC, HMBC and DEPT-135 experiments where necessary. Splitting patterns are designated as $s$, singlet; $d$, doublet; $t$, triplet; $q$, quartet; $p$, pentet; hept, heptet; dd, doublet of doublets; dt, doublet of triplets; ddd, doublet of doublets of doublets; tt, triplet of triplets; tq, triplet of quartets; qt, quartet of triplets; m, multiplet. All NMR data were recorded at 298 K.

## Infrared Spectroscopy

Infrared (IR) data were recorded on an Alpha-P Bruker FT-IR Spectrometer. Absorbance frequencies are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$.

## Mass Spectrometry

HRMS measurements were performed on an Agilent LC-MS TOF (Multimode: ESI + APCI) or Waters Xevo G2-S QTOF (APPI or APCI). High resolution mass are given in $m / z$.

## Melting Points

Melting points were measured on a Büchi B-540 and are uncorrected.

## Enantiomeric excesses

Enantiomeric excesses were measured on an Agilent or Waters HPLC, or on a Thar SFC Investigator system using chiral stationary phase columns. Optical rotations were measured on a Polartronic M polarimeter using a 0.5 cm cell with a Na 589 nm filter.

## X-Ray analyses

X-ray analysis of compounds 2a and $\mathrm{L} 8 \cdot \mathrm{HCl}$ was performed by Dr. R. Scopelliti and Dr. F. Fadaei Tirani at the EPF Lausanne.

## General Procedure for the Synthesis of Ligands L5 and L7-L11 (GP1) <br> Chiral Anilines S1a-S1f



S1b



S1e


Ligands L1- L4, L6 and chiral anilines S1 were obtained as described previously:
J. Diesel, A. Finogenova, N. Cramer, J. Am. Chem. Soc. 2018, 140, 4489-4493.

## General Procedure for the Preparation of the Imidazolium Salts (GP1)



S1

1. glyoxal, $\left.\mathrm{HCO}_{2} \mathrm{H}, \mathrm{EtOH}, \mathrm{)}\right)$ ), 5 h
2. LAH, THF, $80^{\circ} \mathrm{C}, 1 \mathrm{~h}$
3. $\mathrm{HC}(\mathrm{EtO})_{3}, \mathrm{HCl}$, dioxane, $\mathrm{MW}, 140^{\circ} \mathrm{C}, 45$ min



L5•HCI, L7-L11•HCI

Aniline S1 ( 1.0 eq ) was suspended in $\mathrm{EtOH}(1 \mathrm{M})$ and a $40 \%$ solution of glyoxal ( 0.5 eq ) in water, and catalytic amounts of formic acid ( 0.1 eq ) were added. The mixture was sonicated for 5 h and subsequently the crude solid was coevaporated with THF. The crude product was dissolved in THF ( 0.15 M ), cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{LiAlH}_{4}(2 \mathrm{eq})$ was added. The mixture was allowed to warm to ambient temperature and stirred for 1 h at $80^{\circ} \mathrm{C}$. Subsequently the reaction mixture was quenched at $0^{\circ} \mathrm{C}$ with $10 \%$ aq NaOH and extracted with diethyl ether. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was dissolved in dioxane ( 0.5 M ) inside a microwave vial and triethyl orthoformate ( 1.15 eq ) was added. To this mixture a 4 M solution of $\mathrm{HCl}(1.15 \mathrm{eq})$ in dioxane was added. The vial was sealed and heated for 45 min at $140^{\circ} \mathrm{C}$ inside the microwave reactor. The reaction mixture was
filtered to yield the crude imidazolium salt as off white powder. The crude solid was recrystallized two times from dioxane to yield the ligands $\mathbf{L}$ as white powder.

## Characterization Data for Imidazolium Salts of Ligands L5 and L7-L11

1,3-bis(4-methyl-2,6-bis((R)-1-phenylethyl)phenyl)-4,5-dihydro-1 $H$-imidazol-3-ium chloride
 $(\mathrm{L} 5 \cdot \mathrm{HCl})$ :
${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=10.31(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 8 \mathrm{H})$, $7.22-7.09(\mathrm{~m}, 10 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 4.25 ( $q, J=6.9 \mathrm{~Hz}, 2 H$ ), $3.70-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.08-2.97(\mathrm{~m}, 2 \mathrm{H})$, $2.34(\mathrm{~s}, 6 \mathrm{H}), 1.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta=161.9,146.1,143.9,143.8,142.1,141.0$, 129.4, 129.1, 128.8, 128.4, 128.1, 127.6, 127.4, 126.7, 126.7, 52.9, 40.1, 38.4, 23.3, $21.7 \mathrm{ppm} ;$ IR (ATR): $\tilde{\nu} 3333,3058,3026,2969,2932,2874,2790,2626,2189,2175,2158,1617,1493$, 1446, 1378, 1265, 1211, 1187, 1061, 1029, 1014, 985, 928,911, 864, 756, 729, 701, 638, 582, 560. $\mathrm{cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{49} \mathrm{H}_{51} \mathrm{~N}_{2}\right]^{+}: 667.4047$, found: 667.4055; [ $\left.\alpha\right]_{\mathrm{D}}{ }^{20}: 132.1^{\circ}$ (c = 0.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). m.p.: $258-260^{\circ} \mathrm{C}$.

1,3-bis(2,6-bis((R)-1-(3,5-dimethylphenyl)ethyl)-4-methylphenyl)-4,5-dihydro-1 H-imidazol-3-ium chloride (L7•HCl):

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=10.83(\mathrm{~s}, 1 \mathrm{H}), 7.14(\mathrm{~s}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 4$ H), 6.93 (s, 2 H), 6.86 (s, $2 H$ H), 6.78 (s, 2 H), 6.48 (s, 4 H), 4.26 (s, 2 H), 4.07 (s, 2 H), 3.72 (d, J = $15.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.25 (s, 2 H ), 2.34 ( $\mathrm{d}, ~ J=7.5$ $\mathrm{Hz}, 12 \mathrm{H}), 2.20(\mathrm{~s}, 12 \mathrm{H}), 1.73(\mathrm{~s}, 6 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=162.7,146.2,144.4,143.4,142.2,141.0,138.6$, 138.3, 129.0, 128.6, 128.5, 128.4, 128.0, 125.4, 125.0, 53.5, 40.2, 38.3, 23.2, 22.2, 21.9, 21.6, 21.5 ppm ; IR (ATR): $\tilde{\nu}$ 2968, 2917, 2873, 2733, 1617, 1462, 1377, 1263, 1038, 924, 863, 848, 726, $708 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{57} \mathrm{H}_{67} \mathrm{~N}_{2}\right]^{+}: 779.5299$, found: $779.5202 ;[\alpha]_{\mathrm{D}}{ }^{20}: 145.1^{\circ}\left(\mathrm{C}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. m.p.: $254-256{ }^{\circ} \mathrm{C}$.

1,3-bis(2,6-bis((R)-1-(3,5-di-tert-butylphenyl)ethyl)-4-methylphenyl)-4,5-dihydro-1 H-imidazol-3ium chloride $(\mathrm{LB} \cdot \mathrm{HCl})$ :

${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=8.24(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 4 \mathrm{H}), 7.01(\mathrm{~s}$, $4 \mathrm{H}), 6.90(\mathrm{~s}, 8 \mathrm{H}), 4.42(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.40-4.30(\mathrm{~m}, 2 \mathrm{H})$,
4.18 (s, 2 H$), 3.85(\mathrm{q}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}), 1.81(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}), 1.28(\mathrm{~s}, 36 \mathrm{H})$, 1.17 (s, 36 H ), 1.03 (d, $J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=158.5,151.2$, 151.0, 144.0, 143.7, 143.3, 143.2, 141.4, 128.6, 128.3, 128.0, 121.7, 121.1, 120.8, 120.8, 54.3, 40.4, 38.6, 34.9, 34.9, 31.5, 31.5, 23.2, 22.9, 21.7 ppm ; IR (ATR): $\tilde{\nu} 2961,2904,2867,2176$, $1635,1617,1595,1460,1393,1362,1248,1202,989,923,908,873,727,637,541 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{49} \mathrm{H}_{51} \mathrm{~N}_{2}\right]^{+}$: 1115.9055 , found: 1115.9085 ; $[\alpha]_{\mathrm{D}}{ }^{20}: 115.5^{\circ}(\mathrm{c}=0.1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). m.p.: $274-276{ }^{\circ} \mathrm{C}$.
L8.HCl was crystallised by slow evaporation from dioxane and its absolute configuration assigned by X-ray crystallography as ( $R ; R ; R ; R$ ).


1,3-bis(2,6-bis((R)-1-(3,5-di-tert-butylphenyl)ethyl)-4-methoxyphenyl)-4,5-dihydro-1 H-imidazol-3ium chloride (L9•HCI):

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.32(\mathrm{~s}, 1 \mathrm{H}), 7.26(\mathrm{dq}, J=3.4,1.7$ $\mathrm{Hz}, 4 \mathrm{H}), 6.96-6.91(\mathrm{~m}, 8 \mathrm{H}), 6.73(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, \mathrm{~J}$ $=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$, 4.19 (s, 2 H), 3.88 ( $\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.69 ( $\mathrm{s}, 6 \mathrm{H}$ ), 1.81 ( $\mathrm{d}, ~ J=$ $7.0 \mathrm{~Hz}, 6 \mathrm{H}$ ), 1.28 (s, 36 H ), 1.17 (s, 36 H ), 1.04 (d, $J=7.0 \mathrm{~Hz}, 6$ H) ppm; ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=160.9,159.2$, 151.3, $151.0,146.0,145.8,143.0,142.9,129.0,128.2,125.3,123.7$,
121.7, 121.2, 120.9, 120.8, 113.4, 112.4, 55.4, 54.3, 40.6, 39.0, 34.9, 34.9, 31.5, 31.5, 23.2, 23.1 ppm; IR (ATR): $\widetilde{\nu}$ 2960, 2904, 2868, 2178, 1632, 1612, 1596, 1464, 1438, 1393, 1362, 1325,1248, 1205, 1149, 1042, 997, 925, 910, 874, 855, 804, 729, 637, $597 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{49} \mathrm{H}_{51} \mathrm{~N}_{2}\right]^{+}: 1147.8953$, found: 1147.8959; [ $\left.\alpha\right]_{\mathrm{D}}{ }^{20}$ : $171.3^{\circ}\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. m.p.: $247-248{ }^{\circ} \mathrm{C}$.

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=7.99(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 4 \mathrm{H})$, 7.21 (d, $J=1.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), $6.96(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.86(\mathrm{~d}, J=1.7$ $\mathrm{Hz}, 4 \mathrm{H}), 4.50(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.31-$ $4.22(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{q}, ~ J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.83(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$, 1.28 (s, 36 H ), 1.21 (s, 18 H ), 1.12 (s, 36 H ), 1.08 (d, J = $7.1 \mathrm{~Hz}, 6$ H) $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=158.2$, 154.1, 151.2, $150.9,143.5,143.3,143.2,143.0,128.3,124.9,124.5,121.6$, 121.2, 120.8, 120.7, 54.4, 40.7, 39.2, 35.1, 34.9, 34.8, 31.5, 31.4, 31.1, 23.5, 23.3 ppm; IR (ATR): $\tilde{\nu}$ 3068, 2961, 2904, 2868, 2161, 1634, 1616, 1596, 1477, 1460, 1393, 1362, 1248, 1200, 923, 898, 874, $728 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{49} \mathrm{H}_{51} \mathrm{~N}_{2}\right]^{+}: 1199.9994$, found: 1199.9999; [ $\alpha]_{\mathrm{D}}{ }^{20}: 131.1^{\circ}\left(\mathrm{c}=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. m.p.: $240-242^{\circ} \mathrm{C}$.

1,3-bis(2,6-bis((R)-1-(3,5-di-tert-butylphenyl)ethyl)phenyl)-4,5-dihydro-1 H -imidazol-3-ium chloride (L11•HCI):

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=8.51(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 3 \mathrm{H})$, 7.21 (dt, J = 12.3, $5.9 \mathrm{~Hz}, 6 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 11 \mathrm{H}), 4.50(\mathrm{~d}, \mathrm{~J}=$ $11.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 2 \mathrm{H})$, 3.97 ( $\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.83 (d, J = $6.9 \mathrm{~Hz}, 6 \mathrm{H}$ ), 1.27 ( $\mathrm{s}, 36 \mathrm{H}$ ), 1.23 (d, J = $4.7 \mathrm{~Hz}, 6 \mathrm{H}$ ), $1.17(\mathrm{~s}, 36 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=158.5,151.3,151.0,144.5,144.2,143.3,143.1,131.3,130.8$, 128.1, 127.4, 121.7, 121.3, 120.9, 120.8, 54.4, 40.4, 38.8, 34.9,
34.9, 31.5, 31.5, 23.2, 23.0 ppm ; IR (ATR): $\widetilde{\nu} 2961,2904,2867,2176,1614,1595,1475,1459$, 1393, 1362, 1298, 1248, 1200, 1064, 988, 908, 873, 812, $758,727,637 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{49} \mathrm{H}_{51} \mathrm{~N}_{2}\right]^{+}: 1087.8742$, found: 1087.8748; [ $\left.\alpha\right]_{\mathrm{D}}{ }^{20}$ : $222.3^{\circ}$ (c $=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ). m.p.: $222-224^{\circ} \mathrm{C}$.

## General Procedures for the Synthesis of Indoles 1a-1s and Pyrolles 3a-3f Unsaturated Alcohols S2a-S2h



S2a is commercially available (CAS\#: 763-32-6); other alcohols were synthesized following literature procedures:
S2b-S2d: K. H. Yong, J. A. Lotoski, J. M. Chong, J. Org. Chem. 2001, 66, 8248-8251.
S2e: P. A. Clarke, M. Grist, M. Ebden, C. Wilson, A. J. Blake, Tetrahedron 2005, 61, 353-363.
S2f: I. M. Dawson, J. A. Gregory, R. B. Herbert, P. G. Sammes, J. Chem. Soc., Chem. Commun. 1986, 620-621.
(E)-S2g: W.-Y. Kim, B. G. Kim, T. Kang, H.-Y. Lee, Chem. Asian J. 2011, 6, 1931-1935.
(Z)-S2g: L. C. Morrill, S. M. Smith, A. M. Z. Slawin, A. D. Smith, J. Org. Chem. 2014, 79, 16401655.

S2h: H. M. C. Ferraz, L. S. Longo, J. Org. Chem. 2002, 67, 3518-3521.

## General Procedure for the Alkylation of Indoles (GP2)




To a solution of the corresponding alcohol ( $5.00 \mathrm{mmol}, 1.0 \mathrm{eq}$ ) and $\mathrm{Et}_{3} \mathrm{~N}(658 \mathrm{mg}, 6.50 \mathrm{mmol}$, $1.3 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{MsCl}(0.41 \mathrm{~mL}, 5.25 \mathrm{mmol}, 1.05 \mathrm{eq})$ at $0^{\circ} \mathrm{C}$. The reaction mixture was allowed to warm to ambient temperature overnight and then was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with 1 M HCl , saturated aqueous $\mathrm{NaHCO}_{3}$, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure to afford the crude mesylate that was used in the next step without further purification.

To a suspension of NaH ( $60 \%$ in mineral oil; $112 \mathrm{mg}, 2.8 \mathrm{mmol}, 1.4 \mathrm{eq}$ ) in DMF ( 4.0 mL ) was added the corresponding indole ( $2 \mathrm{mmol}, 1.0 \mathrm{eq}$ ) in one portion at $0^{\circ} \mathrm{C}$. The resulting mixture
was heated to $50^{\circ} \mathrm{C}$, kept at this temperature for 30 min and then cooled to $0^{\circ} \mathrm{C}$. A solution of the mesylate ( $2.2 \mathrm{mmol}, 1.1 \mathrm{eq}$ ) in DMF ( 0.5 mL ) was added, and the resulting mixture was allowed to warm to ambient temperature overnight. Then, the reaction was quenched by addition of water, and the aqueous phase was extracted with EtOAc (*3). The combined organic extracts were washed with water (*5), brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (eluting with mixtures of pentane: EtOAc or pentane: $\mathrm{Et}_{2} \mathrm{O}$ ).

## General Procedure for the Alkylation of Pyrroles (GP3)



To a suspension of $\mathrm{NaH}(60 \%$ in oil; $48.0 \mathrm{mg}, 1.2 \mathrm{mmol}, 1.2 \mathrm{eq})$ in $\mathrm{DMF}(0.8 \mathrm{~mL})$ was added a solution of the corresponding pyrrole ( $1 \mathrm{mmol}, 1.0 \mathrm{eq}$ ) in DMF $(0.8 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The resulting mixture was warmed to room temperature, kept stirring for 30 min and then cooled to $0{ }^{\circ} \mathrm{C}$. A solution of the corresponding mesylate ( $1.2 \mathrm{mmol}, 1.2 \mathrm{eq}$ ) in DMF ( 0.4 mL ) was added, and the resulting mixture was allowed to warm to ambient temperature overnight. Then, the reaction was quenched by addition of water, and the aqueous phase was extracted with EtOAc (*3). The combined organic extracts were washed with water (*5), brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (eluting with mixtures of pentane:EtOAc or pentane: $\mathrm{Et}_{2} \mathrm{O}$ ).

## Characterization Data for Indoles 1a-1s and Pyrroles 3a-3f

1-(3-Methylbut-3-en-1-yl)-1 H -indole (1a):


Yield: 48\%; appearance: yellow oil; $\boldsymbol{R}_{\mathrm{f}}$ : 0.2 (pentane:EtOAc, 80:1); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=7.63$ (dt, $J=7.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.36(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 7.21 (ddd, $J=8.2,7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.14-7.05 (m, 2 H ), 6.48 (dd, $J=3.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.73-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.19(\mathrm{~m}, 2 \mathrm{H}), 2.54(\mathrm{td}, J=$ $7.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), $1.78(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=142.5,135.9,128.7$, 127.8, 121.5, 121.1, 119.4, 112.6, 109.4, 101.2, 45.2, 38.3, 22.7 ppm ; IR (ATR): $\tilde{v}=3073$, 3054, 2967, 2935, 1650, 1612, 1512, 1463, 1315, 1176, 891, 738, 715, $425 \mathrm{~cm}^{-1}$; HRMS (APPI) calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}+\mathrm{H}\right]^{+}$186.1277, found 186.1273.

5-Methoxy-1-(3-methylbut-3-en-1-yl)-1H-indole (1b):


Yield: 35\%; appearance: yellow oil; $\boldsymbol{R}_{\mathbf{f}}$ : 0.25 (pentane:EtOAc, 40:1);
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.24(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.08 (dd, $J$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 4.86-4.79 (m, 1 H ), 4.76-4.66 (m, 1 H), 4.29-4.15 (m, 2 H ), 3.85 (s, 3 H ), 2.59-2.43 (m, 2 H ), 1.77 (s, 3 H ) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=154.1,142.5,131.3,129.0$, 128.3, 112.6, 111.9, 110.1, 102.7, 100.7, 56.0, 45.4, 38.4, 22.7 ppm ; IR (ATR): $\tilde{v}=3075,2936$, 2831, 1649, 1621, 1576, 1488, 1450, 1362, 1238, 1150, 1033, 892, 797, 716, $433 \mathrm{~cm}^{-1}$; HRMS (APPI) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}+\mathrm{H}\right]^{+}$216.1383, found 216.1389.

## Methyl 1-(3-methylbut-3-en-1-yl)-1 H-indole-5-carboxylate (1c):



Yield: 28\%; appearance: colorless oil; $\boldsymbol{R}_{\mathrm{f}}: 0.35$ (pentane: $\mathrm{Et}_{2} \mathrm{O}$, 20:1); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.39(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.92 (dd, $J=8.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-6.55(\mathrm{~m}, 1 \mathrm{H}), 4.81(\mathrm{~s}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.29-4.22(\mathrm{~m}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$, $2.53(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.4,142.0$, 138.4, 129.2, 128.2, 124.2, 123.0, 121.5, 112.9, 109.0, 102.9, 52.0, 45.4, 38.2, 22.6 ppm; IR (ATR): $\tilde{v}=3077,2948,1709,1612,1450,1434,1347,1309,1258,1193,1098,1085,897$, $753,411 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+} 244.1332$, found 244.1340.

1-(3-Methylbut-3-en-1-yl)-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (1d):


Yield: 9\%; appearance: colorless oil; $\boldsymbol{R}_{\mathbf{f}}: 0.3$ (pentane: $\mathrm{Et}_{2} \mathrm{O}$, 99:1); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.16(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.65 (dd, $J=8.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-$ 7.05 (m, 1 H), 6.49 (dd, $J=3.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{p}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.69(\mathrm{dt}, J=2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.20(\mathrm{~m}, 2 \mathrm{H})$, $2.52(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~s}, 12 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 142.4, 137.9, 129.1, 128.5, 127.9, 127.6, 112.6, 108.8, 102.0, 83.5 (2 C), 45.2, 38.3, 25.1 (4 C), 22.7 ppm; IR (ATR): $\tilde{v}=2977,2934,1609,1515,1439,1369,1350,1303,1269,1192,1139$, 1070, 964, 858, 722, $683 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{BNO}_{2}+\mathrm{H}\right]^{+} 312.2129$, found 312.2137 .

## 6-Methoxy-1-(3-methylbut-3-en-1-yl)-1H-indole (1e):



Yield: 45\%; appearance: colorless oil; $\boldsymbol{R}_{\mathrm{f}}: 0.35$ (pentane: $\mathrm{Et}_{2} \mathrm{O}, 40: 1$ );
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.43-6.38(\mathrm{~m}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H})$, 4.73 (s, 1 H ), 4.18 (dd, $J=8.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.88 (s, 3 H ), 2.57-2.48 (m, 2 H ), 1.78 (s, 3 H ) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=156.3,142.5,136.7,126.8,123.1,121.7,112.5,109.1$, 101.1, 93.3, 55.9, 45.2, 38.1, 22.8 ppm ; IR (ATR): $\tilde{v}=3100,3074,2937,2832,1622,1513$, 1491, 1456, 1362, 1327, 1246, 1212, 1162, 1034, 809, 709, 615, $432 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}+\mathrm{H}\right]^{+}$216.1383, found 216.1395.

6-(Benzyloxy)-1-(3-methylbut-3-en-1-yl)-1H-indole (1f):


Yield: 32\%; appearance: colorless oil; $\boldsymbol{R}_{\mathrm{f}}$ : 0.2 (pentane: $\mathrm{Et}_{2} \mathrm{O}, 40: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.54-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.40$ (ddt, $J=$ $8.9,6.1,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{tt}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, \mathrm{J}=2.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.91-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 4.81(\mathrm{p}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.71(\mathrm{~s}, 1 \mathrm{H}), 4.21-4.09(\mathrm{~m}, 2 \mathrm{H}), 2.49(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=155.4,142.5,137.7,136.6,128.7$ (2 C), 128.0, 127.7 (2 C), 127.0, 123.3, 121.6, 112.5, 109.8, 101.1, 94.9, 71.0, 45.2, 38.1, 22.7 ppm ; IR (ATR): $\tilde{v}=3066,3031,2966$, 2934, 1622, 1573, 1513, 1488, 1454, 1325, 1219, 1025, 807, 697, $433 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}+\mathrm{H}\right]^{+}$292.1696, found 292.1703.

Methyl 1-(3-methylbut-3-en-1-yl)-1 H-indole-6-carboxylate (1g):


Yield: 42\%; appearance: yellow oil; $\boldsymbol{R}_{\mathrm{f}}$ : 0.25 (pentane: $\mathrm{Et}_{2} \mathrm{O}, 20: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.13(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{dd}, J=8.4,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.56-6.48$ (m, 1H), 4.85-4.78(m, 1H), 4.69 (s, 1 H), 4.35-4.25 (m, 2H), 3.95 (s, 3H), 2.55 (t, J = 7.5 Hz, 2 H ), 1.78 (s, 3 H ) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.4,142.1,135.3,132.4,131.1$, 123.2, 120.7, 120.5, 112.9, 111.9, 101.6, 52.1, 45.3, 38.3, 22.7 ppm ; IR (ATR): $\tilde{v}=3076,2968$, 2948, 1615, 1504, 1434, 1353, 1323, 1271, 1231, 1108, 987, 890, 773, 726, $427 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$244.1332, found 244.1330.

Methyl 1-(3-methylbut-3-en-1-yl)-1 H-indole-4-carboxylate (1h):


Yield: $43 \%$; appearance: colorless oil; $\boldsymbol{R}_{\mathrm{f}}: 0.25$ (pentane: $\mathrm{Et}_{2} \mathrm{O}, 20: 1$ ); ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl $)_{3}$ : 7.90 (dd, $\left.J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 1 H ), $7.29-7.22$ (m, 2 H ), 7.11 (dd, $J=3.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.81 ( $p, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.69(\mathrm{dt}, J=1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.23(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$, 2.60-2.45 (m, 2 H ), $1.77(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.2,142.1,136.8$, 130.0, 128.2, 123.2, 121.8, 120.7, 114.2, 112.9, 102.5, 51.9, 45.4, 38.3, 22.7 ppm ; IR (ATR): $\tilde{v}$ $=3065$, 2952, 1713, 1619, 1444, 1421, 1359, 1312, 1263, 1184, 1101, 1076, 902, 745, 511 $\mathrm{cm}^{-}$ ${ }^{1}$; HRMS (APPI) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$244.1332, found 244.1336.

## 7-Methoxy-1-(3-methylbut-3-en-1-yl)-1 $H$-indole (1i):



Yield: $50 \%$; appearance: colorless oil; $\boldsymbol{R}_{\mathbf{f}}: 0.35$ (pentane: $\mathrm{Et}_{2} \mathrm{O}, 50: 1$ ); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=7.21$ ( $\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.06-6.91$ (m, 2 H ),
6.63 (d, J = $7.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $6.42(\mathrm{~s}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.55-$ 4.40 (m, 2 H ), 3.95 ( $\mathrm{s}, 3 \mathrm{H}$ ), 2.59-2.45 (m, 2 H ), 1.79 (s, 3 H ) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=147.6,143.0,131.1,129.0,125.6,119.8,113.9,112.1,102.3,101.2,55.4,48.5$, 40.7, 22.7 ppm ; IR (ATR): $\tilde{v}=3072,2936,2835,1649,1575,1492,1455,1430,1365,1314$, 1255, 1167, 1092, 1062, 971, 889, 780, 717, 685, $504 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}+\mathrm{H}\right]^{+}$216.1383, found 216.1389 .

1-(3-Methylbut-3-en-1-yl)-1 H-benzo[g]indole (1i):
Yield: $38 \%$; appearance: white solid; m.p.: $82-83{ }^{\circ} \mathrm{C} ; \boldsymbol{R}_{\mathrm{f}}: 0.4$ (pentane:Et ${ }_{2} \mathrm{O}, 80: 1$ ); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.30(\mathrm{dd}, J=8.6$,
$1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.45$ (ddd, $J=8.1,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{q}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.81 (dd, $J=2.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.74-4.64 (m, 2 H), 2.73-2.62 (m, 2 H ), 1.84 (s, 3 H) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=142.3,131.5,129.6,129.0,128.5,126.4,125.5$, 123.3, 123.0, 121.4, 121.2, 120.7, 112.6, 102.5, 49.3, 38.7, 23.0 ppm ; IR (ATR): $\tilde{v}=3071$, 2965, 2930, 2853, 1649, 1505, 1438, 1367, 1312, 1144, 892, 804, 723, 687, 563, $422 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}+\mathrm{H}\right]^{+}$236.1434, found 236.1434.

## 1-(3-Methylbut-3-en-1-yl)-1H-pyrrolo[2,3-b]pyridine (1k):

Yield: 55\%; appearance: colorless oil; $\boldsymbol{R}_{\mathbf{f}}: 0.25$ (pentane:Et ${ }_{2} \mathrm{O}, 10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.25(\mathrm{dd}, J=4.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=$ $7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.14(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{dd}, J=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.36(\mathrm{~d}, \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 1 \mathrm{H}), 4.42-4.27(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=147.4,142.6,142.5,128.9,128.1,120.8,115.7$, 112.5, 99.5, 43.1, 38.4, 22.6 ppm; IR (ATR): $\tilde{v}=3075,3051,2967,2934,1650,1593,1509$, 1425, 1346, 1306, 1204, 892, 796, 772, 716, $483 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}+\mathrm{H}\right]^{+}$187.1230, found 187.1229.

## 7-(3-methylbut-3-en-1-yl)-7H-pyrrolo[2,3-d]pyrimidine (11):

Yield: 40\%; appearance: colorless oil; $\boldsymbol{R}_{\mathbf{f}}: 0.25$ (pentane:EtOAc, 1:1); ${ }^{1} \mathbf{H}$
NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=8.94(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}, 1 \mathrm{H})$, 4.41 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=151.2,150.5,149.2,141.8,129.1,119.0,113.0,99.6,42.9,38.3,22.4 . \mathrm{ppm} ; \mathbf{I R}$ (ATR): $\tilde{v}=3077,3048,2971,2937,1650,1587,1561,1514,1474,1417,1375,1354,1322$, 1250, 1168, 1102, 899, 781, 727, $598 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3}+\mathrm{H}\right]^{+}$ 188.1182, found: 188.1185.

## 1-(3-Methylbut-3-en-1-yl)-1 H-benzo[d]imidazole (1m):



Yield: 69\%; appearance: yellow oil; $\boldsymbol{R}_{\mathrm{f}}: 0.35$ (EtOAc); ${ }^{1} \mathbf{H}$ NMR ( 400 MHz , $\mathrm{CDCl}_{3}$ ): $\delta=7.90(\mathrm{~s}, 1 \mathrm{H}), 7.85-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.35-$ 7.23 (m, 2 H), $4.83(\mathrm{p}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{t}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=$
$7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.50(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.72(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 143.8, 143.0, 141.2, 133.7, 123.0, 122.3, 120.5, 113.5, 109.7, 43.7, 37.9, 22.5 ppm; IR (ATR): $\tilde{v}=3410,3075,2970,2935,1650,1615,1495,1458,1366,1330,1286,1260,1201,1170$, 891, 742, $427 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}+\mathrm{H}\right]^{+}$187.1230, found 187.1236.

Methyl 1-(3-methylenedodecyl)-1 H -indole-6-carboxylate (1n):


Yield: 23\%; appearance: colorless oil; $\boldsymbol{R}_{\mathrm{f}}: 0.35$ (pentane: $\mathrm{Et}_{2} \mathrm{O}$, 10:1); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.12$ (s, 1 H ), 7.79 (dd, J $=8.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.20(\mathrm{~m}, 2$ H), $6.51(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.87-4.78(\mathrm{~m}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}$, $3 \mathrm{H}), 2.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.46-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 12 \mathrm{H})$, $0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=168.4,146.4,135.4,132.4$, 131.2, 123.2, 120.6, 120.5, 111.9, 111.5, 101.6, 52.1, 45.6, 36.6, 36.4, 32.1, 29.7, 29.7, 29.5, 27.9, 22.8, 14.3 ppm ; IR (ATR): $\tilde{v}=2925,2854,1714,1615,1505,1466,1434,1353,1323$, 1272, 1230, 1108, 893, 773, 723, $427 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$ 356.2584 , found 356.2581 .

Methyl 1-(7-methyl-3-methyleneoct-6-en-1-yl)-1H-indole-6-carboxylate (10):


Yield: 49\%; appearance: colorless oil; $\boldsymbol{R}_{\mathbf{f}}$ : 0.3 (pentane: $\mathrm{Et}_{2} \mathrm{O}, 10: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=$ 8.16-8.08 (m, 1 H), 7.79 (dd, J = 8.3, 1.4 Hz, 1 H ), 7.63 (dd, $J=8.3,0.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.31-7.21 (m, 2 H), $5.16-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.89-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J$ $=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.00(\mathrm{~m}, 4 \mathrm{H}), 1.69$ (d, $J=1.3 \mathrm{~Hz}, 3 \mathrm{H}$ ), $1.60(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.4$, 146.0, 135.3, 132.4, 132.2, 131.2, 123.8, 123.2, 120.6, 120.5, 111.9, 111.7, 101.6, 52.1, 45.5, 36.8, 36.3, 26.4, 25.8, 17.9 ppm ; IR (ATR): $\tilde{v}=3096,2947,2926,2855,1711,1615,1486$, 1434, 1376, 1323, 1272, 1230, 1108, 774, $725 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2}+\mathrm{H}^{+} 312.1958\right.$, found 312.1964.

## Methyl 1-(7-(benzyloxy)-3-methyleneheptyl)-1H-indole-6-carboxylate (1p):



Yield: 43\%; appearance: colorless oil; $\boldsymbol{R}_{\mathrm{f}}: 0.3$ (pentane: $\mathrm{Et}_{2} \mathrm{O}$, 15:1); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.12$ (s, 1 H ), 7.79 (dd, J $=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=4.3$ $\mathrm{Hz}, 4 \mathrm{H}$ ), 7.28 (dd, $J=5.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.54-6.47(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J$ $=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.69(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.36-4.24(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{t}, \mathrm{J}=$ $6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.05(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.45(\mathrm{~m}$, $2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=168.4,145.9,138.7,135.3,132.4,131.2,128.5$ (2 C), 127.8 (2 C), 127.7, 123.2, 120.6, 120.5, 111.9, 111.8, 101.6, 73.1, 70.2, 52.1, 45.5, 36.6, 36.1, 29.5, 24.4 ppm; IR (ATR): $\tilde{v}=2942,2859,1711,1615,1504,1454,1434,1354,1323$, 1272, 1231, 1109, 894, 774, 732, 698, $426 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for [ $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{3}$ $+\mathrm{H}^{+}$392.2220, found 392.2230.

Methyl 1-(4-methylpent-4-en-1-yl)-1 $H$-indole-6-carboxylate (1q):


Yield: 60\%; appearance: colorless oil; $\boldsymbol{R}_{\mathrm{f}}: 0.4$ (pentane: $\mathrm{Et}_{2} \mathrm{O}$, 5:1); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.16-8.08(\mathrm{~m}, 1 \mathrm{H}), 7.79$ (dd, $J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=$ $2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{dd}, J=3.0,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.84-4.76(\mathrm{~m}, 1 \mathrm{H}), 4.75-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.19(\mathrm{td}, J=$ 5.7, 4.6, $2.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), $3.95(\mathrm{~s}, 3 \mathrm{H}), 2.08-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.4,144.3,135.5,132.4,131.2,123.2,120.6,120.4,112.0,111.1,101.6$, 52.1, 46.1, 34.9, 28.1, 22.5 ppm ; IR (ATR): $\tilde{v}=3078,2947,1711,1615,1504,1435,1354$, 1321, 1274, 1258, 1229, 1109, 888, 774, 726, $426 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}+\mathrm{H}\right]^{+} 258.1489$, found 258.1490 .

Methyl 1-(3-(trimethylsilyl)but-3-en-1-yl)-1H-indole-6-carboxylate (1r):


Yield: 42\%; appearance: colorless oil; $\boldsymbol{R}_{\mathrm{f}}: 0.35$ (pentane: $\mathrm{Et}_{2} \mathrm{O}$, 20:1); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.13$ (s, 1 H ), 7.79 (dd, J $=8.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.56-6.46(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{dt}, J=2.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.17$ (m, 2 H ), 3.95 (s, 3 H ), $2.65(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( 101 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=168.4,148.5,135.3,132.4,131.2,126.9,123.2,120.6,120.5,112.0,101.5,52.1$, 46.5, 36.0, -1.4 (3 C) ppm; IR (ATR): $\tilde{v}=3050,2951,1713,1615,1504,1435,1354,1322$, 1273, 1229, 1108, 989, 931, 837, 774, 758, 724, $427 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Si}+\mathrm{H}\right]^{+} 302.1571$, found 302.1580 .

Methyl ( $E$ )-1-(pent-3-en-1-yl)-1 $H$-indole-6-carboxylate (( $E$-1s):


Yield: $378 \mathrm{mg}, 50 \%$; appearance: colorless oil; $\boldsymbol{R}_{\mathrm{f}}: 0.35$ (pentane: $\mathrm{Et}_{2} \mathrm{O}, 50: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.14-8.08$ (m, 1 H ), 7.79 (dq, $J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.24$ (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.53-6.49(\mathrm{~m}, 1 \mathrm{H}), 5.54-5.33(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.16(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=$ $1.3 \mathrm{~Hz}, 3 \mathrm{H}), 2.52(\mathrm{qd}, J=7.5,7.0,3.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{dq}, J=6.0,1.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\delta$ $=168.3,135.3,132.2,131.1,128.5,126.7,123.0,120.4,120.3,111.9,101.3,51.9,46.7,33.6$, 18.0; IR (ATR): $\tilde{v}=3099,2948,2918,1710,1615,1504,1434,1270,1231,1106,969,774$, 749, 726, $426 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+} 244.1332$, found 244.1337.

Methyl ( $Z$ )-1-(pent-3-en-1-yl)-1H-indole-6-carboxylate ((Z)-1s):


Yield: $378 \mathrm{mg}, 50 \%$; appearance: colorless oil; $\boldsymbol{R}_{\mathrm{f}}$ : 0.35 (pentane:Et ${ }_{2} \mathrm{O}, 50: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.19-8.10$ (m, 1 H ), 7.79 (dd, $J=8.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{dd}, J=3.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.50$ (m, 1 H ), 5.39 (dtq, $J=10.9,7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.44 (ddd, $J=6.8,1.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=168.3$, $135.3,132.3,131.2,127.4,125.7,123.0,120.5,120.3,111.8,101.4,52.0,46.2,27.9,12.7 \mathrm{ppm} ;$ IR (ATR): $\tilde{v}=3097,3016,2948,1706,1614,1503,1487,1466,1433,1403,1352,1322,1307$, 1271, 1228, 1205, 1189, 1109, 1076, 987, 909, 829, 773, 747, $720 \mathrm{~cm}^{-1}$; HRMS (APPI) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$244.1332, found 244.1335.

Methyl 1-(3-methylbut-3-en-1-yl)-1 H-pyrrole-2-carboxylate (3a):
Yield: 71\%; appearance: colorless oil; $\boldsymbol{R}_{\mathrm{f}}$ : 0.6 (pentane:Et $\mathrm{I}_{2} \mathrm{O}, 10: 1$ ); ${ }^{1} \mathrm{H}$
 NMR (400 MHz, CDCl $)_{3}$ : $\delta=6.94(\mathrm{dd}, J=4.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{t}, \mathrm{J}=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{dd}, J=4.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{p}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.68 (dq, $J=2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.47-4.35 (m, 2 H), 3.81 (s, 3 H ), 2.46 ( td, $J=7.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.76 (s, 3 H ) ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=161.6,142.5,128.8,121.5,118.3,112.4$, 108.0, 51.2, 48.1, 39.9, 22.6 ppm; IR (ATR): $\tilde{v}=3077,2949,1703,1650,1531,1473,1437$, 1409, 1330, 1242, 1106, 891, 736, $612 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}+\right.$ H] 194.1176, found 194.1166.


Yield: 62\%; appearance: colorless oil; $\boldsymbol{R}_{\mathrm{f}}$ : 0.4 (pentane: $\mathrm{Et}_{2} \mathrm{O}, 60: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=6.94$ (dd, $J=4.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.82 (dd, $J=2.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.10$ (dd, $J=4.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.11$ (ddp, $J$ $=6.9,5.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{q}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.48-4.34(\mathrm{~m}, 2 \mathrm{H}), 3.81$ (s, $3 H$ ), 2.46 (td, $J=7.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.12(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{dd}, J=9.0,6.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), $1.69(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=161.6,146.3,131.9,128.8$, 124.1, 121.5, 118.3, 111.4, 108.0, 51.2, 48.4, 38.3, 36.3, 26.5, 25.8, 17.9 ppm ; IR (ATR): $\tilde{v}=$ 2924, 2856, 1705, 1645, 1531, 1473, 1437, 1409, 1329, 1241, 1189, 1105, 1079, 892, 735, 612 $\mathrm{cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$262.1802, found 262.1799.

Methyl 1-(7-(benzyloxy)-3-methyleneheptyl)-1H-pyrrole-2-carboxylate (3c):


Yield: 50\%; appearance: colorless oil; $\boldsymbol{R}_{\mathrm{f}}$ : 0.45 (pentane: $\mathrm{Et}_{2} \mathrm{O}, 5: 1$ );
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.34(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H}$ ), 7.28 (dd, $J$ $=5.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{dd}, J=4.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{t}, \mathrm{J}=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.09(\mathrm{dd}, J=4.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H})$, $4.47-4.32(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.03(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.53(\mathrm{qd}, \mathrm{J}=7.5,2.8 \mathrm{~Hz}, 2 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=161.6,146.2,138.8,128.8,128.5(2 \mathrm{C}), 127.8(2 \mathrm{C}), 127.6,121.5,118.3,111.4$, 108.0, 73.0, 70.4, 51.2, 48.4, 38.1, 36.0, 29.5, 24.4 ppm ; IR (ATR): $\tilde{v}=2940,2858,1704$, 1531, 1473, 1437, 1410, 1330, 1242, 1106, 736, 698, $612 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{3}+\mathrm{H}\right]^{+} 342.2064$, found 342.2072.

Methyl 1-(3-(trimethylsilyl)but-3-en-1-yl)-1 H-pyrrole-2-carboxylate (3d):
Yield: 26\%; appearance: colorless oil; $\boldsymbol{R}_{\mathrm{f}}$ : 0.5 (pentane: $\mathrm{Et}_{2} \mathrm{O}, 20: 1$ );
 ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=6.95(\mathrm{dd}, J=4.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (t, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $6.10(\mathrm{dd}, J=4.0,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{dt}, J=2.8$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.28(\mathrm{~m}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.47(\mathrm{~m}, 2 \mathrm{H})$, 0.11 (s, 9 H) ppm; ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=161.5,148.7,128.8,126.6,121.6,118.3$, 108.0, 51.2, 49.2, 37.6, -1.5 (3 C) ppm; IR (ATR): $\tilde{v}=3049,2952,2856,1708,1531,1473$, 1438, 1410, 1330, 1245, 1148, 1106, 1078, 932, 838, 760, $735 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Si}+\mathrm{H}\right]^{+} 252.1414$, found 252.1391.

## Methyl ( $E$ )-1-(pent-3-en-1-yl)-1 $H$-pyrrole-2-carboxylate (3e):



Yield: 55\%; appearance: colorless oil; $\boldsymbol{R}_{\mathrm{f}}$ : 0.3 (pentane: $\mathrm{Et}_{2} \mathrm{O}, 50: 1$ ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) : $\delta=6.94(\mathrm{dd}, J=3.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $6.81(\mathrm{t}, \mathrm{J}=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.10 (dd, $J=3.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.51-5.30(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.62(\mathrm{dd}, J=6.0,1.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=161.5,128.8,127.8,126.9,121.4,118.1,107.7,51.0,49.3,34.8$, 18.0 ppm; IR (ATR): $\tilde{v}=3111,3022,2989,2948,2918,2855,1703,1530,1473,1436,1409$, 1364, 1328, 1240, 1190, 1103, 1077, 1025, 998, 967, 933, 889, 799, 760, $736 \mathrm{~cm}^{-1}$; HRMS (APPI) calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$194.1176, found 194.1172.

Methyl 1-(3-methylbut-3-en-1-yl)-1H-pyrrole-3-carboxylate (3f):


Yield: $378 \mathrm{mg}, 71 \%$; appearance: colorless oil; $\boldsymbol{R}_{\mathrm{f}}$ : 0.6 (pentane:Et $\mathrm{O}_{2} \mathrm{O}$, 10:1); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.28(\mathrm{t}, \mathrm{J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62-$ $6.50(\mathrm{~m}, 2 \mathrm{H}), 4.83-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.71-4.63(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{t}, \mathrm{J}=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.73(\mathrm{t}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=165.3,141.4,125.9,121.5,115.6,112.9,110.0,51.0$, 48.6, 39.3, 22.3. ppm; IR (ATR): $\tilde{v}=3130,3076,2971,2946,2912,2852,1792,1702,1650$, 1540, 1509, 1438, 1400, 1365, 1196, 1115, 1075, 1002, 924, 894, 820, 791, 762, $715 \mathrm{~cm}^{-1}$; HRMS (APPI) calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$194.1176, found 194.1173.

## Nickel-Catalyzed Enantioselective Indole and Pyrrole C-H Functionalization

## General procedure 4 (GP4)

Inside a glove box a tube containing a magnetic stirring bar was charged with $\mathrm{Ni}(\operatorname{cod})_{2}(1.4 \mathrm{mg}$, $5 \mathrm{~mol} \%$ ), $\mathrm{L} 8 \cdot \mathrm{HCl}(6.3 \mathrm{mg}, 5.5 \mathrm{~mol} \%), \mathrm{NaOtBu}(2.4 \mathrm{mg}, 25 \mathrm{~mol} \%$ ) and the substrate ( 0.1 mmol ). The mixture was dissolved in $\mathrm{PhCF}_{3}(0.2 \mathrm{~mL})$ and was stirred for 24 h at $60^{\circ} \mathrm{C}$. Subsequently the reaction mixture was cooled to ambient temperature, was filtered over a short plug of silica gel (EtOAc), and was concentrated under reduced pressure to afford the crude product, which was purified by silica gel column (Pentane/EtOAc).

## (S)-8-Methyl-6,7,8,9-tetrahydropyrido[1,2-a]indole (2a):



Obtained as white solid in $92 \%(17 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR ( $\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$ ) $\delta=7.81$ $-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.27(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.60$ (ddd, $J=11.6,5.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ (td, $J=11.4,4.9 \mathrm{~Hz}, 1$ H), 2.70 (ddd, $J=15.8,4.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.17 (ddd, $J=15.9,10.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.47-1.27$ (m, $2 \mathrm{H}), 1.07$ (dd, $J=13.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.74(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$ $=136.5,136.4,129.1,120.2,119.9,119.8,108.7,97.8,41.1,32.3,30.927 .5,20.9 \mathrm{ppm} ; \mathbf{I R}$ (ATR): $\tilde{\nu}$ 3050, 2952, 2927, 2869, 2830, 1543, 1475, 1459, 1413, 1358, 1324, 1313, 1167, 1011, $769,741,622,545,473 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}+\mathrm{H}\right]^{+}$: 186.1277, found: 186.283; $\mathbf{R}_{\mathrm{f}}: 0.3$ (pentane/EtOAc 99:1); [ $\left.\alpha\right]_{\mathrm{D}}{ }^{20}: 46.8\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ ); m.p.: $77-78{ }^{\circ} \mathrm{C}$.

This compound was crystallised by slow evaporation from toluene and its absolute configuration assigned by X-ray crystallography as $R$ :


Chiral HPLC: (Chiralpak IB, $4.6 \times 250 \mathrm{~mm}$; hexane: $i-\mathrm{PrOH} 99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 282 \mathrm{~nm}$; $t_{\mathrm{R}}$ (major) $=7.0 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=7.4 \mathrm{~min}\right), 94.8: 5.2 \mathrm{er}$.




Obtained as white solid in $88 \%(19 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( $\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$ ) $\delta$ $=7.20(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J$ $=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{dq}, J=$ 8.6, $2.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.20 (td, $J=11.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.73 (ddd, $J=15.9,4.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.20 (ddd, $J=15.8,10.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.41 (s, 1 H ), 1.37 (dd, $J=13.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.08 (dtd, $J=$ $13.1,11.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.75(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=154.6$, 137.0, 131.9, 129.4, 110.3, 109.3, 101.9, 97.6, 55.0, 41.2, 32.3, 30.9, 27.4, 20.9; IR (ATR): $\tilde{v}=$ 3008, 2949, 2927, 2867, 2827, 1617, 1579, 1486, 1471, 1450, 1420, 1355, 1338, 1271, 1233, 1202, 1168, 1157, 1131, 1111, 1037, 826, 801, 778, $769 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}+\mathrm{H}\right]^{+}$216.1383, found 216.1378; $\mathbf{R}_{\mathrm{f}}$ : 0.2 (pentane:EtOAc $80: 1$ ); [ $\left.\alpha\right]_{\mathrm{D}}{ }^{20}: 36.3$ (c = 0.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); m.p.: $78-80^{\circ} \mathrm{C}$.
Chiral HPLC: (Chiralpak IA, $4.6 \times 250 \mathrm{~mm}$; hexane: $i-\mathrm{PrOH} 99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}$; $t_{\mathrm{R}}$ (major) $=10.1 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=10.8 \mathrm{~min}\right), 95.9: 4.1 \mathrm{er}$.


## Methyl (S)-8-methyl-6,7,8,9-tetrahydropyrido[1,2-a]indole-2-carboxylate (2c):



Obtained as white solid in $82 \%(20 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( $800 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=8.76(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{dd}, J=8.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $6.19(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.45$ (ddd, $J=11.7,5.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.06 (td, $J=11.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.67-2.53 (m, 1 H ), 2.05 (ddd, $J$ $=16.1,11.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.34 (tddd, $J=11.2,7.0,4.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.30 (ddt, $J=13.3,5.0,2.5$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 0.98 (dtd, $J=13.2,11.4,5.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $0.70(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (201 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=168.2,139.1,138.3,128.8,123.2,122.6,122.4,108.7,99.5,51.4,41.6,32.4$, 30.9, 27.5, 21.1 ppm ; IR (ATR): $\tilde{v}=3054,2947,2872,1711,1609,1448,1435,1412,1358$, 1330, 1304, 1292, 1278, 1264, 1240, 1212, 1169, 1123, 1087, 764, 735, $704 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+} 244.1332$, found 244.1331; $\mathbf{R}_{\mathrm{f}}$ : 0.45 (pentane:EtOAc 20:1); $[\alpha]_{D}{ }^{20}: 12.8\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p.: $136-137^{\circ} \mathrm{C}$.
Chiral HPLC: (Chiralpak IA, $4.6 \times 250 \mathrm{~mm}$; hexane:i-PrOH 90:10, $1.0 \mathrm{~mL} / \mathrm{min}, 294 \mathrm{~nm}$; $t_{\mathrm{R}}($ major $)=8.8 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=9.5 \mathrm{~min}\right), ~ 96.6: 3.4 \mathrm{er}$.

| 2 | 4 | 6 | 10 | $12 \quad 14$ |
| :---: | :---: | :---: | :---: | :---: |
|  | Reten. Time [min] | Area [mV.s] | Height [mV] | Area [\%] |
| 1 | 8.353 | 4239.971 | 294.223 | 50.5 |
| 2 | 9.067 | 4160.180 | 266.448 | 49.5 |


(S)-8-Methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6,7,8,9-tetrahydropyrido[1,2-a]indole (2d):


Obtained as white solid in $63 \%(19.5 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( 600 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=8.75(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=8.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{ddd}, J=11.7$, $5.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.14 (td, $J=11.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.69-2.60 (m, 1H), 2.10 (ddd, $J=16.0,10.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.36$ (dttd, $J=$ 13.7, $7.0,4.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.30 (ddq, $J=12.8,5.0,2.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.22 (s, 12 H ), 0.99 (dtd, $J=$ $13.2,11.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $0.70(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=138.9$, 136.9, 129.1, 128.6, 128.4, 127.4, 108.6, 98.8, 83.3 (2 C), 41.5, 32.6, 31.2, 27.7, 25.2 (4 C), 21.3 ppm ; IR (ATR): $\tilde{v}=2977,2946,2865,1604,1556,1445,1387,1372,1352,1323,1294$, 1275, 1265, 1213, 1151, 1123, 1069, 966, 859, 815, 774, 751, $685 \mathrm{~cm}^{-1}$; HRMS (Multimode) calculated for $\left[\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{BNO}_{2}+\mathrm{H}\right]^{+} 312.2129$, found 312.2132; $\mathbf{R}_{\mathrm{f}}: 0.2$ (pentane:EtOAc 99:1); $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}$ : 11.9 ( $c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); m.p.: $165-166{ }^{\circ} \mathrm{C}$.

Chiral HPLC: (Chiralpak IG, $4.6 \times 250 \mathrm{~mm}$; hexane: $i-\mathrm{PrOH} 99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 280 \mathrm{~nm}$; $t_{\mathrm{R}}$ (major) $=13.9 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=17.3 \mathrm{~min}\right), 95.1: 4.9 \mathrm{er}$.

(S)-3-Methoxy-8-methyl-6,7,8,9-tetrahydropyrido[1,2-a]indole (2e):

Obtained as white solid in $88 \%(19 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$ ) $\delta$
$=7.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (dd, $J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J$ $=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.54$ (ddd, $J=$ $11.5,5.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.18 (td, $J=11.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.71 (dddd, $J=15.8,4.5,2.1,0.8 \mathrm{~Hz}, 1$ H), 2.19 (ddd, $J=15.8,10.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.50-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.17-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.75(\mathrm{~d}, \mathrm{~J}$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}$ ) ppm; ${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C}_{6} \mathrm{D}_{6}$ ) $\delta=155.8,137.3,135.3,123.4,120.3,108.9$, 97.6, 93.3, 55.1, 41.2, 32.4, 31.0, 27.6, 20.9 ppm ; IR (ATR): $\tilde{\nu} 2950,2926,2868,2829,2279$, 1620, 1548, 1489, 1454, 1412, 1360, 1347, 1329, 1246, 1227, 1212, 1159, 1033, 811, 516, 490 $\mathrm{cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}+\mathrm{H}\right]^{+}$: 216.1383, found: 216.1382; $\mathbf{R}_{\mathbf{f}}: 0.2$ (pentane:EtOAc 50:1); $[\alpha]_{\mathrm{D}}{ }^{20}: 18.8\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p.: $74-75^{\circ} \mathrm{C}$.
Chiral HPLC: (Chiralpak IB, $4.6 \times 250 \mathrm{~mm}$; hexane: $i-\mathrm{PrOH} 99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 298 \mathrm{~nm} ; t_{\mathrm{R}}$ (major) $=11.5 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=12.4 \mathrm{~min}\right), 94.4: 5.6 \mathrm{er}$.


(S)-3-(Benzyloxy)-8-methyl-6,7,8,9-tetrahydropyrido[1,2-a]indole (2f):


Obtained as white solid in $84 \%(24.5 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=7.56(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}$, 1 H ), 4.99 (s, 2 H ), 3.53 (ddd, $J=11.5,5.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.16 (td, $J=11.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.69 (ddd, $J=15.8,4.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.16 (ddd, $J=15.8,10.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.38(\mathrm{~m}, 1 \mathrm{H})$, 1.34 (ddt, J = 13.8, 6.0, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.06 (dd, J=13.1, $5.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 0.73 (d, J = $6.6 \mathrm{~Hz}, 3 \mathrm{H}$ ); ${ }^{13}{ }^{3}$ NMR ( $151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=154.9,138.2,137.293,135.6,128.3,128.0,127.4,123.7,120.4$, 109.7, 97.6, 94.7, 70.5, 41.2, 32.4, 30.9, 27.5, 20.9 ppm; IR (ATR): $\widetilde{\nu} 3063,3031,2950,2950$, 2925, 2867, 2831, 1620, 1548, 1487, 1475, 1454, 1412, 1379, 1359, 1346, 1336, 1292, 1259, 1245, 1218, 1200, 1161, 1110, 1103, 1024, 808, 734, $696 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}^{+}\right.$: 292.1696, found: 292.1697; $\mathbf{R}_{\mathrm{f}}: 0.25$ (pentane:EtOAc 60:1); $[\alpha]_{\mathrm{D}}{ }^{20}: 8.3$ ( $c=0.1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); m.p.: $86-87^{\circ} \mathrm{C}$.
Chiral HPLC: (Chiralpak IA, $4.6 \times 250 \mathrm{~mm}$; hexane: $i-\mathrm{PrOH} 99: 1,1.0 \mathrm{~mL} / \mathrm{min}, 296 \mathrm{~nm} ; t_{\mathrm{R}}$ (minor) $=18.2 \mathrm{~min}, t_{\mathrm{R}}$ (major) $=21.2 \mathrm{~min}$ ), 96.0:4.0 er.



## Methyl (S)-8-methyl-6,7,8,9-tetrahydropyrido[1,2-a]indole-3-carboxylate (2g):



Obtained as white solid in $80 \%$ ( 19.5 mg ). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=8.26(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.13(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.45$ (ddd, $J=$ $11.8,5.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.07 (td, $J=11.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.67-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.03$ (ddd, $J=16.3$, $10.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.38-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.01-0.86(\mathrm{~m}, 1 \mathrm{H}), 0.67(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=167.9,140.3,135.8,132.5,122.2,121.2,119.1,111.4,98.2,51.1$, 41.0, 32.1, 30.5, 27.0, 20.7. ppm; IR (ATR): $\tilde{\nu} 3052,2948,2868,2839,1699,1609,1529,1456$, 1432, 1347, 1330, 1263, 1251, 1234, 1164, 1164, 1123, 1093, 1093, 997, 776, 737 $\mathrm{cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}: 244.1332$, found: 244.1322; $\mathbf{R}_{\mathbf{f}}$ : 0.32 (pentane:EtOAc 20:1); $[\alpha]_{\mathrm{D}}{ }^{20}: 41.6\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p.: $148-149{ }^{\circ} \mathrm{C}$.
Chiral HPLC: (Chiralpak IB, $4.6 \times 250 \mathrm{~mm}$; hexane:i-PrOH 80:20, $1.0 \mathrm{~mL} / \mathrm{min}, 294 \mathrm{~nm}$; $t_{\mathrm{R}}($ major $)=15.4 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=17.2 \mathrm{~min}\right), ~ 95.7: 4.3 \mathrm{er}$.



Methyl (S)-8-methyl-6,7,8,9-tetrahydropyrido[1,2-a]indole-1-carboxylate (2h):


Obtained as white solid in $78 \%(19 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR $\left(\mathbf{6 0 0} \mathbf{~ M H z}, \mathbf{C}_{6} \mathbf{D}_{6}\right) \delta=8.32$ (dd, $J=6.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.36(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.10(\mathrm{~m}, 2 \mathrm{H})$, 3.67 (s, 3 H ), 3.49 (dq, $J=8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.12(\mathrm{td}, J=11.4,5.0 \mathrm{~Hz}, 1$ H), $2.74-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.14$ (ddd, $J=16.3,10.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.37$ (dddd, $J=15.3,8.6,4.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.33-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.03-0.96(\mathrm{~m}, 1 \mathrm{H}), 0.69(\mathrm{~s}, 3 \mathrm{H})$ ppm; ${ }^{13} \mathbf{C}$ NMR (201 MHz, $\mathbf{C}_{6} \mathrm{D}_{6}$ ) $\delta=167.7$, 139.2, 137.3, 129.0, 123.2, 120.9, 119.1, 113.0, 100.0, 50.9, 41.1, 32.1, 30.6, 27.2, 20.8 ppm ; IR (ATR): $\tilde{\nu} 3067,2950,2928,2871,1709,1537$, 1438, 1417, 1363, 1330, 1281, 1268, 1252, 1193, 1164, 1137, $779,751 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}: 244.1332$, found: 244.1328; $\mathbf{R}_{\mathrm{f}}: 0.2$ (pentane:EtOAc 20:1); $[\alpha]_{\mathrm{D}}{ }^{20}$ : $11.8\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p.: $87-88^{\circ} \mathrm{C}$.
Chiral HPLC: (Chiralpak IB, $4.6 \times 250 \mathrm{~mm}$; hexane:i-PrOH 90:10, $1.0 \mathrm{~mL} / \mathrm{min}, 326 \mathrm{~nm}$; $t_{\mathrm{R}}($ major $)=17.2 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=20.6 \mathrm{~min}\right)$, 88.3:11.7 er.



## (S)-4-Methoxy-8-methyl-6,7,8,9-tetrahydropyrido[1,2-a]indole (2i):



Obtained as white solid in $86 \%(18.5 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=\delta$ 7.42 (dd, $J=7.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.49(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.27(\mathrm{t}, \mathrm{J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.72$ (ddd, $J=15.8,4.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.20 (ddd, $J=15.8,10.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.47 (dddd, $J=14.9$, $6.6,4.3,2.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.39-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.17(\mathrm{~m}, 1 \mathrm{H}), 0.74(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{ppm} ;$ ${ }^{13}$ C NMR ( 201 MHz, $C_{6} D_{6}$ ) $\delta=147.8,136.7,131.2,126.5,112.0,113.2,101.7,98.8,54.6,45.2$, 32.6, 31.8, 27.2, 20.9 ppm; IR (ATR): $\tilde{\nu}$ 2951, 2928, 2869, 2833, 1577, 1552, 1493, 1441, 1413, 1365, 1342, 1325, 1306, 1296, 1253, 1167, 1131, 1096, 976, 782, $725 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}+\mathrm{H}\right]^{+}: 216.1383$, found: 216.1385; $\mathbf{R}_{\mathrm{f}}$ : 0.22 (pentane:EtOAc $50: 1$ ); $[\alpha]_{\mathrm{D}}{ }^{20}$ : $44.2\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p.: $58^{\circ} \mathrm{C}$.
SFC: (OD-H column, 1.0 ppm MeOH in supercritical $\mathrm{CO}_{2}$ as eluent, $4 \mathrm{~mL} / \mathrm{min}$., 220 nm ; $t_{R}($ major $)=15.7 \mathrm{~min}, t_{R}($ minor $)=17.3 \mathrm{~min}, ~ 92.9: 7.1 \mathrm{er}$.


(S)-9-Methyl-8,9,10,11-tetrahydrobenzo[g]pyrido[1,2-a]indole (2j):


Obtained as white solid in $85 \%(20 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathbf{C}_{6} \mathrm{D}_{6}\right) \delta=$ 8.25 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.97 (dd, $J=8.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.79 (d, $J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.37$ (ddd, $J=$ $7.9,6.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{t}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (ddd, $J=11.3,6.1$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.78 (td, $J=11.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.79 (ddd, $J=15.7,4.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.25 (ddd, $J$ $=15.6,10.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.07$ (dtd, $J=13.2,11.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.76(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (201 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=135.0$, 131.3, 129.5, 129.4, 125.7, 124.7, 123.8, 122.3, 121.1, 122.0, 120.7, 99.9, 46.0, 33.9, 31.5, 26.1, 20.7 ppm; IR (ATR): $\tilde{\nu} 2957$, 2920, 2867, 2183, 2169, 2157, 1521, 1450, 1414, 1375, 1352, 1343, 1318, 1383, 1262, 1205, 1132, 1004, 975, 953, 939, 920, 892, 854, 820, 808, 782, 762, 741, 688, 665, 632,623, 594, 584 $\mathrm{cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}+\mathrm{H}\right]^{+}$: 236.1434, found: 236.1434; $\mathbf{R}_{\mathrm{f}}$ : 0.3 (pentane:EtOAc 80:1); $[\alpha]_{\mathrm{D}}{ }^{20}: 69.5\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ m.p.: $114-118{ }^{\circ} \mathrm{C}$.
Chiral HPLC: (Chiralpak IB, $4.6 \times 250 \mathrm{~mm}$; hexane:i-PrOH 99:1, $1.0 \mathrm{~mL} / \mathrm{min}, 282 \mathrm{~nm}$; $t_{\mathrm{R}}$ (minor) $=10.5 \mathrm{~min}, t_{\mathrm{R}}$ (major) $\left.=11.3 \mathrm{~min}\right), 96.6: 3.4 \mathrm{er}$.


(S)-7-methyl-6,7,8,9-tetrahydropyrido[3,2-b]indolizine (2k):


Obtained as white solid in $91 \%(17 \mathrm{mg}) .{ }^{1} \mathbf{H}$ NMR ( $600 \mathrm{MHz}, \mathbf{C}_{6} \mathbf{D}_{6}$ ) $\delta=8.46$ (dd, $J=4.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.67 (dd, $J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.90 (dd, $J=7.7$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.08(\mathrm{t}, \mathrm{J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{ddd}, J=12.7,5.7,2.9 \mathrm{~Hz}, 1$ H), 3.64 (ddd, $J=12.7,11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.73-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.12$ (ddd, $J=16.3,10.7,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.45-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.13-0.95(\mathrm{~m}, 1 \mathrm{H}), 0.68(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (201 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=148.3,141.5,137.5,126.4,121.0,115.8,95.5,40.5,32.3,30.5,27.3,20.8$ ppm; IR (ATR): $\tilde{\nu} 3068,3046,2951,2927,2870,1594,1573,1540,1481,1438,1428,1402$, 1371, 1352, 1308, 1290, 1167, 795, 770, $746 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}+\mathrm{H}\right]^{+}$: 187.1230, found: 187.1234; $\mathbf{R}_{\mathrm{f}}: 0.25$ (pentane:EtOAc 20:1); [ $\left.\alpha\right]_{\mathrm{D}}{ }^{20}$ : 26.4 ( $c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); m.p.: $90-91^{\circ} \mathrm{C}$.
Chiral HPLC: (Chiralpak IB, $4.6 \times 250 \mathrm{~mm}$; hexane: $i-\mathrm{PrOH} 95: 5,1.0 \mathrm{~mL} / \mathrm{min}, 292 \mathrm{~nm}$; $t_{\mathrm{R}}$ (major) $=7.7 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=8.3 \mathrm{~min}\right), 95.8: 4.2 \mathrm{er}$.


## (S)-7-methyl-6,7,8,9-tetrahydropyrimido[5,4-b]indolizine (21):

Obtained as white solid in $85 \%$ ( 16 mg ). ${ }^{1} \mathbf{H}$ NMR ( $500 \mathrm{MHz}, \mathbf{C}_{6} \mathrm{D}_{6}$ ) $\delta=$ $9.25(\mathrm{~s}, 1 \mathrm{H}), 8.90(\mathrm{~s}, 1 \mathrm{H}), 5.84(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17$ (ddd, $J=12.8$, $5.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.39 (ddd, $J=12.8,11.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.47 (ddd, J = $16.5,4.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.93 (ddd, $J=16.5,10.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.33-1.17$ (m, 2 H ), $0.94-0.81$ (m, 1 H ), $0.63(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=150.9$, 150.9, 147.6, 138.1, 119.3, 94.6, 40.3, 31.9, 30.0, 27.0, 20.7 ppm; IR (ATR): $\widetilde{\nu} 3092,2955,2926,2896,2870$, 1581, 1562, 1542, 1464, 1447, 1432, 1394, 1384, 1355, 1321, 1240, 1173, 1101, 930, 914, 774, $708,531 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{3}+\mathrm{H}\right]^{+}$: 188.1182 , found: 188.1183; $\mathbf{R}_{\mathrm{f}}: 0.15$ (EtOAc); $[\alpha]_{D}{ }^{20}: 17.3\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p.: $135^{\circ} \mathrm{C}$.
Chiral HPLC: (Chiralpak IC, $4.6 \times 250 \mathrm{~mm}$; hexane:i-PrOH 70:30, $1.0 \mathrm{~mL} / \mathrm{min}, 274 \mathrm{~nm}$; $t_{\mathrm{R}}($ major $)=18.6 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=19.8 \mathrm{~min}\right), ~ 97.6: 2.4 \mathrm{er}$.



## (S)-3-Methyl-1,2,3,4-tetrahydrobenzo[4,5]imidazo[1,2-a]pyridine (2m):



Obtained as white solid in $86 \%(16 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=$ 7.71 (d, J=7.4 Hz, 1 H ), $7.36-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.24$ ( $\mathrm{s}, 1 \mathrm{H}$ ), 3.99 (td, $J=11.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, \mathrm{~J}=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}$, $J=17.1,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm}$; ${ }^{13}{ }^{\mathbf{C}}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ) $\delta=151.7,141.7,134.1,122.6,122.1,118.6,109.0,41.7,33.1$, 30.4, 27.5, 21.1 ppm ; IR (ATR): $\tilde{\nu}$ 3074, 3051, 2954, 2922, 2865, 1650, 1614, 1514, 1486, 1458, 1417, 1373, 1321, 1285, 1266, 1231, 1165, 1004, 890, $765,739 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2}+\mathrm{H}\right]^{+}$: 187.1230, found: 187.1225; $\mathbf{R}_{\mathrm{f}}$ : 0.2 ( EtOAc ); $[\alpha]_{\mathrm{D}}{ }^{20}: 22.8$ ( $c=0.1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); m.p.: $128-129^{\circ} \mathrm{C}$.
Chiral HPLC: (Chiralpak IC, $4.6 \times 250 \mathrm{~mm}$; hexane:i-PrOH 80:20, $1.0 \mathrm{~mL} / \mathrm{min}, 274 \mathrm{~nm}$; $t_{\mathrm{R}}($ major $)=16.6 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=18.2 \mathrm{~min}\right), 89.6: 10.4 \mathrm{er}$.



Methyl (S)-8-nonyl-6,7,8,9-tetrahydropyrido[1,2-a]indole-3-carboxylate (2n):


Obtained as white solid in $80 \%$ ( 28.5 mg ). ${ }^{1} \mathrm{H}$ NMR ( 600 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=8.31(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.51$ (ddd, $J=11.8,5.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.11 (td, $J=11.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.73 (ddd, $J=16.4,4.6,1.8 \mathrm{~Hz}$, 1 H ), 2.11 (ddd, $J=16.2,10.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.39 (ddq, $J=12.8,4.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.36-1.24$ (m, 11 H ), 1.21 (p, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.17-1.09(\mathrm{~m}, 2 \mathrm{H}), 1.07-0.95(\mathrm{~m}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) . \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (201 MHz, $\mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=167.9,140.4,135.8,132.6,122.2,121.2,119.2$, 111.4, 98.4, 51.1, 41.1, 35.6, 32.1, 32.0, 30.2, 29.8, 29.8 (2C), 29.5, 28.8, 26.7, 22.8, 14.0 ppm; IR (ATR): $\widetilde{\nu} 2923,2852,1711,1612,1534,1455,1433,1335,1302,1233,1189,1125,1090$, 998, 882, 828, 776, $738 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}: 356.2584$, found: 356.2589; $\mathbf{R}_{\mathrm{f}}: 0.2$ (pentane:EtOAc 20:1); $[\alpha]_{\mathrm{D}}{ }^{20}: 24.3\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ ); m.p.: $64^{\circ} \mathrm{C}$.

Chiral HPLC: (Chiralpak IB, $4.6 \times 250 \mathrm{~mm}$; hexane:i-PrOH $80: 20,1.0 \mathrm{~mL} / \mathrm{min}, 324 \mathrm{~nm}$; $t_{\mathrm{R}}($ major $)=13.3 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=14.2 \mathrm{~min}\right), ~ 97.1: 2.9 \mathrm{er}$.




Obtained as white solid in $80 \%$ ( 28.5 mg ). ${ }^{1} \mathrm{H}$ NMR ( 800
$\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=8.29(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.61$ ( $\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.17 ( $\mathrm{s}, 1 \mathrm{H}$ ), $5.16-5.06$ (m, 1 H), 3.70 (s, 3 H ), 3.50 (ddd, $J=11.6,5.7,3.0 \mathrm{~Hz}, 1$ H), 3.10 (td, $J=11.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.72 (ddd, $J=16.1,4.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.12 (ddd, $J=16.1$, $10.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.83(\mathrm{~m}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.69(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.39$ (ddt, $J=13.1,5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.31 (dh, $J=13.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.11 (qd, $J=7.2,3.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.01 - $0.96(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (201 MHz, $\left.\mathbf{C}_{6} \mathrm{D}_{6}\right) \delta=167.9,140.4,135.8,132.6,131.2$, 124.3, 122.2, 121.2, 119.2, 111.4, 98.4, 51.1, 41.1, 35.6, 31.5, 30.3, 28.7, 25.5, 25.1, $17.4 \mathrm{ppm} ;$ IR (ATR): $\tilde{\nu}$ 2913, 2853, 1707, 1612, 1533, 1454, 1433, 1418, 1368, 1334, 1302, 1232, 1189, 1170, 1126, 1115, 1086, 996, 828, 776, $738 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$: 312.1958, found: 312.1958; $\mathbf{R}_{\mathbf{f}}: 0.18$ (pentane:EtOAc 20:1); [ $\left.\alpha\right]_{\mathrm{D}}{ }^{20}$ : $-4\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ ); m.p.: $66^{\circ} \mathrm{C}$.
Chiral HPLC: (Chiralpak IB, $4.6 \times 250 \mathrm{~mm}$; hexane:i-PrOH 80:20, $1.0 \mathrm{~mL} / \mathrm{min}, 324 \mathrm{~nm}$; $t_{\mathrm{R}}($ minor $)=14.2 \mathrm{~min}, t_{\mathrm{R}}($ major $\left.)=15.2 \mathrm{~min}\right), ~ 96.4: 3.6 \mathrm{er}$.



Methyl (S)-8-(4-(benzyloxy)butyl)-6,7,8,9-tetrahydropyrido[1,2-a]indole-3-carboxylate (2p):


Obtained as white solid in $84 \%(33 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( 800 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=8.30(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{tt}, J=$ $8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.61$ (dd, $J=8.2,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2$ H), $7.16(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~d}, J=1.3$ $\mathrm{Hz}, 3 \mathrm{H}$ ), 3.49 (ddt, $J=10.5,5.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.31 (t, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.09 (td, $J=11.5,4.9$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 2.69 (dd, $J=16.4,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{p}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.38-$ $1.33(\mathrm{~m}, 1 \mathrm{H}), 1.22(\mathrm{dp}, J=14.2,7.8,6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-0.91(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (201 $\left.\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=167.9,140.5,139.1,135.8,132.6,128.3,128.0,127.4,122.2,121.2,119.6$, 111.4, 98.4, 72.8, 69.9, 51.1, 41.1, 35.3, 32.0, 30.3, 30.0, 28.7, 23.4. ppm; IR (ATR): $\tilde{\nu} 3029$, 2932, 2855, 1705, 1612, 1532, 1454, 1432, 1418, 1334, 1302, 1231, 1188, 1113, 1090, 1027, 997, 881, 828, 776, 735, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}: 392.2220$, found: 392.2222; $\mathbf{R}_{\mathbf{f}}: 0.2$ (pentane:EtOAc 12:1); $[\alpha]_{\mathrm{D}}{ }^{20}: 33.5\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ ); m.p.: $85-86^{\circ} \mathrm{C}$.

Chiral HPLC: (Chiralpak ID, $4.6 \times 250 \mathrm{~mm}$; hexane:i-PrOH 90:10, $1.0 \mathrm{~mL} / \mathrm{min}, 294 \mathrm{~nm}$; $t_{\mathrm{R}}($ minor $)=19.6 \mathrm{~min}, t_{\mathrm{R}}($ major $\left.)=20.9 \mathrm{~min}\right), 2.8: 97.2 \mathrm{er}$.



Methyl (S)-9-methyl-7,8,9,10-tetrahydro-6H-azepino[1,2-a]indole-3-carboxylate (2q):
Obtained as white solid in $82 \%$ ( 21 mg ). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=8.43(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.78 (s, 3 H ), 3.33 (dd, $J=14.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.67 (dt, $J=14.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.31 (dd, $J=$ 14.7, $9.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.58 - 1.48 (m, 2 H), 1.40 (dtd, $J=14.9,6.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.16-1.07$ (m, 1 $\mathrm{H}), 1.04(\mathrm{~s}, 1 \mathrm{H}), 0.81(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=167.8$, 144.4, 136.6, 131.9, 122.6, 120.6, 119.5, 111.2, 100.7, 51.1, 43.9, 38.5, 35.8, 32.8, 27.4, 21.9.; IR (ATR): $\tilde{\nu}$ 2949, 2925, 2869, 2843, 1707, 1611, 1537, 1460, 1433, 1415, 1353, 1341, 1307, 1275, 1259, 1235, 1207, 1184, 1126, 1115, 1084, 989, 828, $779,742 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2}+\mathrm{H}^{+}\right.$: 258.1489 , found: 258.1491; $\mathbf{R}_{\mathrm{f}}: 0.2$ (pentane:EtOAc 20:1); $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}$ : -67.9 ( $c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); m.p.: 97-98 ${ }^{\circ} \mathrm{C}$.
Chiral HPLC: (Chiralpak IB, $4.6 \times 250 \mathrm{~mm}$; hexane:i-PrOH 80:20, $1.0 \mathrm{~mL} / \mathrm{min}, 294 \mathrm{~nm}$; $t_{\mathrm{R}}($ minor $)=25.17 \mathrm{~min}, t_{\mathrm{R}}($ major $\left.)=33.3 \mathrm{~min}\right), 25.4: 74.6 \mathrm{er}$.



Obtained as white solid in $86 \%$ ( 26 mg ). ${ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.C_{6} D_{6}\right) \delta=8.36(d d, J=1.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{dd}, J=8.3,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.71$ ( $\mathrm{s}, 3 \mathrm{H}$ ), 3.59 (ddd, $J=11.6,5.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{td}, J=11.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.61(\mathrm{~m}, 1$ H), 2.32 (ddd, J=16.6, 12.8, $1.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.46-1.34$ (m, 1 H ), $1.12-1.01$ (m, 1 H ), 0.41 (dd, J $=4.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}),-0.16(\mathrm{~s}, 9 \mathrm{H}) . \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=167.9,140.7$, 135.9, 132.3, 122.2, 121.3, 119.1, 111.1, 98.0, 51.1, 42.4, 24.9, 23.6, 19.3, -4.1. ppm; IR (ATR): $\tilde{\nu}$ 2949, 2898, 2874, 283, 1709, 1612, 1529, 1455, 1433, 1417, 1348, 1335, 1300, 1276, 1247, 1231, 1184, 1126, 1117, 1090, 999, 880, 854, 833, 776, $738 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{Si}+\mathrm{H}\right]^{+}: 302.1571$, found: 302.1570; $\mathbf{R}_{\mathbf{f}}: 0.25$ (pentane:EtOAc $50: 1$ ); $[\alpha]_{\mathrm{D}}{ }^{20}: 41.3$ (c = 0.1, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ); m.p.: $114-115{ }^{\circ} \mathrm{C}$.
Chiral HPLC: (Chiralpak IB, $4.6 \times 250 \mathrm{~mm}$; hexane:i-PrOH 80:20, $1.0 \mathrm{~mL} / \mathrm{min}, 294 \mathrm{~nm}$; $t_{\mathrm{R}}($ major $)=13.2 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=19.7 \mathrm{~min}\right), 83.5: 16.5 \mathrm{er}$.


Methyl
(S)-9-methyl-6,7,8,9-tetrahydropyrido[1,2-a]indole-3-
 carboxylate ( $(+)-2 \mathrm{~s})$ :
Obtained as white solid in $84 \%$ ( 20.5 mg ). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta$ $=8.30-8.21(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}), 3.69(\mathrm{~s}$, 3 H ), $3.44-3.32$ (m, 1 H ), 3.04 (td, $J=11.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.61-2.45$ (m, 1 H ), 1.35 (dddd, $J=$ 12.9, 10.6, 5.4, 2.5 Hz, 2 H ), $1.28-1.14$ (m, 1 H ), 1.11 (d, J=6.9 Hz, 3 H ), $0.90-0.79$ (m, 1 H ) ppm; ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=167.9,145.8,135.9,132.3,122.4,121.1,119.3,111.5$, 97.5, 51.1, 41.5, 29.9, 29.2, 21.9, 20.0 ppm; IR (ATR): $\tilde{\nu} 2947,2868,1707,1611,1527,1456$, 1433, 1417, 1358, 1342, 1325, 1299, 1264, 1243, 1206, 1189, 1173, 1118, 1095, 993, 829, 779, $742 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}: 244.1332$, found: 244.1335 ; $\mathbf{R}_{\mathrm{f}}: 0.35$ (pentane:EtOAc 50:1); $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}: 6.2\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p.: $102-103^{\circ} \mathrm{C}$.

Chiral HPLC: (Chiralpak IB, $4.6 \times 250 \mathrm{~mm}$; hexane:i-PrOH 80:20, $1.0 \mathrm{~mL} / \mathrm{min}, 294 \mathrm{~nm}$; $t_{\mathrm{R}}($ minor $)=9.6 \mathrm{~min}, t_{\mathrm{R}}($ major $\left.)=16.5 \mathrm{~min}\right)$, 90.7:9.3 er .



Methyl ( $R$ )-9-methyl-6,7,8,9-tetrahydropyrido[1,2-a]indole-3-carboxylate ((-)-2s):


Obtained as white solid in $78 \%$ ( 19 mg ). ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=$ 8.27 (d, J=8.2 Hz, 2 H ), 7.61 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 3.69$ (s, 3 H ), $3.42-3.31$ (m, 1 H ), 3.02 (td, $J=11.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-$ 2.47 ( $\mathrm{m}, 1 \mathrm{H}$ ), 1.34 (dddt, $J=18.5,10.5,5.3,2.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.19 (ddtt, $J=19.3,8.2,5.6,3.3 \mathrm{~Hz}, 1$ H), $1.11(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.89-0.80(\mathrm{~m}, 1 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $\left.151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=167.9$, 145.8, 135.9, 132.3, 122.4, 121.1, 119.3, 111.5, 97.5, 51.1, 41.5, 29.9, 29.2, 21.9, 20.0 ppm; IR (ATR): $\tilde{\nu}$ 2946, 2868, 1708, 1611, 1527, 1457, 1433, 1358, 1342, 1325, 1299, 1264, 1243, 1206, 1118, 1095, 993, 830, 779, $740 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$: 244.1332, found: 244.1336; $\mathbf{R}_{\mathrm{f}}: 0.35$ (pentane:EtOAc $50: 1$ ); $\boldsymbol{\alpha}_{\boldsymbol{\alpha}}{ }_{\mathrm{D}}{ }^{20}$ : $-9.2\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ ); m.p.: $102-103{ }^{\circ} \mathrm{C}$.
Chiral HPLC: (Chiralpak IB, $4.6 \times 250 \mathrm{~mm}$; hexane:i-PrOH $80: 20,1.0 \mathrm{~mL} / \mathrm{min}, 294 \mathrm{~nm}$; $t_{\mathrm{R}}($ major $)=9.3 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=16.1 \mathrm{~min}\right), 67.4: 32.6 \mathrm{er}$.



Obtained as colourless oil $78 \%(15 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=$ 7.28 (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.86$ (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ (ddd, $J=14.0$, $5.7,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ (ddd, $J=13.9,11.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H})$, 2.46 (ddd, $J=16.3,4.7,2.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.92 (dd, $J=16.3,10.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.29 (tdd, $J=12.4,6.5$, $2.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.95$ (dtd, $J=13.7,11.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.62(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) . \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $C_{6} D_{6}$ ) $\delta=161.4,136.5,120.8,117.8,105.9,50.1,44.9,32.0,30.9,26.2,20.7 . p p m ;$ IR (ATR): $\tilde{\nu}$ 2951, 2926, 2886, 2871, 1698, 1490, 1470, 1435, 1397, 1337, 1274, 1249, 1223, 1182, 1146, 1075, 1025, 937, $753 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$: 194.1176, found: 194.1171; $\mathbf{R}_{\mathrm{f}}: 0.3$ (pentane:EtOAc 40:1); $[\alpha]_{\mathrm{D}}{ }^{20}: 28.8\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
Chiral HPLC: (Chiralpak IB, $4.6 \times 250 \mathrm{~mm}$; hexane:i-PrOH 80:20, $1.0 \mathrm{~mL} / \mathrm{min}, 312 \mathrm{~nm}$; $t_{\mathrm{R}}$ (major) $=4.6 \mathrm{~min}, t_{\mathrm{R}}$ (minor) $=5.1 \mathrm{~min}$ ), 94.5:5.5 er.


Methyl (S)-7-(3-methylbut-2-en-1-yl)-5,6,7,8-tetrahydroindolizine-3-carboxylate (4b):
 Obtained as colourless oil $73 \%$ ( 19 mg ). ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=$ 7.29 (d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.09-5.03(\mathrm{~m}, 1 \mathrm{H})$, 3.81 (ddd, $J=13.8,11.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.57 (s, 3 H ), 2.59 (ddd, $J=$ $16.2,4.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.98 (dd, $J=16.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.83 (hept, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.66 (d, J $=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{ddq}, J=13.0,5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.24$ (dddd, $J=13.1,9.1,6.6$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.10-0.93(\mathrm{~m}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathbf{C}_{6} \mathrm{D}_{6}$ ) $\delta=161.4,136.5,131.0$, 124.4, 120.7, 117.8, 106.0, 50.1, 45.0, 35.6, 30.7, 30.2, 29.1, 25.5, 25.1, 17.3 ppm ; IR (ATR): $\tilde{\nu}$ 2913, 2852, 1697, 1490, 1469, 1443, 1435, 1398, 1355, 1324, 1277, 1239, 1220, 1182, 1142, 1075, 1031, 937, $752 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}: 262.1802$, found: 262.1803; $\mathbf{R}_{\mathbf{f}}: 0.35$ (pentane:EtOAc 60:1); $[\alpha]_{\mathrm{D}}{ }^{20}: 16.3\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Chiral HPLC: (Chiralpak IB, $4.6 \times 250 \mathrm{~mm}$; hexane:i-PrOH 90:10, $1.0 \mathrm{~mL} / \mathrm{min}, 274 \mathrm{~nm}$; $t_{\mathrm{R}}$ (major) $=5.3 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=5.7 \mathrm{~min}\right), ~ 95.5: 4.5 \mathrm{er}$.


Methyl (S)-7-(4-(benzyloxy)butyl)-5,6,7,8-tetrahydroindolizine-3-carboxylate (4c):


Obtained as colourless oil in $81 \%(27.5 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( 600 $\mathbf{M H z}, \mathbf{C}_{6} \mathbf{D}_{6}$ ) $\delta=7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1$ H), $7.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~d}$, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $4.36(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{ddd}, J=13.8,11.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.57 (ddd, $J=16.3,4.9,1.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.95 (dd, $J=16.2,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{p}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.38 (ddq, $J=13.0,5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.17 (tdd, $J=13.2,8.5,6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.02-$ 0.85 (m, 3 H ) ppm; ${ }^{13} \mathbf{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=161.4,139.1,136.6,128.3,127.4,127.4$, 120.7, 117.8, 106.0, 72.7, 69.9, 50.1, 45.0, 35.3, 31.1, 30.2, 29.9, 29.2, 23.3; IR (ATR): $\widetilde{\nu} 3029$, 2933, 2855, 1696, 1490, 1468, 1443, 1434, 1357, 1320, 1273, 1247, 1225, 1182, 1145, 1101, 1027, 936, 751, $697 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}$: 342.2064 , found: 342.2056; $\mathbf{R}_{\mathrm{f}}: 0.2$ (pentane:EtOAc 60:1); $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{20}: 55.2\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Chiral HPLC: (Chiralpak IB, $4.6 \times 250 \mathrm{~mm}$; hexane:i-PrOH 80:20, $1.0 \mathrm{~mL} / \mathrm{min}, 274 \mathrm{~nm}$; $t_{\mathrm{R}}($ major $)=9.2 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=22.1 \mathrm{~min}\right), ~ 96.4: 3.6 \mathrm{er}$.


Methyl (S)-7-(trimethylsilyl)-5,6,7,8-tetrahydroindolizine-3-carboxylate (4d):


Obtained as colourless oil in 76\% (19 mg). ${ }^{1} \mathbf{H}$ NMR ( 600 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta=7.33(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (td, $J=12.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.61(\mathrm{~s}, 3 \mathrm{H}), 2.52$ (ddd, $J=16.5,4.7,1.8 \mathrm{~Hz}$, 1 H ), 2.20 (dd, $J=16.4,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.46-1.32(\mathrm{~m}, \mathrm{H}), 1.10-0.98(\mathrm{~m}, 1 \mathrm{H}), 0.35$ (tdd, $J=$ 12.8, 4.7, $2.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), -0.20 (s, 9 H ). ppm; ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=161.4,136.9,120.7$, 117.6, 105.9, 50.1, 46.1, 24.7, 23.9, 18.2, -4.2. ppm; IR (ATR): $\widetilde{\nu} 2950,2847,1699,1490,1467$, 1441, 1396, 1346, 1324, 1311, 1244,1216, 1182, 1165, 1138, 1059, 1023, 925, 881, 835, 750, $690 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Si}+\mathrm{H}\right]^{+}: 252.1414$, found: 252.1413; $\mathbf{R}_{\mathrm{f}}: 0.3$ (pentane:EtOAc 60:1); $[\alpha]_{\mathrm{D}}{ }^{20}$ : 15.4 ( $c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).
Chiral HPLC: (Chiralpak IB, $4.6 \times 250 \mathrm{~mm}$; hexane: $i-\mathrm{PrOH} 98: 2,1.0 \mathrm{~mL} / \mathrm{min}, 276 \mathrm{~nm}$; $t_{\mathrm{R}}$ (major) $=14.9 \mathrm{~min}, t_{\mathrm{R}}($ minor $\left.)=16.1 \mathrm{~min}\right), 74.4: 25.6 \mathrm{er}$.


## Methyl (S)-8-methyl-5,6,7,8-tetrahydroindolizine-3-carboxylate (4e):

 Obtained as colourless oil in $72 \%(14 \mathrm{mg}) .{ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=$ 7.28 (d, $J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 5.96 (dd, $J=4.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $4.55-4.47$ (m, 1 H), 3.85 (dddd, $J=19.0,14.0,10.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.57 ( $\mathrm{s}, 3 \mathrm{H}$ ), $2.48-2.39$ (m, 1 H ), $1.43-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.18(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3$ $\mathrm{H}), 0.88-0.78$ (m, 1 H ) ppm; ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=161.5,142.0,120.7,117.7$, 105.1, 50.1, 45.3, 29.6, 28.5, 22.2, 20.4 ppm; IR (ATR): $\widetilde{\nu}$ 2948, 2861, 1697, 1536, 1486, 1473, 1433, 1355, 1323, 1305, 1233, 1215, 1149, 1076, 948, 919, $752 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}: 194.1176$, found: 194.1170; $\mathbf{R}_{\mathrm{f}}$ : 0.2 (pentane:EtOAc 40:1); $[\alpha]_{\mathrm{D}}{ }^{20}$ : -17.6 ( $c=0.1$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ).
Chiral HPLC: (Chiralpak IB, $4.6 \times 250 \mathrm{~mm}$; hexane: $i-\mathrm{PrOH} 98: 2,1.0 \mathrm{~mL} / \mathrm{min}, 292 \mathrm{~nm}$; $t_{\mathrm{R}}$ (minor) $=5.2 \mathrm{~min}, t_{\mathrm{R}}($ major $\left.)=5.6 \mathrm{~min}\right), 89.1: 10.9 \mathrm{er}$.


Methyl (S)-7-methyl-5,6,7,8-tetrahydroindolizine-2-carboxylate (4f):


Obtained as colourless oil in $57 \%$ ( 11 mg ). ${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=$ 7.11 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{q}, ~ J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13$ (ddd, $J=12.4$, $5.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{td}, \mathrm{J}=12.0,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.33(\mathrm{~m}, 1 \mathrm{H})$, $1.89-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.26-1.17(\mathrm{~m}, 1 \mathrm{H}), 1.08$ (ddq, $J=13.0,4.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.83$ (dtd, $J=$ $13.2,11.4,5.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $0.62(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$ ) $\delta=165.0$, 129.6, 123.9, 116.0, 106.0, 50.2, 44.4, 31.1, 30.9, 27.3, 20.8 ppm ; IR (ATR): $\tilde{\nu} 2951,2928$, 2895, 2872, 2841, 1712, 1522, 1451, 1443, 1389, 1276, 1245, 1205, 1139, 1091, 1000, 928, 820, $773,751 \mathrm{~cm}^{-1}$; HRMS (ESI) calculated for $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}_{2}+\mathrm{H}\right]^{+}$: 194.1176, found: 194.1181; $\mathbf{R}_{\mathrm{f}}$ : 0.2 (pentane:EtOAc 40:1); $[\alpha]_{\mathrm{D}}{ }^{20}$ : $26.6\left(c=0.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Chiral HPLC: (Chiralpak OJH, $4.6 \times 250 \mathrm{~mm}$; hexane:i-PrOH 90:10, $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$; $t_{\mathrm{R}}\left(\right.$ minor $=10.5 \mathrm{~min}, t_{\mathrm{R}}($ major $\left.)=12.7 \mathrm{~min}\right), ~ 90.1: 9.9 \mathrm{er}$.



## Mechanistic Studies

## Deuterium labeling experiment



Inside a glove box a tube containing a magnetic stirring bar was charged with $\mathrm{Ni}(\mathrm{cod})_{2}(1.4 \mathrm{mg}$, $5 \mathrm{~mol} \%), \mathrm{L} 8 \cdot \mathrm{HCl}(6.3 \mathrm{mg}, 5.5 \mathrm{~mol} \%), \mathrm{NaOtBu}(2.4 \mathrm{mg}, 25 \mathrm{~mol} \%)$ and $[\mathrm{D}]_{1}-1 \mathrm{a}(0.1 \mathrm{mmol})$. The mixture was dissolved in $\mathrm{PhCF}_{3}(0.2 \mathrm{~mL})$ and was stirred for 24 h at $60^{\circ} \mathrm{C}$. Subsequently the reaction mixture was cooled to ambient temperature, was filtered over a short plug of silica gel (EtOAc), and was concentrated under reduced pressure to afford the crude product, which was purified by silica gel column (Pentane/EtOAc) to afford the mixture of product and reisolated starting material as a white solid in $91 \%(17 \mathrm{mg})$ yield.


## Deuterium scrambling experiment



Inside a glove box a tube containing a magnetic stirring bar was charged with $\mathrm{Ni}(\mathrm{cod})_{2}(1.4 \mathrm{mg}$, $5 \mathrm{~mol} \%), \mathrm{L} 8 \cdot \mathrm{HCl}(6.3 \mathrm{mg}, 5.5 \mathrm{~mol} \%), \mathrm{NaOtBu}(2.4 \mathrm{mg}, 25 \mathrm{~mol} \%),[\mathrm{D}]_{1}-1 \mathrm{a}$ ( 0.05 mmol$)$ and $\mathbf{1 g}$ ( 0.05 mmol ). The mixture was dissolved in $\mathrm{PhCF}_{3}(0.2 \mathrm{~mL})$ and was stirred for 24 h at $60{ }^{\circ} \mathrm{C}$. Subsequently the reaction mixture was cooled to ambient temperature, was filtered over a short plug of silica gel (EtOAc), and was concentrated under reduced pressure to afford the crude product, which was purified by silica gel column (Pentane/EtOAc) to afford [D] ${ }_{1}$-2a as a white solid in 61 \% ( 6 mg ) yield and $\mathbf{2 g}$ as a white solid in 78 \% ( 9.5 mg ).




L5• HCl
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$




L5. HCl
${ }^{13} \mathrm{C}$ NMR, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$



L7• HCl
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$



L7•HCl
${ }^{13} \mathrm{C}$ NMR, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$


[^0]

L8. HCl
${ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$



L8. HCl
${ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$



L9. HCl
${ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$



L9•HCl
${ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$



L10. HCl
${ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$



L10.HCl
${ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$



## L11•HCl

${ }^{1} \mathrm{H}$ NMR, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$



L11•HCl
${ }^{13} \mathrm{C}$ NMR, $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$


|  | , | T | 1 |  | 1 |  |  |  |  |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |


$1 a$
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$





$1 \mathbf{1 a}$
${ }^{13} \mathrm{C}$ NMR, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$



1b
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

## 





1b
${ }^{13} \mathrm{C}$ NMR, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$


| 80 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |



1c
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$



1c
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$



1d
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$




1d
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$



1e
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$




1e
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$1 f$
${ }^{1} \mathrm{H}$ NMR， $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

|  |  | 号号号すぎ铝 |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |



$1 f$
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$



1 g
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$



1 g
${ }^{13} \mathrm{C}$ NMR, $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$



1h
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$



1h
${ }^{13} \mathrm{C}$ NMR, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$


$1 i$
${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
|i

~~~


\({ }^{13} \mathrm{C}\) NMR, \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)



1j
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)




1 j
\({ }^{13} \mathrm{C}\) NMR, \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 80 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \[
90
\] & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}


1k
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)



1k
\({ }^{13} \mathrm{C}\) NMR, \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)



11
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\underset{\infty}{+\infty} \underset{\infty}{\infty} \infty
\] & \[
{\underset{\sim}{N}}_{\underset{\sim}{\pi}}
\] &  & \(\underbrace{\text { Q }}\) - & Ni مi̛ \\
\hline
\end{tabular}



11
\({ }^{13} \mathrm{C}\) NMR, \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & 1 & & & 1 & & 1 & 1 & 1 & 1 & 1 & & 1 & 1 & 1 & 1 & 1 \\
\hline 80 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & \[
\begin{aligned}
& 90 \\
& \mathrm{f} 1
\end{aligned}
\] & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 \\
\hline
\end{tabular}


1 m
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)



1 m
\({ }^{13} \mathrm{C}\) NMR, \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)




1 n
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)




1n
\({ }^{13} \mathrm{C}\) NMR, \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)



10
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)




10
\({ }^{13} \mathrm{C}\) NMR, \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)



1p
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)





1p
\({ }^{13} \mathrm{C}\) NMR, \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\)



19
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)




19
\({ }^{13} \mathrm{C}\) NMR, \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)



1r
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)



1r
\({ }^{13} \mathrm{C}\) NMR, \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)



\section*{E-1s}
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)
\(1 \mathrm{H}-\mathrm{NMR}\)
400.08 Hz
CDCl
298.0 K



E-1s
\({ }^{13} \mathrm{C}\) NMR, \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0 & 190 & 180 & 170 & & 150 & 140 & 130 & 120 & 110 & & 90 & 80 & 70 & & & & & & & \\
\hline & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \({ }_{\text {f1 }}^{100}\) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}


\section*{Z-1s}
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)

\section*{}

\section*{1H-NMR \\ 400.08 Hz \\ CDCl3}



\section*{Z-1s}
\({ }^{13} \mathrm{C}\) NMR, \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)


\footnotetext{

}


\section*{3a}
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)



3a
\({ }^{13} \mathrm{C}\) NMR, \(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\)


\footnotetext{

}


3b
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)



3b
\({ }^{13} \mathrm{C}\) NMR, \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\)



3c
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)


\(\underbrace{N} \underset{\sim}{\text { N N N N }}\)



3c
\({ }^{13} \mathrm{C}\) NMR, \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\)

\begin{tabular}{lllllllllllllllllll}
\hline 80 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 10
\end{tabular}


3d
\({ }^{1} \mathrm{H}\) NMR， \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)
```
Ma
```


云云求通



3d
\({ }^{13} \mathrm{C}\) NMR, \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\)

\begin{tabular}{llllllllllllllllllll}
\hline 80 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0
\end{tabular}

\(3 e\)
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)


\(3 e\)
\({ }^{13} \mathrm{C}\) NMR, \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & 1 & & \\
\hline 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}


3f
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)

1H-NMR 400.08 Hz CDCl3
298.0 K



3f
\({ }^{13} \mathrm{C}\) NMR， \(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\)
\begin{tabular}{|c|c|c|}
\hline \(\stackrel{\infty}{\sim}\) & 9 & ¢ ヘño゙ \\
\hline － & － &  \\
\hline ｜ & ｜ & ノ 1 く \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 人 \({ }^{\circ}\) & \(\stackrel{\rightharpoonup}{m}\) \\
\hline in \({ }^{\circ}\) & － \\
\hline 11 & I \\
\hline
\end{tabular}

13C－NMR
100.61 Hz
CDCl3
298.0 K



2a
\({ }^{1} \mathrm{H}\) NMR, \(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



2b
\({ }^{13} \mathrm{C}\) NMR, \(151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)




2b
\({ }^{1} \mathrm{H}\) NMR, \(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)

\(1 \mathrm{H}-\mathrm{NMR}\)
600.13 Hz
C6D6
298.0 K

2b
\({ }^{13} \mathrm{C}\) NMR, \(151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



2c
\({ }^{1} \mathrm{H}\) NMR, \(800 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)

(1.4



2c
\({ }^{13} \mathrm{C}\) NMR, \(201 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



2d
\({ }^{1} \mathrm{H}\) NMR, \(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



2d
\({ }^{13} \mathrm{C}\) NMR, \(201 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



2e
\({ }^{1} \mathrm{H}\) NMR, \(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



2e
\({ }^{13} \mathrm{C}\) NMR, \(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)


\(2 f\)
\({ }^{1} \mathrm{H}\) NMR, \(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



2f
\({ }^{13} \mathrm{C}\) NMR, \(151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



2g
\({ }^{1} \mathrm{H}\) NMR, \(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



2g
\({ }^{13} \mathrm{C}\) NMR, \(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
\hline 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \[
100
\] & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}


\section*{2h}
\({ }^{1} \mathrm{H}\) NMR, \(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



2h
\({ }^{13} \mathrm{C}\) NMR, \(151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



\section*{\(2 i\)}
\({ }^{1} \mathrm{H}\) NMR, \(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)


1H-NMR
400.13 Hz

C6D6
298.0 K



2i
\({ }^{13} \mathrm{C}\) NMR, \(151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



2j
\({ }^{1} \mathrm{H}\) NMR, \(800 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



2j
\({ }^{13} \mathrm{C}\) NMR, \(201 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



\section*{2k}
\({ }^{1} \mathrm{H}\) NMR, \(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)




2k
\({ }^{13} \mathrm{C}\) NMR, \(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



21
\({ }^{1} \mathrm{H}\) NMR, \(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



21
\({ }^{13} \mathrm{C}\) NMR, \(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



2m
\({ }^{1} \mathrm{H}\) NMR, \(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\)



2m
\({ }^{13} \mathrm{C}\) NMR, \(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\)



2n
\({ }^{1} \mathrm{H}\) NMR, \(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)

\section*{}
\(1 \mathrm{H}-\mathrm{NMR}\)
600.13 Hz
C 6 D 6

C6D6
298.0 K



2n
\({ }^{13} \mathrm{C}\) NMR, \(151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)




20
\({ }^{1} \mathrm{H}\) NMR, \(800 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)


\[
\begin{aligned}
& \text { 1H-NMR } \\
& 800.13 \mathrm{~Hz}
\end{aligned}
\]
298.0 K

C6D6


20
\({ }^{13} \mathrm{C}\) NMR, \(201 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



2p
\({ }^{1} \mathrm{H}\) NMR, \(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)




\section*{2p}
\({ }^{13} \mathrm{C}\) NMR, \(151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & & 1 & & & 1 & & 1 & , & 1 & & T & 1 & 1 & 1 & 1 & 1 & 1 & & \\
\hline 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \[
{ }_{f 1} 00
\] & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}

\(2 q\)
\({ }^{1} \mathrm{H}\) NMR, \(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)


\(2 q\)
\({ }^{13} \mathrm{C}\) NMR, \(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)


\footnotetext{

}

\(2 r\)
\({ }^{1} \mathrm{H}\) NMR, \(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)
\(\underbrace{\infty}\)

\section*{1H-NMR \\ 500.12 Hz}

C6D6


\(2 r\)
\({ }^{13} \mathrm{C}\) NMR, \(126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



\section*{\((+)-2 s\)}
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)


1H-NMR
400.08 Hz

C6D6



\section*{\((+)-2 s\)}
\({ }^{13} \mathrm{C}\) NMR, \(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & T & 1 & 1 & \\
\hline 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}


\section*{\((-)-2 s\)}
\({ }^{1} \mathrm{H}\) NMR, \(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)


1H-NMR
600.13 Hz

C6D6



\section*{\((-)-2 s\)}
\({ }^{13} \mathrm{C}\) NMR, \(151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



4a
\({ }^{1} \mathrm{H}\) NMR, \(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)





4a
\({ }^{13} \mathrm{C}\) NMR, \(101 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)


\footnotetext{

}


4b
\({ }^{1} \mathrm{H}\) NMR, \(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



4b
\({ }^{13} \mathrm{C}\) NMR, \(151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



4c
\({ }^{1} \mathrm{H}\) NMR, \(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)

\section*{
}



4c
\({ }^{13} \mathrm{C}\) NMR, \(151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)


\footnotetext{

}


4d
\({ }^{1} \mathrm{H}\) NMR, \(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)



4d
\({ }^{13} \mathrm{C}\) NMR, \(151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \\
\hline 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 \\
\hline
\end{tabular}

\(4 e\)
\({ }^{1} \mathrm{H}\) NMR, \(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)

1H-NMR
600.13 Hz

C6D6
298.0 K


\(4 e\)
\({ }^{13} \mathrm{C}\) NMR, \(151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)


\footnotetext{

}


4f
\({ }^{1} \mathrm{H}\) NMR, \(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)


\(4 f\)
\({ }^{13} \mathrm{C}\) NMR, \(151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\)
~~~


[^0]:    

