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Abstract
Binary dielectric metasurfaces are arrays of sub-wavelength structures that act as a thin

layer of artificial material. They are generally lossless and relatively simple to fabricate since

only a single structuring step is required. By carefully designing the metasurface, the phase,

amplitude and the polarization of the incident light can be controlled at will. In practice,

fabrication constraints and the limited choice of materials reduce what can be done with

metasurfaces. But a wide range of functionalities can be implemented with the proper design

techniques and knowledge. This thesis contributes to both.

The modes are key to understand the phenomena occurring inside a metasurface. To facilitate

the analysis of the modes, the Poynting operation, which is related to the Poynting vector,

is introduced. We describe how this operation can be used to reformulate the boundary

condition in order to estimate the reflection and transmission coefficients with reduced

knowledge on the modes involved, and to orthonormalized the modes.

The Fourier modal method, which is the method used for the rigorous simulation of metasur-

faces in this work, is improved in order to facilitate the access to valuable information that can

be used to better understand the phenomena occurring inside a metasurface, and to speed

up the design and optimization process. This method computes the eigen-modes present

in the metasurface. To better analyze them, the eigen-modes are orthonormalized using the

Poynting operation. We show that most of the modes can be filter out in order to simulate a

metasurface with different thicknesses in milliseconds.

From the analysis of the modes propagating in metasurfaces, two types of metasurface are

identified: single-mode metasurfaces and multi-mode metasurfaces. For single-mode meta-

surfaces, we provide design techniques that translates the desired response into internal

properties of the metasurfaces. For multi-mode metasurfaces, the concept of self-coupling

mode is developed. We show that, based on this concept, the angular and spectral response of

a metasurface can be interpolated safely with a few simulations even if high-Q resonances are

present. For both types of metasurfaces, examples of design are provided.

Gradient-based optimization methods allow to obtain the optimal metasurface in a few itera-

tions, but the derivative of the merit function is necessary. The adjoint method computes the

functional derivative of the merit function with respect to the permettivity and permeability.

We provide the equations of the adjoint method and apply them to diffractive optical elements

such that they can be used in conjunction with the Fourier modal method.

This thesis contributes to design challenges for complex electromagnetic problems,and it does

not only provides concepts, but also the tools to put them into operation.
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Résumé
Les métasurfaces diélectriques binaires sont des réseaux de structures plus petites que la

longueur d’onde qui agissent comme une fine couche de matériau artificiel. Elles sont généra-

lement sans perte et relativement simples à fabriquer puisqu’une seule étape de structuration

est nécessaire. En concevant soigneusement la métasurface, la phase, l’amplitude et la polari-

sation de la lumière incidente peuvent être contrôlées à volonté. En pratique, les contraintes

de fabrication et le choix limité de matériaux réduisent ce qui peut être fait avec les métasur-

faces. Mais un large éventail de fonctionnalités peut être mis en oeuvre avec les techniques de

conception et les connaissances appropriées. Cette thèse contribue à ces deux aspects.

Les modes sont essentiels pour comprendre les phénomènes qui se produisent à l’intérieur

d’une métasurface. Pour faciliter l’analyse des modes, l’opération de Poynting, qui est liée au

vecteur de Poynting, est introduite. Nous décrivons comment cette opération peut être utilisée

pour reformuler la condition aux interfaces afin d’estimer les coefficients de réflexion et de

transmission avec une connaissance réduite des modes impliqués, et pour orthonormaliser

les modes.

La méthode modale de Fourier, qui est la méthode utilisée pour la simulation rigoureuse

des métasurfaces dans cette thèse, est améliorée afin de faciliter l’accès à des informations

précieuses qui peuvent être utilisées pour mieux comprendre les phénomènes se produisant à

l’intérieur d’une métasurface, et pour accélérer le processus de conception et d’optimisation.

Cette méthode permet de calculer les modes propres présents dans la métasurface. Pour

mieux les analyser, les modes propres sont orthonormalisés à l’aide de l’opération de Poynting.

Nous montrons que la plupart des modes peuvent être filtrés afin de simuler une métasurface

avec des épaisseurs différentes en quelques millisecondes.

A partir de l’analyse des modes se propageant dans les métasurfaces, deux types de métasur-

faces sont identifiés : les métasurfaces monomodes et les métasurfaces multimodes. Pour les

métasurfaces monomodes, nous fournissons des techniques de conception qui traduisent

la réponse souhaitée en propriétés internes des métasurfaces. Pour les métasurfaces multi-

modes, le concept de mode d’auto-couplage est développé. Nous montrons que, sur la base

de ce concept, la réponse angulaire et spectrale d’une métasurface peut être interpolée en

toute sécurité avec quelques simulations, même si des résonances à haut facteur de qualité

sont présentes. Pour les deux types de métasurfaces, des exemples de conception sont fournis.

Les méthodes d’optimisation basées sur le gradient permettent d’obtenir la métasurface

optimale en quelques itérations, mais la dérivée de la fonction de mérite est nécessaire. La

méthode adjointe calcule la dérivée fonctionnelle de la fonction de mérite en fonction de la
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Résumé

perméabilité et de la perméabilité. Nous fournissons les équations de la méthode adjointe et

les appliquons aux éléments optiques diffractifs de manière à ce qu’ils puissent être utilisés en

conjonction avec la méthode modale de Fourier.

Cette thèse contribue aux défis de conception pour des problèmes électromagnétiques com-

plexes, et elle ne fournit pas seulement des concepts, mais aussi les outils pour les mettre en

oeuvre.

Mots-clés : Métasurface diélectrique, analyse modale, vecteur de Poynting, méthode modale

de Fourier, conception de métasurface, hologramme, méthode adjointe, élément optique

diffractif, analyse de résonance, métasurface résonante.
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1 Introduction

The ability to control light has always been associated with technological advances. The first

optical elements that were designed to manipulate light are mirrors and lenses, and they

allowed us to see and understand what is too small or too far away for our naked eyes. Those

elements are based on the concept of rays. The first great textbooks on this concept date back

to the Ancient Greece with the work of Euclid [1] and, a thousand years later, to the Islamic

Golden Age with the work of Ibn al-Haytham [2]. However, it is during the Renaissance, at the

beginning of the 17th century, that Galileo Galilei demonstrated the first high-performance

telescope and microscope. Since then, lens systems have been continuously improved, leading

to the current cameras, microscopes, telescopes up to the lithography lens systems [3, 4].

Also in the 17th century, the model of light as waves emerges, mainly from C. Huygens with

the Huygens’ principle according to which each point of a wavefront is a spherical source.

It was not until the very beginning of the 19th century that the wave theory of light became

popular in the scientific community thanks to the double slits experiment of T. Young. From

the work of many scientists over the following decades, J. C. Maxwell were able to propose an

unifying theory of electromagnetism through the Maxwell equation [5], which is the core of

the rigorous simulation methods used today.

Since light is an electromagnetic wave, it is possible to bend light by varying its phase and am-

plitude on a plane, which can be done using a diffractive optical element. The first diffractive

optical element was made at the end of the 18th century by D. Rittenhouse [6, 7], but it is 150

years later that D. Gabor was able to fabricate a hologram [8] by recording an interference

pattern on a photographic plate. It is with the invention of the laser and the advance in micro-

fabrication and materials that the first computer generated hologram was made [9]. Computer

generated hologram allows to control the phase and the amplitude of the incident light while

being extremely thin in comparison to a lens. The first computer generated hologram was

amplitude-only, but, nowadays, they are usually phase-only because of the high transmission

efficiency. Computer generated hologram are a type of diffractive optical elements and they

are typically used for the external cavity of lasers [7], structured light profilometry [10] and

security features [11].
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Chapter 1. Introduction

The diffractive optical elements mentioned earlier are composed of features larger the wave-

length and they mainly affect the amplitude and phase of an incident beam. In order to

control the polarization, a possibility is to use uniaxial material whose extraordinary axis can

be oriented differently at different points in space, but such optical component is not practical

because, at our knowledge, it is not possible to fabricate a polycrystalline material where the

orientation of the crystals can be controlled independently. A more interesting solution is to

properly designed structures called meta-atoms, leading to an artificial material also known

as metamaterial. The condition is that the dimensions of the structures and the distance

between the structures are much smaller than the wavelength in order to avoid scattering [12].

Due to this constraint, the first metamaterial was done for microwaves application in 1948

by W. Kock [13]. In the microwave range, metals are excellent candidate because they are

lossless and interact strongly with light. Metamaterials became more popular in the scientific

community 40 years later with the work of J. B. Pendry and D. R. Smith [14–16]. The notion of

metasurface has been introduced in the microwaves community a few years later [17].

The wavelength of microwaves is between 1 mm and 1 m, meaning that structures in the

range of 100 µm can be used as the building blocks for metamaterials and metasurfaces since

they are deep subwavelength. Due to the interesting properties of metasurfaces, the idea of

metasurface has been brought to the visible and near-infrared domain. The first metallic

metasurfaces are perforated metallic layers, such as the metallic-dielectric-metallic structures

in [18] that behaves as material with a negative refractive index, the metalens composed of

a hole array [19] and another metalens composed of v-shaped structures [20], which was

inspired by [21]. The disadvantages that metallic metasurface in the microwave regime does

not have is that the structures have to be simple due to the small size of the structures and the

resulting difficulties during fabrication, and metal absorbs light at those wavelength. Moreover,

metallic usually works on resonance, meaning that the absorption is amplified. An interesting

metallic metasurface which is not based on resonances is given in [22], where the transmission

efficiency is above 85% on average.

To avoid absorption, dielectric metasurfaces have been proposed. However, since dielectrics

have a weaker effect on the propagation of light, dielectric metasurfaces need to be thicker,

making the distinction between dielectric metasurface, metamaterial and gratings unsharp.

As with metallic metasurfaces, the structure that compose the dielectric metasurfaces have

to be as simple as possible in order to be able to fabricate them properly. Therefore, most

dielectric metasurfaces are binary, requiring a single etching step for their fabrication.

One of the early dielectric metasurfaces, named zero-order grating at that time, has been

designed for the mid-infrared regime [23] and was composed of lines and spaces. A few

years later, the first dielectric metasurfaces composed of an array of cylinders have been

fabricated [24], followed by a metasurface based on the Pancharatnam-Berry phase [25].

Metasurfaces composed of cylinders [26–30] (fig. 1.1a) behaves as usual diffractive optical

elements except that the accumulated phase is continuous even if the metasurface is binary.

Metasurfaces based on the Pancharatnam-Berry phase [31–35] (fig. 1.1b) are composed of

2



ellipses or rectangles and the accumulated phase depends on their orientation. They are

polarization dependent and have the particularity to change the direction of rotation of circular

polarized light. Typical applications for those kind of metasurfaces are beam shaping [30],

beam deflection [28], phase-only holograms [32] and light focusing [26, 27, 29, 33, 34].

Metasurfaces affect both the phase and the polarization [38, 39]. Therefore, it is possible

to design a metasurface such that it generates two different holograms depending on the

polarization of the illumination [36, 40] (fig. 1.1c), or spatially separates an incident beam into

two polarized beams [41, 42].

The dielectric metasurfaces mentioned earlier can be seen as an array of waveguides and,

by changing the dimensions of those waveguides, different phase accumulations can be

obtained. The phase can also be controlled using Huygens’ metasurfaces, which are dielectric

metasurfaces with two overlapping resonances [43]. Hence, Huygens metasurfaces are used

to generate holograms [37, 44, 45] (fig. 1.1d). Resonant dielectric metasurfaces have many

other applications. They can be used as color filter [46–50], polarization filter [51], generalized

Hartmann-Shack array [52], molecule sensing [53] and light emitter [54]. Moreover, due to

the large fields inside resonant metasurfaces, otherwise negligible effects such as second

harmonic generation [55–57], Kerr nonlinearities [58] and Faraday rotation [59] can be greatly

enhanced, and, by using graphene, tunable resonant metasurfaces can be made [60].

Metasurfaces are complex structures with a high diversity of responses, and they requires

proper design techniques and strategies in order to unlock their full potential. The work

presented here goes into that direction by providing a new set of techniques that facilitates

the design of binary dielectric metasurfaces and allows a more systematic analysis of the

metasurface response.

The simulation method used in this work is the Fourier modal method [61] and it has been

improved in order to greatly facilitate the design of metasurfaces (chapter 3). This method

is particularly well suited for the simulation of binary metasurfaces and, at the same time,

provides valuable information that can be used in the design process. The most important

information that cannot be obtained through other methods such as the Finite Difference Time

Domain method (FDTD) and the Finite Element Method (FEM) is the number of propagating

modes inside the metasurface.

Metasurfaces with a single propagating mode per polarization are called here single-mode

metasurfaces. They are broad-band, have a high transmission efficiency and can be used to

control both phase and polarization. Moreover, they can be described using simple models,

allowing to predict the functionalities they can perform and their limitations. Those models

are given in chapter 4 and they are used to design different type of holograms, anti-reflective

metasurfaces and metasurfaces that act as waveplates.

When more propagating modes are present, the metasurface is called a multi-mode meta-

surface. Due to intereference between the modes [62], multi-mode metasurfaces have more

3



Chapter 1. Introduction

design wavelengths for a range of diameters required to give 2π
phase coverage. Each point in the complex plane represents the
amplitude and phase of the transmission of a nanopillar with
diameter D, for a given unit cell size and nanopillar height at
the corresponding design wavelength. High transmission (with
small modulation over the range of used diameters) and close
to 2π phase coverage is evident for all three design wavelengths.
Fabrication and Characterization. We first fabricated

three separate metalenses with identical NA = 0.6 designed at
wavelengths of 405, 532, and 660 nm. Scanning electron
microscope images of a fabricated metalens are shown in Figure
2a−c. Details of fabrication can be found in our previous

work.45 We characterized these metalenses using a custom-built
setup whose schematic is shown in Figure S2a,b. Measured
focal spots and their corresponding horizontal cuts are shown
in Figure 2d−f and Figure 2g−i, respectively. To calculate the
Strehl ratio, the measured intensities of the horizontal cuts are
normalized to those of ideal Airy functions with the same area
under the curve. Airy functions with a maximum intensity of
unity and diffraction-limited full width at half-maximum

= λFWHM 0.514
NA

d are plotted over the horizontal cuts. Strehl

ratios of 0.8, 0.82, and 0.83 are achieved at wavelengths of 405,
532, and 660 nm, respectively. Corresponding Strehl ratios for

Figure 2. (a) Top-view scanning electron microscope (SEM) image of the center portion of a fabricated metalens. Scale bar: 6 μm. (b) Top-view
SEM image of a portion of the metalens at a higher magnification than that in (a), displaying each individual nanopillar. Scale bar: 2 μm. (c) Side-
view SEM image of the edge of the metalens, showing the vertical profile of the nanopillars. Scale bar: 600 nm. (d−f) Measured focal spots of the
metalenses at their design wavelengths of (d) 660, (b) 532, and (c) 405 nm, respectively. Scale bar: 1 μm. (g−i) Corresponding horizontal cuts of
focal spots shown in d−f with full width at half-maxima of 633, 497, and 385 nm, respectively. An ideal Airy function is overlaid onto each horizontal
cut. All metalenses have diameters of 300 μm and focal lengths of 200 μm, giving numerical apertures NA = 0.6.
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designed at the wavelength of 532 nm and its cor-
responding vertical cut. Moreover, this metalens
design can be extended to the shorter wavelength
region of the visible range, which is of great in-
terest inmany areas of optics, such as lithography
and photoluminescence spectroscopy. Figure 2C
depicts the intensity profile of the focal spot from
the metalens designed at the wavelength ld =
405 nm with a FWHM of 280 nm (Fig. 2I). Al-
though this wavelength is very close to the band
gap of TiO2 lg = 360 nm, the absorption loss is
still negligible (31).
To compare the performance of ourmetalenses

with a commercially available lens, we selected
a state-of-the-art Nikon objective. This objective
has the same NA as our metalenses (0.8) and is
designed for visible light. Focal spot intensity
profiles of the objective at wavelengths of 660,
532, and 405 nmweremeasured using the same
setup as in fig. S2 (see Fig. 2, D to F). A compar-
ison of the corresponding focal spot cross sec-
tions in Fig. 2, G to I, and Fig. 2, J to L, reveals

that the metalenses provide smaller (~1.5 times)
and more symmetric focal spots. This can be un-
derstood because conventional high-NA objec-
tives are designed to image under broadband
illumination. That is, wavefront aberrations need
to be corrected for multiple wavelengths over a
range of angles of incidence to meet industry
standards for the required field of view. This is
typically implemented by cascading a series of
precisely aligned compound lenses. Fabrication
imperfections in each individual optical lens and
residual aberration errors, particularly spherical
aberration, result in a focal spot size larger
than theoretical predictions (36). In contrast,
our metalens is designed to have a phase profile
free of spherical aberration for normally incident
light, which results in a diffraction-limited spot
at a specific designwavelength (37). For example,
the theoretical root mean squares of the wave
aberration function (WAFRMS) for themetalenses
designed for 405, 532, and 660 nm are 0.049l,
0.060l and 0.064l, respectively. These values are

very close to the condition for a perfect spherical
wavefront (37). We also calculated the Strehl ra-
tio from the measured beam profiles for the
three metalenses at their design wavelengths
and found that they are close to 0.8 (see mate-
rials and methods and fig. S3), consistent with
the observed diffraction-limited focusing. In addi-
tion, due to the use of the geometric phase, the
phase profile of the metalens is only dependent
on the rotation of the nanofins. This is controlled
with very high precision, as is characteristic of
electron-beam lithography. Alternatively, other
high-throughput lithography methods such as
deep-ultraviolet (UV) can provide similar fabri-
cation accuracy.
It is important to note that although the

metalenseswere designed at specificwavelengths,
we still observe wavelength-scale focal spots at
wavelengths away from the design. For example,
for the metalens designed at ld = 532 nm, we
measured focal spot sizes of 720 and 590 nm at
wavelengths of l = 660 and 405 nm, respectively
(fig. S4). The broadening of the focal spots with
respect to the theoretical diffraction-limited val-
ues comes from chromatic aberration because
metasurfaces are inherently dispersive. Chromatic
aberrations in ourmetalens aremore pronounced
than the lenses based on refractive optics, result-
ing in a wavelength-dependent focal length (fig.
S5A). This is generally not an issue for laser-
related imaging, microscopy, and spectroscopy
because monochromatic sources with narrow
linewidths are used. For example, in Raman
microscopes/spectrometers, a 532-nm laser with
a linewidth of a few picometers is common. In
this case, the linewidth-induced broadening of
the focal spot size and change in focal length is
negligible.
We also measured the focusing efficiency of

themetalenses. As shown in Fig. 3A, themetalens
designed at ld = 660 nmhas a focusing efficiency
of 66%, which remains above 50% in most of the
visible range. Figure 3A also shows themeasured
focusing efficiency of the metalens designed at
ld = 532 nm. This metalens has a focusing effi-
ciency of 73% at its design wavelength. In addi-
tion, we measured the beam intensity profile of
this metalens in the x-z cross section within a
40-mm span around the focal point (Fig. 3B). De-
tails of this measurement are discussed in the
supplementary materials (35) (see fig. S2 and
materials and methods). The negligible back-
ground signal not only demonstrates excellent
phase realization, where the beam converges to
a diffraction-limited spot, but also shows the
high conversion efficiency of each nanofin. For
the metalens designed at the wavelength of
405 nm, a measured focusing efficiency of 86%
is achieved. The latter measurement was done
using a diode laser (Ondax Inc., Monrovia, CA)
because the shortestwavelength that our tunable
laser (SuperK Varia) can provide was ~470 nm.
All of the efficiencymeasurementswere performed
using right circularly polarized incident light.
However, the polarization sensitivity of the de-
sign can be overcome by implementing the phase
profile using circular cross section nanopillars in

SCIENCE sciencemag.org 3 JUNE 2016 • VOL 352 ISSUE 6290 1191

Fig. 1. Design and fabrication of metalenses. (A) Schematic of the metalens and its building block, the
TiO2 nanofin. (B) The metalens consists of TiO2 nanofins on a glass substrate. (C and D) Side and top
views of the unit cell showing heightH,widthW, and length Lof the nanofin,with unit cell dimensionsS ×S.
(E) The required phase is imparted by rotation of the nanofin by an angle qnf, according to the geometric
Pancharatnam-Berry phase. (F) Simulated polarization conversion efficiency as a function of wavelength.
This efficiency is defined as the fraction of the incident circularly polarized optical power that is converted
to transmitted optical powerwith opposite helicity. For these simulations, periodic boundaryconditions are
applied at the x and y boundaries and perfectly matched layers at the z boundaries. For the metalens
designed at ld=660 nm(red curve), nanofins haveW=85, L=410, andH=600 nm,with center-to-center
spacing S = 430 nm. For the metalens designed at ld = 532 nm (green curve), nanofins haveW = 95, L =
250, andH=600nm,with center-to-center spacingS=325nm. For themetalens designed at ld=405nm
(blue curve), nanofins haveW = 40, L = 150, and H = 600 nm, with center-to-center spacing S = 200 nm.
(G) Optical image of the metalens designed at the wavelength of 660 nm. Scale bar, 40 mm. (H) SEM
micrograph of the fabricated metalens. Scale bar, 300 nm.

RESEARCH | RESEARCH ARTICLE

 o
n 

M
ay

 2
2,

 2
01

7
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d 

fr
om

 

(b)

J ðx;y Þ¼
!
e iϕ

þðx;y Þðλþ1 Þ% e iϕ
−ðx;y Þðλ−1 Þ%

e iϕ
þðx;y Þðλþ2 Þ% e iϕ

−ðx;y Þðλ−2 Þ%

"!
λþ1 λ−1
λþ2 λ−2

"−1
: ð4Þ

Requiring ~κ& ¼ ð~λ&Þ% here guarantees that the Jones
matrix J ðx; y Þ at each point ðx; y Þ represents a linearly
birefringent wave plate [in the sense of Eq. (1)]. By
specifying the desired phase shifts ϕ& and target states
~λ&, J is determined by Eq. (4). Being linearly birefringent,
the J so obtained has eigenpolarizations which are orthogo-
nal and linear on which it imparts characteristic phase shifts
fϕx;ϕy g. The geometry of an element imposing these
required phase shifts on the linear eigenpolarizations can be
located with, e.g., finite difference time domain (FDTD)
simulation; the orientation of the linear eigenpolarizations
determine the element’s fast and slow axes and thus the
orientation angle θ.
In summary, a physical metaelement imparting phases

ϕ& on arbitrary orthogonal polarization states ~λ& has a
Jones matrix J defined by Eq. (4); the orientation and
dimensions of an element implementing this J are then
determined by the angle of J ’s orthogonal linear eigenpo-
larizations and the characteristic phase shifts fϕx;ϕy g
imposed upon them. It should be noted that this possibility
was recognized in the supplementary information to
Ref. [5] where it was, however, described only briefly
and from a purely theoretical standpoint.
The above result can be understood as a unification

of the propagation and geometric phases in a single
element. Desired phases can be imparted on any set of
orthogonal polarization states by modifying an element’s
shape birefringence and angular orientation simultaneously
[Fig. 1(c)].
To demonstrate this arbitrary phase control for polar-

izations other than linear polarizations, we designed,
fabricated and tested a metasurface encoding separate
holograms for RCP and LCP light. The near-field phase
profiles yielding far-field intensity images of a cartoon cat
and dog were computed using iterative phase retrieval [18]
and a metasurface consisting of noninteracting, elliptical
TiO2 pillars was designed to impose these phase profiles
independently on each circular polarization in transmission.
Here a broad range of pillars (with semi-major and minor
axes ranging from 50–300 nm, all assuming a height of
600 nm set by our fabrication process) was simulated using
full-wave FDTD simulations to find those that would
satisfy the phase-shifting properties solved for in Eq. (4)
[16]. Fabricated with a recently reported TiO2 process on
glass [8], the pillars were arranged in a square lattice with
500 nm nearest-neighbor separation [Figs. 2(b) and 2(c)].
The metasurface was designed for and tested in the visible
at λ ¼ 532 nm. The measured far-field intensity profiles
upon illumination with each circular polarization matched
the design images with significant detail [Fig. 2(a)]. Slight
differences between the design images and measured

holograms shown in Fig. 2(a) are attributable to fabrication
imperfections and an assumption by the phase
reconstruction algorithm of uniform amplitude transmis-
sion at each point ðx; y Þ. It should be noted that while
metasurface chiral holograms for circular polarizations
have been reported [19,20], the phase profiles imparted
on each circular polarization, and thus the projected far
fields, are not fully independent due to a reliance on
geometric phase alone. In these cases, only sections of
the far field (such as individual diffraction orders) can
contain independent images for each chirality. Using the

(b)

(a)

(c)

FIG. 2. Chiral Holograms. (a) A single metasurface encodes
two independent hologram phase profiles for each circular
polarization at λ ¼ 532 nm. When illuminated with RCP
(LCP), the metasurface projects an image of a cartoon dog
(cat) to the far field. Design images are shown in the schematic
(top) and measured projections on a screen are shown below. The
dog (cat) occupies 17° (15°) of arc. The bright dot in the center of
each represents zero-order light not coupling into the metasurface
due to fabrication imperfections and beam overfilling. (b) The
metasurface encoding these holograms was 350 × 300 μm in size
and contained 420 000 TiO2 pillars of elliptical cross section.
Shown is an SEM of the device. (c) Oblique view.
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Figure 2a shows the scanning-electron microscopy (SEM)
image of a small section of a typical fabricated sample before

LPCVD. Figure 2b−e show magnified views of the structure
from each of the four realized pixel types characterized by their
lattice periodicities.
For the arrangement of the pixels in the metasurfaces, we

calculate the phase mask required for a particular input image
using the Gerchberg−Saxton algorithm40 and the angular
spectrum method.41 The calculation uses the source image
shown in Figure 3a and several selected parameters, namely, the
resolution of the hologram image (28 × 28 pixels), pixel size
(17.35 × 17.35 μm), and the distance of the hologram image
from the phase mask (12 mm), to compute the phase mask
pattern required to reproduce the source image as a hologram.
These parameters are chosen in order to provide a high-quality
hologram while at the same time keeping the EBL exposure
time reasonably short. Naturally, larger writing fields (more
pixels) allow for higher-resolution and more complex holo-
grams. On the other hand, increasing the number of pixels
under a restricted EBL writefield size of 500 × 500 μm can also
enhance the hologram resolution. However, minimizing the
pixel size will affect the performance of the metasurface due to
interparticle coupling effects or disturbances at the pixel
borders, which are not taken into account in our design.
Hence, the current pixel size of 17.35 × 17.35 μm was carefully
chosen to balance all of these factors.
Figure 3b shows the calculated phase mask where the four

distinct colors represent the phase shifts imprinted onto the
incident wave in different spatial positions to generate the
hologram image. A simulated image (Figure 3c) of the
reproduced hologram is also calculated by numerically
propagating a 1477 nm plane wave through the phase mask
pattern generated previously. A true-color optical microscopy
image at visible wavelengths of the fabricated phase mask,
where the required phase shifts have been translated into silicon
nanodisk arrays of the respective lattice periodicities, is shown
in Figure 3d and can be compared directly with the original
design in Figure 3b.
To optically characterize our holographic metasurface phase

mask, we first observe the generated hologram by transmitting a
linearly polarized 1477 nm laser beam through the sample and
imaging the hologram plane 12 mm behind the sample onto an

infrared (IR) camera. The obtained image is shown in
Figure 3e. It clearly displays the letters “hν”, where the bright
and dark features, as well as the size of the letters, agree very
well with the calculated hologram in Figure 3c. Next, we
measure the phase of the generated hologram by recording a set
of four interferograms using a home-built Mach−Zehnder
interferometer with the same laser source and IR camera, as
used for imaging. On the basis of these measurements, we
perform a phase retrieval process.42 The reconstructed
experimental phase shown in Figure 3f is in good agreement
with the calculated phase in Figure 3b.
While our holographic metasurface has been optimized for

the operational wavelength of 1477 nm, this device can also
operate and create visually similar hologram images within
±20 nm of 1477 nm. This bandwidth of 40 nm is dependent on
and limited by the resonance width of the dipole resonances.
Such dispersive behavior associated with the narrow resonances
provides additional degrees of freedom for engineering optical
responses. While a weakly dispersive metasurface will show a
similar optical response for a broad range of frequencies,
resonant metasurfaces can in principle allow for tailoring a
frequency-selective response, e.g., displaying different holo-
graphic images for different colors.
In order to provide a quantitative evaluation of the

performance of the realized holographic metasurface, we
measured the transmittance efficiency using an IR camera.
The transmittance efficiency of the holographic metasurface is
measured to be 82% for horizontal and vertical polarizations.
Additionally, we measure the imaging efficiencies of the
metasurfaces, i.e., the total amount of light that ends up in

Figure 2. (a) Scanning-electron micrographs of a 6 × 6-pixel area of a
typical hologram sample. (b−e) Magnified top views from typical
individual pixels for the four realized lattice periodicities. The scale
bars denote the length of 2 μm.

Figure 3. (a) Source image on which our hologram image is based. (b)
Calculated phase pattern based on the source image. (c) Simulated
hologram image showing the expected hologram. (d) Optical
microscopy image of the fabricated holographic metasurface. (e)
Experimental hologram image at 12 mm behind the sample plane with
40% imaging efficiency. (f) Phase reconstruction of the sample in the
sample plane.
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Figure 1.1 – a) SEM image of the metalens proposed in [27], which is composed of TiO2

cylinders on a glass substrate. The length of the scale bar is 600 nm. This figure is from [27]. b)
SEM image of the metasurface based on the Pancharatnam-Berry proposed in [33], which is
composed of TiO2 nanofins on a glass substrate. The length of the scale bar is 300 nm. This
figure is from [33]. c) SEM image of a metasurface that generates two holograms depending
of the polarization of the illumination. The metasurface has been proposed in [36] and is
composed of TiO2 cylinders with varying dimensions and orientation. This figure is from [36].
d) SEM image of the Huygens’ metasurface proposed in [37], which is composed of silicon
cylinders embedded in glass. This figure is from [37].
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1.1. Introduction to the design process for diffractive optical elements

complex behaviors and high-Q resonances can occur. The standard technique to detect a

resonance is to look at sharp features in the metasurface spectral response, but it leads to

several issues. First, the metasurface has to be simulated at multiple wavelengths in order to

know if there is a resonance. Second, it is possible to miss a high-Q resonance if the sampling

is too coarse. The concept of self-coupling mode developed in chapter 5 solves those issues.

The different design techniques proposed in this work use assumptions and constraints in

order to obtain a metasurface close to the optimal one with minimal computational effort.

Gradient-based optimization methods are ideal to get the optimal metasurface in a reasonable

amount of time because only a few iterations are required to reach a local optimum. The

condition is obviously that the gradient of the merit function needs to be computed, and the

adjoint method can do this with only two simulations [63]. Using the Fourier modal method,

the number of simulations reduces to one at normal incidence. The implementation of the

adjoint method depends of the simulation method and the adjoint method is provided for the

Fourier modal method in chapter 6.

1.1 Introduction to the design process for diffractive optical elements

In this section, several design processes for diffractive optical elements (DoE) are presented

based on what has been done the literature. The term DoE includes here any diffractive optical

element made of dielectric material, but the focus is on dielectric binary metasurfaces. When

working in transmission, the system to optimize can be represented as shown in fig. 1.2a,

where the incident field just before the DoE, denoted ~Ei , is known and the objective is to

design the DoE such that the field at the output plane, denoted ~Eo , fulfills some specifications.

For a given DoE, the simulation method to get the transmitted field just after the DoE, denoted
~Et , from the field ~Ei is different than the simulation method to get the field ~Eo from the field
~Et since it is a propagation in free-space. The fields ~Ei , ~Et and ~Eo depend on position and

wavelength, but, for many applications, the wavelength is fixed.

Before starting the optimization, several choices have to be made, namely the merit function,

the type of DoE and the simulation methods. The choice of the merit function is critical

because it determines the DoE that will be obtained after the optimization. If a gradient-based

optimization method is used in the design process, the merit function has to be differentiable,

or, at least, piece-wise differentiable.

The simplest and most common merit function is the mean square of the difference between

the obtained values, such as the intensity at the output plane, and the desired ones. An

example is shown in section 6.5 (equation (6.23)). However, there are usually other constraints,

typically fabrication constraints, and multiple quantities to optimize that need to be included

in the merit function. It can be done by using a min-max multi-objective formulation [66] or

by constructing a merit function which is a linear composition of the multiple merit functions

related to the different quantities that need to be optimized. An example of such merit

function is in section 5.3.4 (equation (5.25)). The constraints can also be incorporated into the
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Chapter 1. Introduction

(a)

The resulting ablation depths obtained are too deep compared to what we were seeking. For 3 pulses at 0.8 J/cm², 4
pulses at 0.6 J/cm², 5 pulses at 0.4 J/cm² and 10 pulses at 0.2 J/cm², the maximum ablation depths are respectively equal to
1.09 µm, 1.14 µm, 1.12 µm and 1.03 µm. Such errors in relief levels heights will lead to important non-diffracted light (zero
order of diffraction) at the reconstruction plane.

Figure 16 and Figure 17 are SEM pictures of the 4 phase lamar_cgh made in PC by KrF laser ablation through the
halftone mask. Laser fluence was set to 0.4 J/cm² for 5 pulses.

Figure 16 : SEM picture of the lamar_cgh in PC
for F = 0.4 J/cm² and N=5 pulses

Figure 17 : SEM picture of the lamar_cgh in PC
for F = 0.4 J/cm² and N=5 pulses

Roughness measurement of the DOEs relief levels in PC gave typical Ra of approximately 30 nm, which is pretty
good.
In the opposite, sidewalls angles of the ablated PC structures are very low. Besides, these angles also vary according to the
ablation depths : the shallower the ablated structure, the lower the sidewall. In the case of machining the lamar_cgh with 5
pulses at 0.4 J/cm², we measured sidewall angles varying from 6 to 10°. In the case of DOEs made in BCB, the ablated
structures have much better steepnesses. AFM measurements showed sidewall angles in BCB up to 57°.

Another difficulty in machining the DOEs rises from the non-linearity of the ablation depth responses to the grey level
encoded in the mask. In the case of a 4 phase levels CGH, the relief height between grey level 0 and 85 should be equal to
the relief height between grey level 170 and grey level 255. Due to the non-linearity of the ablation response, these two step
heights will be different in the material. Therefore, the corresponding phase steps will not be equal anymore and as a
consequence, errors will occur in the optical reconstruction.

Such differences in the ablation depth of two identical phase steps are clearly visible in the CGHs made in PC at high
fluences (trials with 3 laser pulses at 0.8 J/cm² and 4 pulses at 0.6 J/cm²). Indeed, samples ablated at high fluences showed
stronger non-linearity in their responses. For lower fluence experiments (trials with 10 laser pulses at 0.2 J/cm² and 5 pulses
at 0.4 J/cm²), since the ablation curves are closer to straight lines, height differences corresponding to identical phase step
do not vary much.

4.3 Optical Measurements
We made optical characterizations of the DOE realised in PC. As noted previously, because the fabricated elements

don’t have the correct depths and sidewall angles, important errors occur in the optical reconstruction.
Most importantly, due to the depth errors, a significant amount of non-diffracted light (0 order of diffraction) is present

in the reconstruction plane. Furthermore, because the sidewalls are not steep there is also lot of energy located in high
diffraction orders. Noise is also evident surrounding the first order of diffraction.

Proc. SPIE Vol. 4274 429
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(b) (c)

Figure 1.2 – a) Schema representing a Diffractive optical Element (DoE), which can be a meta-
surface, with three different planes where the field is computed during the design process. The
red arrows represents the incident light and the green arrows represents the light propagating
from the DoE to the output plane. ~Ei is the incident field just before the DoE, ~Et is the trans-
mitted field just after the DoE and ~Eo is the field at the output plane, which is used to compute
the merit function. b) SEM image of the multi-level DoE made of polycarbonate proposed
in [64]. The maximum etch depth is 810 nm and the wavelength of operation is 633 nm. c)
Real and imaginary part of the responses in transmission of a set of cuboids made of TiO2 on a
glass substrate. The simulations have been done by J. B. Mueller and the figure is from [65] (fig.
8.12.2). Each blue dot is the response of a cuboid for different lateral dimensions. The height
of the cuboid is fixed to 600 nm. The red circle corresponds to full transmission and the black
circle is the average of the transmitted amplitudes. The incident field is polarized along one
side of the cuboid.
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1.1. Introduction to the design process for diffractive optical elements

optimization process with the use of constrained optimization methods [67].

The choice for the type of DoE depends of the desired functionality. If the DoE have to reflect

significantly the light, the possible candidates are DoEs in front of a mirror [68, 69], structures

composed of metals and multi-mode metasurfaces. As mentioned in the introduction, reso-

nant metasurfaces are multi-mode metasurfaces, but it is also possible to have metasurfaces

that act as broad-band mirrors [70].

If the DoE affects mainly the phase of the incident light, meaning that the transmission

efficiency is high, multi-mode metasurfaces should be avoided with some exceptions such

as the Huygens’ metasurfaces [43]. In the case where the diffraction angle is small, meaning

that the phase of the field after the DoE is smooth, conventional DoEs should be considered.

Conventional DoEs have features larger than the wavelength, meaning that diffraction effects

inside the DoE can be neglected. Hence, the phase delay is proportional to the height profile

of the DoE. This approximation is called the thin element approximation [71]. An example of

a conventional DoE is shown in fig. 1.2b. However, for large diffraction angle, the features size

is in the order of the wavelength leading to diffraction effects inside the DoE that need to be

taken into account. Therefore, rigorous simulation methods are required.

Another type of DoE that can be used to affects the phase of the incident light are single-mode

metasurfaces, also called waveguide-type metasurfaces [72]. Single-mode metasurfaces are

composed of cylinders with various cross-sections, and each of those cylinders acts as a

waveguide, meaning that the light is confined mostly inside the cylinders as discussed in [72].

By using cylinders with elliptical or rectangular cross-section (figs. 1.1b and 1.1c), single-mode

metasurfaces can control both the phase and the polarization. There is also a continuum from

single-mode metasurface to conventional DoE, but those two extremes are more simple to

simulate and to design as explained later.

Before starting to optimize the DoE, the simulation methods has to be chosen in order to get

the field ~Eo from the field ~Ei . As shown in fig. 1.2a, the system is divided into two regions: a

heterogeneous medium, which corresponds to the DoE, and a homogeneous medium, where

free space propagation takes place. Because those regions are fundamentally different, the

simulation methods used are not the same. For the homogeneous medium, common methods

are the Rayleight-Sommerfeld diffraction integral (section 2.1 of [73]) and the angular spectrum

of plane wave (section 3.10 of [74]). In many applications, the output plane is in the far-field.

In this case, the field ~Eo is simply the Fourier transform of the field ~Et . Finally, the propagation

of light can be approximated by rays optics if the field ~Et is a smooth function, meaning that

diffraction effects during propagation are negligible. In order to get the propagation direction

of the rays from the field ~Et , the generalized law of refraction is used [21].

For the heterogeneous medium, the thin element approximation should be used when

this approximation is valid since getting the field ~Et from the field ~Ei becomes then trivial.

If diffraction effects inside the DoE are significant, a rigorous method such as the Finite-

Difference Time-Domain method (FDTD) [75], the Finite Element Method (FEM) [76–78] and
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Chapter 1. Introduction

the Fourier Modal Method (FMM) [61, 79–81], also known as the Rigorous Coupled Wave Anal-

ysis (RCWA) [82], is used. However, rigorous methods are too computationally expensive for

the simulation of large area, meaning that strategies are needed in order to simulate aperiodic

DoE such as holograms and metalenses. One strategy given in [83, 84] is to divide the DoE into

sub-area, simulate this sub-area assuming that it is repeated periodically [84] or by adding a

perfectly matched layer [83], and get the field just after this sub-area. The field ~Et is given by

the combination of the results of all those partial simulations.

For single-mode metasurfaces, a similar strategy can be taken. Since the light is confined

mostly inside the cylinders, the field after a single-mode metasurface at the location of a

cylinder is weakly affected by the dimensions of the neighboring cylinders. Therefore, the field

at that location is assumed to be the same as the field of the transmitted plane wave after a

zeroth-order grating composed of a periodic arrangement of this cylinder. This approximation

is called the locally periodic approximation [66]. By simulating multiple zeroth-order gratings,

each of which is composed of a periodic arrangement of a cylinder present in the single-mode

metasurface, the field ~Et is obtained. As shown in [66], interpolation can be used to reduce

the number of zeroth-order gratings being simulated. Most single-mode metasurfaces are

simulated using this strategy [26–36, 40, 66].

Once the merit function, the DoE type and the simulation methods have been chosen, the

optimized DoE can be found through different design techniques, three of which are described

here. The first one is parameter sweep. It is typically used when there are a few parameters that

are optimized, meaning that it is mainly used to design zeroth-order gratings. This technique

also allows to explore the possible responses a DoE can have. For example, to design a resonant

metasurface composed of cylinders, prior information can be used in order to choose roughly

the dimensions of the cylinder such that a dipole resonance, or a higher order resonance [85],

providing the desired functionality, occurs. Then, the response of a set of metasurfaces which

is close to the resonance is computed and the optimized metasurface is found by interpolating

the obtained responses. This design technique is also used for single-mode metasurface as

explained later. In this work, the Fourier modal method proposed in chapter 3 facilitates

such parameter sweep and, for resonant metasurfaces, the concept of self-coupling mode

presented in chapter 5 allows to safely interpolate the response of the metasurface even if

high-Q resonances are present.

The second design technique is known as gradient-based topology optimization. Since the

merit function is computed with the DoE geometry as the input, it is possible to get the effect

of a variation of this geometry on the merit function. Using this derivative, gradient-based

optimization methods, such as gradient descent and quasi-Newton method [67], can be used

leading to a very fast convergence to the optimal DoE even for a large number of parameters.

Two methods can be used to compute this derivative: the algorithmic differentiation [86, 87]

and the adjoint method [63, 88, 89]. The algorithmic differentiation is based on the fact that a

sequence of operations applied on the inputs has been made in order to compute the merit

function. Hence, the chain rule is applied to get the derivative of the merit function with

8



1.1. Introduction to the design process for diffractive optical elements

respect to those inputs. The adjoint method allows to get the functional derivative of the merit

function with respect to the permettivity and permeability by computing the field generated

by the primary source and an adjoint source. A review on topology optimization applied

on optical systems is given in [90]. In chapter 6, the equations required to apply the adjoint

method when using the Fourier modal method, are provided.

The last design technique presented here is based on the design technique commonly used

for conventional DoE, but it can also be used in the design of single-mode metasurfaces

(sections 8.11 to 8.13 in [65]). For conventional DoE, the main assumption is that the DoE

affects only the phase, meaning that the amplitude of the fields ~Ei and ~Et are the same. Hence,

the optimization of the conventional DoE is reduced to finding the phase of the field ~Et that

minimizes the merit function. This step is usually done with the Gerchberg-Saxton algorithm

also known as the Iterative Fourier Transform Algorithm (IFTA) [91]. The height profile of the

conventional DoE is directly obtained from the phase of the field ~Et due to the thin element

approximation.

To adapt this design technique to single-mode metasurfaces, two major differences from

conventional DoEs have to be taken into account. First, there is no more a direct relationship

between the phase delay and the geometry of the metasurface. Therefore, the relationship

between the field ~Ei and ~Et at the location of the cylinders that compose the metasurface

has to be computed using a rigorous method. Since it is usually not feasible to simulate

rigorously the whole DoE, the locally periodic approximation is used. Second, the cylinders

which are not circularly symmetrical in cross-section affect the polarization of the incident

light as a birefringent material (section 8.11 in [65]). Hence, the transfer function describing

the relationship between the field ~Ei and ~Et is a Jones matrix (section 6.1 in [92]), which is

wavelength and position-dependant.

In order to find the Jones matrices that transform a given polarization state into another

one with the desired phase delays, typically from 0 to 2π, different techniques can be used.

Those techniques have to take into account that the Jones matrix describes the response of a

cylinder behaving as birefringent materials, leading to constraints on the Jones matrix. The

technique used in the literature is based on the Poincaré sphere [25,65], where the incident and

transmitted polarization states are points located on the Poincaré sphere and the polarization

state changes continuously while propagating inside the cylinder, making a trajectory on the

Poincaré sphere. Due to the constraints on the Jones matrix, the trajectory has to follow a set

of rules, which are given in section 8.11 in [65], and, from this trajectory, the Jones matrix can

be found. We propose a different technique in section 4.2, where we provide a set of equations

that gives directly all the possible Jones matrix that transform the incident polarization state

into the desired transmitted polarization state. We also discuss in section 4.2.2 the best type of

single-mode metasurface , which is related to a set of Jones matrices, for a given functionality.

Once the set of Jones matrices is obtained, the next step is to find the dimensions of the

cylinders, such that their response is as close as possible to the desired Jones matrices. Two

9
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approaches to obtain those dimensions are proposed in the literature. The first one is to

do a parameter sweep (section 8.12 in [65]), whose obtained responses can be represented

as in fig. 1.2c. The second approach is to perform a gradient-based topology optimization

[66, 93]. Then, the optimized single-metasurface can be found with a modified version of the

Gerchberg-Saxton algorithm that takes into account the available Jones matrices (section 8.13

in [65]).

1.2 Structure of the thesis

Each chapter of this work introduces or develops techniques to design or analyze metasurfaces.

Chapters are divided into three parts: theory, examples of application and proofs.

Chapter 2 introduces the Poynting operation, which is based on the Poynting vector. It is

used to reformulate the boundary condition and greatly simplify the orthonormalization of

the eigen-modes. Both applications are used in the following chapters, but an important

advantage of the Poynting operation comes from the formalism itself. Because the properties

of the Poynting operation are clearly stated, the power flow due to non-orthogonal modes,

evanescent modes and complex modes can be obtained in an automatic and simple way.

Chapter 3 presents the Fourier modal method used in this thesis. It has been improved

in order to facilitate the design of metasurfaces. Its main differences with current Fourier

modal methods is that it is presented and implemented such that the simulation can be

easily optimized depending on the information the designer is looking for. Moreover, the

layers thickness can be fixed later in the simulation and, after the mode filtering described

in section 3.5, the metasurface response for different layers thicknesses is computed in a few

milliseconds. For example, if the designer wants to analyse in depth the central layer in a

multi-layer structure or change its thickness, the layers before and after this central layer can

be reduced into two interfaces, which are represented by a S-matrix, and change the thickness

of the central layer afterward, leading to reduced memory usage and faster computation time.

The equations provided in the literature [80, 81, 94, 95] does not allow such manipulation.

Chapter 4 provides design techniques for single-mode metasurfaces, which is typically com-

posed of cylinders with circular, elliptical or rectangular cross-section. The first part of this

chapter gives for different types of hologram the required orientation of the cylinder and the

relationship between the cylinders’ height and the propagation constant of the eigen-modes,

assuming that no reflection occurs. Equations are also provided for two metasurfaces in series,

giving all the possible solutions. Those equations can be used for wave plates. The second

part presents a simple technique for the design of anti-reflective metasurfaces followed by the

detailed design of a half-wave plate.

Chapter 5 develops the concept of self-coupling mode, which can be used for the analysis and

design of resonant multi-mode metasurface. It also greatly facilitates the interpolation of the

response of resonant metasurfaces. Four examples are provided: the Huygens’ metasurface,
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1.3. Notation and convention

a narrowband metasurface, a metasurface-based laser and a very high-Q metasurface for

sensing application. Each of those examples presents a different aspect in the use of the

self-coupling modes.

Chapter 6 adapts the adjoint method used in [63,89] for the Fourier modal method. The adjoint

method gives the functional derivative of a merit function in function of the permittivity and

permeability and it is used in conjunction with a gradient-based optimization method, such as

the gradient-descent or the quasi-Newton method. As a proof of concept, the adjoint method

is applied to the optimization of a 5x7 beam-splitter.

1.3 Notation and convention

The notation used in this paper is the following: ~x is a vector, x̂ is a matrix, xmn is the element

at the m-th line and n-th column of the matrix x̂, x∗ and x̄ denotes the complex conjugate

of x, xT and xH denote respectively the transpose and the conjugate transpose of x,~xË is the

tangential components of the vector~x relative to a surface and x⊥ is its normal component.

Moreover, the magnetic field ~H and the magnetization density ~M are normalized in the

following way:

~H =
√
µ0

ε0

~H ′ ~M =
√
µ0

ε0

~M ′, (1.1)

where ~H ′ is the standard magnetic field, ~M ′ is the standard magnetization density, ε0 is the

permittivity in vacuum and µ0 is the permeability in vacuum. The normalized magnetic field

has the same unit as the electric field. The implicit time dependence is e−iωt , where ω is the

angular frequency.

Using the normalized magnetic field and magnetization density, the Maxwell equation for

isotropic media with source becomes:

∇×~E = i k0(µ~H + ~M)

∇× ~H =−i k0(ε~E +~P ),
(1.2)

where ~E is the electric field, ~P is the polarization density, k0 is the wavenumber in vacuum, ε is

the relative permittivity and µ is the relative permeability. ~P and ~M represent a source. Except

in chapter 6, the source terms ~P and ~M are zero.

In chapter 2, a bianisotropic media without a source is considered and the Maxwell equation

is
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∇×~E = i k0(ζ̂~E + µ̂~H),

∇× ~H =−i k0(ε̂~E + ξ̂~H),
(1.3)

where ζ̂ and ξ̂ are the bianisotropy parameters.

Only the Maxwell-Faraday equation and the Ampère’s circuital law, which are given by equa-

tions eq. (1.2), are considered in this work since the Gauss’s laws are redundant in the time-

harmonic regime when the frequency is different than zero.

The structures considered in this work are a stack of layers composed of z-invariant z-

symmetry invariant (ZSI) media and the interfaces between the layers are perpendicular

to the z-axis. The ZSI property is introduced in section 2.1 and a formal definition is given in

section 2.4. In chapters 4 and 5, the structures are composed of three layers: the substrate, a

metasurface and a superstrate. If not stated otherwise, the illumination is a plane wave that

propagates in the z direction.

Modes are solutions of the Maxwell equation in a region of space and they are denoted by ψ.

Two types of modes are mentioned in this work: the eigen-modes and the self-coupling modes.

Eigen-modes are modes whose z-dependency is e iγz , where γ is the propagation constant. In

homogeneous media, the eigen-modes are plane waves and they are described in section 3.2.1.

The self-coupling modes are present only in chapter 5 and they are defined in section 5.2.1.
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2 Poynting operation

2.1 Introduction

We consider here optical materials that are invariant in their geometry along a principal propa-

gation direction for which we take the z-axis. In such z-invariant medium, the electromagnetic

field can be decomposed into modes, which are eigen-functions of the Maxwell equations.

This mode decomposition is commonly used for the analysis and the simulation of optical

fibers, such as photonic crystal fibers [96], but it can also be used for z-invariant metasurfaces,

like the ones shown in the review of Genevet et al. [97]. Modes constitute the core of the

Fourier modal method [61, 79] and similar methods [82, 98].

Modes inside a z-invariant heterogenous medium have several properties depending on its

geometrical cross-section and the materials that compose the medium, as described in [99].

The study of such properties can lead to a better insight such as the classification of modes

propagating inside a lossless medium [99, Chapter 11]. In some media, each mode has its

backward-propagating counterpart. Those media are called bidirectional and the conditions

for bidirectionality have been stated in the literature [100, 101]. In a bidirectional medium,

the number of modes that need to be computed can usually be reduced, speeding up the

simulation of the light propagating in such medium.

An important property is the mode orthogonality. In order to determine whether two modes

are orthogonal, an operation has to be defined that maps two modes into a complex number.

Two modes are orthogonal if the defined operation applied on those two modes gives zero. The

equation that states the condition for mode orthogonality is called an orthogonality relation.

Several orthogonality relations have been found [99, 102–104], usually based on the Lorentz

reciprocity ( [103], [104, Chapter 31]). In [105–107], the boundary condition is expressed using

an operation related to an orthogonality relation. Due to mode orthogonality, the boundary

condition is then greatly simplified.

The use of the appropriate operation for a given problem gives significant advantages such as a

general expression of the boundary condition that has been simplified using the orthogonality
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of the modes [107]. An operation is also required for the normalization of modes. In order to

facilitate the choice between the different operations, one has to get a comprehensive picture

of the advantages and disadvantages related to their use. This work addresses this issue by

giving a deep insight of the use of a set of operations that have the same properties as the

following operation:

1

2

∫
S

(~Em × ~H∗
n +~En × ~H∗

m) ·~nd s, (2.1)

where S is a surface,~n is the surface normal and (~Em , ~Hm) is the electric and magnetic fields of

the mode m. For z-invariant heterogenous media, S is a plane perpendicular to the z-axis and

the modes are solutions of the source-free Maxwell equations in the time harmonic regime.

We call the operation (2.1) the Poynting operation because the operation (2.1) is related to

the complex Poynting vector, whose real part usually represents the power flow [108]. By

extension, the operations that have the same properties are also called Poynting operation.

The operation (2.1) is well suited for lossless and z-symmetry invariant (ZSI) media, also known

as strictly bidirectional media [99], due to the orthogonality relation presented in section 2.4.

In ZSI media, which are a special case of bidirectional media, the fields of a mode propagating

in one direction can be directly deduced from the fields of the related mode propagating in

the opposite direction. Any medium composed of isotropic materials is a ZSI medium. If the

materials that compose the medium are anisotropic or gyrotropic, the medium is still ZSI if

the optical axis or the axis of gyration is parallel to the z-axis. Bianisotropic materials such as

the Tellegen metacrystals presented in [109] are also ZSI. A formal definition of a ZSI medium

is given in section 2.4.

This chapter is structured as follow. In section 2.2, different operations are presented followed

by a discussion on their advantages and disadvantages. The presented operations are chosen

such that they can be used to express the boundary condition in the same way, meaning

that only the tangential components of the fields are required. In section 2.3, the Poynting

operation is defined in an abstract way based on the properties of the operation (2.1). Then,

additional properties, which have a physical meaning or are used latter in this chapter, are

derived. A sesquilinear form associated to the Poynting operation is introduced. In section 2.4,

an orthogonality relation for lossless and ZSI media in the bianisotropic case is presented. In

the same section, the definition and properties of a ZSI medium are given. The derivation

of the orthogonality relation is in section 2.10.1. In section 2.5, the fields on both sides of

an interface are decomposed into modes and systems of equations involving the Poynting

operation are proposed for the computation of the coupling coefficients between the modes.

Their derivation is in section 2.10.2. In section 2.7.1, the coupling coefficients at the interface

between air and a lossless z-invariant metamaterial are estimated, considering only the

main mode in both media. We also compare our method presented in this work with other

methods proposed in the literature [105, 106, 110]. In section 2.7.2, the Fresnel conditions
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generalized for uniaxial media are derived from the same equations used in section 2.7.1. In

section 2.6, a set of operations applied on the Gram matrix of the sesquilinear form introduced

in section 2.3, is proposed. Those matrix operations are similar to the elementary operations

in the Gaussian elimination and they can be used to orthonormalize a set of modes. Their

derivation is in section 2.10.3. In sections 2.8.2 to 2.8.4, the orthonormalization and rotation

of propagating, evanescent and complex modes in a lossless uniaxial ZSI medium which is

invariant to a 90◦-rotation around the z-axis, are given using an algorithm based on the matrix

operations presented in section 2.6. A rotation is defined here as a transformation from a set

of orthonormal modes to another set of orthornormal modes.

2.2 Discussion on operations

An important criterion when choosing an operation is its usefulness, meaning that its use

leads to important simplifications in derivations. For instance, the operation used in [105–107]

has been selected because it is related to an orthogonality relation which is valid for reciprocal

media. Based on the orthogonality relations in the literature [104, 111–113], the following

operations can be distinguished:

1

2

∫
S

(~Em × ~Hn −~En × ~Hm) ·~nd s. (2.2)

1

2

∫
S

(~Em × ~H∗
n +~E∗

n × ~Hm) ·~nd s, (2.3)

In a z-invariant reciprocal medium, modes are, in most cases, orthogonal if the operation

(2.2) is used, meaning that an orthogonality relation exists. If the operation (2.3) is considered

instead, modes are mostly orthogonal in a z-invariant lossless medium. The orthogonality

relation for bianisotropic lossless media, which is related to the operation (2.3), is proved in

section 2.10.1 and the orthogonality relation for anisotropic reciprocal media, which is related

to the operation (2.2), is proved in the Chapter 31 of [104]. It can be easily generalized for

bianisotropic media. If the medium has, in addition, the ZSI property, the operations (2.2) and

(2.3) can be modified in the following way while keeping the orthogonality of the modes:

1

2

∫
S

(~Em × ~Hn +~En × ~Hm) ·~nd s. (2.4)

1

2

∫
S

(~Em × ~H∗
n +~En × ~H∗

m) ·~nd s, (2.5)

In order to compare the different operations, the physical meaning, the occurrence of self-

orthogonal modes, and the validity of the orthogonality relation are considered. An operation

related to a physical quantity, such as the operations (2.3) and (2.5), leads to a meaningful

normalization. Hence, the weight of the different modes has a physical meaning. The opera-
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tion (2.3) is related to the real Poynting vector. The operation (2.5) is related to the complex

Poynting vector. To our knowledge, the operations (2.2) and (2.4) do not have a physical

meaning.

Since the operations (2.2) to (2.5) are not definite, self-orthogonal modes can be present,

complicating the normalization of the modes. Hence, the operation (2.4) is a better option

in that respect than the operation (2.2), since all the modes are self-orthogonal when the

operation (2.2) is used. Since the operation (2.5) is related to the complex Poynting vector,

the active and reactive power of a mode is obtained, avoiding the self-orthogonality of the

evanescent modes.

The operations (2.2) to (2.5) are related to an orthogonality relation [99, 103, 104] but are valid

only under certain conditions. For the operations (2.2) and (2.4), one condition is that the

medium has to be reciprocal. For the operations (2.3) and (2.5), the medium has to be lossless.

In that sense, the operations (2.2) and (2.4) have an advantage since reciprocal media are more

common than lossless media. However, in the case of a periodic structure, the orthogonality

relation related to the operations (2.2) and (2.4) is no more valid when the Bloch phase is not

null, which is the reason behind the use of self-adjoint modes in [106]. For the operations (2.3)

and (2.5), the orthogonality relation is still valid. Compared to the operations (2.2) and (2.3),

the additional condition in order to have a valid orthogonality relation for the operations (2.4)

and (2.5) is the ZSI property of the medium.

The choice to focus on the operation (2.5) instead of the operation (2.3) is a matter of taste

because both are based on the same sesquilinear form as shown in section 2.3, meaning that

formalisms based on those operations are similar.

2.3 Poynting operation

In ZSI z-invariant medium, the Poynting operation can be defined as:

[ψm |ψn] := 1

2

∫
S

(~Em × ~H∗
n +~En × ~H∗

m) ·~nd s, (2.6)

where [·|·] represents the Poynting operation, ψ are modes, and S is a plane perpendicular to

the z-axis. S is typically an infinite plane for an aperiodic medium and a unit cell for a periodic

medium. A formal and more generalized definition is given later in this section. A complete

set of modes can be computed by finding the solutions of Maxwell’s equations (1.3) of the

form:

(~E(x, y, z), ~H(x, y, z)) = (~E0(x, y), ~H0(x, y))e iγz , (2.7)

where γ is called the propagation constant. However, any linear combination of those modes

16



2.3. Poynting operation

also gives another mode. In the definition of the Poynting operation (2.6), only the tangential

components of the electric and magnetic fields are required. Therefore, the mode ψ is defined

as:

ψ := (~EË, ~HË). (2.8)

In ZSI z-invariant medium, if the mode ψ with a propagation constant γ exists, a mode with

the propagation constant −γ, called ψ−, is also a solution to Maxwell’s equations. The fields of

the modes ψ and ψ− are related:

ψ− = (~EË,−~HË). (2.9)

We call the operator (·)− the minus operator and it changes a forward-propagating mode

into the corresponding backward-propagating mode. In passive media, the amplitude of

a forward-propagating mode decreases along z and the z-component of its power flux is

positive.

In an isotropic non-dispersive medium, the power flux of a given mode m through the surface

S is the real part of [ψm |ψm] multiplied by a constant [108]. The imaginary part of [ψm |ψm] is

known as the reactive power. In general, the power fluxΦS carried by a set of modes through

the surface S is proportional to:

ΦS ∝ Re

{[
M∑

m=1
amψm +bmψ

−
m

∣∣∣∣ M∑
m=1

amψm +bmψ
−
m

]}
. (2.10)

The choice of the definition of the Poynting operation only affects the validity of the orthogo-

nality relation presented in section 2.4. For the reformulation of the boundary condition and

the operations on the Gram matrix presented in, respectively, sections 2.5 and 2.6, only the

properties of the Poynting operation are needed. Therefore, the definition of the Poynting

operation is generalized such that any operation that has the same properties as the operation

(2.6) is also the Poynting operation.

The Poynting operation is an operation with the map:

[·|·] :V×V→C, (2.11)

and the properties:
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[ψm |ψn] = [ψn |ψm], (2.12a)

[ψp |ψm +ψn] = [ψp |ψm]+ [ψp |ψn], (2.12b)

[ψm |kψn] = Re{k}[ψm |ψn]+ i Im{k}[ψm |ψ−
n ], (2.12c)

[ψ−
m |ψ−

n ] =−[ψm |ψn]. (2.12d)

V is a vector space over the field C and ψ is an element ofV. k is a complex number. Due to

property (2.12c), the Poynting operation is neither a bilinear map nor a sesquilinear map. The

minus operator associated to the Poynting operation is:

(·)− :V→V (2.13)

with the following properties:

(ψm +ψn)− =ψ−
m +ψ−

n , (2.14a)

(kψ)− = kψ−, (2.14b)

ψ−− =ψ. (2.14c)

From the properties (2.12), a set of additional properties can be derived:

[ψm |ψ−
n ] =−[ψ−

m |ψn], (2.15a)

[ψm |ψ−
m] = 0, (2.15b)

[ψm |iψ−
m] = i [ψm |ψm], (2.15c)

[sψm |tψn] = Re{s̄ t }[ψm |ψn]+ i Im{s̄ t }[ψm |ψ−
n ], (2.15d)

[sψm |t (ψn +ψ−
n )] = s̄ t [ψm |ψn +ψ−

n ], (2.15e)

where s and t are complex numbers. The properties (2.12d) and (2.15a) express that a minus

sign appears when the propagation direction of both modes is flipped. From the property

(2.15b), a forward-propagating mode is orthogonal to its backward-propagating counterpart.

However, under the property (2.15c), an evanescent mode, suggesting that [ψ|ψ] is purely

imaginary, carries power if it interacts with its backward-propagating counterpart dephased

by ±90◦. The property (2.15d) is the general formula when both modes are weighted. The

use of the properties (2.12c) and (2.15d) complicates the derivations for the different proofs.

Therefore, we introduce the function σ defined by
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σ(ψm ,ψn) := [ψm |ψn +ψ−
n ]. (2.16)

Due to properties (2.12b) and (2.15e), σ is a sesquilinear form. It has additional properties

which are related to the minus operator:

σ(ψ−
m ,ψn) =−σ(ψm ,ψn), (2.17a)

σ(ψm ,ψ−
n ) =σ(ψm ,ψn). (2.17b)

The sesquilinear form σ is mostly used for the proof of the reformulation of the boundary

condition and the operation on the Gram matrix (sections 2.10.2 and 2.10.3). Using the

definition (2.6):

σ(ψm ,ψn) =
∫

S
(~En × ~H∗

m) ·~nd s, (2.18a)

σ(ψn ,ψm)+σ(ψm ,ψn)∗ =
∫

S
(~Em × ~H∗

n +~E∗
n × ~Hm) ·~nd s. (2.18b)

The right-hand term of equation (2.18b) is the operation (2.3). Hence, an important part of this

work can be used when the operation (2.3) is considered instead of the Poynting operation.

2.4 Orthogonality relation

In this section, the condition for mode orthogonality is derived in a bianisotropic lossless

non-dispersive ZSI z-invariant medium. The constitutive relation for a bianisotropic medium

is given by

( ~D
ε0

c0~B

)
=

(
ε̂ ξ̂

ζ̂ µ̂

)(
~E
~H

)
, (2.19)

where c0 is the speed of light in vacuum, ~D is the displacement field, and ~B is the magnetic

flux density. The constitutive relation (2.19) is similar to the one found in [114] up to some

constants and it leads to Maxwell’s equations (1.3). Due to the use of the normalized magnetic

field, ε̂, µ̂, ξ̂, and ζ̂ are unitless. To be able to derive the condition for mode orthogonality when

the surface of integration is a plane at z = const ant , several assumptions have to be done.

First, the medium is z-invariant meaning that ε̂, µ̂, ξ̂, and ζ̂ depend only on x and y . Hence,

the electric and magnetic field of a mode has the following form:
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~Xm(x, y, z) = ~Xm0(x, y)e iγm z , (2.20)

where ~X can be the electric or the magnetic field and γm is the propagation constant. Second,

the medium has to be lossless, meaning that [114]

ε̂= ε̂H , µ̂= µ̂H , ζ̂= ξ̂H . (2.21)

Third, the following assumption has to be fulfilled:

∮
∂S
~n × (~Em × ~H∗

n +~E∗
n × ~Hm) ·d~l = 0. (2.22)

It means that the field has to vanish at the boundary of S or, for a periodic medium, the

surface S corresponds to a unit cell. Using the assumptions (2.21) and (2.22), the following

orthogonality relation is valid:

(γm − γ̄n)
Ï

S
(~Em × ~H∗

n +~E∗
n × ~Hm) ·~nd s = 0. (2.23)

Finally, the medium has to be ZSI. As stated by [101], in a ZSI medium, if the mode described by

(~EË,E⊥, ~HË, H⊥,γ) fulfils the Maxwell equations, the mode described by (~EË,−E⊥,−~HË, H⊥,−γ)

is still a solution of the Maxwell equations. The property of ZSI media is stated in [115] and it is

ε̂=

 ε11 ε12 0

ε21 ε22 0

0 0 ε33

 , µ̂=

 µ11 µ12 0

µ21 µ22 0

0 0 µ33

 ,

ζ̂=

 0 0 ζ13

0 0 ζ23

ζ31 ζ32 0

 , ξ̂=

 0 0 ξ13

0 0 ξ23

ξ31 ξ32 0

 .

(2.24)

If the assumptions (2.21), (2.22) and (2.24) are fulfilled and the definition (2.6) is used, the

following orthogonality relations hold:

(γ2
m − γ̄2

n)[ψm |ψn] = 0, (2.25)

(γ2
m − γ̄2

n)[ψm |ψn +ψ−
n ] = 0. (2.26)

As a curiosity, a mode is self-orthogonal if its propagation constant has a real and an imaginary
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part. In lossless media, those modes are called complex waves or complex modes and it has

been studied in [116] and in the Chapter 11-12 of [99]. The proof of the orthogonality relations

(2.23), (2.25) and (2.26) is in section 2.10.1.

2.5 Reformulation of the boundary condition

Let us consider a surface S that acts as an interface between two media. The boundary condi-

tion states that the components of the electric and magnetic fields that are tangential to the

surface is equal on both sides of the interface. By using the definition of the Poynting operation

given in (2.6) where the surface of integration is the interface, the modes are described only by

the tangential components of their fields. Hence, if L are the modes in the left medium, R are

the modes in the right medium, and the forward direction is from left to right, the boundary

condition can be written as:

M∑
m=1

pmLm + rmL−
m = E +

N∑
n=1

qnR−
n + tnRn , (2.27)

where pm , rm , qn , and tn are the weights of the different modes and E is the error term. The

weights which are unknown depend on the problem at hand. Usually, pm and qn , which are

the weights of the modes propagating towards the interface, are known and rm and tn are the

unknowns. Please note that the Poynting operation (2.6) can only be used if the interface is

perpendicular to the z-axis and both media are ZSI z-invariant.

If all the modes on both media are considered, the unknowns have to be found such that the

error term E , which is the fields mismatch at the interface, is null. In the case where only a

subset of modes is considered, equation (2.27) may not admit a solution, but the unknowns

can be estimated based on some assumptions. A naive way is to find the unknowns such that

the error term E is minimized in the least-mean-square sense, but it has been shown that it

gives inaccurate results [105]. The different equations proposed in this section allow to find

the unknowns based on the result of the Poynting operation applied on the error term E and

the considered modes Lm and Rn . Let us introduce the following expressions:

SLu := [Lu |E +E−] =
M∑

m=1
(pm + rm)[Lu |Lm +L−

m] −
N∑

n=1
(tn +qn)[Lu |Rn +R−

n ],

SRv := [Rv |E +E−] =
M∑

m=1
(pm + rm)[Rv |Lm +L−

m] −
N∑

n=1
(tn +qn)[Rv |Rn +R−

n ],

TLu := [E |Lu +L−
u ]∗ =

M∑
m=1

(pm − rm)[Lm |Lu +L−
u ]∗ −

N∑
n=1

(tn −qn)[Rn |Lu +L−
u ]∗,

TRv := [E |Rv +R−
v ]∗ =

M∑
m=1

(pm − rm)[Lm |Rv +R−
v ]∗−

N∑
n=1

(tn −qn)[Rn |Rv +R−
v ]∗,

(2.28)
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Chapter 2. Poynting operation

where v ∈ [1, M ] and u ∈ [1, N ]. The expressions (2.28) can be written in a compact form:

~SL = ĜLL(~p +~r ) −ĜLR (~t +~q),

~SR = ĜRL(~p +~r )−ĜRR (~t +~q),

~TL = Ĝ H
LL(~p −~r ) −Ĝ H

RL(~t −~q),

~TR = Ĝ H
LR (~p −~r )−Ĝ H

RR (~t −~q),

(2.29)

where the m-th row and the n-th column of ĜX Y is given by

ĜX Y mn = [Xm |Yn +Y −
n ]. (2.30)

Due to the orthogonality relation presented in section 2.4, ĜLL and ĜRR are sparse matrices

when lossless ZSI media are considered. When E is null, the expressions (2.28) are equal

to zero. Hence, unknowns in equation (2.27) can be found as the solution of a system of

equations composed of the expressions S and T . The expressions S and T are related to each

others by the equations

M∑
m=1

(p̄m − r̄m)SLm =
N∑

n=1
(t̄n − q̄n)SRn ,

M∑
m=1

(p̄m + r̄m)TLm =
N∑

n=1
(t̄n + q̄n)TRn .

(2.31)

Hence, the expressions S and T are not independent when E is null. As an example, if r and

t are the unknowns and p and q are known, the system of equations composed of all the

expressions S admits an infinity of solutions.

The expressions S and T are related by the partial derivative of the Poynting operation applied

on E . Therefore, they can be used for optimization purposes:

∂

∂p̄u
[E |E ] = SLu ,

∂

∂p̄u
[E |E ]∗ = TLu ,

∂

∂r̄u
[E |E ] =−SLu ,

∂

∂r̄u
[E |E ]∗ = TLu ,

∂

∂t̄v
[E |E ] =−SRv ,

∂

∂t̄v
[E |E ]∗ =−TRv ,

∂

∂q̄v
[E |E ] = SRv ,

∂

∂q̄v
[E |E ]∗ =−TRv ,

(2.32)

where ∂
∂z̄ is one of the Wirtinger derivatives, which is defined as
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2.6. Operations on the Gram matrix

∂

∂z̄
= 1

2

(
∂

∂x
+ i

∂

∂y

)
(2.33)

with z = x + i y and x and y are real.

The proof of the statements of this section is in section 2.10.2 and an example of application is

given in section 2.7.1, where an estimation of the coupling coefficients at an interface between

air and a lossless ZSI z-independent metamaterial is given. The accuracy of the estimation of

the method based on the Poynting operation is compared to other methods proposed in the

literature.

2.6 Operations on the Gram matrix

Two modes ψm and ψn are orthogonal with respect to the Poynting operation if [ψm |ψn] = 0

and [ψm |ψ−
n ] = 0 for m 6= n. Hence, a set of modes is orthogonal if the matrix Ĝ is diagonal

with

Gmn = [ψm |ψn +ψ−
n ], m,n ∈ [1, M ] (2.34)

since the expressions [ψm |ψn] and [ψm |ψ−
n ] are given by

[ψm |ψn] = 1

2
(Gmn +Gnm),

[ψm |ψ−
n ] = 1

2
(Gmn −Gnm).

(2.35)

The matrix Ĝ is a square matrix of size M ×M and it is the Gram matrix of the sesquilinear

form σ. To diagonalize Ĝ , an algorithm similar to the Gaussian elimination can be used where

the usual operations are replaced by the operations shown in table 2.1. For the listing of

operations on Ĝ , LGm and CGm refer to, respectively, the m-th line and column of the matrix

Ĝ , B ←− A means that the object B is replaced by the object A, and A ←→ B means that the

objects A and B are swapped. In practice, it can be preferable to not change the modes at each

iteration and to have the modes at the r -th iteration in this form:

~ψr = 1

2
Âr (~ψ0 +~ψ−

0 )+ 1

2
B̂r (~ψ0 −~ψ−

0 ), (2.36)

where ~ψr , Âr , and B̂r are the mode ψ, the matrix Â and the matrix B̂ after the r -th iteration,

and ~ψ0 are the initial modes. Â0 and B̂0 are the identity matrix.

Using the operations in table 2.1, any Gram matrix can be transformed into the identity matrix
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Chapter 2. Poynting operation

Operation name Mode operation

Mode swapping ψm ←→ψn

Mode scaling ψm ←− kψm

Mode reversal ψm ←−ψ−
m

Mode composition 1 ψm ←−ψm + k
2 (ψn +ψ−

n )

Mode composition 2 ψm ←−ψm + k
2 (ψn −ψ−

n )

Operation name Operation on Â, B̂ Operation on Ĝ

Mode swapping
L Am ←→ L An

LBm ←→ LBn

CGm ←→CGn

LGm ←→ LGn

Mode scaling
L Am ←− kL Am

LBm ←− kLBm

CGm ←− kCGm

LGm ←− k̄LGm

Mode reversal LBm ←−−LBm LGm ←−−LGm

Mode composition 1 L Am ←− L Am +kL An CGm ←−CGm +kCGn

Mode composition 2 LBm ←− LBm +kLBn LGm ←− LGm + k̄LGn

Table 2.1 – A set of operations that can be done on Ĝ and its consequences on different
quantities.

if modes with different propagation constants and different propagation direction can be

combined. However, if the combination of modes with different propagation directions is

forbidden, the Gram matrix can only be diagonalized since the operations that keep the Gram

matrix diagonal, namely "Mode scaling" and "Mode reversal", cannot transform a diagonal

matrix with complex values into the identity matrix. Moreover, the diagonalization of the

Gram matrix when a lossy medium is considered becomes challenging because the operation

"Mode composition 1" has to be applied with "Mode composition 2", transforming both a line

and a column of the Gram matrix.

The operations "Mode composition 1" commutes with "Mode composition 2" and they can be

combined into the following operation:

ψm ←−ψm + k1

2
(ψn +ψ−

n )+ k2

2
(ψn −ψ−

n ), (2.37)

where k1 and k2 are the constants related to the operation "Mode composition 1" and "Mode

composition 2" respectively. The Gram matrix at the r -th iteration Ĝr can directly be computed

using Âr , B̂r , and the initial Gram matrix Ĝ0:

Ĝr = B̂∗
r Ĝ0 ÂT

r . (2.38)
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The different operations on the Gram matrix presented in this section are proved in sec-

tion 2.10.3 and, as an example of application, a set of complex modes are orthonormalized in

section 2.8.3.

2.7 Reformulation of the boundary condition: Applications

2.7.1 Estimation of the coupling efficiencies at the surface of a metamaterial

The reformulation of the boundary condition presented in section 2.5 can be used in a similar

way as in [106], where a small set of modes is considered on both sides of an interface and the

reflection and transmission coefficients are estimated based only on the electric and magnetic

fields of the considered modes. In this Appendix, we compare different methods to estimate

the coupling efficiency of the system shown in fig. 2.1a. The considered methods are those

presented in section 2.5 and in [105,106], and the overlap integral often used for the estimation

of the coupling into a fiber [117].

As shown in fig. 2.1a, the considered system is composed of two lossless media. The left

medium is air. The right medium is a 2D-periodic z-invariant metamaterial composed of

cylinders in air. The material that composes the cylinder is either glass, with a refractive

index of n = 1.44, or silicon, with a refractive index of n = 3.48. The lattice dimension of the

right medium is chosen such that a single mode propagates in both media. The incident

mode L is an x-polarized plane wave propagating in the left medium at normal incidence at a

wavelength of 1550 nm. The mode R propagating in the right medium is also known and it has

been computed using the Fourier modal method. The amplitude of the x-component of the

electric field of the mode R is shown in figs. 2.1b to 2.1d for different lattice dimensions and for

both silicon and glass cylinders. The system in fig. 2.1a has been chosen because the mode R

is significantly different from the mode L, making the estimation of the coupling coefficients a

challenge.

For the estimation of the coupling coefficients based on the Poynting operation, the following

definition, similar to (2.6), is used:

[ψm |ψn] := 1

2|Λ|
∫
Λ

(~Em × ~H∗
n +~En × ~H∗

m) ·~n d s, (2.39)

whereΛ is the lattice and |Λ| is the lattice area. The operation presented in [103, 105, 106] is

defined as

〈
ψm

∣∣ψn
〉

:= 1

2|Λ|
∫
Λ

(~Em × ~Hn −~En × ~Hm) ·~n d s. (2.40)

Since the considered modes are propagating modes in lossless media, the modes can be scaled
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Figure 2.1 – a) Schematic of the system, which is composed of two media. The left medium is
air. The right medium is a 2D periodic arrangement of cylinders in air. The lattice dimension
varies from l = 10nm to l = 1000nm and the diameter d is half the lattice dimension. The
cylinders are made of glass (n = 1.44) or silicon (n = 3.48). For a normal incident plane wave L,
only one mode per medium are propagating, namely the mode L− in the left medium and R
in the right medium. (b-c) Amplitude of the x-component of the electric field of the mode R
when the cylinders are made of silicon and the lattice dimension is l = 10nm and l = 700nm
respectively. (d) Amplitude of the x-component of the electric field of the mode R when the
cylinders are made of glass and the lattice dimension is l = 700nm. The color bars at the right
hand-side of figs. 2.1b to 2.1d are the same for comparison purposes.
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2.7. Reformulation of the boundary condition: Applications

by a complex number such that the tangential components of the electric and magnetic fields

of the modes are purely real, meaning that

[ψm |ψn] = 〈
ψ−

m

∣∣ψn
〉

(2.41)

and those two quantities are purely real. In the definition of the operator in [106], the adjoint

field of the modes, which are solution of Maxwell’s equations for the reversed Bloch phase, is

used. Since normal incidence is considered in this Appendix, the Bloch phase is zero and the

operator presented in [106] is the same as in [105].

When a single mode is considered in both media, the expressions (2.28) become:

SL = (1+ r )[L|L] − t [L|R +R−],

SR = (1+ r )[R|L+L−] − t [R|R],

TL = (1− r )[L|L]∗ − t [R|L+L−]∗,

TR = (1− r )[L|R +R−]∗− t [R|R]∗.

(2.42)

If the modes L and R do not couple with the modes that are not considered in the system,

the system of equations composed of SL = 0 and SR = 0, or TL = 0 and TR = 0, does not admit

an unique solution due to equation (2.31). Therefore, four different systems of equations are

proposed for the estimation of the coupling coefficients r and t :

SL = (1+ r1)[L|L]− t1[L|R +R−] = 0

TL = (1− r1)[L|L]∗− t1[R|L+L−]∗ = 0
⇒ r1 = [L|L]∗[L|R+R−]−[L|L][R|L+L−]∗

[L|L]∗[L|R+R−]+[L|L][R|L+L−]∗

t1 = 2|[L|L]|2
[L|L]∗[L|R+R−]+[L|L][R|L+L−]∗

(2.43a)

SL = (1+ r2)[L|L]− t2[L|R +R−] = 0

TR = (1− r2)[L|R +R−]∗− t2[R|R]∗ = 0
⇒ r2 = |[L|R+R−]|2−[L|L][R|R]∗

|[L|R+R−]|2+[L|L][R|R]∗

t2 = 2[L|L][L|R+R−]∗
|[L|R+R−]|2+[L|L][R|R]∗

(2.43b)

SR = (1+ r3)[R|L+L−]− t3[R|R] = 0

TL = (1− r3)[L|L]∗− t3[R|L+L−]∗ = 0
⇒ r3 = [R|R][L|L]∗−|[R|L+L−]|2

[R|R][L|L]∗+|[R|L+L−]|2
t3 = 2[L|L]∗[R|L+L−]

[R|R][L|L]∗+|[R|L+L−]|2
(2.43c)

SR = (1+ r4)[R|L+L−]− t4[R|R] = 0

TR = (1− r4)[L|R +R−]∗− t4[R|R]∗ = 0
⇒ r4 = [R|R][L|R+R−]∗−[R|R]∗[R|L+L−]

[R|R][L|R+R−]∗+[R|R]∗[R|L+L−]

t4 = 2[R|L+L−][L|R+R−]∗
[R|R][L|R+R−]∗+[R|R]∗[R|L+L−]

(2.43d)

An interesting property of the solutions (r2, t2) and (r3, t3) is that they satisfy the following

equality:

[L+ rmL−|L+ rmL−] = [tmR|tmR], m ∈ {2,3}. (2.44)
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Since the integration of the Poynting vector is the same on both sides of the interface, it is

guaranteed that no absorption or power generation can occur at the interface, but it also

means that no power is carried by other modes. In this example, all the propagating modes

that can be excited by the mode L are considered. Therefore, such solutions are consistent

with the system at hand since no other mode than L and R can carry power away from the

interface.

When the tangential components of the electric and magnetic fields are purely real, which is

the case in this example, the solutions (r1, t1) and (r4, t4) are related to the solutions proposed

in [105, 106]. In [106], the estimations of the coupling coefficients are:

rP =− 〈R|L〉
〈R|L−〉 , tP =− 〈L−|L〉

〈L−|R〉 . (2.45)

By applying equation (2.41), rP and tP are equal to r1 and t1 respectively. In [105], the estima-

tions of the coupling coefficients are:

rS =− 〈L|R〉
〈L−|R〉 tS = 〈R−|L〉− 〈R−|L−〉〈R|L〉

〈R|L−〉 (2.46)

In this case, rS and tS are equal to r4 and t4 respectively. Since R and L are propagating modes,

r1 is also equal to r4.

Two other methods are proposed. For the first method, in order to avoid making an arbitrary

choice between the solutions (r2, t2) and (r3, t3), the reflection and transmission coefficients,

called rM and tM , are chosen such that equation (2.44) is satisfied and the following quantity

is minimized:

|SL |2 +|SR |2 +|TL |2 +|TR |2. (2.47)

The second method is the overlap integral for the estimation of the transmission efficiency,

which is given by:

tI =
∫
Λ
~EL ·~E∗

R d s√∫
Λ |~EL |2d s

∫
Λ |~ER |2d s

, (2.48)

where EL and ER are the electric field of the mode L and R respectively. In the literature, the

overlap integral is usually computed from the scalar field [110, 117] but it is used when the

z-component of the electric field is negligible compared to the tangential field. We choose to

use the vectorial field in the definition of the overlap integral. Using only the x-component of

the electric field in the definition of the overlap integral doesn’t improve its ability to estimate
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the reflection and transmission coefficients.
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Figure 2.2 – (a-b) Reflection and transmission efficiencies computed with different methods
when the right medium is composed of silicon cylinders. (c-d) Reflection and transmission
efficiencies computed with different methods when the right medium is composed of glass
cylinders. For the transmission efficiency plot, the curves obtained from rigorous simulation
and from the transmission coefficients t2, t3 and tM are visually superimposed.

In fig. 2.2, the coupling efficiencies are plotted for different lattice dimensions and for the

system composed with silicon cylinders and the system composed with glass cylinders. The

reflection efficiency ηr and transmission efficiency ηt are defined as:

ηr = |r |2 ηt = [R|R]

[L|L]
|t |2 (2.49)

In order to compare the different methods, the coupling coefficients are computed rigorously

using the Fourier modal method and are used as the reference. The estimation obtained using
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the overlap integral is clearly inaccurate and it should not be used for such systems. For the

other methods, they all converge to the reference for small lattice dimensions and start to

significantly diverge when the lattice dimension is larger than one tenth of the wavelength.

When the estimated coupling coefficients starts diverging, the different methods give also

different results. It is an advantage of having multiple formula for the estimation of the

coupling coefficients since it gives an indication of the validity of the estimation. However,

exceptions can occur as shown in figs. 2.2a and 2.2b for the lattice dimension l ≈ 675nm.

The performance of each method for the estimation of the coupling coefficients depends

on the considered system. For example, r2 and t2 estimate better the coupling efficiencies

than the other methods when the system made of silicon cylinders is considered, but r1, r4,

rP , and rS estimate the reflection efficiency the best for the system made of glass cylinders.

However, in systems where the transmission efficiency is close to unity, the estimations of the

transmission efficiency t2, t3, and tM should be always better than the other methods because

the estimated coupling coefficients satisfy equation (2.44). Hence, the relative error of the

estimation on the transmission efficiency has to be much smaller than the relative error on

the reflection efficiency.

It is expected that the error of the estimations for the system made of silicon cylinders is

several times larger than the estimation for the system made of glass cylinders. Since silicon is

a high refractive index material, the refractive index variation inside the right medium is high.

Therefore, the mode R differs significantly from a plane wave as shown in figs. 2.1b and 2.1c.

In that case, the assumption that the coupling with others modes is negligible may not hold,

which leads to the important error present in figs. 2.2a and 2.2b. When the system made

of glass cylinders is considered, the variation of the refractive index is much smaller, which

means that the mode R looks more like a plane wave as shown in fig. 2.1d. Therefore, the

error in the estimation of the reflection and transmission coefficients is significantly smaller

(figs. 2.2c and 2.2d).

In summary, the estimation of the coupling coefficients using the method provided in [105,106]

is a subset of the estimation proposed in this work for the system presented in fig. 2.1a because

the modes L and R are propagating. In terms of performance, the estimations (r2, t2) and

(r3, t3) give a more accurate estimation of the transmission efficiency as shown in figs. 2.2b

and 2.2d because the coupling coefficients satisfy equation (2.44). This is valid only when the

transmission efficiency is high. Finally, the existence of multiple formula for the estimation of

the coupling coefficients can give an indication on the accuracy of such estimations without

the need to compute rigorously the coupling coefficients.

2.7.2 Fresnel coefficients for uniaxial media

In practice, the reformulation of the boundary condition presented in section 2.5 can be

used in similar way to [106], where a small set of modes is considered on both sides of an

interface and an approximation of the reflection and transmission coefficients is obtained. In
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this section, the Fresnel coefficients at an interface between homogeneous uniaxial media

where the extraordinary axis are perpendicular to the interface, are derived. The objective is

to show that the equations obtained in section 2.7.1 can be applied as it is formulated for a

different case, and to get the expression of the Fresnel coefficients using the convention for

the description of plane waves applied in the modified Fourier Modal Method presented in

this work.

The first step is to describe the system and the modes propagating in it. We consider an

interface at z = 0 between two uniaxial media where the extraordinary axis is normal to the

interface. The permittivity and the permeability are given by

ε̂m =

 εtm 0 0

0 εtm 0

0 0 εzm

 , µ̂m =

 µtm 0 0

0 µtm 0

0 0 µzm

 , (2.50)

where m = 1 for the medium at z < 0 and m = 2 for the medium at z > 0. Since the permittivity

and the permeability have the form (2.24), both media are ZSI. Hence, a mode and its backward-

propagating counterpart are related by the minus operator. Moreover, TE-modes and TM-

modes are present. The TM-modes can be expressed as

~E =

 kz sx

kz sy

−RεmkË

 , ~H =

 −εtmk0sy

εtmk0sx

0

 (2.51)

with the dispersion relation

Rεmk2
Ë+k2

zm = εtmµtmk2
0 , (2.52)

and the TE-modes as

~E =

 µtmk0sy

−µtmk0sx

0

 , ~H =

 kz sx

kz sy

−RµmkË

 (2.53)

with the dispersion relation

Rµmk2
Ë+k2

zm = εtmµtmk2
0 . (2.54)

The implicit time and spatial dependance is e i (~km~x−ωt ), where~km is given by

31



Chapter 2. Poynting operation

~km =

 kx

ky

kzm

=

 kËsx

kËsy

kzm

 (2.55)

with

kË =
√

k2
x +k2

y ,

sx = 1, sy = 0 if kË = 0

sx = kx /kË, sy = ky /kË otherwise
(2.56)

Rεm and Rµm are defined as

Rεm := εtm

εzm
, Rµm := µtm

µzm
. (2.57)

The modes propagating in the medium 1 are called LT E and LT M and the modes propagating

in the medium 2 are called RT E and RT M .

The second step is to define a Poynting operation. For homogenous media, a natural choice is

[ψ1|ψ2] := lim
S→R2

1

2|S|
Ï

S
(~E1 × ~H∗

2 +~E2 × ~H∗
1 ) ·~nd s. (2.58)

With this Poynting operation, the TE and TM-modes propagating in the same medium are

orthogonal with each other even for lossy media. Moreover, a mode LT E is orthogonal to every

R modes except the RT E mode with the same kx and ky . Same can be said for the LT M and

LT E modes.

The final step is to write the system of equations and solve it. Since the modes are mostly

orthogonal and the system is illuminated by a single L mode with amplitude of one, the

expressions (2.28) become the expression (2.42) in section 2.7.1 with the difference that no

approximation has been done in this case. Hence, all the solutions presented in (2.43) are

equivalent and, for the rest of this section, the solution (2.43b) is used:

r = |[L|R +R−]|2 − [L|L][R|R]
∗

|[L|R +R−]|2 + [L|L][R|R]∗
, t = 2[L|L][L|R +R−]

∗

|[L|R +R−]|2 + [L|L][R|R]∗
. (2.59)

As said before, this solution is valid for any system where one mode excites at the interface

the backward-propagating counterpart of the exciting mode and a single mode in the second

medium. When L is a TM mode, the different terms present in the solution (2.59) become
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[L|L] = ε̄t1kz1k0,

[R|R] = ε̄t2kz2k0,

[L|R +R−] = ε̄t1kz2k0.

(2.60)

Combining (2.59) and (2.60), the Fresnel coefficients r and t are obtained:

r = εt1kz2 −εt2kz1

εt1kz2 +εt2kz1
, t = 2εt1kz1

εt1kz2 +εt2kz1
. (2.61)

In the TE case, the different terms are

[L|L] =µt1k̄z1k0,

[R|R] =µt2k̄z2k0,

[L|R +R−] =µt2k̄z1k0,

(2.62)

and the Fresnel coefficients become

r = µt2kz1 −µt1kz2

µt2kz1 +µt1kz2
, t = 2µt1kz1

µt2kz1 +µt1kz2
. (2.63)

Using the reformulation of the boundary condition, the coefficients r and t are expressed

independently of the description of the modes itself. Moreover, only the expressions QL and

QR are used to find the solution in this example, but one can check that the expressions QR and

RL are equal to zero since no approximation has been done. In other words, if approximations

are introduced, the value of the expressions (2.42) gives an indication of the validity of the

approximation and, at the same time, the partial derivatives of [E |E ].

2.8 Operations on the Gram matrix: Applications

2.8.1 Orthogonality of plane waves in lossy homogenous isotropic media

In lossless isotropic media, for any plane wave with a given propagation constant kz , it exists

another plane wave with the same propagation which is orthogonal to the first one. In this

section, this statement is proven along with the demonstation that it is no more the case

when the medium is lossless and the propagation direction is not parallel to the z-axis (kË 6= 0).

Following the convention for plane waves used throughout this work, TM plane wave is given

by
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~E =

 kz sx

kz sy

−kË

 , ~H =

 −εk0sy

εk0sx

0

 (2.64)

and named ψT M , and TE plane wave is given by

~E =

 µk0sy

−µk0sx

0

 , ~H =

 kz sx

kz sy

−kË

 (2.65)

and named ψT E . The dispersion relation is the same for both polarizations and is given by the

well known equation

k2
Ë+k2

z = εµk2
0 , (2.66)

For the vector ~ψ0 = (ψT M ,ψT E ), the associated Gram matrix is

Ĝ0 =
(
ε̄kz k0 0

0 µk̄z k0

)
=

(
pT M 0

0 pT E

)
. (2.67)

Since the gram matrix Ĝ0 is diagonal, TM and TE plane waves are orthogonal between each

other whether the medium is lossy or lossless. Let assume that two other plane waves given by

the vector ~ψ1 are also orthogonal between each other and is given by

~ψ1 = R̂~ψ0, R̂ =
(

a b

c d

)
(2.68)

The Gram matrix Ĝ1 associated to the vector ~ψ1 can be directly obtained from equation (2.38)

by noticing that equation (2.68) is the equation (2.36) with R̂ = Â = B̂ . Hence, the Gram matrix

Ĝ1 is given by

Ĝ1 = R̂∗G0RT =
(
|a|2pT M +|b|2pT E ācpT M + b̄d pT E

ac̄pT M +bd̄ pT E |c|2pT M +|d |2pT E

)
(2.69)

Therefore, the two modes in ~ψ1 are orthogonal with each other if the off-diagonal elements of

the Gram matrix Ĝ1 are zero, meaning that
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ac̄p̄T M +bd̄ p̄T E = 0,

ac̄pT M +bd̄ pT E = 0.
(2.70)

The system of equations (2.70) is satsified in different cases. If a = b = 0 or c = d = 0, it means

that one of the mode in ~ψ1 is null and it is a trivial case since a null mode is orthogonal to any

modes. If a = d = 0 or c = b = 0, ~ψ1 also contains the TM and TE mode. The last case is the

case where the determinant of the system of equations (2.70) is zero, meaning that

p̄T M pT E −pT M p̄T E = Im{p̄T M pT E } = 0. (2.71)

By replacing pT M and pT E by their corresponding expression (see equation (2.67)) and using

the dispersion relation (2.66),the determinant of the system of equations (2.70) becomes

Im
{
εµk̄2

z k2
0

}= Im
{(
|εµ|2k2

0 −εµk2
Ë
)

k2
0

}
= 0

⇒ Im{εµ}k2
Ë = 0

(2.72)

Hence, the determinant of the system of equations (2.70) is zero when the plane wave comes

at normal incidence or when Im{εµ} is zero, which is the case for lossless media but not for

lossy media.

2.8.2 Orthonormalization of propagating and evanescent mode

In a lossless medium, three types of mode are present, namely propagating, evanescent,

and complex modes. If the propagation constant is purely real, the mode is propagating.

If it is purely imaginary, the mode is evanescent and, if it has a real and an imaginary part,

the mode is complex. In this section and in section 2.8.3, a ZSI lossless medium which is

invariant to a 90◦-rotation around the z-axis is considered. The consequence of this symmetry

is that, for most modes, there is another mode with the same propagation constant. For

propagating and evanescent modes, those pair of modes with the same propagation constant

may not be orthogonal. In this section, the property of the Gram matrix of propagating or

evanescent mode pair is given along with their orthonormalizaion. Complex modes are treated

in section 2.8.3.

The property of the Gram matrix of a pair of propagating or evanescent modes, called ψ1 and

ψ2, is obtained from the conservation of power along the z direction. Let us have two other

modes, ψF and ψB , which are a combination of the modes ψ1 and ψ2, meaning that

ψF = f1ψ1 + f2ψ2

ψB = b1ψ1 +b2ψ2,
(2.73)
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where f1, f2, b1 and b2 are arbitrary complex numbers. ψF are the modes that propagate in

the forward direction and ψ−
B are the modes that propagate in the backward direction. If ψ1

and ψ2 are propagating modes with propagation constant γ, the power flow at any position z

is given by

Re{[e iγzψF +e−iγzψ−
B |e iγzψF +e−iγzψ−

B ]}

= Re{[ψF |ψF ]}−Re{[ψB |ψB ]}+2cos
(
2γz

)
Re{[ψF |ψ−

B ]}+2sin
(
2γz

)
Im{[ψF |ψB ]}.

(2.74)

Since the power flow is constant along the z direction, the following two equations are ob-

tained:

Re{[ψF |ψ−
B ]} = Re{[ f1ψ1 + f2ψ2|b1ψ

−
1 +b2ψ

−
2 ]} = 0

Im{[ψF |ψB ]} = Im{[ f1ψ1 + f2ψ2|b1ψ1 +b2ψ2]} = 0
(2.75)

Since f1, f2, b1 and b2 can be any complex numbers, the Poynting operation applied to a pair

of propagating mode satisfies the following conditions:

Im{[ψ1|ψ1]} = 0 Im{[ψ2|ψ2]} = 0

Im{[ψ1|ψ2]} = 0 Re{[ψ1|ψ−
2 ]} = 0.

(2.76)

Since the Gram matrix Ĝ is defined as

Gmn = [ψm |ψn +ψ−
n ] (2.77)

and, due to properties (2.12a) and (2.15a),

Gnm = [ψm |ψn −ψ−
n ], (2.78)

the Gram matrix Ĝp of a pair of propagating modes has the form

Ĝp =
(

z11 z12

z̄12 z22

)
, (2.79)

where the diagonal elements z11 and z22 are purely real. Therefore, ψ1 and ψ2 are orthonor-

malized when the Gram matrix Ĝp,o is the identity matrix since the diagonal element must be

real and the real part of the Poynting operation applied on a forward-propagating mode with

himself is, by definition, positive.
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If ψ1 and ψ2 are evanescent modes with propagation constant iγ, the power flow at any

position z is given by

Re{[e−γzψF +eγzψ−
B |e−γzψF +eγzψ−

B ]}

= e−2γz Re{[ψF |ψF ]}−e2γz Re{[ψB |ψB ]}+2Re{[ψF |ψ−
B ]}}.

(2.80)

The equations that must be satisfied in order to have a constant power flow along the z

direction are

Re{[ψF |ψF ]} = Re{[ f1ψ1 + f2ψ2| f1ψ1 + f2ψ2]} = 0

Re{[ψB |ψB ]} = Re{[b1ψ1 +b2ψ2|b1ψ1 +b2ψ2]} = 0
(2.81)

Therefore, the Poynting operation applied to a pair of evanescent modes satisfies the following

condition:

Re{[ψ1|ψ1]} = 0 Re{[ψ2|ψ2]} = 0

Re{[ψ1|ψ2]} = 0 Im{[ψ1|ψ−
2 ]} = 0.

(2.82)

Hence, the Gram matrix Ĝe of a pair of evanescent modes is

Ĝe =
(

z11 z12

−z̄12 z22

)
, (2.83)

where the diagonal elements z11 and z22 are purely imaginary. The modes ψ1 and ψ2 are

orthonormalized when the Gram matrix Ĝe,o is diagonal and its diagonal elements are ±i .

In order to orthonormalize propagating and evanescent modes, the mode operations shown

in table 2.1 are used. In general, the Gram matrix Ĝ1 for a pair of modes ψ1 and ψ2 is given by

Ĝ1 =
(

z11 z12

z21 z22

)
(2.84)

and the objective is to find the matrix Â such that the orthonormalized modes ~ψo are given by

~ψo = Â

(
ψ1

ψ2

)
(2.85)

First, the mode operations “Mode composition 1” and “Mode composition 2” are used to

orthogonalize the modes:
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ψ2 ←−ψ2 − z12

z11
ψ1, Â2 =

(
1 0

− z12
z11

1

)
, Ĝ2 =

(
z11 0

z21 − z̄12z11
z̄11

z22 − z21z12
z11

)
. (2.86)

For both propagating and evanescent modes, the off-diagonal element of the Gram matrix Ĝ2,

given by

z21 − z̄12z11

z̄11
, (2.87)

is zero, making the Gram matrix Ĝ2 diagonal. This is due to the property of the Gram matrix

shown in (2.79) and (2.83): z21 = z̄12 and z11 is purely real for propagating modes, and z21 =
−z̄12 and z11 is purely imaginary for evanescent modes. The normalization is done by applying

the mode operation “Mode scaling”:

ψ1 ←−
√

1
|z11|ψ1

ψ2 ←−
√ |z11|

|z11z22−z21z12|ψ2

Â =
 √

1
|z11| 0

−
√ |z11|

|z11z22−z21z12|
z12
z11

√ |z11|
|z11z22−z21z12|

 , Ĝ =
(

z11
|z11| 0

0 (z11z22−z21z12)|z11|
z11|z11z22−z21z12|

)
.

(2.88)

The matrix Â in (2.88) allows to orthonormalize a pair of propagating or evanescent modes by

using equation (2.85). If z11 is close to zero, preforming the mode operation “Mode swapping”

before the mode operation shown in (2.86) may improve the stability of the orthonormalization.

If the Gram matrix of a pair of propagating modes after orthonormalization has negative

diagonal elements, the mode operation “Mode reversal” should be used in order to fulfill the

definition of forward-propagating mode. In this case, the sign of the propagation constant is

also changed.

2.8.3 Orthonormalization of complex modes

In this section, the orthonormalization procedure for complex modes, modes whose propaga-

tion constant has a real and an imaginary part, is shown. From the orthogonality relation (2.25)

in section 2.4, complex modes have the property to be self-orthogonal. However, two complex

modes with propagation constant γ and γ̄ are not orthogonal. As proved in Chapter 7 of [99],

for any mode with a complex propagation constant γ, there exists a mode with the propagation

constant γ̄. Therefore, in a ZSI lossless medium which is invariant to a 90◦-rotation around the

z-axis, the orthonormalization procedure involves four modes, two modes with propagation

constant γ, called ψ1 and ψ3, and two modes with propagation constant −γ̄, called ψ2 =ψC 1

and ψ4 =ψC 3. The sign of the propagation constant is chosen such that the amplitude of the

mode decreases with z.
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The Gram matrix for a group of four complex modes has a set of properties. First, the orthogo-

nality relation (2.25) leads to

[ψm |ψn] = 0, [ψC m |ψC n] = 0,

[ψm |ψ−
n ] = 0, [ψC m |ψ−

C n] = 0,
(2.89)

where m,n ∈ {1,3}. Second, the power flow is constant along the z direction. Let us have four

other modes, ψF , ψC F , ψB and ψC B , which are a combination of the four complex modes ψm

with m ∈ [1,4]:

ψF = f1ψ1 + f3ψ3 ψC F = f2ψC 1 + f4ψC 3

ψB = b1ψ1 +b3ψ3 ψC B = b2ψC 1 +b4ψC 3,
(2.90)

where fm and bm are arbitrary complex numbers. The power flow at any position z is given by

1

2
Re{[e iγzψF +e−i γ̄zψC F +e−iγzψ−

B +e i γ̄zψ−
C B |e iγzψF +e−i γ̄zψC F +e−iγzψ−

B +e i γ̄zψ−
C B ]}

= Re{e−2i γ̄z }Re{[ψF |ψC F ]}− i Im{e−2i γ̄z } Im{[ψF |ψ−
C F ]}+Re{[ψF |ψC F ]}

+Re{[ψC F |ψ−
B ]}−Re{e2i γ̄z }Re{[ψB |ψC B ]}+ Im{e2i γ̄z } Im{[ψB |ψ−

C B ]}.
(2.91)

The power flow is z independent if the following quantities are zero:

Re{[ψF |ψC F ]} = 0 Im{[ψF |ψ−
C F ]} = 0

Re{[ψB |ψC B ]} = 0 Im{[ψB |ψ−
C B ]} = 0.

(2.92)

After replacing ψF , ψC F , ψB and ψC B by their expressions in (2.90) and using the property

(2.15d), the expressions in (2.92) are equal to zero if

Re{[ψm |ψC n]} = 0

Im{[ψm |ψ−
C n]} = 0, m,n ∈ {1,3}.

(2.93)

Since [ψm |ψC n] is purely imaginary and [ψm |ψC n] is purely real along with the definition of

the Gram matrix (2.77) and its property (2.78), the Gram matrix of a group of four complex

modes has the form
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Ĝc =


0 z12 0 z14

−z̄12 0 z23 0

0 −z̄23 0 z34

−z̄14 0 −z̄34 0

 . (2.94)

For the orthonormalization, we choose that two modes with different propagation constant

cannot be combined, meaning that the Gram matrix Ĝco after orthonormalization cannot be

diagonal because the self-orthogonality of complex modes must still hold. Therefore, it is not

a standard orthonormalization and the Gram matrix Ĝco after orthonormalization is

Ĝco =


0 i 0 0

i 0 0 0

0 0 0 i

0 0 i 0

 . (2.95)

To transform Ĝc into Ĝco , the mode operations shown in table 2.1 are used and an example of

orthonormalization is shown in table 2.2. To simplify the expression present in table 2.2, the

following quantities are introduced:

y := z12z34 + z14 z̄23, c1 :=
√
|z12|, c3 :=

√
|y |
|z12|

. (2.96)

In the orthogonalization procedure, accuracy issue may arise if z12 or y are close to zero. For

the case where |z12| is close to zero or, in general, when |z34| is larger than |z12|, swapping the

modeψ1 andψ2 with, respectively,ψ3 andψ4 beforehand improves the accuracy. For the case

where y tends to zero, it can be shown that, after orthogonalization, ψ1 and ψC 1 (or ψ3 and

ψC 3) tend to be orthogonal. Hence, after the normalization, the amplitude of, at least, one of

the mode tends to infinity.

From table 2.2, the relationship between the initial modes ~ψi and the orthonormalized modes
~ψo is

~ψo = Â~ψi , (2.97)
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Mode operation Â = B̂ Ĝ

ψ3 ←−ψ3 + z23
z̄12
ψ1


1 0 0 0
0 1 0 0

z23
z̄12

0 1 0

0 0 0 1




0 z12 0 z14

−z̄12 0 0 0
0 0 0 y

z12

−z̄14 0 − ȳ
z̄12

0



ψ4 ←−ψ4 − z14
z12
ψ2


1 0 0 0
0 1 0 0

z23
z̄12

0 1 0

0 − z14
z12

0 1




0 z12 0 0
−z̄12 0 0 0

0 0 0 y
z12

0 0 − ȳ
z̄12

0


ψ1 ←− 1

c1
ψ1

ψ2 ←− i c̄1
z12
ψ2


1
c1

0 0 0

0 i c̄1
z12

0 0
z23
z̄12

0 1 0

0 − z14
z12

0 1




0 i 0 0
i 0 0 0
0 0 0 y

z12

0 0 − ȳ
z̄12

0



ψ3 ←− 1
c3
ψ3

ψ4 ←− i c̄3z12
y ψ4


1
c̄1

0 0 0

0 i c1
z12

0 0
z23

z̄12c3
0 1

c3
0

0 − i z14c̄3
y 0 i c̄3z12

y




0 i 0 0
i 0 0 0
0 0 0 i
0 0 i 0


Table 2.2 – All the steps that transform Ĝc into Ĝco and their consequence on the matrices Â
and B̂ . c1 and c3 can be any quantity other than zero but they have been chosen such that
both modes in the same group (ψ1, ψ2 or ψ3, ψ4) are multiplied by a constant with the same
amplitude. In this table, "Mode composition 1" and "Mode composition 2" are combined.

with

Â =



1p|z12| 0 0 0

0 i
p|z12|

z12
0 0

z23
z̄12

√ |z12|
|y | 0

√ |z12|
|y | 0

0 −i z14
y

√ |y |
|z12| 0 i z12

y

√ |y |
|z12|

 . (2.98)

If the modes ψ1 and ψ2 are swapped with, respectively, the modes ψ3 and ψ4 at the begin-

ning of the orthonomalization procedure, a similar orthonormalization can be done and the

following matrix Â is obtained:

Â =


0 0 1p|z34| 0

0 0 0 i
p|z34|

z34√ |z34|
|y | 0 − z̄14

z̄34

√ |z34|
|y | 0

0 i z34
y

√ |y |
|z34| 0 i z̄23

y

√ |y |
|z34|

 . (2.99)
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2.8.4 Rotation of propagating, evanescent and complex modes

In this section, a mode rotation is an operator given by a rotation matrix R̂ that transforms

a set of orthonormalized mode ~ψo into another set of orthonormalized mode ~ψr = R̂~ψo . As

in sections 2.8.2 and 2.8.3, a ZSI lossless medium which is invariant to a 90◦-rotation around

the z-axis is considered here. A typical application is the case where an illumination excites

two modes in a pair of propagating or evanescent modes (or all the four modes in a group of

complex modes), and the modes are rotated such that the illumination excites only a single

mode in a pair or two modes with different propagation constant in a group of four complex

modes. In other words, the upper half of the rotation matrix R̂ is known up to a scaling factor

per lines, which ensure that the modes are normalized, and the objective is to obtain the other

half. For propagating and evanescent modes, the equation (2.69) in section 2.8.1 is used:

Ĝr = R̂∗GoRT =
(
|a|2p1 +|b|2p2 ācp1 + b̄d p2

ac̄p1 +bd̄ p2 |c|2p1 +|d |2p2

)
, (2.100)

where Ĝo is the Gramm matrix before rotation, which is diagonal and whose diagonal elements

are p1 and p2, Ĝr is the Gram matrix after rotation and the rotation matrix R̂ is given by

R̂ =
(

a b

c d

)
. (2.101)

The phase of p1 and p2 is directly related to the mode type and, for symmetry reason, two

orthonormalized modes with the same propagation constant are of the same type, leading

to p1 and p2 being equal. Therefore, the modes ~ψr are orthonormalized if the following

equations are satisfied:

|a|2 +|b|2 = 1

|c|2 +|d |2 = 1

ac̄ +bd̄ = 0.

(2.102)

As mentioned earlier, the first line of the rotation matrix R̂ is known up to a scaling factor,

meaning that the first mode of the set ~ψr , denoted ψr 1, is given by

ψr 1 = k(q1ψo1 +q2ψo2), (2.103)

where q1 and q2 are given with the condition that |q1|2 +|q2|2 6= 0, k is the scaling factor, and

ψo1 and ψo2 are the modes in ~ψo . From equation (2.102), the scaling factor k is
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k = 1√
|q1|2 +|q2|2

, (2.104)

and the rotation matrix R̂ and its inverse become

R̂ = 1√
|q1|2 +|q2|2

(
q1 q2

−q̄2 q̄1

)
R̂−1 = 1√

|q1|2 +|q2|2

(
q̄1 −q2

q̄2 q1

)
. (2.105)

The matrix R̂ is unitary and the coefficient has been chosen such that the determinant of R̂

is one. For real coefficients, R̂ is a rotation matrix, but, in general, R̂ belongs to the special

unitary group SU(2).

For complex modes, the objective to find the matrix R̂ that transforms the orthonormalized

modes ~ψo into ~ψr such that

ψr 1 = k1(q1ψo1 +q3ψo3)

ψr 2 = k2(q2ψo2 +q4ψo4),
(2.106)

where q1, q2, q3 and q4 are given. In order to get the matrix R̂, the mode operations shown in

table 2.3 are performed, where the following quantities are defined as:

y := q̄1q2 + q̄3q4 c :=
√
|q1|2 +|q3|2. (2.107)

The parameter c has been chosen such that the norm of the complex vector given by the first

row of the matrix R̂ is one. From table 2.3, the matrix R̂ and its inverse are

R̂ = 1

c


q1 0 q3 0

0 |c|2q2

y 0 |c|2q4

y

− |c|2 q̄4

ȳ 0 |c|2 q̄2

ȳ 0

0 −q̄3 0 q̄1



R̂−1 = 1

c̄



|c|2 q̄2

ȳ 0 −q3 0

0 q̄1 0 − |c|2q4

y
|c|2 q̄4

ȳ 0 q1 0

0 q̄3 0 |c|2q2

y



(2.108)

Even if the matrices R̂ and R̂−1 are similar, R̂ is not unitary. This is due to the pseudo-

orthonormalization of the complex modes ~ψo and ~ψr . In other words, R̂ is not unitary because

Ĝo and Ĝr are not diagonal.
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Mode operation R̂ Ĝ

ψ1 ←− q1ψ1

ψ2 ←− q2ψ2


q1 0 0 0
0 q2 0 0
0 0 1 0
0 0 0 1




0 i q̄1q2 0 0
i q1q̄2 0 0 0

0 0 0 i
0 0 i 0



ψ1 ←−ψ1 +q3ψ3


q1 0 q3 0
0 q2 0 0
0 0 1 0
0 0 0 1




0 i q̄1q2 0 i q̄3

i q1q̄2 0 0 0
0 0 0 i

i q3 0 i 0



ψ2 ←−ψ2 +q4ψ3


q1 0 q3 0
0 q2 0 q4

0 0 1 0
0 0 0 1




0 i y 0 i q̄3

i ȳ 0 i q̄4 0
0 i q4 0 i

i q3 0 i 0



ψ3 ←−ψ3 − q̄4

ȳ ψ1


q1 0 q3 0
0 q2 0 q4

− q1 q̄4

ȳ 0 q1 q̄2

ȳ 0

0 0 0 1




0 i y 0 i q̄3

i ȳ 0 0 0

0 0 0 i q̄1q2

y

i q3 0 i q1 q̄2

ȳ 0



ψ4 ←−ψ4 − q̄3

y ψ1


q1 0 q3 0
0 q2 0 q4

− q1 q̄4

ȳ 0 q1 q̄2

ȳ 0

0 q2 q̄3

y 0 q̄1q2

y




0 i y 0 0
i ȳ 0 0 0

0 0 0 i q̄1q2

y

0 0 i q1 q̄2

ȳ 0



ψ1 ←− 1
cψ1

ψ2 ←− i c̄
y ψ2


q1

c 0 q3

c 0

0 c̄q2

y 0 c̄q4

y

− q1 q̄4

ȳ 0 q1 q̄2

ȳ 0

0 q2 q̄3

y 0 q̄1q2

y




0 i 0 0
i 0 0 0

0 0 0 i q̄1q2

y

0 0 i q1 q̄2

ȳ 0



ψ3 ←− c
q1
ψ3

ψ4 ←− y
c̄q2

ψ4


q1

c 0 q3

c 0

0 c̄q2

y 0 c̄q4

y

− cq̄4

ȳ 0 cq̄2

ȳ 0

0 q̄3

c̄ 0 q̄1

c̄




0 i 0 0
i 0 0 0
0 0 0 i
0 0 i 0


Table 2.3 – The steps that transform Ĝo into Ĝr and their consequence on the matrices R̂ . The
mode operations in the three first rows are performed to satisfy equation (2.106). The scaling
factor c in the two last rows can be different from each other and can take any value other
than zero. In this table, "Mode composition 1" and "Mode composition 2" are combined.
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2.9 Conclusion

In this chapter, we introduce the Poynting operation, provide the corresponding orthogo-

nality relation while clearly stating the assumptions, and present its main uses, namely the

reformulation of the boundary condition and the orthonormalization of modes.

In the reformulation of the boundary condition, the coupling coefficients can be found from

the application of the Poynting operation on the modes present in both media. We show that

such reformulation has several advantages. First, the estimation of the coupling coefficients

between a subset of modes without taking into account the contribution of the other modes is

as good or slightly better than similar operations presented in the literature [103, 105, 106, 117].

Second, different expressions of the coupling coefficients are provided. Therefore, if the

estimates are not valid, the values resulting from these expressions are usually different. Third,

the same expression of the coupling coefficients can be used for different systems.

An interesting point in the reformulation of the boundary condition is that, by choosing the

appropriate equations, the obtained coupling coefficients satisfy the condition that the power

flow towards the interface is equal to the power flow away of the interface. This property

seems to hold if additional modes are taken into account, but this is only a conjecture.

For the orthonormalization of modes, different operations on the Gram matrix, a matrix which

describe all the interactions between modes, are proposed. These operations can be used to

implement an algorithm similar to the Gaussian elimination. They are used in the Fourier

modal method presented in chapter 3 to orthonormalize and rotate the three different types

of mode that are present in lossless ZSI z-invariant media.

In addition to its uses, the Poynting operation has also a meaning since it is related to the

power flow through the Poynting vector. Moreover, the Poynting operation is defined only

by its properties, which means that there is a certain flexibility in the exact definition of the

Poynting operator. In other words, the work presented here can be used in many different

contexts.

2.10 Proofs

2.10.1 Proof of the orthogonality relation

In section 2.4, the following orthogonality relations have been stated:

(γm − γ̄n)
Ï

S
(~Em × ~H∗

n +~E∗
n × ~Hm) ·~nd s = 0. (2.109)

(γ2
m − γ̄2

n)[ψm |ψn] = 0, (2.110)

(γ2
m − γ̄2

n)[ψm |ψn +ψ−
n ] = 0, (2.111)
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assuming that

~Xm(x, y, z) = ~Xm0(x, y)e iγm z , (2.112)

ε̂= ε̂H µ̂= µ̂H ζ̂= ξ̂H , (2.113)∮
∂S
~n × (~Em × ~H∗

n +~E∗
n × ~Hm) ·d~l = 0, (2.114)

ε̂=

 ε11 ε12 0

ε21 ε22 0

0 0 ε33

 , µ̂=

 µ11 µ12 0

µ21 µ22 0

0 0 µ33

 ,

ζ̂=

 0 0 ζ13

0 0 ζ23

ζ31 ζ32 0

 , ξ̂=

 0 0 ξ13

0 0 ξ23

ξ31 ξ32 0

 ,

(2.115)

where ~X can be the electric or the magnetic field. The Poynting operation is defined as

[ψm |ψn] := 1

2

∫
S

(~Em × ~H∗
n +~En × ~H∗

m) ·~nd s. (2.116)

To prove the orthogonality relation (2.110), the following vector calculus identity is used:

∇· (~Em × ~H∗
n ) = ~H∗

n · (∇×~Em)−~Em · (∇× ~H∗
n ),

∇· (~E∗
n × ~Hm) = ~Hm · (∇×~E∗

n )−~E∗
n · (∇× ~Hm),

(2.117)

along with the time-independent (e−iωt ) Maxwell equations combined with the constitutive

relation for bianisotropic media (2.19):

∇×~Em = i k0(ζ̂~Em + µ̂~Hm), ∇×~E∗
n =−i k0(ζ̂~En + µ̂~Hn)∗,

∇× ~Hm =−i k0(ε̂~Em + ξ̂~Hm), ∇× ~H∗
n = i k0(ε̂~En + ξ̂~Hn)∗.

(2.118)

After substituting the cross-products in the right-hand side of equations (2.117) by the Maxwell

equations (2.118), we obtain

∇· (~Em × ~H∗
n ) = i k0(~H∗

n · (ζ̂~Em + µ̂~Hm) −~Em · (ε̂~En + ξ̂~Hn)∗),

∇· (~E∗
n × ~Hm) =−i k0(~Hm · (ζ̂~En + µ̂~Hn)∗−~E∗

n · (ε̂~Em + ξ̂~Hm) ).
(2.119)

Due to the assumption that the medium is lossless (2.113) and to the property ~x · (Â~y)∗ =
~y∗ · (ÂH~x), equations (2.119) become
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∇· (~Em × ~H∗
n ) = i k0(~H∗

n · (ζ̂~Em)+ ~H∗
n · (µ̂~Hm)−~E∗

n · (ε̂~Em)− ~H∗
n · (ζ~Em)),

∇· (~E∗
n × ~Hm) =−i k0(~E∗

n · (ξ̂~Hm)+ ~H∗
n · (µ̂~Hm)−~E∗

n · (ε̂~Em)−~E∗
n · (ξ̂~Hm)),

(2.120)

leading to

∇· (~Em × ~H∗
n +~E∗

n × ~Hm) = 0. (2.121)

After the integration on the surface S, equation (2.121) becomes

Ï
S
∇t · (~Em × ~H∗

n +~E∗
n × ~Hm)d s +

Ï
S
∇⊥ · (~Em × ~H∗

n +~E∗
n × ~Hm)d s = 0. (2.122)

If S is a plane, the divergence theorem can be used on the first term followed by the assumption

(2.114), meaning that

Ï
S
∇t · (~Em × ~H∗

n +~E∗
n × ~Hm)d s =

∮
∂S

(~Em × ~H∗
n +~E∗

n × ~Hm) ·~ndl = 0. (2.123)

Hence, equation (2.122) becomes

Ï
S
∇⊥ · (~Em × ~H∗

n +~E∗
n × ~Hm)d s = 0. (2.124)

By using equation (2.112), which describes the modes in a z-invariant medium, equation

(2.124) becomes

(γm − γ̄n)
Ï

S
(~Em × ~H∗

n +~E∗
n × ~Hm) ·~nd s = 0, (2.125)

which is equation (2.109). Due to the assumption (2.115), if a mode described by (~Et , ~E⊥, ~Ht ,
~H⊥, γm) fulfills the Maxwell equations, the mode described by (~Et , −~E⊥, −~Ht , ~H⊥, −γm) is still

a solution of the Maxwell equations. Hence, the following equation is also true:

(γm + γ̄n)
Ï

S
(−~Em × ~H∗

n +~E∗
n × ~Hm) ·~nd s = 0. (2.126)

By summing and subtracting equations (2.125) and (2.126), the following system of equations

is obtained:
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γm

Ï
S

(~E∗
n × ~Hm) ·~nd s−γ̄n

Ï
S

(~Em × ~H∗
n ) ·~nd s = 0,

−γ̄n

Ï
S

(~E∗
n × ~Hm) ·~nd s+ γm

Ï
S

(~Em × ~H∗
n ) ·~nd s = 0.

(2.127)

If γ2
m 6= γ̄2

n :

Ï
S

(~E∗
n × ~Hm) ·~nd s = 0,Ï

S
(~Em × ~H∗

n ) ·~nd s = 0.
(2.128)

Hence, equations (2.110) and (2.111) are retrieved:

(γ2
m − γ̄2

n)
Ï

S
(~Em × ~H∗

n +~En × ~H∗
m) ·~nd s = 0, (2.129)

(γ2
m − γ̄2

n)
Ï

S
(~En × ~H∗

m) ·~nd s = 0. (2.130)

2.10.2 Proof of the reformulation of the boundary condition

The main equations and expressions stated in section 2.5 are

SLu :=σ(Lu ,E) =
M∑

m=1
(pm + rm)σ(Lu ,Lm) −

N∑
n=1

(tn +qn)σ(Lu ,Rn),

SRv :=σ(Rv ,E) =
M∑

m=1
(pm + rm)σ(Rv ,Lm) −

N∑
n=1

(tn +qn)σ(Rv ,Rn),

TLu :=σ(E ,Lu)∗ =
M∑

m=1
(pm − rm)σ(Lm ,Lu)∗−

N∑
n=1

(tn −qn)σ(Rn ,Lu)∗,

TRv :=σ(E ,Rv )∗ =
M∑

m=1
(pm − rm)σ(Lm ,Rv )∗−

N∑
n=1

(tn −qn)σ(Rn ,Rv )∗,

(2.131)

M∑
m=1

(p̄m − r̄m)SLm =
N∑

n=1
(t̄n − q̄n)SRn ,

M∑
m=1

(p̄m + r̄m)TLm =
N∑

n=1
(t̄n + q̄n)TRn ,

(2.132)
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∂

∂p̄u
[E |E ] = SLu ,

∂

∂p̄u
[E |E ]∗ = TLu ,

∂

∂r̄u
[E |E ] =−SLu ,

∂

∂r̄u
[E |E ]∗ = TLu ,

∂

∂t̄v
[E |E ] =−SRv ,

∂

∂t̄v
[E |E ]∗ =−TRv ,

∂

∂q̄v
[E |E ] = SRv ,

∂

∂q̄v
[E |E ]∗ =−TRv .

(2.133)

E is defined as

E :=
M∑

m=1
pmLm + rmL−

m −
N∑

n=1
qnR−

n + tnRn . (2.134)

To prove equations (2.131), the properties of a sesquilinear form are used on the right-hand

side of the equations:

SLu =
M∑

m=1
(σ(Lu , pmLm) +σ(Lu ,rmLm)) −

N∑
n=1

(σ(Lu , tnRn) +σ(Lu , qnRn)),

SRv =
M∑

m=1
(σ(Rv , pmLm) +σ(Rv ,rmLm)) −

N∑
n=1

(σ(Rv , tnRn) +σ(Rv , qnRn)),

TLu =
M∑

m=1
(σ(pmLm ,Lu)∗−σ(rmLm ,Lu)∗)−

N∑
n=1

(σ(tnRn ,Lu)∗−σ(qnRn ,Lu)∗),

TRv =
M∑

m=1
(σ(pmLm ,Rv )∗−σ(rmLm ,Rv )∗)−

N∑
n=1

(σ(tnRn ,Rv )∗−σ(qnRn ,Rv )∗).

(2.135)

After using the properties (2.17) and recognizing the expression of E , equations (2.135) become

SLu =
M∑

m=1
σ(Lu , pmLm + rmL−

m) −
N∑

n=1
σ(Lu , tnRn +qnR−

n ) =σ(Lu ,E),

SRv =
M∑

m=1
σ(Rv , pmLm + rmL−

m) −
N∑

n=1
σ(Rv , tnRn +qnR−

n ) =σ(Rv ,E),

TLu =
M∑

m=1
σ(pmLm + rmL−

m ,Lu)∗−
N∑

n=1
σ(tnRn +qnR−

n ,Lu)∗ =σ(E ,Lu)∗,

TRv =
M∑

m=1
σ(pmLm + rmL−

m ,Rv )∗−
N∑

n=1
σ(tnRn +qnR−

n ,Rv )∗ =σ(E ,Rv )∗.

(2.136)

Hence, when E is null, the expressions (2.131) are equal to zero. To prove equations (2.132),

they can be written as
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M∑
m=1

(p̄m − r̄m)σ(Lm ,E) −
N∑

n=1
(t̄n − q̄n)σ(Rn ,E) = 0,

M∑
m=1

(p̄m + r̄m)σ(E ,Lm)∗−
N∑

n=1
(t̄n + q̄n)σ(E ,Rn)∗ = 0.

(2.137)

In a similar procedure to the precedent proof, the properties (2.17) along with the properties

of sesquilinear forms are used on equations (2.137):

M∑
m=1

(p̄m − r̄m)σ(Lm ,E)−
N∑

n=1
(t̄n − q̄n)σ(Rn ,E)

=
M∑

m=1
σ(pmLm + rmL−

m ,E)−
N∑

n=1
σ(tnRn +qnR−

n ,E),

M∑
m=1

(p̄m + r̄m)σ(E ,Lm)∗−
N∑

n=1
(t̄n + q̄n)σ(E ,Rn)∗

=
M∑

m=1
σ(E , pmLm + rmL−

m)∗−
N∑

n=1
σ(E , tnRn +qnR−

n )∗.

(2.138)

The expression of E can be recognized in the right-hand side of equations (2.138). Hence, the

following equalities are obtained:

M∑
m=1

(p̄m − r̄m)SLm −
N∑

n=1
(t̄n − q̄n)SRn =σ(E ,E),

M∑
m=1

(p̄m + r̄m)TLm −
N∑

n=1
(t̄n + q̄n)TRn =σ(E ,E)∗.

(2.139)

By setting E to null, equations (2.132) are proved. To prove equations (2.133), the following

properties of the Wirtinger derivative on a sesquilinear form are used:

∂

∂x̄u
σ

(
K∑

k=1
xkψk ,

K∑
k=1

xkψk

)
=σ

(
ψu ,

K∑
k=1

xkψk

)
,

∂

∂x̄u
σ

(
K∑

k=1
xkψk ,

K∑
k=1

xkψk

)∗
=σ

(
K∑

k=1
xkψk ,ψu

)∗
.

(2.140)

Moreover, due to property (2.15b),

[E |E ] =σ(E ,E). (2.141)

By combining the properties (2.17), equations (2.140) and equation (2.141),
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∂

∂q̄v
σ(E ,E) =σ(−R−

v ,E) = SRv ,

∂

∂q̄v
σ(E ,E)∗ =σ(E ,−R−

v )∗ =−TRv .
(2.142)

The other 6 equations in equations (2.133) can be proven in a similar way.

2.10.3 Proof of the operations on the Gram matrix

In this section, the different operations presented in table 2.4, which is a copy of the table 2.1

in section 2.6, are proven.

Operation name Mode operation

Mode swapping ψm ←→ψn

Mode scaling ψm ←− kψm

Mode reversal ψm ←−ψ−
m

Mode composition 1ψm ←−ψm + k
2 (ψn +ψ−

n )

Mode composition 2ψm ←−ψm + k
2 (ψn −ψ−

n )

Operation name Operation on Â, B̂ Operation on Ĝ

Mode swapping
L Am ←→ L An

LBm ←→ LBn

CGm ←→CGn

LGm ←→ LGn

Mode scaling
L Am ←− kL Am

LBm ←− kLBm

CGm ←− kCGm

LGm ←− k̄LGm

Mode reversal LBm ←−−LBm LGm ←−−LGm

Mode composition 1L Am ←− L Am +kL An CGm ←−CGm +kCGn

Mode composition 2LBm ←− LBm +kLBn LGm ←− LGm + k̄LGn

Table 2.4 – A set of operations that can be done on Ĝ and its consequences on different
quantities.

Before proving the different operations present in table 2.4, the general formula is derived with

the use of the vectorial and matrix representation of the modes, the sesquilinear form σ and

the minus operator. The vectorial representation of the mode ψ is the vector ~v and the matrix

representation of the set of modes at the r -th iteration ~ψr is V̂r where each line represents a

mode. The minus operator can be written as

ψ− ≡~vT M̂ , (2.143)

where M̂ is the matrix representation of the minus operator. Because of the property (2.14c) of

51



Chapter 2. Poynting operation

the minus operator, the matrix M̂ is an involutory matrix, meaning that M̂ 2 = I . In section 2.6,

the matrices Â and B̂ are introduced in the following way:

~ψr = 1

2
Âr (~ψ0 +~ψ−

0 )+ 1

2
B̂r (~ψ0 −~ψ−

0 ). (2.144)

Using the matrix representation of a set of modes and the minus operator, equation (2.144)

becomes

V̂r = 1

2
(Âr + B̂r )V̂0 + 1

2
(Âr − B̂r )V̂0M̂ . (2.145)

The sesquilinear form σ can be written as

σ(ψm ,ψn) ≡~v H
mΦ̂~vn , (2.146)

whereΦ is the matrix representation of σ. The properties (2.17) become

Φ̂M̂ T = Φ̂,

M̂∗Φ̂ =−Φ̂.
(2.147)

From section 2.6, the matrix Ĝ has been introduced as

Gmn =σ(ψm ,ψn), m,n ∈ [1, M ]. (2.148)

Using equation (2.146), Ĝ can be written as

Ĝ = V̂ ∗Φ̂V̂ T . (2.149)

Let us introduce the transformation matrices P̂1 and P̂2 such that:

~ψr = P̂1~ψr−1 + P̂2~ψ
−
r−1,

V̂r = P̂1V̂r−1 + P̂2V̂r−1M̂ .
(2.150)

Both equalities are equivalent and P̂1 and P̂2 represent the mode operations listed in table 2.4.

In order to find the relationships between Âr−1, B̂r−1 and Âr , B̂r , equations (2.145) and (2.150)

are combined:
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V̂r =1

2
(Âr + B̂r )V̂0 + 1

2
(Âr − B̂r )V̂0M̂

=1

2
P̂1((Âr−1 + B̂r−1)V̂0 + (Âr−1 − B̂r−1)V̂0M̂)

+ 1

2
P̂2((Âr−1 + B̂r−1)V̂0 + (Âr−1 − B̂r−1)V̂0M̂)M̂

=1

2
((P̂1 + P̂2)Âr−1 + (P̂1 − P̂2)B̂r−1)V̂0

+ 1

2
((P̂1 + P̂2)Âr−1 + (P̂2 − P̂1)B̂r−1)V̂0M̂ .

(2.151)

Hence, Âr and B̂r are given by

Âr = (P̂1 + P̂2)Âr−1,

B̂r = (P̂1 − P̂2)B̂r−1.
(2.152)

The Gram matrix at the r -th iteration Ĝr is given by

Ĝr = V̂ ∗
r Φ̂V̂ T

r

= (P̂∗
1 V̂ ∗

r−1 + P̂∗
2 V̂ ∗

r−1M̂∗)Φ̂(V̂ T
r−1P̂ T

1 + M̂ T V̂ T
r−1P̂ T

2 )

= 1

2
[(Â∗

r + B̂∗
r )V̂ ∗

0 + (Â∗
r − B̂∗

r )V̂ ∗
0 M̂∗]Φ̂

1

2
[V̂ T

0 (ÂT
r + B̂ T

r )+ M̂ T V̂ T
0 (ÂT

r − B̂ T
r )].

(2.153)

Using the properties (2.147) and recognizing Ĝr−1 and Ĝ0, Ĝr becomes

Ĝr = (P̂1 − P̂2)∗Ĝr−1(P̂1 + P̂2)T

= B̂∗
r Ĝ0 ÂT

r .
(2.154)

For the proof of the operations called "Mode swapping", "Mode composition 1", and "Mode

composition 2", the matrices P̂1 and P̂2 are defined for each cases and the operation on

matrices Â, B̂ , and Ĝ are derived using equations (2.152) and (2.154). Then, the "Mode

composition 1" is combined with "Mode composition 2" in order to prove the "Mode scaling"

and "Mode reversal" operations.

For the "Mode swapping" operation, P̂2 is null and P̂1 is a permutation matrix that permutes

the rows m and n. P̂1 is symmetric and real. Hence,
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L Am ←→ L An ,

LBm ←→ LBn ,

CGm ←→CGn ,

LGm ←→ LGn .

(2.155)

For the "Mode composition 1" operation, P̂1 and P̂2 are

P̂1 := Î + 1

2
K̂ ,

P̂2 := 1

2
K̂ ,

(2.156)

with K̂ defined as

Kst =
k if s = m ∩ t = n,

0 otherwise.
(2.157)

Hence,

L Am ←− L Am +kL An ,

CGm ←−CGm +kCGn .
(2.158)

For the "Mode composition 2" operation, P̂1 and P̂2 are

P̂1 := Î + 1

2
K̂ ,

P̂2 :=−1

2
K̂ .

(2.159)

Hence,

LBm ←− LBm +kLBn ,

LGm ←− LGm + k̄LGn .
(2.160)

To prove "Mode scaling" and "Mode reversal", the operations "Mode composition 1" and

"Mode composition 2" are combined:
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ψm ←−ψm + k1

2
(ψm +ψ−

m),

ψm ←−ψm + k2

2
(ψm −ψ−

m),
(2.161)

which is equivalent to

ψm ←−ψm + k1

2
(ψm +ψ−

m)+ k2

2
(ψm + k1

2
(ψm +ψ−

m)−ψ−
m − k1

2
(ψm +ψ−

m))

⇒ψm ←−ψm + k1

2
(ψm +ψ−

m)+ k2

2
(ψm −ψ−

m).
(2.162)

Moreover, "Mode composition 1" commutes with "Mode composition 2" because "Mode

composition 1" and "Mode composition 2" modify only the matrix Â and B̂ respectively. The

"Mode scaling" operation is a combination of "Mode composition 1" and "Mode composition

2" and it is equivalent to the operations (2.161) with k1 = k2 = k −1. From the operations

(2.158) and (2.160) on Â, B̂ , and Ĝ , the following operations are obtained:

L Am ←− kL An ,

LBm ←− kLBn ,

CGm ←− kCGn ,

LGm ←− k̄LGn .

(2.163)

The "Mode reversal" is equivalent to the operations (2.161) with k1 = 0 and k2 =−2. Hence,

LBm ←−−LBm ,

LGm ←−−LGn .
(2.164)
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3 Improved Fourier modal method

3.1 Introduction

Optical components simulated and designed in this work are mainly binary dielectric meta-

surfaces, which can usually be considered as two-dimensional gratings, also known as crossed

gratings. In order to be considered as a metasurface, the structures dimensions should be

ideally deeply sub-wavelength, but, in this work, optical components composed of structures

smaller than the wavelength of the light are still considered as metasurfaces. An example

of such metasurface is shown in fig. 3.1a, which is an array of silicon cylinders on a glass

substrate. In the near-infrared regime, the lattice constant is usually below one micron.

Different rigorous methods can be used to simulate metasurfaces. The well-known meth-

ods include the Finite-Difference Time-Domain method (FDTD) [75], the Finite-Difference

Frequency-Domain method (FDFD) [118], Finite Element Method (FEM) [76–78], Boundary El-

ement Method (BEM), also known as Method of Moments (MoM) [119], and the Fourier Modal

Method (FMM) [61, 79–81], also known as the Rigorous Coupled Wave Analysis (RCWA) [82].

Ref. [95] revisits many of those methods. The method used in this work is the Fourier Modal

Method and this method has been modified and improved in order to facilitate the design

and analysis of metasurfaces as shown in chapters 4 to 6. In this work, we divide the Fourier

modal method into three operations: the computation of the eigen-modes inside a layer, the

computation of the S-matrix at an interface between two layers and the reduction of a layer

into an interface. A layer is defined as a z-invariant medium between two interfaces and an

interface is a plane perpendicular to the z-axis that separates two z-invariant media. In order

to use the Fourier modal method on a multi-layer structure, the dimensions of the unit cell

is the same for each layer. In this chapter, we consider that the z-invariant media are also

Z -Symmetry Invariant (ZSI). The ZSI property is defined in section 2.4. Z -invariant media

composed of isotropic materials are ZSI.

As an example, the metasurface shown in fig. 3.1a consists of one layer and two interfaces. The

first interface is between the glass substrate and the metasurface and the second interface is

between the metasurface and air. The Fourier modal method can also be used to simulate an
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array of structures that vary continuously along the z dimension as the one shown in fig. 3.1c

by approximating it by a multi-layer structure as shown in fig. 3.1d. However, the benefits of

the Fourier modal method presented in this chapter are lost if the layers that compose the

system are so thin that many evanescent and complex modes need to be considered in order

to get the response of the layer.

The discussion is organized as follows: The three operations mentioned earlier are introduced

in section 3.1.1 along with the main differences between the Fourier modal methods proposed

in the literature and the one presented in this work. In order to use the full potential of the

Fourier modal method for the design of optical structures, it is important to consider a multi-

layer structure as a collection of objects and those operations allow to get another kind of

object or transform them. The list of those objects are described in section 3.1.2 along with

their representation in a diagram. Each object contains information that might be useful for

the design of a structure.

For a thick layer, only a few eigen-modes have an impact on the overall response of the

structure. The action of reducing the number of eigen-modes, called mode filtering, is given

in section 3.5. In section 3.1.2, the impact of mode filtering on the different operations is

summarized. Section 3.5 also provides the equations needed for the computation of the

contribution of the modes to the power flow assuming that the modes are orthonormalized

(sections 2.8.2 and 2.8.3).

3.1.1 Overview of the improved Fourier modal method

The Fourier modal method can be divided into three operations. The first operation is the

computation of the eigen-modes in a layer and it is based on the work of L. Li [61]. Eigen-

modes and their properties have been discussed in depth in chapter 2. As a reminder, eigen-

modes are solutions of the source-free Maxwell equations in the time-harmonic regime for a

z-invariant medium in the form

(~E(x, y, z), ~H(x, y, z)) = (~E0(x, y), ~H0(x, y))e iγz , (3.1)

where γ is the propagation constant. Different methods can be used to compute ~E0 and ~H0. In

this work, the Fourier modal method proposed by L. Li [61] is used and the summary of the

Fourier modal method along with the state of the art is given in section 3.2.

In homogeneous media, the eigen-modes are simply plane waves and equation (3.1) simplifies

to

(~E(x, y, z), ~H(x, y, z)) = (~E0, ~H0)e i (kx x+ky y+γz), (3.2)
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(a) (b)

(c) (d)

Figure 3.1 – a) Metasurface composed of an array of silicon cylinders on a glass substrate
surrounded by air. b) A single layer composed of thickness h of a ZSI z-invariant medium
surrounded by two homogeneous media, where two pairs of eigen-modes propagating inside
this layer are represented by arrows. Each pair is composed of a forward-propagating mode,
meaning that the arrow goes from left to right, and a backward-propagating mode, meaning
that the arrow goes from right to left. Because the medium is ZSI, each pair of eigen-modes
share the same field profile, which are represented by the blue and red curves. The z-axis is
from left to right. a and b are the weights just before or after the interfaces. In order to get
a3,m and b2,m from respectively a2,m and b3,m , a2,m and b3,m are multiplied by e iγm h . c) Array
of structures that vary along the z dimension. d) Approximation of the structure shown in
fig. 3.1c into a multi-layer structure that can be simulated using the Fourier modal method.
The dashed lines are interfaces.

59



Chapter 3. Improved Fourier modal method

where kx and ky are the tangential components of the wave vector~k. The fields ~E0 and ~H0 can

be found analytically and are a function of kx and ky . Whether the medium is homogeneous or

z-invariant heterogeneous, the expressions of ~E0 and ~H0 for a given propagation constant γ are

not unique because a multiplication of an eigen-mode by a complex constant or the addition

of two eigen-modes with the same propagation constant also represents an eigen-modes. For

homogeneous isotropic media, the convention chosen in this work is given in section 3.2.1

and it has the advantage to be valid for any permittivity ε, permeability µ, kx and ky with

the exception of the case kx = ky = εµ= 0. In practice, the medium is non-magnetic (µ= 1)

and the permittivity ε is equal to or higher than one, so the limitation of this convention is

not an issue. For heterogeneous isotropic media, the eigen-modes are normalized using the

equations provided in sections 2.8.2 and 2.8.3 and, if there are multiple eigen-modes with the

same propagation constant, they can be combined as shown in section 2.8.4.

Once the eigen-modes are computed, they are divided into forward-propagating and backward-

propagating modes based on the imaginary part of their propagation constant and, for propa-

gating modes, the z component of the Poynting vector. The result can be illustrated by fig. 3.1b,

where two forward-propagating modes and two backward-propagating modes are represented.

The coefficients am,n and bm,n are the weights of the modes just before and after the interfaces

and they are, at this point, unkowns and depend on the illumination condition. By convention,

the weights a and b are the weights of the forward-propagating and backward-propagating

modes respectively.

The relationship between the weights of the eigen-modes just before and after a given interface

is obtained from the boundary condition, stating that the transverse eletric and magnetic

fields are continuous across the interface, and can be expressed by the S-matrix or the T-matrix.

Since they are multiple eigen-modes on both sides of the interface, the weights are represented

by vectors, where the m-th element is the weight of the mode m. If ~a1 and~b1 are the weights

of the eigen-modes at the left-hand side of the interface and ~a2 and~b2 are the weights of the

eigen-modes at the right-hand side of the interface, the weights are related with each others

by the equation

Ŝ

(
~a1
~b2

)
=

(
T̂1 R̂1

R̂2 T̂2

)(
~a1
~b2

)
=

(
~a2
~b1

)
, (3.3)

where Ŝ is the S-matrix, which is composed of four sub-matrices R̂1, R̂2, T̂1 and T̂2 that we

call coupling matrices. The other way to represent the relationships between the weights is

through the T-matrix T̂ :

T̂

(
~a1
~b1

)
=

(
~a2
~b2

)
. (3.4)

The T-matrix is more straightforward to compute than the S-matrix, and the T-matrix of a multi-
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layer structure can be obtained through a multiplication of the T-matrices that represents

the different interfaces in the structure and the separations between them. However, such

multiplication is usually unstable because the T-matrix that describes the separation between

two interfaces, usually contains both extremely large and small terms due to the evanescent

and complex modes in the layer [94]. The use of the S-matrix solves this issue and the S-matrix

is also more related to physics because the weights on the left-hand side of equation (3.3) are

the weights of the modes going toward the interface and the weights on the right-hand side of

equation (3.3) are the weights of the modes going away of the interface. Since the T-matrix

is easier to get and the S-matrix is more stable, the T-matrix is computed first and, then, this

T-matrix is converted into a S-matrix

As shown in this work, the S-matrix of a multi-layer system can be computed without going

through the T-matrix and, if the system is composed of ZSI media, the computation of a

S-matrix can be two times faster than the computation of the T-matrix in [94], assuming that

the matrix inversion is done through the Gauss-Jordan elimination algorithm. The equations

used to compute the S-matrix are provided in section 3.3. The same equations could be

used for the case of an interface between a homogeneous and a heterogeneous medium, but,

if the homogeneous medium is lossless and a plane wave in the homogeneous medium is

between a propagating and an evanescent wave, meaning that the propagation constant of

this wave is zero, it is possible that one of the matrix cannot be inverted. This is a typical

issue in some implementations of the Fourier modal method and this issue can be seen in

the system of equations (B17) in [79]. It is explained in section 3.3 how to avoid this issue.

Since the convention for the plane waves is specific to this work, the trivial case of an interface

between two homogeneous media is provided in section 3.3.1 and is a simplification of the

equations given in section 2.7.2.

In order to find the amplitudes of the transmitted and reflected plane waves for a given

illumination condition, the S-matrix representing the whole structure is required. The usual

strategy to get the S-matrix of a multi-layer structure is to initialize the S-matrix of the structure

to an identity matrix and, by recursion, compute the T-matrix for the next interface and update

the S-matrix of the structure while taking into account the separation between the interface

and the next. More details about this strategy are given, for a simplified case, in Section

3.5.1 of [80] and, for a more general case, in [94] and in Annex 7.A and 7.B of [95]. The

operation introduced in this work and given in section 3.4 allows to reduce a layer into an

interface, meaning that one can choose the order at which the reductions of the layers are

done. Moreover, the S-matrix of the multi-layer structure obtained using the Fourier modal

method presented in this work can give the amplitude of transmitted and reflected plane

waves when the structure is illuminated from both sides, which makes the adjoint method

presented in chapter 6 more efficient. This characteristic is also present in [94, 95], but not

in [80].
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Figure 3.2 – A multi-layer structure composed of homogeneous and heterogeneous z-invariant
media, where the objects obtained by the Fourier modal method are represented. The arrows
represent the eigen-modes. ~am and ~bm are the weights of the modes of the forward and
backward-propagating modes just before and after the interfaces respectively. The matrices Γ̂
are the propagation operators. The four matrices R̂m and T̂m at each interface are the coupling
matrices and they are the sub-matrices that compose the S-matrix.

3.1.2 Representation of a multi-layer structure and design strategy

The multi-layer structure under consideration is a stack of layers composed of a z-invariant

medium separated by interfaces, which is represented by the cylinders in the background in

fig. 3.2. Each layer is composed of either a homogeneous medium, described by a permettivity

ε and a permeability µ, or a heterogeneous medium described by a permittivity profile ε(x, y).

Another input to the method is the Bloch phase, which is explained in section 3.2.

For every layer, the eigen-modes can be computed and, in fig. 3.2, they are represented by

arrows. Because the media are ZSI, only the transverse electric and magnetic fields and

the propagation constant of the forward-propagating eigen-modes are computed since the

forward and backward-propagating modes are related by the minus operator defined in (2.9).

That means that the fields and propagation constant of a backward-propagating mode is the

same as its forward-propagating counterpart except that the sign of the propagation constant,

the transverse components of the magnetic field and the z-component of the electric field is

flipped. The z-component of the electric and magnetic fields is not used in the Fourier modal

method, so it is computed only if one needs to get the electric and magnetic fields in a layer,

which is typically the case for the adjoint method in chapter 6. The electric and magnetic

fields of the eigen-modes are represented by respectively the matrix Ê and Ĥ , where the m-th

column describes the field of the mode m. The field of a mode allows to get an idea on how

the mode is confined and, for example, allows to understand the behavior of the metasurface

presented in section 5.3.4.

The propagation constants are represented by the vector~γ, where the m-th element is the

propagation constant of the mode m. The propagation constant is an important parameter

because it indicates how the mode decays in a layer. For a lossless medium, it indicates if the
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eigen-mode is propagating, evanescent or complex. Moreover, it gives the diagonal matrix Γ̂,

which is called the propagation operator and is shown in fig. 3.2, and relates the weight of the

modes, given by~a and~b in fig. 3.2, on both sides of a layer. The diagonal element Γmm is e iγm h .

The main advantage of the Fourier modal method for the design of binary metasurfaces is that

the thickness of the layers appears only in the matrix Γ̂ and it is trivial to compute the matrix Γ

for different thicknesses. It is explained later in this section how to use this advantage.

Once the eigen-modes of two adjacent layers are known, the coupling matrices, which are the

sub-matrices of the S-matrix, at the interface between those two layers can be computed and

are given by the matrices R̂ and T̂ . Each interface is represented by four matrices as shown

in fig. 3.2. With those matrices, all the elements in fig. 3.2 are explained except the indices

of the matrices and vectors. As mentioned earlier, the weigths ~a and~b are the weight of the

eigen-modes just before and after the interfaces and they are numbered from left to right

starting by one. Hence, the weights at the first interface are ~a1, ~a2,~b1 and~b2, and the weights

at the m-th interface are ~a2m−1, ~a2m ,~b2m−1 and~b2m . In other words, if the indice m is odd,

~am and~bm are the weights of the eigen-modes just before an interface. Otherwise, they are

the weights of the eigen-modes just after an interface. The indice of the matrices is the same

as the indice of the vector which is multiplied by this matrix. The matrices Γm with m odd is

not present in fig. 3.2 because Γm+1 is equal to Γm due to the ZSI property of the media.

At this stage, the weights ~a and~b are unknowns, but the transmission and reflection of a multi-

layer structure are found without getting the values of those weights since, after successive

reduction of the layers, the multi-layer structure will be reduced to a single interface. If

those weights are needed in order to get the fields or the power flow inside a layer, additional

manipulations are necessary as given in section 3.4. If the eigen-modes in a layer composed

of a lossless medium have been orthonormalized as described in sections 2.8.2 and 2.8.3, the

contribution of the modes on the power flow is given directly by the mode weights with the

condition that the mode type (propagating, evanescent, complex) is known. A mode that does

not contribute to the power flow, which is the case for most evanescent and complex modes

in a binary metasurface, can be neglected.

If the layer is not too thin, only a few modes need to be taken into account in order to get the

response of the whole structure. The action of neglecting those modes are called in this work

mode filtering, and it is discussed in section 3.5. Due to the mode filtering, the computational

time of the S-matrix for a single interface can be reduced by up to a factor two. The main

advantage of the mode filtering is the reduction of a layer into an interface because the size

of the coupling matrices and the propagation operators, which are all the matrices required

for reducing a layer, are greatly reduced. In other words, after mode filtering, the operation of

reducing a layer can be extremely fast. For the metasurfaces designed in this work, keeping a

hundred of eigen-modes is a common practice and this approximation has no meaningful

impact on the final results. Hence, reducing a layer consists of ten matrix multiplications and

a matrix inversion with square matrices of size hundred, leading to a computation time for

reducing a layer in the order of the milliseconds.
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For the design of a binary metasurface, the main design strategy used here is to compute

the coupling matrices and the propagation constants, and to store them after mode filtering,

reducing memory usage. With this data, the contribution of the main modes on the power

flow and the response of the metasurface for any thickness can be computed nearly instanta-

neously. Moreover, the coupling matrices are used for the design of single-mode metasurfaces

(chapter 4) and for the computation of the self-coupled modes. The concept of self-coupled

mode is presented in chapter 5 and greatly facilitates the design and the analysis of resonant

metasurfaces.

3.2 Computation of the eigen-modes

This section gives the key elements of the computation of the eigen-modes using the Fourier

modal method and how the Fourier modal method has been improved when compared with

the work of M. G. Moharam and T. K. Gaylord [120] to the current state of the art given in

chapters 7 and 13 of [95]. In order to simplify the equations, the z-invariant periodic medium

is considered isotropic and non-magnetic and it has a square lattice. The equations for the

general case are provided in [95], but the ideas behind the derivation of those equations are

the same.

The objective of the Fourier modal method is to describe any fields, given by ~E and ~H , that sat-

isfy the Maxwell equations as a sum of the eigen-modes. Due to the simplification mentioned

earlier in this section and the normalization of the magnetic field, the Maxwell equations are

given by

∇×~E = i k0~H

∇× ~H =−i k0ε(x, y)~E ,
(3.5)

where ~E and ~H depend on x, y and z. The Maxwell equation (3.5) is a system of six equations:

δ

δy
Ez − δ

δz
Ey = i k0Hx

δ

δy
Hz − δ

δz
Hy =−i k0ε(x, y)Ex

δ

δz
Ex − δ

δx
Ez = i k0Hy

δ

δz
Hx − δ

δx
Hz =−i k0ε(x, y)Ey

δ

δx
Ey − δ

δy
Ex = i k0Hz

δ

δx
Hy − δ

δy
Hx =−i k0ε(x, y)Ez .

(3.6)

The field components Em and Hm , where m can be either x, y or z, can be expressed with the

other field components without solving a differential equation. This is true even in the general

case where the medium is bianisotropic. In all the Fourier modal methods presented in the

literature, it is the field components Ez and Hz that are replaced by their respective expression

because, in order to fulfill the boundary condition, only the tangential components of the
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fields are required. After replacing Ez and Hz , the system of equations (3.6) reduces to

δ

δz
Ex = i k0Hy − 1

i k0

δ

δx

[
1

ε(x, y)

(
δ

δx
Hy − δ

δy
Hx

)]
δ

δz
Ey =−i k0Hx − 1

i k0

δ

δy

[
1

ε(x, y)

(
δ

δx
Hy − δ

δy
Hx

)]
δ

δz
Hx =−i k0ε(x, y)Ey + 1

i k0

δ

δx

(
δ

δx
Ey − δ

δy
Ex

)
δ

δz
Hy = i k0ε(x, y)Ex + 1

i k0

δ

δy

(
δ

δx
Ey − δ

δy
Ex

)
(3.7)

The eigen-modes are solutions of the system of equations (3.7) in the form

(~E , ~H) = (~E0(x, y), ~H0(x, y))e iγz , (3.8)

where γ is called the propagation constant and ~E0 and ~H0 are the field profile of the eigen-

mode. Hence, the term δ/δz in (3.7) is replaced with iγ and the system of equations (3.7) does

not depend of z anymore.

Since ε is a periodic function, the solution of (3.7) is a Bloch wave, meaning that

(~E0(x, y), ~H0(x, y)) = (~El (x, y), ~Hl (x, y))e i (kx,0x+ky,0 y), (3.9)

where ~El and ~Hl are periodic functions with the same unit cell as ε. The k-vector components

kx,0 and ky,0 are related to the Bloch phase and are given by the tangential k-vector of the

illumination. The Bloch phase is the phase difference between f (~x) and f (~x +~a) where ~a is a

lattice vector and f is a Bloch wave.

The specifity of the Fourier modal method is to describe the periodic functions ~El , ~Hl , ε and

1/ε with a truncated Fourier serie, meaning that ~E , ~H and ε are expressed as

~E =
M∑

m=−M

N∑
n=−N

~Emne i(kx,mn x+ky,mn y)e iγz

~H =
M∑

m=−M

N∑
n=−N

~Hmne i(kx,mn x+ky,mn y)e iγz

ε(x, y) =∑
m

∑
n
εmne

2πi
(

mx
dx

+ ny
dy

)

1

ε(x, y)
=∑

m

∑
n

(1/ε)mne
2πi

(
mx
dx

+ ny
dy

)
,

(3.10)

where ~Emn , ~Hmn , εmn and ζmn are the Fourier coefficients of respectively ~E , ~H , ε and 1/ε, and
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Chapter 3. Improved Fourier modal method

dx and dy are the dimensions of the unit cell. The spacial frequencies kx,mn and ky,mn are

given by

kx,mn = 2π
mx

dx
+kx,0 ky,mn = 2π

ny

dy
+ky,0. (3.11)

The number M and N are related to the number of Fourier coefficients that is taken into

account and are the variables that determine the accuracy of the method and the number of

eigen-modes. For each component of the electric and magnetic fields, there are K unknown

Fourier coefficients, where K is given by

K = (2M +1)(2N +1). (3.12)

Since Ez and Hz are expressed in term of Ex , Ey , Hx and Hy , the total numbers of unknowns

per eigen-mode are reduced to 4K , which, in the general case, is also the number of eigen-

modes. Since those eigen-modes include forward and backward-propagating modes and, in

ZSI media, the fields and the propagation constant of a backward and forward-propagating

modes are directly related to each other, the number of eigen-modes that need to be computed

is two times smaller. Hence, it is expected that the eigen-modes that satisfy the system of

equations (3.7) are the eigen-vector of a square matrix of size 2K .

The natural representation of the Fourier coefficients for a given component of a field and the

spatial frequencies kx and ky given in (3.11) is a matrix of size 2M +1-by-2N +1. However, it is

more practical to represent them in a vector of size K . In this work, this vector is denoted X̃ ,

where X can be the spatial frequency kx or ky , or any component of the electric or magnetic

field. If p is the index of the p-th element of the vector X̃ , p is given by

p = m +M +1+ (2M +1)(n +N ), m ∈ [−M , M ], n ∈ [−N , N ]. (3.13)

Replacing the expressions of ~E , ~H , ε and 1/ε in equations (3.7) by their expressions given in

(3.10) is equivalent to taking the Fourier transform of equations (3.7) except a small modifi-

cation due to the Bloch phase. The main difficulty of the Fourier modal method is that the

system of equations (3.7) contains the multiplication of two terms that depend of x and y ,

which becomes a convolution in the Fourier domain.

Let f , g and h be three periodic functions that depend on x and y such that h = f · g . Then,

the Fourier transform of h, denoted F (h), is given by

F (h) =F ( f )∗F (g ), (3.14)
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3.2. Computation of the eigen-modes

where ∗ is the convolution. If g and h are expressed as truncated Fourier series whose g̃ and h̃

are their Fourier coefficients, h̃ is given by the Laurent’s rule:

h̃ = [[ f ]]g̃ , (3.15)

where [[ f ]] is a Teoplitz matrix composed with the Fourier coefficients f̃ . Since the Fourier

coefficients are represented in a vector, the Teoplitz matrix should be seen as a Teoplitz matrix

composed of 2N +1-by-2N +1 Toeplitz matrices of size 2M +1-by-2M +1. If the Teoplitz

matrix [[ f ]]p1q1 , which is the matrix in the row p1 and column q1 of the matrix [[ f ]], is denoted

[[ f ]]q1−p1 , the element fq1−p1,p2q2 is the Fourier coefficient f(q2−p2)(q1−p1).

It is expected that, by retaining more Fourier coefficients, h̃ converges to F (h), but, as pointed

out by L. Li [121], this is not true if f and g are discontinuous and h is continuous. In most

gratings, the permittivity profile ε and, therefore, the electric field ~E are discontinuous. To

avoid this convergence issue and let f be discontinuous, it is important to use the Laurent’s

rule, given by equation (3.15), if g is continuous and h is discontinuous, and the inverse rule,

introduced by L. Li [121] and given by

h̃ = [[1/ f ]]−1g̃ , (3.16)

if g is discontinuous and h is continuous.

If ~E in the system of equations (3.7) is replaced by its expression in (3.10) and the convergence

issue pointed out by L. Li is ignored, the following system of equations is obtained:

k0γẼx = k2
0 H̃y −diag(k̃x )[[1/ε]]

(
diag(k̃x )H̃y −diag(k̃y )H̃x

)
k0γẼy =−k2

0 H̃x −diag(k̃y )[[1/ε]]
(
diag(k̃x )H̃y −diag(k̃y )H̃x

)
k0γH̃x =−i k2

0[[ε]]Ẽy +diag(k̃x )
(
diag(k̃x )Ẽy −diag(k̃y )Ẽx

)
k0γH̃y = i k2

0[[ε]]Ẽx +diag(k̃y )
(
diag(k̃x )Ẽy −diag(k̃y )Ẽx

)
,

(3.17)

where diag(~v) is a diagonal matrix whose diagonal is the vector ~v . This is the system of

equations given in [79], but a very similar system of equations have been given earlier in [120].

From the work of L. Li [121], it is known that some terms in (3.17) does not converge well.

Typically, the z component of the D-field given by

Dz = i

k0

(
δ

δx
Hy − δ

δy
Hx

)
(3.18)

is discontinuous and Ez is continuous, meaning that the term [[1/ε]]
(
diag(k̃x )H̃y −diag(k̃y )H̃x

)
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in (3.17) should be replaced by [[ε]]−1
(
diag(k̃x )H̃y −diag(k̃y )H̃x

)
. It is more tricky for the terms

[[ε]]Ẽx and [[ε]]Ẽy because, in the general case, Ex , Ey , Dx and D y are all discontinuous since

the boundary between two materials has different orientations. To solve this issue, two strate-

gies are proposed. The first strategy, proposed by L. Li in [61], is to assume that the boundaries

are always parallel to one of the two lattice vectors. For a square lattice, the boundaries are

parallel to either the x or the y axis. From this assumption, the terms [[ε]]Ẽx and [[ε]]Ẽy in

(3.17) are replaced by terms that use the Laurent’s rule (3.15) in one direction and the inverse

rule (3.16) in the other direction. In [61], those terms are expressed as bdεecẼx and dbεceẼy .

bdεec means that the Fourier transform along the x dimension is applied to f , then, the Teo-

plitz matrix, whose elements depend on y , is computed and inverted, and, finally, the Fourier

transform along the y dimension is applied to each of the element of the inverted matrix. The

operation db·ce is the same except that the dimensions are swapped. The formal definition of

the operations bd·ec and db·ce is given in [61].

The second strategy, proposed by E. Popov and M. Nevière and fully developed in Chapter

7 of [95], is to decompose the electric and magnetic fields into components that are either

normal or tangential to the boundaries, meaning that, at every point in space, the components

of the electric and magnetic fields are oriented differently.

In this work, the implementation given by L. Li [61] has been chosen because it can be applied

to any permittivity profile without having to determine how the components of the fields are

oriented, even if the convergence is lower as shown in Section 7.6.5 in [95]. The system of

equations given by L. Li [61] applied to a square lattice is similar to (3.17) and is

k0γẼx = k2
0 H̃y −diag(k̃x )[[ε]]−1 (

diag(k̃x )H̃y −diag(k̃y )H̃x
)

k0γẼy =−k2
0 H̃x −diag(k̃y )[[ε]]−1 (

diag(k̃x )H̃y −diag(k̃y )H̃x
)

k0γH̃x =−i k2
0dbεceẼy +diag(k̃x )

(
diag(k̃x )Ẽy −diag(k̃y )Ẽx

)
k0γH̃y = i k2

0bdεecẼx +diag(k̃y )
(
diag(k̃x )Ẽy −diag(k̃y )Ẽx

)
.

(3.19)

The equations in [61] are generalized for any lattice and the equations in Chapter 13 of [95] are

for any media composed of anisotropic materials and also for any lattice.

The system of equations (3.19) can be expressed as

k0γ

(
Ẽx

Ẽy

)
= F̂

(
H̃x

H̃y

)
k0γ

(
H̃x

H̃y

)
= Ĝ

(
Ẽx

Ẽy

)
. (3.20)

Hence, the following eigen-value equation is obtained:

F̂ Ĝ

(
Ẽx

Ẽy

)
= k2

0γ
2

(
Ẽx

Ẽy

)
. (3.21)
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It is expected that the eigen-values of (3.21) are proportional to γ2, since, in a ZSI medium, if an

eigen mode has a propagation constant γ, it exists another eigen-mode with the propagation

constant −γ. Moreover, from equations (3.20), flipping the sign of the propagation constant

changes the sign of the tangential components of one of the field which is also the property of

the eigen-modes in a ZSI medium.

As mentioned earlier, the equation (3.21) admits 2K = 2(2M +1)(2N +1) eigen-modes, whose

tangential components of the electric and magnetic fields are described by K Fourier compo-

nents each. In section 3.2.1, the matrices that contain the Fourier coefficients of the electric

and magnetic field of all the eigen-modes, are denoted Ê and Ĥ and their columns are given

by

Ê:m =
(

Ẽx,m

Ẽy,m

)
Ĥ:m =

(
H̃x,m

H̃y,m

)
, (3.22)

where Ẽx,m , Ẽy,m , H̃x,m and H̃y,m are the Fourier coefficients of respectively the fields Ex , Ey ,

Hx and Hy that describe the eigen-mode m.

3.2.1 Convention for plane waves

Plane waves in an isotropic medium can be described in different ways. In this work, the

chosen polarizations are Transvers Magnetic (TM) and Transverse Electric (TE). As shown in

section 2.8.1, only TE and TM-polarized plane waves are always orthogonals with each other,

but the disadvantage of such choice is the presence of a singularity at kx = ky = 0.

The description of the plane waves given in this section is a simplification of their description

for uniaxial media given in section 2.7.2. The TM-polarized plane waves are described as

~ET M =

 kz sx

kz sy

−kË

e i (kx x+ky y+kz z), ~HT M =

 −εk0sy

εk0sx

0

e i (kx x+ky y+kz z) (3.23)

and the TE-polarized plane waves are given as

~ET E =

 µk0sy

−µk0sx

0

e i (kx x+ky y+kz z), ~HT E =

 kz sx

kz sy

−kË

e i (kx x+ky y+kz z), (3.24)

where kz follows the dispertion relation
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k2
z +k2

Ë = εµk2
0 . (3.25)

ε and µ are the permettivity and the permeability of the medium respectively. The parameters

kË, sx and sy are given by

kË =
√

k2
x +k2

y , (sx , sy ) =
(1,0) if kË = 0

1
kË

(kx ,ky ) otherwise
(3.26)

The advantage of describing the TM and TE-polarizaed plane wave as done in (3.23) and (3.24)

is that those expressions are valid for any kx , ky , ε and µ with the exception of the case εµ= 0

with kË = 0.

An important quantity for the computation of the reflection and transmission efficiencies is

the z-component of the Poynting vector, denoted Pz,T M and Pz,T E for respectively TM and

TE-polarized plane waves, and they are given by

Pz,T M = εk0kz Pz,T E =µk0kz . (3.27)

If the plane waves described in (3.23) and (3.24) are forward-propagating modes and the

medium is passive, the sign of kz has to be chosen such that the real part of Pz,T M and Pz,T E ,

and the imaginary part of kz are positives. For active media, it is more difficult to find the sign

of kz [122].

Usually, it is more convenient to use x and y-polarized plane waves, meaning that the electric

field is polarized along x and y respectively, since there is no singularity at normal incidence.

If the amplitude of the tangential electric field of the x and y-polarized plane waves is one,

x-polarized plane waves are described as

~EX =

 1

0

−kx
kz

e i (kx x+ky y+kz z), ~HX = 1

µk0kz

 −kx ky

k2
x +k2

z

−kz ky

e i (kx x+ky y+kz z) (3.28)

and y-polarized plane waves are described as

~EY =

 0

1

−ky

kz

e i (kx x+ky y+kz z), ~HY = 1

µk0kz

 −(k2
y +k2

z )

kx ky

kz kx

e i (kx x+ky y+kz z) (3.29)

The relationships between the weights of the TM and TE-polarized plane waves, pT E and pT M ,
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and the weights of the x and y-polarized plane waves, qX and qY , are given by

(
pX

pY

)
=

(
kz sx µk0sy

kz sy −µk0sx

)(
pT M

pT E

)
(

pT M

pT E

)
= 1

µk0kz

(
µk0sx µk0sy

kz sy −kz sx

)(
pX

pY

) (3.30)

X and y-polarized plane waves are orthogonals only if sx sy = 0.

For section 3.3, it is required to provide for each medium the matrices Ê and Ĥ that describe

the electric and magnetic fields of the eigen-modes. If the medium is homogeneous, the

convention chosen in this work is that the eigen-modes 1 to K , where K is the number of

Fourier coefficients that describe the fields and is given in (3.12), are TM-polarized plane waves,

and the eigen-modes K +1 to 2K are TE-polarized plane waves. The x and y components of

the k-vector of the eigen-modes p and K +p are k̃x,p and k̃y,p . Due to the description of the

plane waves given in (3.23) and (3.24), the matrices Ê and Ĥ that describe the fields of the

plane waves propagating in a medium described by the permettivity ε and permeability µ are

tri-diagonal and are given by

Ê =
(

diag(k̃z ¯ s̃x ) µk0 diag(s̃y )

diag(k̃z ¯ s̃y ) −µk0 diag(s̃x )

)

Ĥ =
(
−εk0 diag(s̃y ) diag(k̃z ¯ s̃x )

εk0 diag(s̃x ) diag(k̃z ¯ s̃y )

)
,

(3.31)

where ¯ is the element-wise product also known as the Hadamard product. The relationship

between s̃x , s̃y , k̃x , k̃y and k̃z are equivalent to the ones given in (3.25) and (3.26).

3.3 Computation of the coupling matrices

In this section, the equations for the coupling matrices, that compose the S-matrix, at an

interface between two ZSI z-invariant media are developped for the systems illustrated in

fig. 3.3. The coupling matrices R̂1, R̂2, T̂1 and T̂2 describe the relationships between the weights

of the eigen-modes propagating toward and away of the interface in the following way:

T̂1~a1 + R̂2~b2 =~a2

R̂1~a1 + T̂2~b2 =~b1,
(3.32)

where, as shown in fig. 3.3, ~a1 and ~b1 are the weights of the eigen-modes just before the

interface, and ~a2 and~b2 are the weights of the eigen-modes just after the interface.

71



Chapter 3. Improved Fourier modal method

The coupling matrices are obtained from the boundary condition stating that the tangential

components of the electric and magnetic fields are continuous at the interface. In order to

write the boundary condition into a system of equations, the tangential components of the

fields of the eigen-modes in each medium are described by two matrices, where the m-th

column of those matrices describes the field of the eigen-mode m. For forward-propagating

eigen-modes, the matrix Ê describes the tangential components of the electric field and

the matrix Ĥ describes the tangential components of the magnetic field. Since the media

considered in this work are ZSI, the backward-propagating eigen-modes are described by

Ê and −Ĥ . Sections 3.2 and 3.2.1 give how those matrices are computed for respectively a

heterogeneous and a homogeneous medium.

(a) (b) (c)

Figure 3.3 – a) Interface between two heterogenous z-invariant media. R̂1, R̂2, T̂1 and T̂2 are
the coupling matrices and ~a1, ~a2,~b1 and~b1 are the weights of the eigen-modes. b) Same as
fig. 3.3a except that the medium on the right-hand side of the interface is homogeneous. ε2

and µ2 are respectively the permittivity and the permeability of the homogeneous medium. c)
Same as fig. 3.3a except that the medium on the left-hand side of the interface is homogeneous.
ε1 and µ1 are respectively the permittivity and the permeability of the homogeneous medium.

If Ê1 and Ĥ1 describe the eigen-modes in the medium on the left-hand side of the interface

and Ê2 and Ĥ2 describe the eigen-modes in the medium on the right-hand side of the interface,

the boundary condition can be written as

Ê1(~a1 +~b1) = Ê2(~a2 +~b2)

Ĥ1(~a1 −~b1) = Ĥ2(~a2 −~b2).
(3.33)

As proved in section 3.7.1, the coupling matrices are given by

T̂1 = 2Ĉ3Ĥ1 R̂1 = Ĉ1T̂1 − Î

R̂2 = Ĉ3(Ĥ2 − Ĉ2) T̂2= Ĉ1(Î + R̂2)
(3.34)

with
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Ĉ1 = Ê−1
1 Ê2 Ĉ2 = Ĥ1Ĉ1 Ĉ3 = (Ĥ2 + Ĉ2)−1. (3.35)

Usually, computational instabilites come from the inversion of an ill-conditioned matrix. In

equation (3.35), two inversions are present. The first one is the inversion of the matrix Ê1,

but, if Ê1 is obtained from the eigen-value equation (3.21), Ê1 is well-conditioned. However, if

Ê1 describes the plane waves in a homogeneous medium and kz of one of the TM-polarized

plane waves is zero, the tangential components of the electric field of this plane wave is zero

and Ê1 is ill-conditioned. Hence, the equations (3.34) and (3.35) should not be used when

the medium on the left-hand side of the interface is homogeneous, which is the case shown

in fig. 3.3c. However, those equations can be safely used when the right-hand side of the

interface is homogenous, which is the case shown in fig. 3.3b. Since the case shown in fig. 3.3b

is the same as the case shown in fig. 3.3c except that the forward and backward directions are

reversed, the S-matrix for both cases are composed of the same coupling matrices, but the

coupling matrix R̂1 is swapped with R̂2 and T̂1 is swapped with T̂2. For the trivial case when

both media are homogeneous, the coupling matrices are diagonal matrices composed of the

Fresnel coefficients and they are given in section 3.3.1.

The other matrix inversion in (3.35) is the inversion of the matrix Ĥ2 + Ĉ2. If the smallest

eigen-value of this matrix is close to zero, the coupling matrices become very sensitive to a

change of the parameters of both media and it means that a surface resonance is present.

Metal usually needs to be present in order to have surface resonances and, in this case, such

resonance is called surface plasmon resonance.

In equations (3.34) and (3.35), the coupling matrices are computed using two matrix inversions

and six matrix multiplications. If most eigen-modes in both media can be neglected, meaning

that the coupling matrices are much smaller than the matrices Ê and Ĥ , the computational

time of the four multiplications in (3.34) becomes negligible. Hence, the computation of the

S-matrix is reduced by approximately a factor two. For comparison, the computation of the

T-matrix T̂ as presented in [94] can be written as

T̂ =
(

Ê2 Ê2

Ĥ2 −Ĥ2

)−1 (
Ê1 Ê1

Ĥ1 −Ĥ1

)
, (3.36)

which is an inversion and multiplication of matrices that are two times larger. Assuming that

the matrix inversion is done through the Gauss-Jordan elimination algorithm, the complexity

of both matrix inversion and multiplication is O(n3) and the computation of the T-matrix

using equation (3.36) is two times slower that the computation of the coupling matrices using

equations (3.34) and (3.35). As a side note, if the medium on the right-hand side of the interface

is homogeneous and kz of one the plane waves is zero, the matrix that is inverted in (3.36) is

ill-conditioned.
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3.3.1 Coupling matrices at an interface between two homogeneous media

For an interface between two homogeneous media, the coupling matrices are diagonal matri-

ces containing the Fresnel coefficients, which are given for uniaxial media by equations (2.61)

and (2.63) in section 2.7.2. If the convention presented in section 3.2.1 is used, the coupling

matrices are

T̂1 = diag

((
~t1,T M

~t1,T E

))
R̂1 = diag

((
~rT M

~rT E

))

R̂2 =−R̂1 T̂2= diag

((
~t2,T M

~t2,T E

))
,

(3.37)

where the m-th element of~t1,T M ,~t1,T E ,~t2,T M ,~t2,T E ,~rT M and~rT E are given by

t1,T M ,m = 2ε1kz,1,m

ε1kz,2,m +ε2kz,1,m
t1,T E ,m = 2µ1kz,1,m

µ2kz,1,m +µ1kz,2,m

t2,T M ,m = 2ε2kz,2,m

ε1kz,2,m +ε2kz,1,m
t2,T E ,m = 2µ2kz,2,m

µ2kz,1,m +µ1kz,2,m

rT M ,m = ε1kz,2,m −ε2kz,1,m

ε1kz,2,m +ε2kz,1,m
rT E ,m = µ2kz,1,m −µ1kz,2,m

µ2kz,1,m +µ1kz,2,m
.

(3.38)

εp and µp is respectively the permittivity and permeability of medium p and kz,p,m is the

z component of the k-vector of the m-th plane wave in medium p. Medium 1 and 2 are

respectively on the left and right-hand side of the interface.

3.4 Layer reduction

(a) (b)

Figure 3.4 – a) A multi-layer structure before layer reduction with all the coupling matrices
and the propagation operators that are needed for the computation of the coupling matrices
shown in fig. 3.4b. b) The same multi-layer structure as in fig. 3.4a except that the layer at the
center of fig. 3.4a is reduced into a single interface.
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The operation, called layer reduction, transforms a layer into an interface, meaning it trans-

forms the system shown in fig. 3.4a into the system shown in fig. 3.4b. During this operation,

three groups of matrices are computed. The first group is composed of the coupling matrices

at the interface after layer reduction and those matrices are denoted by T̂ ′
1, R̂ ′

1, T̂ ′
2 and R̂ ′

2 as

shown in fig. 3.4b. If the fields inside the reduced layer are needed, the relationships between

the weights of the eigen-modes propagating toward the interface, which are given by ~a1 and
~b4, and the weights of the eigen-modes propagating inside the reduced layer, given by ~a2 and
~b3, are required. Those relationships are described by the second group of matrices, denoted

Â1, B̂1, Â2 and B̂2, and are written as

Â1~a1 + Â2~b4 =~a2

B̂1~a1 + B̂2~b4 =~b3.
(3.39)

As shown in section 3.4, those eight matrices are given by

Â1 = (Î − M̂)−1T̂1 Â2 = (Î − M̂)−1R̂2Γ̂T̂4

B̂1 = R̂3Γ̂Â1 B̂2 = T̂4 + R̂3Γ̂Â2

T̂ ′
1 = T̂3Γ̂Â1 T̂ ′

2 = T̂2Γ̂B̂2

R̂ ′
1 = R̂1 + T̂2Γ̂B̂1 R̂ ′

2 = R̂4 + T̂3Γ̂Â2

(3.40)

with

M̂ = R̂2Γ̂R̂3Γ̂. (3.41)

The only matrix that is inverted is the matrix Î − M̂ , meaning that, if one of the eigen-values of

the matrix Î − M̂ is close to zero, the layer is resonant. It is more meaningful to consider the

eigen-values of the matrix M̂ , known as the round-trip matrix [123, 124], since the matrix M̂

describes the loops in fig. 3.4a. The eigen-vectors of the matrix M̂ describe the self-coupling

modes presented in chapter 5 and, in this work, a self-coupling mode is considered resonant

if the associated eigen-value is 0.5 or above. If the eigen-value is one, the light is perfectly

trapped inside the layer.

For the design of a structure, it is sometimes needed to get the response of the structure for

multiple layer thicknesses, meaning that the layer reduction operation is applied multiple

times while only changing the propagation operator Γ̂. In this case, it greatly shortens the

computation time if only the eigen-modes that contribute to the power flow inside the layer

are kept. The numbers of eigen-modes kept in the first and second layer shown in fig. 3.4a

are respectively u and v . The size of the matrices T̂1, R̂1, T̂2 and R̂2 is respectively v-by-u,

u-by-u, u-by-v and v-by-v . The same can be done for the interface between the second and

third medium. Those reduced coupling matrices can be directly used in equations (3.40)
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and (3.41) and the obtained matrices have the expected dimensions without any additional

manipulation.

It is possible that the two interfaces present in fig. 3.4a were a stack of layers that has been

previously reduced and the weights of the eigen-modes inside those layers are needed later.

Let~c1 and~c3 be the weights of the eigen-modes in a reduced layer replaced by respectively the

first and second interface in fig. 3.4a and they are obtained through the equations

Ĉ1~a1 + Ĉ2
~b2 =~c1

Ĉ3~a3 + Ĉ4
~b4 =~c2,

(3.42)

where Ĉm are equivalent to the matrices Â and B̂ in (3.39). If the matrices Â1, Â2, B̂1 and B̂2

are stored, no additional operations are required. However, the weights of the eigen-modes

present in the reduced layer are not needed later, it may be advantageous to transforms the

matrices Ĉm into the matrices Ĉ ′
m such that

Ĉ ′
1~a1 + Ĉ ′

2
~b4 =~c1

Ĉ ′
3~a1 + Ĉ ′

4
~b4 =~c2.

(3.43)

By combining equations (3.39) and (3.42), the matrices Ĉ ′
m are given by

Ĉ ′
1 = Ĉ1 + Ĉ2Γ̂B̂1 Ĉ ′

2 = Ĉ2Γ̂B̂2

Ĉ ′
3 = Ĉ3Γ̂Â1 Ĉ ′

4 = Ĉ3Γ̂Â2 + Ĉ4
(3.44)

The matrices Ĉ ′
1 are the last group of matrices that can be obtained during layer reduction.

3.5 Mode filtering and contribution of the eigen-modes to the power

flow

Mode filtering is a key element of the Fourier modal method provided in this chapter since

it divides the computation time required for getting the coupling matrices describing an

interface by a factor two. But, more importantly, the computation time required for the

reduction of a layer into an interface becomes negligible. Since the coupling matrices and the

eigen-modes does not depend on the layer thickness, a change of the layer thickness requires

only the layer reduction operation, which can be done very fast due to mode filtering. The

computation of the coupling matrices and the layer reduction are given in sections 3.3 and 3.4

respectively.

In this section, two criteria for mode filtering is proposed. The first one is based on the

contribution of the eigen-modes to the power flow. This contribution is expressed differently
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if the mode is propagating, evanescent or complex and the equations are provided later in

this section. The second criterion is based on the imaginary part of the propagation constant,

which determines how fast the amplitude of the eigen-mode decreases along z. The mode

filtering is applied to the Huygens’ metasurface proposed in [37,44]. The Huygens’ metasurface

is composed of an array of silicon cylinders embedded in glass. The cylinders diameter and

height are respectively 524 nm and 243 nm. The response for different lattice constants shown

in fig. 3.5a is obtained for a wavelength of 1477 nm at normal incidence. The refractive index

of glass and silicon is 1.44 and 3.48 respectively.

The Huygens’ metasurface is an interesting candidate to apply mode filtering for several

reasons. First, the Huygens’ metasurface is a double resonant multi-mode metasurface,

meaning that multiple propagating eigen-modes are present in the metasurface and, because

it is resonant, the mode weights change rapidly as shown in fig. 3.5b, where the contribution

of the propagating eigen-modes to the power flow is plotted. It is not possible to identify the

two resonances in this figure, but the self-coupling mode presented in chapter 5 can. Second,

the thickness of the metasurface is small compared to the wavelength. Hence, evanescent and

complex modes are needed in order to accurately compute the response of the metasurface.

Finally, the metasurface is made of silicon cylinders, which is a high refractive index material,

and the importance of complex modes is higher in a medium with large refractive index

difference [99]. Complex modes are more difficult to analysis than propagating and evanescent

modes.
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Figure 3.5 – (a) Transmission efficiency and the phase of the transmitted plane wave for the
Huygens’ metasurface shown in the inset. The Huygens’ metasurface, which is the same as
in [37, 44], is composed of silicon cylinders with a diameter of 534 nm and a height of 243 nm
embedded in glass. The incident plane wave is x-polarized and comes at normal incidence.
The wavelength is 1477 nm. b) Power flow contribution of the main propagating eigen-modes.
If the contribution is one, it means that the contribution is equivalent to the power flow of the
incident plane wave. The propagation constant of modes 1, 2 and 3 is around 12.5, 5.9 and 5.1
respectively.
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The impact of an eigen-mode propagating in a lossless layer on the response of the whole

system is the contribution of the eigen-mode to the power flow since the eigen-modes are

orthogonal in an lossless medium. Hence, an eigen-mode which has a negligible contribu-

tion to the power flow can be neglected without impacting the response the system. This

contribution is obtained throught the Poynting operation (chapter 2) and defined as

[ψm |ψn] = 1

2|Λ|
Ï
Λ

(~Em × ~H∗
n +~En × ~H∗

m) ·~nd s, (3.45)

where ψm is an eigen-mode described by the fields ~Em and ~Hm ,Λ is the unit cell and ~n is the

unit vector perpendicular to the surface. The expression [ψm |ψm] is the integration of the

z-component of the Poynting operation over the unit cell and Re{[ψm |ψm]} is the contribution

of the eigen-modes ψm to the power flow assuming that the eigen-mode is orthogonal to the

other eigen-modes present in the layer. If the eigen-mode is propagating or evanescent, the

contribution of the eigen-mode to the power flow is given by

Re{[aψ+bψ−|aψ+bψ−]} = Re
{(|a|2 −|b|2 +2i Im{āb}

)
[ψ|ψ]

}
, (3.46)

where a and b are the weigths of, respectively, the forward and backward-propagating modes

at the same z position, and the operator (·)− flips the propagation direction of a mode. The

derivation of equation (3.46) is based on the properties of the Poynting operation (section 2.3)

and, if it exists two modes with the same propagation constant, both modes are assumed to be

orthogonal. If the mode is normalized (section 2.8.2), meaning that [ψ|ψ] is 1 for a propagating

mode and ±i for an evanescent mode, equation (3.46) becomes

Re{[aψ+bψ−|aψ+bψ−]} = |a|2 −|b|2 (3.47)

for a propagating mode, and

Re{[aψ+bψ−|aψ+bψ−]} =−2Im{āb} Im{[ψ|ψ]} (3.48)

for an evanescent mode. The term Im{[ψ|ψ]} in (3.48) is either 1 or −1. It is possible to get

the sign of Im{[ψ|ψ]} by looking at the reflection coefficient r at the interface that relates the

evanescent eigen-modes with its backward-propagating counterpart. If the evanescent mode

is the only modes propagating toward the interface, the power flow related to this mode has

to go toward the interface, meaning that the sign of Im{[ψ|ψ]} is the inverse of the sign of

Im{r }. For example, if b = r a, meaning that the evanescent mode is on the left-hand side of

the interface, equation (3.48) becomes
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3.5. Mode filtering and contribution of the eigen-modes to the power flow

Re{[aψ+bψ−|aψ+bψ−]} =−2|a|2 Im{r } Im{[ψ|ψ]}, (3.49)

which has to be positive.

In lossless heterogeneous media, if a complex mode, called ψ1, with the propagation constant

γ exists, a complex mode, called ψ2, with propagation constant −γ̄ also exists. Since ψ1 and

ψ2 are not orthogonal with each other, the contribution of the eigen-modes ψ1 and ψ2 to the

power flow cannot be decoupled. When complex modes are orthonormalized as shown in

section 2.8.3, the Poynting operation applied to those modes gives

[ψ1|ψ2] = i [ψ1|ψ−
2 ] = 0. (3.50)

Moreover, complex modes are self-orthogonal meaning that

[ψ1|ψ1] = 0 [ψ2|ψ2] = 0. (3.51)

Hence, the contribution of the eigen-modes ψ1 and ψ2 to the power flow is given by

Re{[a1ψ1 +a2ψ2 +b1ψ
−
1 +b2ψ

−
2 |a1ψ1 +a2ψ2 +b1ψ

−
1 +b2ψ

−
2 ]} =−2Im{ā1b2 + ā2b1}. (3.52)

As mentioned earlier, the mode filtering is applied to the Huygens’ metasurface of [37, 44].

For the computation of the eigen-modes, 81 Fourier coefficients per dimension are taken

into account, meaning that the x and y compononents of the fields for an eigen-mode are

described by 6 561 Fourier coefficients each and 13 122 forward-propagating eigen-modes are

obtained. For a lattice constant of 852 nm, which is also used in section 5.3.1, the propagation

constant of the eigen-modes, both backward and forward-propagating, is given in fig. 3.6a.

The large majority of the modes are either evanescent or complex, leaving only 11 propagating

modes per propagation direction, which includes three pairs of eigen-modes with the same

propagationg constant. It is expected to have pairs of eigen-modes due to the symmetry of

the permittivity profile. After rotating the eigen-modes as shown in section 2.8.4 such that

x-polarized light excites only one mode of the pair and the y-polarized light excites only the

other, the contribution of the eigen-modes to the power flow is computed using equations

(3.47), (3.48) and (3.52) and the results for the main modes are shown in fig. 3.6b. The incident

plane wave is x-polarized. Each bar is the contribution of a forward-propagating mode

and its backward-propagating counterpart, if the mode is propagating or evanescent, or the

contribution of two forward and two backward-propagating complex mode. A contribution

of one means that the contribution is equal to the power flow of the incident plane wave.

The three main contributions are from propagating modes, which makes this metasurface a

79



Chapter 3. Improved Fourier modal method

multi-mode metasurface. The two following main contributions are from complex modes,

meaning they can be more important than the evanescent modes in some cases.

The blue curve in fig. 3.6d is the distance in the complex plane between the amplitude of

the transmitted plane wave when only the n eigen-modes that contribute the most to the

power flow are retained and and when all the modes are considered. By retaining only 10

eigen-modes, the error on the transmitted amplitude is in the order of 10−4. With 100 eigen-

modes, the error drops to 10−10 and it does not decrease when retaining more than 300 modes.

However, the criterion for mode filtering based on the contribution of the eigen-modes to

the power flow suffers from two issues. The main one is that the mode weights are required,

meaning that the mode can be filtered once the response of the system is known. In the case

when the mode filtering is done for a specific case and, then, the response of the system is

computed for larger layer thicknesses, which means that the impact of the evanescent and

complex modes on the response of the system is reduced, it is possible that an eigen-mode

which needs to be considered is filtered out because it had no impact in the specific case. As

an example, for the Huygens’ metasurface, the weight of the mode 1 for both propagation

directions for a lattice constant of around 960 nm is very close to zero, meaning that, as shown

in fig. 3.5b, the contribution of mode 1 to the power flow is nearly zero and mode 1 may be

filtered out even if this mode is required to compute the response of the system for a different

layer thickness.

A more simple way of choosing which eigen-modes can be neglected is to look at the imaginary

part of the propagation constant, which gives how the amplitude of the eigen-modes decreases

while propagating. By considering only the n eigen-modes with the lowest imaginary part of

the propagationg constant, the obtained error is given by the red curve in fig. 3.6d. For the

metasurface considered in this section, the number of modes required to have the same error

as the case when the criteria is based on the power flow contribution is increased by a factor

three. The advantage of this approach is that it does not depend on the coupling matrices.

By looking how the incident x-polarized plane wave excites the eigen-modes in the layer, which

is given by the vector ~T1 shown in fig. 3.4a, it is possible to reduce the number of considered

eigen-modes for the same error. Because only the x-polarized plane wave is considered, ~T1 is

a vector. As shown in fig. 3.6c, the eigen-modes can be divided into two groups, where one of

them are excited in a negligible way. By neglecting those eigen-modes that are not excited and,

then, considering the eigen-modes whose propagation constant has the lowest imaginary

part, the number of eigen-modes that need to be considered in order get a similar error is

equivalent to the case where the mode filtering is based on the power flow contribution. It

is expected to get such results because the contribution to the power flow of complex and

evanescent waves are proportional to e− Im{γ}h , where γ is the propagation constant of the

mode and h is the thickness of the layer, since the weights of the modes present in (3.48) and

(3.52) are obtained at the same position on the z-axis.
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Figure 3.6 – a) Propagation constant of the eigen-modes present in the Huygens’ metasurface
shown in fig. 3.5a with a lattice constant of 852 nm. b) Contribution of the main eigen-modes
to the power-flow. The number at the top of the bars is the propagation constant of the
eigen-mode. c) Histogram of the absolute value of the elements in ~T1, which is the vector that
relates the incident x-polarized plane wave to the excitation of the eigen-modes inside the
metasurface. d) Error on the transmitted field when the n more important eigen-modes are
considered. The importance of an eigen-mode is based on three different criteria and the
error is defined as the distance on the complex plane between the transmitted field with and
without approximation.
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3.6 Conclusion

The Fourier modal method proposed in this chapter is divided into three operations: the

computation of the eigen-modes, the computation of the S-matrix at an interface and the

reduction of a layer, which is a z-invariant heterogeneous medium delimited by two interfaces.

The computation of the eigen-modes follows what has been done in [61] and the last two

operations are specific to this work.

For the second operation, we provide a set of equations that allows us to efficiently compute

the S-matrix, composed by the coupling matrices, by taking into account the property of the

eigen-modes in a ZSI medium. Many implementations of the Fourier modal method do not

compute the S-matrix for each interface [80, 94, 95], even though the coupling matrices at the

different interfaces contain information that can greatly facilitate the design of metasurfaces.

In this work, this information is used for the design of anti-reflective metasurfaces in chapter 4

and the computation of the self-coupling modes in chapter 5.

The third operation is the reduction of a layer and this is an important feature of our Fourier

modal method. Since the propagation of an eigen-mode is fully described by its propagation

constant, it is possible to compute the response of a metasurface for different thicknesses by

reducing the layer each time, assuming that the coupling matrices at the interfaces and the

propagation constant of the eigen-modes are known. Moreover, we show that the computa-

tional effort for the layer reduction can be drastically reduced by filtering the eigen-modes,

which means that the eigen-modes that do not contribute to the power flow within the meta-

surface are neglected. As a result, after simulating the metasurface once, the response of the

metasurface with a different thickness can be obtained in a few milliseconds.

The operations provided by our Fourier modal method can be used in different orders, allowing

greater flexibility in its implementation. Hence, a multi-layer system can be simulated in such

way that only the information necessary for the design process is obtained. Such information

includes the coupling matrices and the propagation constant of the eigen-modes when the

response of the system for different layer thicknesses is desired, or the field profile of the

modes when the system is optimized using the adjoint method (chapter 6).

3.7 Proofs

3.7.1 Proof of the coupling matrices at an interface between two heterogeneous
media

In this section, the equations (3.34) and (3.35), which are
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T̂1 = 2Ĉ3Ĥ1 R̂1 = Ĉ1T̂1 − Î

R̂2 = Ĉ3(Ĥ2 − Ĉ2) T̂2 = Ĉ1(Î + R̂2)

Ĉ1 = Ê−1
1 Ê2 Ĉ2 = Ĥ1Ĉ1

Ĉ3 = (Ĥ2 + Ĉ2)−1,

(3.53)

are proven from the boundary condition (3.33):

Ê1(~a1 +~b1) = Ê2(~a2 +~b2)

Ĥ1(~a1 −~b1) = Ĥ2(~a2 −~b2).
(3.54)

In order to get the matrices in (3.53), the objective is to transform the equations (3.54) in the

form

T̂1~a1 + R̂2~b2 =~a2

R̂1~a1 + T̂2~b2 =~b1,
(3.55)

which is equation (3.32).

From the first equation in (3.54),~b1 is given by

~b1 = Ĉ1(~a2 +~b2)−~a1. (3.56)

Replacing~b1 in the second equation in (3.54) by its expression in (3.56) gives

2Ĥ1~a1 + (Ĥ2 − Ĥ1Ĉ1)~b2 = (Ĥ2~a2 + Ĥ1Ĉ1)~a2. (3.57)

By comparing this equation with the first equation in (3.55), the expressions of T̂1 and R̂2

given in (3.53) are found. The matrices R̂1 and T̂2 are obtained after replacing ~a2 in (3.56) by

its expression given in (3.55), giving

~b1 = (Ĉ1T̂1 − Î )~a1 + Ĉ1(R̂2 + Î )~b2, (3.58)

and comparing the resulting equation with the second equation in (3.55).

3.7.2 Proof of the layer reduction

In this section, the expressions given in (3.40) and (3.41), which are
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Â1 = (Î − M̂)−1T̂1 Â2 = (Î − M̂)−1R̂2Γ̂T̂4

B̂1 = R̂3Γ̂Â1 B̂2 = T̂4 + R̂3Γ̂Â2

T̂ ′
1 = T̂3Γ̂Â1 T̂ ′

2 = T̂2Γ̂B̂2

R̂ ′
1 = R̂1 + T̂2Γ̂B̂1 R̂ ′

2 = R̂4 + T̂3Γ̂Â2

M̂ = R̂2Γ̂R̂3Γ̂

(3.59)

are proven knowing that

T̂ ′
1~a1 + R̂ ′

2
~b4 =~a4 (3.60a)

R̂ ′
1~a1 + T̂ ′

2
~b4 =~b1 (3.60b)

Â1~a1 + Â2~b4 =~a2 (3.60c)

B̂1~a1 + B̂2~b4 =~b3 (3.60d)

T̂1~a1 + R̂2Γ̂~b3 =~a2 (3.60e)

R̂1~a1 + T̂2Γ̂~b3 =~b1 (3.60f)

T̂3Γ̂~a2 + R̂4~b4 =~a4 (3.60g)

R̂3Γ̂~a2 + T̂4~b4 =~b3. (3.60h)

Equations (3.60c) and (3.60d) come from (3.39) and the other equations in (3.60) are repre-

sented in fig. 3.4 with~b2 = Γ̂~b3 and ~a3 = Γ̂~a2.

By replacing ~b3 in equation (3.60e) by its expression in (3.60h), the following equation is

obtained:

T̂1~a1 + R̂2Γ̂T̂4~b4 = (Î − M̂)~a2. (3.61)

By comparing this equation with equation (3.60c), the expressions of Â1 and Â2 are found.

Replacing ~a2 in equations (3.60g) and (3.60h) by its expression in (3.60h) gives

T̂3Γ̂Â1~a1 + (T̂3Γ̂Â2~+R̂4)~b4 =~a4

R̂3Γ̂Â1~a1 + (R̂3Γ̂Â2 + T̂4)~b4 =~b3
(3.62)

By comparing those equations with equations (3.60b) and (3.60d), the expressions of T̂ ′
1, R̂ ′

2,

B̂1 and B̂2 are obtained.

After replacing~b3 in (3.60f) by its expression in (3.60d), the following equation is obtained:
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(R̂1 + T̂2Γ̂B̂1)~a1 + T̂2Γ̂B̂2
~b4 =~b1, (3.63)

The expressions of the matrices R̂ ′
1 and T̂ ′

2 are obtained by comparing this equation with

equation (3.60b).
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4 Single-mode metasurface

4.1 Introduction

Single-mode dielectric metasurfaces include periodic zeroth-order gratings where two eigen-

modes, one per polarization, propagate inside it, and any aperiodic metasurfaces that use

zeroth-order grating as building blocks. Three main groups of dielectric single-mode metasur-

faces are present in the literature. The first group is about zeroth-order gratings and they can

be used as an anti-reflective layer [125–127] or to change the polarization state of light [51,128].

The second group is about aperiodic metasurfaces which are composed of cylinders with

various dimensions [26–30]. The third group is about aperiodic metasurfaces composed of

ellipses or rectangles and their response is based on the Pancharatnam–Berry phase [31–35,38].

The second and third group are generally used as holograms or metalenses.

The design of the aperiodic metasurfaces mentioned earlier is based on the response of zeroth-

order gratings. Those aperiodic metasurfaces are composed of cylinders with various cross-

section and the assumption done during the first iteration of the design is that the response at

the position of each cylinder is the same response as a zeroth-order grating composed with

this cylinder. This assumption can be done because the eigen-modes are spatially localized

into the cylinders, meaning that a variation of the dimensions of the neighboring cylinders

has only a weak impact on the behavior of the eigen-mode propagating in the cylinder. In the

case of an important variation of cylinder dimensions, which typically occurs when the light is

deflected to a large angle, a second design iteration is performed, where a group of structure

are simulated and optimized. Such design techniques are presented in [84].

In this chapter, different design techniques are proposed for the design of single-mode meta-

surfaces. The first set of design techniques is for the design of ideal metasurfaces composed of

cylinders with an elliptical or rectangular cross-section. The properties of ideal metasurfaces

are that the structures does not reflect or absorb light and the two orthogonal linear polar-

izations that are transmitted unchanged, called the eigenpolarization (section 8.5 in [129]),

excite a single propagating eigen-mode inside the metasurface each. Ideal metasurfaces are

equivalent to an ideal waveplate. The difference between an ideal metasurface and a real
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metasurface is discussed in detail in section 4.2.1. The principal result is that the main differ-

ence is the reflection occurring at the two interfaces of the metasurface, but the reflection is

low enough such that the concept of ideal metasurface can be used during the first iteration in

the design process.

As shown in section 4.2 and proven in sections 4.7.1 and 4.7.2, the parameters of the ideal

metasurface can be directly obtained from the desired functionalities of the metasurface using

a simple set of equations that greatly simplifies the design procedure and allows to probe

efficiently the design space. The standard approach is to use the concept of the Poincaré sphere

in the design process [36, 130] by looking at trajectories, which can be complicate in some

cases [131]. In comparison, our approach is based on the solutions of a set of complex-valued

equations, and those equations give all possible solutions.

The equations provided in section 4.2 are used in section 4.2.2 in order to review how to design

many types of metasurface-based holograms. It includes phase-only holograms for a given

polarization state, two different phase-only holograms for two orthogonal polarization states

and phase and amplitude holograms.

The main constraint of using a single ideal metasurface is that the Jones matrix describing the

system has to be unitary and symmetric. Hence, in order to design any system described by a

unitary Jones matrix, equations that give all the possible pair of ideal metasurfaces are provided

in section 4.3 and proved in section 4.7.3. In [132], it is proved that any system composed

of any number of waveplates and rotators is optically equivalent to a system composed of

one waveplate and one rotator. From our results, we demonstrate that such system is also

equivalent to a system composed of two waveplates.

In section 4.3.1, those equations are applied for the design of a polarization rotator, which is

actually a degenerate case, and of an optical element called in this work a pseudo-quarter-

wave plate. A pseudo-quarter-wave plate can also transform a linear polarized beam into a

circular polarized beam but it can also transform a x-polarized beam into a y-polarized beam.

It is shown that a pseudo-quarter-wave plate can be composed of a quarter-wave plate and a

half-wave plate, but there is also a non-obvious solution that minimizes the thickness of both

ideal metasurfaces.

The second set of techniques is for the design of anti-reflective metasurfaces. Anti-reflective

metasurfaces are already been demonstrated in the literature [125–127], but, in section 4.4, a

systematic design technique is given using the Fourier Modal Method presented in Chapter 2.

In section 4.4.1, the possible designs of an anti-reflective metasurface are provided for glass

cylinders on a glass substrate and silicon cylinders on a silicon substrate. The main advantage

of such anti-reflecting metasurface is that it requires a single etch of the substrate. High-power

applications are a typical application for anti-reflective metasurface, where conventional

anti-reflective coatings may burn due to absorption. A design of a glass metasurface on a glass

substrate is given and analyzed in depth in section 4.4.1.

88



4.2. Design of ideal single-mode metasurfaces

An important element in polarization optics, topic covered in sections 4.2 and 4.3, is half-wave

plate and the design of a metasurface acting as a half-wave plate is provided in section 4.5,

along with the design process. This section gives the limitations, advantages and challenges of

such metasurface.

4.2 Design of ideal single-mode metasurfaces

Ideal metasurfaces are defined as zeroth-order gratings composed of cylinders with usually

circular, elliptical or rectangular cross-section which have two properties. First, the metasur-

face do not absorb and reflect light and, second, the eigenpolarizations, the polarizations that

are transmitted unchanged, are linear and excite a single eigen-mode of the metasurface each.

Hence, ideal metasurfaces can be considered as ideal birefringent media or media with only a

linear phase anisotropy [133], meaning that ideal wave plates can be treated the same way as

ideal metasurfaces since they satisfy the same properties. A unit cell of an ideal metasurface

is shown in fig. 4.1a, where the two eigen-modes of the metasurface are represented by the

field ~E1 and ~E2 and by the propagation constant γ1 and γ2 respectively. For cylinders with

cylindrical or rectangular cross-section, it is assumed that the eigen-modes of the metasurface

share the same properties in terms of the condition of excitation as the waveguide modes

propagating into a single cylinder, meaning that the angle of the linear polarization is par-

allel to the main axis of the ellipse or rectangle. The differences between an ideal and a real

metasurface is discussed in section 4.2.1 and the main deviation of the response of a real

metasurface to an ideal one comes from the reflection at the interfaces, which is usually below

10%.

E⃗1
E⃗2

γ1γ2

z

y

x
θ

(a) (b)

Figure 4.1 – a) Schema of a cylinder with an elliptical cross-section rotated by an angle θ
from the x-axis. This cylinder is the building block of a single-mode metasurface, where
the propagation constant of the eigen-modes is γ1 and γ2. b) Schema that illustrates the
expression of ϕ1, ϕ2 and ∆ϕ with respect to atot and btot in the complex plane.

If the plane waves are orthonormalized, the response of the ideal metasurface described by

the Jones matrix T̂tot is given by
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T̂tot =
(

atot btot

btot dtot

)
= R̂θ

(
e jϕ1 0

0 e jϕ2

)
R̂−θ, (4.1)

where the matrix R̂ is the rotation matrix andϕ1 andϕ2 is the phase accumulation of the eigen-

modes propagating inside the metasurface. The relationship between the phase accumulation

ϕ and the propagation constant γ of the eigen-mode is ϕ= γh, where h is the thickness of the

metasurface which is equivalent to the height of the cylinders. For linear phase anisotropy, the

Jones matrix T̂tot is symmetric [133], which is the reason why T̂tot is only expressed in terms

of atot , btot and dtot .

In general, if the plane waves before and after the metasurface are orthonormalized, the Jones

matrix T̂tot describing the transmission of an ideal metasurface or multiple ideal metasurfaces

separated by lossless materials has to be unitary since no reflection and absorption are present

in the system. The property of such system is that, if a polarization state described by the

Jones vector ~p1 is transformed after going through the system into the polarization state ~q1,

a polarization state ~p2 orthogonal to the polarization state ~p1, meaning that ~p H
1 ~p2 = 0, is

transformed into a polarization state~q2 orthogonal to the polarization state~q1. In other words,

if the transformation ~p1 to ~q1 is known, the transformation ~p2 to ~q2 is known up to a phase

factor. For an ideal metasurface, in most cases, this phase factor is imposed by the choice of

the transformation from ~p1 to ~q1 due to T̂tot being symmetric. For a given ~p1 = (px,1, py,1) and

~q1 = (qx,1, qy,1), the elements of the Jones matrix T̂tot are

atot =
qx,1q̄y,1 − p̄x,1py,1

s

btot =
|px,1|2 −|qx,1|2

s

dtot =
px,1p̄y,1 − q̄x,1qy,1

s

s = px,1q̄y,1 −py,1q̄x,1

(4.2)

When s is equal to zero, multiple solutions exist and are given by

atot =
qx,1

px,1
(1−|py,1|2(1+e iφ))

btot = p̄x,1qy,1(1+e iφ)

dtot =
qy,1

py,1
(1−|px,1|2(1+e iφ)),

(4.3)

where φ can be any real number. The coefficient s can be equal to zero only if |px,1| and |py,1|
are equal to |qx,1| and |qy,1| respectively. Hence, if px,1 or py,1 is equal to zero, the expressions

(4.3) are still valid. For example, if px,1 is zero, qx,1 is also zero, |py,1|2 is one and atot becomes
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atot = e jφ.

The case s = 0 is an interesting case because the phase of the two orthogonal polarization

states ~q1 and ~q2 can be controlled independently. This case has already been studied in the

literature [36]. Compared to previous work, the formula provided here can be directly applied.

If s is equal to zero, using the expressions (4.3), the matrix T̂tot can be written as

T̂tot = e i (β−α)

(
e iα[1− sin2(σ)(1+e iφ)] sin(σ)cos(σ)(1+e iφ)

sin(σ)cos(σ)(1+e iφ) e−iα[1−cos2(σ)(1+e jφ)]

)
, (4.4)

for

~p1 =
(

cos(σ)

e iα sin(σ)

)
~q1 = e iβ

(
cos(σ)

e−iα sin(σ)

)
. (4.5)

All the polarization state pairs ~p1 and ~q1 that satisfy the condition s = 0 with px,1 real, can be

expressed in the form shown in equation (4.5). For a polarization state ~p2 orthogonal to ~p1,

the output polarization state ~q2 is

~p2 =
(

sin(σ)

−e iα cos(σ)

)
⇒ ~q2 = e i (β+φ)

(
−sin(σ)

e−iα cos(σ)

)
. (4.6)

The polarization states that are generally used in the literature and fulfill the condition s = 0

are linear polarized lights, whose polarization angle does not change after going through the

metasurface [40–42], and circular polarized lights whose handedness changes while going

through the metasurface [36, 40].

Once the desired matrix T̂tot is found, the orientation of the cylinder, given by the angle θ,

and the phase accumulations for both eigen-modes, given by ϕ1 and ϕ2, are needed. Those

parameters can be obtained by performing a diagonalization of the matrix T̂tot since T̂tot can

be described in the form shown in equation (4.1). However, it exists a direct expression of the

parameters θ, ϕ1 and ϕ2, which are
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θ = 1

2
atan2(s1|btot |2, |Re{atot b̄tot }|)

ϕ1 = π

2
+arg(btot )−∆ϕ1 ϕ2 = π

2
+arg(btot )+∆ϕ2

∆ϕ1 = atan2(s1r1, Im{atot b̄tot }) ∆ϕ2 = atan2(s1r2, Im{dtot b̄tot })

r1 =
√

Re{atot b̄tot }2 +|btot |4 r2 =
√

Re{dtot b̄tot }2 +|btot |4

s1 =
1 if Re{atot b̄tot } ≥ 0

−1 otherwise

(4.7)

In theory, ∆ϕ1 is equal to ∆ϕ2 and r1 is equal to r2. Hence, ∆ϕ1 and ∆ϕ2 are referred as ∆ϕ

and r1 and r2 are referred as r . However, when btot is nearly zero, numerical instability may

occur and the two separate definitions for ∆ϕ and r guarantee the convergence as btot goes to

zero, where the parameters θ, ϕ1 and ϕ2 are chosen to be

θ = 0

ϕ1 = arg(atot )

ϕ2 = arg(dtot )

(4.8)

When changing continuously the elements in the matrix T̂tot , two types of discontinuities in

the parameters θ, φ1 and φ2 can occur. The first type of discontinuity is the wrapping of the

phase accumulations φ1 and φ2. The second type of discontinuity is when θ goes from π/4 to

−π/4 or vice versa. When removing the discontinuity on θ by adding or subtracting π/2 to θ,

the value of φ1 and φ2 must be swapped.

For metasurfaces, the coefficient ∆ϕ determines how difficult the fabrication of the metasur-

face is since the height h of the structure is given by

2∆ϕ=ϕ2 −ϕ1 = (γ2 −γ1)h, (4.9)

where γ1 and γ2 are the propagation constants of the eigen-modes in the metasurface. Adding

the same phase toϕ1 andϕ2 adds a constant phase to the transmitted polarized state, which is

usually not taken into account for the design of ideal metasurfaces. For phase-only holograms,

the situation is different and, in general, in order to vary the phase after the metasurface from

0 to 2π, the height is given by

h(γmax −γmi n) = 2π (4.10)

where γmax and γmi n are the smallest and largest propagation constant that can be obtained.

In the case s = 0, the right hand-side of equation (4.10) can be reduced down to π, which is the
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minimum reached by the metasurfaces based on the Pancharatnam-Berry phase if the phase

of the transmitted light is designed for a single incident polarization. This is discussed in

section 4.2.2. The proofs for the equations in this section are given in sections 4.7.1 and 4.7.2.

4.2.1 Comparison between ideal and real single-mode metasurfaces

In the section above, a set of equations is proposed, which allows to compute the orientation

of a structure and the phase accumulation of the two eigen-modes present in the metasurface

directly from a desired transformation of polarization states. However, those equations are

valid only for ideal metasurfaces. In this section, two different metasurfaces are analyzed for

a wavelength of 1550 nm, which is commonly used in telecommunication, in order to give

an estimation on how a real metasurface differs from an ideal metasurface. By scaling the

dimensions accordingly, the results are in the same range for other wavelengths.

Two sets of quantities are analyzed for the estimation of the difference between a real metasur-

face and an ideal metasurface. First, the reflections at the two interfaces of both metasurfaces

are given. It should be zero for an ideal metasurface. Second, for each eigen-mode of the

metasurface, the polarization of the incident plane wave that excites only this eigen-mode is

computed along with the polarization of the transmitted plane wave. For an ideal metasurface,

the incident and transmitted plane waves have the same linear polarization and the difference

of the polarization angle of the incident plane waves that excite a single eigen-mode is 90°.

From this analysis, the angle of polarization of the incident plane waves that excite a single

eigen-mode is compared with the angle of rotation of the cylinders along with the effect of

this geometrical rotation on the propagation constant of the eigen-modes and the reflection

efficiency at the interfaces. This is important in the design point of view since it gives an

estimation of the error due to the assumption that the angle θ given in section 4.2 is the same

as the angle of rotation of the structure.

Both metasurfaces are composed of silicon cylinders on a glass substrate, but their cross-

sections, shown in figs. 4.2a and 4.2b, are different. Those two metasurfaces are chosen for the

following reasons. The structures are made of silicon because it is a common material with one

of the highest refractive index for a dielectric material in the near-infrared region. Therefore,

the use of silicon offers a large range of propagation constants due to its high refractive index,

and, at the same time, it leads to higher reflection at the interfaces than a material with a lower

refractive index. Hence, it behaves less as an ideal metasurface than a metasurface made of

a material with a lower refractive index. For the substrate, it is a common practice to use a

low refractive index material instead of a high refractive index material because the lattice

constant can be larger before the first order propagates and it also increases the transmission

efficiency of the metasurface. The dimension of the unit cell is set to 650 nm because, if it is

larger, the metasurface may become a multi-mode metasurface, which behaves differently

than a single-mode metasurface as shown in chapter 5.

The cross-section of the first metasurface is an ellipse, where the length of the axis is 500 nm

93



Chapter 4. Single-mode metasurface

and 150 nm. This cross-section is shown in fig. 4.2a and it is one of the simplest structures that

produces a difference in the propagation constant of the two eigen-modes in a metasurface.

The cross-section of the second metasurface, shown in fig. 4.2b, is an asymmetric v-shape,

where the arms length are 500 nm and 350 nm. The angle between those arms is 45° and they

are 100 nm wide. This cross-section has been chosen to see how it can deviate from the second

property of an ideal metasurface, which is the existence of linear eigenpolarizations that excite

a single eigen-mode in the metasurface each. If it is possible to deviate sufficiently from this

property, a binary metasurface can be used for applications that require an asymmetric Jones

matrix. As shown in this section, this deviation is negligible.

An ideal metasurface has no reflection at the two interfaces of the metasurface. For the two

considered metasurfaces, the reflection efficiencies at the two interfaces of the metasurface

for each eigen-mode and for different angles of rotation of the cylinders are given in figs. 4.2c

and 4.2d, where eigen-mode 1 is the eigen-mode with the highest propagation constant. The

propagation constant of both eigen-modes is shown in fig. 4.3b. In order to compute the

reflection efficiencies, an incident eigen-mode or plane wave is required. For the second

interface, the incident eigen-mode used to compute the reflection efficiency related to the

eigen-mode m is obviously the eigen-mode m. For the first interface, the incident plane

wave used to compute the reflection efficiency related to the eigen-mode m is the plane wave

that excites only the eigen-mode m. Those reflection efficiencies can be directly obtained

from the coupling matrices at the two interfaces when the eigen-modes of the metasurface

are orthonormalized. The reflection efficiencies shown in figs. 4.2c and 4.2d have the same

magnitude. In order to estimate the effect of those reflections on the overall transmitted

efficiency, the metasurface is described as two independent Fabry-Pérot cavities, one per

polarization. This description is further discussed in section 4.4. In a Fabry-Pérot cavity, the

minimum and maximum transmission efficiencies Tmi n and Tmax are given by

Tmi n = (1−R1)(1−R2)

(1+p
R1R2)2

Tmax = (1−R1)(1−R2)

(1−p
R1R2)2

, (4.11)

where R1 and R2 are the reflection efficiencies at the first and second interface respectively.

Therefore, in the case of the ellipse, the transmission efficiencies are between 89.2% and 97.4%

if only the eigen-mode 1 is excited and 96.6% and 98.9% if only the eigen-mode 2 is excited. In

the case of the v-shape, the transmission efficiencies are similar: between 91.3% and 97.4% for

eigen-mode 1 and between 96.1% and nearly 100% for eigen-mode 2.

By comparing figs. 4.2c and 4.2d and fig. 4.3b, a relationship between the propagation constant

of the eigen-modes and the reflection efficiencies can be seen. The propagation constant

of the eigen-mode 1 for both metasurfaces is above the propagation constant of a plane

wave propagating in glass, which is 5.88 1/µm. Therefore, the reflection efficiency at the

second interface is higher than the reflection efficiency at the first interface. Moreover, the

reflection efficiencies are higher in the case of the ellipse than in the case of the v-shape

since the propagation constant in the case of the ellipse is higher. For the eigen-mode 2, its
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Figure 4.2 – a) Cross-section of the first metasurface. It is an ellipse made of silicon and the
surrounding is air. The length of the axis is 500 nm and 150 nm. θ is the angle of rotation
of the ellipse with respect to the x-axis. b) Cross-section of the second metasurface. It is an
asymmetric v-shape made of silicon and the surrounding is air. The length of the arms is
500 nm and 350 nm and they are separated by an angle of 45°. The arms thickness is 100
nm. The angle between the x-axis and the small arm is θ+43.2◦. c) Reflection efficiencies
for different angles of rotation at the interfaces of a metasurface composed of cylinders with
elliptical cross-section for both eigen-modes. The first interface is the interface between glass
and the metasurface. The second interface is the interface between the metasurface and air.
d) Reflection efficiencies for different angles of rotation at the interfaces of a metasurface
composed of cylinders with v-shaped cross-section for both modes. The scales of the axis is
the same as in fig. 4.2c.
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propagation constant is between the propagation constant of a plane wave in air, which is

4.05 1/µm, and in glass. Hence, it is more difficult to predict which interface reflects the most,

especially that, for the case of the v-shape, the reflection efficiency at the first interface is still

higher even if the propagation constant of the eigen-mode is closer to the one for the glass.

Since the propagation constant of the eigen-mode 2 in the case of the ellipse is lower than

in the case of the v-shape, the reflection efficiency is lower at the first interface and higher

at the second interface. This relationship can be understood with the concept of effective

permittivity, but such concept may not be accurate since a metamaterial or a metasurface can

be described accurately by effective parameters only if the lattice constant is much smaller

than the wavelength, which is usually not the case for metasurfaces in the near-infrared regime.

If a unit cell is designed in order to have an eigen-mode with a higher propagation constant

than those presented here, the transmission efficiency related to this eigen-mode is expected

to decrease.

0 45 90 135 180

 [°]

-0.8

-0.4

0

0.4

0.8

1.2

 [
°]

Ellipse

V-shape

(a)

0 45 90 135 180

 [°]

4.5

5

5.5

6

6.5

7

7.5

P
ro

p
a
g
a
ti
o
n
 c

o
n
s
ta

n
t 
[1

/µ
m

]

1
 (Ellipse)

2
 (Ellipse)

1
 (V-shape)

2
 (V-shape)

(b)

Figure 4.3 – a) Difference between the polarization angle of the plane wave that excites only
eigen-mode 1 and the angle of rotation of the cylinders θ with respect to θ b) Propagation
constant of the eigen-modes with respect to the angle of rotation of the cylinders θ.

The second property of an ideal metasurface is that the eigenpolarizations are linear and excite

a single eigen-mode each. In order to check if a metasurface has this property, the incident

plane waves that excite a single eigen-mode of the metasurface have to be orthogonal and

linearly polarized. Moreover, the transmitted plane waves excited by the eigen-modes of the

metasurface also have to be orthogonal and linearly polarized with the same polarization

angle as the incident plane wave mentioned earlier. The polarization states are obtained from

the coupling matrices at both interfaces, which is described in terms of the weight of the TM

and the TE plane waves. Using the expressions (3.23) and (3.24) of the TM and TE plane waves,

the complex amplitudes of the tangential electric field Ex and Ey are obtained. Then, the

polarization state is given by
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θp = atan2(2Re{Ēx Ey }, |Ex |2 −|Ey |2)

tan
(
χ
)= b

a

a =
√

r +∆
2

b =
√

r −∆
2

r = |Ex |2 +|Ey |2 ∆= |E 2
x +E 2

y |,

(4.12)

where θp is the tilt of the polarization ellipse, which is the angle between the x-axis and the

major axis, χ is the ellipticity angle and a and b are the length of the major and minor half-axis

respectively. Usually, the expression of tan
(
2θp

)
is given instead of θp , which creates practical

difficulties since the computed θp can be the angle between the x-axis and the minor axis. The

expression of θp provided in (4.12) solves this issue and it is based on the expression of the

Stokes parameters (section 6.1 of [92]).

For the considered metasurfaces, the ellipticity angle is maximum 0.17° for the four different

polarization states in the case of the ellipse and maximum 0.45° in the case of the v-shape.

Hence, the polarization states can be considered as linearly polarized. Then, the difference

between the polarization angle θp and the angle of rotation of the cylinder θ, called ∆θ in

fig. 4.3a, is computed. The reference for the rotation angle θ is chosen such that, when θ is

zero, the plane wave that excites only the eigen-mode 1, the eigen-mode with the highest

propagation constant, is approximately x-polarized. In fig. 4.3a, the difference ∆θ between

the polarization angle of the incident plane wave that excites only the eigen-mode 1, and

the rotation angle is plotted. For the plane waves that excite a single eigen-mode of the

metasurface, the difference of polarization angle between the incident polarization state and

the transmitted polarization state is maximum 0.008° in the case of the ellipse and maximum

0.051° in the case of the v-shape. Such low values can be explained by the small difference of

the refractive index between the substrate (glass) and the superstrate (air), since this value

has to be zero for a symmetric system, meaning that the superstrate would be glass instead

of air. For an ideal metasurface, the two plane waves that excite a single eigen-mode of the

metasurface are orthogonal, meaning that the difference of polarization angle is 90°. In the

considered metasurfaces, the deviation from this difference is maximum 0.01° in the case of

the ellipse and maximum 0.19° in the case of the v-shape. Even if those values are small, the

deviation from the orthogonal polarization state is larger by nearly an order of magnitude

compared to the difference between the polarization angle of the incident and transmitted

plane waves. However, those are negligible effects and the Jones matrix that describes a

metasurface can be considered as symmetric.

The last point of this section is to discuss if it is reasonable to simulate a single metasurface

and, then, to deduce the eigenpolarizations of the system, the propagation constants and

the reflections at the interfaces of the metasurface with rotated cylinders. From figs. 4.2c,

4.2d, 4.3a, and 4.3b, it can be done if an error of a few percents is allowed. This error may

increases if the dimensions of the cylinders are larger since the eigen-modes propagating

97



Chapter 4. Single-mode metasurface

inside the cylinders feel more the presence of their neighbors. Another conclusion from those

plots is that there is no significant advantage to use complex cross-sections in the design of

single-mode metasurfaces.

4.2.2 Design of metasurface-based hologram

A metasurface-based hologram is created by an array of cylinders with different cross-sections,

where each cross-section is designed such that it gives a specific phase accumulation and

change in polarization states. Such well-known dielectric metasurfaces that generate an

hologram are based on cylinders with circular cross-section with varying diameters such

as [26–30] or based on the Pancharatnam–Berry phase as shown in [31–35, 38]. It is also

possible to design a metasurface that generates two different holograms for two orthogonal

polarization states [36, 40–42], but it is more difficult to fabricate such metasurface due to

higher aspect ratio. In this section, the important elements to consider when designing such

metasurfaces are provided and the design of four different groups of hologram-generating

metasurfaces are discussed. Those groups are:

• polarization-independent metasurfaces

• metasurfaces designed for a single polarization state for a phase-only hologram

• metasurfaces that generate two phase-only holograms for two orthogonal polarization

states

• metasurfaces designed for a single polarization state for a phase and amplitude holo-

gram

First of all, in the design of such optical devices, it is assumed that the transmission function

at the location of the cylinder is the same as if the metasurface is periodic, meaning that

the Jones matrix at the location of each cylinder is given by the Jones matrix of the periodic

metasurface composed of this cylinder. Then, all the required Jones matrices are computed

using, for the non-obvious case, equations (4.2) and (4.3), along with the associated ideal

metasurface, which is described by the two phase delays ϕ1 and ϕ2 and the rotation angle θ

and are given by equations (4.7) and (4.8).

From those sets of ideal metasurfaces, there are a few critical metasurfaces, which are those

with the smallest phase accumulation, the largest phase accumulation and the largest phase

accumulation difference∆ϕ. The metasurfaces that behave as those critical ideal metasurfaces

are composed with cylinders with the largest aspect ratio, making them difficult to fabricate.

For a metasurface based on cylinders with circular cross-section, the metasurface with the

smallest phase accumulation is the cylinder with the smallest diameter, and the metasurface

with the largest phase accumulation is the cylinder with the largest diameter, which means the
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4.2. Design of ideal single-mode metasurfaces

metasurface which has the smallest gap with its neighbors and which is also the most likely to

be multi-mode.

A large phase accumulation difference is also an issue. As an example, the cylinders with

the elliptical cross-section from section 4.2.1, which is shown in fig. 4.2a, is considered. The

propagation constants of the two eigen-modes are 4.54 1/µm and 7.03 1/µm. For cylinders

with a diameter of 500 nm, which is the length of the long axis of the ellipse shown in fig. 4.2a,

the propagation constant is 11.3 1/µm, but it is a multi-mode metasurface, meaning that the

diameter and the lattice constant are too large for a single-mode metasurface. For the same

lattice constant, the diameter has to be reduced around 360 nm in order to have a single-mode

metasurface and the propagation constant is then 8.30 1/µm. For cylinders with a diameter of

150 nm, which is the length of the small axis of the ellipse shown in fig. 4.2a, the propagation

constant is 4.24 1/µm. Therefore, the difference of the propagation constant between the

modes in the cylinder with those two different diameters is larger than the difference of

the propagation constant of the modes in the cylinder with elliptical cross-section. Those

differences impact the height of the cylinder since, if the difference between the propagation

constants is smaller, the cylinder has to be taller for the same desired difference in phase

accumulation.

Polarization-independent metasurfaces

For the design of polarization-independent metasurfaces for phase-only holograms, any

unitary symmetric Jones matrix can be chosen at first and the phase accumulation is created

by adding this phase delay to ϕ1 and ϕ2. Of course, in order to minimize the fabrication

difficulties, the difference betweenϕ1 andϕ2 has to be zero, which means that the metasurface

composed of cylinders with circular cross-section with varying diameter is the best candidate.

However, if the desired output is given by its angular spectrum and this angular spectrum is

central symmetric, there is a better candidate as discussed below.

Phase-only hologram for a single polarization state

For metasurfaces designed for a single polarization state for phase-only holograms, if the

input and output polarization states are fixed and the parameter s, given in equation (4.2),

is not zero, then, equation (4.2) gives the only possible solution, which is also a polarization

independent metasurface. However, if the parameter s is zero, the Jones matrix given in (4.4)

can be used, where the parameterφ can be chosen arbitrarily since it does not affect the output

polarization state ~q1. If the input polarization state ~p1 is elliptically polarized, the typical

relationship between the parameter φ and the phase accumulations ϕ1 and ϕ2 is shown in

fig. 4.4a, where the input polarization state ~p1 is given by equations (4.5) with σ=α= 45◦. The

color of the plot is the same for ϕ1 and ϕ2 because they can be interchanged by adding 90◦ to

the rotation of the cylinder. From the matrix in (4.4), as the phase of the output state ~q1, called

β, increases, the phase β is added to the functionϕ1(φ) andϕ2(φ) as shown in fig. 4.4a. Hence,
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Figure 4.4 – a) The phase accumulations ϕ1 and ϕ2 with respect to the parameter φ for three
different values ofβwhen the input and output polarization states are given by the expressions
in (4.5) with σ=α= 45◦, which correspond to elliptical polarized light. ∆ϕmi n and ∆ϕmax are
respectively the minimum and maximum difference of the phase accumulations of the two
propagating modes. b) The phase accumulations ϕ1 and ϕ2 with respect to the parameter
φ for β = 45◦ when the input and output polarization states are given by the expressions
in (4.5) with σ = 45◦ and α = 0◦, which correspond to linear polarized light. c) The phase
accumulations ϕ1 and ϕ2 with respect to the parameter φ for β = 0◦ when the input and
output polarization states are given by the expressions in (4.5) with σ= 45◦ and α= 90◦, which
correspond to circular polarized light. d) Cross-section of the cylinders that transforms a
left-hand circular polarized beam into a right-hand circular polarized beam with a phase
delay of β and a right-hand circular polarized beam into a left-hand circular polarized beam
with a phase delay of β+φ, assuming that the phase accumulation is an affine function of
the length of the ellipse main axis, the phase accumulation is 0◦ for the smallest ellipse main
axis and the phase accumulation is 360◦ for the largest ellipse main axis. The y-axis is chosen
such that the cross-sections on a horizontal line are used in a metasurface based on the
Pancharatnam-Berry phase.
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4.2. Design of ideal single-mode metasurfaces

for every phase β, the parameter is chosen such that ϕ1 and ϕ2 are as close as possible of the

minimum phase accumulation that can be obtained and ∆ϕ is also minimized. In fig. 4.4a,

the minimum phase accumulation is set to 0◦ but it can be any phase.

There are two extreme strategies in order to find the parameter φ for every β. The first strategy

is to choose φ such that the phase accumulation difference ∆ϕ is minimum. In that case, φ is

180◦ (fig. 4.4a). This is obviously the best strategy when the incident light is linearly polarized,

which gives a metasurface composed of cylinders with circular cross-section. This case is

illustrated in fig. 4.4b where α= 0◦, which corresponds to linearly polarized light, and β= 45◦.

The second strategy is to chose φ such that one of the phase accumulation, ϕ1 or ϕ2, is kept to

zero. In fig. 4.4a, the worst case for this strategy is for β= 0◦, where the phase accumulation

difference ∆ϕ is equal to ∆ϕmax .

This second strategy works best in the case shown in fig. 4.4c, where σ= 45◦ and α= 90◦. In

this case, the incident light is left-hand circular polarized, the transmitted light is right-hand

circular polarized and φ is given by

φ=−2β. (4.13)

From this strategy, the phase accumulations ϕ1 and ϕ2 are independent of the phase β,

meaning that the cylinder dimensions do not change. The phase β is produced by the rotation

θ of the cylinder: β is proportional to 2θ. The cross-section of the cylinders for the different

phase β is shown in the first horizontal line in fig. 4.4d. In the literature, it is known as

the geometrical or the Pancharatnam–Berry phase [134, 135]. Metasurfaces based on the

geometrical phase have another interesting property. If the transfer function for a left-hand

circular polarized incident light is given by t (x, y), the transfer function for a right-hand circular

polarized incident light is t̄ (x, y), due to equations (4.6) and (4.13). In many applications, the

output is characterized by the intensity at the far-field. In other words, the function I (kx ,ky )

used to characterized the output is the radiant intensity and is given by the Fourier transform

of the transfer function t (x, y):

I1(kx ,ky ) = |F {t (x, y)}(kx ,ky )|2. (4.14)

The Fourier transform has the following property related to complex conjugation:

F {t̄ (x, y)}(kx ,ky ) =F {t (x, y)}∗(−kx ,−ky ). (4.15)

Then, the radiant intensity I2(kx ,ky ) due to a metasurface described by the transfer function

t̄ (x, y) is related to I1(kx ,ky ) by
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I2(kx ,ky ) = I1(−kx ,−ky ). (4.16)

Hence, if the metasurface based on the geometrical phase produces a certain pattern in the

far-field for left-hand polarized light, this metasurface produces a central symmetric version

of this pattern for right-hand polarized light. If the pattern in the far-field is already central

symmetric, the metasurface mimics a polarization-independent metasurface. Metasurfaces

based on the geometrical phase can easily be designed to split left-hand polarized light from

right-hand polarized light: by designing a metasurface that deflects a left-hand polarized

beam to, for example, the left, this metasurface deflects a right-hand polarized beam to the

right.

To conclude on metasurfaces designed for a single polarization state for a phase-only holo-

gram, two different strategies have been discussed. The first strategy minimized ∆ϕ and it is

optimal for linearly polarized light with metasurfaces composed of an array of cylinders with

circular cross-section. The second strategy minimized the largest phase accumulation ϕ and

it is optimal for circular polarized light with metasurfaces based on the geometrical phase. By

comparing those two optimal solutions, the metasurface based on the geometrical phase is

easier to fabricate since, deduced from the elements given at the beginning of this section, it is

easier to produce a difference of phase accumulations ∆ϕ of 180◦ than varying both phase

accumulations ϕ1 and ϕ2 from 0◦ to 360◦ even if ∆ϕ is zero.

Two phase-only holograms for two orthogonal polarization states

For metasurfaces that generate two holograms for two orthogonal polarization states, the only

degree of freedom is the input polarization state since the parameter s given in equation (4.2)

has to be zero, giving the output polarization state. Once an input polarization state is fixed,

meaning that the parameters σ and α from equation (4.5) are known, the phase of the output

polarization state ~q1 is given by β and the phase of the output polarization state ~q2 is given by

β−φ. Therefore, the Jones matrices describing the cylinders that compose the metasurface are

obtained from (4.4). Metasurfaces that can generate two different holograms are particularly

challenging to fabricate because the phase accumulation ϕ varies across the cylinders from

0◦ to 360◦ with the difference of phase accumulations ∆ϕ that can reach 180◦ or more. From

figs. 4.4a to 4.4c, it can be deduced that the best choice of input polarization is the circular

polarized one since the maximum ∆ϕ is 180◦ and the cross-section of the cylinders are given

in fig. 4.4d. The other possibilities of input polarization state lead to a higher ∆ϕ.

Phase and amplitude holograms for a single polarization state

In metasurfaces designed for a single polarization state for phase and amplitude holograms,

one of the output polarization state is filtered out by a polarizer, giving the possibility of

varying the amplitude of the transfer function of the whole system. Compared to metasurfaces
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Figure 4.5 – a) The phase accumulations ϕ1 and ϕ2 with respect to the phase delay κ of
the filtered polarization state for three different values of ς when the input beam is left-
hand circular polarized and the kept output beam is right-hand circular polarized. b) Cross-
section of the cylinders that transforms a left-hand circular polarized beam into a right-hand
circular polarized beam with a phase delay of β and an amplitude of cos(ς), assuming that
phase accumulation is an affine function of the length of the ellipse main axis, the phase
accumulation is 0◦ for the smallest ellipse main axis and the phase accumulation is 360◦ for
the largest ellipse main axis. c) The phase accumulation ϕ1 and ϕ2 with respect to phase delay
κ of the filtered polarization state for three different values of ς when the input beam the
output beam kept is linear polarized with the same polarization angle.
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discussed in this section, the parameter φ is not a degree freedom because it requires that the

parameter s given in equation (4.2) remains zero, fixing the output polarization state. However,

the phase of the output polarization state that is filtered out, called here κ, is now a degree of

freedom which can be used in a similar way as the parameter φ illustrated by figs. 4.4a to 4.4c.

The output polarization state ~q can be written as

~q = e iβ(cos(ς)~q1 +e iκsi n(ς)~q2), (4.17)

where ~q1 is the polarization state of the desired output, ~q2 is the polarization state that is

filtered out and ς and β control respectively the amplitude and the phase after the metasurface

for the transmitted light with polarization described by ~q1. The range of ς is from 0, where the

incident light is fully transmitted to polarization state ~q1, to 90◦, where the incident light is

fully transmitted to polarization state ~q2.

If the incident light is left-hand circular polarized and the desired output is right-hand circular

polarized, meaning that right-hand polarized light is filtered out using usually a circular

polarizer, the phase accumulations ϕ1 and ϕ2 are given by fig. 4.4c when ς is zero, since the

parameter s is zero in that case, and by fig. 4.5a otherwise. For ς = 90◦, ϕ1 is equal to ϕ2

meaning that the two lines representing ϕ1 and ϕ2 are superimposed. In both figures, the

phase β is zero. For a different phase β, this phase is added to ϕ1 and ϕ2 and the plots shown

in figs. 4.4c and 4.5a are shifted upward as shown in fig. 4.4a. In the general case, κ has to be

determined for each value of β and ς. In the case where the incident light is left-hand circular

polarized, the chosen strategy is to find κ such that

ϕ2 +ϕ1

2
= π

2
(4.18)

Hence, κ is given by

κ= π

2
−β (4.19)

and the cross-section of the cylinders for different β and ς is given in fig. 4.5b.

If the incident light and the desired output are linearly polarized along the x-axis, the phase

accumulations ϕ1 and ϕ2 in function of κ for different ς are given in fig. 4.5c. In that case,

there is no simple strategy in order to minimize the thickness of the metasurface, but the

obtained metasurface is more difficult to fabricate than in the case where the incident light is

left-hand circular polarized.
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4.3. Design of a pair of ideal single-mode metasurfaces

4.3 Design of a pair of ideal single-mode metasurfaces

As shown in section 4.2, the Jones matrix describing an ideal metasurface is symmetric, which

means a reduced set of optical functions can be performed. In order to perform any optical

function described by a non-symmetric Jones matrix such as polarization rotation, two ideal

metasurfaces are required. In this section, all the possible pairs of ideal metasurfaces are

provided for a given Jones matrix. From the different solutions and the knowledge from

section 4.2, it is possible to find the best starting point for a given functionality. In practice,

an isotropic homogeneous material should separate the two metasurfaces in order to make

the total response insensitive to misalignment when the metasurfaces are periodic, and less

sensitive otherwise. The thickness of this separating material adds a constant phase to the

response of the system. This phase is not included in this section because it is usually not

needed, and it can be included in the Jones matrix of the ideal metasurfaces if necessary.

The two ideal metasurfaces are described by the Jones matrices T̂1 and T̂2, where the matrices

T̂1 and T̂2 describe the first and second metasurface respectively. The symmetric matrices T̂1

and T̂2 are given by

T̂1 =
(

a1 b1

b1 d1

)
T̂2 =

(
a2 b2

b2 d2

)
. (4.20)

The total response of the system is described by the matrix T̂tot , given by

T̂tot = T̂2T̂1 =
(

atot btot

ctot dtot

)
. (4.21)

The coefficients atot , btot , ctot and dtot are given and, since T̂tot is unitary, they fulfill equa-

tions (4.40). The unknowns are a1, b1, d1, a2, b2 and d2 and, if btot and ctot are different than

zero, a2, b2 and d2 are given by

a2 = (zs s + zor )e iφ

b2 = r e iφ

d2 =−(z̄s s + z̄or )e iφ,

(4.22)

where φ can be any real number and r is a real number in the interval [0,rmax ]. a1, b1 and d1

are expressed in terms of a2, b2 and d2:

a1 = ctot b̄2 +atot ā2

b1 = dtot b̄2 +btot ā2

d1 = btot b̄2 +dtot d̄2.

(4.23)
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Multiple expressions exist for zs , zo , s and rmax but each of those expressions diverges for

some btot and ctot . Therefore, the following expressions of zs , z0 and rmax are chosen as

zs =
i (btot + c̄tot ) if Re

{
btot
c̄tot

}
≥ 0

btot − c̄tot otherwise

zo =


atot−dtot
btot+ctot

if Re
{

btot
ctot

}
≥ 0

atot−dtot
ctot−btot

otherwise

rmax =


√
|zs |2

|zs |2+|zo |2 Im{zs }2 if Re
{

btot
ctot

}
≥ 0√

|zs |2
|zs |2+|zo |2 Re{zs }2 otherwise

.

(4.24)

The parameter s is the root of a quadratic equation and is expressed as

s =
−cbr ±

√
c2

br 2 +|zs |2(1− (|zo |2 +1)r 2)

|zs |2

cb =
Re{zo}Re{zs} if Re

{
btot
ctot

}
≥ 0

Im{zo} Im{zs} otherwise
.

(4.25)

Hence, for every r andφ, there are two distinct solutions except at r = rmax , where s is a double

root, and at r = 0, which is a degenerate case. In order to optimize a system composed of two

metasurfaces, it is usually only r which is changed because φ represents simply a constant

phase created by the second metasurface, which is canceled by the first metasurface. For the

case r = 0, taking the solution related to the second root instead of the first root is equivalent

as adding π to φ. Hence, choosing a single value for s and varying φ from 0 to 2π are enough

to get all the possible solutions.

For the case btot = ctot = 0 and atot = dtot , the solution is

a2 =
√

1− r 2e iφ1

b2 = r e i (φ1+φ2)/2

d2 =−
√

1− r 2e iφ2 ,

(4.26)

where φ1 and φ2 can be any real number and r is a real number in the interval [−1,1]. a1, b1

and d1 are obtained from equations (4.23). For the case btot = ctot = 0 and atot 6= dtot , the

solution is also given by equations (4.26) and (4.23) except that r is zero, meaning that b1 and

b2 are also zero. The additional degree of freedom when atot = dtot is due to the invariance of

the system to a rotation. Hence, the case btot = ctot = 0 is a trivial case where the total phase

shift is given by the sum of the phase shift from both ideal metasurfaces.
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Two examples that illustrate the use of the formula presented in this section are given in

section 4.3.1, where a polarization rotator and a pseudo-quarter-wave plate are designed. The

Jones matrix describing such functions is not symmetric. Hence, a minimum of two ideal

metasurfaces are required. The proofs of the different formulas presented in section are given

in section 4.7.3.

4.3.1 Design of a polarization rotator and a pseudo-quarter-wave plate

The equations presented in section 4.3 find all the pair of ideal metasurfaces that provide a

system described by any desired unitary Jones matrix. Such system is shown in fig. 4.6a. If

the Jones matrix is not symmetric, it is required to have at least two metasurfaces in order

to perform this function. However, it can still be useful that two metasurfaces are used for

a system described by a symmetric Jones matrix, either to make the metasurfaces easier to

fabricate or to combine two metasurfaces that does not provide the desired function when

used separately. For wave plates, which are analogous to metasurfaces, it has been done based

on the Poincaré sphere concept [130].

In this section, the technique proposed in section 4.3 is applied for the design of two different

elements. The first one is a polarization rotator that rotates the polarization of the incoming

light by 90◦. It can be considered as a degenerate case since its functionality is invariant to

a rotation of the whole system around the propagation direction, meaning that the solution

of equations (4.22) and (4.23) describes this rotation invariance instead of different pairs of

metasurfaces. The second element is called in this work a pseudo-quarter-wave plate because

it transforms a diagonally linear polarized light into a circular polarized light as a quarter-wave

plate, but it transforms a x-polarized light into a y-polarized light and vice versa, which is not

the case for a quarter-wave plate. The polarization rotator and the pseudo-quarter-wave plate

are described by the Jones matrices T̂pr and T̂qw given by

T̂pr =
(

0 −1

1 0

)
T̂qw =

(
0 1

i 0

)
. (4.27)

For both elements, the design technique is the same. First, the elements of the Jones matrix

describing each metasurface are obtained from equations (4.22) and (4.23) for every |b2|
between zero and rmax , which is given in (4.24). It gives two sets of solutions since the

parameter s, given in (4.25), is a solution of a quadratic equation. Once the coefficients of the

Jones matrix are obtained, the difference of the phase accumulations inside the metasurface,

called ∆ϕ, is computed from its expression in (4.7). This is an important quantity because the

thickness of the metasurface is proportional to∆ϕ as shown in equation (4.9). On the contrary,

the phase accumulation for each eigen-mode, ϕ1 and ϕ2, is irrelevant because a constant

phase delay in the response of the metasurface is not important in the cases considered in

this section. In order to realize a hologram with two metasurfaces, the value of ϕ1 and ϕ2 has

to be considered. Finally, the orientation of each metasurface θ1 and θ2, shown in fig. 4.6a,
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Figure 4.6 – a) Drawing of a system composed of two metasurfaces. The metasurfaces are
drawn as silicon lines on a glass substrate, meaning that the propagation constant of the eigen-
mode which is excited by an incident light polarized along the silicon lines is larger than the
propagation constant of the other eigen-mode. Hence, the dashed arrows represent the fast-
axis. b) Relationship between |b2| and the orientation of the fast axis for both metasurfaces,
called θ1 and θ2, for the polarization rotator. Solution 1 and solution 2 refer to the two solutions
obtained from the parameter s expressed in (4.25). c) Relationship between |b2| and the phase
accumulation difference ∆ϕ for both metasurfaces for the pseudo-quarter-wave plate. d)
Relationship between |b2| and the orientation of the fast axis for both metasurfaces for the
pseudo-quarter-wave plate.
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is computed from equation (4.7). θ1 and θ2 are chosen as the angle between the x-axis and

the fast axis. An incident plane wave polarized along the fast axis excites only the eigen-mode

with the lowest propagation constant.

For the polarization rotator, the value of ∆ϕ is always 180◦ for both metasurfaces. Hence,

the two metasurfaces always have to act as two half-wave plates. This is also true for any

polarization rotator. The rotation angle of the two metasurfaces θ1 and θ2 is shown in fig. 4.6b

and the difference between θ1 and θ2 is always 45◦, which is the rotation of polarization

divided by two. However, θ1 and θ2 cover a range of only 90◦, which should be 180◦ since the

system is rotation invariant. The remaining 90◦ is obtained from the property of half-wave

plates according to which rotating a half-plate plate by 90◦ is equivalent to adding a phase

delay of 180◦. Therefore, rotating both metasurfaces by 90◦ does not affect the response of the

whole system.

For the pseudo-quarter-wave plate, the relationships between |b2|, ∆ϕ, θ1 and θ2 are shown in

figs. 4.6c and 4.6d. Three configurations are interesting. The first one, which corresponds to

|b1| = 0, is a half-wave plate followed by a quarter-wave plate. The fast axis of the half-wave

plate is oriented at ±45◦ from the y-axis and the fast axis of the quarter-wave plate is oriented

along the x-axis. The second configuration, which corresponds to |b1| = 1 , is the inverse:

a quarter-wave plate followed by a half-wave plate. In this case, the half-wave plate is also

oriented at ±45◦ but the half-wave plate is oriented along the y-axis. The most interesting case

when metasurfaces are involved is when the two curves representing ∆ϕ shown in fig. 4.6c

cross each other. At this point, which corresponds to |b2| = 1/
p

2, the maximum thickness of

the metasurfaces is minimized. In that case,∆ϕ is 120◦ and the fast axis of the first metasurface,

given by the intersection of the black dotted line and the blue curve in fig. 4.6d, is oriented at

±27.4◦ from the y-axis and the fast axis of the second metasurface is oriented at ±27.4◦ from

the x-axis. Because all the possible pairs of metasurfaces are given by equations (4.22) and

(4.23), figs. 4.6c and 4.6d represent all the possible configurations.

4.4 Design of anti-reflective metasurfaces

In sections 4.2 and 4.3, ideal metasurfaces are considered and, as shown in section 4.2.1, the

critical assumption is the absence of the reflection at the two interfaces of the metasurface. The

other assumption is the existence of two linear eigenpolarizations that excite a single mode

of the metasurface, which is true for symmetric cross-sections and a good approximation

for asymmetric cross-sections. Therefore, a single mode metasurface can be seen as two

independent Fabry-Pérot cavities with low finesse. For silicon-based metasurface on a glass

substrate, the reflections at the interfaces of those Fabry-Pérot cavities are usually below 10%.

The finesse decreases as material with lower refractive index is used.

The concept of Fabry-Pérot cavity has been described for the first time in 1899 [136] and, since

then, it has been extensively studied. The theory on Fabry-Pérot cavities is given in many

photonics books [92, 137]. With two highly reflective interfaces, the Fabry-Pérot cavity acts
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as a resonator. In many lasers, the gain medium is placed inside such resonators in order to

enhance the field in that region and produce high power even if the gain per round trip is

low. Fabry-Pérot can also be used as a filter for spectroscopy. On the other end, single layer

anti-reflective coatings are Fabry-Pérot cavities where the reflection at the interfaces is low.

Metasurfaces can also act as anti-reflective coatings. The common anti-reflective metasurfaces

are zeroth-order binary gratings, typically an array of cylinders, composed of the same material

as the substrate. Compared to single layer anti-reflective coating, it does not require a material

with a specific refractive index and it can be fabricated with a single etch. However, the

performance decreases when the first order appears, but, as shown in [127] and in section 4.4.1,

the decrease in performance is usually acceptable. Both binary anti-reflective metasurfaces

and single layer anti-reflective coatings are broadband since they are Fabry-Pérot cavities with

low finesse. It is less broadband than a multi-layer anti-reflective coating, but it is sufficient

for many applications. Another group of metasurfaces are 3D structures that act as a smooth

transition from the substrate to air [138].

In this section, a simple design technique is provided. This technique is applied in section 4.4.1,

where all the possible anti-reflective metasurfaces composed of an array of cylinders for two

different materials, glass and silicon, are given.

As mentioned before, single-mode metasurfaces can be seen as two independent Fabry-

Pérot cavities and each Fabry-Pérot cavity can be represented by fig. 4.7a. Hence, the overall

transmission efficiency Ttot is given by

Ttot = |t0|2|t2|2
|1− r1r2e2iγh |2 , (4.28)

where γ is the propagation constant of the eigen-mode and h is the metasurface thickness.

t0, t2, r1 and r2 are the coupling coefficients shown in section 4.4.1 and they are complex

numbers. Since no power is absorbed at the interfaces and assuming that no other modes

that can carry power other than those shown in section 4.4.1, are excited, t0, t2, r1 and r2 are

related by the equations

|t0|2 +|r1|2 = 1 |t2|2 +|r2|2 = 1. (4.29)

Ttot is bounded by equations (4.11), where the reflection efficiencies R1 and R2 are given by

|r1|2 and |r2|2 respectively. For anti-reflective coatings and metasurfaces, the important bound

is the overall maximum transmission efficiency Ttot ,max , which is

Ttot ,max = (1−R1)(1−R2)

(1−p
R1R2)2

= (1−R1)(1−R2)

(1−R1)(1−R2)+ (
p

R2 −
p

R1)2
. (4.30)
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Figure 4.7 – a) Schema of a Fabry-Pérot cavity, which describes the response of a mono-mode
metasurface. The propagation direction of the incident plane wave is from left to right. r0,
t0, r1, t1, r2 and t2 are the reflection and transmission coefficients at the interfaces. γ is the
propagation constant of the eigen-mode and h is the metasurface thickness. b) Reflection
efficiencies |r1|2 and |r2|2 at the two interfaces for a metasurface with a lattice constant of 250
nm with different cylinder diameters. c) Overall reflection efficiency for different metasurface
thicknesses or cylinder heights for a metasurface with a lattice constant of 250 nm and a
cylinder diameter of 196 nm. This is the cylinder diameter where the two curves in fig. 4.7b
intersect each other. The horizontal dashed line is the reflection efficiency for a silicon-air
interface. d) The Lichtenecker bounds for a metasurface with a lattice constant of 250 nm with
different cylinder diameters. The yellow dashed line is the effective permittivity derived from
the propagation constant of the eigen-mode propagating in the metasurface, assuming that
the effective medium is non-magnetic. The optimal effective permittivity is the permittivity of
an anti-reflective coating. The required diameter is the cylinder diameter of an anti-reflective
metasurface.
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Therefore, the transmission efficiency Ttot reaches 100% only if R1 is equal to R2. In order

to design an anti-reflective metasurface, it is sufficient to find two metasurfaces where R1

is larger than R2 for one of the metasurface and the inverse for the other, and, by changing

continuously for one metasurface to the other, it exists at least one metasurface that can be

used as an anti-reflective metasurface. Then, the optimal thicknesses hAR are found such that

the term r1r2e2iγh in (4.28) is positive real, and they are given by

hAR =−arg(r1)+arg(r2)+2πm

2γ
, (4.31)

where m is a real integer. If the chosen optimal thickness is too thin, the evanescent modes

contribute to the overall transmission efficiency Ttot and the thickness may need further

adjustment. With the Fourier modal method implemented in this work, such adjustment has

a negligible computational cost.

When the structures that compose the metasurface is made of the same material as the

substrate, a metasurface composed of large cylinders with respect to the unit cell has a low

reflection efficiency at its interface with its substrate and a high reflection efficiency with its

interface with air, and vice versa for a metasurface composed of small cylinders. Hence, for

every unit cell dimensions, it exists a cylinder diameter such that the metasurface can act as

an anti-reflective coating. Those metasurfaces are given in section 4.4.1. The same technique

can be used to design an anti-reflective metasurface composed of an array of holes.

In fig. 4.7b, we show the reflection efficiencies at the two interfaces of a metasurface made of

a square array of silicon cylinders on a silicon substrate. The lattice constant is 250 nm and

the wavelength of the incident light is 1064 nm. As expected, the reflection efficiency at the

interface between the metasurface and air increases as the diameter of the cylinders increases,

and the reflection efficiency at the interface between the metasurface and the silicon substrate

decreases. In order to have an anti-reflective metasurface, the cylinder diameter has to be

196 nm, which is where the two reflection efficiencies are equal. In fig. 4.7b, the reflection

efficiencies are plotted for every cylinder diameters, but, in practice, the method of bisection

is used in order to find the required diameter.

For the optimal cylinder diameter, the reflection efficiency for different cylinder heights is

plotted in fig. 4.7c. The position of the dips is accurately given by equation (4.31) except the

first dip, where the error on the optimal cylinder height is 1.3%. The reason of this error and

also why the minimum reflection efficiency is still above 0.1% is that the metasurface thickness

is thin enough for the evanescent waves to play a role on the overall performance. To improve

even further the minimum reflection efficiency, the diameter of the cylinders needs to be

adjusted. The effect of the evanescent waves can be seen at a lesser extent on the second dip,

where the minimum reflection efficiency is higher than for the third dip. The dashed line in

fig. 4.7c is the reflection efficiency without anti-reflective metasurface.
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In the final part of this section, a first guess on the optimal diameter of the cylinders for an

anti-reflective metasurface can be done by using the approximation provided by the effective

permittivity theory, which predicts the effective permittivity from the cross-section of the

metasurface assuming that the unit cell dimensions are negligible compared to the wavelength.

This assumption is, in most cases, not true in the near-infrared regime due to fabrication

issues, but it is interesting to see if it can still be applied.

For an anti-reflective coating, the condition on the material parameters such that the reflection

at the interfaces are equal, is

ZAR =
√

Z1Z2, (4.32)

where ZAR , Z1 and Z2 are the wave impedance of, respectively, the anti-reflective coating and

the medium below and above. For a uniaxial medium with the extraordinary axis perpendicu-

lar to the interfaces, the wave impedance is defined in terms of the ordinary permettivity and

permeability, meaning that Z = √
µt /εt , where εt and µt are the ordinary permittivity and

permeability respectively.

In the effective permittivity theory, metasurfaces with a symmetric cross-section can be ap-

proximated by such uniaxial homogeneous medium and, in [139], the bounds of the ordinary

permittivity εL , called the Lichtenecker bounds, have been provided, which are

∫ b

0

d y∫ a
0

d x
ε(x,y)

≤ εL ≤ 1∫ a
0

d x∫ b
0 ε(x,y)d y

, (4.33)

where ε(x, y) is the permittivity profile of the metasurface and a and b are the unit cell dimen-

sions along x and y respectively. The interfaces are perpendicular to the z-axis. The advantage

of those bounds is that they take the geometry of the unit cell into account. For a metasurface

composed of a square array of cylinders, the bounds in (4.33) reduces to

εs

(
1− D

L
+ 1

2

∫ 1

−1

d x
L
D + ( εs

εc
−1)

p
1−x2

)
≤ εL ≤ εs

(
1− D

L
+ 1

2

∫ 1

−1

d x
L
D + ( εc

εs
−1)

p
1−x2

)−1

, (4.34)

where L is the lattice constant, D is the diameter of the cylinders, εc is the permittivity inside

the cylinders and εs is the permittivity outside the cylinders.

Using equation (4.32), the permittivity required for an anti-reflective coating between silicon

and air is the refractive index of silicon, which is nSi = 3.48 in the example given in this section.

As shown in 4.7d, the diameter of the cylinders for an anti-reflective metasurface does not

cross the permittivity of an anti-reflective coating within the Lichtenecker bounds. However,
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the upper bound can still be used as a first guest.

4.4.1 Design of glass and silicon anti-reflective metasurfaces

In this section, the design technique presented in section 4.4 is used to obtain all the possi-

ble metasurfaces composed of a square array of cylinders for two different materials: glass

(ng l ass = 1.45) and silicon (nSi = 3.48). The cylinders are made of the same material as the

substrate, meaning that such metasurface can be fabricated with a single etch. The metasur-

faces are designed for a wavelength of 1064 nm, but, by scaling the dimensions appropriately

and assuming that the material is not dispersive, the anti-reflective metasurface for another

wavelength is obtained. As mentioned in section 4.4, it is possible to design an anti-reflective

metasurface for any given lattice, but the choice of the lattice has an impact on the perfor-

mance of the anti-reflective metasurface. In the second part of this section, an anti-reflective

metasurface made of glass is studied in depth. Such metasurfaces are interesting candidates

for high-power application [140] since the substrate withstands high power and the meta-

surface is made of the same high-quality material. Therefore, quantities such as the field

enhancement and the energy flux inside the structures are given and compared with the case

of a single layer anti-reflective coating.

As discussed in section 4.4, for any given lattice constant, it exists a metasurface with a specific

cylinder diameter and multiple cylinder heights such that this metasurface is anti-reflective.

Those dimensions are given in fig. 4.8a for glass anti-reflective metasurfaces and in fig. 4.8c

for silicon metasurfaces. The only condition is that the metasurface can be described as two

independent and identical Fabry-Pérot cavities, one per polarization. Hence, the metasurface

has to be a zeroth-order grating and a single-mode metasurface, meaning that the lattice

constantΛ has to be smaller than

Λ= λ

nsub
, (4.35)

where nsub is the refractive index of the substrate, or of the superstrate if its refractive index is

higher. The maximum lattice constant is 734 nm for metasurfaces on a glass substrate and 306

nm for metasurfaces for a silicon metasurfaces. The different ranges for the x-axis in fig. 4.8

are due to this maximum lattice constant. The dimensions of the anti-reflective metasurfaces

shown in figs. 4.8a and 4.8c with respect to the lattice constant have similar behaviors: the ratio

of the cylinder diameter to the lattice constant decreases and the cylinder height increases

as the lattice constant increases, but the increase of the cylinder height can be considered as

negligible. Hence, a metasurface is easier to fabricate for large lattice constant.

In figs. 4.8a and 4.8c, the diameter of the cylinders obtained by using the Lichtenecker bounds

given in (4.33) is indicated by dashed lines. The Lichtenecker bounds are valid only if the lattice

constant is negligible compared to the wavelength and, as expected, the ratio of the cylinder

diameter to the lattice constant is within the bounds for a small enough lattice constant.
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Figure 4.8 – a) The cylinder height and the ratio of the cylinder diameter to the lattice constant
of an anti-reflective metasurface composed of glass cylinders on a glass substrate in function
of the lattice constant. The two dashed line are the ratio of the cylinder diameter to the lattice
constant obtained when the effective permittivity is given by the lower and upper Lichtenecker
bounds. b) The reflection efficiency at the two interfaces of the metasurface in function of
the lattice constant. This reflection efficiency is compared to the reflection efficiency at the
interfaces of a single-layer anti-reflective coating for a glass substrate. c) The cylinder height
and the ratio of the cylinder diameter to the lattice constant of an anti-reflective metasurface
composed of silicon cylinders on a silicon substrate in function of the lattice constant. The two
dashed lines are the ratio of the cylinder diameter to the lattice constant obtained when the
effective permittivity is given by the lower and upper Lichtenecker bounds. d) The reflection
efficiency at the two interfaces of the metasurface in function of the lattice constant. This
reflection efficiency is compared to the reflection efficiency at the interfaces of a single-layer
anti-reflective coating for a silicon substrate.

115



Chapter 4. Single-mode metasurface

Moreover, this ratio seems to converge to the lower bound, which is known to approximate

better the effective permittivity for small enough lattice constant [139].

Figures 4.8b and 4.8d show the relationship between the lattice constant and the reflection

efficiency at the interfaces. If the theory on effective permittivity is valid, the reflection

efficiency at the interfaces of the metasurface should be the same as the one at the interface

of the substrate and an anti-reflecting coating and, as expected, it does if the lattice constant

is small enough. In general, the reflection efficiency at the interfaces of the metasurface is

always smaller than the one at the interfaces of an anti-reflective coating. From the theory on

Fabry-Pérot cavity and since the thickness of the metasurface is approximately the same as

the thickness of the anti-reflective coating, which is 221 nm for a glass substrate and 143 nm

for a silicon substrate, it means that the response of the metasurface should be less sensitive

to a change in wavelength and incidence angle. As shown below, it is more complicate due to

the presence of evanescent waves.

0 2 4 6 8 10 12 14 16 18 20

Incidence angle [°]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
e

fl
e

c
ti
o

n
 e

ff
ic

ie
n

c
y
 (

z
e

ro
th

 o
rd

e
r)

 [
%

]

R
a

y
le

ig
h

 a
n

o
m

a
ly

TM, lattice constant: 290 nm

TE, lattice constant: 290 nm

TM, lattice constant: 100 nm

TE, lattice constant: 100 nm

(a)

0 2 4 6 8 10 12 14 16 18 20

Incident angle [°]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1
 -

 t
ra

n
s
m

is
s
io

n
 e

ff
ic

ie
n

c
y
 (

z
e

ro
th

 o
rd

e
r)

 [
%

]

R
a

y
le

ig
h

 a
n

o
m

a
ly

TM, lattice constant: 290 nm

TE, lattice constant: 290 nm

(b)

Figure 4.9 – a) The reflection efficiency, which take into account only the zeroth order, of two
anti-reflective metasurfaces composed of silicon cylinders on a silicon substrate in function of
the incidence angle. The lattice constant of those two metasurfaces is 100 nm and 290 nm.
The Rayleigh anomaly corresponds to the appearance of a second propagating order in the
silicon substrate. b) The transmission efficiency, which takes into account only the zeroth
order, of an anti-reflective metasurface composed of silicon cylinders on a silicon substrate in
function of the incidence angle. The lattice constant of the metasurface is 290 nm. The y-axis
is one minus the transmission efficiency in order to be compared with fig. 4.9a

To illustrate the effect of the lattice constant on the performance of anti-reflective meta-

surfaces, two silicon anti-reflective metasurfaces are investigated with very different lattice

constants. The first metasurface has a lattice constant of 100 nm, a cylinder diameter of 89 nm

and a cylinder height of 142 nm, and the second metasurface has a lattice constant of 290 nm,

a cylinder diameter of 212 nm and a cylinder height of 147 nm. First of all, metasurfaces with a

small lattice constant are more difficult to fabricate. Typically, the cylinders in the metasurface
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with the small lattice constant may merge during fabrication due to the small gaps between

the cylinders which have an aspect ratio of nearly 13. The merging of two cylinders is not an

issue by itself but the merging may not be homogeneous within the metasurface which lead to

a source of scattering due to a loss of the periodicity of the metasurface. A solution would be

to design a metasurface composed of holes. Such designs are not shown in this work but the

design technique is the same as the one proposed in section 4.4.

From the viewpoint of fabrication, it is better to design an anti-reflective metasurface with a

large lattice constant, but, as shown in fig. 4.9 where the reflection and transmission efficien-

cies are plotted for different angles of incidence, drawbacks are present. The first drawback

is the presence of the Rayleigh anomaly occurring at an incidence angle of 10.9◦, where the

first order can propagate in the silicon substrate. While increasing the incidence angle after

the Rayleigh anomaly, the performance degrades faster. If the purpose of the anti-reflective

metasurface is to reduce reflection, which is typically the case for solar cells [127], the degra-

dation in performance is not so severe as shown in fig. 4.9a. However, if the purpose of the

anti-reflective metasurface is to maximize the transmission efficiency, the degradation in

performance is more critical as shown in fig. 4.9b. The second drawback of a large lattice

constant is that the evanescent modes play a role in the performance of the metasurface, lim-

iting the maximum transmission efficiency to around 99.72% for a lattice constant of 290 nm.

The improvement in transmission efficiency is still important compared to the transmission

efficiency of a silicon-air interface, which is 69.4%. A solution to counter the effect of the

evanescent modes without changing the lattice constant is to choose a larger thickness. From

equation (4.31) and as shown in fig. 4.7c, dips in the reflection efficiency occur periodically

when varying the cylinder height. For a silicon metasurface, the second dip occurs for a

cylinder height of around 420 nm, which is a bit less than three times higher than the cylinder

height related to the first dip, losing the advantage of a large lattice constant on the fabrication.

For a glass metasurface, the second dip occurs for a cylinder height of around 660 nm.

Anti-reflective metasurfaces are well suited for high-power applications since it is obtained

by structuring the substrate, which is made to withstand high power, instead of depositing

an anti-reflective material. In the last part of this section, a design of a glass anti-reflective

metasurface is proposed along with its performance, maximum energy flux and maximum

field amplitude. Those values are compared with the ones from an anti-reflective coating.

The chosen lattice constant of the metasurface is 620 nm and, using the design technique

proposed in section 4.4, the obtained cylinder diameter and height are respectively 488 nm

and 222 nm. This choice of the lattice constant leads to cylinders with a low aspect ratio, less

than 0.5, while, as shown in fig. 4.10a, having a very low maximum reflection efficiency of

around 10−9 and a Rayleigh anomaly occurring at an angle of incidence of around 15.4◦. If, for

the desired application, the Rayleigh anomaly occurs for a too small angle of incidence, the

metasurface has to be designed with a smaller lattice constant.

As shown in figs. 4.10a and 4.10b, the performance of an anti-reflective metasurface is very

similar to the performance of an anti-reflective coating. The main differences are the presence
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Figure 4.10 – a) The transmission efficiency, which takes into account only the zeroth order,
of an anti-reflective metasurface composed of glass cylinders on a glass substrate and an
anti-reflective coating for a glass substrate in function of the incidence angle. The Rayleigh
anomaly corresponds to the appearance of a second propagating order in the glass substrate.
Those values are compared with the transmission efficiency of an air-glass interface. b) The
transmission efficiency of the same glass anti-reflective metasurface and anti-reflective coat-
ing in function of the wavelength. c) Energy flux of the propagating mode. The energy flux
is normalized such that its average over the unit cell is one. d) Maximum amplitude of the
electric field on a plane parallel to the interface between the glass substrate and the metasur-
face separated by a distance of 32 nm from this interface. The maximum field amplitude is
normalized such that the maximum field amplitude in the glass substrate is one.
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of the Rayleigh anomaly and that the reflection efficiency cannot go below 10−9 due to the

impact of the evanescent modes on the performance.

Two quantities that are important to predict material failure due to a high-power beam are

the energy flux and the maximum field amplitude. The energy flux is related to absorption in

the material due to defects or impurities and this is usually the main mechanism for material

failure when using a continuous wave laser. A high field amplitude can generate photon with

smaller wavelength through non-linear effect, which are then absorbed, or it can ionized the

atoms, creating defects inside the material. More detail about the different mechanisms which

lead to material failure are described in chapter 1 of [141]. To estimate the maximum energy

flux, the propagating mode is assumed to be the only mode that carry the power from one

interface to the other. This is a reasonable approximation since the evanescent modes carry

only 0.06% of the total power. Therefore, the maximum energy flux Pmax is given by

Pmax = Pmode,max · (|a|2 +|b|2), (4.36)

where Pmode,max is the normalized energy flux of the propagating mode at the location inside

the cylinders where it reaches its maximum, a is the weight of the forward propagating mode

and b is the weight of the backward propagating mode. As shown in fig. 4.10c, the maximum

energy flux of the propagating mode occurs at the center of the cylinder and it reaches 1.47.

Due to the mode weights a and b and setting the energy flux before the metasurface to one,

the maximum energy flux rises to 1.49, meaning that the mode profile is the main contributor

to the maximum energy flux. For comparison, the energy flux inside an anti-reflecting coating

is 1.02. The maximum field amplitude inside the metasurface is shown in fig. 4.10d and the

plane where the field amplitude is computed, is located at 32 nm from the glass-metasurface

interface. The field amplitude at the center of the cylinder reaches its maximum at that

location. The field amplitude is the maximum field amplitude reached during a time period

and is normalized to the field amplitude inside the glass substrate. Hence, the field amplitude

Emax is given by

Emax = 1p
2Eg l ass

√
|Ex |2 +|Ey |2 +|Ez |2 +|E 2

x +E 2
y +E 2

z |, (4.37)

where Eg l ass is the field amplitude inside the glass and Ex , Ey and Ez are the components of

the complex electric field. In the metasurface, the field amplitude reaches its maximum of 1.22

at the center of the cylinders and, in an anti-reflective coating, the maximum field amplitude

is 1.20.
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4.5 Design of a half-wave plate

A half-wave plate is an optical element that changes the polarization angle of a linearly

polarized beam. It is usually made of a birefringent material and the thickness is chosen such

that the difference of phase accumulations between a beam linearly polarized along the slow

axis and a beam linearly polarized along the fast axis while going through the birefringent

material, called retardance, is 180◦. Metarsurfaces that act as a half-wave plate have been

proposed in the literature [51, 128]. In addition, metasurfaces based on the Pancharatnam-

Berry phase [31–35, 38] are local half-wave plates with different orientations.

In this section, a design of a metasurface acting as a half-wave plate at a wavelength of 1550

nm is proposed. Since a waveplate with a higher retardance is equivalent to a waveplate with

a retardance equal or lower than 180◦, such metasurface is the most difficult metasurface

to fabricate that mimics a waveplate. Hence, this section gives the dimensions that such

metasurface has, along with the design technique.

The metasurface is made of parallel lines, which is the simplest structure that mimics a

birefringent material and is also simpler to simulate, design and fabricate. The lines are

made of silicon and substrate is glass. Glass substrate allows to have a larger lattice constant

without having a propagating first order, and the propagation constant difference is larger for

the optimal line width, resulting in a thinner metasurface, but this choice has drawbacks as

discussed later.

The first step in the design process is to find the metasurface dimensions such that the

difference of propagation constants is maximized, allowing to minimized the metasurface

thickness. Since the propagation constants do not depend of the thickness of the metasurface,

all the possible metasurfaces composed of lines are described by two parameters: the lattice

constant and the ratio of the width of the lines to the lattice constant. In this work, a different

definition of the ratio, called f , is used, which is given by

f = w −wmi n

l −2wmi n
, (4.38)

where l is the lattice constant, w is the width of the lines and wmi n is the feature size. This

definition of the ratio ensures that, by choosing a value for f between zero and one, the

minimum feature size is always below wmi n for any value of the lattice constant. In this

section, wmi n is 5 nm.

The difference of propagation constants for all possible metasurfaces composed of lines is

given in fig. 4.11a. An important feature is that, for each lattice constant, there is a ratio f

where the difference of propagation constants reaches a maximum and the maximum value

of this difference only weakly changes for the different lattice constants. Another feature is

this large zone where the metasurface is multi-mode. A multi-mode metasurface behaves

differently than a single-mode metasurface as shown in chapter 5, and the final design should
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Figure 4.11 – a) Propagation constant difference in function of the ratio f defined in (4.38)
and the lattice constant. The red dashed line delimits the region where the metasurface is
multi-mode. b) The reflection efficiency for a x-polarized and a y-polarized incident beam
in function of the metasurface thickness. The black dashed line is the metasurface thickness
required for a phase retardance of 180◦ when the lattice constant is 700 nm and the line width
is 176 nm ( f = 0.246). c) Retardance error in function of the incidence angle. For the left half
of the plot, the plane of incidence is the y-z plane, meaning that the plane is parallel to the
lines that compose the metasurface. For the right half of the plot, the plane of incidence is the
x-z plane, meaning that the plane is perpendicular to the lines. d) The retardance error and
the difference between the transmission efficiency of an x-polarized and a y-polarized input
beam in function of the wavelength.
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be far enough of this zone in order to avoid a too abrupt degradation of the performance

while changing the wavelength or the angle of incidence. For this reason, the chosen lattice

constant is 700 nm and the maximum difference of propagation constants occurs for a line

width of 176 nm. However, as shown in fig. 4.11b, the transmission efficiency of a x-polarized

beam, which is polarized perpendicular to the lines and along the fast axis, is different than the

transmission efficiency of a y-polarized beam, which is polarized along the slow axis. In order

for a metasurface to act as a half-wave plate, it is important that the transmission efficiencies

for both polarizations are equal. An intuitive solution would be to decrease the difference of

propagation constants by increasing or decreasing the ratio f such that the retardance of 180◦

occurs at the metasurface thickness where the blue and red curves in fig. 4.11b cross each

other. However, the fringes tend to move faster than the thickness where the retardance of

180◦ occurs. In the current case, the fringes of the red curve has to move left-ward, meaning

that, from the theory on Fabry-Pérot cavities, the propagation constant of the mode excited

by a y-polarized beam has to increase which happens when the ratio f increases. Hence, a

metasurface with a lattice constant of 700 nm acts as a half-wave plate for a line width of 200

nm and a thickness of 586 nm.

The performance of the metasurface for a variation in the incidence angle or the wavelength

is shown in figs. 4.11c and 4.11d. The performance of the metasurface is quite robust for

a change in incidence angle, especially when the illumination plane is parallel to the lines.

However, for a change in wavelength, the performance decreases rapidly. The difference in

transmission efficiency can be reduced by choosing a material with a lower refractive index

than silicon since it leads to those high amplitude fringes shown in fig. 4.11b, but, then, the

aspect ratio of the structure increases and it is already around three. The overall transmission

efficiency is 92.0%.

4.6 Conclusion

Two aspects of single-mode metasurfaces are considered in this chapter and design techniques

are provided based on them. The first aspect is the notion that single-mode metasurfaces

behave approximately as ideal metasurfaces, which is characterized by three parameters. For

a given polarization state of the incident illumination and a desired polarization state of the

transmitted fields, we provide the equations that directly give the possible ideal metasurfaces

that have such functionalities. Based on this result, the design process for four different types

of holograms is proposed.

Ideal metasurfaces are equivalent to ideal waveplates, which means that the Jones matrix

that describes them, is symmetric, which limits the functionalities that they can offer. In

order to get around this limitation, two ideal metasurfaces are needed and we show that any

system described by a Hermitian matrix can be described by two ideal metasurfaces. We also

provide the equations that give all the possible combinations of ideal metasurfaces for a given

functionality.
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The second aspect is the notion that single-mode metasurfaces can be described by two

independent Fabry-Pérot cavities. Based on that description, we propose a technique for

designing anti-reflective metasurfaces, and we apply it to obtain all the possible anti-reflective

metasurfaces consisting of a square array of cylinders, where the material of the cylinders is

the same as that of the substrate, and the material is either glass or silicon. The concept of the

Fabry-Pérot cavity is also used to design a half-wave plate.

Design techniques based on these two aspects cover most of the applications that can be

realized by single-mode metasurfaces. At the same time, they provide an understanding of the

intrinsic mechanisms of single-mode metasurfaces.

4.7 Proofs

4.7.1 Proof of the symmetric Jones matrix from a transformation of polarization
state

In section 4.2, the Jones matrix, which is symmetric and unitary for ideal metasurfaces and

which transforms a polarization state ~p1 into the polarization state ~q1 is given. ~p1 and ~q1 are

normalized. The parameter s is defined in (4.2) and, when s is zero, multiple Jones matrices

perform the same transformation of polarization states. This section is divided into two parts.

The first part is to prove that a unique solution exists if s is different than zero and that all the

solutions are expressed in (4.3) when s is zero. The second part is to prove that the expressions

in equations (4.2) and (4.3) are correct.

Because T̂tot is a unitary matrix, its elements have to satisfy a set of constraints. For a general

2×2 matrix Â given by

Â =
(

a b

c d

)
, (4.39)

Â is unitary if the following equations are satisfied:

|a| = |d | (4.40a)

|a|2 +|b|2 = 1 (4.40b)

ab̄ + cd̄ = 0. (4.40c)

.

For a symmetric unitary matrix such as T̂tot , the property (4.40a) is redundant. The properties

(4.40) are also used in section 4.7.2 and section 4.7.3.

123



Chapter 4. Single-mode metasurface

Along with properties (4.40b) and (4.40c), the equation that needs to be solved is

T̂tot~p1 =~q1, (4.41)

which leads to the following set of equations

atot px,1 +btot py,1 = qx,1

btot px,1 +dtot py,1 = qy,1,
(4.42)

where atot , btot and dtot are the unknowns.

For the case btot = 0, the amplitude of atot and dtot is one due to equation (4.40b), so the

amplitude of px,1 and py,1 are equal to the amplitude of qx,1 and qy,1 respectively due to

equations (4.42). Therefore, if px,1 or py,1 is zero, s, which is

s = px,1q̄y,1 −py,1q̄x,1, (4.43)

is also zero and, as discussed in section 4.2, the expressions in (4.3) converge to the correct

solution. When px,1 and py,1 is different than zero, equations (4.42) admit a single solution,

which is given by

atot =
qx,1

px,1
dtot =

qy,1

py,1
. (4.44)

For the case btot 6= 0, the second equation is multiplied by b̄tot p̄x,1 and the property (4.40c) is

applied, leading to

atot px,1 = qx,1 −btot py,1 (4.45a)

|btot |2|px,1|2 − ātot btot p̄x,1py,1 = b̄tot p̄x,1qy,1. (4.45b)

The case px,1 = 0 is treated later. By inserting equation (4.45a) into equation (4.45b) and since

the norm of the vector ~p1 is one, the following complex equation is obtained:

p̄x,1qy,1b̄tot +py,1q̄x,1btot = |btot |2. (4.46)

Since the systems of equations (4.40) and (4.42) are the same after the permutation
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(atot ,dtot , px,1, py,1, qx,1, qy,1) ←− (dtot , atot , py,1, px,1, qy,1, qx,1), (4.47)

equation (4.46) is also obtained after multiplying the adequate equation by py,1 instead of

px,1, meaning that equation (4.46) is also valid for the case px,1 = 0. For every btot different

than zero and solution of equation (4.46), it exists a single atot and dtot that satisfy equations

(4.42) and (4.40c).

The imaginary part of equation (4.46) is

(p̄x,1qy,1 − p̄y,1qx,1)b̄tot − (px,1q̄y,1 −py,1q̄x,1)btot = s̄b̄tot − sbtot = 0

s = px,1q̄y,1 −py,1q̄x,1.
(4.48)

Hence, if s is not equal to zero, btot = ks̄ is a solution of equation (4.48) for k real and different

than zero, since equation (4.46) is valid only if btot 6= 0.

By replacing btot in equation (4.46) with the solution of equation (4.48) and after dividing by

k, equation (4.46) becomes

p̄x,1qy,1s +py,1q̄x,1 s̄ = k|s|2
⇒|px,1|2|qy,1|2 −|py,1|2|qx,1|2 = |px,1|2 −|qx,1|2 = k|s|2

⇒k = |px,1|2 −|qx,1|2
|s|2 .

(4.49)

Therefore, for s and btot different than zero, the expression of btot in (4.2) is obtained, and the

solution of the systems of equations (4.40) and (4.42) is unique.

If s is zero, equation (4.48) is satisfied for any btot and equation (4.46) becomes

p̄x,1qy,1b̄tot +px,1q̄y,1btot = |btot |2. (4.50)

In the complex plane, a circle of radius r and center z0 is described by

|z − z0|2 = r 2

⇒|z|2 = r 2 −|z0|2 + z0 z̄ + z̄0z.
(4.51)

Therefore, the solution of equation (4.50) is a circle of center p̄x,1qy,1 touching the origin,

meaning that btot can be described by its expression in (4.3), which is

btot = p̄x,1qy,1(1+e iφ). (4.52)
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When the term 1+ e iφ is zero and px,1 and qy,1 are different than zero, the expressions in

(4.3) converge to the solution (4.44). The case when s, btot and either px,1 or qy,1 are zero has

already been treated.

In the previous part of this section, the expressions of btot in (4.2) and (4.3) are proved when

btot is different than zero. For the case btot = 0, the solution is unique when s is different

than zero and the expressions in (4.3) converge to the proper solution when s is zero. In

the remaining part of this section, it is proved that the expressions in (4.2) and (4.3) satisfy

equations (4.42) and (4.40).

Due to the invariance of the system of equations (4.40) and (4.42) to the transformation

(4.47), the expressions (4.2) are correct if it satisfies equation (4.40b), equation (4.40c) and one

equation in (4.42). Therefore, the following equations have to be satisfied:

|atot |2 +|btot |2 = 1 (4.53a)

atot b̄tot +btot d̄tot = 0 (4.53b)

atot px,1 +btot py,1 = qx,1. (4.53c)

For the case s 6= 0, the expressions given in (4.2) are

atot =
qx,1q̄y,1 − p̄x,1py,1

s

btot =
|px,1|2 −|qx,1|2

s

dtot =
px,1p̄y,1 − q̄x,1qy,1

s

s = px,1q̄y,1 −py,1q̄x,1.

(4.54)

In order to prove that the expressions in (4.54) satisfy equations (4.53), a set of equations is

provided. Related to equation (4.53a):

|atot |2|s|2 = |px,1|2|py,1|2 +|qx,1|2|qy,1|2 −px,1p̄y,1qx,1q̄y,1 − p̄x,1py,1q̄x,1qy,1

|atot |2|s|2 −|s|2 = |px,1|2|py,1|2 +|qx,1|2|qy,1|2 −|px,1|2|qy,1|2 −|py,1|2|qx,1|2
|btot |2|s|2 = (|px,1|2 −|qx,1|2)(|qy,1|2 −|py,1|2).

(4.55)

Related to equation (4.53b):

(atot b̄tot +btot d̄tot )|s|2 = (atot s + d̄tot s̄)(|px,1|2 −|qx,1|2)

atot s + d̄tot s̄ = 0.
(4.56)
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Related to equation (4.53c):

atot px,1s = qx,1px,1q̄y,1 −|px,1|2py,1

btot py,1s = |px,1|2py,1 −qx,1py,1q̄x,1

atot px,1s +btot py,1s = qx,1s.

(4.57)

For the case s = 0, the expressions given in (4.2) are

atot =
qx,1

px,1
(1−|py,1|2(1+e iφ))

btot = p̄x,1qy,1(1+e iφ)

dtot =
qy,1

py,1
(1−|px,1|2(1+e iφ)).

(4.58)

and the amplitude of px,1 and qx,1 are equal since

|px,1|2|qy,1|2 = |py,1|2|qx,1|2⇒|px,1|2(1−|qx,1|2) = (1−|px,1|2)|qx,1|2. (4.59)

In order to prove that the expressions in (4.58) satisfy equations (4.53), a set of equations is

provided. Related to equation (4.53a):

|1+e iφ|2 = 2+e iφ+e−iφ

|atot |2 = |1−|py,1|2(1+e iφ)|2 = 1−|py,1|2(2+e iφ+e−iφ−|py,1|2|1+e iφ|2)

|btot |2 = (1−|py,1|2)|py,1|2|1+e iφ|2.

(4.60)

Related to equation (4.53b):

|1+e iφ|2 = 2+e iφ+e−iφ

atot b̄tot = qx,1(1−|py,1|2(1+e iφ))q̄y,1(1+e−iφ) = qx,1q̄y,1(1+e−iφ−|py,1|2|1+e iφ|2)

btot d̄tot = qx,1(1+e iφ)q̄y,1(1−|px,1|2(1+e−iφ)) = qx,1q̄y,1(1+e iφ−|px,1|2|1+e iφ|2).

(4.61)

Related to equation (4.53c):

atot px,1 = qx,1(1−|py,1|2(1+e iφ))

btot py,1 = py,1p̄y,1qx,1(1+e iφ).
(4.62)
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4.7.2 Proof of the parameters of an ideal single-mode metasurfaces from its Jones
matrix

In equations (4.7) and (4.8), the parameters θ,φ1 andφ2 are expressed in terms of the elements

of the matrix T̂tot . To prove those equations, equation (4.1) is transformed into

R̂−θT̂tot R̂θ =
(

e iϕ1 0

0 e iϕ2

)
, (4.63)

which gives the following set of equations:

2btot cos(2θ)+ (dtot −atot )sin(2θ) = 0 (4.64a)

atot +dtot + (atot −dtot )cos(2θ)+2btot sin(2θ) = 2e iϕ1 (4.64b)

atot +dtot − [(atot −dtot )cos(2θ)+2btot sin(2θ)] = 2e iϕ2 . (4.64c)

If btot is zero, the expressions in (4.8) are directly obtained for θ = 0. Another aspect of

equations (4.64) is that, if θ, ϕ1 and ϕ2 are solutions of equations (4.64), θ+π/2 is also a

solution and the value ϕ1 and ϕ2 are swapped.

To get the parameter θ when btot is different than zero, the equation (4.64a) is multiplied by

b̄0 and the property (4.40c) is applied, resulting in the equation

|btot |2 cos(2θ)−Re{atot b̄tot }sin(2θ) = 0. (4.65)

Then, cos(2θ) and sin(2θ) are chosen as

cos(2θ) = |Re{atot b̄tot }|
r1

sin(2θ) = s1|btot |2
r1

r1 =
√

Re{atot b̄tot }2 +|btot |4

s1 =
1 if Re{atot b̄tot } ≥ 0

−1 otherwise
.

(4.66)

.

With this choice, cos(2θ) goes to one when btot goes to zero, meaning that θ converges to zero.

Moreover, a numerical error on btot when btot is nearly zero has only a negligible impact on θ.

To get the expressions of ϕ1 and ϕ2, equations (4.64b) and (4.64c) are multiplied by b̄tot , the

property (4.40c) is applied, cos(2θ) and sin(2θ) are replaced by their respective expressions

shown in (4.66) and the property
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|Re{atot b̄tot }| = s1 Re{atot b̄tot } (4.67)

is applied, giving

i Im{atot b̄tot }+ s1

r1

[
Re{atot b̄tot }2 +|btot |4

]= b̄tot e iϕ1

i Im{atot b̄tot }− s1

r1

[
Re{atot b̄tot }2 +|btot |4

]= b̄tot e iϕ2 .
(4.68)

Recognizing the coefficient r , equations (4.68) are reduced to

i btot
[
Im{atot b̄tot }− i s1r1

]= |btot |2e iϕ1 (4.69a)

i btot
[
Im{atot b̄tot }+ i s1r1

]= |btot |2e iϕ2 (4.69b)

As btot goes to zero, ϕ1 and ϕ2 converge to the phase of respectively atot and dtot , but this is

true only if the property (4.40c) still holds. This may not be true when btot is nearly zero due

to numerical errors, meaning that the phase of dtot cannot be obtained through the phase of

atot and btot . Therefore, using the property (4.40c), equation (4.69b) is replaced by

i btot
[
Im{dtot b̄tot }+ i s1r2

]= |btot |2e iϕ2

r2 =
√

Re{dtot b̄tot }2 +|btot |4
(4.70)

The expression of ϕ1 and ϕ2 in (4.7) are directly obtained by getting the phase on both sides of

equations (4.69a) and (4.70). Moreover, without using the property (4.40c), equations (4.69a)

and (4.70) converge to

btot
[
Re{atot b̄tot }+ i Im{atot b̄tot }

]= |btot |2e iϕ1

btot
[
Re{dtot b̄tot }+ i Im{dtot b̄tot }

]= |btot |2e iϕ2
(4.71)

as btot goes to zero and the term |btot |2 becomes negligible compared to Re{atot b̄tot } and

Re{dtot b̄tot }. By dividing both sides of equations (4.71) by the term |btot |2, equation (4.8) is

obtained.

4.7.3 Proof of the design of a pair of ideal single-mode metasurfaces

In section 4.3, the solution is given for the system described by
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T̂2T̂1 = T̂tot , (4.72)

where the symmetric unitary matrices T̂1 and T̂2, described in (4.20), are the unknowns and

the unitary matrix T̂tot , described in (4.21), is given. Since the inverse of an unitary matrix is

its complex conjugate, T̂1 is given by

T̂1 =
(

a1 b1

b1 d1

)
= T̂ H

2 T̂tot =
(

atot ā2 + ctot b̄2 btot ā2 +dtot b̄2

atot b̄2 + ctot d̄2 btot b̄2 +dtot d̄2

)
(4.73)

and equations (4.23) are obtained.

Since T̂1 must be symmetric, the off-diagonal elements of the matrix T̂1 are zero, leading to

btot ā2 − ctot d̄2 = (atot −dtot )b̄2. (4.74)

After multiplying (4.74) by b2, assuming that b2 is different than zero, and applying the property

(4.40c), equation (4.74) becomes

ctot a2b̄2 +btot ā2b2 = (atot −dtot )|b2|2. (4.75)

For btot = ctot = 0, equation (4.75) degenerates and this case is treated later. For a given

b2 = r e iφ, the expression a2 that satisfies equation (4.75), can be expressed as

a2 = (zs s′+ zo)r e iφ, (4.76)

where s′ can be any real number. It means that zs and zo satisfy the equations.

ctot zs +btot z̄s = 0 (4.77a)

ctot zo +btot z̄o = atot −dtot . (4.77b)

Different expressions for zs and zo are proposed. For zs , it is important that the chosen

expression is not zero for any btot and ctot because the coefficient s′ is required in order to

satisfy (4.40b) later on. The proposed expression of zs , which is the same as (4.24), is

zs =
i (btot + c̄tot ) if Re

{
btot
c̄tot

}
≥ 0

btot − c̄tot otherwise
(4.78)
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The subdomains are chosen such that zs is never zero since the term i (btot + c̄tot ) is zero when

Re{btot /c̄tot } =−1 and the term btot − c̄tot is zero when Re{btot /c̄tot } = 1. As a reminder, btot

and ctot are different than zero. However, any expressions of zs that are a linear composition

with real coefficients of the expressions given in (4.78), are also valid. Due to equations (4.40a)

and (4.40c), btot and ctot have the same norm and the expressions of zs in (4.78) satisfies

equation (4.77a). For zo , the proposed expression, which is the same as (4.24), is

zo =


atot−dtot
btot+ctot

if Re
{

btot
ctot

}
≥ 0

atot−dtot
ctot−btot

otherwise
(4.79)

The subdomains are chosen such that zs does not go toward infinity since the term btot + ctot

is zero when Re{btot /ctot } =−1 and the term ctot −btot is zero when Re{btot /ctot } = 1. z0 is

either purely real or purely imaginary since

atot −dtot

btot + ctot
= (atot −dtot )(b̄tot + c̄tot )

(btot + ctot )(b̄tot + c̄tot )
= (ātot − d̄tot )(btot + ctot )

(btot + ctot )(b̄tot + c̄tot )
=

(
atot −dtot

btot + ctot

)∗
atot −dtot

ctot −btot
= (atot −dtot )(c̄tot − b̄tot )

(ctot −btot )(c̄tot − b̄tot
=− (ātot − d̄tot )(ctot −btot )

(ctot −btot )(c̄tot − b̄tot )
=−

(
atot −dtot

ctot −btot

)∗
.

(4.80)

In equation (4.80), the property (4.40c) is applied. Due to z0 being either purely real or purely

imaginary, it directly follows that z0 satisfies equation (4.77b).

The coefficient s′ has to be chosen such that a2, given in (4.76), and b2 satisfy equation (4.40b),

meaning that

|zs s′+ zo |2r 2 + r 2 = 1. (4.81)

The coefficient s′ is real and satisfies the quadratic equation

|zs |2r 2s′2 +2cbr 2s′+ (|zo |2 +1)r 2 −1 = 0, (4.82)

where cb is given by

cb = 1

2
(zs z̄o + z̄s zo) =

zo Re{zs} if Re
{

btot
ctot

}
≥ 0

−i zo Im{zs} otherwise
(4.83)

The expression in (4.83) is slightly different than (4.25). The expression in (4.25) has the

advantage that it ensures that cb is purely real as it should be. The solution of the quadratic
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equation (4.82) is

s′ =
−cbr 2 ±

√
c2

br 4 +|zs |2r 2(1− (|zo |2 +1)r 2)

|zs |2r 2

= 1

r

−cbr ±
√

c2
br 2 +|zs |2(1− (|zo |2 +1)r 2)

|zs |2
= s

r
.

(4.84)

In section 4.3, the coefficient s is chosen instead of the coefficient s′ because s′ diverges as r

goes to zero. By using s instead of s′, the expression in (4.76) becomes the expression of a2 in

(4.22).

As mentioned before, s and s′ must be real, meaning that the term below the square root in

equation (4.84), called ∆, has to be zero or positive, which limits the possible value that the

coefficient r can have. Since r is the norm of the coefficient b2, the minimum value of r is zero.

∆ is linear with respect to r 2 and, for r = 0, ∆ is always positive. Finally, ∆ has to be negative

when r is greater than one since, in this case, equation (4.81) cannot be satisfied, meaning

that the assumption that s′ is purely real, is wrong. Hence, it exists a maximum value for the

coefficient r , called rmax , which is in the interval [0,1]. rmax is obtained by setting ∆ to zero:

c2
br 2

max +|zs |2 − (|zo |2 +1)|zs |2r 2
max = 0 (4.85)

Hence, rmax is

rmax = |zs |2
|zs |2 +|zo |2|zs |2 − c2

b

. (4.86)

Since c2
b is given by

c2
b =

|zo |2 Re{zs} if Re
{

btot
ctot

}
≥ 0

|zo |2 Im{zs} otherwise
(4.87)

the expression of rmax given in (4.24) is obtained.

In order to get d2, the property (4.40c) is applied:

ā2b2 +d2b̄2 = (z̄s s + z̄or )e−iφr e iφ+d2r e−iφ = 0. (4.88)

Hence, if b2 is different than zero, the expression of d2 in (4.22) is obtained.
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In the previous part of this section, equation (4.75) is derived for b2 different than zero.

However, the obtained solution is still valid in this special case. The case btot = ctot = 0 is

treated separately.

If b2 is zero, a2 and d2 have to satisfy equation (4.74) instead of equation (4.75), and the

property (4.40c) for the matrix T̂2 is trivially true. Assuming that the expressions in (4.22) are

still valid for r = 0, they become

s = p

|zs |
a2 = szse iφ = p

zs

|zs |
e iφ d2 =−p

z̄s

|zs |
e iφ, (4.89)

where p is ±1.

Using those expressions, equation (4.74) becomes

p

|zs | (btot z̄s + ctot zs)e−iφ = 0, (4.90)

which is equivalent to equation (4.77a), meaning that the expressions in (4.22) are still valid

when b2 is zero. As mentioned in section 4.3, the solution with p = 1 and φ=φ0 for any φ0

real is the same solution with p =−1 and φ=φ0 +π.

For the case btot = ctot = 0 and atot = dtot , equation (4.74) is trivially true, meaning that

only the properties (4.40) for the matrix T̂2 need to be satisfied. Due to properties (4.40a)

and (4.40b), a2, b2 and d2 are given by

a2 =
√

1− r 2e iφ1 b2 = r e iφb d2 =−
√

1− r 2e iφ2 , (4.91)

and, from property (4.40c), φb is

φb = φ1 +φ2

2
+mpi , (4.92)

where m is a real integer. Hence, equation (4.26) is proved.

For the case btot = ctot = 0 and atot = dtot , equation (4.74) is satisfied only if b2 is zero, leading

to the solution given in (4.26) with r = 0.
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5 Multi-mode metasurface, resonant
metasurface and self-coupling mode

5.1 Introduction

Multi-mode metasurfaces are zeroth-order gratings which have multiple eigen-modes per po-

larization propagating inside the metasurface. In the single-mode metasurfaces presented in

chapter 4, the two propagating eigen-modes, one per polarization, are independent, meaning

that single-mode metasurface can be seen as two independent Fabry-Pérot cavities, where the

reflection of the eigen-modes at the interfaces is given by a single number. For a multi-mode

metasurface, since the propagating eigen-modes couple between each other at both interfaces

of the metasurface, it is required to represent the reflection of the propagating eigen-modes at

both interfaces as matrices, leading to a more complex system.

Due to this complexity, many interesting phenomena can be observed such as resonances,

including Fano resonances [142], and the great diversity of responses makes multi-mode

metasurfaces a promising platform. In the literature, they have been used as color filters

[46–50], as holograms where the aspect ratio of the structures is much lower than what can

be expected from a single-mode metasurface [37, 44, 45], as molecule sensors [53] and as

generalized Hartmann-Shack arrays [52]. The main drawbacks are that they are more difficult

to design and, for multi-mode metasurfaces composed of cylinders, eigen-modes are not

confined within the cylinders as it is the case in single-mode metasurface, which can lead to

unexpected results if the cylinders’ dimensions vary across the metasurface.

Figure 5.1a is the transmission efficiency of metasurfaces composed of silicon cylinders

embedded in glass for a wavelength of 1477 nm. The lattice constant is 850 nm. Depending

on the diameter of the cylinders, the metasurface can be either single-mode or multi-mode.

In the single-mode region, which is for a diameter up to 286 nm, the transmission efficiency

is nearly constant and is close to 100% for the different cylinder heights. In the multi-mode

region, the transmission efficiency varies strongly, and, as the number of propagating modes

increases, this variation gains in complexity.

The red lines in fig. 5.1b are resonances and high-Q resonances occur only in multi-mode
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Figure 5.1 – a) Transmission efficiency of a metasurface composed of silicon cylinders em-
bedded in glass for different cylinder diameters and heights. The lattice constant is 850 nm
and the wavelength is 1477 nm. The red number at the bottom of the figure is the number
of propagating modes per polarization. b) Same as fig. 5.1b except that the resonances are
shown by red lines. c) Number of propagating modes per polarization for the same structure
as in fig. 5.1b except that the lattice constant ranges from 400 nm to 1000 nm. The red dashed
line indicates the set of metasurfaces whose transmission efficiency is shown in fig. 5.1b. d)
Same as fig. 5.1c except that the cylinders are made of TiO2 instead of silicon.
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metasurfaces. Since the eigen-modes present in a multi-mode metasurface couple at the

interfaces to only one transmitted and one reflected plane wave, it is possible that the weights

of the eigen-modes are as such that the contribution of the eigen-modes on the transmitted

and reflected plane waves destructively interferes. Hence, the weights of the eigen-modes

have to be very high in order to balance the power going out of the metasurface through the

transmitted and reflected plane waves and coming in from the incident plane wave. In other

words, the optical energy is stored inside the metasurface, meaning that the metasurface is on

resonance.

In order to get a multi-mode metasurface, the refractive index of at least one of the material

that composes the metasurface has to be larger than the refractive index of the substrate and

the superstrate. Hence, metasurfaces composed of silicon on a glass substrate or embedded

in glass are typical candidate for a multi-mode metasurface. To illustrate this condition, the

number of propagating modes for metasurfaces composed of silicon (n = 3.48) cylinders

embedded in glass (n = 1.44) with different lattice constants and cylinder diameters is shown

in fig. 5.1c. If the refractive index of the substrate and the superstrate increases, the maximum

lattice constant which is required to get a zeroth order grating, decreases, meaning that there

are less options for a multi-mode metasurface. In the extreme case, if the substrate or the

superstrate is silicon, the lattice constant has to be smaller than 424 nm in order to have a

zeroth-order grating and, from fig. 5.1c, multi-mode metasurface does not exist for such lattice

constants. Figure 5.1d is for the same metasurface except that the material that composes the

cylinders is TiO2, which is a lower refractive index material (n = 2.46). As expected, the area

where multiple propagating modes are present in the metasurface is significantly smaller than

in fig. 5.1c.

The parameter f used for the x-axis in figs. 5.1c and 5.1d is related to the ratio between the

cylinder diameter d and the lattice constant l and has been chosen in a way that the smallest

feature is above dmi n . Hence, f is given by

f = d −dmi n

l −2dmi n
, (5.1)

where dmi n is 50 nm for figs. 5.1c and 5.1d.

It is to our knowledge not possible to give design techniques for multi-mode metasurfaces

that are comparable to the ones proposed in chapter 4. However, it is possible to clearly

differentiate resonant and non-resonant effects through the use of self-coupling modes. A

typical non-resonant effect is the large dark blue area in figs. 5.1a and 5.1b. The concept of

self-coupled mode, abbreviated to SCM, has already been used to retrieve the quasi-normal

modes of a system [124] and to estimate the Q-factor of a multi-mode cavity [123], but it was

not named. In this work, the concept of self-coupling mode is developed and used at its full

potential for multi-mode metasurfaces. This concept allows a systematic characterization

of resonances, facilitates the search for resonances and considerably reduces the number of
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simulations required to accurately compute the response of a high-Q resonant metasurface as

a function of parameters such as the wavelength, the angle of incidence and the metasurface’s

thickness.

Section 5.2 explains the concept of self-coupled mode and how to use it. The definition and

the computation of the self-coupling modes are given in section 5.2.1 and the equations

that decompose the transmitted and reflected fields into the contributions of the different

self-coupling modes are given in section 5.2.2.

The different advantages of this concept are illustrated by applying it on four different meta-

surfaces. In section 5.3.1, the two resonances present in the Huygens’ metasurface are charac-

terized. The Huygens’ metasurface has been introduced by M. Decker [43] and used for the

design of a phase-only transmission function in [37, 44]. It is not easy to separate the resonant

response from the total response using standard simulation techniques like the Finite-Element

Method (FEM) or the Finite Difference Time Domain method (FDTD). The use of the self-

coupling modes, due to their relationship with the quasi-normal modes [124], allows to easily

extract the resonant response, giving its impact on the transmission and reflection of the

metasurface, but also the fields inside the metasurface related to the resonance. Moreover, if

the metasurface has multiple resonances intertwined such as in the Huygens’ metasurface,

the concept of self-coupling mode allows to separate them without any ambiguity.

The second metasurface acts as a narrowband filter. It combines both a non-resonant effect,

which is the broadband mirror-like response of the metasurface, and a resonant effect. As

shown in section 5.3.2, those two effects can be identified from the simulation of a single

metasurface, even if this metasurface is outside the resonance. This example is also used to

give an interpolation scheme given in section 5.2.2, which is based on the decomposition of

the transmitted and reflected fields. The accuracy of this interpolation scheme is given in the

case where the simulated metasurfaces are all outside the resonance.

The third metasurface is an array of AlAs cylinders that might be used as a laser and it is

presented in section 5.3.3. This metasurface has been designed such that the resonance,

which is sustained by the GaAs quantum wells, emits mainly outside instead than in the

substrate. Moreover, the angular spectrum of the resonance has an interesting star-like shape

and obtaining such angular spectrum is very computationally expensive with the level of

details given in this work without the use of the self-coupling modes.

The last metasurface is composed of silicon cylinders with an obround cross-section on a

glass substrate immerged in water. This metasurface can have a very high-Q resonance. This

resonance has been designed such that its angular spectrum is strongly asymmetric, meaning

that the spatial extent of this resonance is also strongly asymmetric. Section 5.3.4 shows where

this asymmetry comes from and also how the concept of self-coupling mode combined to the

Fourier modal method given in chapter 3 facilitates greatly the design of such metasurface.

In this work, the focus is on metasurfaces composed of cylinders, but metasurfaces composed
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of holes can also be used. It should be slightly easier to design a multi-mode metasurface

composed of holes since the filling fraction of the high refractive index material can be higher

leading to more candidates in the design process. The self-coupling modes can be used equally

well in both cases.

5.2 Self-coupling mode

5.2.1 Definition and computation of the self-coupling modes

Binary metasurfaces can be seen as a layer delimited by two interfaces and, from the Fourier

modal method presented in chapter 3, the eigen-modes that propagate inside this layer are

known. The relationships between the incident, transmitted and reflected plane waves, and

the eigen-modes are given by

T̂3~a3 =~t T̂1~p + R̂2
~b2 =~a2 Γ̂~a2 =~a3

R̂1~p + T̂2
~b2 =~r R̂3~a3 =~b3 Γ̂~b2 =~b3,

(5.2)

where ~p,~r and~t are the weights of the incident, reflected and transmitted plane waves, ~a2

and~b2 are the weights of, respectively, the forward and backward-propagating eigen-modes

just after the first interface, and ~a3 and~b3 are the weights just before the second interface. R̂m

and T̂m are the coupling matrices and Γ̂ is the propagation operator. The equations in (5.2)

are illustrated in fig. 5.2a.

If ~p,~r and~t are related by the matrices T̂ ′
1 and R̂ ′

1 such that

T̂ ′
1~p =~t R̂ ′

1~p =~r , (5.3)

the matrices T̂ ′
1 and R̂ ′

1 are given by

T̂ ′
1 = T̂3Γ̂(Î − M̂)−1T̂1

R̂ ′
1 = R̂1 + T̂2Γ̂R̂3Γ̂(Î − M̂)−1T̂1

M̂ = R̂2Γ̂R̂3Γ̂,

(5.4)

where M̂ is known as the roundtrip matrix [124] since it describes the loop inside the meta-

surface shown in fig. 5.2a. Those equations are derived from equation (3.40) and proved in

section 3.5.

If the matrix Î − M̂ is nearly singular, a small variation of the metasurface dimensions leads to

a large variation in the matrices T̂ ′
1 and R̂ ′

1, meaning that the metasurface is resonant. Hence,

by looking at the solution of the eigen-value equation
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(a) (b)

Figure 5.2 – a) A schema of a metasurface showing how the weights of the eigen-modes are
related to each other by the coupling matrices R̂m and T̂m , and the propagation operator Γ̂. ~p,
~r and~t contain the weight of the incident, reflected and transmitted plane waves respectively.
â2 and b̂2 are the weight of the eigen-modes just after the first interface and â3 and b̂3 are the
weights just before the second interface. b) Same as fig. 5.2a except that the modes inside
the metasurface are the self-coupling modes instead of the eigen-modes.~rm and~tm are the
contribution of the self-coupling mode m on respectively the reflected and transmitted plane
waves. sm are the s-value of the self-coupling mode m.

M̂~vm = sm~vm , (5.5)

the metasurface is resonant if one of the eigen-value sm is close to one.

The physical meaning of equation (5.5) is that a mode composed of the forward-propagating

eigen-modes whose weights are given by~vm , couples only to itself after a roundtrip. Therefore,

we name such modes as self-coupling modes. sm indicates how it couples to itself and it is

called the s-value of the self-coupling mode m. If sm is negative real, the self-coupling mode

destructively interferes with itself, meaning that the amplitude of the self-coupling mode is

lower than how it is initially excited by the incident plane wave. If sm is positive real, there is

a build up of the fields inside the metasurface and, if sm reaches one, the metasurface traps

perfectly the light inside the metasurface. In general, if a self-coupling mode is excited by a

factor 1 from the incident plane wave, the fields of the self-coupling mode are amplified by

the factor

K = 1

|1− sm | . (5.6)

The convention chosen in this work is that a self-coupling mode is resonant if the absolute

value of its s-value is above 0.5, meaning that the field amplification K is 2 when the s-value

crosses the real axis. As shown later, when varying the wavelength, the path of s-value in the
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complex plane is usually a circle.

By describing the modes inside the metasurface with the self-coupling modes, the diagram

shown in fig. 5.2b is obtained, where the self-coupling modes are independent from each

other. Hence, using the concept of self-coupling mode, the multi-mode metasurface can be

seen as multiple Fabry-Pérot cavities instead of a single multi-mode cavity.

As shown in section 5.3, the s-value changes smoothly when varying the metasurface dimen-

sions, the angle of incidence or the wavelength. Hence, the concept of self-coupling mode

is not only used to see if a metasurface is resonant, but also if the metasurface is close to a

resonance. Another information that can be obtained through the concept of self-coupling

mode are the fields related to a resonance and the contribution to this resonance on the

transmitted and reflected fields. The fields of a resonance is given by ~vm and, as shown in

section 5.3.1, allow to define the type of the resonance. The contribution of the resonances on

the transmitted and reflected plane waves is more important because it can be used to get

the Q-factor or the angular spectrum of the resonance. The angular spectrum of a resonance

can be used to estimate the spatial extent of the resonance (section 5.3.4). The equations

to obtained the contribution of self-coupling modes on the response of metasurfaces are

developed in section 5.2.2.

5.2.2 Contribution of the self-coupling modes on the response of a metasurface

The concept of self-coupling mode is useful to analyze a multi-mode metasurface, but it

can also be used to get the contribution of each self-coupling mode to the reflected and

transmitted plane waves. Based on fig. 5.2b, the contribution of the self-coupling mode m

depends of ~Tt ,m , ~Tr,m , sm and the m-th line of T̂e . In order to find those different elements,

the roundtrip matrix M̂ has to be written as

M̂ = V̂ ŜV̂ −1, (5.7)

where each column of V̂ describes a self-coupling mode and Ŝ is a diagonal matrix containing

the s-values. This equation is equivalent to the eigen-value equation (5.5).

By combining equations (5.4) and (5.7), the matrices T̂ ′
1 and R̂ ′

1 can be expressed as

T̂ ′
1 = T̂t (Î − Ŝ)−1T̂e

R̂ ′
1 = R̂1 + T̂r (Î − Ŝ)−1T̂e ,

(5.8)

where T̂e , T̂t and T̂r are given by
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T̂e = V̂ −1T̂1

T̂t = T̂3Γ̂V̂

T̂r = T̂2Γ̂R̂3Γ̂V̂ .

(5.9)

Since Î − Ŝ is a diagonal matrix, equation (5.8) can be written as a sum such as each term

depends on a single s-value:

T̂ ′
1 =

M∑
m=1

1

1− sm

~Tt ,mT̂e,m: =
M∑

m=1

1

1− sm
Q̂t ,m

R̂ ′
1 = R̂1 +

M∑
m=1

1

1− sm

~Tr,mT̂e,m: =
M∑

m=1

1

1− sm
Q̂r,m .

(5.10)

~Tt ,m and ~Tr,m are the m-th column of the matrices T̂t and T̂r respectively, and T̂e,m: is the m-th

line of the matrix T̂e . M is the number of self-coupling modes which is equal to the number

of forward-propagating eigen-modes. The contribution of the self-coupling mode m on the

transmitted and reflected plane waves is

~tm = 1

1− sm
Q̂t ,m~p

~r0 = R̂1~p

~rm = 1

1− sm
Q̂r,m~p,

(5.11)

where m ranges from 1 to M .

Because the self-coupling modes are not orthogonal under the Poynting operation, it is less

interesting to normalize them and to look at the quantities in the matrix T̂e . The vectors
~Tr,m and ~Tt ,m are used in section 5.3.1 to get the fields outside the metasurface for the two

resonances, and they are also used for the design of the metasurface in section 5.3.3, where the

resonance emits mainly in one direction. The matrices Q̂t ,m and Q̂r,m are 2-by-2 matrices for

zeroth-order gratings if the evanescent plane waves are not considered and, with the s-value

sm , they give directly the contribution to the transmitted and reflected plane waves.

The convention used in this chapter is the same as in chapter 3, meaning that the first element

in ~p,~rm and~tm is the weight of the TM-polarized plane wave and the second element is the

weight of the TE-polarized plane wave. At normal incidence, TM and TE-polarization are

equivalent to x and y-polarization respectively.

If the coupling matrices T̂m and R̂m , and the propagation constant of the eigen-modes vary

smoothly while changing the dimensions of the metasurface or the properties of the incident

plane wave, the s-value sm and the elements of the matrices Q̂t ,m and Q̂r,m vary also smoothly
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even if a resonance is present. Therefore, those quantities can be used for the interpolation

of the response of a resonant metasurface. This interpolation techniques is presented and

applied in section 5.3.2.

5.3 Application of the self-coupling mode on multi-mode metasur-

faces

5.3.1 Magnetic and electric dipole resonances in Huygens’ metasurface

A Huygens’ metasurface is generally an array of silicon cylinders embedded in glass as shown

in fig. 5.3a, which is designed such that the electric and magnetic dipole resonances overlap.

The effect of those overlapping resonances is that the transmission efficiency can reach nearly

100% and the difference of the phase of the transmitted field for a wavelength before and after

the resonances reaches 360◦, making the Huygens’ metasurface an interesting candidate for

phase-only holograms. The Huygens’ metasurface has been introduced by M. Decker [43]

and used later in [37, 44, 45]. In order to identify and analyze the electric and magnetic

dipoles separately, they represent each cylinder by an electric and a magnetic dipole and

their polarizabilities are obtained using the coupled discrete dipole approach [143]. Hence,

the fields related to the electric and magnetic dipole resonances are the fields produced by

the corresponding dipole and the polarizability of those dipoles determines how strong the

resonance is.

In this section, the objective is to also identify and analyze both resonances, but the concept

of self-coupled mode is used instead. The main difference is that the concept of dipole is

not used in order to separate the resonances from the overall response of the metasurface

since the concept of self-coupled mode is based only on the eigen-modes present in the

metasurface and the coupling matrices at the two interfaces. However, once the fields related

to the resonances are obtained, it is possible to describe the fields in terms of dipoles or

through other concept.

The Huygens’ metasurface analyzed in this section is composed of cylinders with a diameter

of 534 nm and a height of 243 nm. The lattice constant is 852 nm and an on-scale drawing is

in fig. 5.3a. The transmission efficiency and the phase of the transmitted field in function of

the wavelength is given in fig. 5.3b. In this case, the electric and magnetic dipole resonances

are not exactly at the same wavelength leading to this small variation in the transmission

efficiency. This variation may be enough to roughly estimate the wavelength and width of

each resonances, but it will not be accurate.

In order to get an insight into the phenomena occurring inside a multi-mode metasurface, the

first quantities that are analyzed are the s-value of the main self-coupling modes. The s-value

of the other self-coupling modes are very close to zero and they do not give any valuable

information. For the Huygens’ metasurface, the s-values in function of the wavelength is
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Figure 5.3 – (a) Scale drawing of the Huygens’ metasurface, which is composed of an array
of cylinders embedded in glass. The cylinder diameter and height are respectively 534 nm
and 243 nm. The lattice constant is 852 nm. (b) Amplitude and phase of the transmitted
field of the Huygens’ metasurface. (c) Eigen-value s of the main self-coupling modes for
different wavelengths. For every 10 nm in wavelength, the value of s is represented by a dot.
(d) Contribution of the resonant self-coupling modes to the transmitted intensity. SCM 2 is
more excited and has a lower Q-factor than SCM 1. The Q-factor is defined as the wavelength
of the resonance divided by its full width at half maximum (FWHM).
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given in fig. 5.3c. Four self-coupling modes are of interest. The two resonances can be clearly

seen and they are represented by the Self-Coupling Modes (SCM) 1 and 2. SCM 3 and 4 are

non-resonant. The s-value of all the self-coupling modes are turning clockwise around the

origin of the complex plane. It is an expected behavior because, assuming that the propagation

constant of the eigen-modes is positive, the propagation constants decrease as the wavelength

increases and, by assuming that the variation of the eigen-mode decomposition of the self-

coupling mode is small enough, the phase of the s-values also decreases. The trajectory of SCM

3 is a bit different than the others, but it is an usual behavior when a propagating eigen-mode

becomes evanescent.

To get the wavelength and the width of the resonance, the contribution of the resonant self-

coupling modes on the x-polarized transmitted plane wave is computed based on equation

(5.11). Following the convention given in section 5.2.2, ~p is given by (1,0)T . Since the substrate

and the superstrate are made of the same material and the x-polarized transmitted plane wave

is of interest, the contribution of the self-coupling mode m on the transmission efficiency is

given by the amplitude squared of the first element in~tm . The contribution of the resonant

self-coupling modes SCM 1 and SCM 2 is given in fig. 5.3d. From this result, the wavelength,

the width and the Q-factor of the resonances can be easily obtained. From fig. 5.3d, the

Q-factor of the resonance related to SCM 1 and SCM 2 is around 27.8 and 17.4 respectively,

meaning that the resonance related to SCM 1 is sharper.

From fig. 5.3d, it is not possible to associate the resonances to a type of resonance. In order to

do that, the fields related to the resonant self-coupling modes need to be computed. The self-

coupling modes are described by the vector~vm , which is the weight of the forward-propagating

eigen-modes just after the first interface. Hence, the Fourier coefficients of the electric and

magnetic fields, Ẽi n and H̃i n , inside the metasurface are given by

Ẽi n(z) = Ê(Γ̂(z)+ Γ̂(h − z)R̂3Γ̂(h))~vm

H̃i n(z) = Ĥ(Γ̂(z)− Γ̂(h − z)R̂3Γ̂(h))~vm ,
(5.12)

where the n-th column of the matrices Ê and Ĥ contains the Fourier coefficients of respectively

the electric and magnetic field of the n-th eigen-mode, and the n-th diagonal element of the

diagonal matrix Γ̂(z) is e iγn z . γn is the propagation constant of the n-th eigen-mode and the

first and second interfaces are located at respectively z = 0 and z = h, meaning that Γ̂(h) is

equal to the propagation operator used in section 5.2.

Usually, the fields inside the metasurface are sufficient to determine the type of the resonances,

but, for a complete representation, the vectors ~Tt ,m and ~Tr,m , that contain the weights of the

transmitted and reflected plane waves, are needed, and they are obtained from equation (5.9).

In this case, the evanescent plane waves should be considered. The results for SCM 1 and 2 are

given in fig. 5.4: From figs. 5.4a and 5.4b, the resonance related to SCM 1 is a magnetic dipole

resonance and, from figs. 5.4c and 5.4d, the resonance related to SCM 2 is an electric dipole
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Figure 5.4 – a) Electric field of SCM 1, which is related to the magnetic dipole resonance, in
the xz-plane that goes through the center of a cylinder. The red dashed line represents this
cylinder. b) Magnetic field of SCM 1 in the y z-plane going through the center of the cylinder. c)
Electric field of SCM 2, which is related to the electric dipole resonance, in the same xz-plane
as in fig. 5.4a. d) Magnetic field of SCM 2 in the same y z-plane as in fig. 5.4b. In fig. 5.4, the
component of the electric or magnetic fields normal to the chosen plane is zero.
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resonance.

The fields describing a self-coupling mode cannot satisfy the Maxwell equations everywhere

in space except if the s-value is equal to one. In fig. 5.4, the boundary condition at the first

interface (z = 0) is not fulfilled. If the s-value is equal to one, the self-coupling mode is a

quasi-normal mode [124] and a lot of work has be done on this topic [144–147].

5.3.2 Narrowband metasurface and interpolation

In this section, an interpolation scheme is applied to a narrowband metasurface made of an

array of silicon cylinders embedded in glass. The cylinder diameter and height are 470 nm and

609 nm respectively, and the lattice constant is 855 nm. A scale drawing is given in fig. 5.5a.

As shown in fig. 5.7e, this metasurface acts as a mirror with a reflection of more than 97% for

a large wavelength range except at the wavelength between 1470 nm and 1480 nm where a

narrow resonance is present. As expected, this mirror-like behavior is also insensitive to a

change in the metasurface dimensions as shown in fig. 5.5b, where the metasurface considered

in this section is indicated by a red cross. From the analysis of the resonant self-coupling

mode, the maximum of the resonance peak is at 1474 nm and the width of this resonance is

around 1 nm. Hence, the Q-factor of the resonance is around 1400.
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Figure 5.5 – a) Scale drawing of the narrowband metasurface, which is composed of an array
of cylinders embedded in glass. The cylinder diameter and height are respectively 470 nm and
609 nm, and the lattice constant is 855 nm. b) Transmission efficiency for different cylinder
diameters and lattice constants. The cylinder height is 855 nm and the metasurface indicated
by a red cross is the metasurface shown in fig. 5.5a. f is related to the ratio between the
cylinder diameter and the lattice constant and its expression is given in (5.1) with dmi n = 50
µm.

The s-values of the main self-coupling modes for different wavelengths are given in fig. 5.6a,

where the s-values of the resonant self-coupling mode are represented by the blue curve.
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Since the s-values of the self-coupling modes turn clockwise around the origin of the complex

plane, it is possible to know whether a resonance occurs at a lower or higher wavelength from

the simulation of the metasurface at a single wavelength. As shown in fig. 5.6b, the phase of

the s-values of the resonant self-coupling mode is approximately linear with respect to the

wavelength. Therefore, from the simulation of the metasurface for two different wavelengths,

the wavelength of the resonance can be estimated.

The mirror-like behavior of the metasurface is due to the destructive interference of the

contribution of the two non-resonant self-coupling modes to the transmitted plane wave and,

since those two self-coupling modes are non-resonant, this mirror-like behavior is broadband.

The explanation of the broadband mirror-like behavior and the presence of the resonance in

the neighborhood can be made from the analysis of the self-coupling modes of a metasurface

at a single wavelength.

Using the concept of self-coupling mode, it is possible to interpolate the response of a resonant

metasurface even if the metasurface is simulated only outside the resonance. In this section,

the narrowband metasurface is simulated every 10 nm in wavelength from 1440 nm to 1520

nm. As shown in figs. 5.7b and 5.7c, it is not possible to interpolate directly the transmitted

field amplitude or the transmission efficiency. However, there is an anomaly in fig. 5.7b at a

wavelength between 1470 nm and 1480 nm.

From fig. 5.6a, the self-coupling mode SCM 1 is strongly resonant, meaning that its contribu-

tion to the transmitted plane wave varies greatly as its s-value goes through the real axis. As

a reminder, the contribution of the self-coupling mode m on the transmitted plane wave is

given by (5.11)

~tm = 1

1− sm
Q̂t ,m~p. (5.13)

Equation (5.13) can be simplified because, due to the symmetry of the metasurface considered

in this section, the metasurface is polarization independent and the polarization state of the

transmitted plane wave is the same as that of the incident plane wave. For simplicity, ~p is

chosen to be (1,0)T . Therefore, only the first component of~t is taken into account and only

one element in Q̂t ,m is needed.

Since the contribution of the resonant self-coupling mode leads to strong variations in the

metasurface’s response, its contribution is removed from the total response and the remaining

transmitted field tnr is a smooth function as shown in fig. 5.6d. In other words, the total

transmitted field t is given by

t = tnr +
Qt ,1

1− s1
, (5.14)
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Figure 5.6 – a) s-value of the main self-coupling modes in function of the wavelength. For
every 10 nm in wavelength, the s-value of the resonant self-coupling mode SCM 1 is marked
by a star. The dashed line is the positive real axis. The red and blue curves are the cubic
spline interpolation of the data points represented by stars of the corresponding color. b)
Amplitude and phase of the s-value of the resonant self-coupling mode. c-d) The parameter
Qt of the resonant self-coupling mode and the non-resonant part of the transmitted amplitude
in function of the wavelength. The red curves are the cubic spline interpolation of the data
points represented by stars.
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Figure 5.7 – a) Diagram summarizing the interpolation scheme. Q1, s1 and t are obtained
from the simulation of the metasurface and the three smooth functions, Q1, s1 and tnr , are
interpolated. Then, the interpolated transmitted amplitude is obtained along with the res-
onant contribution. b-c) Naive cubic spline interpolation of the transmitted field and the
transmission efficiency from the data points represented by stars. The transmitted amplitude
is normalized such that the amplitude squared is the transmission efficiency. d-e) Interpola-
tion of the transmitted field and the transmission efficiency using the concept of self-coupling
mode. The black line in fig. 5.7d is the amplitude corresponding to 100% transmission effi-
ciency.
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where tnr is a smooth function.

As shown in figs. 5.6b and 5.6c, Qt ,1 and s1 are also smooth, so, by interpolating those three

smooth functions, it is possible to accurately interpolate the response of the metasurface. The

interpolation scheme is summarized in fig. 5.7a.

In fig. 5.8a, the interpolated response using the technique presented in this section is plot-

ted and the accuracy of this interpolation is given in fig. 5.8b. In this case, the error on the

transmission efficiency is lower than 0.003%, even if the metasurface is simulated outside the

resonance. About the method used for the interpolation of tnr , Qt ,1 and s1, a large improve-

ment has been observed by using the spline cubic interpolation method instead of a piece-wise

cubic interpolation which gives an error of up to 1.5% on the transmission efficiency.
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Figure 5.8 – a) Comparison between the interpolation of the transmission efficiency based on
the concept of self-coupling mode, and the reference data, which is the transmission efficiency
from the simulation of metasurfaces. b) Absolute error of the interpolated transmission
efficiency shown in fig. 5.8a.

The interpolation scheme given in this section can be used when multiple resonances are

present by adding more terms in (5.14). A more complicate example is given in section 5.3.3,

where the contribution of two resonant self-coupling modes on the transmitted field for both

resonances is obtained.

5.3.3 GaAlAs metasurface for laser application and computation of the angular
spectrum of a resonance for a symmetric metasurface

The metasurface considered in this section is composed of an array of aluminum-arsenide

(AlAs) cylinders on a glass substrate whose dimensions are given in fig. 5.10a. It is designed to

act as a metasurface-based ultra-thin laser emitting at 870.6 nm, which corresponds to the

band-gap of gallium-arsenide (GaAs), and works in a similar way as a vertical-cavity surface-
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emitting laser (VCSEL). The main difference between the VCSEL and the metasurface-based

laser is that the Bragg grating of the VCSEL is replaced by the structuring of the AlAs layer. In

this section, the concept of self-coupling mode is used to describe parameters that are specific

for the laser, and the angular spectrum of the resonance is provided. Due to the symmetry

of the AlAs metasurface, the number of resonances at normal incidence is even and, in the

considered metasurface, two resonances, one per polarization, are present. Because of these

two resonances, the interpolation scheme presented in section 5.3.2 has to be adapted.

(a)

Figure 5.9 – a) The AlAs metasurface seen as a cavity bounded by two mirrors. The resonant
self-coupling mode, which is composed of forward and backward-propagating eigen-modes,
is represented by the two arrows in the cavity. g1 and g2 is the gain applied to respectively the
forward and backward-propagating eigen-modes to the GaAs quantum wells represented by
the light green lines. The two arrows outside the cavity represent the plane waves going away
from the cavity. The values above these arrows is the ratio of the power emitted by the cavity
in the corresponding direction to the total emitted power.

As mentioned earlier, the metasurface-based laser and the VCSEL have the same working

principle. The optical gain is obtained from the GaAs quantum wells, which are placed inside

a cavity, and the laser emits perpendicularly to the active region. The cavity is usually made

of GaxAl(1-x)As, but, in this section, the chosen material is AlAs for simplicity. There are

several differences, which lead to advantages and disadvantages. In terms of fabrication,

the advantage of the metasurface-based laser is that it does not have a Bragg grating, but

the substrate has to be a low refractive index material such as glass, meaning that the AlAs

layer cannot be grown by epitaxy on the substrate. Moreover, the AlAs has to be etched in

order to obtain a metasurface and the performance of the metasurface-based laser is strongly

dependent of the quality of the etching process. The difficulties related to the etching process

are less present for the VCSEL.

In terms of the physics, the fields inside a metasurface-base laser are larger for the same

Q-factor and output power because the effective length of the cavity is smaller. It has the

advantage that the gain per round-trip is lower for the same output power, but the absorption

of the materials inside the cavity is more problematic. Another specificity of the metasurface-

based laser is that the physics is more complex because the gain region does not cover the

whole x y-plane, meaning that the different modes may not be amplified the same way. Be-
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cause the gain per round-trip is small, it should not impact significantly the performance of

the laser if it is not taken into account during the design process.

Different set of parameters are considered during the design process. The first two sets are the

metasurface dimensions and the s-value of the resonant self-coupling mode, which gives how

the light is trapped inside the metasurface. The parameter that is specific for such application

is the direction in which the resonance emits. For a metasurface-based laser, it is important

that the resonance emits mainly outside the structure instead of in the substrate, even if it

is possible to add a metal layer in order to reflect back a part of the light to the metasurface.

Using the concept of self-coupling mode, the direction of emission can be obtained from the

column corresponding to the resonant self-coupling mode of the matrix T̂r and T̂t expressed

in (5.9). Since the metasurface considered in this section is a zeroth-order grating, only two

plane waves are considered in the substrate and superstrate. Therefore,~tr and~tt , which is the

column of interest in T̂r and T̂t , are 2-elements vectors that describe the plane waves emitted

by the resonance. From those vectors, the ratio of the power flow going in the two directions

can be computed assuming that there is no gain inside the cavity.

A self-coupling mode can be seen as two sets of eigen-modes, one propagating forward and

the other propagating backward, and they create a standing wave inside the metasurface. By

assuming that the gain is represented by a real number that scales the weight of the eigen-

modes equally, the system can be seen as shown in fig. 5.9, where g1 and g2 are the gains due

to the GaAs quantum wells on respectively the forward and backward propagating modes.

From equation (5.9) and by taking into account the gain, the weights of the emitted plane

waves are expressed as

~tr =p
g1g2T̂2Γ̂R̂3Γ̂v̂r

~tt =p
g1T̂3Γ̂~vr ,

(5.15)

where ~vr is the weights of the forward-propagating eigen-modes that compose the resonant

self-coupling mode just after the first interface. Since the self-coupling modes are not normal-

ized and only the ratio of the power flows is meaningful, not taking the gain into account is

equivalent to the case where the gain applies only on the forward-propagating eigen-modes,

meaning that g2 = 1. If the gains g1 and g2 are assumed equal, the value of g1 needs to be

computed.

The system is lasing when the gain is equivalent to the loss, meaning that the s-value of the

resonant self-coupling mode including the gain is one. If sr is the s-value of the resonant

self-coupling mode without gain, it means that

g1g2s2
r = 1. (5.16)

Since g1 and g2 are assumed equal, g1 and g2 are equal to |sr |−1 and the ratio of the power
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Figure 5.10 – a) Scale drawing of the AlAs metasurface with its dimensions. The red arrows
represent the illumination used to characterize the resonance. b) s-value of the main self-
coupling modes in function of the wavelength. There is a dot every 2 nm. c) Transmission
efficiency and the contribution of the resonant self-coupling mode on the efficiency in func-
tion of the wavelength. The wavelength and width of the resonance is estimated from the
contribution of the resonant self-coupling mode. d) s-value of the self-coupling modes in
function of the angle of incidence. The s-values in the light blue region are the s-values of the
resonant self-coupling mode of interest.
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flows to the total emitting power is obtained from the power flow due to the weight of the

plane waves described by~tr or~tt . Using the convention given in section 3.2.1, the power flow

emitted on both sides of the metasurface is proportional to

Pr = n3
sub |tr,T M |2 +nsub |tr,T E |2

Pt = n3
sup |tt ,T M |2 +nsup |tt ,T E |2,

(5.17)

where nsub is the refractive index of the substrate, which is glass, and nsup is the refractive

index of the superstrate, which is air. For the AlAs metasurface, those ratios are given in fig. 5.9.

The main results are that 93.1% of the emitted power goes outside the structure and, since g1

and g2 are known, the power loss per round-trip, which is compensated by the gain, is 0.42%.

The resonance is characterized by illuminating the metasurface from the substrate as shown

in fig. 5.10a. From the s-value of the main self-coupling modes shown in fig. 5.10a and due to

the symmetry of the unit cell, one resonant self-coupling mode per polarization is present.

The transmission efficiency and the contribution of the resonant self-coupling mode are given

in fig. 5.10c and, by looking at the contribution, the resonance occurs at 870.6 nm and the

full-width half-maximum of the resonance is 75.5 pm, giving a Q-factor of around 11 500.

It is more difficult to get the angular spectrum of the resonance than the spectral response

because it is a function that depends on two variables, meaning that the angular spectrum

is more computationally expensive to get. It is therefore particularly advantageous to use an

efficient interpolation scheme. In fig. 5.10c, the spectral characteristics of the resonance are

obtained from the contribution of the resonance on the transmitted plane waves. The same

can be done for the angular characteristics of the resonance by looking at its contribution on

the transmitted plane waves for different angles of incidence.

For the AlAs metasurface, two resonant self-coupling modes with the same s-value due to

the symmetry are present at normal incidence, but, for the different angles of incidence, the

s-value of the resonant self-coupling modes splits. The s-value of the self-coupling modes

present in the metasurface is shown in fig. 5.10d and the s-value of the resonant self-coupling

modes for different angles of incidence is the cluster in the blue area. The particularity of this

cluster is that the imaginary part of the s-values can be both positive and negative. In this

case, it can be shown that it exists a set of angles of incidence such that the s-value stays on

the real axis, meaning that the angle of incidence can be changed while staying on resonance.

When the metasurface resonates at normal incidence, the result is the star-like pattern shown

in figs. 5.11 and 5.12.

Since two resonant self-coupling modes are present, the transmitted plane waves for each

angle of incidence are described by the sum of the contribution of the two resonant self-

coupling modes, and a non-resonant term~tnr , which is a smooth function. Hence, from

equation (5.11), the transmitted amplitude~ttot is given by
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Figure 5.11 – a-b) Amplitude of the transmitted plane waves in function of the angle of inci-
dence for x and y-polarizations. Each pixel corresponds to a simulation. c-d) Interpolation
based on the concept of self-coupling mode of the amplitude shown in figs. 5.11a and 5.11b
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~ttot =~tnr + 1

1− s1
Q̂t ,1~p + 1

1− s2
Q̂t ,2~p. (5.18)

If the Fourier modal method presented in chapter 3 is used, the plane waves are TM and

TE-polarized and this choice of polarization has a singularity at normal incidence, which may

lead to anomaly in the angular spectrum that cannot be interpolated properly. Hence, it is

safer to decompose the fields in the substrate and superstrate into x and y-polarized plane

waves. In this section, the illumination is chosen to be x-polarized with ~px y = (1,0)T , but, due

to the symmetry of the metasurface, the angular spectrum is the same for x and y-polarized

illumination.

The matrices that transform the weights of the TM and TE-polarized plane waves into the

weights of the x and y-polarized plane waves are given by equation (3.30) and, using those

matrices and assuming that the illumination is x-polarized, equation (5.18) becomes

~ttot ,X Y =~tnr,X Y + 1

1− s1

~Q ′
t ,1 +

1

1− s2

~Q ′
t ,2, (5.19)

where~ttot ,X Y describes the transmitted field in terms of x and y-polarized plane waves, and
~tnr,X Y and Q̂ ′

t ,m are given by

~tnr,X Y = P̂

(
kz,sup sx µk0sy

kz,sup sy −µk0sx

)
~tnr

~Q ′
t ,m = P̂

(
kz,sup sx µk0sy

kz,sup sy −µk0sx

)
Q̂t ,m

1

µk0kz,sub

(
µk0sx µk0sy

kz,sub sy −kz,sub sx

)
~pX Y .

(5.20)

kz,sub and kz,sup are the z-component of the k-vector in respectively the substrate and the

superstrate. P̂ is a diagonal matrix that normalizes the weights of the plane waves such that

the efficiency is obtained by taking the absolute square of those weights if either the x or the

y-polarized plane wave is excited. For ~px y = (1,0)T and assuming that the substrate and the

superstrate are lossless, P̂ is given by

P̂ =


√

Re{[ψX ,sup |ψX ,sup ]}
Re{[ψX ,sub |ψX ,sub ]} 0

0

√
Re{[ψY ,sup |ψY ,sup ]}
Re{[ψX ,sub |ψX ,sub ]}



=


√

(k2
x+k2

z,sup )kz,sub

(k2
x+k2

z,sub )kz,sup
0

0

√
(k2

y+k2
z,sup )kz,sub

(k2
x+k2

z,sub )kz,sup

 ,

(5.21)

where ψX ,sup and ψY ,sup are respectively the x and y-polarized plane wave in the superstrate,
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Chapter 5. Multi-mode metasurface, resonant metasurface and self-coupling mode

ψX ,sub is the x-polarized plane wave in the substrate and Re{[ψ|ψ]} is the power flow along

the z direction due to the mode ψ.

From section 3.2.1, [ψX |ψX ] and [ψY |ψY ] are

[ψX |ψX ] = k2
x +k2

z

µk0kz
[ψY |ψY ] =

k2
y +k2

z

µk0kz
. (5.22)

As a reminder, x and y-polarized plane waves are not orthogonal in term of the power flow.

Using the equation in the form given in (5.19), seven interpolations are required and, for each

incident angle, the determination of the two resonant self-coupling modes, named SCM 1 and

SCM 2, has to be done such that s1, s2, ~Qt ,1 and ~Qt ,2 are smooth functions, which is a difficult

task. A practical solution to reduce the complexity of this problem is to write equation (5.19)

in the form

~ttot ,X Y =~tnr,X Y + 1

1− sr es

~Q ′
t ,r es (5.23)

with

sr es = s1 + s2 − s1s2

~Q ′
t ,r es = (1− s2)~Q ′

t ,1 + (1− s1)~Q ′
t ,2.

(5.24)

Hence, the two resonant self-coupling modes are treated as it is a single one, reducing the

number of required interpolations and the need to carefully determine which self-coupling

mode is SCM 1 and 2.

Before interpolation, the amplitude of the transmitted plane waves, which is obtained from
~ttot ,X Y , are given in figs. 5.11a and 5.11b, where each pixel corresponds to a simulation. After

interpolating~tnr,X Y , sr es and ~Q ′
t ,r es , the absolute value of the x and y-components of the

resulting~ttot ,X Y is shown in figs. 5.11c and 5.11d and the contribution of the resonant self-

coupling modes is given in figs. 5.12a and 5.12b. Due to the high frequency features, it would

be computationally intensive to get such results with most methods with the exception of

methods based on the quasi-normal modes due to their similarities with the self-coupling

modes. For the metasurface-based laser, the s-value of the resonant self-coupling modes are

more relevant because the metasurface emits only if the presence of the gain changes one

of those s-values to one. If the presence of the gain does not affect the phase of the s-value,

the first condition for lasing is that the phase of one of the s-values is real. If the phase of the

s-value is not zero, the phase indicates if the metasurface may emits at a different wavelength

or angle. The second condition is that the quantum wells can provide the necessary gain

to compensate the loss. As a first approximation, the maximum gain is proportional to the
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Figure 5.12 – a-b) Contribution of the resonant self-coupling modes on the amplitude of the
transmitted plane waves after interpolation for different angles of incidence and for x and
y-polarization.

number of photons in the metasurface. Hence, based on fig. 5.9, the second condition is

that one of the s-value is close enough to one such that g1 and g2 is smaller or equal to the

maximum possible gain gmax , which depends of the number of quantum wells and their

properties.

At a wavelength of 1120 nm, one of the s-value of the resonant self-coupling modes at the

locations of the lines present in fig. 5.12a is purely real and close to one, meaning that the

angular spectrum of the light emitted by the metasurface is composed of four lines as in

fig. 5.12a. Such feature may not be wanted for a laser, but it is worth knowing that it can occur.

As a general comment, a metasurface-based laser composed of holes is better than the ones

based on cylinders, as proposed in this section, because it is then possible to create an electrical

circuit with the quantum wells inside a p-n junction.

5.3.4 Design of high-Q metasurface for sensing

In this section, a resonant metasurface composed of silicon cylinders with obround cross-

section on a glass substrate in water is presented. A 3D drawing of the metasurface is given

in fig. 5.13a and its cross-section with the different dimensions are given in fig. 5.13b. The

metasurface thickness is 807 nm. The first part of this section shows how chapter 3 combined

with the concept of self-coupling modes can help in the design of a resonant metasurface. The

second part is the estimation of the spatial extent of a resonance and on the effect of a change

in the metasurface thickness on the angular spectrum of the resonance.

The metasurface considered in this section operates under y-polarized illumination and it
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is designed so that the angular spectrum of the resonance is highly asymmetric in order to

be used as the sensor based on surface plasmon resonance presented in [148], where the

dimensions of the structure vary in one direction, shifting the wavelength at which the reso-

nance occurs. Moreover, the Q-factor is maximized while taking into account the absorption

of silicon and water. The wavelength is chosen to be 1120 nm because the absorption of silicon

and water is similar and, while increasing the wavelength, the absorption of water increases

and the absorption of silicon decreases. At that wavelength, the refractive index of water is

1.33 and its extinction coefficient is 7.09 ·10−6. For silicon, its refractive index is 3.56 and its

extinction coefficient is 1.70 ·10−5.

(a) (b)

Figure 5.13 – a) Scale drawing of the metasurface considered in this section. The cylinders are
made of silicon and they are surrounded by water. The substrate is made of glass. b) Top view
of the metasurface with the dimensions of the unit cell and the obround cross-section of the
cylinders.

In order to guarantee that the resonance has an asymmetric angular spectrum, which means

that the spatial extent of the resonance is also asymmetric, the condition that only two propa-

gating eigen-modes are excited in the metasurface is imposed. The amplitude of the electric

and magnetic field, and the power flow along the z direction of the first eigen-mode are

shown in figs. 5.14a to 5.14c. This eigen-mode is confined inside the cylinders and it is the

fundamental eigen-mode since the eigen-mode present in single-mode metasurfaces has the

same characteristics. The fields of the second eigen-mode are mostly located within the gap at

the bottom and top of the cylinders as shown in figs. 5.14d to 5.14f. Since the fields are weak

in the gap at the left and right of the cylinders, the light inside the metasurface propagates

more easily along the y-axis than along the x-axis, leading to the asymmetry in the angular

spectrum of the resonance. The fields of a third eigen-mode are located partly within the gaps

at the left and right of the cylinders, meaning that the asymmetry is expected to be weaker and,

if this asymmetry is taken into account during the design process, it requires the simulation of

the structure at different angles of incidence.
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5.3. Application of the self-coupling mode on multi-mode metasurfaces

The first drawback of having only two propagating eigen-modes inside the metasurface is that

there are less resonances in the design space, so it is more difficult to find metasurfaces with the

desired resonance. The second drawback is that the resonance leads to a dip in transmission

since the broad-band mirror-like effect, which requires two non-resonant self-coupling modes

as shown in section 5.3.2, cannot exist.
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Figure 5.14 – a-c) Amplitude of the electric field, amplitude of the magnetic field and the
power flow along z of the first eigen-mode over an unit cell. They are normalized such that the
maximum is one. d-f) Same quantities as in figs. 5.14a to 5.14c for the second eigen-mode.

The design of a high-Q resonant metasurface is challenging because the objective is to find

a very sharp feature, meaning that the response of a metasurface is not sufficient in order

to know if the structure is on resonance, how sharp is the resonance and how the resonance

affects the response. Using the concept of self-coupling mode, the simulation of a metasurface

answers most of those concerns, but it requires a second simulation to estimate where the

resonance is. The Fourier modal method presented in chapter 3 allows to get the response of

the metasurface for any metasurface thickness at a negligible computational cost. Hence, it is
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possible to get the s-value of the self-coupling modes in the complex plane for any metasurface

thickness, which gives fig. 5.15a, and, from those s-values, a set of resonant metasurfaces.

In fig. 5.15a, there are two resonant metasurfaces for a thickness between 200 nm and 2000 nm.

The first resonance occurs at a thickness of around 807 nm, which corresponds the thickness

of the metasurface considered in this section, and has a high Q-factor since the s-value is very

close to one. The second resonance has a low Q-factor and occurs for a very thick metasurface.

The benefits of using this techniques to get the resonance is two-fold. First, the s-value turns

mostly counterclockwise around the origin while increasing the metasurface thickness. Hence,

it is easier to identify anomalies. The reason behind this direction of rotation is that, since

the propagation constant of the eigen-modes is positive, the phase accumulation during a

round-trip increases while increasing the metasurface thickness. A similar explanation is

given earlier for the direction of rotation while varying the wavelength. The second benefit is

that the number of propagating modes inside the metasurface stays constant, meaning that

the dynamic of the system does not change due to the apparition of an additional propagating

mode.

In order to get the metasurface considered in this section, four dimensions need to be opti-

mized: two for the shape of the cylinders and two for the dimensions of the unit cell. The

metasurface thickness is used in order to be on resonance, so it is not counted as a dimension

to optimize. The first part of the design process is to simulate a random set of metasurfaces,

trying to focus on the parameter space where metasurfaces with two propagating eigen-modes

are present. From the simulated metasurfaces, all the resonances are listed using the tech-

niques described earlier and, for each resonance, the parameters of interest that can be obtain

without the simulation of additional metasurfaces, are computed. For the metasurface con-

sidered in this section, the parameters of interest are the aspect ratios of the cylinders and

the gaps, the s-value of the resonant self-coupling modes and the difference between the

transmission efficiency with and without the contribution of the resonant self-coupling mode.

This difference is given by ∆ηt and it is shown in fig. 5.15c. The Q-factor cannot be estimated

from the simulation of a single metasurface. However, the s-value of the resonant self-coupling

modes gives an indication on the amplification of the fields inside the metasurface and it is

strongly related to the Q-factor. Based on the knowledge of the Fabry-Pérot cavity, the Q-factor

depends also on the cavity length.

The second part is to choose a suitable resonance from the list and to use the metasurface

that have this resonance as a starting point for a local optimization. The local optimization

algorithm used in this work is the fminsearch function in MatLab, which is based on the

Nelder-Mead simplex method [149, 150]. At each iteration, the resonance closest to the

resonance of the previous iteration is considered and a merit function that takes into account

the parameters of interest is computed. The merit function f which is used in this section and

that needs to be minimized is
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Figure 5.15 – a) s-value of the main self-coupling modes in function of the metasurface
thickness. The black dashed line is the positive real axis. b) s-value of the self-coupling modes
for different angles of incidence. c) Transmission efficiency and the non-resonant part of the
transmission efficiency in function of the wavelength. ∆ηt is the difference between those
two curves at the wavelength of the resonance. d) Contribution of the resonant self-coupling
mode to the transmission efficiency. The width of the resonance is 31.1 pm and the Q-factor is
around 36 000.
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f =C1(1− sr )+C2(A2
c + A2

g )+C3e
ηt

ηt ,r e f +C4(h −ht ar g et )2, (5.25)

where sr is the s-value of the resonant self-coupling modes, Ac and Ag are the largest aspect

ratio of respectively the cylinder and the gap, ηt is the transmission efficiency, ηt ,r e f is the

transmission efficiency which is considered as sufficient, h is the metasurface thickness and

ht ar g et is the desired metasurface thickness.

The different exponent used in (5.25) determines how critical the parameters are expected

to be. The efficiencies ηt and ηt ,r e f should be replaced by ∆ηt and ∆ηt ,r e f with a change in

the sign before the constant C3, but, for metasurfaces with two propagating eigen-modes, the

non-resonant part of the transmission efficiency, which is the red curve in fig. 5.15c, is always

close to 100% and the resonance is a dip in the transmission efficiency. The last term in (5.25)

is used only when the thickness of the silicon layer deposited on a glass substrate is known

and the other dimensions of the metasurface are adapted in order to have the resonance at a

wavelength closer to the desired one, which is 1120 nm in this case. The values of C1, C2 and

C3 used for the optimization of the metasurface presented in this section are 104, 10−2 and 0.5

respectively, but they have been adjusted depending on the result after an optimization. In

order to have a resonance for a specific metasurface thickness, the constant C4 is gradually

increased between the optimizations until the obtained thickness is sufficiently close to the

desired thickness.

The response of the metasurface in function of the wavelength is plotted in fig. 5.15c and the

Q-factor is estimated from the contribution of the resonant self-coupling modes, which is

given in fig. 5.15d. The Q-factor is around 36 000. The angular spectrum of the resonance

is obtained as shown in section 5.3.3 except that only a single resonant self-coupling mode

is present. By looking at the s-values of the resonant self-coupling mode in function of the

angle of incidence given in fig. 5.15b, the s-values are both above and below the real axis

even if the metasurface is resonant at normal incidence. Therefore, lines should appear in

the angular spectrum as in section 5.3.3, which is confirmed by fig. 5.17a. Without taking

into account those lines, the angular width of the resonance, given in fig. 5.16b is ∆θx = 1.21◦

and ∆θy = 0.19◦. The angular width is important to consider because, if the divergence of the

source is larger than the angular width of the resonance, the dip due to the resonance shown

in fig. 5.15c becomes more shallow since a part of the illumination does not couple with the

resonance.

The spatial extent of a resonance allows an estimation of how delocalized the resonance is. In

a multi-mode metasurface, there is a strong coupling between the cylinders, meaning that

a defect or, for the case of sensing, the presence of a particle inside the metasurface has an

impact on the response of the metasurface over a large area. In order to estimate the spatial

extent of the resonance, a simple approach is to focus a y-polarized light on the metasurface

and to compute the angular spectrum of the transmitted field, which is shown in fig. 5.17a.

The transmitted field in the spatial domain is then obtained through the Fourier transform.
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Figure 5.16 – a) Angular spectrum of the resonance. It is set to zero outside the region delimited
by the two red dashed lines for the computation of the spatial extent of the resonance shown
in fig. 5.16c. b) Angular spectrum at θy = 0 (blue curve) and θx = 0 (red curve). θx and θy are
the angle of incidence along x and y respectively. c) Spatial extent of the resonances. The
two lines are the footprint of a leaky waveguide mode. d) Spatial extent at y = 0 (blue curve)
and x = 0 (red curve). The dotted curves are obtained by taking the Fourier transform of the
angular spectrum of the resonance without setting the angular spectrum to zero outside the
region delimited by the red dashed line in fig. 5.16a.
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The problems are that the non-resonant part of the transmitted field is insensitive to small

defects because the fields inside the metasurface are not enhanced, and it leads to a large peak

in the spatial domain, which has nothing to do with the resonance. In order to capture better

the spatial extent of the resonance, the Fourier transform is applied on the angular spectrum

of the resonance as shown in fig. 5.16a. However, the angular spectrum of the resonance is not

an integrable function and, even if the evanescent transmitted plane waves are not considered,

it is not reasonable to compute the angular spectrum for all the angles of incidence. By simply

taking into account the angular spectrum for an angle of incidence between −3◦ and 3◦, it is

first an arbitrary choice and its Fourier transform oscillates heavily as shown by the dotted

curves in fig. 5.16d. A better solution is to define a contour around the resonance where the

amplitude of the angular spectrum is as small as possible, and to set the angular spectrum

outside this contour to zero before applying the Fourier transform. The presence of the lines

in fig. 5.16a complicates this manipulation, but, as shown in fig. 5.16b, for θy = 0, where θy is

the angle of incidence along y , the amplitude of the angular spectrum for θx =±3◦ is close to

zero. Hence, the angular spectrum is set to zero when |θx | is larger than 3◦. By plotting the

amplitude of the angular spectrum in function of θy for each θx , the resonance is between two

minimums, creating a valley represented by the two red dashed lines in fig. 5.16a. Therefore,

the angular spectrum outside the region delimited by the two red dashed lines is set to zero

before applying the Fourier transform. The result is shown in fig. 5.16c and, as shown in

fig. 5.16d, the oscillation disappears. The estimated spatial width of the resonance along x and

y is respectively ∆x = 13.2 µm and ∆y = 84.2 µm. As predicted by the analysis of the fields of

the propagating eigen-modes (fig. 5.14), the resonance is asymmetric and ∆y is significantly

larger than ∆x.

The lines present in fig. 5.16a indicate the presence of leaky waveguide modes as shown in

fig. 5.16c. When the metasurface presented in this section is used for sensing, the metasurface

is on resonance, meaning that, in the ideal case, the transmission efficiency is around 11%,

which is the transmission efficiency at the dip in fig. 5.15c, and the field amplitude inside the

metasurface is very high. If a particle is present in the metasurface, this particle will affect

the resonance and, because of those leaky waveguide mode, it is expected that this particle

creates a X-shape in the transmitted field. A disadvantage of those leaky waveguide modes is

that the resonance is more affected by the limited size of the metasurface than if those leaky

waveguide modes are not present.

Due to the tolerances on the metasurface dimensions, the wavelength of the resonance

shifts and, if the source emits at a well-defined wavelength, it may not be possible to use

the metasurface at resonance. However, if lines are present in the angular spectrum of the

resonance, it is possible to find an angle incidence such that the metasurface resonates at the

condition that the first order does not propagate. This statement is deduced from fig. 5.17,

where the angular spectrum of the resonance is given for different metasurface thicknesses.

For a sub-atomic difference ∆h in the metasurface thickness, the two lines becomes two

parabolas and, as |∆h| increases, the distance between the two parabolas also increases. It

is expected that the metasurface is out of resonance for a difference ∆h which has the same
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Figure 5.17 – a) Transmission efficiency in function of the angle of incidence. b) Contribu-
tion of the resonant self-coupling mode to the transmission efficiency. c-h) Contribution
of the resonant self-coupling mode to the transmission efficiency for different metasurface
thicknesses.
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order of magnitude as the resonance width (∆λ= 31 pm).

In practice, the Q-factor of fabricated metasurfaces is significantly lower due to imperfections

and tolerances on the dimensions and the refractive indices. However, if the metasurface

remains periodic, the degradation of the Q-factor should be limited because the light can

escape the metasurface by only two channels, the reflected and transmitted zeroth order,

which is the condition for the presence of a high-Q resonance. Even for a lower Q-factor, the

particularity of the resonance presented in this section should remain.

5.4 Conclusion

Multi-mode metasurfaces have non-intuitive and complex responses, including high-Q reso-

nances. In order to analyse these resonances and to facilitate the design of resonant metasur-

faces, the concept of the self-coupling mode is developed. We show that this concept has two

important applications: the systematic characterization of a resonance and the interpolation

of the response of a metasurface with high-Q resonances. These applications are illustrated in

this chapter by four different examples.

The characterization of the resonance using the concept of the self-coupling mode is applied

to the Huygens’ metasurface where magnetic and electric dipole resonances are present. We

show from this example that this concept allows to single out both resonances, to obtain their

spectral responses and to get the fields related to those two resonances. From those fields, we

can associate the resonant self-coupling mode to the corresponding dipole resonance.

In order to obtain the response of a resonant metasurface as a function of any parameters

of the system with a minimum of simulations, we propose an interpolation scheme, which

allows an accurate interpolation of the metasurface response even if it is simulated only

outside the resonance. We apply this interpolation scheme to a narrowband metasurface,

where the transmission efficiency outside and at resonance is a few percent and nearly 100%,

respectively. By simulating the narrowband metasurface only outside the resonance, the error

in the response is less than 0.003%.

This interpolation scheme is also applied to an AlAs metasurface and an asymmetric metasur-

face to obtain the angular spectrum of the resonance. In the case of the AlAs metasurface, the

interpolation scheme has to be adapted because two resonances are present at normal inci-

dence due to the symmetry, and they are difficult to separate. The resulting angular spectrum

is a star-like pattern for the AlAs metasurface and a cross for the asymmetric metasurface. We

associate the branches of those patterns with leaky waveguide modes.

From the angular spectrum of a resonance, it is possible to estimate the spatial extent of the

resonance, which is the spread of the resonance in the metasurface. We use the capability

of the self-coupling mode concept to identify resonances and to interpolate the resonant’s

response in order to fully characterize the asymmetric resonance presented in section 5.3.4.
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5.4. Conclusion

From those four examples, we show the self-coupling mode is a powerful concept for the

analysis and design of multi-mode metasurfaces.
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6 Adjoint method

6.1 Introduction

The objective of the design process is to find a structure that has the best performance under

some constraints. In order to reach this objective, a merit function that characterizes the

performance is defined and an optimization method is used to find the minimum or maximum

of the merit function. Optimization methods can be divided into two groups. The first group

performs a global optimization and it includes evolutionary algorithms [151] and Bayesian

optimizations [152, 153]. The second group finds the nearest local optimum and the most

common methods are given in [67]. Another optimization method which is mainly used for the

design of diffractive optical elements is the Iterative Fourier Transform Algorithm (IFTA) [91].

If the number of parameters is large and the optical structure has to be simulated with a

rigorous method, most of those optimization methods require too many simulations. Methods

that converge fast enough to the optimum are based on the gradient of the merit function

such as the gradient descent and the quasi-newton method. Two efficient methods can

be used to compute the derivative of the merit function. The first one is the algorithmic

differentiation [86, 87], also called automatic differentiation. This method is based on the fact

that any computer program is a sequence of operations and, using the chain rule, the derivative

of the merit function can be obtained. The second method is the adjoint method [63], which

is the topic of this chapter. It allows to get the functional derivative of the merit function

with respect to the permettivity and permeability by computing the field generated by two

sources, requiring therefore two simulations. The disadvantage of the adjoint method over the

algorithmic differentiation is that it gives an approximation of the derivative as the algorithmic

differentiation gives the derivative at working precision. On the other side, if the Fourier

modal method is used for the simulation of the structure, the adjoint method is expected to

be significantly faster than the algorithmic differentiation due to the complexity of the Fourier

modal method.

In section 6.4, the equations for the adjoint method are provided for a periodic diffractive

element, which is simulated with the Fourier modal method, and for any merit function
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composed of the efficiency of the diffraction orders. The derivation of those equations are

given in section 6.7.2, emphasizing the important steps in the derivation since they need to be

derived again if another type of merit function is used. It is also shown in section 6.4 that, at

normal incidence and by using the Fourier modal method in chapter 3, a single simulation is

required to get the functional derivative of the merit function.

The key elements of the adjoint method are given in two separate sections. The first one, given

in section 6.2, is the plane waves generated by a plane source. The adjoint method involves

an adjoint source which is described in terms of magnetization and polarization densities

in a plane, and the Fourier modal method requires the weight of the incident plane waves

instead. The notion of plane source is equivalent to the notion of Generalized Sheet Transi-

tion Conditions (GSTC) [154], which describes a discontinuity in the field by a polarization,

magnetization and current densities. The GSTC can be used to represent a metasurface by

surface susceptibilities [155, 156], by impedance and admittance dyadics [157], or by Hertz

potentials [158]. However, many of those works assume that the z-component of the polar-

ization, magnetization and current densities is zero [155, 157, 158], which is not the case in

section 6.2. The equations provided in this work are simpler than the ones in [156].

The second key element is the foundation of the adjoint method. As explain in section 6.3, an

infinitesimal change in the permettivity and permeability is equivalent to a source, and the

impact of those possible sources on the merit function can be obtain by the fields generated

by the adjoint source due to the properties of the Green tensor in reciprocal media.

In section 6.5, the adjoint method is applied to a 5x7 beam splitter, which has been introduced

in [159]. From this example, the derivative computed using the adjoint method is compared

with the numerical derivative. Then, the beam splitter is optimized using the quasi-Newton

method, showing that the merit function converges to an optimum even if there is a difference

between the derivative from the adjoint method and the numerical derivative. A standard

unconstrained optimization is used in section 6.5, meaning that the obtained permittivity is a

continuous function. In order to go further and get a diffractive optical element that can be

fabricated, the boundaries between the media need to be optimized instead of the permittivty.

A typical approach is to introduce a penalty function [160] in order to push the permittivity

to one of the two considered materials. Another approach is to compute the effect of an

infinitesimal deformation of the boundaries on the figure of merit, called the shape derivative,

which can be obtain in a similar way as the functional derivative. The shape derivative requires

a description of the boundaries, which can be done through parametric functions or the level

set function. The shape derivative for both descriptions is given in [63].

6.2 Plane waves generated by a plane source

In this section, the equations to get the plane waves generated by a plane source and the source

that generates a known set of plane waves are provided. Those equations are necessary for

the derivation of the adjoint method, but they can also be used in simulations using methods
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6.2. Plane waves generated by a plane source

like the Finite Difference Time Domain method (FDTD) in order to design a source, or for the

design of the susceptibilities that describe the desired metasurface [155].

The plane waves generated by a plane source can be found by solving the Maxwell equation

for a homogeneous medium:

∇×~E = i k0(µ~H + ~M)

∇× ~H =−i k0(ε~E +~P ),
(6.1)

where the magnetization ~M and the polarization density ~P describe a plane source at z = 0,

which are given by

~M =

 Mx

My

Mz

e i (kx x+ky y)δ(z) ~P =

 Px

Py

Pz

e i (kx x+ky y)δ(z). (6.2)

δ(z) is the Dirac function. Through the Fourier transform, any plane source with varying

amplitude and phase along the x y-plane can be described as a sum of the plane sources

expressed in (6.2) with different kx and ky .

As proved in section 6.7.1, the fields generated by a plane source have the form

~E = A1u(z)~ET M + A2(1−u(z))~E−
T M +B1u(z)~ET E +B2(1−u(z))~E−

T E +C1~nz e i (kx x+ky y)δ(z)

~H = A1u(z)~HT M + A2(1−u(z))~H−
T M +B1u(z)~HT E +B2(1−u(z))~H−

T E +C2~nz e i (kx x+ky y)δ(z).
(6.3)

where u(z) is the unit step function, ~nz is the unit vector parallel to the z-axis and ~ET M and
~ET E are the fields of respectively the TM and TE-polarized plane waves given in section 3.2.1.

As a reminder, the TM-polarized plane waves are described as

~ET M =

 kz sx

kz sy

−kË

e i (kx x+ky y+kz z), ~HT M =

 −εk0sy

εk0sx

0

e i (kx x+ky y+kz z) (6.4)

and the TE-polarized plane waves are described as

~ET E =

 µk0sy

−µk0sx

0

e i (kx x+ky y+kz z), ~HT E =

 kz sx

kz sy

−kË

e i (kx x+ky y+kz z) (6.5)
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where kz is obtained from the dispersion relation

k2
z +k2

Ë = εµk2
0 (6.6)

and kË, sx and sy are given by

kË =
√

k2
x +k2

y ,

sx = 1, sy = 0 if kË = 0

sx = kx /kË, sy = ky /kË otherwise
(6.7)

In order to find the plane waves generated by a plane source instead of the plane waves that

are fully absorbed by a plane sink, the sign of kz is chosen such that the power flow related

to the forward-propagating plane waves described in (6.4) and (6.5) is toward the positive

z-direction and the imaginary part of kz is positive. If ε and µ describe an active medium, the

choice of the sign of kz is more problematic [122].

The operator (·)− used in (6.3) is defined in section 2.3 and transforms a forward-propagating

plane wave to a backward-propagating plane wave in the following way:

~E =

 Ex

Ey

Ez

e i (kx x+ky y+kz z) ⇒ ~E− =

 Ex

Ey

−Ez

e i (kx x+ky y−kz z)

~H =

 Hx

Hy

Hz

e i (kx x+ky y+kz z) ⇒ ~H− =

 −Hx

−Hy

Hz

e i (kx x+ky y−kz z).

(6.8)

The coefficients A1, A2, B1, B2, C1 and C2 in equation (6.3) are given by

A1 = i

2εkz
(kz (sx Px + sy Py )−kËPz +εk0(sx My − sy Mx ))

A2 = i

2εkz
(kz (sx Px + sy Py )+kËPz −εk0(sx My − sy Mx ))

B1 = i

2µkz
(kz (sx Mx + sy My )−kËMz −µk0(sx Py − sy Px ))

B2 =− i

2µkz
(kz (sx Mx + sy My )+kËMz +µk0(sx Py − sy Px ))

C1 =−Pz

ε

C2 =−Mz

µ
.

(6.9)

If one wants to find the source that generates a known set of plane waves, the solution is given
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by

Mx = 1

k0
(i kz sy (A1 − A2)− iµk0sx (B1 −B2)+kyC1)

My =− 1

k0
(i kz sx (A1 − A2)+ iµk0sy (B1 −B2)+kxC1)

Mz =−µC2

Px =− 1

k0
(iεk0sx (A1 + A2)+ i kz sy (B1 +B2)+kyC2)

Py =− 1

k0
(iεk0sy (A1 + A2)− i kz sx (B1 +B2)−kxC2)

Pz =−εC1

(6.10)

The coefficients of the bound modes C1 and C2 can be chosen arbitrarily.

6.3 Variation of the fields due to a change in material parameters

and reciprocity

The adjoint method is based on the concept of reciprocity and on the equivalence between

an infinitesimal difference in the permittivity and permeability, and a source described by

a polarization and magnetization density ~P and ~M . The fields generated by this source are

the variation of the electric and magnetic fields, δ~E(~x) and δ~H(~x), due to a variation of the

material parameters. If the medium is reciprocal, there is a link between the fields at the

position ~x ′ due to a source at position ~x and the fields at the position ~x due to a source at

position~x ′. The adjoint method uses this link to get the effect of the variation of the material

parameters, which is equivalent to a source, on the figure of merit by computing the fields

at the position where the material parameters vary due to a virtual source called the adjoint

source. In this section, it is shown why an infinitesimal difference in the material parameters

is equivalent to a source. Then, the properties of the Green tensor of a reciprocal medium,

which are required in the derivation of the adjoint method, are given.

Initially, the electric field ~E(~x) and magnetic field ~H(~x) satisfy the Maxwell equation

∇×~E(~x) = i k0µ(~x)~H(~x)

∇× ~H(~x) =−i k0ε(~x)~E(~x).
(6.11)

For an infinitesimal variation of the permittivity and permeability given by δε(~x) and δµ(~x),

the Maxwell equation (6.11) becomes
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∇× (~E(~x)+δ~E(~x)) = i k0(µ(~x)+δµ(~x))(~H(~x)+δ~H(~x))

∇× (~H(~x)+δ~H(~x)) =−i k0(ε(~x)+δε(~x))(~E(~x)+δ~E(~x)),
(6.12)

where δ~E(~x) and δ~H(~x) are the infinitesimal change of respectively the electric and magnetic

fields due to δε(~x) and δµ(~x).

Assuming that the terms δµ(~x)δ~H(~x) and δε(~x)δ~E (~x) are negligible and recognizing equation

(6.11) in equation (6.12), equation (6.12) becomes

∇×δ~E(~x) = i k0(µ(~x)δ~H(~x)+δµ(~x)~H(~x))

∇×δ~H(~x) =−i k0(ε(~x)δ~E(~x)+δε(~x)~E(~x)).
(6.13)

The infinitesimal change of the fields can be seen as the solution of the Maxwell equation with

a polarization density ~P and a magnetization density ~M , which constitute a source, and are

given by:

~P = δε(~x)~E(~x) ~M = δµ(~x)~H(~x). (6.14)

For shape optimization, meaning that the boundary between two homogeneous media is

optimized instead of the permettivity and permeability, the terms δµ(~x)δ~H (~x) and δε(~x)δ~E (~x)

in (6.12) cannot be neglected. This case is not considered in this work, but it is treated in

section 5.1 in [63].

By introducing the Green tensors, δ~E(~x) and δ~H(~x) are given by:

(
δ~E(~x ′)
δ~H(~x ′)

)
=

Ñ (
ĜEP (~x ′,~x) ĜE M (~x ′,~x)

ĜHP (~x ′,~x) ĜH M (~x ′,~x))

)(
δε(~x)~E(~x)

δµ(~x)~H(~x)

)
d~x (6.15)

In reciprocal medium, the Green tensor has the following properties:

ĜEP (~x ′,~x) = ĜT
EP (~x,~x ′)

ĜH M (~x ′,~x) = ĜT
H M (~x,~x ′)

ĜHP (~x ′,~x) =−ĜT
E M (~x,~x ′).

(6.16)

Those properties are proved in Appendix A of [63].
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6.4 Adjoint method for periodic diffractive optical elements

The adjoint method gives the functional derivatives based on the fields generated by two

different sources, the primary source and an adjoint source. Hence, a first equation describes

the adjoint source and a second equation gives the functional derivatives. Those two equations

depend of the definition of the merit function. In this section, the adjoint method is applied

to a system composed of a periodic diffractive optical element with a real-valued figure of

merit F based on the efficiency of the diffraction orders, denoted ηm , and the adjoint source

is expressed in such way that it is suitable for the Fourier modal method (chapter 3). The

subscript m refers to m-th order, which is a plane wave characterized by the components of

the k-vector kx,m and ky,m , and a polarization, which can be either TM or TE.

Since the adjoint method uses two sources, two simulations, one for each source, are usually

required: the direct simulation and the adjoint simulation. Figure 6.1a is a schema repre-

senting the direct simulation, where the primary source generates the incident plane wave

that interacts with the diffractive optical element described by the permittivity ε(~x) and the

permeability µ(~x). The figure of merit is obtained from the weight of the transmitted plane

waves tm at the output plane. The adjoint simulation is schematized in fig. 6.1b, where the

adjoint source is defined at the output plane by the magnetization and polarization densities
~M(~x ′) and ~P (~x ′). This adjoint source emits a set of plane waves whose weight is qm and gener-

ates the adjoint fields ~Ead j (~x) and ~Had j (~x). By convention,~x is a position in the region where

the permettivity and permeability are optimized, and~x ′ is a position in the output plane. In

fig. 6.1, the subscripts of the weights tm and qm are not in the same order because, due to

the convention used in this work, the only difference between the k-vector of a forward and

backward-propagating plane wave related to the order m is the change in the sign of kz .

In order to use the adjoint method, the merit function and therefore the diffraction efficiencies

ηm need to be expressed in terms of the fields. It can be done in multiple ways and three of

them based on the integration of the fields in the output plane are given:

ηm = Φm

Φi n

∣∣∣∣∣ 1

pmµk2
0 |Λ|

Ï
Λ

~E(~x ′) ·~E∗
m(~x ′)d~x ′

∣∣∣∣∣
2

(6.17a)

ηm = Φm

Φi n

∣∣∣∣ 1

2pmk0kz,m |Λ|
Ï
Λ

(~E(~x ′)× ~H−
p (~x ′)−~E−

p (~x ′)× ~H(~x ′)) ·~nz d~x ′
∣∣∣∣2

(6.17b)

ηm = Φm

Φi n

∣∣∣∣ 1

2pmk0kz,m |Λ|
Ï
Λ

(~E(~x ′)× ~H∗
m(~x ′)+~E∗

m(~x ′)× ~H(~x ′)) ·~nz d~x ′
∣∣∣∣2

, (6.17c)

where ~E(~x ′) and ~H(~x ′) are the fields generated by the primary source,Λ is the unit cell, |Λ| is

the unit cell area, pm is ε if the diffraction order m is TE-polarized and µ otherwise, ~Em(~x ′) and
~Hm(~x ′) are the fields of the order m given by (6.4) or (6.5) depending of the polarization, and

Φm/Φi n is the ratio of the power flow of the plane wave described by ~Em(~x ′) and ~Hm(~x ′) to the
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(a) (b)

Figure 6.1 – a) Direct simulation where the diffractive optical element, which is the region to
optimize, is illuminated by a plane wave. The figure of merit is computed from the fields at the
output plane, which are composed of the plane waves related to the diffraction orders. In the
adjoint method, the required quantities are the weight tm of the transmitted plane waves at the
output plane, and the fields ~E (~x) and ~H (~x) inside the region to optimize. b) Adjoint simulation
where the adjoint source defined at the output plane by the magnetization and polarization
densities ~M(~x ′) and ~P (~x ′), emits a set of plane waves with the weights qm propagating toward
the region to optimize. In the adjoint method, the required quantities are the fields ~Ead j (~x)
and ~Had j (~x) in the region to optimize.
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power flow of the incident light. In equation (6.17b), for a diffraction order m described by

kx,m and ky,m , the order p is described by −kx,m and −ky,m with the same polarization. The

three different expressions of the diffraction efficiency ηm in (6.17) are only valid for lossless

medium and if the order m is propagating.

The integrals in (6.17) act as filter, whose output is the weight of the plane wave described by
~Em(~x ′) and ~Hm(~x ′) that composes the fields ~E(~x ′) and ~H(~x ′). Hence, the expressions in (6.17)

are equivalent to

ηm = Φm

Φi n
|tm |2. (6.18)

Since equations (6.17) express the same quantity, the adjoint method gives the same expression

of the functional derivatives even if their derivation is different. The expression (6.17a) is the

simplest one, but it fails if the fields at the output plane generated by a source in the region to

optimize, are composed of forward and backward-propagating waves, which is rarely the case

in practice. The expression (6.17b) is the one used in [89] and the expression (6.17c) is based

on the Poynting operation (chapter 2). For derivation of the adjoint given in section 6.7.2, the

expression (6.17c) is chosen.

As proved in section 6.7.2, the weight of the plane wave related to the diffraction order p

emitted by the adjoint source are given by

qp = cm
δF

δηm
t∗m cm =

 1 for kË,m = 0

−1 otherwise
, (6.19)

where F is the figure of merit and kË,m is given by
√

k2
x,m +k2

y,m .

The Bloch phases of the direct and adjoint simulation have different sign. Therefore, if the

illumination for the direct simulation is at normal incidence, meaning that the Bloch phase

is zero, and the Fourier modal method in chapter 3 is used, the S-matrix obtained from the

direct simulation that describes the diffractive optical element, can also be used for the adjoint

simulation. Hence, a single simulation is enough to get the functional derivatives of the figure

of merit.

The functional derivatives of the figure of merit depend of the fields generated by the primary

source, ~E(~x) and ~H(~x), and the fields generated by the adjoint source, ~Ead j (~x) and ~Had j (~x).

They are given by
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δF

δε(~x)
=− k0

|Λ|Φi n
Im

{
~Ead j (~x) ·~E(~x)

}
δF

δµ(~x)
= k0

|Λ|Φi n
Im

{
~Had j (~x) · ~H(~x)

} (6.20)

For a variation of the permittivity and permeability given by δε(~x) and δµ(~x), the variation of

the figure of merit δF is

δF =
Ñ

δF

δε(~x)
δε(~x)d~x +

Ñ
δF

δµ(~x)
δµ(~x)d~x (6.21)

In the Fourier modal method, the diffractive optical element is divided into layers and each

layer is described by a permittivity profile, assuming here for simplicity that the permeability

is always one. Moreover, the permittivity profile is usually divided into pixels. In other words,

the layer is divided into cuboids where the permittivity is assumed constant inside and the

fields depend only on z. In this case, the variation of the merit function due to a change of the

permittivity of the cuboid n, denoted δεn , is

δF =−|Ap |k0δεn

|Λ|Φi n

∫ z2

z1

Im
{
~Ead j ,n(z) ·~En(z)

}
d z, (6.22)

where |Ap | is the area of the pixel, z1 and z2 are the position where the interfaces that delimite

the layer are, and ~Ead j ,n(z) and ~En(z) are the electric fields in the cuboid n.

The derivation of equations (6.17c), (6.19), and (6.20) is given in section 6.4. For another merit

function, section 6.4 also provides the necessary steps in order to get the required equations

for the computation of the functional derivative.

6.5 Application of the adjoint method for the design of a beam split-

ter

In this section, the adjoint method is applied on a 5x7 beam splitter, which has been introduced

in [159]. It is a binary diffractive optical element composed of glass (n = 1.45) with a square

lattice working at a wavelength of 940 nm under y-polarized illumination at normal incidence.

The lattice constant and the thickness of the beam splitter are fixed to 5 µm and 1182 nm

respectively. A schema of the beam splitter is given in fig. 6.2a. Due to the lattice constant,

the maximum diffraction angles are 22.1◦ along x and 34.3◦ along y. The thickness has been

chosen in order to have a difference in the phase after the beam splitter of around π under the

thin-element approximation.

The initial beam splitter, which is used as the starting point for the optimization, is given in
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(a)
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(c)

Figure 6.2 – a) Schema of the beam splitter, which is illuminated from the glass substrate
at normal incidence. The lattice constant of the beam splitter is 5 µm and the thickness
is 1182 nm. ηmn is the efficiency of the diffraction order (m,n). b) Diffraction efficiencies
of the beam splitter before optimization. Their values are given in table 6.5a. c) Desired
diffraction efficiencies. Except at the corner ((m,n) = (±2,±3)), the difference between the
desired efficiencies and the diffraction efficiencies of the optimized beam splitter is negligible.
Hence, their values are shown in 6.5b.
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fig. 6.3d and it has been obtained using the Iterative Fourier Transform Algorithm (IFTA) [91].

The desired output, which is determined by the diffraction efficiencies, is shown in fig. 6.2c

and the output of the initial beam splitter is shown in fig. 6.2b and table 6.5a.

Two metrics are used to characterize the performance of the beam splitter. The first one is the

sum of the errors squared of the efficiencies, and is given by

F = ∑
mn

(ηmn −ηd ,mn)2, (6.23)

where ηmn and ηd ,mn is respectively the obtained and desired efficiency of the diffraction

order (m,n). The metric F is the figure of merit. The angle θx and θy of the diffraction order

(m,n) is

θx = asin−1
(

L

λ

)
θy = asin−1

(
L

λ

)
, (6.24)

where L is the lattice constant and λ is the wavelength.

The second metric is the uniformity error and is defined as

U E =
max
m,n

(ηmn/ηd ,mn)−min
m,n

(ηmn/ηd ,mn)

max
m,n

(ηmn/ηd ,mn)+min
m,n

(ηmn/ηd ,mn)
. (6.25)

The orders (m,n) taken into account in equations (6.23) and (6.25) are the orders whose

efficiency ηd ,mn is shown in fig. 6.2c and different than zero. The sum of the desired diffraction

efficiencies ηd ,mn is 80%.

The adjoint method gives the estimation of the derivative of the figure of merit, which is an

estimation of the effect of the variation of the permittivity of a cuboid, whose cross-section

is a pixel present fig. 6.3d, on the merit function. Since the permittivity profile is defined

by a matrix, the figure of merit is derivated with respect of the permittivity of the cuboid

that composes the beam splitter. In order to obtain the derivative from the adjoint method,

equations (6.19) and (6.22) are used. The integral in (6.22) can be solved numerically, but,

since the fields of the eigen-modes obtained from the Fourier modal method are given for any

position z, it is possible to solve this integral analytically.

The estimation of the derivative obtained from the adjoint method is given in fig. 6.3a. This

estimation is compared with the numerical derivative shown in fig. 6.3b, which is obtained by

computing the figure of merit after varying slightly the permittivity of a cuboid. By comparing

figs. 6.3a and 6.3b, both derivatives have the same order of magnitude and the same features

with the difference that the features in the numerical derivative are sharper. From fig. 6.3c,

which is the difference between the derivative from the adjoint method and the numerical
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Figure 6.3 – a) Estimation of the derivative of the figure of merit with respect to the permittivity
obtained from the adjoint method. b) Numerical derivative of the figure of merit. c) Difference
between figs. 6.3a and 6.3b. d) Permettivity profile of the beam splitter before optimization.
The blue region is glass (n = 1.45) and the white region is air.
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derivative, the largest differences are at the boundary between glass and air.
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Figure 6.4 – a) Figure of merit for the different iterations. The number of iterations is lower than
the number of function evaluations because an iteration includes a line search and the line
search may require more than one function evaluation. The function evaluation includes the
computation of the figure merit and its derivative. b) Refractive index profile of the optimized
beam splitter.

In order to optimize the beam splitter, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-

rithm, which is a variation of the quasi-newton method, combined with a line search method

based on polynomial interpolation (section 2.6 and 3.2 in [161]) is used. As shown in fig. 6.4a,

the optimization process converges rapidly to a small value, even if the derivative of the merit

function given by the adjoint method is an estimation. Before the optimization, the transmis-

sion efficiencies are given in table 6.5a and, from those values, the figure of merit (6.23) and the

uniformity error (6.25) are 2.08 ·10−3 and 73.9% respectively. After optimization, the refractive

index profile is shown in fig. 6.4b and the transmission efficiencies, given in table 6.5b, are

virtually the same as the target diffraction efficiencies. From the resulting efficiencies, the

figure of merit (6.23) and the uniformity error (6.25) are 1.62 ·10−11 and 0.009% respectively.

The optimized beam splitter cannot be made because its permittivity profile ( fig. 6.4b) is

continuous and some regions have a refractive index below one due to the lack of constraints

in the optimization. However, the results obtained in this section show that the derivative of

the figure of merit given by the adjoint method is close enough to the actual derivative and,

therefore, the adjoint method can be used in conjunction with a gradient-based optimization

algorithm in order to optimize an optical structure. Further work on this topic will be provided

by D. C. Kim [159].
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Q
Q
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0 1.77% 1.11% 3.98% 2.47% 0.96%

1 1.13% 2.08% 3.75% 1.74% 1.39%

2 1.86% 2.60% 2.96% 3.31% 0.60%

3 0.44% 4.25% 2.29% 4.00% 0.23%

(a)
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1 1.63% 2.45% 2.45% 2.45% 1.63%
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(b)

Figure 6.5 – a) Diffraction efficiencies of the beam splitter before optimization. b) Diffraction
efficiencies of the optimized beam splitter.

6.6 Conclusion

In this chapter, we provide the equations for the adjoint method applied to diffractive optical

elements for any merit function based on the efficiency of the diffraction orders. For another

merit function, a new set of equations has to be derived and, in order to facilitate the derivation,

we emphasize all the steps of the proof.

The adjoint method is adapted to be used with the Fourier modal method, which gives the

following advantage. Usually, two simulations of the diffractive optical element are necessary:

one with the primary source and the second with the adjoint source. However, at normal

incidence, only one simulation is required to obtain the figure of merit and the derivative of

the merit function due to the relationship between the Bloch phase of both sources.

In the derivation of the adjoint method, the adjoint source is described in terms of a magne-

tization and a polarization density in a plane, but, in the Fourier modal method, the weight

of the incident plane waves is required. In order to obtain those weights, we provide the

relationship between a plane source, described by a magnetization and a polarization density,

and the weight of the plane waves generated by this plane source. The notion of plane source

developed here seems promising to find the surface susceptibilities for a desired functionality.

As a proof of concept, we optimize a 5x7 beam splitter with a quasi-Newton method in

conjunction with the adjoint method. From this example, we show that the gradient obtained

by the adjoint method is a smoothed version of the numerical derivative. We demonstrate

that, despite this difference, the quasi-Newton method converges quickly to a small value,

making the adjoint method suitable for calculating the gradient of the merit function.
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6.7 Proofs

6.7.1 Proof of the plane waves generated by a plane source

The plane source described in (6.2) have six variables, Mx , My , Mz , Px , Py and Pz , and, due

to the linearity of the Maxwell equation (6.1), its solutions are the sum of the solutions of

the Maxwell equation without source, which are the homogeneous solutions, and a linear

combination of six particular solutions, that are not solution of the Maxwell equation without

source and whose coefficients depend of the six variable in (6.2). As a reminder, the Maxwell

equation (6.1) is

∇×~E = i k0(µ~H + ~M)

∇× ~H =−i k0(ε~E +~P ),
(6.26)

where the source is given by

~M =

 Mx

My

Mz

e i (kx x+ky y)δ(z) ~P =

 Px

Py

Pz

e i (kx x+ky y)δ(z). (6.27)

By looking at this equation, the obvious candidates for the particular solutions contain the

Dirac function δ(z) or the unit step function u(z) since δ(z) appears in the source, u(z) is the

derivative of δ(z) and such candidates cannot be a homogeneous solution of the Maxwell

equation (6.26). Moreover, the candidates are assumed to have the same spatial dependency

e i (kx x+ky y) as the plane source. Hence, the proposed candidates are in the form

~E =

 Ex

Ey

Ez

e i (kx x+ky y)δ(z) ~H =

 Hx

Hy

Hz

e i (kx x+ky y)δ(z) (6.28)

and

~E =

 Ex

Ey

Ez

e i (kx x+ky y+γz)u(z) ~H =

 Hx

Hy

Hz

e i (kx x+ky y+γz)u(z), (6.29)

where Ex , Ey , Ez , Hx , Hy , Hz and γ are unknowns. The particular solution (6.28) cannot be

derivated with respect to z since the term δ′(z) appears. Therefore, Ex , Ey , Hx and Hy are

zero. To fit the solution proposed in (6.3), Ez and Hz are replaced by C1 and C2 respectively.

Inserting the particular solution (6.28) into the Maxwell equation (6.26) gives:
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kyC1 = k0Mx −kyC2 = k0Px

−kxC1 = k0My kxC2 = k0Py

−µk0C2 = k0Mz −εk0C1 = k0Pz .

(6.30)

Inserting the particular solution (6.29) into the Maxwell equation (6.26) gives

 kx

ky

γ

×

 Ex

Ey

Ez

u(z)− i

 −Ey

Ex

0

δ(z) =µk0

 Hx

Hy

Hz

u(z)+k0

 Mx

My

Mz

δ(z)

−

 kx

ky

γ

×

 Hx

Hy

Hz

u(z)+ i

 −Hy

Hx

0

δ(z) = εk0

 Ex

Ey

Ez

u(z)+k0

 Px

Py

Pz

δ(z)

(6.31)

By taking only the terms containing the unit step function u(z), the Maxwell equation without

source are obtained, meaning that the TM and TE plane waves described in (6.4) and (6.5) are

solutions for both propagation directions and γ is equal to ±kz .

The weight of the four different plane waves is obtained from the equations composed of the

terms containing the Dirac function δ(z). Therefore, the particular solution of the Maxwell

equation (6.26) has the form

~E = A1u(z)~ET M − A2u(z)~E−
T M +B1u(z)~ET E −B2u(z)~E−

T E +C1~nz e i (kx x+ky y)δ(z)

~H = A1u(z)~HT M − A2u(z)~H−
T M +B1u(z)~HT E −B2u(z)~H−

T E +C2~nz e i (kx x+ky y)δ(z).
(6.32)

The solution given in (6.3) is a homogeneous solution of the Maxwell equation (6.26) added

to the solution (6.32). The homogeneous solution has been chosen such that the forward

propagating waves and the backward propagating waves in (6.26) are only in, respectively, the

upper half space (z larger than zero) and the lower half space (z smaller than zero). As it is

required, the particular solution (6.32) is a linear combination of six independent functions.

The coefficients A1, A2, B1, B2, C1 and C2 are found from the equations (6.30) and (6.31) and

are the solution of the system of equations



i kz sy −i kz sy −iµk0sx iµk0sx ky 0

−i kz sx i kz sx −iµk0sy iµk0sy −kx 0

0 0 0 0 0 −µk0

−iεk0sx −iεk0sx −i kz sy −i kz sy 0 −ky

−iεk0sy −iεk0sy i kz sx i kz sx 0 kx

0 0 0 0 −εk0 0





A1

A2

B1

B2

C1

C2


= k0



Mx

My

Mz

Px

Py

Pz


. (6.33)
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The determinant of the matrix present in (6.33) is (2εµkz k2
0)2, meaning that the cases kz = 0,

ε= 0 and µ= 0 does not have solution for most of the plane sources. After inverting the matrix

in equation (6.33), the system of equations becomes

k0



− i sy

2kz

i sx
2kz

0 i sx
2εk0

i sy

2εk0
− i kË

2εkz k0
i sy

2kz
− i sx

2kz
0 i sx

2εk0

i sy

2εk0

i kË
2εkz k0

i sx
2µk0

i sy

2µk0
− i kË

2µkz k0

i sy

2kz
− i sx

2kz
0

− i sx
2µk0

− i sy

2µk0
− i kË

2µkz k0

i sy

2kz
− i sx

2kz
0

0 0 0 0 0 − 1
εk0

0 0 − 1
µk0

0 0 0





Mx

My

Mz

Px

Py

Pz


=



A1

A2

B1

B2

C1

C2


, (6.34)

which is equivalent to the solution (6.9).

6.7.2 Derivation of the adjoint method for periodic diffractive optical elements

In this section, the derivation of equations (6.17c), (6.19), and (6.20) given in section 6.4, which

are required in the adjoint method for a periodic diffractive optical element, are provided. The

adjoint method can be divided into five steps:

• Description of the merit function in terms of the fields ~E(~x ′) and ~H(~x ′) at the output

plane.

• Computation of the variation of the merit function δF in terms of a variation of the

fields δ~E(~x ′) and δ~H(~x ′).

• Expression of δ~E(~x ′) and δ~H(~x ′) using the Green tensor and a virtual source, which

depends of the variation of the material parameters δε(~x) and δµ(~x).

• Application of the properties of the Green tensor due to the reciprocity of the system

such that the expression of the adjoint source appears.

• Transformation of the adjoint source into a set of plane waves.

The first step is to describe the transmission efficiency ηm of the order m in terms of the fields
~E (~x ′) and ~H (~x ′). In general, this field is composed of forward and backward-propagating plane

waves with respectively weights tm and bm , meaning that

ψ=∑
m

tmψm +bmψ
−
m , (6.35)

where ψ is a mode described by the fields ~E (~x ′) and ~H (~x ′), and ψm is the plane wave related to

the order m.
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The weights tm can be found from the system of equations proposed in section 2.5. In order to

have as many equations as unknowns, the system of equations is obtained by setting SRm and

TRm expressed in (2.28) to zero, giving

[ψm |ψ+ψ−] −∑
v

(tv +bv )[ψm |ψv +ψ−
v ] = 0

[ψ|ψm +ψ−
m]∗−∑

v
(tv −bv )[ψv |ψm +ψ−

m]∗ = 0,
(6.36)

where the Poynting operation is defined as

[ψm |ψn] := 1

2|Λ|
Ï
Λ

(~Em(~x ′)× ~H∗
n (~x ′)+~En(~x ′)× ~H∗

m(~x ′)) ·~n d~x ′. (6.37)

Since the plane waves are either TE or TM-polarized, they are orthogonal with each other,

meaning that [ψv |ψm +ψ−
m] is zero if m different than v . Therefore, the system of equations

(6.36) reduces to

[ψm |ψ+ψ−] − (tm +bm)[ψm |ψm] = 0

[ψ|ψm +ψ−
m]∗− (tm −bm)[ψm |ψm]∗ = 0,

(6.38)

and the weights tm are given by

tm = [ψm |ψ+ψ−]+ [ψ|ψm +ψ−
m]∗

2[ψm |ψm]
(6.39)

if [ψm |ψm] is purely real, meaning that the medium is lossless and ψm is propagating. Since

ηm is given by

ηm = Φm

Φi n
|tm |2 (6.40)

with

Φm = [ψm |ψm] = pmk0kz,m , (6.41)

ηm becomes
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ηm = Φm

Φi n

∣∣∣∣ 1

2pmk0kz,m |Λ|
Ï
Λ

(~E(~x ′)× ~H∗
m(~x ′)+~E∗

m(~x ′)× ~H(~x ′)) ·~nz d~x ′
∣∣∣∣2

= 1

4pmk0kz,m |Λ|2Φi n

∣∣∣∣Ï
Λ

(~E(~x ′)× ~H∗
m(~x ′)+~E∗

m(~x ′)× ~H(~x ′)) ·~nz d~x ′
∣∣∣∣2

,

(6.42)

which is the same as equation (6.17c).

The second step is the computation of the variation of the merit function δF in terms of a

variation of the fields δ~E and δ~H . Since F is a function of the efficiencies ηm , δF is

δF =∑
m

δF

δηm
δηm (6.43)

and δηm is given by

δηm = 1

|Λ|Φi n
Re

{Ï
Λ

(δ~E(~x ′)× ~H∗
m(~x ′)+~E∗

m(~x ′)×δ~H(~x ′)) ·~nz d~x ′(
1

2pmk0kz,m |Λ|
Ï
Λ

(~E(~x ′)× ~H∗
m(~x ′)+~E∗

m(~x ′)× ~H(~x ′)) ·~nz d~x ′
)∗}

.
(6.44)

The term in the parenthesis is the weight tm given in (6.39), meaning that

δηm = 1

|Λ|Φi n
Re

{Ï
Λ

(δ~E(~x ′)× ~H∗
m(~x ′)+~E∗

m(~x ′)×δ~H(~x ′)) ·~nz d~x ′ t∗m
}

. (6.45)

The third step is the expression of δ~E(~x ′) and δ~H(~x ′) using the Green tensor. As shown in

section 6.3, an infinitesimal variation of the material parameters δε(~x) and δµ(~x) is equivalent

to a source, and the effect of this source on the fields at the output plane is given by equation

(6.15), where the source is described by (~E(~x)δε(~x), ~H(~x)δµ(~x))T . After replacing δ~E(~x ′) and

δ~H (~x ′) by the right-hand side of equation (6.15), and multiplying both sides of equation (6.45)

by the derivative of the merit function F with respect to ηm , which is a real number, equation

(6.45) becomes

δF

δηm
δηm = 1

|Λ|Φi n
Re

{Ï
Λ

Ñ (
ĜEP (~x ′,~x)~E(~x)× ~H∗

m(~x ′)+~E∗
m(~x ′)×ĜHP (~x,~x)~E(~x)

) ·~nzδε(~x)

+ (
ĜE M (~x ′,~x)~H(~x)× ~H∗

m(~x ′)+~E∗
m(~x ′)×ĜH M (~x ′,~x)~H(~x)

) ·~nzδµ(~x)d~xd~x ′ δF

δηm
t∗m

}
.

(6.46)
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The fourth step is the application of the properties of the Green tensor given in (6.16). In order

to do that, the following properties of the triple product and scalar product are needed:

(Â~a ×~b) ·~c = (~b ×~c) · Â~a = ÂT (~b ×~c) ·~a
(~a × Â~b) ·~c =−(~a ×~c) · Â~b =−ÂT (~a ×~c) ·~b.

(6.47)

Applying the properties (6.47) to equation (6.46) gives

δF

δηm
δηm = 1

|Λ|Φi n
Re

{Ñ Ï
Λ

(
ĜT

EP (~x ′,~x)

−ĜT
HP (~x ′,~x)

)T
δF

δηm
t∗m

(
~H∗

m(~x ′)×~nz

~E∗
m(~x ′)×~nz

)
d~x ′ ·~E(~x)δε(~x)

−
Ï
Λ

(
−ĜT

E M (~x ′,~x)

ĜT
H M (~x ′,~x)

)T
δF

δηm
t∗m

(
~H∗

m(~x ′)×~nz

~E∗
m(~x ′)×~nz

)
d~x ′ · ~H(~x)δµ(~x)d~x

}
.

(6.48)

Then, the properties of the Green tensor (6.16) for a reciprocal system are applied to equation

(6.48), leading to

δF

δηm
δηm =− k0

|Λ|Φi n
Im

{Ñ
~Ead j ,m(~x) ·~E(~x)δε(~x)− ~Had j ,m(~x) · ~H(~x)δµ(~x)d~x

}
, (6.49)

where the adjoint fields ~Ead j (~x) and ~Had j (~x) are given by

(
~Ead j ,m(~x)
~Had j ,m(~x)

)
=

Ï
Λ

(
ĜEP (~x,~x ′) ĜE M (~x,~x ′)
ĜHP (~x,~x ′) ĜH M (~x,~x ′)

)
δF

δηm

t∗m
i k0

(
~H∗

m(~x ′)×~nz

~E∗
m(~x ′)×~nz

)
d~x ′. (6.50)

.

Therefore, the adjoint source, which is a plane source, is

~Pm(~x ′) = δF

δηm

t∗m
i k0

~H∗
m(~x ′)×~nzδ(z ′) ~Mm(~x ′) = δF

δηm

t∗m
i k0

~E∗
m(~x ′)×~nzδ(z ′), (6.51)

where δ(z) is the delta function and, for simplification, the coordinate system in which the

vector ~x ′ is expressed, is chosen such that the output plane is at z ′ = 0. After combining

equations (6.43) and (6.49), recognizing the functional derivative and assuming that the

variation of the material parameters δε(~x) and δµ(~x) is purely real, the functional derivative of

the merit function F with respect to δε(~x) and δµ(~x) is
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δF

δε(~x)
=− k0

|Λ|Φi n
Im

{
~Ead j (~x) ·~E(~x)

}
δF

δµ(~x)
= k0

|Λ|Φi n
Im

{
~Had j (~x) · ~H(~x)

} (6.52)

where the adjoint fields ~Ead j (~x) and ~Had j (~x) are generated by the adjoint source

~P (~x) =∑
m

~Pm(~x) = 1

i k0

∑
m

δF

δηm
t∗m ~H

∗
m(~x)×~nzδ(z)

~M(~x) =∑
m

~Mm(~x) = 1

i k0

∑
m

F

δηm
t∗m~E

∗
m(~x)×~nzδ(z).

(6.53)

Equation (6.52) is the same as equation (6.20).

The last step is the transformation of the adjoint source into a set of plane waves. With

methods such as the Finite Difference Time Domain method (FDTD) and Finite Element

Method (FEM), the polarization and magnetization densities of the adjoint source can be

given as input. However, in the Fourier modal method, the only possible inputs are the weight

of the incident plane waves. In order to find those weights, the results obtained in section 6.2

are applied. Since the plane source is assumed to be in a lossless medium defined by ε and µ,

the plane sources ~Pm(~x) and ~Mm(~x) are given by

~Pm,T M (~x ′) = δF

δηm

t∗m
i k0

 εk0sx,m

εk0sy,m

0

e i (kx,p x ′+ky,p y ′)δ(z)

~Mm,T E (~x ′) = δF

δηm

t∗m
i k0

 kz sy,m

−kz sx,m

0

e i (kx,p x ′+ky,p y ′)δ(z)

(6.54)

for TM-polarization and

~Pm,T E (~x ′) = δF

δηm

t∗m
i k0

 kz sy,m

−kz sx,m

0

e i (kx,p x ′+ky,p y ′)δ(z)

~Mm,T E (~x ′) = δF

δηm

t∗m
i k0

 −µk0sx,m

−µk0sy,m

0

e i (kx,p x ′+ky,p y ′)δ(z)

(6.55)

for TE-polarization. Because the plane source given in (6.53) is defined from the complex

conjugate of ~Em and ~Hm , the tangential components of the k-vector, kx,p and ky,p , are given
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by (kx,p ,ky,p ) = (−kx,m ,−ky,m).

From (6.9), the weights of the plane waves generated by the plane source are

A1 =C1 =C2 = 0

A2 = δF

δηm
t∗m(sx,p sx,m + sy,p sy,m)

B1 = i

2µkz

δF

δηm
t∗m(k2

z −εµk2
0)(sx,p sy,m − sy,p sx,m)

B2 =− 1

2µkz

δF

δηm

t∗m
k0

(k2
z +εµk2

0)(sx,p sy,m − sy,p sx,m)

(6.56)

for TM-polarization and

A1 = 1

2εkz

δF

δηm

t∗m
k0

(k2
z −εµk2

0)(sx,p sy,m − sy,p sx,m)

A2 = 1

2εkz

δF

δηm

t∗m
k0

(k2
z +εµk2

0)(sx,p sy,m − sy,p sx,m)

B1 =C1 =C2 = 0

B2 = δF

δηm
t∗m(sx,p sx,m + sy,p sy,m)

(6.57)

for TE-polarization. Except for normal incidence (kË = 0), sx,p and sy,p are given by (sx,p , sy,p ) =
−(sx,m , sy,m). For normal incidence, sx,p and sx,m are equal to one, and sy,p and sy,m are equal

to zero by convention. Hence, the term sx,p sy,m − sy,p sx,m in (6.56) and (6.57) is zero and the

adjoint source emits only in the direction of the diffractive optical element. The weight qp of

the emitted plane waves is given by

qp = cm
δF

δηm
t∗m cm =

1, for kË = 0

−1, otherwise
, (6.58)

which is equation (6.19).
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7 Conclusion

The principal contribution of this thesis is to provide a set of design techniques for binary

dielectric metasurfaces that take advantage of internal parameters related to the eigen-modes

propagating within the metasurface. Those design techniques are based on concepts, such

as ideal metasurface and self-coupling modes, which also allow to get insight on the optical

phenomena leading to the metasurface response.

We use the Fourier modal method for the simulation of binary dielectric metasurfaces because

this method gives access to the internal parameters related to the eigen-modes, namely their

propagation constant, their field profile and the coupling coefficients at the interfaces. In

chapter 3, the Fourier modal method has been modified in order to facilitate the access to those

internal parameters. In addition, by filtering the eigen-modes present in the metasurface, the

response of metasurfaces with the same cross-section and materials, but different thicknesses

can be computed in a few milliseconds from the simulation of a single metasurface. This

feature greatly facilitates the design of anti-reflective metasurface (section 4.4), the design of

metasurface-based half-wave plates (section 4.5), the search of resonances (section 5.3.4) and

the exploration of the responses that can be obtained using metasurfaces.

Because of the difference between single-mode metasurfaces and multi-mode metasurfaces

in terms of their responses, the design techniques proposed in this work are divided into

two different chapters. In chapter 4, we propose two different approaches for the design of

single-mode metasurface. The first one is related to the concept of ideal metasurface and

it is used to get the main parameters of all possible single-mode metasurfaces from a given

functionality. The same can be done based on trajectories on the Poincaré sphere as shown

in section 8.11 of [65], but the equations that are given in this work can be applied in a more

direct way. Equations are also given for two ideal metasurfaces, or two ideal waveplates, in

series.

The second design techniques is based on the concept of Fabry-Pérot cavities and lead a

design process for anti-reflective metasurface and metasurface-based half-wave plates. This

design process is described step by step in order to greatly facilitate the design of metasurface
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with such functionality, independently of the materials and geometries involved.

The design techniques given in chapter 5, are based on the concept of self-coupling mode

and greatly facilitates the design of resonant metasurfaces. Self-coupling modes are easily

computed from the Fourier modal method, allow a systematic characterization of resonances,

even if multiple resonances are overlapping, and reduce the number of simulations of resonant

metasurfaces required in order to accurately interpolate the response in function of the

wavelength, the angle of incidence or any other parameter. The concept of self-coupling mode

is applied to four different metasurfaces, highlighting different aspects of its use. The same

can be done with the concept of quasi-normal mode [147, 162], which is very similar to the

self-coupling modes since a self-coupling mode with a s-value of one is a quasi-normal mode.

However, when the Fourier modal method is used for the simulation of a metasurface, the

self-coupling modes are easier to compute than the quasi-normal modes. Another way of

dealing with resonances in metasurfaces composed of cylinders is to start with the resonances

of a cylinder surrounded by a homogeneous medium. This approach is different than the

approach based on the self-coupling mode and it would require further work in order to

compare those two approaches in the design of resonant metasurfaces.

In most cases, the design techniques in chapters 4 and 5 give a solution only close to the

fully optimized metasurface, mainly because the number of parameters that describe the

geometry of the metasurface is limited to a small number. In order to optimize the metasurface

further, some of the most efficient methods are gradient-based optimizations, which have the

drawback that the gradient of the merit function needs to be computed. The two main methods

to get the gradient are the algorithmic differentiation and the adjoint method. However, if

the Fourier modal method is used for the simulation of the metasurface, the complexity of

the Fourier modal method makes the adjoint method more suitable for the computation

of the gradient. In chapter 6, we provide the expression of the functional derivative for any

merit function based on the efficiency of the transmitted orders when the Fourier modal

method is used. Moreover, we clearly write all the steps that need to be done in order to get the

functional derivative, and we show that, despite that the adjoint method gives an estimation

of the functional derivative, the gradient-based optimization converges rapidly to a solution.

The advantage of using the Fourier modal method is that the response of the metasurface

and the functional derivative of the merit function are obtained with a single simulation of

the metasurface. In addition, the relationship between a plane source and the emitted plane

waves are given. Such relationship is needed to get the expression of the functional derivative,

but it can also be used to find the surface susceptibilities for a given functionality.

The Poynting operation, introduced in chapter 2, is an operation defined by its properties

and it has a strong relationship with the power flow. It can be used for the reformulation of

the boundary condition and for modes orthonormalization. One of its advantage are that

the reflection and transmission coefficients can be expressed without computing the fields

related to the modes, leading to equations that can be applied for a wide range of systems. In

this work, the Poynting operation is used to express the efficiency of the transmitted orders
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based on the fields, to analyze the contribution of each eigen-mode to the power flow and to

orthonormalize the eigen-modes.

This work not only provides design techniques, but also a better idea on the functionalities

single-mode and multi-mode metasurfaces can have along with trade-offs. Due the diversity

in their response, multi-mode metasurfaces are particularly interesting and, with the help

of the Fourier modal method implemented in this work and the concept of self-coupling

mode, it is now easier to design performant multi-mode metasurfaces for a wide range of

functionalities.
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