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A B S T R A C T

Essentially nonoscillatory (ENO) and weighted ENO (WENO) methods on
equidistant Cartesian grids are widely used to solve partial differential equa-
tions with discontinuous solutions. The RBF-ENO method is highly flexi-
ble in terms of geometry, but its stencil selection algorithm is computational
expensive. In this work, we combine the computationally efficient WENO
method and the geometrically flexible RBF-ENO method in a hybrid high-
resolution essentially nonoscillatory method to solve hyperbolic conservation
laws. The scheme is based on overlapping patches with ghost cells, the RBF-
ENO method for unstructured patches and a standard WENO method on struc-
tured patches. Furthermore, we introduce a positivity preserving limiter for
non-polynomial reconstruction methods to stabilize the hybrid RBF-ENO method
for problems with low density or pressure. We show its robustness and flexibil-
ity on benchmarks and complex test cases such as the scramjet inflow problem
and a conical aerospike nozzle jet simulation.

c© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Hyperbolic conservation laws attract substantial interest in science and engineering. They model the dynamics of

systems of conserved quantities and are expressed as the system of equations

ut +

d∑
i=1

fi(u)xi = 0, (x, t) ∈ Rd × R+,

u(0) = u0,

(1)

with the initial conditions u0 : Rd → RN , the conserved variables u : Rd × R+ → RN , e.g., mass, momentum, and

energy, and the flux functions fi : RN → RN . One possible method to solve (1) is the finite volume method, which
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is based on a discretization of the domain into polyhedral cells Ci ⊂ Rd, and is derived by integrating over a cell Ci,

dividing by its size and applying the divergence theorem to recover

dUi

dt
= −

1
|Ci|

∫
∂Ci

f (u(s, t)) · n(s) ds. (2)

Here we have the outwards pointing normal vector n(s), f = ( f1, . . . , fd) and the cell average

Ui =
1
|Ci|

∫
Ci

u(x, t)dx. (3)

Thus, the change of the conserved variables over time in the cell Ci is described by the flux through its boundary. By

splitting the boundary integral (2) into its faces Cile , we obtain the semi-discrete scheme

dUi

dt
= −

1
|Ci|

ni∑
le=1

File , (4)

with the numerical flux

File =

∫
∂Cile

f (u(s, t)) · nile ds + O(∆xp), (5)

for p ≥ 1, ∂Cile the edge between cell Ci and its leth neighbor, and the outward pointing normal vector nile to the

interface ∂Cile . Common first order numerical fluxes are of the form File = File (Ui,Uile ,nile ), e.g., the Rusanov flux

FR
ile (U,V,nile ) =

|∂Cile |

2
(
f (U) + f (V)

)
· nile −

αile (U,V)|∂Cile |

2
(
V − U

)
, (6)

with

αile (U,V) = max{λmax(∇u f (U) · nile ), λmax(∇u f (V) · nile )}, (7)

and the Jacobian ∇u f of f in u and the maximum eigenvalue λmax(A) of a matrix A. We can apply an arbitrary time

discretization technique to recover a fully discrete scheme from (4), e.g., a strong stability preserving Runge-Kutta

method [? ]. Using the explicit Euler method we receive the well-known fully discrete scheme in conservative form

Un+1
i = Un

i −
∆t
|Ci|

[
Fn

i+1/2 − Fn
i−1/2

]
, (8)

where Un
i ≈ Ui(tn), ∆t = tn+1 − tn and Fn

i+1/2 = F(Un
i ,U

n
i+1).

To generate a high-order finite volume method we need to approximate the boundary integral with a high order

quadrature rule and approximate the flux at each quadrature point in a high-order manner. One way to generate a

high-order approximation of the flux is the MUSCL approach [? ]. The idea is to construct a high-order reconstruction

si : Rd → R for each cell Ci, that interpolates the solution in a mean value sense on the stencil S i, and to evaluate the

first order flux at each quadrature node using these reconstructions. To formalize the idea we introduce the averaging

operator

λC( f ) =
1
|C|

∫
C

f (x)dx, (9)

for a function f : Rd → R and a domain C ⊂ Rd. The interpolation problem with average values can be written as

λC si = UC , for all C ∈ S i, (10)
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Fig. 1: Different stencils and its reconstruction with n = 3.

with the average value UC of the cell C. A high-order boundary integral approximation of (5) and the high-order

accurate reconstruction si of the local solution are used to evaluate the first order flux F(U,V,nile ) on the quadrature

points. This high-order flux can be written as

File =

nQ∑
k=1

ωkFR
ile (si(xk), sile (xk),nile ), (11)

with the quadrature weights ωk, the quadrature points xk for k = 1, . . . , nQ with the number of quadrature points

nQ ∈ N, the high-order accurate reconstruction si and sile of the solutions for the cell Ci and for its leth neighbor,

respectively.

However, the choice of the stencil S i is not trivial. The interpolation procedure can introduce artificial oscillations

which destabilize the scheme. Such spurious oscillations, that occur at discontinuities, are a well-known problem

for high-order linear methods, referred to as the Gibbs phenomenon [? ]. It can only be avoided by using nonlinear

schemes. To address this Harten et al. [? ] proposed the essentially nonoscillatory (ENO) scheme based on the

MUSCL approach. This method reduces the oscillations that occur due to the interpolation step by choosing the

stencil with the least oscillatory behavior, see Figure 1. To choose the least oscillatory stencil there exist different op-

tions. The stencil choice of the original method for one-dimensional equations is based on the divided differences for

polynomials. Thus, the degree p of the reconstruction is based on the reconstruction with stencils of size n = p + 1.

This concept was extended to multidimensional domains on general grids [? ? ]. Liu et al. [? ] introduced the

weighted ENO (WENO) method which allows to obtain even higher order of convergence with similar computational

complexity by using convex combinations of solutions computed on different stencils from the ENO method.

The classic approaches are based on polynomial interpolation. While polynomial interpolation is well understood in

one spatial dimension, it poses some challenges in higher dimensions. In the case of unstructured grids, we must face

the problem of (unique) solvability of the interpolation system. To resolve this problem, we replace the polynomials

with radial basis functions (RBFs). There are already several other approaches that combine radial basis functions

(RBF) with finite volume methods, e.g., [? ? ? ? ? ? ? ? ]. The two-dimensional RBF-ENO method introduced in [?

] uses RBFs to increase the stability and the flexibility with unstructured grids. However, this method suffers from a

expensive stencil selection algorithm. In this work, we introduce a hybrid high-resolution ENO method which com-

bines the geometrically flexible RBF-ENO method [? ] with the efficient standard two-dimensional WENO method

[? ].
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In Section ??, we introduce the methods on which the hybrid scheme is based on, e.g., the radial basis function

interpolation based on cell averages, the WENO and the RBF-ENO method. Section ?? defines the hybrid high-

resolution RBF-ENO method, which reduces the computational complexity in the structured parts of the grid, and

Section ?? describes a generalized version of the maximum preserving limiter from [? ]. In Section ??, we verify

numerically the method including two challenging examples: the scramjet inflow problem and the conical aerospike

jet simulation. Section ?? summarizes the results.

2. Computational methods

In this section, we introduce the different elements used to construct the hybrid high-resolution RBF-ENO method.

2.1. Radial basis functions

Radial basis functions (RBF) were introduced for function approximation on scattered data. Their mesh-free

property, their geometric flexibility and their direct generalization to high dimensions often make them advantageous

as compared to alternatives. Based on the seminal work by Hardy [? ], Duchon [? ], and Micchelli [? ], RBFs have

achieved considerable results, especially in the field of computational geoscience.

To apply RBFs in the finite volume framework, we follow the approach in [? ? ] based on cell averages. The idea

is to use the average over the cells of a single univariate continuous function φ : R → R, the radial basis function,

composed with the Euclidean norm augmented with a polynomial

s(x) =

n∑
i=1

aiλ
ξ
Ci
φ(x − ξ) + p(x), p ∈ Πl−1(Rd), (12)

with λξC f being the average operator of f over the cell C with respect to the variable ξ. Because of the augmentation

with the polynomial, the interpolation problem (10) must be extended as

λC j s = U j, for all j = 1, . . . , n, (13a)
n∑

i=1

aiλCi (q) = 0, for all q ∈ Πl−1(Rd). (13b)

To discuss about well-posedness of (??), we introduce the definition of conditionally positive definite radial basis

functions of order l.

Definition 2.1 (Conditionally positive definite function). A function φ : Rd → R is called conditionally positive

(semi-) definite of order l if for any pairwise distinct points x1, . . . , xn ∈ Rd and c = (c1, . . . , cn)T ∈ Rn \ {0} such that

n∑
i=1

ci p(xi) = 0, (14)

for all p ∈ Πl−1(Rd), the quadratic form
n∑

j,k=1

c jckφ(x j − xk), (15)

is positive (non-negative).
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RBF φ(r) Order
Infinitely smooth RBFs
Multiquadratics (1 + (εr)2)ν dνe
Inverse multiquadratics (1 + (εr)2)−ν 0
Gaussians exp(−(εr)2) 0
Piecewise smooth RBFs
Polyharmonic Splines r2k−d k

r2k−d log(r) k

Table 1: Commonly used RBFs with N = ν > 0, k ∈ N and ε > 0.

Let us consider a conditionally positive definite radial basis function φ and a set {λCi }
n
i=1 which is Πl−1(Rd)-

unisolvent with n ∈ N, i.e., for p ∈ Πl−1(Rd) it holds

λCi p = 0 for i = 1, . . . , n ⇒ p = 0. (16)

Then, (??) has a unique solution [? ]. The most commonly used RBFs are listed in Table ??, all of which are

conditionally semi-positive definite or semi-negative definite. A RBF φ is called conditionally semi-negative if −φ is

conditionally semi-positive.

2.2. Standard WENO method

The ENO method considers 2n − 1 cells to recover a reconstruction of degree n − 1 ∈ N on a stencil of size n and

a finite volume method of order p = n. However, by using 2n − 1 cells the maximum degree we can hope for in the

smooth case is 2n − 2 and a finite volume method of order p = 2n − 1. Liu et al. [? ] introduced the weighted ENO

method based on the use of a convex combination of the solutions s j
i of each stencil S j

i = {Ci− j, . . . ,Ci− j+n−1} for each

j = 0, . . . , n − 1 to create a stable finite volume method of order p = 2n − 1.

Given s j
i : R→ R such that

λC s j
i = UC , for all C ∈ S j

i , for each j = 0, . . . , n − 1, (17)

we define the reconstruction

si(x) =

n−1∑
j=0

ω
j
i s j

i (x), (18)

such that ω j
i = d j

i + O(∆xn−1) in smooth regions with the coefficients d j
i ∈ R fulfilling

si±1/2 =

n−1∑
j=0

d j
i s j

i (xi±1/2) = u(xi±1/2) + O(∆x2n−1). (19)

The convexity property
∑n−1

j=0 ω
j
i = 1 with ω j

i ≥ 0 is needed for consistency and stability. A popular choice for the

nonlinear coefficients ω j
i was proposed by Jiang and Shu [? ]

ω
j
i =

α
j
i∑n

i0=0 α
i0
i

, α
j
i =

d j
i

(ISCi [s j
i ] + ε̄)t

, (20)
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where ε̄ � 1 and the smoothness indicator ISC : C∞(R) → R which measures the smoothness of the reconstruction.

To preserve the right order of accuracy in the smooth case we require

ISC[s] = C(∆x)(1 + O(∆xn−1)). (21)

In the case of a non-smooth function, we need

ISC[s] = O(1). (22)

In comparison with the ENO method one of the main additional challenges of the WENO method is the choice of

the coefficients d j
i , especially for unstructured grids. To solve multidimensional problems, there exists dimensional

splitting to solve multidimensional problems with one-dimensional methods [? ]. However, applying the dimensional

splitting with high-order finite volume schemes does not directly result in a high-order method, but rather in a high-

resolution method. To recover the right order of convergence the flux must be calculated for each quadrature point on

the boundary of the quadrilateral. More information and analysis can be found in [? ? ].

2.3. RBF based ENO method

To solve the conservation law on general grids we use the two-dimensional RBF-based ENO method, which was

introduced in [? ]. The method uses the high-order finite volume method from Section 1 with the numerical flux (11)

and the RBF reconstruction (??) based on the multiquadratic spline of first order.

To choose the stencil for a two-dimensional grid, we use Algorithm ?? with the general smoothness indicator [? ]

ISRBF(s) :=
n∑

i=1

a2
i , (23)

for the reconstruction s(x) =
∑n

i=1 aiλ
ξ
Ci
φ(x − ξ) +

∑m
j=1 b j p j(x) with the polynomials p j ∈ Πl(R2) of maximal degree

l. To circumvent stability issues, we must choose the right polynomial degree for each stencil and the right shape

Algorithm 2.1 Recursive RBF stencil selection algorithm for multiple dimensions

Let the interpolation cells S i = {Ci1 , . . . ,Cik } and its mean-values Ui1 , . . . ,Uik be given.
Let Ni = {C j0 , . . . ,C jl } be the direct neighbors for all C ∈ S i such that Ni ∩ S i = ∅.
Start by initializing S i := {Ci} and Ni := {C| C is neighbor of Ci}.
for j = 0, . . . , n − 2 do

Set S js := S i ∪ {C js } for all s = 1, . . . , l and C js ∈ Ni.
r := argmins ISRBF(S js )
S i := S i ∪ {C jr }

Ni := Ni ∪ {C < S i|C is neighbor of C jr and d(C) ≤ dmax} \ {C jr }

end for

parameter. For a given stencil of size n we pick the polynomial degree

l =


⌊
−2.5 + 1

2

√
1 + 8(n − 1)

⌋
, n ≥ 5,

0 n < 5.
(24)

Thus, we have slightly more cells than optimally needed in the polynomial case, i.e.,

n =
(l + 2)(l + 1)

2
⇐⇒ l = −1.5 +

1
2

√
1 + 8n, (25)
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which reduces the probability of having an ill-conditioned stencil. By choosing the shape parameter as

ε =
1
√
|Ci|

, (26)

we reduce the condition number of the interpolation matrix. Note that in this case the polynomials impose the order

of convergence and the RBFs merely stabilize the system of equations. As the polynomial basis we use{
pi(x) = p̃i(ε(x − x̃))

∣∣∣∣ for i = 1, . . . ,m
}
, (27)

with p̃i ∈ {Rd → R, x 7→ xα1
1 . . . xαd

d |
∑d

j=1 α j < l, α j ∈ N}, deg( p̃i) ≤ deg(p̃i+1) and x̃ the incenter of the central cell of

the stencil. Note that we denote the central cell as the cell around which we evaluate the boundary integral, i.e., cell

Ci of stencil S i. To restrict the choice of the cells for the stencil and to keep it more compact we define a measure of

distance of a cell C to the central cell Ci

d(C) = 0, if C = Ci,

d(C) = 1, if C is a direct neighbor of Ci,

d(C) = 2, if C has a neighbor C̃ with d(C̃) = 1,

. . .

and dmax ∈ N as the maximum allowed distance to the central cell. A stable configuration for the RBF-ENO method of

order p is given in Table ?? with l = p − 1. Note that (??) does not coincide with the values from Table ??. However,

from numerical experiments this combination seems superior.

deg. poly. l 1 2 3
n 5 12 30
dmax 3 5 8

Table 2: Stencil setting depending on the polynomial degree l.

In the one-dimensional case, we compare in Algorithm ?? the reconstruction of the stencil S i with the additional cell

on its left to the reconstruction on the stencil S i with the additional cell to its right. Since in one dimension there is

no ill-conditioned stencil, we choose the polynomial degree

l = n − 1. (28)

Furthermore, we use the shape parameter

ε =
1

∆x
, (29)

with ∆x the size of the central cell in the stencil. In one dimension this evaluation is stable for ∆x → 0 and we

conjecture the same for |Ci| → 0 in two dimensions [? ].

2.3.1. Reconstruction at the boundary

In one dimension we use ghost cells at the boundary to enable a high-order reconstruction. In contrast to the

one-dimensional version we omit the use of ghost cells for the two-dimensional method. However, we must be aware
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Fig. 2: Principle of 1D hybrid grids with nghost = 2, the black numbers are the labels for the cells and red ones are the labels for the edges.

of the reduced flexibility of the stencil choice in this case. It is known that it is enough to use a method of order p − 1

at the boundary to maintain the global formal accuracy [? ]. However, in certain cases oscillations appear for all

choices of stencils at the boundary. In such cases we do not use a reconstruction for cells directly at the boundary.

3. Hybrid high-resolution RBF-ENO method

In Section ??, we presented the RBF-ENO method which is highly flexible in terms of geometry and furthermore

ensures high order of accuracy. In this section, we introduce a hybrid high-resolution method based on the standard

WENO method on structured grids and the RBF-ENO method on the unstructured parts with the goal to reduce the

overall computational cost while maintaining geometric flexibility.

3.1. Hybrid grid generation in one dimension

The basic idea is to split the domain into structured and unstructured parts. Let us take the example in Fig-

ure ?? with the structured part [a, b] and the unstructured part [b, c]. In preparation for the two-dimensional case,

we denote the unstructured and the structured part as the triangular and the quadrilateral part, respectively. The

connection between the different patches is done by using ghost cells. We divide the set of ghost cells into the struc-

tured/quadrilateral cells GHOSTQUAD and the unstructured/triangular cells GHOSTTRI. Further, we denote the set of

internal cells of the whole grid INTERNAL, the set of all edges connected to at least one internal cell Edg, the set of

edges at the boundaries such that the cells on their left are outside the patch EdgBC,L, and the ones such that the cells

on their right are outside the patch EdgBC,R. The idea of the hybrid method is to enlarge the domains by nghost ∈ N

ghost cells on each side and create the maps

fTRI : GHOSTTRI → INTERNAL, (30)

fQUAD : GHOSTQUAD → INTERNAL, (31)

to update the ghost cell values in the following way

Ui = U fTRI(i), for all i ∈ GHOSTTRI, (32)

U j = U fQUAD( j), for all j ∈ GHOSTQUAD . (33)
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Example 3.1. Consider the example in Figure ??. The sets of edges are Edg = {3, . . . 14} ∪ {18, . . . 25}, EdgBC,L =

{3, 18} and EdgBC,R = {14, 25}. The maps to update the ghost cells are given as

fQUAD(14) = 18, fTRI(16) = 12,

fQUAD(15) = 19, fTRI(17) = 13,

and fQUAD(1), fQUAD(2), fTRI(25), fTRI(26) ∈ {3, . . . , 13} ∪ {18, . . . , 24} depending on the boundary conditions.

Remark 3.1. It is important that we are not directly using the set of structured cells in [a, b] and the unstructured

cells in [b, c]. To guarantee that the definition of the mappings make sense, we copy nghost cells from the structured

grid to the neighboring unstructured cells.

Now, we are able to apply the WENO method on the structured parts and the RBF-ENO method on the unstruc-

tured ones and obtain

si±1/2 for all i ∈ Edg \(EdgBC,L ∪EdgBC,R),

si+1/2 for all i ∈ EdgBC,L,

si−1/2 for all i ∈ EdgBC,R .

To obtain the remaining values, we define the maps

fL2R : EdgBC,L → EdgBC,L ∪EdgBC,R, (34)

fR2L : EdgBC,R → EdgBC,L ∪EdgBC,R, (35)

in such a way that for all i ∈ EdgBC,R and j ∈ EdgBC,L with x(i) = x( j)

fR2L(i) = j,

fL2R( j) = i,

with the function x : Edg → R that assigns each edge to its physical position. For edges on the real boundary these

functions depend on the specific boundary conditions. Since each interface i is assigned two values si±1/2, we can

calculate the numerical flux through each interface and calculate the approximate solution for the next time step.

In Example ??, the functions are given as

fR2L(14) = 18, L2R(18) = 14,

and fL2R(3), fR2L(25) ∈ {3, 14, 18, 25}.

3.2. Hybrid grid generation in two dimensions

The idea of the two-dimensional method follows the same idea, i.e., we split the domain into structured and

unstructured parts, see Figure ??. At each time step, we update the ghost cells to connect the different patches. In
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the structured parts we use a standard two-dimensional WENO method and in the unstructured parts we apply the

RBF-ENO method. Next, we update the missing left or right reconstruction values at each interface. Note that the

standard WENO method is based on ghost cells on each side, but the RBF-ENO method is not, see Section ??. Let

us define Ω ∈ R2 as the interior of the computational domain such that the ghost cells from the WENO method at

the boundary are outside of Ω. As for the one-dimensional version, we add nghost squares from the structured to the

unstructured part, but we triangulate them artificially, e.g., the green structured triangulation in Figure ??. To ensure

the connection between the domains we create the ghost cells for the green structured triangulation and define a map

between the ghost cells of the triangular side and the overlapping quadrilaterals of the structured grid and vice versa.

We have the following two kind of ghost cells

• ghost cells that connect two different patches (they overlap with interior cells of other patches);

• ghost cells that are outside of the boundary to apply the structured WENO method (they are always quadrilat-

erals).

We define the three maps

fTRI : GHOSTTRI → INTERNAL, (36)

fQUAD,1 : GHOSTQUAD → INTERNAL, (37)

fQUAD,2 : GHOSTQUAD → INTERNAL, (38)

to set the value for each ghost cell. These maps have the following properties

• For each T ∈ GHOSTTRI there exists one T̃ ∈ GHOSTTRI such that fTRI(T ) = fTRI(T̃ ) and T , T̃ . Furthermore,

it holds T, T̃ ⊂ fTRI(T );

• For each Q ∈ GHOSTQUAD with Q ⊂ Ω there exist T, T̃ ∈ INTERNALTRI or Q̃ ∈ INTERNALQUAD with T , T̃

such that fQUAD,1(Q) = T and fQUAD,2(Q) = T̃ or fQUAD,1(Q) = fQUAD,2(Q) = Q̃. Again, we have the condition

T, T̃ , Q̃ ⊂ Q;

• For each Q ∈ GHOSTQUAD with Q 1 Ω, there exists Q̃ ∈ INTERNALQUAD such that fQUAD,1(Q) = fQUAD,2(Q) =

Q̃.

Instead of the update (??) and (??) we use the average of the two overlapping triangles with the quadrilateral ghost

cell (in case of a QUAD to QUAD map fQUAD,1(Q) = fQUAD,2(Q))

UT = U fTRI(T ), for each T ∈ GHOSTTRI, (39)

UQ =
U fQUAD,1(Q) + U fQUAD,2(Q)

2
, for each Q ∈ GHOSTQUAD . (40)

The functions (??) and (??) can be defined in the same way as before, since every edge has a unique direction which

defines a right and a left cell for each edge. To define the different patches and maps for hybrid grids in multiple

dimensions, we need to introduce some additional tools. Let us defined the following kind of patches
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= +

Fig. 3: Principle of the division into patches of structured and unstructured grids with nghost = 2. White cells are ghost cells, which are updated
either by the boundary conditions or due to mappings in between the patches.

• quadrilaterals (QUAD);

• connection patches between two QUADs (Q2Q);

• connection patches between multiple Q2Qs (RQ);

• the triangular patches (TRI).

To automate the generation of the ghost cells we divide the TRI patches into

• the principle triangular part (TRI0);

• the connection patches between TRI0s and QUADs (Q2T);

• the small connection patches that connect all kind of combinations of Q2Ts and Q2Qs in the case of at least

one Q2T (RT).

Figure ?? illustrates a way to combine quadrilateral grids. The L-shaped domain is divided into three QUADs, four

Q2Qs, and one RQ patches. Note that we can use Q2Q-patches also at the boundary. The only restriction is that the

grid size in each direction is uniform and we require that each side length is a multiple of its grid size.

Let us take a look at Figure ?? to illustrate how to combine the pieces in case we also have triangular parts. We have

a single TRI0, two Q2T, one RT, two Q2Q and three QUAD patches. The only unstructured patches are the TRI0s.

The Q2T’s are long patches of width nghost∆x or nghost∆y with a structured triangulation and ghost cells only in one

direction. The RTs are of size nghost∆x × nghost∆y with a structured triangulation and its ghost cells are added just in

the direction of Q2Q patches and over the corners in between two Q2Q patches.

Given the tools described above we can construct hybrid grids for general geometries. This hybrid method can be

used to locally refine grids and apply a fast structured solver around this refined region. Figure ?? shows a possible

local refinement with a central unstructured domain.

3.3. Setting of the WENO and RBF-ENO methods

In the following, we describe the specific setting of the RBF-ENO and WENO methods, used on the hybrid grids.
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Fig. 4: Principle of the division into patches of just structured grids for an L-shaped domain with nghost = 2. White cells are ghost cells, which are
updated either by the boundary conditions or due to mappings between the patches.

Fig. 5: Principle of the division into patches of structured and unstructured grids with nghost = 2. White cells are ghost cells, which are updated
either by the boundary conditions or due to mappings between the patches.

(a) Schematic illustration of the patches. (b) Grid with N = 15108 cells.
Fig. 6: Hybrid grid with a central unstructured part.
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3.3.1. One-dimensional hybrid method

On the structured patches we use the standard WENO method of order pWENO and on the unstructured patches

we use the RBF-ENO method of order pENO. Let us consider the one-dimensional RBF-ENO method, introduced in

Section ??. To construct a method of order p the choice of pENO = p is given. For the WENO method there are two

possibilities

pWENO = 2
⌊ p

2

⌋
+ 1, with the stencil size n = 2

⌊ p
2

⌋
+ 1, (41)

pWENO = 2p − 1, with the stencil size n = 2p − 1, (42)

with different orders of convergence. The following theorem states the stability result.

Theorem 3.1 (Stability and order of convergence). Given the hybrid RBF-ENO method with pENO = p and

pWENO = 2
⌊ p

2

⌋
+ 1, (43)

or

pWENO = 2p − 1. (44)

It provides an accuracy of order p for smooth solutions. Furthermore, the combination of the two methods is stable if

both methods are stable. Thus, ∆t must be the smallest time step fulfilling the CFL-condition over all patches and the

number of ghost cells nghost ≥ p − 1 such that both methods are stable.

Proof. Given the RBF-ENO method of order pENO = p, the WENO method of order pWENO by (??) or (??) and the

number of ghost cells nghost = p − 1, we get that in the smooth case each part of the method has an accuracy of order

p. Thus, each flux is of order p − 1. Since nghost ≥ p − 1 the reconstruction of both the RBF-ENO and the WENO

method is locally the same as for each individual reconstruction. In the end, for ∆t the smallest time step fulfilling the

CFL-condition, we get the same stability as for each method itself.

There are no general stability results for the WENO and ENO method. The stability we conjecture states that the

hybrid method is as stable as the single methods and the combination of the two does not destroy this.

3.3.2. Two-dimensional hybrid method of order three

In two space dimensions, we restrict ourselves to the case pENO = 3 on the unstructured patches. Since the two-

dimensional WENO method is based on dimensional splitting we have the conditions (??) or (??) on the structured

patches. We use the standard WENO method of order pWENO = 5 since the computational cost is similar. To receive

pWENO = 5 in the smooth case we need

pWENO ≤ 2nghost + 1. (45)

Furthermore, we need the number of ghost cells nghost to be large enough such that the RBF-ENO method is flexible

enough to avoid oscillatory states. This results in the result of Theorem ??.
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Fig. 7: Number of ghost cells nghost needed for the RBF-ENO method depending on dmax from Table ??.

Theorem 3.2 (Stability). The high-order hybrid RBF-ENO method is stable with respect to the smallest time step ∆t

over all patches if the number of ghost cells nghost is large enough such that (??) is fulfilled and such that all neighbors

until dmax are inside the ghost cell area.

Proof. To have no restrictions for the RBF-ENO method, we need to choose nghost such that all neighbors until dmax,

the maximal distance introduced in Table ??, are inside the ghost cell patches. For the WENO method we require

(??). To get the same stability as for each single method, it remains to satisfy the CFL condition for ∆t on each patch

of the computational domain.

Remark 3.2. In one dimension, this method is high-order accurate. However, if we implement the WENO method in

two-dimensions with the standard flux splitting we recover only a high-resolution method. There is a way of evaluating

the WENO reconstruction on each edge at some high-order quadrature nodes, but this is costly. Another possibility

is the accuracy correction proposed by Buchmüller and Helzel [? ].

For the RBF-ENO method of order 3 we have dmax = 5. Thus, with nghost = 3 all neighbors can be considered, see

Figure ??. However, except for the final example of the flow through a conical aerospike nozzle, we choose nghost = 2.

In the last example, we must choose nghost = 3 to avoid negative pressure.

4. Maximum preserving limiter

In this section, we show that the maximum preserving principle introduced by Perthame and Shu [? ] and Zhang

and Shu [? ] can be generalized to non-polynomial reconstructions. Hence, we can apply it for the triangular part

of the hybrid high-resolution RBF-ENO method. The structured part can be stabilized using the positivity preserving

limiter for the WENO method in each direction [? ].

4.1. Generalized maximum preserving limiter

The maximum principle satisfying finite volume method is based on the first order finite volume scheme (8)

Un+1
i = Un

i − λ[F(Un
i ,U

n
i+1) − F(Un

i−1,U
n
i )] =: Hλ(Un

i−1,U
n
i ,U

n
i+1), (46)
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with a monotone numerical flux F and λ = ∆t/∆x. For suitable numerical flux functions, e.g., the monotone Rusanov

and Godunov schemes, Hλ is increasing in each argument under the CFL condition maxu |∇u f (u)|λ ≤ 1. Using the

consistency of the flux we have the maximum principle

m = Hλ(m,m,m) ≤ Un+1
i = Hλ(Un

i−1,U
n
i ,U

n
i+1) ≤ Hλ(M,M,M) = M, (47)

for m ≤ Un
i−1,U

n
i ,U

n
i+1 ≤ M. Let us consider the high-order MUSCL scheme

Un+1 = Un − λ[F(u−i+1/2, u
+
i+1/2) − F(u−i−1/2, u

+
i−1/2)], (48)

with u+
i−1/2 = pi(xi−1/2) and u−i+1/2 = pi(xi+1/2) of the high-order polynomial pi ∈ Πk(R) interpolating on a stencil

around the cell i. Note, it is enough to show the idea for the forward Euler method in time since the MUSCL scheme

with a SSPRK method can be written as convex combinations of (??). The idea is to express the average value of each

cell by the exact Gauss-Lobatto quadrature rule with nodes x̂αi ∈ [xi−1/2, xi+1/2] and the weights ω̂α for α = 1, . . . ,N

with 2N − 3 ≥ k, i.e.,

Un =

N∑
α=1

ω̂αpi(x̂αi ), (49)

with x̂1
i = xi−1/2 and x̂N

i = xi+1/2. The maximum preserving limiter is based on the following form of (??)

Un+1
i =

N−1∑
α=2

ω̂αpi(x̂αi ) + ω̂N

(
u−i+1/2 −

λ

ω̂N
[F(u−i+1/2, u

+
i+1/2) − F(u+

i−1/2, u
−
i+1/2)]

)
+ ω̂1

(
u+

i−1/2 −
λ

ω̂1
[F(u+

i−1/2, u
−
i+1/2) − F(u−i−1/2, u

+
i−1/2)]

)
,

(50)

where we added and subtracted F(u+
i−1/2, u

−
i+1/2). This can be expressed as

Un+1
i =

N−1∑
α=2

ω̂αpi(x̂αi ) + ω̂N Hλ/ω̂N (pi(x̂1
i ), pi(x̂N

i ), pi+1(x̂1
i+1)) + ω̂1Hλ/ω̂1 (pi−1(x̂N

i−1), pi(x̂1
i ), pi(x̂N

i )). (51)

Under the CFL condition

λmax
u
|∇u f (u)| ≤ min

α
ω̂α, (52)

and

m ≤ p j(x̂αj ) ≤ M, for all α = 1, . . . ,N, and j = i − 1, i, j + 1, (53)

we ensure the satisfaction of the maximum principle m ≤ Un+1
i ≤ M. However, we can rewrite the method in a

slightly different form

Un+1
i = ω̂R pR + ω̂N Hλ/ω̂N (u+

i−1/2, u
−
i+1/2, u

+
i+1/2) + ω̂1Hλ/ω̂1 (u−i−1/2, u

+
i−1/2, u

−
i+1/2), (54)

with ω̂R = 1 − ω̂N − ω̂1 ≥ 0 and

pR =

N−1∑
α=2

ω̂α
ω̂R

p(x̂αi ) =
Un

i − ω̂Nu−i+1/2 − ω̂1u+
i−1/2

ω̂R
. (55)
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Again, we satisfy the maximum principle m ≤ Un+1
i ≤ M under the milder condition

m ≤ pR, u−j+1/2, u
+
j−1/2 ≤ M, for j = i − 1, i, i + 1. (56)

Based on these results we define the limiter

p̃(x) = θ̃
(
p(x) − Un

i
)

+ Un
i , (57)

θ̃ = min
{∣∣∣∣ Un

i − m
Un

i − ũmin

∣∣∣∣, ∣∣∣∣ Un
i − M

Un
i − ũmax

∣∣∣∣, 1}, (58)

ũmin = min{pR, u−i+1/2, u
+
i−1/2}, ũmax = max{pR, u−i+1/2, u

+
i−1/2}. (59)

The original limiter from Zhang and Shu [? ] is

p̂(x) = θ
(
p(x) − Un

i
)

+ Un
i , θ = min

{∣∣∣∣ Un
i − m

Un
i − umin

∣∣∣∣, ∣∣∣∣ Un
i − M

Un
i − umax

∣∣∣∣, 1}, (60)

umin = min
α

p(x̂αi ), umax = max
α

p(x̂αi ). (61)

Lemma ?? verifies that the new limiter is conservative, maintains accuracy and

Un+1
i = ω̂R p̃R + ω̂N Hλ/ω̂N ( p̃i(x̂1

i ), p̃i(x̂N
i ), p̃i+1(x̂1

i+1)) + ω̂1Hλ/ω̂1 ( p̃i−1(x̂N
i−1), p̃i(x̂1

i ), p̃i(x̂N
i )), (62)

with

p̃R :=
Un

i − ω̂1 p̃(x̂1
i ) − ω̂N p̃(x̂N

i )
ω̂R

, (63)

satisfies the maximum condition.

Lemma 4.1. The simplified maximum preserving limiter (??) with (??) and (??) is conservative, of high order, and

satisfies the maximum condition (??).

Proof. Conservation: Conservation is clear as p is conserved

1
|C|

∫
C

p̃(x)dx =
θ̃

|C|

∫
C

p(x)dx + (1 − θ̃)Un
i = Un

i . (64)

Accuracy: Let us assume the case θ̃ =
∣∣∣∣ Un

i −m
Un

i −ũmin

∣∣∣∣. The other case works in the same manner. From Zhang and Shu [? ]

we have

|p̂(x) − p(x)| = O(∆xk+1). (65)

Furthermore, we know

umin ≤ ũmin, (66)

since u+
i−1/2 = p(x̂1), u−i+1/2 = p(x̂N) and pR is a convex combination of values p(x̂αi ). If we assume θ̃ < 1 we obtain

umin ≤ ũmin < m and θ ≤ θ̃ ≤ 1. Using the definition of the limiter and combining it with the previous results, we have

| p̂(x) − p(x)| = |θ(p(x) − Un
i ) + Un

i − p(x)| = |θ − 1||p(x) − Un
i | ≥ |θ̃ − 1||p(x) − Un

i | = | p̃(x) − p(x)|. (67)
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With (??) we conclude

| p̃(x) − p(x)| = O(∆xk+1). (68)

Maximum preserving condition: By construction we have m ≤ p̃(xi−1/2), p̃(xi+1/2) ≤ M. Further, we have

p̃R =
Un

i − ω̂1 p̃(x̂1
i ) − ω̂N p̃(x̂N

i )
ω̂R

=
θ̃Un

i + (1 − θ̃)Un
i + ω̂1(θ̃ − 1)Un

i − ω̂1θ̃p(x̂1
i ) + ω̂N(θ̃ − 1)Un

i − ω̂N θ̃p p(x̂N
i )

ω̂R
,

= θ̃pR + (1 − θ̃)Un
i .

Thus, we have m ≤ p̃R ≤ M.

4.2. WENO limiter

The challenge with the standard WENO method compared to the ENO method is that we do not recover the high-

order interpolation function, but just the values u±i±1/2. Zhang and Shu [? ] introduced a way to resolve this issue by

reconstructing p ∈ Πk(R) using u+
i−1/2, u

−
i+1/2 and surrounding cell averages U j for j = i − k0, . . . , i + k1 for k0, k1 ∈ N.

Given the idea from the previous section, we can create a limiter by using the extrema preserving limiter (??) without

artificially generating a reconstruction p ∈ Πk(R). For the two-dimensional WENO method on structured grids, based

on dimensional splitting [? ], we apply the one-dimensional maximum preserving limiter in each dimension [? ].

4.3. Non-polynomial reconstruction

In the case of a non-polynomial reconstruction, condition (??) is not satisfied. However, we can make use of the

concept behind (??). Let us consider the reconstruction r : R→ R of order k. We define

pR =
Un

i − ω̂Nu−i+1/2 − ω̂1u+
i−1/2

ω̂R
, (69)

with the Gauss-Lobatto weights ω̂1, ω̂N > 0, N ∈ N such that 2N − 3 ≥ k and

ω̂R = 1 − ω̂1 − ω̂N . (70)

As before, we can rewrite Un+1
i using (??). The scheme is extrema preserving if (??) is fulfilled. If it is not fulfilled,

we use θ̃ from (??) and define the limiter

r̃(x) = θ̃
(
r(x) − Un

i
)

+ Un
i . (71)

As in the polynomial case, this limiter defines a high-order, conservative reconstruction fulfilling the extrema-preserving

condition (??), see Lemma ??. Finally, we define the extrema-preserving MUSCL scheme with non-polynomial re-

construction

Un+1 = Un − λ[F(r̃i(xi+1/2), r̃i+1(xi+1/2)) − F(r̃i−1(xi−1/2), r̃i(xi−1/2))]. (72)

Lemma 4.2. The simplified positivity preserving limiter (??) is conservative, of high order, and satisfies the simplified

maximum preserving condition (??).
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Proof. The proof for the consistency and the maximum preserving property follows Lemma ??. To show high-order

accuracy, we introduce the polynomial p ∈ Πk(R) which interpolates the reconstructed values r(x̂αi ) at the points x̂αi
for α = 1, . . . ,N with the property

|r(x) − p(x)| = O(∆xk+1). (73)

Further, we define the maximum preserving limiter p̃ based on (??). Since r and p have the same values on the

quadrature nodes, the scaling parameters θ̃p and θ̃r coincide. We expand the difference between the limited and the

original reconstruction

|r̃(x) − r(x)| ≤ |r̃(x) − p̃(x)| + |p̃(x) − p(x)| + |p(x) − r(x)|. (74)

By construction, we have |p(x) − r(x)| = O(∆xk+1) and from Lemma ?? we know |p̃(x) − p(x)| = O(∆xk+1). Since the

scaling parameter θ̃r, θ̃p coincide, we have

|r̃(x) − p̃(x)| = θ̃r |r(x) − p(x)| = O(∆xk+1), (75)

and conclude that |r̃(x) − r(x)| = O(∆xk+1).

4.4. General reconstruction on triangular grids

Zhang et al. [? ] introduced a generalization of the maximum preserving limiter to triangular elements. Here,

we change the method to define it for non-polynomial reconstructions. The idea is to define a quadrature rule on

the triangle of the right order such that the weights are positive and all Gauss quadrature points on the interface are

included. This quadrature rule is based on quadrature points on the square [− 1
2 ,

1
2 ] × [− 1

2 ,
1
2 ] defined as the product

of the k + 1 Gauss quadrature points {vβ| β = 1, . . . , k + 1} with its weights ωβ and the N Gauss-Lobatto quadrature

points {ûα| α = 1, . . . ,N} with its weights ω̂α and 2N − 3 ≥ k. Thus, we have the quadrature points

S k = {(ûα, vβ)| α = 1, . . . , k + 1, β = 1, . . .N}, (76)

with the quadrature weights ωβω̂α on the square [− 1
2 ,

1
2 ] × [− 1

2 ,
1
2 ]. Given the triangle C with the vertices V1,V2,V3

oriented clockwise, we define

g1(u, v) =
(1
2

+ v
)
V1 +

(1
2

+ u
)(1

2
− v

)
V2 +

(1
2
− u

)(1
2
− v

)
V3, (77)

g2(u, v) =
(1
2

+ v
)
V2 +

(1
2

+ u
)(1

2
− v

)
V3 +

(1
2
− u

)(1
2
− v

)
V1, (78)

g3(u, v) =
(1
2

+ v
)
V3 +

(1
2

+ u
)(1

2
− v

)
V1 +

(1
2
− u

)(1
2
− v

)
V2, (79)

from the square to the triangle C. These map the top edge of the square to one vertex of the triangle, see Figure ??.

The following Lemma gives us the determinants of the gradient of the projections.

Lemma 4.3 (Jacobian of the projections [? ]). If the orientation of the three vertices V1, V2 and V3 is clockwise, then

the Jacobian |∇gle (u, v)| = 2|C|( 1
2 − v) for le = 1, 2, 3.
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(a) Quadrature nodes on basic square. (b) Quadrature nodes using g1. (c) Final set of quadrature nodes C.

Fig. 8: Construction of quadrature nodes for k = 2.

Given the three different projections, we define the set of new quadrature nodes

S C
k = g1(S k) ∪ g2(S k) ∪ g3(S k), (80)

which include all Gauss points on the cell boundary, e.g., see Figure ?? for the case k = 2. Now, we can rewrite the

cell average

Un
C =

1
|C|

∫
C

pC(x)dx =
1
|C|

∫ 1/2

−1/2

∫ 1/2

−1/2
pC(gle (u, v))|∇gle (u, v)|dudv, (81)

for pC ∈ Πk(R2) and i = 1, 2, 3. Thus, we can take the average over all i = 1, 2, 3

Un
C =

1
3|C|

3∑
le=1

∫ 1/2

−1/2

∫ 1/2

−1/2
pC(gle (u, v))|∇gle (u, v)|dudv, (82)

=

3∑
le=1

N∑
α=1

k+1∑
β=1

pC(gle (û
α, vβ))

2
3

(1
2
− vβ

)
ωαω̂β =

∑
x∈S C

k

pC(x)ωx, (83)

using the result of Lemma ?? with the quadrature weights ωx for each x ∈ S C
k . We define the set of quadrature points

in the interior S C,int
k and the set of quadrature points on the edges S C,edg

k . Note that in (??) each quadrature node on

the edge is counted double with ω̂1 = ω̂N . We obtain

S C,edg
k =

{
x1,β, x2,β, x3,β| β = 1, . . . , k + 1

}
, (84)

with x1,β = (0, 1
2 + vβ, 1

2 − vβ), x2,β = ( 1
2 − vβ, 0, 1

2 + vβ), x1,β = ( 1
2 + vβ, 1

2 − vβ, 0) written in terms of the barycentric

coordinates (ξ1, ξ2, ξ3), such that p = ξ1V1 + ξ2V2 + ξ3V3. To calculate the weights on the edge (0, 1
2 + vβ, 1

2 − vβ) we

use that g2( 1
2 , v

β) = g3(− 1
2 ,−vβ) and recover

2
3

(1
2

+ vβ
)
ωβω̂1 +

2
3

(1
2
− vβ

)
ωβω̂N =

2
3
ωβω̂1, (85)

for the weights on the edges for the quadrature node x1,β. The same result is obtained for the other edges. Analogous

to the one-dimensional case, we have

Un
C = pRωR +

k+1∑
β=1

3∑
le=1

2
3
ωβω̂1uC

le,β, (86)
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with the evaluation of the quadrature node on the leth edge uC
le,β

= pC(xle,β),

ωR = 1 −
k+1∑
β=1

3∑
le=1

2
3
ωβω̂1, and pR =

∑
x∈S C,int

k

pC(x)
ωx

ωR
=

UC

ωR
−

k+1∑
β=1

3∑
le=1

2
3
ωβω̂1

ωR
uC

le,β. (87)

Let us rewrite the finite volume scheme (4) with the high order flux (11) and the forward Euler method in time, i.e.,

Un+1
i = Un

i −
∆t
|Ci|

k+1∑
β=1

ωβ

3∑
le=1

File (u
Ci
le,β
, uCile

le,β
,nile ). (88)

The proof of the maximum principle is based on the requirement that the first order method

Un+1
i = Un

i − λ

3∑
le=1

File (U
n
i ,U

n
ile ,nile ), (89)

is non-decreasing under the CFL condition

max
u,n
|∇u( f (u) · n)|λ

3∑
le=1

|S ile | ≤ 1, (90)

which is satisfied for a monotone flux, e.g., the Rusanov flux (6).

Theorem 4.4 (Maximum principle satisfying scheme for triangular grids). Let us consider a first order finite volume

method of the form (??) that is non-decreasing under the condition (??). The scheme (??) satisfies the maximum

principle

m ≤ Un+1
Ci
≤ M, (91)

under the condition that

m ≤ uCi
le,β
, pR ≤ M, for all le = 1, 2, 3, β = 1, . . . , k + 1, (92)

and the additional CFL condition

max
u,n
|∇u( f (u) · n)|

∆t
|Ci|

3∑
le=1

|S ile | ≤
2
3
ω̂1, (93)

Proof. The proof follows the one in [? ] with the difference that we use pR defined in (??). Let us decompose the flux

(??)
3∑

le=1

File (u
Ci
i,β, u

Cile
i,β ,nile ) = Fi1(uCi

1,β, u
Ci1
1,β ,ni1) + Fi1(uCi

1,β, u
Ci
2,β,−ni1) + Fi1(uCi

2,β, u
Ci
1,β,ni1)

+ Fi2(uCi
2,β, u

Ci2
2,β ,ni2) + Fi3(uCi

2,β, u
Ci
3,β,ni3) + Fi3(uCi

3,β, u
Ci
2,β,−ni3) + Fi3(uCi

3,β, u
Ci3
3,β ,ni3),

(94)

by the conservation of the flux. Next, we combine (??) with (??) and (??) and obtain

Un+1
i = pRωR +

k+1∑
β=1

3∑
le=1

2
3
ωβω̂1uCle

le,β
−

∆t
|Ci|

k+1∑
β=1

ωβ

3∑
le=1

File (u
Ci
le,β
, uCile

le,β
,nile ) = pRωR +

k+1∑
β=1

2
3
ωβω̂1[H1,β + H2,β + H3,β],

with

H1,β = uCi
1,β −

3∆t
2ω̂1|Ci|

[Fi1(uCi
1,β, u

Ci1
1,β ,ni1) + Fi1(uCi

1,β, u
Ci
2,β,−ni1)],

H2,β = uCi
2,β −

3∆t
2ω̂1|Ci|

[Fi1(uCi
2,β, u

Ci
1,β,ni1) + Fi2(uCi

2,β, u
Ci2
2,β ,ni2) + Fi3(uCi

2,β, u
Ci
3,β,ni3)],

H3,β = uCi
3,β −

3∆t
2ω̂1|Ci|

[Fi3(uCi
3,β, u

Ci
2,β,−ni3) + Fi3(uCi

3,β, u
Ci3
3,β ,ni3)].
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Under the assumption that the first order method (??) is non-decreasing in each argument, i.e., monotone, under the

CFL condition (??), we have that each Hle,β is non-decreasing under (??). Finally, we combine this with (??) and

obtain the maximum principle for high-order methods on triangular grids.

So far, we have only dealt with the polynomial case. However, the results also hold for the non-polynomial case

with the definition

pR =
UC

ωR
−

k+1∑
β=1

3∑
le=1

2
3
ωβω̂1

ωR
uC

le,β. (95)

4.4.1. Maximum principle satisfying limiter on triangular grids

Let us consider a general reconstruction rCi : R2 → R for the solution in the cell Ci. In the case that the

reconstruction rCi does not satisfy (??), we can modify it in the same way as in one dimension. We define

r̃Ci (x) = θ̃
(
rCi (x) − Un

i
)

+ Un
i , θ̃ = min

{∣∣∣∣ Un
i − m

Un
i − ũmin

∣∣∣∣, ∣∣∣∣ Un
i − M

Un
i − ũmax

∣∣∣∣, 1}, (96)

ũmin = min
{
pR, u

Ci
le,β

∣∣∣∣ le = 1, 2, 3, β = 1, . . . , k + 1
}
, ũmax = max

{
pR, u

Ci
le,β

∣∣∣∣ le = 1, 2, 3, β = 1, . . . , k + 1
}
, (97)

with uCi
le,β

= rCi (xle,β). The results from one dimension can be transfered to two dimensions directly and are summarized

in the following Lemma.

Lemma 4.5. The maximum principle preserving limiter (??) with (??) is conservative, of high order, and satisfies the

maximum preserving condition (??).

4.5. High-order positivity preserving scheme for the Euler equations

The maximum principle does not hold for systems of equations. However, to solve the Euler equations we need

to ensure positivity of the density and pressure. Therefore, we adapt the idea from [? ] to the maximum preserving

limiter introduced above. Let us consider the two-dimensional Euler equations with the flux

fi(u) =


mi

mim1
ρ

+ pδi1
mim2
ρ

+ pδi2
mi
ρ

(E + p)

 , (98)

where δi j is the Kronecker delta function and with the additional variables u = (ρ,m1,m2, E)T , the density ρ, the mass

flux m1 and m2 in x- and y-direction, respectively, the total energy E, and the pressure p = RρT = (γ−1)
(
E− 1

2
m2

1+m2
2

ρ

)
assuming an ideal gas with the ratio of specific heat γ. The method is based on a positivity preserving first order

method (??). Further, we use that the pressure p is concave with respect to ρ, m1, m2 and E under the condition ρ > 0.

Thus, the set of admissible states

G =
{
(ρ,m1,m2, E)T

∣∣∣∣ ρ > 0, p > 0
}
, (99)

is convex. We denote the cell average values at time tn as Qn
C = (ρ̄n

C , m̄
n
1,C , m̄

n
2,C , Ē

n
C)T and the high-order reconstruc-

tions in the cell C as

qC(x) = (ρC(x),m1C(x),m2C(x), EC(x))T . (100)



22 Jan S. Hesthaven, Fabian Mönkeberg / Journal of Computational Physics (2020)

To preserve positivity of the density we proceed in the same way as to preserve the maximum and define the limiter

ρ̃C(x) = θ̃1
(
ρC(x) − ρ̄n

i
)

+ ρ̄n
i , (101)

θ̃1 = min
{∣∣∣∣ ρ̄n

i − ε

ρ̄n
i − ρ̃min

∣∣∣∣, 1}, ρ̃min = min
{
ρR, ρ

C
le,β

∣∣∣∣ le = 1, 2, 3, β = 1, . . . , k + 1
}
, (102)

with the small threshold ε > 0, and set

q̃C(x) = (ρ̃C(x),m1C(x),m2C(x), EC(x))T . (103)

To preserve positivity of the pressure p we define

t(x) =

1, if p(q̃C(x)) ≥ ε,
t0 such that p(sx(t0)) = ε, if p(q̃C(x)) < ε,

sx(t) = (1 − t)Qn
C + tq̃C(x). (104)

Further, we define the remainder q̃R = Qn
C −

∑k+1
β=1

∑3
le=1

2
3
ωβω̂1

ωR
q̃C(xle,β) and

tR =

1, if p(q̃R) ≥ ε,
t0 such that p(sR(t0)) = ε, if p(q̃R) < ε,

sR(t) = (1 − t)Qn
C + tq̃R. (105)

This allows us to define the new vector of reconstruction functions

˜̃qC(x) = θ2(q̃C(x) −Qn
C) + Qn

C , with θ2 = min
{

min
x∈S C,edg

k

t(x), tR

}
. (106)

We have the following lemma.

Lemma 4.6. Given the limiter (??) and (??) the (non-polynomial) reconstruction ˜̃qC is of high-order accuracy,

conservative, and preserves positivity of the density and pressure.

Proof. For the first step, using the limiter of the density, we take the results from the maximum preserving limiter.

Also the positivity of the pressure and the conservation property of the second limiter (??) are clear. The only open

question is the high-order accuracy of the second step.

Let us keep in mind that the original limiter by Zhang and Shu [? ] is based on the minimum over all quadrature

nodes

θ̂2 = min
x∈S C

k

t(x). (107)

We define the vector of polynomials pC such that pC(x) = ˜̃qC(x) for all x ∈ S C
k . Thus, the values of θ2 and θ̂2 are the

same for the polynomial reconstruction pC and the non-polynomial reconstruction ˜̃qC . Furthermore, we know

q̃R = Qn
C −

k+1∑
β=1

3∑
i=1

2
3
ωβω̂1

ωR
q̃C(xi,β) = Qn

C −

k+1∑
β=1

3∑
i=1

2
3
ωβω̂1

ωR
pC(xi,β) =

∑
x∈S C,int

k

ωx

ωR
pC(x), (108)

which is a convex combination of the values pC(x) for x ∈ S C,int
k . Thus, we obtain

p((1 − θ̂2)Qn
C + θ̂2q̃R) = p

(
(1 − θ̂2)Qn

C + θ̂2

∑
x∈S C,int

k

ωx

ωR
pC(x)

)
= p

( ∑
x∈S C,int

k

ωx

ωR
((1 − θ̂2)Qn

C + θ̂2pC(x))
)
, (109)

≥
∑

x∈S C,int
k

ωx

ωR
p
(
(1 − θ̂2)Qn

C + θ̂2pC(x)
)
≥ ε, (110)
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since p is concave. We conclude that θ2 ≥ θ̂2. Finally, we use the estimate in (??)

|q̃C(x) − qC(x)| ≤ |q̃C(x) − p̃C(x))| + |p̃C(x)) − pC(x))| + |pC(x)) − qC(x)|,

with

|qC(x) − pC(x))| = O(∆xk+1), (111)

|q̃C(x) − p̃C(x))| = θ2|qC(x) − pC(x))| = O(∆xk+1), (112)

|p̃C(x) − pC(x))| = |1 − θ2||pC(x)) −Qn
C))| ≤ |1 − θ̂2||pC(x)) −Qn

C))| = |p̂C(x) − pC(x))| = O(∆xk+1), (113)

with the original limiter p̂C based on θ̂2 from [? ].

Remark 4.1. The positivity preserving limiter works the same way for the one-dimensional schemes with S Ci,edg
k =

{xi−1/2, xi+1/2}.

5. Numerical results

5.1. Numerical results for one-dimensional problems

Let us take a look at some one-dimensional examples to verify the order of convergence and show the ability to

deal with challenging one-dimensional problems.

5.1.1. Linear advection equation

To confirm the order of convergence in Theorem ??, we consider the linear advection equation

ut + aux = 0,

u(x, 0) = u0(x), for −∞ < x < ∞,
(114)

with periodic boundary conditions on the domain [−1, 1] and a wave speed a = 1. Next, we consider two different

hybrid grids. The structured hybrid grid consists of N cells split equally into two grids {x0, . . . , xN/2} and {xN/2, . . . , xN}

with xi = 2i
N − 1. The unstructured hybrid grid consists of the unstructured part {x̃0, . . . , x̃N/2} with x̃i = xi + εi,

εi ∈ U(− 0.1
N ,

0.1
N ) uniformly distributed between [− 0.1

N ,
0.1
N ] and the structured one {xN/2, . . . , xN}.

The convergence of the hybrid method is generally as expected, see Table ??. We compare the accuracy using the

hybrid method with pWENO = 2
⌊

p
2

⌋
+ 1 and pWENO = 2p − 1. For the 3rd order method we observe a reduced error

by around a factor 10 in the case pWENO = 2p − 1. Table ?? shows the runtime for the different 3rd order methods.

The hybrid methods with pWENO = 2
⌊

p
2

⌋
+ 1 and pWENO = 2p − 1 have a similar computational complexity and they

are a bit faster than the RBF-ENO method. Note that the costs of the stencil selection in the RBF-ENO method in

one space dimension is not much more expensive than the WENO method. However, the cost of the two-dimensional

stencil selection algorithm is quadratic in the size of the stencil.
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N
Unstructured grid Structured grid
Hybrid 2p − 1 Hybrid 2 bp/2c + 1 RBF-ENO p Hybrid 2p − 1
error rate error rate error rate error rate

p = 3
16 2.32e-03 - 1.79e-02 - 2.99e-03 - 2.54e-03 -
32 2.46e-04 3.25 3.90e-03 2.16 5.25e-04 2.55 5.63e-04 2.17
64 6.07e-05 1.95 9.70e-04 2.01 8.20e-05 2.61 4.69e-05 3.58
128 7.78e-06 3.16 2.26e-04 2.09 1.28e-05 2.68 5.88e-06 2.99
256 9.38e-07 2.86 3.08e-05 2.84 1.61e-06 3.00 9.10e-07 2.69
512 1.44e-07 2.7 2.14e-06 3.85 2.64e-07 2.60 1.26e-07 2.85

p = 4
16 2.41e-04 - 6.49e-04 - 9.77e-04 - 4.96e-04 -
32 3.86e-05 2.69 5.37e-05 3.63 6.12e-05 4.09 4.52e-05 3.46
64 2.71e-06 3.71 2.58e-06 4.31 5.36e-06 3.47 2.20e-06 4.36
128 1.47e-07 4.21 2.06e-07 3.66 4.31e-07 3.57 1.70e-07 3.69
256 1.70e-08 3.1 1.57e-08 3.71 2.89e-08 3.89 1.66e-08 3.35
512 1.48e-09 3.53 1.22e-09 3.68 2.97e-09 3.27 1.51e-09 3.47

p = 5
16 1.15e-04 - 3.71e-04 - 2.38e-04 - 2.43e-04 -
32 6.04e-06 4.10 1.75e-05 4.60 9.96e-06 4.66 7.12e-06 5.09
64 1.71e-07 5.16 5.98e-07 4.32 2.96e-07 4.93 2.62e-07 4.76
128 8.19e-09 4.33 1.90e-08 4.50 1.34e-08 4.43 7.19e-09 5.19
256 4.76e-10 4.14 6.70e-10 4.72 7.36e-10 4.16 3.23e-10 4.45
512 1.52e-11 4.96 3.18e-11 4.22 3.98e-11 4.21 2.83e-11 4.54

Table 3: Convergence rates of the Hybrid ENO method for different grid sizes compared with the RBF-ENO method for the linear advection
equation on [−1, 1] at time T = 0.1. We use periodic boundary conditions and u0(x) = sin(πx), CFL = 0.5 .

Hybrid 2p − 1 Hybrid 2 bp/2c + 1 RBF-ENO p
16 2.7 1.4 0.8
32 4.4 2.5 1.6
64 4.6 3.2 3.2
128 8.4 7.4 8.4
256 18.8 15.8 19.8
512 45.5 44.0 62.6

Table 4: Runtime comparison for the 3rd order methods solving the linear advection equation.

5.1.2. Euler equations

Next, we present numerical results for the one-dimensional Euler equationsρmE


t

+


m

m2

ρ
+ p

m
ρ

(E + p)


x

= 0. (115)

with the density ρ, the mass flux m, the total energy E, and the pressure p = RρT = (γ−1)(E− 1
2

m2

ρ
) assuming an ideal

gas with the ratio of specific heat γ = 1.4 [? ]. We test the behavior of the hybrid RBF-ENO method with shocks,

contact discontinuities, and rarefaction waves. The computational grid for the Euler equations is shown in Figure ??.

The goal is to run it on the left half with the structured WENO method and on the right half with a continuously refined

grid such that the middle cell is half the size of the outer ones. Note that we have to change the two original meshes

in [a, b′] and [b′, c] by adding the nghost last cells of the structured mesh to the unstructured one. The following results

are based on a grid with N1 = 78 cells in [a, b] and N2 = 101 cells in [b, c]. Further, the reconstruction is performed in

the characteristic variables V = R−1U, with the eigenvectors R of the Jacobian of f (ρ,m, E) = (m, m2

ρ
+ p, m

ρ
(E + p))T .
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ca b’b

Fig. 9: 1D hybrid grid for Euler equations .
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Fig. 10: Sod’s shock tube problem on [−5, 5] at time T = 2 with CFL = 0.8 solved by the hybrid RBF-ENO method of order 3.

Sod’s shock tube problem. We consider Sod’s shock tube problem on the domain [−5, 5] based on the initial condi-

tions

(ρ0,m0, p0) =

(1, 0, 1) if x < 0
(0.125, 0, 0.1) if x ≥ 0

, (116)

where m = uρ. This Riemann problem produces a rarefaction wave, followed by a contact and a shock discontinuity.

Figure ?? shows the results for the hybrid RBF-ENO method of order 3. We observe that the rarefaction wave,

the contact discontinuity, and the shock are well resolved. Furthermore, it is clear that the 3rd order method with

pWENO = 5 resolves the contact discontinuity better. In the case of the 5th order method the differences between

pWENO = 5 and pWENO = 9 are not obvious anymore, Figure ??.
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Fig. 11: Sod’s shock tube problem on [−5, 5] at time T = 2 with CFL = 0.8 solved by the hybrid RBF-ENO method of order 5.
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Fig. 12: Shu-Osher problem on [−5, 5] at time T = 1.8 with CFL = 0.8 solved by the hybrid RBF-ENO method with pWENO = 2p − 1.

Shu-Osher shock-entropy wave interaction problem. We consider the Shu-Osher shock-entropy wave interaction

problem. This Riemann problem has the initial conditions

(ρ0,m0, p0) =

(3.857143, 2.629369, 10.33333) if x < −4
(1 + 0.2 sin(5x), 0, 1) if x ≥ −4

, (117)

and the computational domain [−5, 5]. As before, we obtain the correct solution with the 3rd and 5th order method,

Figure ??. In this example, we see a substantial advantage of the high-order methods. There are evident improvements

in the resolution of the waves as the order increases.

Two interacting blast waves. As the last one-dimensional example, we test the method on the two interacting blast

waves based on the initial conditions

(ρ0,m0, p0) =


(1, 0, 1000) if x < 0.1
(1, 0, 0.01) if 0.1 ≤ x < 0.9
(1, 0, 100) if x ≥ 0.9

. (118)

This problem was introduced by Woodward and Colella [? ] and is more challenging due to the collision of the

shock waves. In [? ], we had some difficulties to solve this problem with the RBF-TeCNOp method. There, we

introduced a new symmetric positive definite dissipation operator, which mimics the more dissipative Rusanov-type

diffusion operator. Here, we compute the two interacting blast waves with the hybrid RBF-ENO method of order 5

based on the same grid as before with N1 = 158 and N2 = 205. If we use the original version, we obtain negative

density or pressure. By using the positivity preserving limiter from Section ??, we stabilize the method and calculate

the solution at time T = 0.038. The results of the fifth order hybrid RBF-ENO method combined with the positivity

preserving limiter are shown in Figure ?? and show excellent agreement with the reference solution.

5.2. Numerical results for two-dimensional problems

In this section, we demonstrate the hybrid RBF-ENO method on a couple of numerical examples. First, we solve

Burgers’ equation to compare the complexity of the hybrid and the non-hybrid method. To show the robustness of

the method in two dimensions, we conclude with several numerical examples of the two-dimensional Euler equations

(??). We start with some known examples to show that the solutions are comparable to the ones generated with the
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Fig. 13: WC blast wave problem on [0, 1] at time T = 0.038 with N = 200, CFL = 0.5 solved by the hybrid RBF-ENO method of order 5.
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Fig. 14: Domain extension, initial value composition and grid.

other methods. We conclude the section with the simulation of the scramjet and a model of a conical aerospike nozzle

to illustrate the robustness of the scheme. The grids in this section are generated using Gmsh [? ] and to specify the

grids we introduce the number of triangular cells NTRI and the number of quadrilateral cells NQUAD.

5.2.1. Burgers’ equation

With the Burgers’ equation we demonstrate the difference in the computational cost of the hybrid and the non-

hybrid RBF-ENO method. We consider Burgers’ equation

ut +
1
2

(u2)x +
1
2

(u2)y = 0, (119)

on the domain Ω = [0, 1]2 with the initial conditions

u0 =


−1 if x > 0.5, y > 0.5,
−0.2 if x < 0.5, y > 0.5,
0.5 if x < 0.5, y < 0.5,
0.8 if x > 0.5, y < 0.5.

(120)

on the extended domain [−1, 2]× [−1, 2] to avoid boundary effects, see Figure ??. The hybrid method is based on the

grid from Figure ?? and the non-hybrid scheme is based on a uniform triangulation. We compare the computational

cost depending on the number of triangles NTRI in the target area [0, 1] × [0, 1]. Note that the triangulation for

the non-hybrid method has in total around nine times the number of cells. The hybrid method has around one-

ninth of triangular cells plus the quadrilateral cells around them. Thus, the upper bound for the speed-up is nine.
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(b) RBF-ENO of order 3 with NTRI = 21382.
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(c) WENO of order 5 with NQUAD = 19600.

Fig. 15: Solution of the Burgers’ equation at T = 0.25, CFL = 0.8.

From Table ??, we get a speed-up of around 7.2 for a fine enough grid. Compared to the one-dimensional linear

NTRI Hybrid RBF-ENO RBF-ENO Speed-up
155 24 96 4
610 143 810 5.6
1348 411 2925 7.1
2390 947 6840 7.2

Table 5: Runtime comparison for the 3th order methods solving the 2D Burgers’ equation on a single core, measured in seconds.

advection equation, Table ??, we clearly observe the computational advantage of the hybrid RBF-ENO method in

multiple dimensions. We do not observe any marginal difference between the solutions of the different methods with

NTRI = 2390, Figure ??.

5.2.2. Shock vortex interaction problem

The shock vortex interaction problem is based on the discontinuous initial condition

(ρ,m1,m2, E) =

(ρL,m1,L,m2,L, EL) if x < 0.5,
(ρR,m1,R,m2,R, ER) if x ≥ 0.5,

(121)

with the left state superposed by the perturbation

δu1 = ε
y − uc

rc
exp(β(1 − r2)), δu2 = −ε

x − xc

rc
exp(β(1 − r2)),

δθ = −
γ − 1
4βγ

ε2 exp(2β(1 − r2)), δs = 0,
(122)

with the temperature θ = p/ρ, the physical entropy s = log p − γ log ρ and the distance r2 = ((x − xc)2 + (y − yc)2)/r2
c .

The left state is given by

(ρL, u1,L, u2,L, EL) = (1,
√
γ, 0, 1),

and the right state by

pR = 1.3, ρR = ρL

(γ − 1 + (γ + 1)pR

γ + 1 + (γ − 1)pR

)
,

u1,R =
√
γ +
√

2
( 1 − pR√

γ − 1 + pR(γ + 1)

)
, u2,R = 0.
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Fig. 16: Shock vortex interaction problem at T = 0.35 with 20 contour lines in [0.8, 1.42].

Fig. 17: Hybrid grid for the Airfoil NACA-0012.

We choose the following parameters of the vortex ε = 0.3, rc = 0.05, β = 0.204 with the (xc, yc) = (0.25, 0.5).

The computational grid is shown in Figure ?? with nghost = 2 in [0, 1] × [0, 1]. The comparison between the hybrid

RBF-ENO method, the RBF-ENO method of order 3 and the WENO method of order 5 shows a similar behavior,

Figure ??. We compare the 3rd order methods with the 5th order WENO method since we use it also in the hybrid

method. Both the shock and the vortex are resolved in a similar way.

5.2.3. Transonic flow past NACA-0012 airfoil

The NACA-0012 is a two-dimensional cross section of an airfoil for aircraft wing. It is based on the first systematic

tests of airfoils in a wind tunnel. The NACA-0012 is a common test case for numerical solvers. It has no camber and

a ratio of profile thickness to chord length of 0.12. The transonic simulation of a NACA-0012 airfoil in a freestream

of Mach number M∞ = 0.85 with an angle of attack α builds one shock at the top and one at the bottom of the

airfoil. The hybrid grid is build as above. We have eight QUAD patches, a TRI one in the center of the grid and some

Q2Q, Q2T and RT connection patches. The whole grid is of the size [−2, 15] × [−8, 8] with the triangular grid inside

[−0.2, 1.5]× [−0.8, 0.8] and it consists of 199 points on the airfoil, NQUAD = 169036 quadrilaterals and NTRI = 10012

triangles . The central part of the grid with its triangulation is shown in Figure ??. The solution with an angle of

attack α = 0◦ of the hybrid RBF-ENO method of order 3 is shown in Figure ??. We observe the characteristic steady
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(a) α = 0◦. (b) α = 2◦.

Fig. 18: Mach number of the Airfoil NACA-0012 problem by the hybrid RBF-ENO method of order 3 with CFL = 0.8 and 30 contour lines
between 0.4 and 1.5.
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Fig. 19: Pressure coefficient at the surface of the airfoil.

shock waves at the top and the bottom of the surface of the airfoil, which are comparable to the results in [? ]. For an

angle of attack α = 2◦ we show the Mach number of the solution in Figure ??. The dimensionless pressure coefficient

Cp =
2

γM2
∞

( p
p∞
− 1

)
, (123)

with the farfield pressure p∞ and the pressure p = p(x) is often used in aerodynamics and hydrodynamics to test

engineering models. The pressure coefficient at the surface of the airfoil is shown in Figure ??. For zero degree angle

of attack, we observe a qualitatively similar solution to that in [? ], see Figure ??.

5.2.4. Scramjet flow model

The supersonic combustion ramjet (scramjet) is based on the ramjet engine. The idea is to avoid the deceleration

before the combustion to increase its efficiency at high speeds. Similar to the ramjet it requires hypersonic initial

speed and must therefore be accelerated by other jet engines. It finds application in modern airbeathing cruise or

acceleration vehicle with the scramjet engine at the bottom [? ]. More details can be found in [? ? ].

We are simulating the two-strut scramjet [? ? ? ? ? ] with the geometrical details from [? ]. However, due to the

symmetry we use just the upper half with symmetric boundary conditions, Figure ?? with the coordinates in Table
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Fig. 20: Geometry of the scramjet model from [? ].

Fig. 21: Scheme for hybrid grid for scramjet model.

??. In the first experiment, we enforce a Mach 3 inflow at the inlet between the points 1 and 2 and outflow boundary

conditions at the outlet between the points 4 and 5. At the real walls we apply slip wall boundary conditions [? ] and

symmetric boundary conditions between the points 1 and 5. Kumar [? ] simulates the scramjet engine solving the full

Navier-Stokes equations. We are interested in the shock capturing of the method and therefore consider the inviscid

Euler equations (??). The simulation is performed on a grid based on the division into patches shown in Figure ??

with NTRI = 5036 and NQUAD = 14939 and the grid looks similar to the example in Figure ??. It is generated using

the frontal Delaunay option in Gmsh. The solution of the hybrid RBF-ENO method, shown in Figure ??, compares

well with the result in [? ].

Following Eberle et al. [? ] we also model the more difficult problem with a Mach 10 inflow. Due to the strong

shock waves, we get negative density and pressure with the original hybrid RBF-ENO method. Hence, we need

the positivity preserving limiter described in Section ??. The solution of the Mach 10 inflow problem, Figure ??,

compares well with the result from [? ].

5.2.5. Flow through conical aerospike nozzle

One approach to create thrust is the conical aerospike nozzle [? ]. As a final example we consider nozzle jet

flow simulations of a conical aerospike nozzle. Different from the bell nozzle the aerospike nozzle is an annular

nozzle and it develops the thrust against the outer surface of the conical plug at its center. At design pressure the

Fig. 22: Grid with the double grid size.
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Points 1 2 3 4 5 6 7 8 9 10
x-Coord 0 0 0.4 16.9 16.9 4.9 12.6 14.25 9.4 8.9
y-Coord 0 3.5 3.5 1.74 0 1.4 1.4 1.2 0.5 0.5

Table 6: Coordinates defining the geometry of the scramjet model from [? ].

Fig. 23: Density in the scramjet engine with Mach 3 inflow by the hybrid RBF-ENO method of order 3 with CFL = 0.8 with 50 contour lines
between 1.0 and 6.0.

efficiency of the aerospike nozzle is the same as for the bell nozzle. However, in the case of lower and higher outer

pressure the aerospike nozzle is more efficient. This advantage comes with a high price of construction complexity.

An improvement of this concept is the aerospike nozzle with a truncated plug. The lost thrust is compensated by

additional cold air injected at the truncation face, called base bleed. More precisely, the pressure in this cold gas area,

which is acting on the truncated face, adds the additional thrust. This concept appears to give promising results for

the development of reusable launch vehicles such as Single-Stage-To-Orbit or Two-Stage-To-Orbit systems.

In recent years, multiple studies of conical aerospike nozzles have been done [? ? ? ? ? ? ]. This numerical example

is based on an experiment by Verma [? ] with a linear plug geometry, Figure ??. Based on the experiments of Verma,

multiple numerical studies were carried out [? ? ? ]. These studies analyze the shock-boundary layer interaction and

use the axisymmetric Navier-Stokes equations. As for the scramjet simulation we consider the 3rd order method with

the shock waves and use the axisymmetric Euler equations.

Axisymmetric Euler equations. The axisymmetric Euler equations are expressed in cylindrical coordinates and they

can be written with or without swirling flows [? ]. Let us assume the Euler equations in three space dimensions with

the variables x = (x1, x2, x3)T ∈ R3

∂u
∂t

+

3∑
i=1

∂

∂xi
fi(u), (124)

Fig. 24: Density in the scramjet engine with Mach 10 inflow by the hybrid RBF-ENO method of order 3 with CFL = 0.8 with 50 contour lines
between 0.0 and 11.0.
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(a) Geometry. (b) Hybrid mesh decomposition of the aerospike nozzle.

Fig. 25: Nozzle geometry and mesh generation.

Points 1 2 3 4 5 6 7 8 9 10 11 12
x-Coord 25D 203.51 109.95 0 0 0 152.8 143.8 109.95 −5D 25D −5D
y-Coord 0 0 4.5 A A + 12.5 63.5 25 25 A + 12.5 63.5 5D 5D

Table 7: Coordinates defining the geometry of the nozzle from [? ] with A = 25.0705074 and D = 50. The curved line is a circular segment with
radius R = 152.82+38.52

2×38.5 .

with u = (ρ,m1,m2,m3, E)T and

fi(u) =



mi
mim1
ρ

+ pδi1
mim2
ρ

+ pδi2
mim3
ρ

+ pδi3
mi
ρ

(E + p)


. (125)

The axisymmetric Euler equations are based on the cylindrical coordinates (x, r, θ) and the relation

(x1, x2, x3) = (x, r cos θ, r sin θ), (126)

with the symmetry assumption around the x-axis all terms with partial derivative in θ are zero. This gives the following

system of equations
∂û
∂t

+
∂

∂x
fx(û) +

∂

∂r
fr(û) = H(û), (127)

with û = (ρ,mx,mr,mθ, ES )T and

fx(û) =



mx
m2

x
ρ

+ p
mxmr
ρ

mxmθ

ρ
mx
ρ

(ES + p)


, fr(û) =



mr
mrmx
ρ

m2
r
ρ

+ p
mrmθ

ρ
mr
ρ

(ES + p)


, H(ũ) = −

1
r



mr
mrmx
ρ

m2
r−m2

θ

ρ

2 mrmθ

ρ
mr
ρ

(ES + p)


,

with ES = E − 1
2 u2

θ [? ].

Note that even if we assume that the derivatives in θ are zero, the axisymmetric Euler equations (??) include swirling

flows uθ , 0. Thus, we have a two-dimensional system of equations of size five.

In the simplified case without swirling flows, we assume uθ = 0 and obtain

∂ũ
∂t

+
∂

∂x
f̃x(ũ) +

∂

∂r
f̃r(ũ) = H̃(ũ), (128)
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with ũ = (ρ,mx,mr, ES )T and

f̃x(ũ) =


mx

m2
x
ρ

+ p
mxmr
ρ

mx
ρ

(ES + p)

 , f̃r(ũ) =


mr

mrmx
ρ

m2
r
ρ

+ p
mr
ρ

(ES + p)

 , H̃(ũ) = −
1
r


mr

mrmx
ρ

m2
r
ρ

mr
ρ

(ES + p)

 .
This system of equations is equivalent to the two-dimensional Euler equations (??) with the additional source term H̃.

High-order source term. To solve hyperbolic conservation laws with a source term

ut +

d∑
i=1

fi(u)xi = G(u, x, t), (x, t) ∈ Rd × R+,

u(0) = u0,

(129)

with the source term G, we can use the finite volume method (4) and add an approximation of the average source term

over the cell Ci

dUi

dt
+

1
|Ci|

3∑
le=1

File = Gi, Gi =
1
|Ci|

∫
Ci

G(u, x, t)dx + O(∆xp). (130)

For a first order method we use

Gi = G(Ui, xM,i, t), (131)

with the midpoint xM,i of the cell Ci. In the case of higher order methods, we need to distinguish between triangular

cells and the quadrilaterals. For triangular cells using the RBF-ENO reconstruction, we make use of the high-order

reconstruction si from the ENO step and evaluate it at the two-dimensional symmetric Gaussian quadrature points xk

of order p for triangles

Gi =

nQ∑
k=1

ωkG(si(x̃k), xk, t), (132)

with its quadrature weights ωk and points x̃k [? ]. The additional evaluations of the reconstruction increase the cost

only marginally. In the case of quadrilateral cells, we can not use the same technique since we never construct the

explicit polynomial. However, we can adapt the technique introduced by Buchmüller and Helzel [? ].

Let us assume the cell

Ci j =
{
(xi−1/2, y j−1/2), (xi−1/2, y j+1/2), (xi+1/2, y j−1/2), (xi+1/2, y j+1/2)

}
,

with i, j ∈ N. For a high-order approximation of the integral of the source term, based on a quadrature rule in one

dimension, we seek

Gi j =
1

∆x∆y

∫ xi+1/2

xi−1/2

∫ yi+1/2

yi−1/2

G(u, (x, y), t)dydx ≈
nQ∑
k=1

nQ∑
l=1

ωkωlG(u(x̃i j
kl), x̃

i j
kl, t), (133)

with the quadrature nodes x̃i j
kl = (xik, y jl) for k, l = 1, . . . , nQ. Thus, the goal is to find a high-order approximation

of u(x̃i j
kl) in terms of the average cell values Ui, j, see Figure ??. In a first step, we express the edge averages at the

quadrature nodes xik

Ũi j
k =

1
∆y

∫ y j+1/2

y j−1/2

u(xik, y)dy = Ũk(. . . ,Ui, j,Ui+1, j, . . . ) + O(∆xp), (134)
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Fig. 26: Principle of 2D quadrilateral quadrature for nQ = 3.

in terms of cell averages Ui, j. In the second step, we estimate

u(x̃i j
kl) = ũl(. . . , Ũi j

k , . . . ) + O(∆yp), (135)

with the edge averages Ũi j
k for k ∈ N.

Example 5.1. In the case of Gauss-Legendre integration with nQ = 3, we have the following approximations

Ũi j
1 =

Ui−1, j

4
√

3
+ Ui, j −

Ui+1, j

4
√

3
+ O(∆xp),

Ũi j
2 =
−Ui−1, j

24
+

26Ui, j

24
−

Ui+1, j

24
+ O(∆xp),

Ũi j
3 =
−Ui−1, j

4
√

3
+ Ui, j +

Ui+1, j

4
√

3
+ O(∆xp),

for the edge averages. For the evaluation at the quadrature points we have

u(x̃i j
k1) =

Ũi j−1
k

4
√

3
+ Ũi j

k −
Ũi j+1

k

4
√

3
+ O(∆xp) + O(∆yp),

u(x̃i j
k2) =

−Ũi j−1
k

24
+

26Ũi j
k

24
−

Ũi j+1
k

24
+ O(∆xp) + O(∆yp),

u(x̃i j
k3) =

−Ũi j−1
k

4
√

3
+ Ũi j

k +
Ũi j+1

k

4
√

3
+ O(∆xp) + O(∆yp),

with p = 5.

Combing the hybrid high-resolution RBF-ENO method with the high-order source term, we can solve the axisym-

metric Euler equations (??).

Remark 5.1. The high-order source term evaluation does not reduce oscillations. In principle, this could cause

problems like negative density or pressure. However, we never encountered this issue.

Hybrid grid and numerical results. We discretize the geometry of the conical aerospike nozzle given by Figure

??. The triangular part of the hybrid grid includes the nozzle exit and its outer curved surface. The remaining
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Fig. 27: Hybrid mesh at the nozzle exit.

Fig. 28: Density of conical aerospike nozzle with NPR = 2.1.

domain is divided into quadrilateral patches. Figure ?? shows the domain division into structured and unstructured

patches. A segment of the final mesh at the nozzle exit can be found in Figure ??. Note that we use nghost = 3

in this example. This gives us a grid with NTRI = 18872 and NQUAD = 1400543. The boundary conditions are

inflow boundary conditions at the inlet between the points 4 and 5, slip wall boundary conditions for the nozzle and

symmetric boundary conditions at the origin r = 0. The outside is modeled with far-field boundary conditions with

the ambient pressure p∞ = 101325 Pa, temperature T∞ = 300 K and zeros speed. The ideal gas law p = ρRT with the

gas constant R = 287.14 J/kg/K is used to calculate the density. At the inlet we choose the pressure pin = NPR p∞,

temperature Tin = T∞, ux = 100 m/s and ur = 0 with the nozzle pressure ratio NPR.

Based on the results from Nair et al. [? ] we simulate the conical aerospike nozzle with NPR = 2.1 and 3.82. The

results for the nozzle pressure ratio NPR = 2.1 at time T = 2 s are shown in Figures ?? and ?? with close up view

in Figure ??. The Figures ?? and ?? show the density and the Mach number distribution with NPR = 3.82 at time

T = 2 s. We need to be aware of the difference between our model and the one from [? ] and the uncertainties in the

boundary conditions. However, the shock patterns of our results, Figure ??, are comparable to the results from Nair

Fig. 29: Mach number of conical aerospike nozzle with NPR = 2.1.
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Fig. 30: Density of conical aerospike nozzle with NPR = 3.82.

Fig. 31: Mach number of conical aerospike nozzle with NPR = 3.82.

et al. [? ]. In Figure ??, we observe a discontinuous behavior of the contour lines. This is a rendering artifact coming

from the transition between triangular and rectangular patches and does not influence the simulation.

6. Conclusion

In this work, we present a hybrid high-resolution RBF-ENO method to reduce the overall computational complex-

ity of the RBF-ENO method [? ]. In the one-dimensional case, this method achieves the right order of convergence.

We demonstrate the robustness of the two-dimensional hybrid high-resolution RBF-ENO method with several bench-

marks as well as for two complex non-classical problems: the scramjet inflow problem and a conical aerospike nozzle

jet simulation. To solve the conical aerospike nozzle simulation with the axisymmetric Euler equations, we describe

a method to evaluate the source term with high-order accuracy. Furthermore, we introduce a positivity preserving

limiter for non-polynomial reconstructions, which enables us to solve very challenging problems such as the scramjet

inflow problem with Mach 10 inlet speed.
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Fig. 32: Mach number at nozzle exit at T = 2 s, CFL = 0.8.
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