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1. Introduction

Hyperbolic conservation laws attract substantial interest in science and engineering. They model the dynamics of

systems of conserved quantities and are expressed as the system of equations

d
u + le fwy =0,  (xneRIxR,, 0

u(0) = up,

with the initial conditions ug : R? — RY, the conserved variables u : R x R, — RV, e.g., mass, momentum, and

energy, and the flux functions f; : R¥ — RY. One possible method to solve (1) is the finite volume method, which
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is based on a discretization of the domain into polyhedral cells C; ¢ R?, and is derived by integrating over a cell C;,

dividing by its size and applying the divergence theorem to recover

dU;
& - f f(u(s, 1) - n(s) ds. (2)
Here we have the outwards pointing normal vector n(s), f = (fi, ..., fy) and the cell average
U;, = ! f u(x, rdx 3)
G Je, T

Thus, the change of the conserved variables over time in the cell C; is described by the flux through its boundary. By

splitting the boundary integral (2) into its faces C;;,, we obtain the semi-discrete scheme

du; 1 ¢
. = T~ Fi ) 4
Tt ZZ; 3 4)
with the numerical flux
Fy, = f fQu(s, 1) - my, ds + O(AxP), (5
I’e

for p > 1, dCj;, the edge between cell C; and its /,th neighbor, and the outward pointing normal vector n;;, to the

interface dC;;,. Common first order numerical fluxes are of the form F;;, = Fy;,(U;, Uj;,, ny,), e.g., the Rusanov flux

|5 i, | ai, (U, V)I0Cy, |

() + (V) -y, = =52 (V = U), (®)

Ff (U, Vi) =

with
ailg(U» V) = max{/lmax(vllf(U) : nile)’ /lmax(vuf(v) . nile)}s (7)

and the Jacobian V, f of f in u and the maximum eigenvalue 4,,,,(A) of a matrix A. We can apply an arbitrary time
discretization technique to recover a fully discrete scheme from (4), e.g., a strong stability preserving Runge-Kutta

method [? ]. Using the explicit Euler method we receive the well-known fully discrete scheme in conservative form

n+l1 n n
Ui+ =Uj - C. [Fz+1/2 Fi—l/Z]’ ®)
ICil
where U} ~ U(t"), At = 1 — ¢ and F7+1/2 FUY, UL ).

To generate a high-order finite volume method we need to approximate the boundary integral with a high order
quadrature rule and approximate the flux at each quadrature point in a high-order manner. One way to generate a
high-order approximation of the flux is the MUSCL approach [? ]. The idea is to construct a high-order reconstruction
s; : R? — R for each cell C;, that interpolates the solution in a mean value sense on the stencil S;, and to evaluate the
first order flux at each quadrature node using these reconstructions. To formalize the idea we introduce the averaging
operator

1
Ac(f) = i fc f(x)dx, €))

for a function f : RY — R and a domain C c R¢. The interpolation problem with average values can be written as

Acsi = Ue, forallC e §;, (10)
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Fig. 1: Different stencils and its reconstruction with n = 3.

with the average value U of the cell C. A high-order boundary integral approximation of (5) and the high-order
accurate reconstruction s; of the local solution are used to evaluate the first order flux F (U, V,n;;,) on the quadrature

points. This high-order flux can be written as

9

Fi, = ) Py (si%0), s, (%)), (11)
k=1
with the quadrature weights wy, the quadrature points x; for k = 1,...,np with the number of quadrature points

ng € N, the high-order accurate reconstruction s; and s;, of the solutions for the cell C; and for its /.th neighbor,
respectively.

However, the choice of the stencil S, is not trivial. The interpolation procedure can introduce artificial oscillations
which destabilize the scheme. Such spurious oscillations, that occur at discontinuities, are a well-known problem
for high-order linear methods, referred to as the Gibbs phenomenon [? ]. It can only be avoided by using nonlinear
schemes. To address this Harten et al. [? ] proposed the essentially nonoscillatory (ENO) scheme based on the
MUSCL approach. This method reduces the oscillations that occur due to the interpolation step by choosing the
stencil with the least oscillatory behavior, see Figure 1. To choose the least oscillatory stencil there exist different op-
tions. The stencil choice of the original method for one-dimensional equations is based on the divided differences for
polynomials. Thus, the degree p of the reconstruction is based on the reconstruction with stencils of size n = p + 1.
This concept was extended to multidimensional domains on general grids [? ? ]. Liu et al. [? ] introduced the
weighted ENO (WENO) method which allows to obtain even higher order of convergence with similar computational
complexity by using convex combinations of solutions computed on different stencils from the ENO method.

The classic approaches are based on polynomial interpolation. While polynomial interpolation is well understood in
one spatial dimension, it poses some challenges in higher dimensions. In the case of unstructured grids, we must face
the problem of (unique) solvability of the interpolation system. To resolve this problem, we replace the polynomials

with radial basis functions (RBFs). There are already several other approaches that combine radial basis functions

] uses RBFs to increase the stability and the flexibility with unstructured grids. However, this method suffers from a
expensive stencil selection algorithm. In this work, we introduce a hybrid high-resolution ENO method which com-

bines the geometrically flexible RBF-ENO method [? ] with the efficient standard two-dimensional WENO method
[? ]
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In Section ??, we introduce the methods on which the hybrid scheme is based on, e.g., the radial basis function
interpolation based on cell averages, the WENO and the RBF-ENO method. Section ?? defines the hybrid high-
resolution RBF-ENO method, which reduces the computational complexity in the structured parts of the grid, and
Section ?? describes a generalized version of the maximum preserving limiter from [? ]. In Section ??, we verify
numerically the method including two challenging examples: the scramjet inflow problem and the conical aerospike

jet simulation. Section ?? summarizes the results.

2. Computational methods

In this section, we introduce the different elements used to construct the hybrid high-resolution RBF-ENO method.

2.1. Radial basis functions

Radial basis functions (RBF) were introduced for function approximation on scattered data. Their mesh-free
property, their geometric flexibility and their direct generalization to high dimensions often make them advantageous
as compared to alternatives. Based on the seminal work by Hardy [? ], Duchon [? ], and Micchelli [? ], RBFs have
achieved considerable results, especially in the field of computational geoscience.

To apply RBFs in the finite volume framework, we follow the approach in [? ? ] based on cell averages. The idea
is to use the average over the cells of a single univariate continuous function ¢ : R — R, the radial basis function,

composed with the Euclidean norm augmented with a polynomial

n

s = Y at px -6+ p®,  p el (RY, (12)

i=1
with /l'é f being the average operator of f over the cell C with respect to the variable £. Because of the augmentation
with the polynomial, the interpolation problem (10) must be extended as

Ac;s = Uj, forall j=1,...,n, (13a)

n

Z aide(q) =0, for all ¢ € TT,_;(RY). (13b)
i=1

To discuss about well-posedness of (??), we introduce the definition of conditionally positive definite radial basis

functions of order /.

Definition 2.1 (Conditionally positive definite function). A function ¢ : R¢ — R is called conditionally positive

(semi-) definite of order 1 if for any pairwise distinct points X1, ..., X, € R and ¢ = (c1, ..., ¢,)" € R"\ {0} such that
D cipx) =0, (14)
i=1

for all p € TI,_|(RY), the quadratic form

Z cjck¢(xj - Xk), (15)
k=1

is positive (non-negative).
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RBF o(r) Order

Infinitely smooth RBFs

Multiquadratics (1 + (er)?) [v]

Inverse multiquadratics | (1 + (er)?)™ | 0

Gaussians exp(—=(er)?) | 0

Piecewise smooth RBFs

Polyharmonic Splines r2h=d k
r=dlog(r) | k

Table 1: Commonly used RBFs with N 2 v > 0,k € Nand & > 0.

Let us consider a conditionally positive definite radial basis function ¢ and a set {A¢,}?_, which is IT,_; (R%)-

unisolvent with n € N, i.e., for p € IT,_ (RY) it holds
Ac,p=0 fori=1,...,n =p=0. (16)

Then, (??) has a unique solution [? ]. The most commonly used RBFs are listed in Table ??, all of which are
conditionally semi-positive definite or semi-negative definite. A RBF ¢ is called conditionally semi-negative if —¢ is

conditionally semi-positive.

2.2. Standard WENO method

The ENO method considers 2n — 1 cells to recover a reconstruction of degree n — 1 € N on a stencil of size n and
a finite volume method of order p = n. However, by using 2n — 1 cells the maximum degree we can hope for in the
smooth case is 2n — 2 and a finite volume method of order p = 2n — 1. Liu et al. [? ] introduced the weighted ENO
method based on the use of a convex combination of the solutions s{ of each stencil S lj ={Ci_j,...,Ci_jin—1} for each
j=0,...,n—1to create a stable finite volume method of order p = 2n — 1.

Given sl’ : R — R such that

Acsl =Uc,  forallC €S/, foreach j=0,...,n~1, (17)

we define the reconstruction 1
5i(0 = D wlsl(), (18)

j=0

such that a){ = dl.j + O(Ax"") in smooth regions with the coefficients dl.j € R fulfilling
n—1 o
Six1j2 = Z d!s)(xiz12) = u(xie12) + O(AX™"). (19)
j=0

The convexity property Z;:é w{ = 1 with w/ > 0 is needed for consistency and stability. A popular choice for the

nonlinear coefficients w{ was proposed by Jiang and Shu [? ]
J J
i % j 4;

/= ——, = ———, (20)
Yi gl (Sc,[s/1+ &)y
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where £ < 1 and the smoothness indicator IS¢ : C*°(R) — R which measures the smoothness of the reconstruction.

To preserve the right order of accuracy in the smooth case we require
ISc[s] = C(Ax)(1 + O(AX"™1)). (21)
In the case of a non-smooth function, we need
ISc[s] = O(1). (22)

In comparison with the ENO method one of the main additional challenges of the WENO method is the choice of
the coefficients d{ , especially for unstructured grids. To solve multidimensional problems, there exists dimensional
splitting to solve multidimensional problems with one-dimensional methods [? ]. However, applying the dimensional
splitting with high-order finite volume schemes does not directly result in a high-order method, but rather in a high-
resolution method. To recover the right order of convergence the flux must be calculated for each quadrature point on

the boundary of the quadrilateral. More information and analysis can be found in [? ? ].

2.3. RBF based ENO method

To solve the conservation law on general grids we use the two-dimensional RBF-based ENO method, which was
introduced in [? ]. The method uses the high-order finite volume method from Section 1 with the numerical flux (11)
and the RBF reconstruction (??) based on the multiquadratic spline of first order.

To choose the stencil for a two-dimensional grid, we use Algorithm ?? with the general smoothness indicator [? ]

n

ISgr(s) := :g:cﬁ, (23)

i=1

for the reconstruction s(x) = .7, a,-/lfci¢(x -6+ Z’}’Zl b;pj(x) with the polynomials p; € IT,(IR?) of maximal degree

. To circumvent stability issues, we must choose the right polynomial degree for each stencil and the right shape

Algorithm 2.1 Recursive RBF stencil selection algorithm for multiple dimensions

Let the interpolation cells S; = {C;,, ..., C;} and its mean-values U;,, ..., U;, be given.
Let N; = {Cj,, ..., C},} be the direct neighbors for all C € §; such that N; N .§; = 0.
Start by initializing S; := {C;} and N; := {C| C is neighbor of C;}.
for j=0,...,n—2do

SetS; :=S;U{C;}foralls=1,...,land C; € N,.

r = argming ISgpr(S ;)

S = SiU{er}
N;:= N; U{C ¢ §,| Cis neighbor of C;, and d(C) < dyax} \ (C},}
end for

parameter. For a given stencil of size n we pick the polynomial degree

l:{k25+%VT?§F?ﬁL n>s,

24
0 n<>5. @4

Thus, we have slightly more cells than optimally needed in the polynomial case, i.e.,

n:%(:}l:—l.5+%\/—l+8n, (25)
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which reduces the probability of having an ill-conditioned stencil. By choosing the shape parameter as
£=——, (26)

we reduce the condition number of the interpolation matrix. Note that in this case the polynomials impose the order

of convergence and the RBFs merely stabilize the system of equations. As the polynomial basis we use

[pix) = piletx - i;))| fori=1,....m), @7

with p; € {RY = R,x - XX Z’;zl @ < l,a; € N}, deg(p;) < deg(pi+1) and X the incenter of the central cell of

the stencil. Note that we denote the central cell as the cell around which we evaluate the boundary integral, i.e., cell
C; of stencil S;. To restrict the choice of the cells for the stencil and to keep it more compact we define a measure of

distance of a cell C to the central cell C;

dic)=0,if C = C,,
d(C) = 1, if C is a direct neighbor of C;,

d(C) = 2, if C has a neighbor C with d(C) = 1,

and d,,,, € N as the maximum allowed distance to the central cell. A stable configuration for the RBF-ENO method of
order p is given in Table ?? with [ = p — 1. Note that (??) does not coincide with the values from Table ??. However,

from numerical experiments this combination seems superior.

deg.poly./ | 1 | 2 3
n 5112 30
Aax 315 8

Table 2: Stencil setting depending on the polynomial degree I.

In the one-dimensional case, we compare in Algorithm ?? the reconstruction of the stencil §; with the additional cell
on its left to the reconstruction on the stencil S; with the additional cell to its right. Since in one dimension there is

no ill-conditioned stencil, we choose the polynomial degree
l=n-1. (28)

Furthermore, we use the shape parameter
1

- 2
£= (29)

with Ax the size of the central cell in the stencil. In one dimension this evaluation is stable for Ax — 0 and we

conjecture the same for |C;| — 0 in two dimensions [? ].

2.3.1. Reconstruction at the boundary
In one dimension we use ghost cells at the boundary to enable a high-order reconstruction. In contrast to the

one-dimensional version we omit the use of ghost cells for the two-dimensional method. However, we must be aware
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Fig. 2: Principle of 1D hybrid grids with ngnest = 2, the black numbers are the labels for the cells and red ones are the labels for the edges.

of the reduced flexibility of the stencil choice in this case. It is known that it is enough to use a method of order p — 1
at the boundary to maintain the global formal accuracy [? ]. However, in certain cases oscillations appear for all

choices of stencils at the boundary. In such cases we do not use a reconstruction for cells directly at the boundary.

3. Hybrid high-resolution RBF-ENO method

In Section ??, we presented the RBF-ENO method which is highly flexible in terms of geometry and furthermore
ensures high order of accuracy. In this section, we introduce a hybrid high-resolution method based on the standard
WENO method on structured grids and the RBF-ENO method on the unstructured parts with the goal to reduce the

overall computational cost while maintaining geometric flexibility.

3.1. Hybrid grid generation in one dimension

The basic idea is to split the domain into structured and unstructured parts. Let us take the example in Fig-
ure ?? with the structured part [a, b] and the unstructured part [b, c]. In preparation for the two-dimensional case,
we denote the unstructured and the structured part as the triangular and the quadrilateral part, respectively. The
connection between the different patches is done by using ghost cells. We divide the set of ghost cells into the struc-
tured/quadrilateral cells GHOSTquap and the unstructured/triangular cells GHOSTrg;. Further, we denote the set of
internal cells of the whole grid INTERNAL, the set of all edges connected to at least one internal cell Edg, the set of
edges at the boundaries such that the cells on their left are outside the patch Edggc ;. and the ones such that the cells
on their right are outside the patch Edggc z. The idea of the hybrid method is to enlarge the domains by ngnos € N

ghost cells on each side and create the maps

Jrrr : GHOSTrr; — INTERNAL, (30)

fQUAD . GHOSTQUAD - INTERNAL, (31)
to update the ghost cell values in the following way

Ui = Uf»  foralli € GHOSTrz1, (32)

Uj = UfQUAD(j)’ for all ] € GHOSTQUAD . (33)
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Example 3.1. Consider the example in Figure ??. The sets of edges are Edg = {3,...14} U {18,...25}, Edgpc, =
{3, 18} and Edggc g = {14, 25}. The maps to update the ghost cells are given as
Jouap(14) = 18, Srri(16) = 12,

Sfouap(15) = 19, Srri(17) = 13,

and fouap(1), fouap(2), frri(25), frri(26) € (3,...,13} U {18,...,24} depending on the boundary conditions.

Remark 3.1. It is important that we are not directly using the set of structured cells in [a, b] and the unstructured
cells in [b, c]. To guarantee that the definition of the mappings make sense, we copy Ngnos; cells from the structured

grid to the neighboring unstructured cells.

Now, we are able to apply the WENO method on the structured parts and the RBF-ENO method on the unstruc-
tured ones and obtain
Six1/2 for all i € Edg \(Edggc; U Edgpc )s
Si+1/2 foralli e EngC,L’

Si-1/2 foralli e EngC,R .
To obtain the remaining values, we define the maps
Jiar + Edgpe, — Edgge UEdggc ks (34
Jror  Bdgpe g — Edgpe , UEdgpc ks (35)
in such a way that for all i € Edggc » and j € Edgpc ; with x(i) = x(j)
e ) = j,
Srar() = i,

with the function x : Edg — R that assigns each edge to its physical position. For edges on the real boundary these
functions depend on the specific boundary conditions. Since each interface i is assigned two values s;+1/2, we can
calculate the numerical flux through each interface and calculate the approximate solution for the next time step.

In Example ??, the functions are given as

Sror(14) = 18, 12r(18) = 14,

and f1or(3), fror(25) € {3, 14,18, 25}.

3.2. Hybrid grid generation in two dimensions

The idea of the two-dimensional method follows the same idea, i.e., we split the domain into structured and

unstructured parts, see Figure ??. At each time step, we update the ghost cells to connect the different patches. In
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the structured parts we use a standard two-dimensional WENO method and in the unstructured parts we apply the
RBF-ENO method. Next, we update the missing left or right reconstruction values at each interface. Note that the
standard WENO method is based on ghost cells on each side, but the RBF-ENO method is not, see Section ??. Let
us define Q € R? as the interior of the computational domain such that the ghost cells from the WENO method at
the boundary are outside of Q. As for the one-dimensional version, we add ngpos Squares from the structured to the
unstructured part, but we triangulate them artificially, e.g., the green structured triangulation in Figure ??. To ensure
the connection between the domains we create the ghost cells for the green structured triangulation and define a map
between the ghost cells of the triangular side and the overlapping quadrilaterals of the structured grid and vice versa.

We have the following two kind of ghost cells

e ghost cells that connect two different patches (they overlap with interior cells of other patches);

o ghost cells that are outside of the boundary to apply the structured WENO method (they are always quadrilat-

erals).
We define the three maps
Jrrr : GHOSTrrr — INTERNAL, (36)
fouap,1 : GHOSTguap — INTERNAL, 37)
fouapz : GHOSTguap — INTERNAL, (38)

to set the value for each ghost cell. These maps have the following properties

e Foreach T € GHOST g there exists one 7 € GHOSTrg; such that firi(T) = frri(T) and T # T. Furthermore,
it holds T, T - fTRI(T);

o For each Q € GHOSTquap with Q c Q there exist 7, T € INTERNALqg; or O € INTERNALGuap with T # T
such that fQUAD,l(Q) =T and fQUAD’Q(Q) =Tor fQUAD,l(Q) = fQUAD’Q(Q) = Q Again, we have the condition
T.T,0cC Q;

e Foreach Q € GHOSTquap with Q ¢ Q, there exists Q € INTERNALguap such that fouap,1(Q) = fouap2(Q) =

0.

Instead of the update (??) and (??) we use the average of the two overlapping triangles with the quadrilateral ghost

cell (in case of a QUAD to QUAD map fquap,1(Q) = fouap.2(Q))

Ur = Upgur)s for each T € GHOST1g1, (39)

_ UfQUAD,](Q) + UfQUAD,z(Q)

Ug > ,

for each Q € GHOSTquap - 40)

The functions (??) and (??) can be defined in the same way as before, since every edge has a unique direction which
defines a right and a left cell for each edge. To define the different patches and maps for hybrid grids in multiple

dimensions, we need to introduce some additional tools. Let us defined the following kind of patches
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Fig. 3: Principle of the division into patches of structured and unstructured grids with ngnese = 2. White cells are ghost cells, which are updated
either by the boundary conditions or due to mappings in between the patches.

quadrilaterals (QUAD);

e connection patches between two QUADs (Q2Q);

connection patches between multiple Q2Qs (RQ);

the triangular patches (TRI).

To automate the generation of the ghost cells we divide the TRI patches into
o the principle triangular part (TRIO);
e the connection patches between TRIOs and QUADs (Q2T);

e the small connection patches that connect all kind of combinations of Q2Ts and Q2Qs in the case of at least

one Q2T (RT).

Figure ?? illustrates a way to combine quadrilateral grids. The L-shaped domain is divided into three QUADs, four
Q2Qs, and one RQ patches. Note that we can use Q2Q-patches also at the boundary. The only restriction is that the
grid size in each direction is uniform and we require that each side length is a multiple of its grid size.
Let us take a look at Figure ?? to illustrate how to combine the pieces in case we also have triangular parts. We have
a single TRIO, two Q2T, one RT, two Q2Q and three QUAD patches. The only unstructured patches are the TRIOs.
The Q2T’s are long patches of width ngpoAx Or ngposAy with a structured triangulation and ghost cells only in one
direction. The RTs are of size ngnostAX X NghostAy With a structured triangulation and its ghost cells are added just in
the direction of Q2Q patches and over the corners in between two Q2Q patches.

Given the tools described above we can construct hybrid grids for general geometries. This hybrid method can be
used to locally refine grids and apply a fast structured solver around this refined region. Figure ?? shows a possible

local refinement with a central unstructured domain.

3.3. Setting of the WENO and RBF-ENO methods

In the following, we describe the specific setting of the RBF-ENO and WENO methods, used on the hybrid grids.
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Fig. 4: Principle of the division into patches of just structured grids for an L-shaped domain with ngpost = 2. White cells are ghost cells, which are
updated either by the boundary conditions or due to mappings between the patches.

Fig. 5: Principle of the division into patches of structured and unstructured grids with ngpese = 2. White cells are ghost cells, which are updated
either by the boundary conditions or due to mappings between the patches.

&

=
i

QUAD Q2Q QUAD Q2Q QUAD
Q2Q Rt Q21 RT Q20
QUAD Q2T TRI Q2T QUAD
Q2Q RT Q2T RT Q2Q
QuAD  |Q20 QUAD  f@20| QquaD
(a) Schematic illustration of the patches. (b) Grid with N = 15108 cells.

Fig. 6: Hybrid grid with a central unstructured part.
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3.3.1. One-dimensional hybrid method

On the structured patches we use the standard WENO method of order pwgno and on the unstructured patches
we use the RBF-ENO method of order pgpno. Let us consider the one-dimensional RBF-ENO method, introduced in
Section ??. To construct a method of order p the choice of pgno = p is given. For the WENO method there are two
possibilities

PWENO = zng +1, with the stencil size n = 2 VZ_)J +1, (41)

pweNo =2p — 1, with the stencil size n = 2p — 1, 42)
with different orders of convergence. The following theorem states the stability result.

Theorem 3.1 (Stability and order of convergence). Given the hybrid RBF-ENO method with pgno = p and

PwENO = 2@ 1, 3)

or

pweno = 2p — 1. (44)

It provides an accuracy of order p for smooth solutions. Furthermore, the combination of the two methods is stable if
both methods are stable. Thus, At must be the smallest time step fulfilling the CFL-condition over all patches and the

number of ghost cells ngnosw > p — 1 such that both methods are stable.

Proof. Given the RBF-ENO method of order pgno = p, the WENO method of order pwgeno by (??) or (??) and the
number of ghost cells nghost = p — 1, we get that in the smooth case each part of the method has an accuracy of order
p- Thus, each flux is of order p — 1. Since ngnost = p — 1 the reconstruction of both the RBF-ENO and the WENO
method is locally the same as for each individual reconstruction. In the end, for Az the smallest time step fulfilling the

CFL-condition, we get the same stability as for each method itself. O

There are no general stability results for the WENO and ENO method. The stability we conjecture states that the

hybrid method is as stable as the single methods and the combination of the two does not destroy this.

3.3.2. Two-dimensional hybrid method of order three

In two space dimensions, we restrict ourselves to the case ppno = 3 on the unstructured patches. Since the two-
dimensional WENO method is based on dimensional splitting we have the conditions (??) or (??) on the structured
patches. We use the standard WENO method of order pweno = 5 since the computational cost is similar. To receive
pweNo = S in the smooth case we need

PWENO < 2nghost + 1. 45)

Furthermore, we need the number of ghost cells ngpe to be large enough such that the RBF-ENO method is flexible

enough to avoid oscillatory states. This results in the result of Theorem ??.



14 Jan S. Hesthaven, Fabian Monkeberg / Journal of Computational Physics (2020)
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Fig. 7: Number of ghost cells ngpos needed for the RBF-ENO method depending on dinax from Table 22.

Theorem 3.2 (Stability). The high-order hybrid RBF-ENO method is stable with respect to the smallest time step At
over all patches if the number of ghost cells ngnog; is large enough such that (2?) is fulfilled and such that all neighbors

until dn,x are inside the ghost cell area.

Proof. To have no restrictions for the RBF-ENO method, we need to choose ngo such that all neighbors until dpx,
the maximal distance introduced in Table ??, are inside the ghost cell patches. For the WENO method we require
(??). To get the same stability as for each single method, it remains to satisfy the CFL condition for Az on each patch

of the computational domain. O

Remark 3.2. In one dimension, this method is high-order accurate. However, if we implement the WENO method in
two-dimensions with the standard flux splitting we recover only a high-resolution method. There is a way of evaluating
the WENO reconstruction on each edge at some high-order quadrature nodes, but this is costly. Another possibility

is the accuracy correction proposed by Buchmiiller and Helzel [? ].

For the RBF-ENO method of order 3 we have di.x = 5. Thus, with ngy, = 3 all neighbors can be considered, see
Figure ??. However, except for the final example of the flow through a conical aerospike nozzle, we choose nghos = 2.

In the last example, we must choose nghose = 3 to avoid negative pressure.

4. Maximum preserving limiter

In this section, we show that the maximum preserving principle introduced by Perthame and Shu [? ] and Zhang
and Shu [? ] can be generalized to non-polynomial reconstructions. Hence, we can apply it for the triangular part
of the hybrid high-resolution RBF-ENO method. The structured part can be stabilized using the positivity preserving

limiter for the WENO method in each direction [? ].

4.1. Generalized maximum preserving limiter

The maximum principle satisfying finite volume method is based on the first order finite volume scheme (8)

Ut = Ur = AIFUNL UL ) = F(UR,, UN =2 Hy(U?, U UL, (46)

i + i+1
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with a monotone numerical flux F and A = At/Ax. For suitable numerical flux functions, e.g., the monotone Rusanov
and Godunov schemes, H, is increasing in each argument under the CFL condition max, |V, f(x)|1 < 1. Using the

consistency of the flux we have the maximum principle

m = Hy(m,m,m) < UM = Hy(U" , U UL,) < Hy(M,M, M) = M, 47)

i+1

form < U,

ur,ur

i+l

< M. Let us consider the high-order MUSCL scheme
U™ = U" = ALF Gy . a7 o) = Fy iy ), (48)

with u;'_l n= pi(xi1y2) and u; n = Di(xiv1/2) of the high-order polynomial p; € IT*(R) interpolating on a stencil
around the cell i. Note, it is enough to show the idea for the forward Euler method in time since the MUSCL scheme
with a SSPRK method can be written as convex combinations of (??). The idea is to express the average value of each
cell by the exact Gauss-Lobatto quadrature rule with nodes £ € [x;_1/2, X;+1/2] and the weights @, fora = 1,...,N

with 2N -3 >k, i.e.,

N
U" =) bapilED), (49)
a=1

with £ = xi_1/2 and £ = x;41/2. The maximum preserving limiter is based on the following form of (??)

N-1
A
1 N Al A — — —
U;H = Z Dapi(%]) + ‘*’N(“m/z - Q_N[F(”iﬂ/z’“;uz) - F(ui+—1/2’ “i+1/2)])
a=2 (50)

A
~ + + - - +
+ ‘Ul(”i—uz - a_l[F(“i—l/z’”m/z) = F(ui_y s ui—l/Z)])’

where we added and subtracted F' (u;:1 20 Uiy /2). This can be expressed as
N-1
UM = 3 0apiR) + Gy Huyo, (piE), piEY), pist (&) + &1 Hag, (picy G ), D, ). (51
a=2
Under the CFL condition
Amax |V, f(u)| < min @,, (52)
u (04
and
mSpj(fc;”)SM, forala=1,...,N, andj=i—1,i,j+1, (53)

we ensure the satisfaction of the maximum principle m < U;”' < M. However, we can rewrite the method in a

slightly different form
1 A A — N — —
U™ = oppr + wNH/l/@N(uitl/Z’ Uiri2o Ui ) + O1H 6, (UARYN “7—1/2’ Uis12)s (54)

with g = 1 — &y — ©1 > 0 and
N1 o
(03 A
PR = Z A—P(x?) =
WR

a=2

+
i+1/2 '

n_ A A
U — byu w1,

. (55)
r
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Again, we satisfy the maximum principle m < U;”' < M under the milder condition
M < PR UG, s Uy n S M, forj=i-1,i,i+1. (56)

Based on these results we define the limiter

px) = b(p(x) - U}) + UY, (57
6 = min|| i ek R Y (58)
= min B o > Ly,
U,n — limin U,n — Umax
fimin = min{pg, Mi_+1/2’ u;'_l/z}’ fimax = max{pg, ui_+1/2’ u;1/2}~ (59

The original limiter from Zhang and Shu [? ] is

Ut —m

Hx) = 6(p(x) — UMY + U" g = min{| i | vi-M 1) (60)
! l’ U;l_umin’ U?_umax’ ’
Umin = II}YiIl P(X?L Umax = m(flx P(JAC,Q) (61)
Lemma ?? verifies that the new limiter is conservative, maintains accuracy and
UM = rpr + OnHajoy (Bi(E), i&)), Pie1(R],1) + O1Hyo, (Bt (RY ), pi(&]), Pi(&Y)), (62)
with 1 o
U' — 1 p(x) — oy p(EY)
o= P T NP 63)

W

satisfies the maximum condition.

Lemma 4.1. The simplified maximum preserving limiter (2?) with (2?) and (??) is conservative, of high order, and

satisfies the maximum condition (?7?).

Proof. Conservation: Conservation is clear as p is conserved

é fc p(x)dx = % fc p()dx + (1 -6)U! = U (64)
Accuracy: Let us assume the case 6= 'UU,_—:;:‘ The other case works in the same manner. From Zhang and Shu [? ]
we have
p() = p(0)] = O(A), (65)
Furthermore, we know
Unin < lmin, (66)

Hip = p(&n) and pg is a convex combination of values p(£). If we assume 6 < 1 we obtain

since ”;1/2 =pR), u

Umin < fmin <mand 8 <0< 1. Using the definition of the limiter and combining it with the previous results, we have

p(x) = p(ol = 10(p(x) = UD) + U} = p()| = |6 = 1lIp(x) = Uj| 210 = UIp(x) = Ul = |p(x) = p(0)l.  (67)
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With (??) we conclude
p(x) — p(x)l = O(AX™). (68)
Maximum preserving condition: By construction we have m < p(x;_12), p(Xi+1,2) < M. Further, we have

U = &1 p(RH) — onp(EY)  GUT + (1 = B)UT + 1B — DUT = 018p(R]) + (@ — DU — oonB,p(RY)

Pr = -
WR WR
=0pg + (1 - é)U{’.
Thus, we have m < pr < M. O

4.2. WENO limiter

The challenge with the standard WENO method compared to the ENO method is that we do not recover the high-

+

order interpolation function, but just the values u;,  ,.

Zhang and Shu [? ] introduced a way to resolve this issue by
reconstructing p € [T*(R) using "‘;1/27 Uipi) and surrounding cell averages U for j =i —ko,...,i+ k; for ko, k; € N.
Given the idea from the previous section, we can create a limiter by using the extrema preserving limiter (??) without
artificially generating a reconstruction p € IT*(R). For the two-dimensional WENO method on structured grids, based

on dimensional splitting [? ], we apply the one-dimensional maximum preserving limiter in each dimension [? ].

4.3. Non-polynomial reconstruction

In the case of a non-polynomial reconstruction, condition (??) is not satisfied. However, we can make use of the

concept behind (??). Let us consider the reconstruction r : R — R of order k. We define
U — onuz,, , — o |,
PR = i i+1/ i-1/ , (69)

Wr

with the Gauss-Lobatto weights @, @y > 0, N € N such that 2N — 3 > k and
(:)R =1- d)l - &)N. (70)

As before, we can rewrite U [’.”1 using (??). The scheme is extrema preserving if (??) is fulfilled. If it is not fulfilled,

we use 8 from (??) and define the limiter
7(x) = 9(r(x) — Uln) +U!. 71)

As in the polynomial case, this limiter defines a high-order, conservative reconstruction fulfilling the extrema-preserving
condition (??), see Lemma ??. Finally, we define the extrema-preserving MUSCL scheme with non-polynomial re-

construction
U™ = U™ = AFFi(Xir1/2), i1 (Xir1/2)) = F(Fio1 (Xio12)s Fo(Xim1/2))]- (72)

Lemma 4.2. The simplified positivity preserving limiter (??) is conservative, of high order, and satisfies the simplified

maximum preserving condition (7).
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Proof. The proof for the consistency and the maximum preserving property follows Lemma ??. To show high-order
accuracy, we introduce the polynomial p € IT*(R) which interpolates the reconstructed values r(X{') at the points £
for @ = 1,..., N with the property

Ir(x) = p(0)] = O(AX*). (73)

Further, we define the maximum preserving limiter p based on (??). Since r and p have the same values on the
quadrature nodes, the scaling parameters é,, and 6, coincide. We expand the difference between the limited and the

original reconstruction

[7(x) = r(0)] < [7(x) = p(o)] + |p(x) = p(0)] + |p(x) = r(x)l. (74)

By construction, we have |p(x) — (x)| = O(Ax**!) and from Lemma ?? we know |p(x) — p(x)| = O(Ax**1). Since the

scaling parameter 0, é,, coincide, we have
[F(x) = po)| = B:Ir(x) = p(x)] = O(AX™), (75)

and conclude that [#(x) — r(x)| = O(AXF). O

4.4. General reconstruction on triangular grids

Zhang et al. [? ] introduced a generalization of the maximum preserving limiter to triangular elements. Here,
we change the method to define it for non-polynomial reconstructions. The idea is to define a quadrature rule on

the triangle of the right order such that the weights are positive and all Gauss quadrature points on the interface are

included. This quadrature rule is based on quadrature points on the square [—%, %] X [—%, %] defined as the product
of the k + 1 Gauss quadrature points {\#| 8 = 1,...,k + 1} with its weights ws and the N Gauss-Lobatto quadrature

points {&t| @ = 1, ..., N} with its weights &, and 2N — 3 > k. Thus, we have the quadrature points

Sp=1@" W\ a=1,...,k+1,8=1,...N}, (76)

with the quadrature weights wg®, on the square [—%, %] X [—%, %]. Given the triangle C with the vertices Vi, V;, V3

oriented clockwise, we define

1

210 = (5 +9)Vi+ (5 +0)(5 o)V + (5 —)(5 )V, 77)
2 (u,v) = (% +v)Vy + (% + u)(% —v)Vs + (% - u)(% —v)V1, (78)
g, v) = (% + v)V3 + (% + u)(% - v)V1 + (% - u)(% - v)Vz, (79)

from the square to the triangle C. These map the top edge of the square to one vertex of the triangle, see Figure ??.

The following Lemma gives us the determinants of the gradient of the projections.

Lemma 4.3 (Jacobian of the projections [? ]). If the orientation of the three vertices Vi, V, and V3 is clockwise, then

the Jacobian |Vg; (u,v)| = 2|C|(% -v)forl, =1,2,3.
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(a) Quadrature nodes on basic square. (b) Quadrature nodes using gj. (c) Final set of quadrature nodes C.

Fig. 8: Construction of quadrature nodes for k = 2.

Given the three different projections, we define the set of new quadrature nodes

SC=gi(SUE(SK) U gsSy), (80)

which include all Gauss points on the cell boundary, e.g., see Figure ?? for the case kK = 2. Now, we can rewrite the

cell average

1 1 1/2 1/2
vt = [ pewax= [ [ pete eV e, 81)
ICl Je ICl J-1j2 J-1p2
for pc € Hk(RZ) and i = 1,2, 3. Thus, we can take the average over all i = 1,2,3
12 12
f f pc(g, (w, v))IVeg, (u, v)|dudy, (82)
, 1/2J-1/2
3 N k+l
=D D pela @ )3 (— ~V)welp = ) pe®oy, (83)
=1 a=1 p=1 xeS¢

using the result of Lemma ?? with the quadrature weights wy for each x € S,f. We define the set of quadrature points
in the interior S,f’i"’ and the set of quadrature points on the edges S ,f’e‘ig. Note that in (??) each quadrature node on

the edge is counted double with @ = &y. We obtain
SE = {xipXop X3l f= 1. k+ 1}, (84)

with x15 = (0,3 +5,1 =), x5 = (3 15,0, + V%), x5 = (§ +1£, 1 —1¥,0) written in terms of the barycentric
coordinates (£1,&,&3), such that p = &V + §2V2 + &3V3. To calculate the weights on the edge (O +18, l W) we
use that g,(3,V#) = g3(~ 3, —¥) and recover

2,1
3 (2

2

2<1 \ﬁ)(uﬁd)N = gwﬁd)l, (85)

vﬁ
+ )wﬁw1+ 3\

for the weights on the edges for the quadrature node x; 3. The same result is obtained for the other edges. Analogous

to the one-dimensional case, we have

k+1

UC = PDRWR + Z Z wﬁwlul B (86)
B=1 1=
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with the evaluation of the quadrature node on the /,th edge ulc 5= pc(X1, ),

3 N
_ 2 ~ _ Wy _ 2wﬁ0)1 c
wr=1- Z gwﬁwl, and DR = Z pC(X)w_R = Z Z 3 on u g 87)

p=1 l=1 XES?'"’I —1 I,=1

Let us rewrite the finite volume scheme (4) with the high order flux (11) and the forward Euler method in time, i.e.,

At k+1 3
n+1 n E . Ci Cite
U U - |C | (I)B l=1 Fllg(ulmﬂ’ ulg,ﬁ’ nlle)‘ (88)

The proof of the maximum principle is based on the requirement that the first order method

Ut =Ur =) Fa (UL U ng,), (89)
l=1

is non-decreasing under the CFL condition

max [V (f(u) - n)IﬂZ 1Sl < 1, (90)

=1

which is satisfied for a monotone flux, e.g., the Rusanov flux (6).

Theorem 4.4 (Maximum principle satisfying scheme for triangular grids). Let us consider a first order finite volume

method of the form (??) that is non-decreasing under the condition (??). The scheme (??) satisfies the maximum

principle
m< U < M, oD
under the condition that
m<ulﬂ,pR£M, foralll,=1,2,3,8=1,...,k+1, (92)
and the additional CFL condition
maXIVu(f(u) n)I|C| Z 1S, < 3 (93)

Proof. The proof follows the one in [? ] with the difference that we use pg defined in (??). Let us decompose the flux
(??)
Z Fo (Ut 0a,) = Fiy (g, 7, mi) + Fiy (g, 15, —mip) + Fin (', ul' mip)
=1 (94)
+ Fiou g, 155, 0i0) + Fis (g, 55 03) + Fia (g, s, —Mi3) + Fia (S, S5, 1),
by the conservation of the flux. Next, we combine (??) with (??) and (??) and obtain

k+1 3 k+1 3 k+1

. a M
Ut _PRU)R+ZZ 3@p1 1123 il Z‘”ﬁzF”e(“l ﬁ,ulﬂanzl) PRG)R"'Z swp([Hi g+ Hyp + H3gl,
B=1 1.=1 le=1 B=1
with
3At
C; Ci Ci C; Ci
Hip=uy— W[F“(”Lﬂ’ wy g Min) + Fia(uy ', 5, —min)],
Hop= iC — B (€ € ny 4 FoSh €2 n) + S uS n,
2B = uzﬁ 2% |C|[ zl(uzﬁaulvg’nll)"' lZ(szgauzﬁaan)"' l3(u2ﬁ’u3’ﬁ’nl3)]$
3At
Hip=uS — u ,u ,—n3) + F; uc",uc’3,n- .
36 38 2(2)1|C1|[ 13( 3ﬂ 2,8 13) 13( 38738 13)]
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Under the assumption that the first order method (??) is non-decreasing in each argument, i.e., monotone, under the
CFL condition (??), we have that each H;, s is non-decreasing under (??). Finally, we combine this with (??) and

obtain the maximum principle for high-order methods on triangular grids. O

So far, we have only dealt with the polynomial case. However, the results also hold for the non-polynomial case

with the definition

U, 3 2 Wiy
C
PR=—C= D ) ol 95)

4.4.1. Maximum principle satisfying limiter on triangular grids
Let us consider a general reconstruction r¢, : R? — R for the solution in the cell C;. In the case that the

reconstruction r¢, does not satisfy (??), we can modify it in the same way as in one dimension. We define

1}, (96)

— Umin

- > n n 0 i Ui —m Uln
rC’.(X)ZQ(}"C‘.(X)—Ui)‘FUi, szln{'Un ,‘Un—fl
i i max

le=1.23=1._k+1} 97

fimin = Min {pr, 1l 5| I = 1,2,3,8=1,....k+1}, fimax = max { pr, uf

with uf" 5= 1C; (x4, 8)- The results from one dimension can be transfered to two dimensions directly and are summarized

in the following Lemma.

Lemma 4.5. The maximum principle preserving limiter (2?) with (2?) is conservative, of high order, and satisfies the

maximum preserving condition (?7?).

4.5. High-order positivity preserving scheme for the Euler equations

The maximum principle does not hold for systems of equations. However, to solve the Euler equations we need
to ensure positivity of the density and pressure. Therefore, we adapt the idea from [? ] to the maximum preserving

limiter introduced above. Let us consider the two-dimensional Euler equations with the flux

m;
minty

—— + 5,‘
£ = | o, o

==+ pon |’
T(E+p)

(98)

where ¢;; is the Kronecker delta function and with the additional variables u = (p, m;, m;, E)T, the density p, the mass
flux m; and my in x- and y-direction, respectively, the total energy E, and the pressure p = RpT = (y— 1)(E - %@)
assuming an ideal gas with the ratio of specific heat y. The method is based on a positivity preserving first order
method (??). Further, we use that the pressure p is concave with respect to p, m;, my and E under the condition p > 0.

Thus, the set of admissible states

G ={(o,m,ma, E)'| p > 0,p >0, (99)

is convex. We denote the cell average values at time ¢, as Q’é = (P, ’Wf,c’ mg,c, Eg)T and the high-order reconstruc-
tions in the cell C as

ac(®) = (pc(X), mic(X), mac(x), Ec(x))" . (100)
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To preserve positivity of the density we proceed in the same way as to preserve the maximum and define the limiter

pe(x) = Oi(pc(x) — p) + pl, (101)
" o — &
91=min{_np' —— |1}, Pmin = min{ =1,....k+1}, (102)
Pi ~ Pmin
with the small threshold € > 0, and set
Ac(x) = (Pe(X), mic(x), myc(x), Ec(x))" . (103)
To preserve positivity of the pressure p we define
1, if p(Ge(x)) > &, w
H(x) = e sx() = (1 = Q¢ + tqc(x). (104)
to such that p(sx(t0)) = &, if p(qc(x)) < &,
Further, we define the remainder gz = Q. — Zk” 33 ol %wﬁ: dc(x;,5) and
1 if p(qr) = ¢, ~
= sp(®) = (1 — HQL + tqr. 105
{to such that p(sr(t0)) = &, if p(iir) < &, w(0) = (1=DQc + 1l (105)
This allows us to define the new vector of reconstruction functions
qc(®) = O(qc(x) - Q) + Q¢ with 6, = min{ mm t(x) tR} (106)
xeS

We have the following lemma.

Lemma 4.6. Given the limiter (2?) and (??) the (non-polynomial) reconstruction §c is of high-order accuracy,

conservative, and preserves positivity of the density and pressure.

Proof. For the first step, using the limiter of the density, we take the results from the maximum preserving limiter.
Also the positivity of the pressure and the conservation property of the second limiter (??) are clear. The only open
question is the high-order accuracy of the second step.

Let us keep in mind that the original limiter by Zhang and Shu [? ] is based on the minimum over all quadrature
nodes

0, = mln 1(x). (107)

xES
We define the vector of polynomials p¢ such that pe(x) = qc(x) forall x € S,f. Thus, the values of §, and &, are the

same for the polynomial reconstruction p¢ and the non-polynomial reconstruction §¢. Furthermore, we know

k+1 3 k+1
2 wp® 2 wpdd) Wy
dr = Q- ZZ o dc(xig) = Q- ZZ Lo Pelig) = D pe(o), (108)
p=1 i= B=1 i= ESkC,inr

which is a convex combination of the values pc(x) forx € § ,f‘i”’ . Thus, we obtain
A A PO Wy Wy PO
p((1 = 0)QE + 0rir) = p((1 - D)Q + 8y o Pe®) = p( > o ((=0)Q¢ + Bope().  (109)
XES’({IM! XES]E‘.I)H

> D, (1= 8Q¢ + hape(v) 2 (110)

C.int
XS,
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since p is concave. We conclude that 6, > 5. Finally, we use the estimate in (??)

1Gc(®) = qcX)I < [Ge(X) = PcX)] + [Pc(X)) = Pc(X)| + [Pc(X)) — qe(X);

with
lgc(x) — pc(®))] = O(Ax**h), (111)
ldc(x) — Pc(X))| = O2lqc(x) — pe(x))| = O(AX* ), (112)
IBc(x) — pc(X))| = |1 = allpc(x)) — Q)| < [1 = ballpc(x)) — Q)| = [pe(x) — pe(x))] = O(AX), (113)
with the original limiter pc based on 6, from [? ]. O

Remark 4.1. The positivity preserving limiter works the same way for the one-dimensional schemes with S ,f"’Edg =

{xi-1/25 Xis172}-
5. Numerical results
5.1. Numerical results for one-dimensional problems

Let us take a look at some one-dimensional examples to verify the order of convergence and show the ability to
deal with challenging one-dimensional problems.
5.1.1. Linear advection equation

To confirm the order of convergence in Theorem ??, we consider the linear advection equation

u; +auy, =0,
(114)
u(x,0) = up(x), for — o0 < x < o0,

with periodic boundary conditions on the domain [—1, 1] and a wave speed a = 1. Next, we consider two different

hybrid grids. The structured hybrid grid consists of N cells split equally into two grids {xo, . .., xy/2} and {xy/2, ..., xx}

with x; = % — 1. The unstructured hybrid grid consists of the unstructured part {Xo, ..., ¥y,2} With % = x; + &,
g € ‘L{(—%, %) uniformly distributed between [—ON—I, %] and the structured one {xy/2, ..., Xy}

The convergence of the hybrid method is generally as expected, see Table ??. We compare the accuracy using the
hybrid method with pwgno = 2 [§J + 1 and pweno = 2p — 1. For the 3rd order method we observe a reduced error
by around a factor 10 in the case pwgno = 2p — 1. Table ?? shows the runtime for the different 3rd order methods.
The hybrid methods with pwgno = 2 I_gJ + 1 and pweno = 2p — 1 have a similar computational complexity and they
are a bit faster than the RBF-ENO method. Note that the costs of the stencil selection in the RBF-ENO method in
one space dimension is not much more expensive than the WENO method. However, the cost of the two-dimensional

stencil selection algorithm is quadratic in the size of the stencil.
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Unstructured grid Structured grid
N Hybrid 2p - 1 Hybrid 2| p/2] +1 | RBF-ENO p Hybrid 2p - 1

error rate | error rate error rate | error rate

p=3 16 | 2.32¢-03 | - 1.79e-02 | - 2.99-03 | - 2.54e-03 | -
32 | 2.46e-04 | 3.25 | 3.90e-03 | 2.16 5.25e-04 | 2.55 | 5.63e-04 | 2.17
64 | 6.07e-05 | 1.95 | 9.70e-04 | 2.01 8.20e-05 | 2.61 | 4.69e-05 | 3.58
128 | 7.78e-06 | 3.16 | 2.26e-04 | 2.09 1.28e-05 | 2.68 | 5.88e-06 | 2.99
256 | 9.38e-07 | 2.86 | 3.08e-05 | 2.84 1.61e-06 | 3.00 | 9.10e-07 | 2.69
512 | 1.44e-07 | 2.7 2.14e-06 | 3.85 2.64e-07 | 2.60 | 1.26e-07 | 2.85

-4 16 | 2.41e-04 | - 6.49¢-04 | - 9.77e-04 | - 4.96e-04 | -
p= 32 | 3.86e-05 | 2.69 | 5.37e-05 | 3.63 6.12e-05 | 4.09 | 4.52e-05 | 3.46
64 | 2.71e-06 | 3.71 | 2.58e-06 | 4.31 5.36e-06 | 3.47 | 2.20e-06 | 4.36
128 | 1.47e-07 | 4.21 | 2.06e-07 | 3.66 4.31e-07 | 3.57 | 1.70e-07 | 3.69
256 | 1.70e-08 | 3.1 1.57e-08 | 3.71 2.89¢-08 | 3.89 | 1.66e-08 | 3.35
512 | 1.48e-09 | 3.53 | 1.22e-09 | 3.68 2.97e-09 | 3.27 | 1.51e-09 | 3.47

=5 16 1.15e-04 | - 3.71e-04 | - 2.38e-04 | - 2.43e-04 | -
pP= 32 | 6.04e-06 | 4.10 | 1.75e-05 | 4.60 9.96e-06 | 4.66 | 7.12e-06 | 5.09
64 1.71e-07 | 5.16 | 5.98e-07 | 4.32 2.96e-07 | 4.93 | 2.62¢-07 | 4.76
128 | 8.19e-09 | 4.33 | 1.90e-08 | 4.50 1.34e-08 | 4.43 | 7.19¢-09 | 5.19
256 | 4.76e-10 | 4.14 | 6.70e-10 | 4.72 7.36e-10 | 4.16 | 3.23e-10 | 4.45
512 | 1.52e-11 | 4.96 | 3.18e-11 | 4.22 3.98e-11 | 4.21 | 2.83e-11 | 4.54

Table 3: Convergence rates of the Hybrid ENO method for different grid sizes compared with the RBF-ENO method for the linear advection

equation on [—1, 1] at time 7 = 0.1. We use periodic boundary conditions and uo(x) = sin(nx), CFL = 0.5 .

Hybrid 2p — 1 | Hybrid 2| p/2] + 1 | RBF-ENO p
16 | 2.7 1.4 0.8
32 | 44 25 1.6
64 | 4.6 32 32
128 | 84 74 84
256 | 18.8 15.8 19.8
512 | 455 440 62.6

Table 4: Runtime comparison for the 3rd order methods solving the linear advection equation.

5.1.2. Euler equations

Next, we present numerical results for the one-dimensional Euler equations

SIERS

m
2
m-

+| S tp

m
o \G(E+DP)

0.

(115)

with the density p, the mass flux m, the total energy E, and the pressure p = RpoT = (y—1)(E - % m?z) assuming an ideal

gas with the ratio of specific heat y = 1.4 [? ]. We test the behavior of the hybrid RBF-ENO method with shocks,

contact discontinuities, and rarefaction waves. The computational grid for the Euler equations is shown in Figure ??.

The goal is to run it on the left half with the structured WENO method and on the right half with a continuously refined

grid such that the middle cell is half the size of the outer ones. Note that we have to change the two original meshes

in [a,b’] and [b’, c] by adding the ngp. last cells of the structured mesh to the unstructured one. The following results

are based on a grid with Ny = 78 cells in [a, b] and N, = 101 cells in [b, c]. Further, the reconstruction is performed in

the characteristic variables V = R~!U, with the eigenvectors R of the Jacobian of f(o,m, E) = (m, ’”72 +p, %(E + p))T.
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Fig. 9: 1D hybrid grid for Euler equations .
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Fig. 10: Sod’s shock tube problem on [-5, 5] at time 7" = 2 with CFL = 0.8 solved by the hybrid RBF-ENO method of order 3.

Sod’s shock tube problem. We consider Sod’s shock tube problem on the domain [-5, 5] based on the initial condi-

tions
(1,0,1) ifx<0

) 116
(0.125,0,0.1) ifx>0 (116)

(o, mo, po) =

where m = up. This Riemann problem produces a rarefaction wave, followed by a contact and a shock discontinuity.
Figure ?? shows the results for the hybrid RBF-ENO method of order 3. We observe that the rarefaction wave,
the contact discontinuity, and the shock are well resolved. Furthermore, it is clear that the 3rd order method with
PpweNo = 5 resolves the contact discontinuity better. In the case of the 5th order method the differences between

pweno = S and pweno = 9 are not obvious anymore, Figure 2?.
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Fig. 11: Sod’s shock tube problem on [-5, 5] at time 7" = 2 with CFL = 0.8 solved by the hybrid RBF-ENO method of order 5.
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Fig. 12: Shu-Osher problem on [-5, 5] at time 7 = 1.8 with CFL = 0.8 solved by the hybrid RBF-ENO method with pweno = 2p — 1.

Shu-Osher shock-entropy wave interaction problem. We consider the Shu-Osher shock-entropy wave interaction
problem. This Riemann problem has the initial conditions

(3.857143,2.629369,10.33333) if x < —4

: 117
(1 +0.25in(5x),0, 1) if x > —4 (117

(po, mo, po) = {

and the computational domain [-5, 5]. As before, we obtain the correct solution with the 3rd and 5th order method,
Figure ??. In this example, we see a substantial advantage of the high-order methods. There are evident improvements

in the resolution of the waves as the order increases.

Two interacting blast waves. As the last one-dimensional example, we test the method on the two interacting blast
waves based on the initial conditions
(1,0,1000) if x <0.1
(po, mo, po) =4(1,0,0.01) if0.1<x<09. (118)
(1,0,100) ifx>0.9
This problem was introduced by Woodward and Colella [? ] and is more challenging due to the collision of the
shock waves. In [? ], we had some difficulties to solve this problem with the RBF-TeCNOp method. There, we
introduced a new symmetric positive definite dissipation operator, which mimics the more dissipative Rusanov-type
diffusion operator. Here, we compute the two interacting blast waves with the hybrid RBF-ENO method of order 5
based on the same grid as before with N; = 158 and N, = 205. If we use the original version, we obtain negative
density or pressure. By using the positivity preserving limiter from Section ??, we stabilize the method and calculate
the solution at time 7" = 0.038. The results of the fifth order hybrid RBF-ENO method combined with the positivity

preserving limiter are shown in Figure ?? and show excellent agreement with the reference solution.

5.2. Numerical results for two-dimensional problems

In this section, we demonstrate the hybrid RBF-ENO method on a couple of numerical examples. First, we solve
Burgers’ equation to compare the complexity of the hybrid and the non-hyb<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>