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History of the Smith chart 

The Smith chart was primarily developed, extended, and refined by Phillip Hagar Smith [1], in a series of 

published works [2-4] between 1939 and 1969. 

Phillip Smith was born in 1905 in Lexington, Massachusetts. He majored in electrical communications at 

Tufts University and joined the Radio Research Department of Bell Telephone Laboratories in 1928. 

Around 1930, while employed at Bell Telephone Laboratories, Smith started his work on the diagram that 

was to become the Smith chart. He submitted the initial version of his diagram to Electronics Magazine in 

1937; the magazine finally published it in 1939 [2]. In 1940 the M.I.T. Radiation Laboratory started to use 

the chart.  In 1944 Smith published a second article which incorporated further improvements, including 

the use of the chart with either impedance or admittance coordinates. In 1952 Smith became an IEEE 

Fellow for his contributions to the development of antennas and graphical analysis of transmission line 

characteristics. In 1958, in the first issue of Microwave Journal, a biography of Smith was published to 

acknowledge the importance of his contributions. In 1969 he wrote the book Electronic Applications of 

the Smith Chart in Waveguide, Circuit and Component Analysis; he retired from Bell Labs in 1970. In 

1975 he received the MTT Special Recognition Microwave Application Award for the Smith chart. In 

1994 he was elected to the New Jersey Inventors Hall of Fame. 

In this article, we start with several drawings of spherical Smith charts, proposed with the aim of having a 

generalized Smith chart that deals with both negative and positive resistance circuits within a compact 

surface. Then, we introduce our suggested 3D Smith chart, discussing the Smith chart main equation from 

an inversive geometry perspective, for which Mobius transformations are a simple type of transformation, 

mapping circles into circles on a special sphere (called a Riemann sphere [5]), leading to mathematical 

completeness and simplicity while dealing with negative resistance and infinity. In order to familiarize the 

reader with the notions of dynamics and oriented curvature used further on to enhance the 3D Smith chart 

and to analyze negative capacitance and inductance, the equation of the unit circle is presented from a 

clockwise-counterclockwise dynamical viewpoint, mirroring the reflection coefficient of a 

positive/negative capacitance.  

The construction of the proposed 3D Smith chart is briefly presented, including the main properties and 

critical points and its analogy with the earth/latitude/longitude perspective, as well as its advantages and 

drawbacks. 

Then, to acclimate the reader to the earth-like chart, several matching examples are given on both Smith 

and 3D Smith charts in a parallel one-to-one comparison. The use of 3D space for displaying several scalar 

frequency dependent parameters is described. 

The 3D Smith chart’s practical benefits are described for passive circuits using inductor design and then 

for active amplifier stabilization and power gain problems. Last, negative capacitance analysis and 

detection is presented on the 3D Smith chart followed by analysis of a simple negative resistance tunnel 

diode equivalent circuit. 
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The article takes the reader on a journey to a compact tool where negative and positive resistance are all 

analyzed on a preserving-circles patterned sphere. We propose to use the 3D space surrounding the sphere  

for multiple complex-scalar visualization, which is useful in equivalent circuit extractions, multi-parameter 

optimization, or simply for multiple-variable imaging and for uncovering of changes in frequency 

orientation. 

Spherical Smith chart drawings for negative resistance circuits  

The Smith chart is limited within the unit circle to passive circuits with positive resistance (r) (or 

conductance (g)) [1]; circuits with negative r (or g), which occurs in active circuits, are not covered by the 

conventional Smith chart [4, 6]. 

In 2006, IEEE Microwave Magazine presented an article [7] on drawings by the artist M. C. Escher, 

including a spherical self-portrait. The article pointed out the connection between the drawings of Escher 

and hyperbolic geometry while also emphasizing the connection between the Smith chart and Mobius 

transformations in geometry within the 2D complex plane.  

Motivated by the desire to have a unified chart for both active and passive microwave circuits, Zelley 

proposed in [8] an intuitive spherical Smith chart drawing on a ping-pong ball. The drawing in [8] was 

still lacking “mathematical rigor” as the author acknowledges, with no equations given for its construction.  

Inspired by the beautiful drawing in [8], obtained by means of skillful but complicated arithmetical and 

trigonometrical manipulations, spherical Smith chart theories were proposed in [9-10]. In [9] the circles 

appearing in 2D are mapped into different curves on the spherical chart while in [10] the circles on the 

spherical Smith chart are distorted into ellipses in 2D. 

Actually, in [9], the authors parameterize the sphere using two angles as parameters, so that the circles of 

resistance appear when we view the plane containing the equator from the point (1,0,0) and the circles of 

constant reactance are displayed when we turn this plane sideways. With this structure, the orthogonal 

projection of these circles onto the equator plane (2D Smith chart), distorts them into ellipses. 

In the same way, the curves on the sphere considered in [10] are projected orthogonally in 2D and do not 

have a circular shape, in general.  

Here we will develop our main (initial) work on a single concept: inversive geometry. Inversive geometry 

considers the space of inversive transformations, which map all the circles into circles on a 2D sheet or on 

the Riemann sphere, when points are thrown to infinity (∞). For this geometry, ∞ is just a point [5, 11-13], 

unlike Euclidean geometry where ∞=unending or hyperbolic geometry where ∞=circle [7]. 

3D Smith chart and negative resistance 

In [12] we propose a single equation that maps the entire reflection coefficient (𝜌) (1) plane on a unit 

sphere (s). The equation can be expressed in terms of 𝜌, (its real 𝜌r and imaginary 𝜌r part), normalized 

impedance (z), resistance (r), and reactance (x) as follows (2). 

 𝜌(𝑧) =
𝑧−1

𝑧+1
      (1) 

𝜌3𝐷(𝜌 = 𝜌𝑟 + 𝑗𝜌𝑖) = (
2𝜌𝑟

1+|𝜌|2 ,
2𝜌𝑖

1+|𝜌|2 ,
1−|𝜌|2

1+|𝜌|2 ) , 𝜌3𝐷(𝑧 = 𝑟 + 𝑗𝑥) = (
|𝑧|2−1

|𝑧|2+1
,

2𝑥

|𝑧|2+1
,

2𝑟

|𝑧|2+1
)   (2) 

This guarantees the invariance of the circles and of the angles; the 3D Smith chart includes both active and 

passive microwave circuits on a single sphere, mapping the original Smith chart onto the northern 

hemisphere, and the circles which tend to infinity on the 2D extended Smith chart into circles in the 

southern hemisphere. Thus, the northern hemisphere contains circuits with positive resistance and the 

southern hemisphere contains circuits with negative resistance, east for inductive, west for capacitive. 

In further developments of the concept [14-15], the 3D space surrounding the sphere is then used for 

visualizing a variety of parameters. Fig.1 shows the conventional Smith chart and 3D Smith chart in a 

direct comparison. Infinity or reflection coefficients with very high magnitudes are scattered in all 
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directions on the 2D Smith chart (reflection coefficients of loads with negative resistance). On the 3D 

Smith chart, surpassing the unit magnitude of the reflection coefficient means simply moving south while 

infinity is a point on the sphere (south pole in geographical language). 

 

 

 

 

 

 

 

 

 

 

Smith chart leading equation and negative resistance  

The leading equation that generates the Smith chart that is given in (1) is presented by Smith as a bilinear 

conformal transformation in [4]; however, nothing about the global geometrical properties of these 

transformations is disclosed in [2-4]. 

The equation maps the constant r and constant x grid lines of the right half plane (r > 0) of the impedance 

plane within the unit circle of the Smith chart into arcs and circles, leaving the left half plane (r < 0)  to be 

mapped in its exterior, as depicted in Fig. 2, while throwing points to infinity in all directions. Unlike the 

classical Smith chart literature which considers (1) a bilinear transformation [4, 7, 16] or a conformal one 

[17-18], here we see it as a particular case of inversive transformation: the direct inverse: D(z) (3) (a)  [11].  

Direct inversive (also called Mobius) and indirect I(z) inversive transformations (3) (b) are the only 

transformations which map all generalized circles (simple circles or infinite extended lines) into 

generalized circles irrespective of their position on the complex plane. When points are thrown to infinity, 

one needs to compress the complex plane ℂ∪ {∞} Riemann sphere) in order to visualize them [5]. 

𝐷(𝑧) =
𝑎𝑧+𝑏

𝑐𝑧+𝑑
 (a);  𝐼(𝑧) =

𝑎𝑧̅+𝑏

𝑐𝑧̅+𝑑
  (b)               (3) 

 

 

 

 

 

 

 

 

 

 

 

Smith chart circle equation and negative capacitance and inductance 

In order to visualize circuits exhibiting clockwise and counterclockwise frequency orientation, the 

dynamics of the frequency path need to be grasped. There are a variety of circuits which exhibit reflection 

(a) (b) 
Fig. 1 A vision of infinity: (a) Moving away from the origin of the Smith chart (b) Moving away from the origin of the 3D 

Smith chart. The males and females are in one-to-one correspondence on the Smith chart and 3D Smith chart. 

 

Fig. 2  The left half plane (LHP) of the impedance plane is mapped onto the exterior of the Smith chart. The constant r circles 

(for negative r) are now mapped into circles outside of the Smith chart, while the constant x circles are mapped into arcs outside 

of the Smith chart. 

 



4 
 

coefficient movements on the unit circle of the complex plane; however, their intrinsic nature can be very 

different. Table I presents different frequency parametrizations of the unit circle, with their angular 

frequency speed and specific orientation. The oriented curvature (k(ω)) gives the orientation of any 

possible circuit. Computing the reflection coefficient for a positive inductor or negative capacitor (or vice-

versa), one will see the identical circle-like path in the reflection plane. However, computing their 

curvature k [19], one may spot sign changes and, in this case, find their different intrinsic natures and 

orientations. It can be seen in Table I that the reflection coefficient of a single-port normalized-positive 

capacitance is a direct inversive transformation (3) (a) of z=1/(jωC), while the reflection coefficient of the 

negative capacitance is an indirect inversive transformation (3) (b)  of  z=1/(jωC), both of which have the 

same circle path, but opposed orientations. Later in this article we will show how the 3D Smith chart can 

spot orientation changes. 

Table I: Different Perspectives on the Unit Plane Circle Depending on the Mathematical Viewpoint 

Viewpoint Equation Speed Orientation, 

Curvature 

(k) 

Position at ω=ᴫ/2, 

 (starting point 1 ,0) 

Algebraic, 

2D Euclidean 

geometry 

r2+x2=1 No info No info No info 

Differential 

geometry 

Cos(ω)+jSin(ω) 

ω={0,2*ᴫ} 

1 Counter-

clockwise, 

k=1 

 

Differential 

geometry 

Cos(-2ω)+jSin(-2ω) 

ω={0,2*ᴫ} 

2 Clockwise, 

k=-1 

 

Reflection 

coefficient 

positive 

capacitor 

 

𝜌 =

1
𝑗𝜔𝐶

− 1

1
𝑗𝜔𝐶

+ 1
 

 

 

ω={-∞,∞} 

2𝐶

1 + 𝐶2𝜔2
 

Clockwise, 

k=-1 

 

forC=1  

Reflection 

coefficient 

negative 

capacitor 

𝜌 =
−

1
𝑗𝜔𝐶

− 1

−
1

𝑗𝜔𝐶
+ 1

 

 

ω ={-∞,∞} 

2𝐶

1 + 𝐶2𝜔2
 

Counter-

Clockwise, 

k=1 

 

forC=1  

 

 

 

3D Smith chart construction 

Fig. 3 shows the construction of the 3D Smith chart using stereographic projection from the south pole 

with its guiding equation (2) (ℂ∪ {∞}). The construction is based on the circles visualization theory of 
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direct inversive and indirect inversive transformation (3), first proposed in 1914 by Maxime Bôcher, 

former president of the American Mathematical Society [5]. 

The classical Smith chart is mapped in the northern hemisphere (Fig.3 (a)); the circuits with negative 

resistance, exhibiting ¦𝜌¦>1, are mapped in the southern hemisphere in Fig. 3(b). The 3D chart’s properties 

are listed in Table II. Fig. 4 presents the 3D Smith chart with its key points in a one-to-one comparison 

with the Smith chart and the earth. Table II lists its properties and Table III its possible advantages and 

drawbacks.  

 

 

 

 

 

 

 

 

 

 

Table II: Properties of the 2D Smith Chart versus the 3D Smith Chart 

Property 2D Smith Chart 3D Smith Chart 

GCS Language (Latitude, Longitude) 

Positive resistance Interior of unit circle Northern hemisphere 

Negative resistance  Exterior Southern hemisphere 

Perfect matching Origin North pole 

|Reflection coefficient|==infinity Infinity, far out South pole 

Inductive Above Γr axes East 

Capacitive Below Γr axes West 

r,x,g,b constant Circles Circles 

Purely resistive Γr axes Great circle formed by prime meridian and 

antemeridian dividing the world into east 

and west hemispheres 

| Γ |=constant Circle centred in the origin Latitude circle 

Constant phase of the reflection 

coefficient 

Lines through the origin Great  circle of longitude made by the prime 

meridian and antemeridian 

| Γ |=1 Unit circle Equator 

 Open circuit            (1,0) Null island (prime meridian/equator 

intersection) (0,0) 

Short circuit            (-1,0) Antipodal point to null island (ante 

meridian/equator intersection 

(0,-180E) 

Unit inductive load               (0,j) (0, 90E) 

Unit capacitive load              (0,-j) (0, 90W) 

 

 

 

 

 

 

 

Fig. 3 3D Smith chart construction: (a) 3D Smith chart image of circuits with |𝜌|<1, (b) |𝜌|>1, southern hemisphere 
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Fig. 5 represents the 3D Smith chart and Smith chart rendered with constant r, x, g, and b (susceptance 

circles).The CAD tool in which it is (or may be) implemented allows the viewer to rotate it in any 

convenient way for the desired application. 

Table III: Uses, Advantages, and Disadvantages of the 3D Smith Chart 

Use Circuit Examples Location Advantages/Disadvantages 

Negative resistances in [12-

13] and in this paper 

In amplifier stability, 

diodes, oscillators, 

etc. 

South hemisphere  

(surface) 

Compact space for all possible loads on a sphere 

(thus a surface)/ CAD or a 3D printed chart 

needed 

Gain representations/group 

delay in [14-15] and in this 

paper 

Amplifiers 3D space (exterior 

when positive, interior 

when negative) 

Scalar levels can be seen simultaneously with S-

parameters/ CAD chart needed 

Frequency dynamics [19] 

and in this paper 

All circuits, negative 

capacitances, 

negative inductances, 

metamaterials 

3D space S-parameters clockwise, counterclockwise 

changes can be spotted, intrinsic physical 

connections can be made / CAD chart needed 

Multiparameter in 

optimizations/equivalent 

circuit extractions in [19] 

and in this paper 

In the 

design/modelling of 

all circuits 

Surface, 3D space Simultaneously fit S-parameters & orientation 

inductances, Qs, fulfill multiple 

requirements/correct extraction of equivalent 

circuit / CAD chart needed 

Table III lists the various properties of the Smith chart and 3D Smith chart. Fig. 5 shows the 3D Smith 

chart rendered with the constant normalized resistance, reactance(x), conductance (g), and susceptance 

circles (b) in comparison with the Smith chart. The r,g ∈ (0,∞) for the Smith chart while r,g ∈ (-∞,∞) for 

the 3D Smith chart. 

 

 

 

 

 

 

 

 

 

Matching a network on the chart surface 

In order to match the desired network, one has to intersect the r=1 or g=1 circles which pass through the 

origin of the Smith chart in Fig. 6 (a) or through the north pole of the 3D Smith chart (Fig. 6 (b)). When 

Fig.5 (a) Smith chart (b) and 3D Smith chart rendered with  r,x,g,b circles 
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the north pole is reached, matching is achieved. The matching procedure is identical to that used in 2D; 

the designer simply has to move on the constant r and constant g circles or on the constant reflection 

coefficient circles (latitude) in order to intersect the r=1 and g=1 circles in the fashion desired. Fig 6. (c) 

presents a variety of matching strategies and their circuital meaning, while moving on the constant r,g 

circles in opposed directions. On the 3D Smith chart, the orientation is best visualized as if the viewer 

were a person who is walking on the surface with their feet on the circles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 1: matching a given passive network  

To match a load of 10+j10 to a 50 Ω line with L,C networks: We normalize to 50 Ω: and get z=0.2+j0.2. 

Fig. 7 presents schematically the matching of a z=0.2+0.2j network with various circuits. The values of 

these elements can be easily computed as on the 2D Smith chart, keeping in mind the coordinates of the 

points and equation (2). Fig. 7 shows this: (a) with a series capacitance and shunt inductance, (b) series L 

and shunt C, (c) lossless transmission line (moving on a latitude circle) and shunt short stub, and (d) 

lossless transmission line and shunt short stub.  
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3D space rendering above the 3D Smith chart used for both passive and active circuits 

Fig. 8 synthesizes the main rendering schemes proposed for displaying a variety of frequency-dependent 

parameters simultaneously with S-parameters, which are always displayed on the surface. Fig. 8 (a) shows 

the rendering which applies for the display of group delay and series and shunt inductance models. 

Mapping from the center of the sphere using variable homothety maps [15, 19] these values closer or 

further away from its surface (for each frequency point), corresponding to the normalized values displayed. 

If the values become negative, the values are mapped in the interior of the chart. Another positive scalar 

value that is dependent on the previous value is displayed as the variable radius of a generalized cylinder 

along the previously presented variable (Fig.8 (b)). Fig. 8 (c) presents the proposed frequency display as 

the distance from the corresponding Sij parameter (with a reference system in the center of the sphere). 

 

 

 

 

 

 

 

 

 

 

Inductors: characterization of multiple simultaneous parameters  

The topology of the 3D Smith chart allows multiple parameter visualizations, which can potentially speed 

up the design/characterization of passive circuits, while giving new insights: 

The authors of [19] report reconfigurable inductors with the phase change material vanadium dioxide 

(VO2) as the switching material between insulating and conductive states with temperature control. Such 

programmable inductors outperform the inductors reported in [20] and [21], which use the same material, 

in terms of Q in the conductive state of VO2. The VO2 switch length of less than 635nm minimizes its 

Fig. 8 3D space representations of scalar values (a) parameter with possible positive values (exterior) and negative values 

(interior of the 3D chart) (group delay), (b) only positive values shown as a generalized cylinder with variable radius, and (c) 

frequency display graphing the dynamics of the S-parameters. 
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limited conductivity effects in [20], and quality factors of around 7 were achieved (unlike 3 in [20] or 

below unity in [21]) while using VO2.  

Here we present other inductors with 1.6 um switch length and their corresponding performances in on/off 

states measured with the ANRITSU Vector Star VNA and extracted with its incorporated software 

(Microwave Office) and our GUI. The results reported in Fig. 9 improve upon the results reported in [19]  

in terms of insulating state (off state) performance while performing less well in the on state (since the 1.6 

um length of the VO2 switch accentuates the on-state losses). Fig. 9 (a) shows the layout of the inductor, 

which is the same as in [19] (but with a larger switch); (b) shows the measurement setup, including a heater 

to activate the VO2. The series inductance model (based on the Y21 admittance parameter) [20-21] is shown 

in Fig. 9 (c); the shunt inductance model is shown in Fig. 9 (d) [22] (based on the Y11 parameters); while 

Q is displayed in Fig. 9 (e). All of these are displayed on both a 2D plot and a 3D Smith chart together 

with the corresponding 𝑆113𝐷(𝑗𝜔) =𝜌3𝐷(𝑗𝜔) parameters. 

The 3D representations are based on Fig. 9 (a) and Fig. 9 (b): 

For the 3D representation of the series and shunt inductance, the normalized (𝐿𝑁) values are first computed 

on the given frequency range of the display. The 𝜌3𝐷 (2) is used and at each frequency point the 3D 

inductance curve is computed using the following formula: 

𝐿3𝑑(𝜔) =  (𝐿𝑁(𝜔) + 1) ∗  𝜌3𝐷(𝑗𝜔)                           (4)    

In Fig 8 (c) – (e) multiple touchstone files are represented, then the maximum of the series and shunt 

inductance are used in the normalization step to obtain the normalized values across the different states 

displayed. The quality factor Q3D is displayed as a generalized cylinder along the 𝐿3𝑑(𝜔) curve with the 

variable radius corresponding to its value at the given frequency point normalized through its maximum 

over the display range [19].When this becomes negative, the cylinder radius becomes 0.           

 

 

 

 

 

 

 

 

 

               
 

 

 

 

 

 

 

 

Stability circles – inversive transformations 

The stability of an amplifier, or its resistance to oscillation, is a very important consideration in its design 

and can be determined from the S-parameters, matching networks, and terminations. 

Fig. 9 (a) Inductor with VO2 switches, fabricated photo. (b) S-parameter measuring setup with heater for VO2 on/off 

activation. (c) Series inductance display over the S-parameters (d) Shunt inductance display over the S-parameters, (e) Q 

factor display over the shunt inductance curve. 
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Some passive loads and source terminations can produce input and output impedances that have negative 

real parts; oscillations are possible under these circumstances.  A designer would aim for unconditional 

stability: that is, for possible loads and source terminations, his/her amplifier should not produce negative 

real parts of its input and output impedance. 

A graphical way to check this, and thus to ensure unconditional stability, is to ensure that the load (input) 

stability and the source (output) stability circles are mapped in the exterior of the Smith chart (both their 

centers and all their points) [16, 23]. The positions of these circles are given by (5) (a) and (5) (b) where z 

denotes the unit circle and Δ the determinant of the two-port S-parameters [23] (7).  

Writing (5) as (6) we can see that we have an inversive transformation of z, where z is the unit circle. 

Geometrically, for 5(b): step a) translation of the unit circle with   
𝛥

𝑆22
 , step b) inversion in the unit circle,  

step c) dilatation with abs(
𝑆12𝑆21

𝑆22
2 ), step  d) rotation with arg (

𝑆12𝑆21

𝑆22
2 )  

   𝑡(𝑧) =
𝑧−𝑆11

𝑆22𝑧−𝛥
  (a)   𝑝(𝑧) =

𝑆22−𝑧

𝛥−𝑆11𝑧
  (b)               (5)  

                                              𝑡(𝑧) =
1

𝑆22
−  

𝑆12𝑆21

𝑆22
2

𝑧−
𝛥

𝑆22

  (a)       𝑝(𝑧) =
1

𝑆11
+  

𝑆21𝑆12

𝑆22
2

𝑧−
𝛥

𝑆11

 (b)                    (6) 

                                                                                   𝛥 = 𝑆11 ∗ 𝑆22 − 𝑆21 ∗ 𝑆12                                             (7) 

In the rather unusual but possible situation that |
𝛥

𝑆22
| = 1 step a) will translate the unit circle in 5 (b) into 

a circle passing through the origin in a point. Step b) will then map this circle into an extended line passing 

through infinity (since inversions in circles passing through the origin result in infinite lines), steps c) and 

d) will not change this any further, resulting in an extended line. The same things occur with 6(b) for 

|
𝛥

𝑆11
| = 1; thus, theoretically, one can deal with circles or extended lines within the 2D complex reflection 

coefficients plane for (5) and (6). 

On the 3D Smith chart there are no exceptions; (5) and (6) are inversive transformations of the unit circle, 

if |
𝛥

𝑆22
| = 1  or |

𝛥

𝑆11
| = 1  both (5) and (6) will generate circles passing through the south pole. 

In order to ease the use of stability circles once their centers are mapped toward infinity (and thus become 

impossible to visualize on a 2D Smith chart): we propose the use of the 3D Smith chart for checking the 

stability in a compact and general way. 

Example 2: Stabilize a transistor with a shunt resistor 

The following example shows how a resistive loading can stabilize a potentially unstable transistor using 

the graphical methodology presented above. In order to test it, we will also compute the values of classical 

stability coefficients in both situations. 

Determine the resistive load that can stabilize the transistor with the following S-parameters presented in 

Table V at 800 MHz [16, pp. 227] and plot the stability circles in both situations. 

The stability circles can be seen in Fig. 10 (a) and (b) on the 3D Smith chart. In order to see the values 

needed for r and g to stabilize the input stability circle (black) we change the rendering for r,x and g,b and 

detect the values needed. 

 

Table IV: S-parameters of the Given Transistor 

|S11| phase º |S12| phase |S21| phase |S22| phase 
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0.65 -95  0.035 40 5 115 0.8 -35 

Stability tests for the transistor presented in Table IV based on the Rollet (8) equation [16, 24, 25]  show 

k =0.54 with |𝛥| = 0.50, or the more compact versions [26] given in (9)  result in 𝜇1=0.85,  thus providing 

a violation of the conditions.  

𝑘 =
1+|𝛥|2−|𝑆11|2−|𝑆22|2

2|𝑆12∗𝑆21|
> 1 𝑎𝑛𝑑  |𝛥| =< 1                             (8)  

      𝜇1 =
1−|𝑆11|2

|𝑆22−𝑆11
∗ 𝛥|+|𝑆12∗𝑆21|

> 1     (9)             

Moreover, since k is smaller than unity, the stability circles will cross the boundary of the Smith chart [25], 

or the equator of the 3D Smith chart; our aim is to shift their centers and all their points outside of the 

northern hemisphere. Fig.  11 (a) and (b) shows the stability circles’ positions once the transistor is 

stabilized—corresponding to the S-parameters in Table V. Adding a shunt resistor of 500 Ω, the new S-

parameters can stabilize the transistor (schematic view in Fig. 11) exhibiting the S-parameters in Table V 

providing k =1.04 with |𝛥| = 0.40, and 𝜇1=1.02 , which is thus unconditionally stable, according to (9) . 

Table V: S-parameters of the Given Transistor with a Shunt Resistor Connected 

|S11| phase º |S12| phase º |S21| phase º |S22| phase º 

0.65 -94  0.032 41.2 4.62 116.2 0.66 -36 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Power gain circles – pure Euclidean geometry in 3D 

Unilateral transducer constant power gain circles play an essential role in the design of radio-frequency 

amplifiers and active modulators, as they help to determine optimal impedance matching conditions to 

meet gain and stability specifications. Unilateral transducer constant power gain circles (for the source 

input in our example) are a subfamily of Apollonius circles, with respect to S11* and 1/S11. Plotting these 

Fig.10  Stability circles for the transistor described in Table V at 800 MHz (black input, green output): (a) Smith chart, (b) 3D 

Smith chart. 

 

Fig. 11 Stabilized transistor with a 500 Ω resistor: (a) Stability circles on the Smith chart, (b) 3D Smith chart, (c) 

Stabilization scheme 
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gain circles on the 3D Smith chart overcomes traditional limits associated with contour plots on the 

traditional 2D Smith chart [14]. 

Example 3: 

Consider the following BJT S-parameters measured at 1 GHz [16], given in Table VI. 

The maximum achievable gain is 10(1/ Lg|1 − 𝑆11|2)=3.31dB 

Table VI: BJT  S-parameters at 1 GHz 

|𝑆11| Phase º |𝑆12| Phase º |𝑆21| Phase º |𝑆22| Phase º 

0.73 175   0 0 4.45 65 0.21 -80  

Plot the 3.31 dB constant power gain circles and the -2.27 power gain circles. 

In Fig. 12 we plot the gain circles corresponding to Table VII, which is the min/max values computed for 

the BJT transistor given in Table VI. The power level in 3D is normalized with respect to the square root 

of the maximum gain (for display reasons). 

Table VII: BJT S-parameters at 1 GHz 

Gain 

dB 

Gain Gain^.5 

3.31 2.15 1.46 

1.78 1.51     1.23 

0 1 1 

-2.27 0.6 0.77 

 

 

 

 

 

 

 

 

 

 

 

Example 4: Negative capacitance  

Negative capacitance [26-30] is of interest in many RF applications; however, the negative capacitance 

and positive inductance S11 parameters of 1-port and 2-port lossless networks share the same paths on the 

Smith chart. By means of differential geometry, however, we can see that their orientation (oriented 

curvature [20] of their frequency S11) in either 1- or 2-port configurations is opposed. Their Foster/non-

Foster character [27-30] changes the orientation of their S11 motions as frequency increases on the Smith 

chart. 

Fig.13 (a) represents the S11 of a negative capacitor and positive inductor in a 1-port configuration with a 

50 Ω load at both ports analyzed between 1-7 GHz. The implementation in [19] distinguishes the different 

intrinsic natures (opposed sign of oriented curvatures) of both by representing the sweeping frequency 

Fig. 12 Power gain circles for two different power levels (a) on a 2D Smith chart and (b) on a 3D Smith chart 
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dependency in 3D as in Fig. 13 (b). In this representation we can detect not only the path, but also the 

dynamics of the motion. The frequency representation in [19] allows the quantitative display of the 

frequency in 3D as the distance from the 3D Smith chart for each S11 point. The counterclockwise 

frequency increase motion is clearly detected in Fig. 13 (b) for the negative capacitance, thus proving its 

different nature with respect to a conventional positive inductor. Even though its S11 parameters coincide 

on the Smith chart on a large frequency range with the S11 parameters of a conventional positive inductor, 

Fig. 13 (b) detects the different intrinsic nature of the negative capacitance. 

 

 

 

 

 

 

 

 

 

 

 

 

Example 5: Negative resistance circuits  

Let us consider a negative resistance phenomenon [31], such as the one observed in tunnel diodes [32] 

(Esaki diodes), which have been employed in active circuit design since 1957. Fig. 14 (a) depicts a small 

signal equivalent circuit [4] consisting of a negative resistance R, unavoidable shunt capacitance C, series 

inductance L, and series resistance Rs. With the additional presence of a very lossy package, including the 

presence of additional parasitic [33] Rp, Lp, and Cp, and taking into account the values depicted in Fig. 14, 

compute the input impedance (Zin) at 2 GHz.  

Fig. 14 (b) depicts the computation procedure using the 3D Smith chart, by means of normalized values to 

50 Ω (0.02 S). The input normalized impedance detected with the 3D Smith chart is zin=1/(g+jb) ≃0.037 - 

0.147j, thus Zin ≃-1.85-j7.35.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Negative capacitance and positive inductance reflection coefficients on (a) 2D Smith chart, (b) Frequency dependent 

3D Smith chart 
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Conclusions 

This paper has reported on the historical evolution of the Smith chart and its current extension and 

analytical generalization as a 3D tool. 

We have illustrated the theoretical development, refinement, and capabilities of the 3D Smith chart with a 

series of examples from passive to active components, including concepts such as negative resistance and 

negative capacitance circuits. For all selected examples we used the same basic mathematical formulations 

and we have reported how inversive-differential geometry theory can be used to develop an engineering 

tool that enhances the visualization capability of traditional Smith charts and offers new insights into the 

design of radio frequency devices and circuits. 
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