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Abstract
In this thesis, we focus on the problem of achieving practical privacy guarantees in
machine learning (ML), where the classic differential privacy (DP) fails to maintain
a good trade-off between user privacy and data utility. Differential privacy guarantee
may be influenced by extreme outliers or samples outside of the data distribution to a
large extent. For example, when trying to protect a classification model for magnetic
resonance imaging (MRI), differentially private mechanisms would add the amount of
noise sufficient to hide any image in the space of the same dimensionality. That includes
images that do not belong to the intended data distribution (cars, houses, animals,
and so on). Such generality inevitably yields poor privacy guarantees. Based on these
observations and the ideas of DP, we propose a data-aware approach to privacy in machine
learning. We design two novel privacy notions, Average-Case Differential Privacy (ADP)
and Bayesian Differential Privacy (BDP), which allow to take into account the data
distribution information and significantly improve the privacy-utility balance.
First, we present average-case differential privacy, an empirical privacy notion designed
for ex post privacy analysis of generative models and privacy-preserving data publishing.
It relaxes the worst-case requirement of differential privacy to the average case and
relies on empirical estimation to deal with undefined distributions. This notion can be
regarded as a statistical sensitivity measure – it measures the expected change in the
model outcomes given a change in the inputs generated by an observed distribution.
Second, we develop a more rigorous privacy notion, Bayesian differential privacy, based on
the same high-level principle of probabilistic sensitivity measure. As the main theoretical
contributions of this thesis, we formulate and prove basic properties of Bayesian DP, such
as composition, group privacy, and resistance to post-processing, and we develop a novel
privacy accounting method for iterative algorithms based on the advanced composition
theorem. Furthermore, we show connections between our accountant and the well-known
moments accountant, as well as between Bayesian DP and other privacy definitions.
Our practical contributions and evaluation branch into three main areas: (1) privacy-
preserving data release using generative adversarial networks (GANs); (2) private clas-
sification using convolutional neural networks and other ML models; and (3) private
federated learning (FL) for both discriminative and generative models. We demonstrate
that both notions allow to achieve considerably higher utility than differential privacy,
and that Bayesian DP provides a superior trade-off between privacy guarantees and the
output model quality in all settings.
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Résumé
Dans cette thèse, nous nous concentrons sur le problème d’obtention de garanties de
confidentialité dans l’apprentissage automatique (ML), où la confidentialité différentielle
classique (DP) ne parvient pas à maintenir un bon compromis entre la confidentialité
des utilisateurs et l’utilité des données. La garantie différentielle de confidentialité peut
être influencée dans une large mesure par des valeurs aberrantes ou des échantillons
en dehors de la distribution des données. Par exemple, en essayant de protéger un mo-
dèle de classification pour l’imagerie par résonance magnétique (IRM), des mécanismes
différentiels privés ajouteraient la quantité de bruit suffisante pour cacher toute image
dans un même espace. Cela inclut les images qui n’appartiennent pas à la distribution
de données initiales (voitures, maisons, animaux, etc.). Une telle généralité produit
inévitablement de mauvaises garanties en termes de confidentialité. Sur la base de ces
observations et des idées de DP, nous proposons une approche de la confidentialité basée
sur les données d’apprentissage. Nous concevons deux nouvelles notions de confidentia-
lité, Average-Case Differential Privacy (ADP) et Bayesian Differential Privacy (BDP),
qui permettent de prendre en compte les informations de distribution des données et
d’améliorer significativement l’équilibre confidentialité-utilité.
Premièrement, nous présentons Average-case Differential Privacy, une notion empirique
de confidentialité conçue pour l’analyse de la confidentialité des modèles génératifs et la
publication de données préservant la confidentialité. Il assouplit l’exigence du pire des
cas de confidentialité différentielle au cas moyen et s’appuie sur une estimation empirique
pour traiter les distributions non définies. Cette notion peut être considérée comme
une mesure de sensibilité statistique – elle mesure le changement attendu des résultats
du modèle en cas de changement d’un attribut d’entrée générés selon une distribution
observée.
Deuxièmement, nous développons une notion de confidentialité plus rigoureuse, Bayesian
differential privacy, basée sur le même principe de mesure de sensibilité probabiliste. En
tant que principales contributions théoriques de cette thèse, nous formulons et prouvons
les propriétés de base du Bayesian DP, telles que la composition, la confidentialité du
groupe et la résistance au post-traitement, et nous développons une nouvelle méthode
de mesure de la confidentialité, le comptable bayésien, pour les algorithmes itératifs
basée sur le théorème de composition avancée. De plus, nous montrons les liens entre le
comptable bayésien et le comptable des moments, ainsi qu’entre Bayesian DP et d’autres
définitions de la confidentialité.
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Résumé

Nos contributions pratiques et nos évaluations s’articulent autour de trois domaines
principaux : (1) la divulgation de données préservant la confidentialité à l’aide de réseaux
antagonistes génératifs (GAN) ; (2) classification privée utilisant des réseaux de neurones
convolutifs et d’autres modèles ML ; et (3) l’apprentissage fédéré privé (FL) pour les
modèles discriminants et génératifs. Nous démontrons que les deux notions permettent
d’obtenir une utilité considérablement plus élevée que la confidentialité différentielle, et
que Bayesian DP fournit un compromis supérieur entre les garanties de confidentialité et
la qualité du modèle dans tous les contextes.

Mots-clés : apprentissage automatique préservant la confidentialité, divulgation de
données préservant la confidentialité, confidentialité différentielle, apprentissage profond,
apprentissage fédéré, réseaux adverses génératifs
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1 Introduction

Machine learning (ML) and data analytics offer a great number of opportunities for
companies, governments and individuals to use the accumulated data for their benefit. At
the same time, however, the ability of these technologies to capture fine levels of detail can
potentially compromise privacy of data owners. According to recent research (Fredrikson
et al., 2015; Shokri et al., 2017; Hitaj et al., 2017), it is possible to infer information
about individual records in the training set even in a black-box setting.

Numerous solutions have been proposed to tackle this problem. These solutions vary in
the way privacy is achieved and the extent of data and user protection. Moreover, there
is no unique way of defining privacy. The research community established a significant
variety of formal privacy definitions, ranging from “lightweight” heuristics to rigorous
theoretical notions. One of these definitions – differential privacy (DP) (Dwork, 2006;
Dwork et al., 2006b,a) – stands apart as the gold standard widely accepted by the
community.

Differential privacy, in its conventional forms, is independent of the data distribution.
This property is being praised as one of the strongest arguments in favour of DP: all users,
past and future, independent of their characteristics, are protected by the same guarantee.
However, this is not well-matched with the modern machine learning context, where
models are specialised and trained on particular kinds of data. As a result, achieving
meaningful privacy guarantees in machine learning with DP is often extremely difficult
and leads to pronounced reduction of accuracy. This is especially evident in private
data release, where the task is to publish or provide “unrestricted” access to a dataset
containing sensitive information.

On the other hand, privacy-preserving data release provides a large number of advantages
over model release methods, where data remains a secret and only a model trained on it
is released. Perhaps most importantly it offers flexibility. Once the data is sanitised and
released, one could freely browse and explore it, perform any desired data analysis, or
train any machine learning model on it.
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Chapter 1. Introduction

In this thesis, we propose two alternative versions of DP with a bias towards ML:
Average-Case Differential Privacy (ADP) (in Part I) and Bayesian Differential Privacy
(BDP) (in Part II). Both take the data distribution into account to quantify privacy
in a more meaningful way. Both enable more practical privacy-preserving data release.
And crucially, Bayesian DP is a general-purpose definition applicable beyond machine
learning.

Our first alternative notion is motivated directly by the challenges of private release
for complex, high-dimensional data. One of the main obstacles in this setting is high
worst-case sensitivity of the output (in this case, a “summary” dataset of some form,
anonymised records, etc.) to changes in the input. Simultaneously, there is little research
on how to determine sensitivity for a typical case: how much would a typical output
change given the addition or removal of a typical data example at the input. In other
words, how much privacy is preserved by the nature of the data itself. For example, a
single change in a large set of very homogeneous data is unlikely to noticeably change
the output, and thus, unlikely to lead to a privacy leak. These questions give rise to the
concept of average-case differential privacy. The name is due to the fact that it is defined
in a very similar manner to DP, but for typical (average-case) scenarios. However, in its
essence, it is rather a statistical measure of sensitivity than a privacy notion, similarly
to empirical DP (Abowd et al., 2013; Charest and Hou, 2017), which it is based on.
With this concept we define an important abstract idea of factoring the natural data
randomness in a privacy definition in the form of probabilistic sensitivity, as opposed to
using a traditional deterministic worst-case bound.

In Part II, we take the high-level idea of probabilistic sensitivity and use it as a basis
for a new privacy definition, Bayesian differential privacy. Unlike ADP, Bayesian DP is
not a function of particular past outputs, but a guarantee on future outputs. Therefore,
Bayesian DP is not just a measure of sensitivity like ADP, it is a proper privacy notion
in the conventional DP sense. This is a very important difference to keep in mind when
reading this thesis or deciding what to use in practical applications. In brief, if one
needs a theoretical privacy guarantee, BDP is the right choice among the two; on the
other hand, ADP can be used if one needs a heuristic statistical measure of how much
information is leaked due to the nature of data, and does not necessarily want to change
their algorithm and impose any additional privacy protection.

In the remainder of this chapter, we expand on our motivation for improving private
data release methods and researching alternative privacy definitions, highlight our contri-
butions, and outline the structure of this thesis.
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1.1 Motivation

Our initial motivation for this work was to develop a practical privacy-preserving data
release solution. In comparison to more wide-spread model release techniques, it offers
a number of benefits. Probably the most valuable one is flexibility. When releasing
private models, the trusted data curator has to construct and publish a separate model
for each new application or analysis that needs to be performed on the sensitive data. On
the other hand, having released the privatised data set, the trusted curator enables any
downstream analysis or application without further effort. We outline other advantages
of data release over model release in Section 2.2.2.

Previous work on private data release focused on numerical databases and discrete
datasets, allowing to use simpler generative models (e.g. Bayesian networks (Bindschaedler
et al., 2017)). However, even for these simplified conditions, solutions were scarce due
to high sensitivity of the publisheable database to changes in the input (Zhu et al.,
2017). The difficulty of generating complex data types and sensitivity of the data
generation process lead us to explore the novel concept of generative adversarial networks
(GANs) (Goodfellow et al., 2014). Similarly to other neural-network-based approaches,
this method offers a scalable solution for large and complex datasets. Moreover, provided
a correct training process, it can solve the sensitivity problem, because it is designed not
to rely on any single input example in particular.

In the process of developing a solution for the initial problem, the scope of our work has
expanded and motivation has evolved. More specifically, training GANs with differential
privacy has proven to be unstable and not practical. Due to excessive amounts of noise,
necessary to provide reasonable privacy guarantees, the two networks within a GAN
(generator and discriminator) could not be trained in a balanced way, and thus, could
not converge to the correct distribution. This practical obstacle motivated us to change
our focus to a more general problem of defining and quantifying privacy in ML.

Maintaining a relative, probabilistic guarantee, like differential privacy, is highly desirable.
But the conventional DP often requires adding a lot of randomness to achieve a meaningful
guarantee. We believe this is not due to inherent difficulty of protecting privacy in machine
learning, but rather due to the generality of the DP definition. Not only does DP consider
a very broad class of adversaries, it also does not make any assumptions about the data
it protects. Consequently, DP algorithms treat all data as equally likely. For example,
for a DP mechanism, seeing a landscape photo in the dataset of MRI images is just as
likely as seeing another MRI image. Moreover, any random noise image of the same
dimensionality is also considered equally likely. This generality makes it difficult to “hide”
all the data points. Yet, landscape photos, and especially random noise images, are not
of interest to the attacker and do not need the same degree of protection. Hence, we are
motivated to develop a “data-aware” privacy definition, which would take into account
the fact that some data points are more likely to appear in the dataset than others.
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The first privacy definition we propose, average-case differential privacy, is inspired
specifically by the GAN-based data release application. While it employs a “data-aware”
mindset, it is rather limited due to a number of factors, such as unreliable divergence
estimations in high-dimensional spaces and heuristic approach to sampling from data
distributions (more on this in Section 3.5). For this reason, we develop the second concept
– Bayesian differential privacy. It is a more general-purpose, rigorous notion that can be
applied in a wide variety of privacy protection scenarios.

There is a number of challenges that need to be tackled when developing a data-aware
definition. How to incorporate the data distribution information in the privacy guarantee?
How to deal with the finite data sample size? How to avoid underestimating potential
privacy risks of unseen data? We concentrate on all these questions in Chapter 5.

Finally, we also consider the setting of federated learning. It allows to relax assumptions
on a trusted central data curator, and thus, further enhance user privacy. More specifically,
a model is trained in a decentralised manner, with user data always remaining on their
devices. Nevertheless, such a privacy-oriented setup does not provide theoretical privacy
guarantees, and it is sensible to augment it with a formal privacy notion. Prior work
demonstrated that it is easier to achieve practical DP guarantees in federated scenarios
with large numbers of users (McMahan et al., 2017). However, applying DP remains a
challenge for smaller user bases and more complex models, such as GANs. Furthermore,
prior research focused on client-level privacy protection, largely overlooking scenarios
where instance-level protection might be more important. One example of these scenarios
is multiple hospitals collaboratively training a model on patients’ data: patient privacy
is far more important than hospital privacy. To address these issues, we propose using
average-case DP and Bayesian DP in the context of federated learning and show how it
can improve the model quality, reduce the number of communication rounds, and impose
strong instance-level privacy guarantees.

1.2 Contributions

In order to address the challenges outlined above, we propose a number of novel concepts
and techniques. Our main contributions in this thesis are the following:

• We present a privacy-preserving data release method based on generative adversarial
networks (GANs). This method can be used to create private synthetic datasets for
training other machine learning models. Such a solution provides more flexibility
for performing downstream tasks involving data compared to more popular model
release approaches. Unlike similar approaches, developed simultaneously with ours,
we forgo the traditional notion of DP in favour of our custom designed notion –
Average-Case Differential Privacy, allowing for synthesising higher quality data and
achieving better privacy-utility balance.
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• We propose Average-Case Differential Privacy (ADP), a novel empirical privacy
notion, building upon previous research in empirical differential privacy and on-
average KL privacy. This notion allows to analyse the degree of privacy preservation
in datasets created by a variety of generative models. We also develop a heuristic
that allows to compute privacy estimates without re-training the generative model
multiple times, avoiding computationally prohibitive procedure.

• We propose Bayesian Differential Privacy (BDP), a variant of differential privacy
tailored specifically for machine learning applications. This novel approach to
quantifying privacy enables significant improvements in model accuracy, while still
providing strong theoretical privacy guarantees. Despite being developed for ML,
this privacy notion is almost as generic as DP and is widely applicable in other
areas. Arguably, this is the most important contribution of the thesis, while ADP
should be regarded as an intermediate step towards it.

• Along with BDP, we design a novel privacy accounting method for iterative algo-
rithms, such as stochastic gradient descent. This work generalises and encapsulates
several previously known and widely used methods, such as the moments ac-
countant, thereby providing a clean, unified framework for accounting differential
privacy in iterative algorithms. Moreover, by using a Bayesian approach and the
maximum entropy principle, we are able to solve a long-standing problem of quan-
tifying data-distribution-specific privacy guarantees in the absence of distributional
information.

• We further adapt the aforementioned techniques to federated learning settings,
developing one of the first federated data generation frameworks with GANs and
improving privacy analysis of existing algorithms with Bayesian DP.

• Finally, we combine our initial GAN-based data release technique with Bayesian
differential privacy. We demonstrate the ability of this approach to generate high-
fidelity synthetic data and solve important ML development tasks, such as model
debugging and privacy-preserving data annotation and labelling.

1.3 Organisation

This thesis comprises two major parts. The first one is centred around average-case
differential privacy and its application to generative models. At a high level, it primarily
deals with the private data release setting and ADP is used for ex post privacy analysis.
The second part focuses on Bayesian differential privacy, developing its theoretical
foundation, privacy accounting, and evaluating it in ML and FL applications. Unlike the
first part, everything presented in Part II can be applied to both model and data release
settings, or even beyond machine learning, and unlike average-case DP, Bayesian DP
represents an ex ante probabilistic guarantee on private outcomes.
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More specifically, the content is organised in the following way:

• Chapter 2 provides some useful background on the topics of privacy and machine
learning.

• In Chapter 3, we present and evaluate a GAN-based private data release framework,
along with Average-Case Differential Privacy and a heuristic privacy accounting
routine.

• In Chapter 4, we extend the previous techniques to federated learning scenarios
and show that similar advantages in data quality carry on from the centralised
setting.

• Chapter 5 introduces the concept of Bayesian differential privacy. We formulate
and prove its main properties, design a generic privacy accounting method, and
compare its performance to the state-of-the-art differential privacy techniques.

• In Chapter 6, we show that Bayesian DP seamlessly translates to federated settings
and present a FL solution for discriminative models with BDP.

• In Chapter 7, we explore a possibility of training GANs with BDP to solve two
problems: (i) low-quality samples, characteristic of differentially private GANs; and
(ii) absence of theoretical privacy guarantees in our solution from Chapter 3.

• Chapter 8 concludes the thesis with a summary and future research directions.
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2 Background

2.1 Database Privacy

To protect privacy while still benefiting from statistical analysis and machine learning, a
number of techniques and privacy notions have been developed over the years. Unfor-
tunately, we cannot realistically cover the entire range of privacy research in the scope
of this thesis, and hence, we will focus on a small number of widely accepted privacy
definitions.

Technically, the only family of privacy notions necessary for understanding this thesis is
differential privacy (DP) (Dwork, 2006). However, we also include short overviews of
such notions as k-anonymity (Samarati and Sweeney, 1998), l-diversity (Machanavajjhala
et al., 2007), and t-closeness (Li et al., 2007). The primary reason for this inclusion is
the research motivation. Since differential privacy is a complex concept and is difficult to
achieve in practical applications, we believe it is important to understand the underlying
rationale behind favouring it over simpler notions.

Privacy concepts in this chapter are presented in the context of relational databases,
the initial area of interest for privacy research. Let D denote a database (in the basic
case, a table), and let {A1, . . . , An} be a set of attributes. In our examples, each tuple of
the database refers to an individual, although it can also represent an organisation or
any other entity. Assume all explicit identifiers, such as names, social security numbers
(SSNs), phone numbers, and so on, are removed or encrypted. Define a quasi-identifier
{Ai, . . . , Aj} – a set of attributes that can be linked with external data to uniquely
identify at least one individual. The privacy concepts below, prior to DP, rely on the
notion of quasi-identifiers and aim to control its release.
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2.1.1 k-Anonymity

One of the most intuitive notions of privacy is k-anonymity (Samarati and Sweeney,
1998; Samarati, 2001; Sweeney, 2002). For a data release, it is defined as follows.

Definition 1 (k-Anonymity Requirement). A release of data is k-anonymous if ev-
ery combination of values of quasi-identifiers can be indistinctly matched to at least k
individuals.

Similarly, k-anonymity can defined for a table or a database, requiring that every sequence
of values of every quasi-identifier occurs at least k times.

In order to enforce k-anonymity, we can apply generalisation or suppression (Samarati
and Sweeney, 1998). The first refers to grouping values into more general categories,
implying also the existence of a generalisation hierarchy for each attribute domain. For
instance, it can be achieved by combining ZIP codes by first digits, or ages within a
range. The second technique refers to removing information from the database. In the
case of k-anonymity, removal is applied at the tuple level, meaning that a tuple can
only be removed in its entirety. Basically, suppression allows to remove outliers, that
would otherwise force an excessive amount of generalisation to achieve k-anonymity. In
the context of this thesis, the idea is comparable to our vision of discounting outliers
when quantifying privacy guarantees, explained in Chapter 5. Moreover, our Bayesian
accountant (Section 5.4.2) provides a mechanism for removing outliers in a more rigorous
sense.

The concept of k-anonymity is useful in practical applications and is simple to understand.
It is implemented, for example, in Have I Been Pwned? service1 to anonymously check
if a searched password was leaked without fully disclosing it2. A similar technique is
used by Google Chrome’s Password Checkup extension3. Nevertheless, k-anonymity is
vulnerable to relatively simple attacks and does not offer a thorough privacy guarantee.

The first type of attack is a homogeneity attack. It exploits the lack of diversity in a
sensitive attribute. Imagine that in a k-anonymous database, one group of k records has
the same value of a certain sensitive attribute (e.g. a medical diagnosis). Therefore, it is
sufficient for an adversary to narrow his search down to this group to recover the value
of the sensitive attribute of an individual.

Background knowledge attacks is the second class of attacks that can be performed
against k-anonymity. It relies on correlating information in the anonymised database
with external data sources to infer sensitive attribute values with some degree of certainty.
For example, knowing that some of the sensitive values are much less likely for the

1https://haveibeenpwned.com
2https://www.troyhunt.com/ive-just-launched-pwned-passwords-version-2/
3https://security.googleblog.com/2019/02/protect-your-accounts-from-data.html
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individual, and if the k-anonymous group contains a lot of such values, the attacker may
infer the real value with high certainty.

Machanavajjhala et al. (2007) further elaborate on these vulnerabilities and partially
address them by introducing the notion of l-diversity.

2.1.2 l-Diversity

Consider an equivalence class – a set of tuples whose non-sensitive attributes generalise
to some value, i.e. these tuples are indistinguishable w.r.t. these attributes. Such blocks
of records can be obtained, for instance, via k-anonymity. Machanavajjhala et al. (2007)
provide the following definition of l-diversity.

Definition 2 (l-Diversity Principle). A block of tuples is l-diverse if it contains at least
l “well-represented” values for the sensitive attribute S. A table is l-diverse if all blocks
are l-diverse.

In its simplest form, “well-represent” might just mean that there are at least l different
values of the sensitive attribute. But the authors define two more instantiations of
the notion: entropy l-diversity and recursive (c, l)-diversity. We refer the reader to the
original article to explore these definitions (Machanavajjhala et al., 2007).

Although l-diversity addresses the problem of homogeneity attacks on k-anonymity, it
does not fully protects against background knowledge attacks. Furthermore, it has
other limitations (Li et al., 2007). First, it may be difficult to achieve, especially due to
higher dimensionality in cases where there is more than one sensitive attribute. Second,
it is ill-protected against skewness attacks exploiting the skewness of the overall data
distribution. Finally, similarity attacks can also pose a problem, because even if the values
in an equivalence class are distinct, they may be semantically similar (e.g. an adversary
might learn that the individual has low or high income without knowing the exact salary).
These shortcomings led to the development of another concept – t-closeness.

2.1.3 t-Closeness

Let Q denote the distribution of a sensitive attribution in the whole database, and P –
the distribution of this attribution within an equivalence class. According to Li et al.
(2007), t closeness is defined as follows.

Definition 3 (t-Closeness Principle). An equivalence class satisfies t-closeness if the
distance between P and Q is bounded by a threshold t. A table satisfies t-closeness if all
equivalence classes satisfy t-closeness.
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Li et al. (2007) argue that requiring P and Q to be close would effectively reduce the
usefulness of the released information due to limiting the correlation between quasi-
identifiers and sensitive attributes, but at the same time, they point out that this is a
necessary trade-off between utility and privacy to prevent privacy disclosures.

As a measure of closeness, the authors consider total variation distance and Kullback-
Leibler (KL) divergence, but motivate employing Earth Mover’s distance (EMD) instead,
because the former do not reflect semantic distances between values.

While t-closeness improves upon l-diversity and k-anonymity, it also has serious drawbacks.
It is challenging to achieve with multiple sensitive attributes, and EMD is insufficient
as a similarity measure, as it does not capture information gain from the two equally
distant distribution changes (e.g. a change from the distribution (0.01, 0.99) to (0.11, 0.89)
might be more informative than from (0.4, 0.6) to (0.5, 0.5)). But most importantly,
t-closeness still provides only limited protection against an adversary with auxiliary
background knowledge. This, and the fact that datasets in machine learning are generally
considerably more complex and high-dimensional than the ones considered by the authors
of the above privacy definitions, sets differential privacy (DP) as the primary privacy
concept in machine learning.

2.1.4 Differential Privacy

Differential privacy (DP) (Dwork, 2006; Dwork et al., 2006b,a) relies on an important
impossibility result – impossibility of absolute disclosure prevention. The authors prove
that a conventional desideratum for statistical database privacy, stating that access to a
database should not enable an adversary to learn more about an individual than what
could be learned without such access, cannot be achieved due to auxiliary information
available to the adversary aside from access to the database. This issue prompted the
authors to change from considering absolute privacy guarantees to relative ones: the risk
of privacy disclosure is present even if an individual does not participate in a database,
and it should not substantially increase as a result of participation. In other words,
DP captures the increased risk to an individual’s privacy incurred by participating in a
database.

In order to achieve DP, one needs a source of randomness. Let A : D → R be a random
function, mapping sensitive inputs from domain D to range R of privatised (or sanitised)
outputs. In this context, the input space is a space of possible databases or datasets. We
say that two datasets D,D′ ∈ D are adjacent, or neighbouring, if they differ in a single
data point. The output space can be a space of database query results. In machine
learning, it is often a space of learnable model parameters (e.g. neural network weights).

Definition 4 (ε-Differential Privacy). A randomised function (algorithm) A : D → R
with domain D and range R satisfies ε-differential privacy if for any two adjacent datasets
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D,D′ ∈ D and for any set of outcomes S ⊂ R the following holds:

Pr [A(D) ∈ S] ≤ eε Pr
[
A(D′) ∈ S

]
.

The above notion is also called Pure Differential Privacy, and it is generally difficult to
achieve for real datasets. Therefore, a relaxation of differential privacy, called Approximate
Differential Privacy or (ε, δ)-Differential Privacy (Dwork et al., 2014), is more often used
in machine learning.

Throughout the thesis, whenever we refer to DP, we mean approximate DP unless
explicitly stated otherwise.

Definition 5 ((ε, δ)-Differential Privacy). A randomised function (algorithm) A : D → R
with domain D and range R satisfies (ε, δ)-differential privacy if for any two adjacent
datasets D,D′ ∈ D and for any set of outcomes S ⊂ R the following holds:

Pr [A(D) ∈ S] ≤ eε Pr
[
A(D′) ∈ S

]
+ δ.

Another relaxation that can be seen in the literature is (ε, δ)-Probabilistic Differential
Privacy (PDP) by Machanavajjhala et al. (2008). It is conceptually similar to approximate
DP, with only a subtle difference in the definition, and is often mistaken for an equivalent
of (ε, δ)-DP. However, it is important to distinguish these two definitions, because
probabilistic DP does not have the same properties as approximate DP.

Definition 6 ((ε, δ)-Probabilistic Differential Privacy). A randomised function (algo-
rithm) A : D → R with domain D and range R satisfies (ε, δ)-probabilistic differential
privacy if for any two dataset D ∈ D the following holds:

Pr [A(D) ∈ Disc(D, ε)] ≤ δ,

where Disc(D, ε) = {S ∈ R | ∃D′ ∈ D,
∣∣∣log Pr[A(D)=S]

Pr[A(D′)=S]

∣∣∣ > ε} is a disclosure set.

One can show that (ε, δ)-PDP implies (ε, δ)-DP, meaning that PDP is a stricter definition
than DP. In other words, a set of PDP algorithms is a subset of (ε, δ)-DP algorithms,
but unlike the (ε, δ)-DP set, it is not closed under all operations (in particular, post-
processing). It is also worth mentioning that this definition is useful for privacy accounting,
as seen in Section 2.2.3 and Chapter 5.

The expression used to defined the disclosure set above is essential for understanding our
work. This entity is called privacy loss. Before formalising it, let us also note that the
privacy mechanism A can additionally take auxiliary inputs ξ, denoted by A(D, ξ). In
such a case, A(·, ·) satisfies (ε, δ)-DP if A(·, ξ) is (ε, δ)-DP for every ξ.
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Definition 7 (Privacy Loss). Privacy loss LA of a randomised algorithm A : D×Ξ→ R
for an outcome s ∈ R, datasets D,D′ ∈ D, and auxiliary information ξ ∈ Ξ is given by:

LA(w;D,D′, ξ) = log Pr [A(D, ξ) = w]
Pr [A(D′, ξ) = w] .

Since we often are concerned with continuous outcome distributions (i.e. w ∈ Rm) in
ML, this statement is a slight abuse notation. What we actually mean in this case is the
ratio of probability density functions pA(w|D) and pA(w|D′). We also sometimes omit
auxiliary information ξ in our notion.

A common way to achieve approximate DP is using Gaussian noise mechanism:

Definition 8 (Gaussian Mechanism). The Gaussian noise mechanism achieving (ε, δ)-
DP, for a function f : D → Rm, is defined as

A(D) = f(D) +N (0, σ2Im),

where σ > C
√

2 log 1.25
δ /ε and C = maxD,D′ ‖f(D)− f(D′)‖ is the L2-sensitivity of f .

Finally, we have to mention another variation of differential privacy – local differential
privacy (LDP), or simply local privacy (Dwork et al., 2014). Essentially, LDP is a
generalisation of DP. Until now, we considered a centralised model (or a global model) of
privacy, where some central authority holds the data and adds noise to hide sensitive
information of individuals. In the local model, individuals do not trust the central curator
and sanitise their data themselves. Intuitively, it means that one cannot hide in the
crowd, because the bound on outcome probabilities should now apply to any pair of
individual records.

Definition 9 (ε-Local Privacy). A randomised function (algorithm) A : X → R with
domain X and range R satisfies ε-local privacy if for any two inputs x, x′ ∈ X and for
any set of outcomes S ⊂ R the following holds:

Pr [A(x) ∈ S] ≤ eε Pr
[
A(x′) ∈ S

]
.

The local privacy model is especially useful in the context of federated learning (Sec-
tion 2.3.2), and our Bayesian DP (Chapter 5) is readily convertible to it.

For a more comprehensive overview of differential privacy and DP mechanisms, we refer
the reader to (Dwork et al., 2014).

12



2.2. Machine Learning Privacy

2.2 Machine Learning Privacy

2.2.1 Attacks on Machine Learning Models

In recent years, machine learning applications became a commonplace in many fields.
With that, a body of work on security and privacy of ML methods is growing at a rapid
pace. Researches discovered a number of important vulnerabilities and related attacks
on ML models, and raised the question about developing suitable defences.

Model inversion (Fredrikson et al., 2015) and membership inference (Shokri et al., 2017),
in particular, received considerable attention among the attacks that compromise privacy
of training data. Both attacks rely on a passive adversary. Unlike active adversaries,
passive adversaries cannot corrupt information or parties participating in a security
protocol, they can only eavesdrop.

Model inversion (Fredrikson et al., 2014, 2015) is based on observing the output prob-
abilities of the target model for a given class and performing gradient descent on an
input reconstruction. Fredrikson et al. (2015) consider white-box and black-box attacks.
In a white-box setting, an adversarial client can download the model, gaining access
to its parameters. In a black-box setting, attackers can make prediction queries to the
model, but not actually download it. The authors applied both white-box and black-box
attacks to decision trees, as well as white-box attacks to face recognition models (softmax
regression, multilayer perceptron, and stacked denoising autoencoder), and demonstrated
that their approach can infer sensitive responses of survey respondents with high accuracy
and extract images from facial recognition models.

Membership inference (Shokri et al., 2017) aims to uncover a simpler fact of presence or
absence of a data record in a dataset. It assumes that the attacker has access to the data
similar to the ones that were used to train the target model. The attacker then uses this
data to train a “shadow” model, which mimics the target, and an attack model, which is
used to infer membership. That is, the attack model predicts if a certain example has
already been seen by the target model during training based on the output probabilities
it elicits. Shokri et al. (2017) performed the attack in a black-box setting against the
models trained in the cloud using Google Prediction API and Amazon ML. They showed
that on some datasets the attack can reach high accuracy, posing serious privacy risks
for participants of sensitive datasets.

An example of an active attack is a GAN-based approach by (Hitaj et al., 2017). In
a collaborative deep learning setting, where a number of agents train a joint model
by submitting local gradient updates to a server, Hitaj et al. (2017) use generative
adversarial networks (GANs) to fool other agents into releasing more information about
their data. They also demonstrate that differential privacy is effective at thwarting the
attack if the ε value is sufficiently small.
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2.2.2 Model Release vs. Data Release

Researchers tackle privacy issues in machine learning in two major directions. One
approach is to ensure privacy of the model parameters before releasing it. We refer to
these techniques as privacy-preserving model release. Another way is to sanitise the data
itself, somehow removing all sensitive information, such that one could publish a dataset
and allow to freely train models without being concerned about privacy. We name this
family of algorithms privacy-preserving data release methods.

The purpose of this section is to contrast these two directions, outlining their strong and
weak sides, and give some examples of techniques within each category. We defer a more
detailed discussion of prior research in both of these areas to corresponding chapters.

An example of model release is a class of methods that enforce privacy during training.
This includes, for example, DP-SGD (Abadi et al., 2016), PATE (Papernot et al., 2016,
2018), and DP-FedAvg (McMahan et al., 2017). These approaches perform well in ML
tasks and provide strong privacy protection. Furthermore, they are often significantly
easier to implement and tune in practice. However, these methods are often restrictive.
First, releasing a specific trained model instead of data provides limited flexibility for
future tasks. For instance, it reduces possibilities for integrating models trained on
different sources of data. Hyper-parameter tuning and model evaluation is complicated
by the additional need to adjust private training parameters. Finally, many of the
proposed methods implicitly or explicitly assume access to public data of nature similar
to private data, which may not be possible in such areas as medicine.

Data release techniques can range from simple anonymisation, which generally does not
guarantee privacy, to seed-based approaches that transform and sanitise the original
data points (Bindschaedler et al., 2017; Huang et al., 2017), to “seedless” approaches
that generate synthetic data (Beaulieu-Jones et al., 2017; Triastcyn and Faltings, 2019c),
to hybrid solutions (Fioretto and Van Hentenryck, 2019). In contrast to model release,
privacy-preserving data release is more difficult to implement on real-world datasets,
especially those involving complex data types, and it frequently results in lax privacy
guarantees and lower data utility (meaning lower predictive performance of models trained
on it). On the other hand, it has many immediate advantages. First of all, any machine
learning model could be trained on the released data without additional restrictions.
Second, one could pool data from different sources and use it to build stronger models.
Third, releasing private data could help solve one of the most prominent obstacles
to trading on data markets4, anonymisation and protection of sensitive information.
Moreover, private data publishing could facilitate reproducibility and transparency of
research and scientific studies.

4https://www.datamakespossible.com/value-of-data-2018/dawn-of-data-marketplace
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2.2. Machine Learning Privacy

2.2.3 Differentially Private Machine Learning

Most of the literature on machine learning privacy is focused on privacy-preserving model
release. Some researchers tackle this problem by using disjoint datasets and distributed
training. Shokri and Shmatikov (2015) suggest such a manner of training, i.e. participants
would keep the data locally and communicate sanitised updates to a central authority.
This method, however, leads to high privacy losses (Abadi et al., 2016; Papernot et al.,
2016). An alternative technique is suggested by Papernot et al. (2016). They also use
disjoint training sets, but additionally, they build an ensemble of independently trained
“teacher” models to transfer knowledge to “student” models. The knowledge transfer is
organised by student models training on some public data labeled by the teachers. The
authors expanded their result in (Papernot et al., 2018) and achieved state-of-the-art
image classification results for private models with single-digit DP bounds (ε < 10). The
disadvantage of these techniques is that they are complicated, and thus, more prone
to errors. For instance, if one modifies PATE to propagate errors back through the
aggregate teacher, DP guarantee could be violated. Jordon et al. (2018) add such a
modification in their PATE-GAN framework, but it is not clear whether they account
for the privacy leak resulting from the forward pass caching in backpropagation.

A different approach is taken by Abadi et al. (2016). They propose differentially private
stochastic gradient descent (DP-SGD) to train deep learning models in a private manner.
Their approach reaches high accuracy while maintaining relatively low DP bounds.
Importantly, it is relatively simple to implement and understand, and therefore, is less
prone to errors. However, all these methods may require access to some public data,
which are similar to the sensitive data, in order to achieve acceptable privacy-utility
trade-off. These data can be used for training the student model, like in PATE (Papernot
et al., 2016), or for pre-training, like in DP-SGD (Abadi et al., 2016).

Abadi et al. (2016) introduced two techniques that are widely employed in modern
privacy-preserving machine learning: DP-SGD and the moments accountant (MA). They
are also used in this thesis, and are important for understanding our contributions. Hence,
we briefly describe these techniques below.

Differentially Private SGD

To achieve differential privacy in models trained with gradient descent, Abadi et al. (2016)
consider every gradient update as a sensitive output. They apply Gaussian mechanism
to bound ε and δ of every SGD iteration, and then use composition properties of DP
to compute the overall privacy bound. In order to bound sensitivity (influence) of the
gradient update at each iteration, the authors suggest clipping the gradient L2-norm.
Algorithm 1 provides a pseudo-code of the algorithm for better clarity.

In order to ensure that each step of the algorithm is (ε, δ)-differentially private, σ is
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Algorithm 1 Differentially Private SGD (adapted from Abadi et al. (2016))
Input:

Dataset D = {x1, · · · , xN}, loss function L(w) = 1
N

∑
i L(w, xi).

Parameters: learning rate ηt, noise scale σ, batch size B, gradient norm bound C.
Initialise w0 randomly
for t ∈ [1..T ] do

Sample a random batch of examples Bt with sampling probability q
Compute gradient
For each i ∈ Bt, compute gt(xi)← ∇θtL(wt, xi)
Clip gradient
ḡt(xi)← gt(xi)/max

(
1, ‖gt(xi)‖2

C

)
Add noise
g̃t ← 1

L

(∑
i ḡt(xi) +N (0, σ2C2I)

)
Descent
wt+1 ← wt − ηtg̃t
Accumulate privacy loss for (ε, δ) computation

end for
Output: wT , (ε, δ).

chosen to be
√

2 log 1.25
δ /ε. Using the moments accountant, described below, Abadi et al.

(2016) were able to prove that Algorithm 1 is (O(qε
√
T ), δ)-differentially private, where q

is the probability of each individual example being in a batch, and T is the total number
of steps taken by SGD during training.

Moments Accountant

Computing privacy guarantees for DP-SGD with basic DP composition theorems would
result in extremely loose bounds. And given the large number of SGD steps, even the
advanced composition bounds (Dwork et al., 2014) will not be sufficiently tight. Abadi
et al. (2016) solve this problem by designing a new privacy accounting technique, named
the moments accountant (MA). The key idea of MA is to consider the privacy loss random
variable (see Definition 7), calculate the tail bound on its distribution, and convert this
tail bound to DP guarantees. Essentially, the (ε, δ) values obtained in this way correspond
to probabilistic DP, but as we discussed earlier, it implies (ε, δ)-approximate DP.

2.3 New Directions in Machine Learning

Finally, we take a brief look at two novel research directions in machine learning that
are promising for increasing privacy protection. First, generative adversarial networks
(GANs) by Goodfellow et al. (2014) offer extended capabilities for privacy-preserving
data synthesis, especially for complex, high-dimensional datasets. Second, federated
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Figure 2.1 – A high level representation of a GAN.

learning (FL) (McMahan et al., 2016) provides an efficient framework for eliminating a
trusted centralised data curator in collaborative machine learning, allowing users to keep
sensitive data on-device.

2.3.1 Generative Adversarial Networks

In recent years, generative adversarial networks (GANs) by Goodfellow et al. (2014)
have received a great deal of attention and pushed the boundaries for deep generative
models along with variational autoencoders (VAEs) (Kingma and Welling, 2014; Rezende
et al., 2014; Gregor et al., 2015) and recursive neural networks (e.g. PixelRNN (Oord
et al., 2016)). The original work on GANs has been followed by numerous extentions and
variations of the concept (Salimans et al., 2016; Radford et al., 2015; Zhao et al., 2016;
Arjovsky et al., 2017; Gulrajani et al., 2017; Karras et al., 2018; Xu et al., 2019) The
most successful application for such generative models so far has been realistic image
generation, perhaps due to abundance of training data and inherent geometric structure.

In our work, we decided to focus on one type of deep generative models – GANs. There
are several reasons for this choice. Firstly, GANs have shown very good results in practice,
for example, generating significantly sharper images compared to other generative models.
Secondly, the forward pass for generating data is much faster than for some other models,
such as RNNs. Thirdly, the generator part of the model, the one we eventually interested
in, does not interact with the real training data at any point in the learning process, only
observing the gradients from the discriminator.

On the high level, GANs can be described as follows. The model consists of two separate
components: the generator G(z) and the discriminator D(x). The latter is also called
critic in the literature, and we use the two names interchangeably. They are independent
and can be implemented as different machine learning models. The generator’s goal
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Figure 2.2 – A high level representation of federated learning.

is to produce realistic samples of data based on a random variable z ∼ pz(z), while
the discriminator is tasked with distinguishing real data samples x ∼ pdata(x) from
generated samples x̂ ∼ pg(x). These two models are trained in an adversarial fashion,
essentially playing a two-player game, with the goal to converge to the Nash equilibrium.
The parameters are optimised using simultaneous gradient ascent steps on both the
discriminator and the generator to maximise the following functions correspondingly:

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))], (2.1)
Ez∼pz(z)[logD(G(z))]. (2.2)

Some of the proposed variations of GANs modify this objective function in order to
improve convergence and training stability, for example, substituting Jensen–Shannon
divergence with Wasserstein distance (Arjovsky et al., 2017; Gulrajani et al., 2017)).

Training GANs can be challenging. The common practice is to use Adam optimisation
method (Kingma and Ba, 2015) coupled with mini-batch, and utilise such techniques
as feature matching, batch normalisation, and one-sided label smoothing to improve
the convergence (Salimans et al., 2016). Another strategy is to apply semi-supervised
learning that allows to use data labels as inputs in the generator and outputs in the
discriminator.
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2.3.2 Federated Learning

Federated learning (FL) (McMahan et al., 2016) is a novel machine learning technique
for collaboratively training models by multiple parties without exchanging or centrally
storing data. The approach is gaining a lot of popularity in recent years and is being
actively developed (Konečnỳ et al., 2016; Bonawitz et al., 2017, 2019).

The key idea is that the parties (clients) can exchange model updates instead of data.
In the context of gradient-based learning, clients can receive the initial model from the
server, locally run the gradient descent on this model using their data, and then send the
model update to the server. The server aggregates client updates and applies it to the
model, each weighted by a share of client’s data, and then sends the updated model to
the clients. This process is repeated over a number of communication rounds. If the local
model updates in each communication round are done once on the full local dataset, the
approach is termed Federated SGD, or FedSGD. A generalisation of this algorithm with
multiple local epochs is named Federated Averaging, or FedAvg.

There are two major advantages of federated learning: enhanced privacy and communica-
tion efficiency. The former stems from the fact that the data is kept local on user devices.
The latter – from the lower number of communication rounds due to extended local
updates. However, it is worth noting that federated learning as such does not provide
any theoretical privacy guarantees. Rather, it portects the training process but not its
outcome. The privacy attacks discussed earlier (Fredrikson et al., 2015; Shokri et al.,
2017) are still applicable to the final model regardless of the training process.
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3 Generating Data with Average-
Case Differential Privacy

3.1 Introduction

We start our investigation with a specific instance of privacy-preserving data release
problem. Our interest in this particular setting is explained in Section 2.2.2 where we
highlight its advantages compared to the model release setting.

In particular, we are interested in solving two problems. First, how to preserve high
utility of the released data for machine learning and data analysis algorithms while
protecting the sensitive information. Especially in the case where the data is given
by a complex continuous process (e.g. images, audio, video, and so on). Second, how
to quantify privacy, i.e. the risk of recovering private information from the published
dataset, and thus, the trained model.

The main idea of our approach is to use generative adversarial networks (GANs) (Good-
fellow et al., 2014) to create artificial datasets to be used in place of real data for training.
This method has a number of advantages over the earlier work (Abadi et al., 2016;
Papernot et al., 2016, 2018; Bindschaedler et al., 2017). First of all, our solution allows
releasing entire datasets, thereby possessing all the benefits of private data release as
opposed to model release. Second, it can achieve high accuracy without pre-training on
similar public data. Although it is also possible to pre-train the model, if such data
is available, to learn generic low-level features. Third, it is more intuitive and flexible
than some other methods, e.g. (Papernot et al., 2016), which have complex architectures
and are more susceptible to implementation mistakes and associated privacy leaks, as
discussed in Section 2.2.3.

An important observation about GANs is that, unlike many previous approaches, they
do not use real data points as seeds when generating the new artificial examples. This

This chapter is based on the paper published in the Proceedings of the PAL: Privacy-Enhancing
Artificial Intelligence and Language Technologies, AAAI Spring Symposium Series (Triastcyn and Faltings,
2019c).
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Figure 3.1 – Architecture of our solution. Sensitive data is used to train a GAN to
produce a private artificial dataset, which then can be used by any ML model.

observation leads us to believe that there is some degree of privacy inherently present in
synthetic datasets created by GANs. However, quantifying the degree of this privacy
protection with existing notions, such as DP, is difficult. Therefore, we develop a novel
privacy notion Average-Case Differential Privacy (ADP), relaxing the original definition,
and design an ex post analysis framework for generated data. We use Kullback–Leibler
(KL) divergence estimation and Chebyshev’s inequality to find statistical bounds on
expected privacy loss for a dataset in question.

Our main contributions in this chapter are the following:

• we propose a novel, yet simple, approach for private data release, and to the best of
our knowledge, this is the first practical solution for continuous, high-dimensional
data, such as images;

• we introduce a new framework for statistical estimation of the expected privacy
loss of the released data;

• we show that our method achieves learning performance of model release methods
and is resilient to model inversion attacks.

The rest of this chapter is structured as follows. In Section 3.2, we give an overview of
related work. Section 3.3 contains some preliminary information, such as a reminder
on KL divergence and Chebyshev’s inequality. In Section 3.4, we describe our notion
of Average-Case Differential Privacy and the privacy estimation routine, as well as
discuss its limitations. Experimental results and implementation details are presented in
Section 3.6; and Section 3.7 concludes the chapter.
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3.2 Related Work

In this section, we focus on the research related specifically to creating synthetic datasets,
especially using generative adversarial networks, as well as relaxations of differential
privacy relevant for our work. For the overview of related research on privacy attacks
and protections in machine learning in general, we refer the reader to Chapter 2.

Despite most of the research in the area of privacy-preserving ML being concentrated
on private model release, some researchers start to direct more attention to private
data release, including privacy protection via generating synthetic data. Some recent
examples are by Bindschaedler et al. (2017); Zhang et al. (2017); Huang et al. (2017);
Beaulieu-Jones et al. (2017) and Fioretto and Van Hentenryck (2019). These approaches
fall into a wider category of non-interactive privacy mechanisms for data publishing, but
in this thesis, we are only going to focus on one instance of such mechanisms – synthetic
data release (although the methods designed in Chapters 5 and 6 apply broadly, to both
interactive and non-interactive settings). We also consider a narrower definition of data
publishing, only referring to the methods that release an entire dataset, and not including,
for instance, batch query publishing. For a more extensive overview of non-interactive
methods, and in a wider sense of the term, we refer the reader to Zhu et al. (2017).

In non-interactive, data release scenarios, differential privacy is hard to guarantee, and
thus, the proposed techniques tend to either relax the DP requirements or remain limited
to simpler data (typically discrete and low-dimensional). Let us consider some of the
more recent examples in more detail.

First, Bindschaedler et al. (2017) develop an alternative, formal notion of privacy, called
plausible deniability, specifically designed for releasing sensitive datasets. The main idea
of this notion is the following. Given some sanitisation mechanism, an output point of
this mechanism can be released only if a pre-defined number of input points are indistin-
guishable, up to a privacy parameter. Bindschaedler et al. (2017) integrate the ideas of
k-anonymity and differential privacy and prove that under certain conditions, plausible
deniability yields DP. The authors then use a graphical probabilistic model to learn an
underlying data distribution and transform real data points (seeds) into synthetic data
points, which are then filtered by a privacy test based on a plausible deniability criterion.
Unfortunately, this procedure would be rather expensive for complex, high-dimensional
data, such as images, audio and video recordings, etc. Nevertheless, the authors provide
an interesting and useful real-world application with location traces (Bindschaedler and
Shokri, 2016).

Another method that works well for discrete data is a hybrid model/data release solution
by Fioretto and Van Hentenryck (2019). It employs decision trees to simultaneously
perform classification/regression and generate a synthetic dataset that can be published.
Moreover, it guarantees a stronger ε-differential privacy, which is rare in realistic applica-
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tions. However, like in the previous case, this approach is less suitable for high-dimensional
and continuous data.

Alternatively, Huang et al. (2017) introduce the notion of generative adversarial privacy
and use GANs to obfuscate real data points with respect to pre-defined sensitive attributes,
enabling privacy for more complex, continuous data types. The downside of this approach
is that it only hides a respective attribute and provides privacy against a specific adversary.

Finally, borrowing from the model release literature in machine learning, a natural
approach to try is training GANs using DP-SGD or some other DP algorithm. This
direction has gained a lot of traction in the last years, starting with the work by Beaulieu-
Jones et al. (2017), performed in parallel with ours, and followed later by a number of
papers based on this idea, extending it, and applying in different contexts (Xie et al.,
2018; Zhang et al., 2018; Jordon et al., 2018; Long et al., 2019; Augenstein et al., 2019).
However, it proved extremely difficult to stabilise training with the necessary amount of
noise, which scales as

√
m w.r.t. the number of model parameters m. It makes these

methods inapplicable to more complex datasets without resorting to unrealistic (at least
for some areas) assumptions, like access to public data from the same distribution.

Similarly, our approach uses GANs, but unlike the former approaches we do not restrict
ourselves to the differential privacy guarantee, and unlike (Huang et al., 2017), the
data is generated without real seeds and with the goal to hide all attributes. We verify
empirically that out-of-the-box GAN samples can be sufficiently different from real data,
and average-case privacy loss can be approximately bounded by single-digit numbers. To
achieve this, we build upon the notions of empirical differential privacy (EDP) (Abowd
et al., 2013) and On-Average KL-Privacy (Wang et al., 2016b).

Empirical DP was introduced in Abowd et al. (2013) for Bayesian linear mixed models.
The main idea is to substitute the data-independent notion of DP with a data-dependent
analogous notion. In other words, instead of bounding the maximum probability ratio
for any two adjacent datasets D and D′, EDP bounds the maximum probability ratio
for the original dataset D and any D′ obtained by removing a single example from D.
The method has been later applied to Bayesian generalised linear mixed models, as well
as zero-inflated Poisson models (Schneider and Abowd, 2015). The advantage of such
approach is that it is more forgiving and contextual, because the guarantee takes into
account the actual data. Besides, it can be easily computed for a wide range of Bayesian
models. However, there are important limitations and conceptual differences from DP,
investigated by Charest and Hou (2017). In Section 3.5.2 of this chapter, we elaborate
some more on the limitations of this privacy definition in the context of (non-Bayesian)
machine learning, and in particular, why it cannot be readily applied to the considered
problem.

Another relaxation of DP that inspires our solution is On-Average KL-Privacy (Wang
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et al., 2016b). In Section 2.1.4, we pointed out that the expectation of the privacy loss
over the outcomes distribution is nothing but a KL divergence. While the traditional
ε-DP bounds the worst-case privacy loss, i.e. taking a maximum over both the outcomes
and the adjacent dataset pairs, ε-on-average KL-privacy is defined by the equivalent
bound on the expectation (over the datasets distribution) of the KL divergence between
two adjacent datasets. Therefore, it relaxes the worst-case bound to an expected-case
bound. In the remainder of this chapter, we develop the notion of average-case differential
privacy, borrowing ideas from both EDP and On-Average KL-Privacy to construct an
ML-friendly relaxation of DP, primarily with data synthesis applications and post hoc
privacy analysis in mind.

3.3 Preliminaries

This section contains a refresher on some mathematical notions used in this chapter. For
more details on differential privacy, see (Dwork et al., 2014) and Chapter 2 of this thesis.

In our privacy estimation routine, we use the notion of Kullback-Leibler divergence:

Definition 10. The Kullback–Leibler (KL) divergence between two continuous probability
distributions P and Q with corresponding densities p, q is given by:

DKL(P‖Q) =
∫ +∞

−∞
p(x) log p(x)

q(x)dx. (3.1)

Note that KL divergence between the distributions of A(D) and A(D′) is nothing but
the expectation of the privacy loss random variable E[LA(w,D,D′)].

Additionally, we will use Chebyshev’s inequality to obtain tail bounds:

Pr(|x− E[x]| ≥ kσ) ≤ 1
k2 . (3.2)

In particular, as we expect the distribution to be asymmetric, we use the version with
semi-variances (Berck and Hihn, 1982) to get a sharper bound:

Pr(x ≥ E[x] + kσ) ≤ 1
k2
σ2

+
σ2 , (3.3)

where σ2
+ =

∫+∞
E[x] p(x)(x− E[x])2dx is the upper semi-variance.
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3.4 Our Approach to Generating Private Data

In this section, we describe the key idea of our approach to generating private data –
using generative adversarial networks (GANs). We also discuss one further improvement
that can boost not only privacy, but also the quality of the generated data. Finally, we
outline the limitations of the method.

The main idea of our approach is to use artificial data for learning and publishing instead
of real (see Figure 3.1 for a general workflow). The intuition behind it is the following.
Since it is possible to recover training examples from ML models (Fredrikson et al., 2015),
we need to limit the exposure of real data during training. While this can be achieved
by DP training (e.g. with DP-SGD), it would have the limitations mentioned earlier.
Besides, certain attacks can still be successful if DP bounds are loose (Hitaj et al., 2017).
Removing real data from the training process altogether would add another layer of
protection and limit the information leakage to artificial samples. What remains to show
is that the artificial data is sufficiently different from the real one.

3.4.1 Differentially Private Critic

Despite the fact that the generator does not have access to real data in the training
process, one cannot guarantee that generated samples will not repeat the input. To
alleviate this problem, we propose to enforce differential privacy on the output of the
discriminator (critic). This is done by employing the Gaussian noise mechanism (Dwork
et al., 2014) at the second-to-last layer: clipping the L2 norm of the input and adding
Gaussian noise. To be more specific, activations a(x) of the second-to-last layer become
ã(x) = a(x)/max(‖a(x)‖2, 1) + N (0;σ2). We refer to this version of the critic as DP
critic. It is important to keep in mind that only the critic outputs are differentially
private, not the critic parameters.

If the chosen GAN loss function was directly differentiable w.r.t. generator output,
i.e. if critic could be treated as a black box, this modification would enforce the
same DP guarantees on generator parameters, and consequently, all generated samples.
Unfortunately, probably the only way to achieve it in practice is using finite differences
instead of backpropagation, which is not feasible.

As our evaluation shows, this modification has a number of advantages. First, it improves
diversity of samples and decreases similarity with real data. Second, it allows to prolong
stable training, and hence, obtain higher quality samples. Finally, in our experiments, it
significantly improves the ability of GANs to generate samples conditionally.
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3.4.2 Limitations

The major drawback of this solution for privacy-preserving data release is that all the
existing limitations of GANs (or generative models in general), such as training instability
or mode collapse, will apply to this method. Hence, at the current state of the field, our
approach may be difficult to adapt to inputs other than image data. Yet, there is still a
number of privacy-sensitive applications, e.g. medical imaging or facial analysis, that
could benefit from our technique. And as generative methods progress, new uses will be
possible.

3.5 Average-Case Differential Privacy

Because of the restrictions that the conventional differential privacy poses in ML context,
especially for generative models, we propose a novel privacy definition – Average-Case
Differential Privacy (ADP) – a relaxed version of differential privacy that aims to provide
empirical expected guarantees rather than worst-case guarantees. We build upon the
ideas of empirical DP (EDP) (Abowd et al., 2013) and on-average KL privacy (Charest
and Hou, 2017). The first can be viewed as a measure of sensitivity of the outcomes to
(in our case, generated data distributions) to changes in the inputs. And as we explain
below, so is our definition. The second relaxes DP to the average-case notion.

It is worth mentioning that, in the context of this thesis, ADP should be viewed as the
first attempt of incorporating the data distribution information in a privacy definition, in
a way that is tuned for generative models. In Part II, we build upon the same high-level
idea and move towards a more universal, practical, and rigorous notion of Bayesian
differential privacy.

3.5.1 Definiton

Let us formally define average-case differential privacy.

Definition 11 (Average-Case Differential Privacy). A randomised mechanism
A is said to be (µ, γ)-average-case differentially private if for two neighbouring
datasets D,D′, where data points are identically distributed, and a set of outputs
S, s.t. |S| ≈ |D|, it holds that

Pr
(
L̄(S,D) > µ

)
≤ γ, (3.4)

where L̄(S,D) is an estimator of the expected privacy loss Es∼A(D) [|LA(s,D,D′)|]
(defined in Section 3.5.2).
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One may notice that this definition is more akin to (ε, δ)-probabilistic DP (see Defini-
tion 6), which in short can be written as

Pr(L > ε) ≤ δ,

rather than (ε, δ)-DP (Definition 5). Moreover, similarly to EDP (Charest and Hou,
2017), it is more appropriate to regard the ADP bound as a measure of sensitivity rather
than a privacy definition in the traditional DP sense, because it is a function of outputs S.
However, while EDP concerns a specific dataset D, with ADP we attempt to generalise
the bound to the data distribution, and thus, call it a statistical sensitivity measure.

For the sake of example, let each data point in D,D′ represent a single user. Then,
(0.01, 0.001)-ADP could be interpreted as follows: with probability 0.999, a user from the
same distribution submitting their data will change outcome probabilities of the private
algorithm on average by 1% (because e0.01 ≈ 1.01.).

3.5.2 Privacy Estimation

In the case of many generative models, and in particular GANs, we don’t have access
to exact posterior distributions which are used to compute the empirical DP bounds by
Abowd et al. (2013). Hence, a straightforward EDP procedure in our scenario would be
the following:

1. train GAN on the original dataset D;
2. remove a random sample from D;
3. re-train GAN on the updated set;
4. estimate probabilities of all outcomes and the maximum privacy loss value;
5. repeat (1)–(4) sufficiently many times to approximate µ, γ.

If the generative model is simple, this procedure can be used without modification.
Otherwise, for models like GANs, it becomes prohibitively expensive due to repetitive
re-training (steps (1)–(3)). Another obstacle is estimating the maximum privacy loss
value (step (4)). To overcome these two issues, we propose the following.

First, to avoid re-training, we imitate the removal of examples directly on the generated
set D̃. We define a similarity metric sim(x, y) between two data points x and y that
reflects important characteristics of data (see Section 3.6 for details). For every randomly
selected real example i, we remove k nearest artificial neighbours to simulate absence of
this example in the training set and obtain D̃−i. Our intuition behind this operation
is the following. Removing a real example would result in a lower probability density
in the corresponding region of space. If this change is picked up by a GAN, which we
assume is properly trained (e.g. there is no mode collapse), the density of this region in
the generated examples space should also decrease. The number of neighbours k is a
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hyper-parameter, we defined it by the ratio of artificial and real examples, to keep the
densities approximately normalised.

Second, we relax the worst-case privacy loss bound in step (4) by the expected-case
bound, in the same manner as on-average KL privacy. This relaxation allows us to use a
high-dimensional KL divergence estimator (Pérez-Cruz, 2008) to obtain the expected
privacy loss for every pair of adjacent datasets D̃ and D̃−i (we denote it by D−iKL, where
i = 1..m). There are two major advantages of this estimator: it converges almost surely to
the true value of KL divergence (see Definition 10); and it does not require intermediate
density estimates to converge to the true probability measures. Also since this estimator
uses nearest neighbours to approximate KL divergence, our heuristic described above is
naturally linked to the estimation method.

Finally, after obtaining sufficiently many samples of different pairs (D̃, D̃−i), we use
Chebyshev’s inequality to bound the probability γ = Pr

(
L̄(D̃) ≥ µ

)
of the expected

privacy loss estimator exceeding a predefined threshold µ. To deal with the problem of
insufficiently many samples, one could use a sample version of inequality (Saw et al.,
1984) at the cost of looser bounds.

3.5.3 Limitations

The advantage of ADP, as a definition, over the traditional DP is that it incorporates
more information about the data and provides a tighter analysis for typical data points.
The disadvantage, however, is that the guarantee is so relaxed that it is difficult to reason
about the breadth of the privacy loss distribution.

The second serious drawback of this approach is the empirical privacy estimator. It
simulates the removal of training examples using a heuristic approach and the chosen
similarity metric. However, if the GAN hasn’t properly converged to the data distribution,
or if the similarity metric does not reflect privacy-inducing characteristics of the data,
the algorithm will yield unrepresentative samples and poor estimation. Furthermore,
although the KL divergence estimator is consistent and does not require the data density
approximation, it is not robust in high-dimensional spaces with a small number of data
points.

Finally, the meaning of our empirical guarantees provided by the ex post analysis of
the artificial dataset is not equivalent to the traditional formulation of DP, or related
notions, and has certain conceptual differences discussed by Charest and Hou (2017)
and in the earlier sections. Nevertheless, it may be useful in the situations where strict
privacy guarantees are not required or cannot be achieved by existing methods, or when
one wants to get a better idea about the expected privacy loss rather than the highly
unlikely worst-case.
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All these limitations are addressed in Chapter 5, where we design a data-aware privacy
notion in a way that enables tight guarantees, a better analysis of the privacy loss
distribution, robust estimation, and is more conceptually close to DP.

3.6 Evaluation

In this section, we describe the experimental setup and implementation, and evaluate our
method on MNIST (LeCun et al., 1998), SVHN (Netzer et al., 2011), and CelebA (Liu
et al., 2015) datasets.

3.6.1 Experimental Setting

We evaluate our method in four major ways. First, we show that it is possible not only
to train ML models purely on generated data, but also achieve high learning performance
(Section 3.6.3). Second, we demonstrate an even stronger result: generated data can be
used as a validation set for tuning model hyper-parameters (Section 3.6.4). Third, we
report Fréchet Inception Distance (FID) (Heusel et al., 2017) between real and generated
datasets to underline advantages of the DP critic (Section 3.6.5). Finally, we compute
average-case DP bounds for the given datasets and evaluate the artificial data effectiveness
against model inversion attacks (Section 3.6.6).

Learning performance experiments are set up as follows:

1. Train a generative model (teacher) on the original dataset using only the training
split.

2. Generate an artificial dataset by the obtained model and use it to train ML models
(students).

3. Evaluate students on a held-out test set.

Note that there is no dependency between teacher and student models. Moreover, student
models are not constrained to neural networks and can be implemented as any type of
machine learning algorithm.

We choose three commonly used image datasets for our experiments: MNIST, SVHN, and
CelebA. MNIST is a handwritten digit recognition dataset consisting of 60000 training
examples and 10000 test examples, each example is a 28x28 size greyscale image. SVHN
is also a digit recognition task, with 73257 images for training and 26032 for testing.
The examples are coloured 32x32 pixel images of house numbers from Google Street
View. CelebA is a facial attributes dataset with 202599 images, each of which we crop to
128x128 and then downscale to 48x48.
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3.6.2 Implementation Details

For our experiments, we use Python and Pytorch1 framework. We implement, with
some minor modifications, a Wasserstein GAN with gradient penalty (WGAN-GP) by
Gulrajani et al. (2017). More specifically, the critic consists of four convolutional layers
with SELU (Klambauer et al., 2017) activations (instead of ReLU) followed by a fully
connected linear layer which outputs a d-dimensional feature vector (d = 64). For the
DP critic, we implement the Gaussian noise mechanism (Dwork et al., 2014) by clipping
the L2-norm of this feature vector to C = 1 and adding Gaussian noise with σ = 1.5 (we
refer to it as DP layer). Finally, it is passed through a linear classification layer. The
generator starts with a fully connected linear layer that transforms noise and labels into
a 4096-dimensional feature vector which is then passed through a SELU activation and
three deconvolution layers with SELU activations. The output of the third deconvolution
layer is downsampled by max pooling and normalised with a tanh activation function.
Both networks are trained using Adam (Kingma and Ba, 2015) with learning rate 10−4,
β1 = 0, β2 = 0.9, and a batch size of 64.

Similarly to the original paper, we use a classical WGAN value function with the
gradient penalty that enforces Lipschitz constraint on a critic. We also set the penalty
parameter λ = 10 and the number of critic iterations ncritic = 5. Furthermore, we
modify the architecture to allow for conditioning WGAN on class labels. Binarised
labels are appended to the input of the generator and to the linear layer of the critic
after convolutions. Therefore, the generator can be used to create labelled datasets for
supervised learning.

The student network is constructed of two convolutional layers with ReLU activations,
batch normalisation and max pooling, followed by two fully connected layers with ReLU,
and a softmax output layer. Note that this network does not achieve state-of-the-art
performance on the used datasets, but we are primarily interested in evaluating the
relative performance drop compared to a non-private model.

To estimate privacy loss, we carry out the procedure presented in Section 3.4. Specifically,
based on recent ideas in qualitative evaluation of images, such as FID and Inception
Score, we compute image features with the pre-trained InceptionV3 network (Szegedy
et al., 2016) and use inverse distances between these features as the sim function. We
implement the KL divergence estimator (Pérez-Cruz, 2008) and use k-d trees (Bentley,
1975) for fast nearest neighbour searches. For privacy evaluation, we implement the
model inversion attack (Fredrikson et al., 2015).

1http://pytorch.org
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Table 3.1 – Accuracy of student models for non-private baseline, PATE (Papernot et al.,
2016), and our method.

Dataset Non-private PATE Our approach
MNIST 99.2% 98.0% 98.3%
SVHN 92.8% 82.7% 87.7%

3.6.3 Learning Performance

First, we evaluate the generalisation ability of a student model trained on artificial
data. More specifically, we train a student model on generated data and report test
classification accuracy on a held-out real set.

As noted above, most of the work on privacy-preserving ML focuses on model release
methods and assumes (explicitly or implicitly) access to similar “public” data in one
form or another (Abadi et al., 2016; Papernot et al., 2016, 2018; Zhang et al., 2018). On
the other hand, existing data release solutions struggle with high-dimensional data (Zhu
et al., 2017). It limits the choice of methods for comparison.

We chose to compare learning performance with the current state-of-the-art model release
technique, PATE by Papernot et al. (2018), which uses a relatively small set of unlabelled
publicly available data. Since our approach does not require any public data, in order to
make the evaluation more appropriate, we pick the results of PATE corresponding to the
least number of labelling queries. It is worth noting, however, that one should keep in
mind the difference in the privacy guarantee strength when interpreting these learning
performance results.

Table 3.1 shows test accuracy for the non-private baseline model (trained on the real
training set), PATE, and our method. We observe that artificial data allows us to achieve
98.3% accuracy on MNIST and 87.7% accuracy on SVHN, which is comparable or better
than corresponding results of PATE. These results demonstrate that our approach does
not compromise learning performance, and may even improve it, while enabling the full
flexibility of data release methods.

Additionally, we train a simple logistic regression model on artificial MNIST samples,
and obtain 91.69% accuracy, compared to 92.58% on the original data, confirming that
student models are not restricted to a specific type.

3.6.4 Validation Performance

In the previous section, we demonstrated that ML models trained on artificial data can
generalise well enough and achieve high accuracy on unseen real data. However, there is
another important aspect of training: choosing the right hyper-parameters. In scenarios
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Figure 3.2 – Cross-entropy loss for real and artificial validation sets (SGD with learning
rate 0.001).

where public data is not available, validation has to be done on private artificial data,
and to the best of our knowledge, the question of using artificial data for validation has
not been well covered in the machine learning literature.

We evaluate the validation power in the following way. While training a student model,
we compute validation loss on a real held-out set and on an artificial held-out set. We
then compute correlation between the two sequences. Figure 3.2 shows two pairs of
validation loss curves, for MNIST and SVHN datasets. We observe that, indeed, artificial
validation loss closely follows the real one, despite being generally lower and fluctuating
more. Note that lower validation loss does not imply better test performance, but high
correlation is important for hyper-parameter tuning. We ran experiments for a number
of different learning rates, and correlation coefficients range from 0.7197 to 0.9972 for
MNIST and from 0.8047 to 0.9810 for SVHN.

3.6.5 Visual Quality of Generated Samples

While the main purpose of this work is to evaluate and improve privacy of generated data,
we observe that addition of DP layer in the critic has a beneficial side effect: improving
image quality and diversity, as well as providing regularisation effect which allows for
much longer stable training.

Figure 3.3 shows FID values for every 10-th epoch of training with and without DP layer.
For both SVHN and CelebA, WGAN-GP with DP critic achieves better performance
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Figure 3.3 – Fréchet Inception Distance between real and generated data for WGAN-GP
with and without DP critic.

and converges more stably. At the same time, the quality of CelebA samples for vanilla
WGAN-GP significantly degrades after 100 epochs indicating overfitting (note that for
privacy evaluation we chose the epoch with the best FID score). Moreover, GANs with
DP critics achieve better FID scores for given datasets than the best ones reported
in (Heusel et al., 2017).

3.6.6 Privacy Analysis

Using the privacy estimation framework (see Section 3.5.2), we fix the probability γ of
exceeding the expected privacy loss bound µ in all experiments to 10−5 and compute the
corresponding µ for each dataset and two versions of WGAN-GP (vanilla and with DP
critic). Table 3.2 encapsulates our findings. It is worth noting, that our µ should not be
viewed as an empirical estimation of ε of DP, since the former bounds expected privacy
loss, while the latter maximum. These two quantities, however, in our experiments turn
out to be similar to deep learning DP bounds found in recent literature (Abadi et al.,
2016; Papernot et al., 2018). This may be explained by tight concentration of privacy
loss random variable (Dwork and Rothblum, 2016) or loose estimation. Additionally, DP
critic helps to bring down µ values in all cases.

The lack of theoretical privacy guarantees for our method neccesitates assessing the
strength of provided protection. We perform this evaluation by running the model
inversion attack (Fredrikson et al., 2015) on a student model. Note that we also experi-
mented with another well-known attack on machine learning models, the membership
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Table 3.2 – Empirical privacy parameters: expected privacy loss bound µ and probability
γ of exceeding it.

Dataset Method µ γ

MNIST WGAN-GP 5.80
WGAN-GP (DP critic) 5.36

SVHN WGAN-GP 13.16 10−5
WGAN-GP (DP critic) 4.92

CelebA WGAN-GP 6.27
WGAN-GP (DP critic) 4.15

Figure 3.4 – Results of the model inversion attack. Top to bottom: real target images,
reconstructions from non-private model, our method, and DP model.

inference (Shokri et al., 2017). However, we did not include it in the final evaluation,
because of the poor attacker’s performance in our setting (nearly random guess accuracy
for given datasets and models even without any protection). Both attacks are performed
by passive adversaries. Apart from that, one could evaluate our method against active
adversaries (e.g. Hitaj et al. (2017)), but we do not investigate such attacks in this thesis,
instead aiming for more rigorous theoretical guarantees in Part II.

In order to run the attack, we train a student model (a simple multi-layer perceptron
with two hidden layers of 1000 and 300 neurons) in three settings: real data, artificial
data generated by GAN (with DP critic), and real data with differential privacy (using
DP-SGD with a small ε < 1). As facial recognition is a more privacy-sensitive application,
and provides a better visualisation of the attack, we picked CelebA attribute prediction
task to run this experiment.

Figure 3.4 shows the results of the model inversion attack. The top row presents the
real target images. The following rows depict reconstructed images from a non-private
model, a model trained on GAN samples, and DP model, correspondingly. One can
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Table 3.3 – Face detection and recognition rates (pairs with distances below 0.99) for
non-private, our method, and DP.

Non-private Our approach DP
Detection 63.6% 1.3% 0.0%
Recognition 11.0% 0.3% −

Figure 3.5 – Privacy-accuracy trade-off curve and corresponding image reconstructions
from a multi-layer perceptron trained on artificial MNIST dataset.

observe a clear information loss in reconstructed images going from non-private model,
to artificial data, to DP. The latter is superior in decoupling the model and the training
data, and is a preferred choice in the model release setting and/or if public data is
accessible for pre-training. The non-private model, albeit trained with abundant data
(∼200K images) reveals facial features, such as skin and hair colour, expression, etc. Our
method, despite failing to conceal general shapes in training images (i.e. faces), seems to
achieve a trade-off, hiding most of the specific features. The obtained reconstructions
are either very noisy (columns 1, 2, 6, 8), much like DP, or converge to some average
feature-less faces (columns 4, 5, 7).

We also analyse real and reconstructed image pairs using OpenFace (Amos et al., 2016)
(see Table 3.3). It confirms our initial findings: in images reconstructed from a non-private
model, faces were detected (recognised) 63.6% (11%) of the time, while for our method,
detection succeeded only in 1.3% of cases and recognition rate was 0.3%, well within
state-of-the-art error margins. For DP both rates were at 0%.

To evaluate our privacy estimation method, we look at how the privacy loss bound
µ correlates with the success of the attack. Figure 3.5 depicts the privacy-accuracy
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(a) Generated (b) Real

Figure 3.6 – Generated and closest real examples for SVHN.

trade-off curve for an MLP (64-32-10) trained on artificial data. In this setting, we use
a stacked denoising autoencoder to compress images to 64-dimensional feature vectors
and facilitate the attack performance. Along the curve, we plot examples of the model
inversion reconstruction at corresponding points. We see that with growing µ, meaning
lower privacy, both model accuracy and reconstruction quality increase. However, the
value of µ does not change dramatically, indicating potentially loose estimates.

Finally, as an additional measure, we perform visual inspection of generated examples
and corresponding nearest neighbours in real data. Figures 3.6 and 3.7 depict generated
and the corresponding most similar real images from SVHN and CelebA datasets. We
observe that, despite general visual similarity, generated images differ from real examples
in details, which is normally more important for privacy. For SVHN, digits vary either in
shape, colour or surroundings. A lot of pairs come from different classes. For CelebA, the
pose and lighting may be similar, but such details as gender, skin colour, facial features
are usually significantly different.

3.7 Conclusions

We investigate the problem of private data release for complex high-dimensional data.
In contrast to commonly studied model release setting, this approach enables impor-
tant advantages and applications, such as data pooling from multiple sources, simpler
development process, and data trading.

We employ generative adversarial networks to produce artificial privacy-preserving
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(a) Generated (b) Real

Figure 3.7 – Generated and closest real examples for CelebA.

datasets. The choice of GANs as a generative model ensures scalability and makes
the technique suitable for real-world data with complex structure. Unlike many prior
approaches, our method does not assume access to similar publicly available data. In our
experiments, we show that student models trained on artificial data can achieve high
accuracy on MNIST and SVHN datasets. Moreover, models can also be validated on
artificial data.

We propose a novel privacy definition and a technique for post hoc privacy analysis of
the released data by bounding an estimator of the expected privacy loss. Our privacy
notion equates to a statistical measure of sensitivity of the synthetic data to changes
in the original data. We compute privacy bounds for samples from WGAN-GP on
MNIST, SVHN, and CelebA, and demonstrate that expected privacy loss is bounded by
single-digit values. To evaluate the provided protection, we run a model inversion attack
and show that training with GAN samples reduces information leakage and that attack
success correlates with estimated privacy bounds. For instance, in the face reconstruction
example, face detection rates drop from 63.6% to 1.3%.

Additionally, we introduce a simple modification to the critic: differential privacy layer.
Not only does it improve privacy loss bounds and ensures DP guarantees for the critic
output, but it also acts as a regulariser, improving stability of training, and quality and
diversity of generated images.
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4 Federated Generative Privacy

4.1 Introduction

Aside from differntial privacy, another method that tackles privacy issues in machine learn-
ing is rapidly gaining popularity—the recent concept of federated learning (FL) (McMahan
et al., 2016). In the FL setting, a central entity (server) trains a model without actually
collecting user data. Instead, users (clients) update models locally, and the server aggre-
gates these models. One popular approach is the federated averaging, FedAvg (McMahan
et al., 2016), where clients do on-device gradient descent using their data, then send
these updates to the server where they get averaged. Privacy can be enhanced by using
secure multi-party computation (MPC) to disallow the server access individual updates
before averaging (Bonawitz et al., 2017).

Despite many advantages, federated learning does have a number of challenges. First,
the result of FL is a single trained model (therefore, we categorise it as a model release
method), which reduces its flexibility. For instance, it would limit possibilities for further
aggregation of information from different sources in hierarchical scenarios, e.g. different
hospitals trying to combine federated models trained on their patients data. Second, this
solution requires data to be labelled at the source, which is not always possible, because
users may not be qualified to label their data or unwilling to do so. A good example
is again a medical application where users are unqualified to diagnose themselves but
at the same time would want to keep their medical condition and other information
private. Third, in spite of a popular opinion circulating in non-scientific and even some
scientific publications, federated learning does not offer formal privacy guarantees and is
vulnerable to attacks, such as the model inversion attack (Fredrikson et al., 2015).

Some papers propose to augment FL with differential privacy (DP) (McMahan et al., 2017)
to alleviate this issue and provide rigorous privacy guarantees. While these approaches

This chapter is based on the paper published in IEEE Intelligent Systmes (Triastcyn and Faltings,
2020b).
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Figure 4.1 – Architecture of our solution for two clients. Sensitive data is used to train a
GAN (local critic and federated generator) to produce a private artificial dataset.

perform well in ML tasks and provide theoretical privacy guarantees, they are often
restrictive. The major issue of this approach, exacerbated by the fact that we task
ourselves with building generative models as opposed to discriminative, is that obtaining
reasonable DP guarantees requires a noticeable downgrade in model quality. This is
evident in a recent work by Augenstein et al. (2019), which we consider in more detail
in Chapter 7. As mentioned in the previous chapter, in order to alleviate this issue,
many research papers in this area assume, implicitly or explicitly, access to public data
of similar nature or abundant amounts of data, which is not always realistic.

We address these problems by combining the strengths of federated learning with our
GAN-based framework for privacy-preserving data release introduced earlier. The main
idea of our approach, named FedGP, for federated generative privacy, is to train generative
adversarial networks (GANs) (Goodfellow et al., 2014) on clients to produce artificial
data that can replace clients real data. Since some clients may have insufficient data
to train a GAN locally, we instead train a federated GAN model. This way, user data
always remain on their devices. Moreover, the federated GAN will produce samples from
the common cross-user distribution and not from a single user, which adds to overall
privacy. Figure 4.1 depicts the schematics of our approach.

Similarly to its centralised variant, this approach allows releasing entire datasets, enabling
many immediate advantages compared to the model release techniques. First, the released
data could be used to train any ML model (we refer to it as downstream task or downstream
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model) without additional assumptions. Second, data from different sources could be
easily pooled, allowing for hierarchical aggregation and building stronger models. Third,
labelling and verification can be done later down the pipeline, relieving some trust and
expertise requirements on users. Fourth, released data could be traded on data markets1,
where anonymisation and protection of sensitive information is one of the biggest obstacles.
Finally, data publishing would facilitate transparency and reproducibility of research.

To evaluate potential privacy risks, we adapt the Average-Case Differential Privacy
(ADP) notion and the improved version of the post hoc privacy estimation routine from
Section 3.5. Its key idea is to estimate Kullback-Leibler (KL) divergence between pairs of
synthetic data distributions produced by GANs with one-point difference in the original
dataset.

Our contributions in this chapter are the following:

• we extend our approach for private data release to the federated setting, broadening
its applicability and enhancing privacy;

• we tune the federated learning protocol for GANs to allow a range of benefits, such
as reduced communication costs;

• we demonstrate that downstream models trained on artificial data achieve high
accuracy while maintaining good average-case privacy and resilience to model
inversion attacks.

4.2 Related Work

McMahan et al. (2016) proposed federated learning as one possible solution for privacy
protection, among other issues, such as scalability and communication costs. In this
setting, privacy is enforced by keeping data on user devices and only submitting model
updates to the server. Two of the most popular approaches are the federated stochastic
gradient descent (FedSGD) and federated averaging (FedAvg) (McMahan et al., 2016),
where clients do local on-device gradient descent using their data, then send these updates
to the server, which applies a weighted average update to the model. Federated learning
offers significant advantages in certain scenarios, and thus, is being rapidly developed
and further improved by both industry and academia (see, for example, Konečnỳ et al.
(2016); Bonawitz et al. (2019)). Yang et al. (2019) offers a more comprehensive overview
of different aspects of FL.

It is crucial to note that, in spite of the privacy-oriented design, federated learning in itself
does not offer any theoretical privacy guarantees. For this reason, it is often combined
with privacy-preserving mechanisms. Bonawitz et al. (2017), for example, propose to

1https://www.datamakespossible.com/value-of-data-2018/dawn-of-data-marketplace
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enahnce privacy by an efficient secure aggregation algorithm based on secure multi-party
computation (MPC) (Yao, 1982). This allows the server to access only average updates
of a big group of users and not individual ones. Unfortunately, methods like MPC and
homomorphic encryption do not necessarily guarantee robustness against privacy attacks
on machine learning models, such as model inversion or membership inference (Fredrikson
et al., 2015; Shokri et al., 2017), due to the fact that these attacks operate on the final
model which remains the same. Essentially, these methods would protect the training
process, but not the product of this process. It is also possible to employ differential
privacy in this context, and it has been done, but we defer this discussion until Chapter 6.

So far, there has been little work on GANs, or even generative models in general, in
federated settings. In one of the earliest papers, Chen et al. (2019) train a character-level
RNN using FL to generate out-of-vocabulary words to help track temporal changes in
the word usage frequencies. Their model is used by Augenstein et al. (2019) to evaluate
their federated debugging solution, based on GANs and providing differential privacy.
This work is perhaps the closest in spirit to what we want to achieve, but in order to
preserve the chronological order, we leave a more detailed discussion of this paper to
Chapter 7, where we augment their solution with more practical privacy guarantees.

Finally, Hardy et al. (2019) present a distributed scheme for training GANs and evaluate
it against the naïve implementation of federated GANs. The distinctive characteristic of
their algorithm is that discriminators (critics) are being exchanged between clients in
a peer-to-peer fashion, in contrast to the conventional FL scheme of building averaged
models on the server. The authors claim better learning results and improved computation
complexity on the clients compared to the naïve solution. The downside of this approach
is a larger possibility of privacy leaks due to discriminator exchange. Moreover, in
Section 4.5, we show that the increased risk translates to only marginal improvements in
accuracy and only in i.i.d. settings, and thus, might not be justified.

4.3 Preliminaries

As this chapter largely relies on the concepts introduced earlier in this thesis, we encourage
the reader to consult Chapters 2 and 3 for preliminary information.

Additionally, we will use the Bayesian perspective on estimating mean from the data
to get sharper bounds on the expected privacy loss compared to the original privacy
estimation framework from Section 3.5.2.

Proposition 1. Let [l1, l2, . . . , lm] be a random vector drawn from a real-valued distribu-
tion p(L), defined on (−∞,+∞), with the existing common mean and variance, and let
L and S be the sample mean and the sample standard deviation of the random variable
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L. Then, in the absence of any other information about p(L), we can claim

Pr
(
E[L] > L+

F−1
m−1(1− γ)
√
m− 1

S

)
≤ γ, (4.1)

where F−1
m−1(1− γ) is the inverse CDF of the Student’s t-distribution with m− 1 degrees

of freedom at 1− γ.

We defer a more detailed analysis and the proof of this proposition to Chapter 5. However,
the sketch of the proof is as follows. Assuming the existence of the common mean and
variance, we can use the maximum entropy principle for the likelihood function of these
samples to ensure the highest uncertainty, and thus, conservativeness of the estimate.
Combined with a flat prior, this likelihood function gives us the marginal distribution
of the true mean E[L], and we observe that the random variable E[L]−L

S/
√
m−1 follows the

Student’s t-distribution with m− 1 degrees of freedom (Oliphant, 2006). We can then
use the inverse of the Student’s t CDF to arrive to Proposition 1.

4.4 Federated Generative Privacy

In order to keep participants data private while still maintaining flexibility in downstream
tasks, our algorithm produces a federated generative model. This model can output
artificial data, not belonging to any real user in particular, but coming from the common
cross-user data distribution.

Let {u1, u2, . . . , un} be a set of clients holding private datasets {d1, d2, . . . , dn}. Before
starting the training protocol, the server is providing each client with generator G0

i

and critic C0
i models, and clients initialise their models randomly. Like in a normal FL

setting, the training process afterwards consists of communication rounds. In each round
t, clients update their respective models performing one or more passes through their
data and submit generator updates 4Gti to the server through MPC while keeping Cti
private. In the beginning of the next round, the server provides an updated common
generator Gt to all clients.

This approach has important advantages:

• Data do not physically leave user devices.

• Only generators (that do not come directly into contact with data) are shared, and
critics remain private.

• Using artificial data in downstream tasks adds another layer of protection and
limits information leakage to artificial samples.
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4.4.1 Privacy Estimation

What remains to assess is how much information would an attacker gain about the
original data. We do so by employing average-case differential privacy (Definition 11)
and the corresponding empirical estimation framework (see Section 3.5.2). However, we
modify the last step of the routine, which was using Chebyshev’s inequality to obtain
the privacy parameters estimates.

In particular, having obtained sufficiently many sample pairs (D̃, D̃−i), we use Proposi-
tion 1 to determine the ADP parameters µ and γ. We fix γ at the desired level (generally,
inversely proportional to the number of data points), and then compute

µ = L+
F−1
m−1(1− γ)
√
m− 1

S, (4.2)

where L and S are the sample mean and the sample standard deviation of {D−iKL}.

It is worth noting that this modification leads to a somewhat different interpretation of
the definition and parameters µ and γ. More specifically, expectation is now taken not
only over the outcomes, but also over the data, altering the meaning of the parameters.
In the example of Section 3.5.1, (0.01, 0.001)-ADP would now be interpreted as follows:
with probability 0.999, an average user from the same distribution submitting their data
will change outcome probabilities of the private algorithm on average by 1% (because
e0.01 ≈ 1.01.). As we demonstrate in our evaluation, this revision, effectively discounting
data outliers in the privacy quantification process, yields significant improvements in the
bounds for more ordinary data points.

4.4.2 Limitations

All the limitations of the centralised version of the framework, discussed in Sections 3.4.2
and 3.5.3, still apply to FedGP. The only area where it is different is the probability
bound obtained using a Bayesian approach instead of Chebyshev’s inequality.

Additionally, there is a potentially negative effect on the model quality due to federation.
Since critics remain private and do not leave user devices their performance can be
hampered by a small number of training examples. Nevertheless, we observe that even
in the settings where some users have smaller datasets the overall discriminative ability
of all critics is sufficient to train good generators.

4.5 Evaluation

We evaluate two major aspects of our method: downstream learning performance and
privacy. Similarly to the previous chapter, we first show that training ML models on
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Table 4.1 – Accuracy of student models trained on artificial samples of FedGP compared
to non-private centralised baseline and CentGP. In parenthesis we specify the average
number of data points per client.

Setting Dataset Baseline MD-GAN CentGP FedGP

i.i.d.
MNIST (500) 98.10% 64.30% 97.35% 79.45%
MNIST (1000) 98.55% 93.46% 97.39% 93.38%
MNIST (2000) 98.92% 97.47% 97.41% 96.23%

non-
i.i.d.

MNIST (500) 97.31% 79.23% 83.26%
MNIST (1000) 98.78% 91.90% — 95.89%
MNIST (2000) 98.76% 95.18% 96.88%

data created by the common generator achieves high accuracy on MNIST (LeCun et al.,
1998). Then, we estimate expected privacy loss of the federated GAN and evaluate
the effectiveness of artificial data against the model inversion attack on CelebA face
attributes dataset (Liu et al., 2015). Note that we do not repeat the evaluation of some
secondary aspects featured in Section 3.6.

Our implementation to a large extent follows Section 3.6.1. To train the federated
generator we use FedAvg algorithm (McMahan et al., 2016). As a sim function, intro-
duced in Section 3.5.2, we once again use the distance between InceptionV3 feature
vectors (Szegedy et al., 2016).

4.5.1 Learning Performance

First, we evaluate the generalisation ability of the student model trained on artificial
data. Equivalently to the previous chapter, the experiment adheres to the following
steps:

1. Train the federated generative model (teacher) on the original distributed data.

2. Generate an artificial dataset and use it to train ML models (students).

3. Evaluate students on a held-out test set.

We compare learning performance with the baseline centralised discriminative model
trained on the original data, as well as the same model trained on artificial samples
obtained from the centrally trained GAN, introduced in Chapter 3, denoted here as
CentGP. Furthermore, we include MD-GAN (Hardy et al., 2019) in our comparison—
another distributed GAN approach, differing from our federated GAN by the fact that
critics are randomly exchanged between clients in a peer-to-peer fashion.

Since critics stay private in FedGP and only access data of a single user, the size of each
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Table 4.2 – Average-case privacy parameters: expected privacy loss bounds µC and µF
(for centralised and federated solutions), and probability γ of exceeding it. A typical ε of
DP in this setting is > 2.

Setting Dataset µC µF γ

i.i.d. MNIST (500) 0.0101 0.0117

10−15MNIST (1000) 0.0046 0.0069
MNIST (2000) 0.0015 0.0021
CelebA 0.0009 0.0009

non-i.i.d. MNIST (500) − 0.0090
10−15MNIST (1000) − 0.0044

MNIST (2000) − 0.0020

individual dataset has significant effect. Therefore, in our experiment we vary sizes of
user datasets and observe its influence on training. In each experiment, we specify an
average number of points per user, while the actual number is drawn from the uniform
distribution with this mean, with some clients getting as few as 100 data points.

We also study two settings: i.i.d. and non-i.i.d data. In the first setting, distribution of
classes for each client is identical to the overall distribution. In the second, every client
gets samples of 2 random classes, imitating the situation when a single user observes
only a part of overall data distribution.

Details of the experiment can be found in Table 4.1. We observe that training on artificial
data from the federated GAN allows to achieve 96.9% accuracy on MNIST with the
baseline of 98.8%. We can also see how accuracy grows with the average user dataset
size. A less expected observation is that non-i.i.d. setting is actually beneficial for FedGP.
A possible reason is that training critics with little data becomes easier when this data is
less diverse (i.e. the number of different classes is smaller).

We find that the performance of MD-GAN is similar to FedGP in the i.i.d. case and is
slightly behind in the non-i.i.d. case. Therefore, we believe that the additional privacy
leakage and the extra communication complexity of MD-GAN associated with the
critics exchange are not justified in the examined setting. Comparing to the centralised
generative privacy model CentGP, we can see that FedGP is more affected by sharding
of data on user devices than by overall data size, suggesting that further research in
training federated generative models is necessary.

4.5.2 Privacy Analysis

Analogously to Section 3.6.6, we employ the privacy estimation framework to compute the
expected privacy loss bound µ by fixing the probability γ = 10−15. Note the significant
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Table 4.3 – Face detection and recognition rates (pairs with distances below 0.99) for
images recovered by model inversion from the non-private baseline and the FedGP-trained
model.

Baseline FedGP
Detection 25.5% 1.2%
Recognition 2.8% 0.1%

Figure 4.2 – Results of the model inversion attack. Top to bottom: real target images,
reconstructions from the non-private model, reconstructions from the model trained by
FedGP.

reduction in γ due to the use of Proposition 1.

Table 4.2 summarises the bounds we obtain. As anticipated, the privacy guarantee
improves with the growing number of data points, because the influence of each individual
example diminishes. Moreover, the average privacy loss µ, expectedly, is significantly
smaller than the typical worst-case DP loss ε in similar settings (between 2 and 10,
or even larger). To put it in perspective, the average change in outcome probabilities
estimated by ADP is ∼1% even in more difficult settings, while the state-of-the-art DP
method would place the worst-case change at > 100% or even > 1000% without giving
much information about a typical case. Compared to the centralised solution (µC), the
federated version may have slightly weaker privacy guarantees, probably because of the
higher degree of overfitting for critics. But this difference diminishes with growing data
size, and for CelebA µF actually gets smaller than µC .

On top of estimating the expected privacy loss bounds, we repeat our test of resistance
to the model inversion attack (Fredrikson et al., 2015) for FedGP, running the attack
on two student models: the one trained on the original data samples and the other one
trained on the artificial samples. Once again, we only consider passive adversaries and
we leave evaluation with active adversaries for future work.

Similarly to the previous chapter, we pick the CelebA attribute prediction task to run
this experiment, because facial recognition is a more privacy-sensitive application and
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offers a better visualisation of the attack. This time, we train a student model (again, a
simple MLP with two hidden layers of 1000 and 300 neurons) in two settings: the real
data and the artificial data generated by the federated GAN.

We analyse real and reconstructed image pairs using OpenFace (Amos et al., 2016) (see
Table 4.3). It confirms our theory that artificial samples would shield real data in case
of the downstream model attack analogously to the centralised setting. In the images
reconstructed from a non-private model, faces were detected 25.5% of the time and
recognised in 2.8% of cases. For our method, detection succeeded only in 1.2% of faces
and the recognition rate was 0.1%, well within the state-of-the-art error margin for face
recognition.

Figure 4.2 shows results of the model inversion attack. The top row presents the real
target images. The following rows depict reconstructed images from the non-private
model and the model trained on the federated GAN samples. One can observe a clear
information loss in reconstructed images going from the non-private to the FedGP-trained
model. Despite failing to conceal general shapes in training images (i.e. faces), our
method seems to achieve a trade-off, hiding most of the specific features, while the non-
private model reveals important facial features, such as skin and hair colour, expression,
etc. The obtained reconstructions are either very noisy or converge to some average
feature-less faces.

4.6 Conclusions

In this chapter, we studied the intersection of federated learning and private data release
using GANs. Combined, these methods enable important advantages and applications
for both fields, such as higher flexibility, reduced requirements on trust and expertise for
users, hierarchical data pooling, and data trading.

The choice of GANs as a generative model ensures scalability and makes the technique
suitable for real-world data with complex structure. In our experiments, we show that
student models trained on artificial data can achieve high accuracy on classification tasks,
even without access to similar publicly available data.

We estimate and bound the expected privacy loss of an average client by using differential
average-case privacy thus enhancing privacy of traditional federated learning. We find
that, in most scenarios, the presence or absence of a single data point would not change
the outcome probabilities by more than 1% on average. Additionally, we evaluate the
provided protection by running the model inversion attack and showing that training with
datasets generated by federated GANs reduces information leakage (e.g. face detection
in recovered images decreases from 25.5% to 1.2%).
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5 Bayesian Differential Privacy

5.1 Introduction

Let us take a step back from privacy-preserving data release, and instead, consider
privacy in machine learning in a more general sense. We have already established that
differential privacy (DP) (Dwork, 2006; Dwork et al., 2006a,b) is a desirable guarantee,
but is very hard to achieve in many machine learning tasks without a marked decline in
the model quality. In this chapter, we attempt to answer why it is the case and how to
provide a significantly better privacy-utility trade-off.

Historically, DP algorithms were introduced for database privacy and focused on sanitising
simple statistics, such as a mean, a median, and so on, using a technique known as output
perturbation. In recent years, the field made a lot of progress towards the goal of privacy-
preserving machine learning, through works on objective perturbation (Chaudhuri et al.,
2011), stochastic gradient descent with DP updates (Song et al., 2013), to more complex
and practical techniques (Abadi et al., 2016; Papernot et al., 2016, 2018; McMahan et al.,
2018).

However, borrowing the theoretical underpinnings from database privacy ignored specifics
of ML and AI applications, such as a focus on a given task or a particular data distribution.
As a result, despite significant advances, differentially private machine learning still suffers
from two major problems: (a) utility loss due to excessive amounts of noise added during
training and (b) difficulty in interpreting the privacy parameters ε and δ. In many cases
where the first problem appears to be solved, it is actually being hidden by the second
problem. To illustrate it, we design a motivational example in Section 5.3.3 that shows
how a seemingly strong privacy guarantee turns out to allow for the attacker accuracy to
be as high as 99%. Even considering that this guarantee is very pessimistic and holds
against a very powerful adversary with any auxiliary information, it can hardly be viewed

This chapter is based on the paper accepted for publication at the 37th International Conference on
Machine Learning (ICML 2020) (Triastcyn and Faltings, 2020a).
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as a reassurance to a user. Moreover, it provides only the worst-case bound, leaving
users to wonder how far is the worst-case from a typical case.

In this thesis, we focus on practicality of privacy guarantees in the context of machine
learning, and therefore, we propose a variation of differential privacy that provides
more meaningful guarantees for typical scenarios on top of the global differential privacy
guarantee. We name it Bayesian differential privacy (BDP).

The key to our relaxation is our definition of typical scenarios. At the core of it lies
the observation that machine learning models are designed and tuned for a particular
data distribution (for example, an MRI dataset is very unlikely to contain a picture of a
car). Such prior distribution of data is also often available to the attacker. We consider
a scenario typical when all sensitive data is drawn from the same distribution. While
the traditional differential privacy treats all data as equally likely and hides differences
by large amounts of noise, Bayesian differential privacy calibrates noise to the data
distribution. Thus, for any two datasets drawn from the same distribution, and given the
same privacy mechanism with the same amount of noise, BDP guarantees are tighter than
DP guarantees. It is important to note that this data distribution can be unknown, and
the necessary statistics can be estimated from data as shown in the following sections.

To accompany the notion of Bayesian differential privacy (Section 5.4.1), we provide
its theoretical analysis and the privacy accounting framework (Section 5.4.2). The
latter considers the privacy loss random variable and employs principled tools from
probability theory to find concentration bounds on it. It provides a clean derivation
of privacy accounting in general (Sections 5.4.2 and 5.4.5), as well as in the special
case of subsampled Gaussian noise mechanism (Section 5.4.3). Further, we show that
it is a generalisation of the well-known moments accountant (MA) (Abadi et al., 2016)
(Section 5.4.6).

Since our privacy accounting relies on data distribution samples, a natural concern would
be that the data not present in the dataset are not taken into account, and thus, are
not protected. However, this is not the case, because our finite sample estimator is
specifically designed to address this issue (see Section 5.4.5).

This chapter contains the following key contributions:

• we propose a relaxation of DP, called Bayesian differential privacy, that allows to
provide more practical privacy guarantees in a wide range of scenarios;

• we derive a clean, principled method for privacy accounting in learning that
generalises the moments accountant;

• we experimentally demonstrate advantages of our method (Section 5.5), including
the state-of-the-art privacy bounds in deep learning applications (Section 5.5.2) and
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variational inference (Section 5.5.3), a popular class of algorithms rarely considered
in privacy research.

5.2 Related Work

Differential privacy (Dwork, 2006; Dwork et al., 2006b) is one of the strongest privacy
standards that can be employed to protect ML models from these and other attacks.
Since pure ε-DP is hard to achieve in many realistic learning settings, a notion of
approximate (ε, δ)-DP is used across-the-board in machine learning. It is often achieved
as a result of applying the Gaussian noise mechanism (Dwork et al., 2014). Several other
alternative notions and relaxations of DP have also been proposed, such as probabilistic
DP (Machanavajjhala et al., 2008), computational DP (Mironov et al., 2009), mutual-
information privacy (Mir, 2012; Wang et al., 2016a), different versions of concentrated
DP (CDP) (Dwork and Rothblum, 2016), zCDP (Bun and Steinke, 2016), tCDP (Bun
et al., 2018)), and Rényi DP (RDP) (Mironov, 2017). Some other relaxations (Abowd
et al., 2013; Schneider and Abowd, 2015; Charest and Hou, 2017; Wang et al., 2016b;
Triastcyn and Faltings, 2019c) tip the balance even further in favour of applicability at
the cost of weaker guarantees, considering the average-case instead of the worst-case or
limiting the guarantee to a given dataset. Unlike these relaxations, our notion is not
limited to a particular dataset, but rather a particular distribution of data (e.g. emails,
MRI images, etc.), which is a much weaker assumption.

For a long time, approximate DP remained unachievable in more popular deep learning
scenarios. Some earlier attempts (Shokri and Shmatikov, 2015) led to prohibitively
high bounds on ε (Abadi et al., 2016; Papernot et al., 2016) that were later shown
to be ineffective against attacks (Hitaj et al., 2017). A major step in the direction of
bringing privacy loss values down to more practical magnitudes was done by Abadi et al.
(2016) with the introduction of the moments accountant, currently a state-of-the-art
method for keeping track of the privacy loss during training. Followed by improvements
in differentially private training techniques (Papernot et al., 2016, 2018), it allowed to
achieve single-digit DP guarantees (ε < 10) for classic supervised learning benchmarks,
such as MNIST, SVHN, and CIFAR.

In general, an important aspect of a privacy notion is composability, accountability, and
interpretability. Apart from sharp bounds, the moments accountant is attractive because
it operates within the classic notion of (ε, δ)-DP. Some of the alternative notions of DP,
such as (Mironov, 2017; Bun et al., 2018), also provide tight composition theorems, along
with some other advantages, but to the best of our knowledge, they are not broadly used
in practice compared to traditional DP (although there are some examples (Geumlek
et al., 2017)). One of the possible reasons for that is interpretability: parameters of
(α, ε)-RDP or (µ, τ)-CDP are hard to interpret. While it may be difficult to quantify
the actual guarantee provided by specific values of ε, δ of the traditional DP, it is still
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advantageous that they have a clearer probabilistic interpretation.

Our privacy notion can be related to some of the past work on DP relaxations. In
Section 5.4.6, we discuss its connection to RDP (Mironov, 2017) and the moments
accountant (Abadi et al., 2016). Similarly, there is a link to concentrated DP definitions.

A number of previous relaxations considered a similar idea of limiting the scope of
protected data or using the data generating distribution, either through imposing a set
of data evolution scenarios (Kifer and Machanavajjhala, 2014), policies (He et al., 2014),
distributions (Blum et al., 2013; Bhaskar et al., 2011), or families of distributions (Bassily
et al., 2013; Bassily and Freund, 2016). Some of these definitions (e.g. (Blum et al.,
2013)) may require more noise, because they are stronger than DP in the sense that
datasets can differ in more than one data point. This is not the case with our definition:
like DP, it considers adjacent datasets differing in a single data point. The major
problem of such definitions, however, is that in real-world scenarios it is not feasible
to define distributions or families of distributions that generate data. And even if this
problem is solved by restricting the query functions to enable the usage of the central
limit theorem (e.g. (Bhaskar et al., 2011; Duan, 2009)), these guarantees would only
hold asymptotically and may require prohibitively large batch sizes. While Bayesian
differential privacy can be seen as a special case of some of the above definitions, the
crucial difference and the primary reason it is defined this way, comes with Bayesian
accounting (Sections 5.4.2, 5.4.5), which only requires a finite number of samples from
these data distributions, and hence, allows a broad range of real-world applications.

There are also approaches that use the data distribution information, in one way or
another, and coincidentally share the same (Yang et al., 2015) or similar (Leung and Lui,
2012) names. Yet, similarly to the methods discussed above, their assumptions (e.g. the
bound on the minimum probability of a data point) and implementation requirements
(e.g. potentially constructing correlation matrices for millions of data samples) make
practical applications difficult.

Perhaps the most similar to our approach is random differential privacy (Hall et al.,
2011), which is also based on incorporating data randomness in the probability space.
They take probability with respect to the (n+ 1)-fold product measure on the space of
all datasets of n+ 1 samples from some distribution P . However, this is impractical in
many machine learning scenarios, where datasets and models are large and neither data
nor model parameter distributions are analytically defined. Alternatively, we consider
the probability space of a single additional example, which allows us to perform a wider
range of statistical estimation methods. Furthermore, Hall et al. (2011) only propose a
basic composition theorem, which is not tight enough for accounting in iterative methods,
and do not prove other crucial properties, such as post-processing and group privacy.
We provide a more formal explanation of the relation between Bayesian DP and random
DP in Section 5.4.6. In a similar fashion, Dandekar et al. (2020) proposed the notion of
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Table 5.1 – Comparison of privacy notions. NP refers to noiseless privacy (Bhaskar et al.,
2011), CWP to coupled-worlds privacy (Bassily et al., 2013). Evaluation is based on the
claims found in corresponding papers, and the ? sign suggests that we were not able to
conclude a particular outcome for the property and further investigation is needed.

privacy at risk. According to the authors, it unifies probabilistic and random DP notions.
They prove post-processing and composition properties, but do not solve the problem of
unknown data distributions.

We evaluate our method on two popular classes of learning algorithms: deep neural
networks and variational inference (VI). Privacy-preserving deep learning is being exten-
sively studied, and is frequently used in combination with moments accountant (Abadi
et al., 2016; Papernot et al., 2016, 2018), which makes it a perfect setting for comparison.
Bayesian inference methods, on the other hand, have received less attention from the
private learning community. There are, nonetheless, very interesting results suggesting
one could obtain DP guarantees “for free” (without adding noise) in some methods
like posterior sampling (Dimitrakakis et al., 2014, 2017) and stochastic gradient Monte
Carlo (Wang et al., 2015). A differentially private version of variational inference, ob-
tained by applying noise to the gradients and using moments accountant, has also been
proposed (Jälkö et al., 2016). We show that Bayesian DP allows to build VI that is both
accurate and differentially private by sampling from a variational distribution.

Table 5.1 highlights some aspects of different privacy definitions and illustrates how our
definition compares to prior work. Apart from the basic properties and the advanced
composition, we consider applicability and extent of guarantees. Under applicability, we
look at computational efficiency in real-world applications (“Runtime”), and whether or
not assumptions are realistic (“Assumptions”). For instance, we think that obtaining
sufficiently many i.i.d. samples to apply CLT in noiseless privacy, or correlation assump-
tions of the earlier Bayesian DP by Yang et al. (2015) are too idealistic. Note that this
category does not include assumptions about adversaries, but rather about data.
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Finally, under “Guarantee,” we state whether the provided guarantee is worst-case (W)
or a tail bound (P). Subscripts indicate either a domain (∆), or a distribution over which
the probability is computed. One aspect of the guarantee not outlined in the table is
resilience w.r.t. attackers’ background knowledge. Generally, DP notions are designed to
provide guarantees under any auxiliary information (except for coupled-worlds privacy,
which explicitly computes probability over auxiliary inputs). Nevertheless, we caution the
reader that this aspect may need additional research for data-aware notions. Hall et al.
(2011) do not discuss it in their paper. Bhaskar et al. (2011) examine some scenarios
where limited auxiliary information is available to attackers, but not about the protected
entries. In Bayesian DP, information that alters the belief about the data distribution
should be handled by the failure probability of the sample estimator (see Section 5.4.5).
However, we have not explored the case when adversaries have more prior information
about the privacy loss distribution (see Theorem 5) and leave it for future work.

5.3 Preliminaries

A large portion of this chapter relies heavily on a few definitions. Hence, we find it
important to refresh the reader’s memory in this section, even though some definitions
have already appeared earlier in this thesis. We also describe the general setting of the
problem and consider a more in-depth motivational example.

5.3.1 Definitions and Notation

We use D,D′ to represent neighbouring (adjacent) datasets. Unless otherwise specified,
these datasets differ in a single example x′ (i.e. either D′ = D ∪ {x′} or D = D′ ∪ {x′}).
Private learning outcomes (model parameters, neural network weights, etc., after applying
privacy mechanism) are denoted by w. Whenever ambiguous, we denote expectation
over data as Ex′ , and over the privacy mechanism randomness as Ew.

Recall the definitions of approximate differential privacy and privacy loss, both crucial
for understanding this chapter.

Definition 5 ((ε, δ)-Differential Privacy). A randomised function (algorithm) A : D → R
with domain D and range R satisfies (ε, δ)-differential privacy if for any two adjacent
datasets D,D′ ∈ D and for any set of outcomes S ⊂ R the following holds:

Pr [A(D) ∈ S] ≤ eε Pr
[
A(D′) ∈ S

]
+ δ.

Definition 7 (Privacy Loss). Privacy loss LA of a randomised algorithm A : D×Ξ→ R
for an outcome s ∈ R, datasets D,D′ ∈ D, and auxiliary information ξ ∈ Ξ is given by:

LA(w;D,D′, ξ) = log Pr [A(D, ξ) = w]
Pr [A(D′, ξ) = w] .
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As stated earlier, in the case of continuous distributions this ratio is actually the ratio of
probability density functions pA(w|ξ,D) and pA(w|ξ,D′), such that Pr[A(D, ξ) ∈ S] =∫
S pA(w|ξ,D)dw. For notational simplicity, we often omit the designation A (i.e. we
use p(w|ξ,D)) and other arguments, such as ξ, when it can be inferred from context.
We use L to denote the privacy loss random variable, which is generated by drawing
w ∼ p(w|ξ,D) and computing LA(w;D,D′, ξ) (see Dwork and Rothblum (2016, Section
2.1 and Definition 3.1)). Considering privacy loss random variable helps linking to
well-known divergences and concentration inequalities.

Let us also define the subsampled Gaussian mechanism. This is a version of the Gaussian
mechanism (Definition 8) applied to sampled subsets of inputs. It is popular in machine
learning, because it maps well to mini-batch learning.

Definition 12 (Subsampled Gaussian Mechanism). Subsampled Gaussian noise mecha-
nism for a function f : D → Rm, is defined as

Aq,σ(D) , f({x | x ∈ D, sampled with probability q}) +N (0, σ2Im),

where each element of D is sampled with probability q independently, without replacement.

We will also need the definition of Rényi divergence:

Definition 13. Rényi divergence of order λ between distributions P and Q, denoted as
Dλ(P‖Q) is defined as

Dλ(P‖Q) = 1
λ− 1 log

∫
p(x)

[
p(x)
q(x)

]λ−1
dx

= 1
λ− 1 log

∫
q(x)

[
p(x)
q(x)

]λ
dx,

where p(x) and q(x) are corresponding density functions of P and Q.

Analytic expressions for Rényi divergence exist for many common distributions and can
be found in (Gil et al., 2013). Van Erven and Harremos (2014) provide a good survey of
Rényi divergence properties in general.

5.3.2 Setting

We assume a general iterative learning algorithm, such that each iteration t produces a
non-private learning outcome g(t) (e.g. a gradient over a batch of data). This outcome
gets transformed into a private learning outcome w(t) that is used as a starting point
for the next iteration. The learning outcome can be made private by applying some
privacy noise mechanism (e.g. a Gaussian noise mechanism) or by drawing it from a
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distribution. In both cases, we say it comes from p(w(t)|w(t−1), D) (here we assume the
Markov property of the learning process for brevity of notation, but it is not necessary
in general). The process can run on subsamples of data, in which case w(t) comes from
the distribution p(w(t)|w(t−1), B(t)), where B(t) is a batch of data used for parameters
update at iteration t, and privacy is amplified through sampling (Balle et al., 2018). For
each iteration, we would like to compute a quantity ct (we call it a privacy cost) that
accumulates over the learning process and allows to compute privacy loss bounds ε, δ
using concentration inequalities.

The overall privacy accounting workflow does not significantly differ from prior work, but
is in fact a generalisation of the well-known moments accountant (Abadi et al., 2016).
Importantly, it is not tied to a specific algorithm or a class of algorithms, as long as one
can map it to the above setting.

5.3.3 Motivation

Before we proceed, we find it important to have a more in-depth look at our motivation
of the research on alternative definitions of privacy, as opposed to fully concentrating
on new mechanisms for DP. On the one hand, there is always a combination of data
and a desired statistic that would yield large privacy loss in DP paradigm, regardless of
the mechanism. In other words, there can always be data outliers that are difficult to
hide without a large drop in accuracy. On the other hand, we cannot realistically expect
companies to sacrifice model quality in favour of privacy. As a result, we get models with
impractical worst-case guarantees (as we demonstrate below) without any indication of
what is the privacy guarantee for the majority of users.

Consider the following example. The datasets D,D′ consist of income values for residents
of a small town. There is one individual x′ whose income is orders of magnitude higher
than the rest, and whose residency in the town is what the attacker wishes to infer. The
attacker observes the mean income w sanitised by a differentially private mechanism
with ε = ε0 (we consider the stronger, pure DP for simplicity). What we are interested
in is the change in the posterior distribution of the attacker after they see the private
model compared to prior (Mironov, 2017; Bun, 2017). If the individual is not present in
the dataset, the probability of w being above a certain threshold is extremely small. On
the contrary, if x′ is present, this probability is higher (say it is equal to r). The attacker
computes the likelihood of the observed value under each of the two assumptions, the
corresponding posteriors given a flat prior, and applies a Bayes optimal classifier. The
attacker then concludes that the individual is present in the dataset and is a resident.

By the above expression, r can only be eε0 times larger than the respective probability
without x′. However, if the re−ε0 is small enough, then the probability P (A) of the
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attacker’s guess being correct is as high as r/(r + re−ε0), or

P (A) = 1
1 + e−ε

. (5.1)

To put it in perspective, for a DP algorithm with ε = 2, the upper bound on the accuracy
of this attack is as high as 88%. For ε = 5, it is 99.33%. For ε = 10, 99.995%. Notably,
these values of ε are common in DP ML literature (Shokri and Shmatikov, 2015; Abadi
et al., 2016; Papernot et al., 2018), and can be even higher in real-world deployments1.

This guarantee does not tell us anything other than that this outlier cannot be protected
while preserving utility. But what is the guarantee for other residents of the town?
Intuitively, it should be much stronger. In the next section, we present a novel DP-based
privacy notion. It uses the same privacy mechanism and augments the general DP
guarantee with a much tighter guarantee for the expected case, and, by extension, for
any percentile of the user/data population.

5.4 Bayesian Differential Privacy

In this section, we define Bayesian differential privacy (BDP). We then state its properties
analogous to the classical DP, derive a practical privacy loss accounting method, and
discuss other aspects, such as relation to the moments accountant.

5.4.1 Definition

We start with the definition of strong Bayesian differential privacy (Definition 14) and
(weak) Bayesian differential privacy (Definition 15). The first provides a better intu-
ition, connection to concentration inequalities, and is being used for privacy accounting.
Unfortunately, it may not be closed under post-processing, and therefore, the actual
guarantee provided by BDP is stated in Definition 15 and mimics the (ε, δ)-differential
privacy (Dwork et al., 2014). The reason Definition 14 may pose a problem with post-
processing is that it does not consider sets of outcomes, and a routine that integrates
groups of values into one value could therefore invalidate the guarantee by increasing
the probability of exceeding the ratio beyond epsilon. On the other hand, it can still
be used for accounting with adaptive composition, because in this context, every next
step is conditioned on a single outcome of the previous step. This separation mirrors
the moments accountant approach of bounding tails of the privacy loss random variable
and converting it to the (ε, δ)-DP guarantee (Abadi et al., 2016), but does so in a more
explicit manner.

1https://www.macobserver.com/analysis/google-apple-differential-privacy/
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Definition 14 (Strong Bayesian Differential Privacy). A randomised function
(algorithm) A : D → R, with domain D and range R, satisfies (εµ, δµ)-strong
Bayesian differential privacy if for any two adjacent datasets D,D′ ∈ D, differing
in a single data point x′ ∼ µ(x), and auxiliary inputs ξ, the following holds:

Pr[LA(w;D,D′, ξ) ≥ εµ] ≤ δµ, (5.2)

where probability is taken over the randomness of the outcome w ∼ A(D,D′, ξ)
and the additional example x′ ∼ µ(x).

In the above definition, the probability is more formally defined as

Pr(L ≥ εµ) =
∫
µ(x′)

∫
pA(w|ξ,D)1{L(w;D,D′, ξ) ≥ εµ} dw dx′. (5.3)

We use the subscript µ to underline the main difference between the classic DP and
Bayesian DP: in the classical definition the probability is taken only over the randomness
of the outcome (w), while the BDP definition contains two random variables (w and x′).
Therefore, the privacy parameters ε and δ depend on the data distribution µ(x).

Addition of another random variable yields the change in the meaning of δµ compared to
the δ of DP. In Bayesian differential privacy, it also accounts for the privacy mechanism
failures in the tails of data distributions in addition to the tails of outcome distributions.

Remark 1. Strong BDP definition is analogous to probabilistic DP (see Definition 6).
However, we omit the absolute value of the privacy loss due to the symmetry with
respect to D and D′. Since the condition has to hold for any pair of datasets D,D′,
and L(w;D,D′, ξ) = −L(w;D′, D, ξ), we can use L instead of |L| and still proof all
the necessary properties of the definition. The same omission is used in the moments
accountant (see Abadi et al. (2016, Appendix A)).

Definition 15 (Bayesian Differential Privacy). A randomised function (algorithm)
A : D → R with domain D and range R satisfies (εµ, δµ)-Bayesian differential
privacy if for any two adjacent datasets D,D′ ∈ D, differing in a single data point
x′ ∼ µ(x), and for any set of outcomes S the following holds:

Pr [A(D) ∈ S] ≤ eεµ Pr
[
A(D′) ∈ S

]
+ δµ. (5.4)

Proposition 2. (εµ, δµ)-strong Bayesian differential privacy implies (εµ, δµ)-
Bayesian differential privacy.
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Let us also formulate some basic properties of Bayesian DP that mirror the properties of
the classic DP. The proofs of these properties, as well as the above proposition, can be
found in Appendix A.1.

First, the post-processing property, which only holds for the “weak” sense of BDP.

Proposition 3 (Post-processing). Let A : D → R be a (εµ, δµ)-Bayesian differ-
entially private algorithm. Then for any arbitrary randomised data-independent
mapping f : R → R′, f(A(D)) is (εµ, δµ)-Bayesian differentially private.

At the same time, the following two propositions can be proven for both “strong” and
“weak” variants of Bayesian DP.

Proposition 4 (Basic composition). Let Ai : D → Ri, ∀i = 1..k, be a sequence of
(εµ, δµ)-Bayesian differentially private algorithms. Then their combination, defined
as A1:k : D → R1 × . . .×Rk, is (kεµ, kδµ)-Bayesian differentially private.

Proposition 5 (Group privacy). Let A : D → R be a (εµ, δµ)-Bayesian differen-
tially private algorithm. Then for all pairs of datasets D,D′ ∈ D, differing in k
data points x1, . . . , xk s.t. xi ∼ µ(x) for i = 1..k, A(D) is (kεµ, kekεµδµ)-Bayesian
differentially private.

In the remainder of the chapter, whenever dependency on µ(x) can be inferred from the
context, we omit the subscript µ.

Remark 2. While Definitions 14 and 15 do not specify the distribution of any point
in the dataset other than the additional example x′, it is natural and convenient to
assume that all examples in the dataset are drawn from the same distribution µ(x). This
holds in many real-world applications, including all applications evaluated in this thesis.
Furthermore, it allows using samples from the dataset for estimating privacy loss, instead
of requiring knowing the true distribution. In this case, it is more appropriate to say
that x′ ∼ µ(x|D), and use the notation εµ|D and δµ|D, although we omit it for brevity.

Remark 3. We also assume that all data points are exchangeable (Aldous, 1985), i.e. any
permutation of data points has the same joint probability. It enables tighter accounting
for iterative applications of the privacy mechanism (see Sections 5.4.2 and 5.4.5), and is
naturally satisfied in the considered scenarios.
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5.4.2 Privacy Accounting

In the context of learning, it is important to be able to keep track of the privacy loss
over iterative applications of the privacy mechanism. And since the bounds provided by
the basic composition theorem are loose, we derive the advanced composition theorem
and develop a general accounting method for Bayesian differential privacy, the Bayesian
accountant (BA), that provides a tight bound on privacy loss and is straightforward to
implement. We draw inspiration from the moments accountant. In Section 5.4.6, we
show that it is actually a generalisation of the moments accountant.

Observe that Eq. 5.2 is a typical concentration bound inequality, which are well studied
in probability theory. One of the most common examples of such bounds is Markov’s
inequality. In its extended form, it states the following:

Pr [|L| ≥ ε | D, ξ] ≤ E [ϕ(|L|) | D, ξ]
ϕ(ε) , (5.5)

where ϕ(·) is a monotonically increasing non-negative function. It is immediately evident
that it provides a relation between ε and δ (i.e. δ = E[ϕ(|L|)]/ϕ(ε)), and in order to
determine them we need to choose ϕ and compute the expectation E[ϕ(|L(w;D,D′, ξ)|)].

We use the Chernoff bound that can be obtained by choosing ϕ(L) = eλL. It is widely
known because of its tightness, and although not explicitly stated, it is also used by
Abadi et al. (2016). The inequality in this case transforms to

Pr[L ≥ ε |D, ξ] ≤ E[eλL |D, ξ]
eλε

. (5.6)

This inequality requires the knowledge of the moment generating function of L or some
bound on it. The choice of the parameter λ can be arbitrary, because the bound holds
for any value of it, but it determines how tight the bound is. By simple manipulations
we obtain

E
[
eλL

∣∣∣ D, ξ] = E
[
e
λ log p(w|ξ,D)

p(w|ξ,D′)

∣∣∣∣ D, ξ]
= E

[(
p(w|ξ,D)
p(w|ξ,D′)

)λ ∣∣∣∣∣ D, ξ
]
. (5.7)

If the expectation is taken only over the outcome randomness, this expression is the
function of Rényi divergence (see Definiton 13) between p(w|ξ,D) and p(w|ξ,D′), and
following this path yields re-derivation of Rényi differential privacy (Mironov, 2017).
However, by also taking the expectation over additional examples x′ ∼ µ(x), we can
further tighten this bound.
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By the law of total expectation,

E
[(

p(w|ξ,D)
p(w|ξ,D′)

)λ ∣∣∣∣∣ D, ξ
]

= Ex′∼µ(x)

[
Ew∼p(w|ξ,D)

[(
p(w|ξ,D)
p(w|ξ,D′)

)λ∣∣∣∣∣x′
]]
, (5.8)

where the inner expectation is again the function of Rényi divergence, and the outer
expectation is over the distribution of a distinct example µ(x).

Combining Eq. 5.7 and 5.8 and plugging it in Eq. 5.6, we get

Pr[L ≥ ε] ≤ Ex′
[
eλDλ+1[p(w|ξ,D)‖p(w|ξ,D′)]−λε

]
. (5.9)

This expression determines how to compute ε for a fixed δ (or vice versa) for one
invocation of the privacy mechanism. However, to accommodate the iterative nature of
learning, we need to deal with the composition of multiple applications of the mechanism.
We already determined that our privacy notion is naively composable, but in order to
achieve better bounds we need a tighter composition theorem.

Let us first define the notion of privacy cost.

Definition 16 (Privacy Cost). Privacy cost c(λ, ξ, T ) for order λ, auxiliary input
ξ, datasets D,D′, and exponent r is defined as

cr(λ, ξ,D,D′) = logEx′
[
erλDλ+1(pD‖pD′ )

] 1
r (5.10)

where pD = p(w|ξ,D), pD′ = p(w|ξ,D′).

We can now formulate the advanced composition theorem.

Theorem 1 (Advanced Composition). Let A(1:T ) = (A(1), . . . ,A(T )) be a sequence
of privacy mechanisms, ξ(1:T ) = (ξ(1), . . . , ξ(T )) a sequence of auxiliary inputs to
mechanisms. Then the total privacy cost c(λ, ξ(1:T ), D,D′) of A(1:T ) satisfies

c(λ, ξ(1:T ), D,D′) ≤
T∑
t=1

cT (λ, ξ(t), D,D′).

Proof. We follow the main steps of the moments accountant proof (Abadi et al., 2016).

Let w(1), . . . , w(T ) denote outputs of private mechanisms. The total privacy loss can be
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written as

L(1:T ) = log Pr[A(D, ξ(1)) = w(1), . . . ,A(D, ξ(T )) = w(T ) | ξ(1:T ), D]
Pr[A(D′, ξ(1)) = w(1), . . . ,A(D′, ξ(T )) = w(T ) | ξ(1:T ), D′]

(5.11)

= log
T∏
t=1

p(w(t) | ξ(t), D)
p(w(t) | ξ(t), D′)

(5.12)

=
T∑
t=1

L(t) (5.13)

Unlike the composition proof of the moments accountant in Abadi et al. (2016), we
cannot simply swap the product and the expectation in our proof, because the additional
example x′ remains the same in all applications of the privacy mechanism and probability
distributions will not be independent. However, we can use generalised Hölder’s inequality:∥∥∥∥∥

T∏
t=1

ft

∥∥∥∥∥
r

≤
T∏
t=1
‖ft‖pt , (5.14)

where pt are such that ∑T
t=1

1
pt

= 1
r , and ‖f‖r = (

∫
S |f |rdx)1/r.

Choosing r = 1 and pt = T :

E
[
eλL

(1:T )
∣∣∣ D, ξ] = E

[
T∏
t=1

e
λ log p(w(t) | ξ(t),D)

p(w(t) | ξ(t),D′)

∣∣∣∣∣ D, ξ
]

(5.15)

= Ex′
[
Ew

[
T∏
t=1

e
λ log p(w(t) | ξ(t),D)

p(w(t) | ξ(t),D′)

∣∣∣∣∣ x′
]]

(5.16)

= Ex′
[
T∏
t=1

Ew

[
e
λ log p(w(t) | ξ(t),D)

p(w(t) | ξ(t),D′)

∣∣∣∣∣ x′
]]

(5.17)

= Ex′
[
T∏
t=1

eλDλ+1(pD‖pD′ )
]

(5.18)

≤
T∏
t=1

Ex′
[
eTλDλ+1(pD‖pD′ )

] 1
T , (5.19)

where (5.17) is because w(t) is independent of w(1:t−1) given ξ(t).

Taking logarithm on both sides yields the claim.

The upper bound in the theorem may appear loose, but we found that the inequality
tends to be tight in practice. In Section 5.5.1, we show that the privacy curve over
iterations obtained via the above theorem is close to the one obtained by naïvely swapping
the product and the expectation.
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We can now relate ε and δ parameters of BDP through the privacy cost.

Theorem 2. Let the algorithm A run for T steps and produce a sequence of private
outcomes w(1) . . . w(T ) using a known probability distribution p(w(t)|ξ(t), D). Then,
for a fixed ε

log δµ ≤ max
ξ

T∑
t=1

cT (λ, ξ(t), D,D′)− λε.

Corollary 1. Under the conditions above, for a fixed δ:

εµ ≤
1
λ

max
ξ

T∑
t=1

cT (λ, ξ(t), D,D′)− 1
λ

log δ.

Theorems 1, 2 and Corollary 1 immediately provide us with an efficient privacy accounting
algorithm. During training, we compute the privacy cost cT (λ, ξ(t), D,D′) for each
iteration t, accumulate it, and then use to compute ε, δ pair. This process is ideologically
close to that of the moment accountant, but accumulates a different quantity (note the
change from the privacy loss random variable to Rényi divergence). We further explore
this connection in Section 5.4.6.

The link to Rényi divergence is a great advantage for applicability of this framework: as
long as the outcome distribution p(w|ξ,D) has a known expression for Rényi divergence,
it can be used within a privacy mechanism, and our accountant can track its privacy
loss. Analytic expressions for Rényi divergence of many common distributions can be
found in (Gil et al., 2013; Van Erven and Harremos, 2014).
Remark 4 (Optimal choice of λ). Chernoff inequality holds for any parameter λ > 0,
and thus, to get the optimal estimates of ε, δ one should minimise the right-hand side in
Theorem 2 w.r.t. λ. While Abadi et al. (2016) suggest computing moments for λ ≤ 32,
we observe that since the moment generating function is log-convex it is possible to
find an optimal value of λ that minimises the total bound. For some distributions, e.g.
Gaussian without subsampling, it can be found analytically by computing the derivative
and setting it to 0. Unfortunately, for a more interesting case of subsampled privacy
mechanisms, this is less straightforward. Section 5.5.1 provides some more details on
how ε depends on the choice of λ.

5.4.3 Subsampled Gaussian Mechanism

In this section, we consider the subsampled Gaussian noise mechanism (Definition 12),
the primary mechanism used in privacy-preserving machine learning. It differs from
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the original mechanism by the fact that it is applied on batches of data sampled with
some probability rather than the whole dataset. In this case, privacy is amplified by
sampling (Abadi et al., 2016).

The outcome distribution p(w(t) | w(t−1), D′) in this case is equivalent to the mixture
of two Gaussians p(w(t) | w(t−1), D′) = (1 − q)N (gt, σ2) + qN (g′t, σ2), where gt and g′t
are non-private outcomes at the iteration t computed on a batch without x′ and with x′
correspondingly, σ is the noise parameter of the mechanism, and q is the data sampling
probability. Plugging the outcome distribution into the formula for Rényi divergence, we
get the following result for the privacy cost.

Theorem 3 (Privacy Cost of Subsampled Gaussian Mechanism). Given the
Gaussian noise mechanism with the noise parameter σ and subsampling probability
q, the privacy cost for λ ∈ N at iteration t can be expressed as

cT (λ, ξ(t), D,D′) = max
{
cLT (λ, ξ(t), D,D′), cRT (λ, ξ(t), D,D′)

}
,

where

cLT (λ, ξ(t), D,D′) = 1
T

logEx′
[
Ek∼B(λ+1,q)

[
e
k2−k
2σ2 ‖gt−g′t‖2

]T]
,

cRT (λ, ξ(t), D,D′) = 1
T

logEx′
[
Ek∼B(λ,q)

[
e
k2+k
2σ2 ‖gt−g′t‖2

]T]
,

and B(λ, q) is the binomial distribution with λ experiments and the probability of
success q.

Proof. Without loss of generality, assume D′ = D ∪ {x′}. For brevity, let dt = ‖gt − g′t‖.

Let us first consider Dλ+1(p(w|D′)‖p(w|D)):

Ew

[(
p(w|D′)
p(w|D)

)λ+1]

= Ew

((1− q)N (0, σ2) + qN (dt, σ2)
N (0, σ2)

)λ+1
 (5.20)

= Ew

((1− q) + q
N (dt, σ2)
N (0, σ2)

)λ+1
 (5.21)

= Ew

[(
(1− q) + qe

(w−dt)2−w2

2σ2

)λ+1]
(5.22)
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= Ew

((1− q) + qe
2dw−d2

t
2σ2

)λ+1
 (5.23)

= Ew

[
λ+1∑
k=0

(
λ+ 1
k

)
qk(1− q)λ+1−ke

2dtkw−kd
2
t

2σ2

]
(5.24)

=
λ+1∑
k=0

(
λ+ 1
k

)
qk(1− q)λ+1−kEw

[
e

2dtkw−kd
2
t

2σ2

]
(5.25)

=
λ+1∑
k=0

(
λ+ 1
k

)
qk(1− q)λ+1−ke

k2−k
2σ2 d2

t (5.26)

= Ek∼B(λ+1,q)

[
e
k2−k
2σ2 ‖gt−g′t‖2

]
, (5.27)

Here, in (5.34) we used the binomial expansion, in (5.35) the fact that the factors in front
of the exponent do not depend on w, and in (5.26) the property Ew

[
exp(2aw/(2σ2))

]
=

exp(a2/(2σ2)) for w ∼ N (0, σ2). Plugging the above in Eq. 5.10, we get the expression
for cLt (λ).

Computing Dλ+1(p(w|D)‖p(w|D′)) is a little more challenging. Let us first change to
Dλ(p(w|D)‖p(w|D′)), so that the expectation is taken over N (0, σ2) (see Definition 13).
Then, we can bound it observing that f(x) = 1

x is convex for x > 0 and using the
definition of convexity, and apply the same steps as above:

Ew

[(
p(w|D)
p(w|D′)

)λ]

= Ew

( N (0, σ2)
(1− q)N (0, σ2) + qN (dt, σ2)

)λ (5.28)

≤ Ew

((1− q) + qe
d2
t−2dw

2σ2

)λ (5.29)

= Ek∼B(λ,q)

[
e
k2+k
2σ2 ‖gt−g′t‖2

]
(5.30)

We have not encountered any instance ofDλ+1(p(w|D′)‖p(w|D)) < Dλ+1(p(w|D)‖p(w|D′))
in practice, even computing the latter using numerical integration instead of the above
upper bound. Although we have not investigated it in detail, it may be possible to prove
that the former is always greater than the latter (Mironov et al., 2019).

5.4.4 General Subsampled Mechanism

Let us now consider a general subsampled mechanism. Assume there is an abstract
outcome distribution p(w|·). In the previous section, we had p(w | D′) = (1−q)N (g, σ2)+
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qN (g′, σ2), where g and g′ are non-private outcomes obtained correspondingly from the
batches B, without the additional example x′, and B′, with the additional example x′.
In this section, let p(w | D′) be defined in a more general way:

p(w | D′) = (1− q)p(w | B) + qp(w | B′). (5.31)

We note that there is some prior work in this direction for general subsampled Rényi DP
mechanisms (Wang et al., 2019). However, we believe that our formulation and the proof
are more intuitive because of the direct parallels with the special case of subsampled
Gaussian mechanisms and a more straightforward and shorter proving technique.

Theorem 4 (Privacy Cost of General Subsampled Mechanism). Given a sub-
sampled privacy mechanism with the outcome distribution p(w|·) and sampling
probability q, the privacy cost for λ ∈ N at iteration t can be expressed as

cT (λ, ξ(t), D,D′) = max
{
cLT (λ, ξ(t), D,D′), cRT (λ, ξ(t), D,D′)

}
,

such that

cLT (λ, ξ(t), D,D′) = 1
T

logEx′
[
Ek∼B(λ+1,q)

[
ekDk+1(p(w|B′)|p(w|B))

]T ]
,

cRT (λ, ξ(t), D,D′) = 1
T

logEx′
[
Ek∼B(λ,q)

[
ekDk+1(p(w|B)|p(w|B′))

]T ]
,

where B(λ, q) is the binomial distribution with λ experiments and the probability of
success q, and B′, B denote sampled subsets of data with and without the additional
example x′ accordingly.

Proof. Similarly to the Gaussian mechanism,

Ew

[(
p(w|D′)
p(w|D)

)λ+1]
= Ew

[((1− q)p(w|B) + qp(w|B′)
p(w|B)

)λ+1]
(5.32)

= Ew

[(
(1− q) + q

p(w|B′)
p(w|B)

)λ+1]
(5.33)

= Ew

[
λ+1∑
k=0

(
λ+ 1
k

)
qk(1− q)λ+1−k

(
p(w|B′)
p(w|B)

)k]
(5.34)

=
λ+1∑
k=0

(
λ+ 1
k

)
qk(1− q)λ+1−kEw

[(
p(w|B′)
p(w|B)

)k]
(5.35)

= Ek∼B(λ+1,q)

[
Ew

[(
p(w|B′)
p(w|B)

)k]]
(5.36)
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= Ek∼B(λ+1,q)
[
ekDk+1(p(w|B′)|p(w|B))

]
, (5.37)

where B′ and B denote batches of data in which the additional example x′ was and was
not sampled correspondingly. In (5.34) we use the binomial expansion, in (5.35) the fact
that the factors in front of the exponent do not depend on w.

For the inverse direction, Dλ+1(p(w|D)‖p(w|D′)), change to Dλ(p(w|D)‖p(w|D′)) where
the expectation is taken over p(w|D). Then, since f(x) = 1

x is a convex function for x > 0,
we can use the definition of convexity (more specifically, that 1

(1−q)x+qy ≤ (1− q) 1
x + q 1

y ),
and then apply the same steps as above:

Ew

[(
p(w|D′)
p(w|D)

)λ]
= Ew

[(
p(w|B)

(1− q)p(w|B) + qp(w|B′)

)λ]
(5.38)

≤ Ew

[(
(1− q) + q

p(w|B)
p(w|B′)

)λ]
(5.39)

= Ek∼B(λ,q)

[
Ew

[(
p(w|B)
p(w|B′)

)k]]
(5.40)

= Ek∼B(λ+1,q)
[
ekDk+1(p(w|B)|p(w|B′))

]
. (5.41)

Combining the above with Definition 16, we can compute cT (λ, ξ(t), D,D′).

Remark 5. For non-integer λ, one can also perform numerically stable computation
using the Gauss error function, described for the moments accountant and RDP by
Mironov et al. (2019).

5.4.5 Privacy Cost Estimator

Computing cT (λ, ξ(t), D,D′) precisely requires access to the data distribution µ(x), which
is unrealistic. Therefore, we need an estimator for Ex′ [eλDλ+1(pt‖qt)].

Typically, having access to the distribution samples, one would use the law of large
numbers and approximate the expectation with the sample mean. This estimator is
unbiased and converges with the growing number of samples. However, these are not
the properties we are looking for. The most important property of the estimator in our
context is that it does not underestimate Ex′ [eλDλ+1(pt‖qt)], because the bound (Eq. 5.6)
would not hold for this estimate otherwise.

To solve this, we employ the Bayesian view of the parameter estimation problem (Oliphant,
2006) and design an estimator with the single property: given a fixed probability γ, it
returns the value that overestimates the true expectation with probability 1 − γ. We
then incorporate the estimator uncertainty γ in δ.
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Binary Case

Let us demonstrate the process of constructing the expectation estimator with the afore-
mentioned property on a simple binary example. This technique is based on (Oliphant,
2006) and it translates directly to other classes of distributions with minor adjustments.
We also address a natural concern about taking into account the data not present in the
dataset by providing a specific example.

Let the data {x1, x2, . . . , xN}, such that xi ∈ {0, 1}, have a common mean and a common
variance. As this information is insufficient to solve our problem, let us also assume
that the data comes from the maximum entropy distribution. This assumption adds the
minimum amount of information to the problem and makes our estimate pessimistic.

For the binary data with the common mean ρ, the maximum entropy distribution is the
Bernoulli distribution:

f(xi|ρ) = ρxi(1− ρ)1−xi , (5.42)

where ρ is also the probability of success (xi = 1). Then, for the entire dataset:

f(x1, . . . , xN |ρ) = ρN1(1− ρ)N0 , (5.43)

where N1 is the number of ones, and N0 is the number of zeros in the dataset.

We impose the flat prior on ρ, assuming all values in [0, 1] are equally likely, and use
Bayes’ theorem to determine the distribution of ρ given the data:

f(ρ|x1, . . . , xN ) = Γ(N0 +N1 + 2)
Γ(N0 + 1)Γ(N1 + 1)ρ

N1(1− ρ)N0 , (5.44)

where the normalisation constant in front is obtained by setting the integral over ρ equal
to 1.

Now, we can use the above distribution of ρ to design an estimator ρ̂, such that it
overestimates ρ with high probability, i.e. Pr [ρ ≤ ρ̂] ≥ 1− γ. Namely, ρ̂ = F−1(1− γ),
where F−1 is the inverse of the CDF:

F−1(1− γ) = inf{z ∈ R :
∫ z

−∞
f(t|x1, . . . , xN )dt ≥ 1− γ}.

We refer to γ as the estimator failure probability, and to 1−γ as the estimator confidence.

To demonstrate the resilience of this estimator to unseen data, consider the following
simple example. Let the true expectation be 0.01, and let the data consist of 100 zeros,
and no ones. A typical “frequentist” mean estimator would confidently output 0. However,
our estimator would never output 0, unless the confidence is set to 0. When the confidence
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is set to 1 (γ = 0), the output is 1, which is the most pessimistic estimate. Finally, the
output ρ̂ = ρ = 0.01 will be assigned the failure probability γ = 0.99101 ≈ 0.36, which is
the probability of not drawing a single 1 in 101 draws.

In a real-world system, the confidence would be set to a much higher level (in our experi-
ments, we use γ = 10−15), and the probability of 1 would be significantly overestimated.
Thus, unseen data do not present a problem for this estimator, because it exaggerates
the probability of data that increase the estimated expectation.

Continuous Case

For applications in this thesis, we are primarily interested in continuous distributions.

Definition 17. Let us define the following m-sample estimator of cT (λ, ξ,D,D′)
for continuous privacy loss distributions with existing mean and variance:

ĉT (λ, ξ,D,D′; γ,m) = 1
T

log
[
M + F−1(1− γ,m− 1)√

m− 1
S

]
, (5.45)

where

M = 1
m

m∑
i=1

eTλD̂λ+1 ,

S =

√√√√ 1
m

m∑
i=1

e2TλD̂λ+1 −M2,

D̂(t)
λ+1 = max {Dλ+1(p̂D‖p̂D′), Dλ+1(p̂D′‖p̂D)} ,

p̂D = p(w | ξ,D),
p̂D′ = p(w | ξ,D \ {xi}),

and F−1(1− γ,m− 1) is the inverse of the Student’s t-distribution CDF at 1− γ
with m− 1 degrees of freedom.

Since in many cases learning is performed on mini-batches, we can compute Rényi
divergence in a similar way, on batches B(t) instead of the entire dataset D.

Theorem 5. Bayesian estimator ĉT (λ, ξ,D,D′; γ,m) of the privacy cost, under
maximum entropy assumptions (e.g. uninformative priors), satisfies

Pr
[
ĉT (λ, ξ,D,D′; γ,m) < cT (λ, ξ,D,D′)

]
≤ γ.
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Proof. The proof is similar to the binary example above, with minor adjustments. First
of all, we can drop the logarithm from our consideration because of its monotonicity.
Now, assuming that samples eλD̂

(t)
λ+1 have a common mean and a common variance,

and applying the maximum entropy principle in combination with an uninformative
(flat) prior, one can show that the quantity 1

S(t)

(
M(t)− E

[
eλD̂

(t)
λ+1

])√
m− 1 follows

the Student’s t-distribution with m− 1 degrees of freedom. See (Oliphant, 2006) for a
more in depth discussion of the Bayesian perspective on mean and variance estimation
and derivation of the corresponding posterior distributions. Finally, we use the inverse of
the Student’s t CDF to find the value that this random variable would only exceed with
probability γ.

Remark 6. By adapting the maximum entropy probability distribution an equivalent
estimator can be derived for other classes of distributions (e.g. discrete).

To avoid introducing new parameters in the privacy definition, we can incorporate the
probability γ of underestimating the true expectation in δ. We can re-write:

Pr[LA(w(t);D,D′, ξ) ≥ ε]

= Pr
[
LA(w(t);D,D′, ξ) ≥ ε, ĉT (λ, ξ,D,D′; γ,m) ≥ cT (λ, ξ(t), D,D′)

]
+ Pr

[
LA(w(t);D,D′, ξ) ≥ ε, ĉT (λ, ξ,D,D′; γ,m) < cT (λ, ξ(t), D,D′)

]
.

When ĉT (λ, ξ,D,D′; γ,m) ≥ cT (λ, ξ(t), D,D′), using the Chernoff inequality, the first
summand is bounded by β = exp(∑T

t=1 ĉT (λ, ξ,D,D′; γ,m)− λε). At the same time,

Pr[LA(w(t);D,D′, ξ) ≥ ε, ĉT (λ, ξ,D,D′; γ,m) < cT (λ, ξ(t), D,D′)]
≤ Pr[ĉT (λ, ξ,D,D′; γ,m) < cT (λ, ξ(t), D,D′)]
≤ γ.

Therefore, the true δµ is bounded from above by δ = β + γ, and despite the incomplete
data, we can claim that the mechanism is (ε, δ)-Bayesian differentially private.

Remark 7. This step further changes the interpretation of δ in Bayesian differential
privacy compared to the classic DP. Apart from the probability of the privacy loss
exceeding ε, e.g. in the tails of its distribution, it also incorporates our uncertainty
about the true data distribution (in other words, the probability of underestimating the
true expectation because of not observing enough data samples). It can be intuitively
understood as accounting for unobserved (but feasible) data in δ, rather than in ε.

Remark 8. We chose Bayesian approach because it provides tighter bounds. However,
it introduces a subjective element of prior. An alternative technique, albeit with looser
bounds, would be to use an empirical variation of concentration inequalities, e.g. empirical
Bernstein bounds (Maurer and Pontil, 2009).
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Algorithm 2 DP-SGD with Bayesian differential privacy accounting.
Input:
Dataset D = {x1, · · · , xN}, loss function L(w,D) = 1

N

∑
i L(w, xi).

Parameters: learning rate ηt, noise scale σ, batch size B, gradient norm bound C.

Initialise w0 randomly, Bayesian accountant with λ, q, σ, C, T
for t ∈ [1..T ] do
Bp.c.t ← sample points for estimating privacy cost
gt(xi)← ∇wL(w(t−1), xi),∀i ∈ Bp.c.t . Compute gradients for BA
ĉt ← AccumulatePrivacyCost(ĉt−1, {gt(xi)}) . Estimate privacy cost

Bt ← sample points with probability q
gt ← ∇wL(w(t−1),Bt) . Compute gradient for SGD
ḡt ← gt/max

(
1, ‖gt‖2

C

)
. Clip gradients

g̃t ← 1
B

(∑
i ḡt(xi) +N (0, σ2C2I)

)
. Add noise

w(t) ← w(t−1) − ηtg̃t . Make a gradient step
end for
(εµ, δµ)← GetPrivacy(ĉT )

Output: w(T ), (εµ, δµ).

Algorithm 2 summarises privacy accounting for Bayesian DP in a pseudo-code example
with DP-SGD.

5.4.6 Discussion

Relation to DP

To better understand how the BDP bound relates to the traditional DP, consider the
following conditional probability:

∆(ε, x′) = Pr
[
LA(w;D,D′, ξ) > ε | D,D′ = D ∪ {x′}

]
. (5.46)

The moments accountant outputs δ that upper-bounds ∆(ε, x′) for all x′. It is not true
in general for other accounting methods, but let us focus on MA, as it is by far the most
popular. Consequently, the MA bound is

max
x′

∆(ε, x′) ≤ δ, (5.47)

where ε is a chosen constant. At the same time, BDP bounds the probability that is not
conditioned on x′, but we can transform one to another through marginalisation and get:

Ex′
[
∆(ε, x′)

]
≤ δµ. (5.48)
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Since ∆(·) is a non-negative random variable in x, we can apply Markov’s inequality
and obtain a tail bound on it using δµ. We can therefore find a pair (ε, δ)p that holds
for any percentile p of the data distribution, not just in expectation. In our experiments
in Section 5.5, we consider bounds well above 99th percentile, so it is very unlikely to
encounter data for which the equivalent DP guarantee doesn’t hold. Moreover, it is
possible to characterise privacy by building a curve for different percentiles, and hence,
gain more insight into how well users and their data are protected.

Relation to Random DP

Continuing the logic of the previous section, we can relate our notion to random DP (Hall
et al., 2011). To do so, consider also dependence on D: ∆(ε, x′, D).

First, recall the definition of (ε, γ)-random DP:

Pr
[
e−ε ≤ Pr[A(D) ∈ S]

Pr[A(D′) ∈ S] ≤ e
ε
]
≥ 1− γ, (5.49)

where D and D′ are neighbouring datasets, drawn i.i.d. from some common distribution
P , and the probability is w.r.t. the n+ 1-fold product measure Pn+1.

Extending the derivations above, for Bayesian DP bound, we have

max
D

Ex′
[
∆(ε, x′, D)

]
≤ δµ, (5.50)

while for (ε, γ)-random DP bound,

ED
[
Ex′

[
∆(ε, x′, D)

]]
≤ γ. (5.51)

In some cases, Bayesian DP and random DP can actually be equivalent. For example,
when private outcomes for x′ are independent of the rest of the dataset D.

Relation to Moments Accountant and RDP

As mentioned in Section 5.4.2, omitting the expectation over the data distribution
and further simplifying Eq. 5.9, we can recover the relation between Rényi differential
privacy and (ε, δ)-DP. Given the connections between RDP and various instantiations of
concentrated DP (Mironov et al., 2019), we can establish analogous relations between
BDP and CDP.

At the same time, our accounting technique closely resembles the moments accountant.
In fact, we can show that the moments accountant is a special case of Theorem 3. The
proof sketch goes as follows. Imagine we do not possess any information on the data
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distribution. Then a sensible choice in our framework would be to assume an improper
uniform data prior over the entire space. In order to match the moments accountant
bound, we need ‖gt − g′t‖ = C in Theorem 3. Due to the gradient clipping, ‖gt − g′t‖
is always ≤ C, but there is a set of gradients, for which it is < C. However, this is a
bounded set with finite probability mass, and because of the improper uniform prior,
there are infinitely many sets with the same probability mass that have ‖gt − g′t‖ = C.
Effectively, it amounts to ignoring the data distribution information and substituting the
expectation by maxD,D′ , which is the exact moments accountant bound.

Sensitivity

One may notice that throughout the chapter, apart from Definition 8, we did not mention
an important concept of differential privacy—sensitivity. Indeed, bounded sensitivity is
not as essential for Bayesian differential privacy, because extreme individual contributions
are mitigated by their low probability. However, in practice it is still advantageous to
restrict sensitivity in order to have a better control of the accumulated privacy loss and
avoid unwanted spikes. We investigate this aspect in Section 5.5.1. Moreover, bounding
sensitivity ensures that the privacy mechanism is also differentially private and provides
guarantees for data for which the additional assumptions do not hold.

Privacy of ĉT (λ, ξ,D,D′; γ,m)

Due to calculating ĉt(λ) from data, our privacy guarantee becomes data-dependent and
may potentially leak information. To obtain a theoretical bound on this leakage, we need
to get back to the maximum entropy assumption in Section 5.4.5, and assume that M(t)
and S(t) are following some specific distributions, such as Gaussian and χ2 distributions.
Hence, in case of simple random sampling, these statistics for two neighbour datasets are
differentially private and the privacy parameters can be computed using Rényi divergence.
Furthermore, these guarantees are controlled by the number of samples used to compute
the statistics: the more samples are used, the more accurate the statistics are and the
less privacy leakage occurs. This property can be used to control estimates privacy
without sacrificing their tightness, only at the cost of extra computation time. Without
distributional assumptions, the bound can be computed in the limit of the sample size
used by the estimator, using the CLT.

Another possible solution could be based on computing the estimator from noisy data,
ensuring the same level of privacy as the trained model. One can also prove that it does
not result in underestimation of the real privacy cost. However, based on our preliminary
experiments, this approach requires more investigation of its practicality because the
obtained bounds are looser.

Finally, one should consider the fact that the information from many high-dimensional

77



Chapter 5. Bayesian Differential Privacy

vectors gets first compressed down to their pairwise distances, which are not as informative
in high-dimensional spaces (i.e. the curse of dimensionality), and then down to one
number. We believe that at this rate of compression very little knowledge can be gained
by an attacker in practice.

The first approach would provide little information about real-world cases due to poten-
tially unrealistic assumptions, and the second one is too loose in estimation. Hence, we
opt for the third approach. We examine pairwise gradient distances of the points within
the training set and outside, and demonstrate that the privacy leakage is not statistically
significant in practice (see Section 5.5.2).

5.5 Evaluation

This experimental section comprises three parts. First, we study the behaviour of Bayesian
differential privacy and the Bayesian accountant on synthetic data. More specifically, we
examine the trade-off between the added noise and the privacy guarantee, and how well
mechanisms compose over multiple steps. We compare these to the state-of-the-art DP
results obtained by the moments accountant (Abadi et al., 2016). Second, we consider
the context of deep learning. In particular, we use the differentially private stochastic
gradient descent (DP-SGD), a well known privacy-preserving learning technique broadly
used in combination with the moments accountant, to train neural networks on classic
image classification datasets MNIST and CIFAR10. We then compare the accuracy and
privacy guarantees obtained under BDP and under DP. Finally, we study variational
inference, a popular probabilistic method that is largely overlooked in private learning
research, and adapt our framework to it.

In Sections 5.5.1 and 5.5.2, we use the Gaussian noise mechanism with standard deviation
2Cσ. We assume that the input to the privacy mechanism is a batch of gradients. For
the moments accountant, these gradients are always clipped to C before adding noise (i.e.
the gradients are scaled, such that their L2 norm does not exceed C). For the Bayesian
accountant, it may be clipped or not, which is always stated over figures or in the text.
Whenever the privacy mechanism is invoked repeatedly, Theorem 1 is used to compute
the Bayesian ε over multiple learning iterations (steps).

As stated above, DP and BDP can use the same privacy mechanism and be accounted in
parallel to ensure the DP guarantees hold if BDP assumptions fail. Thus, all comparisons
in this section should be viewed in the following way: the reported BDP guarantee would
apply to typical data (all data drawn from the same distribution as the dataset); the
reported DP guarantee would apply to all other data; their difference is the advantage we
gain by using BDP for typical data. In some experiments we use smaller noise variance
for BDP in order to speed up training, meaning that the reported BDP guarantees will
further improve if noise variance is increased to DP levels.
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(a) C = 0.01-quantile of ‖∇f‖.
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(b) C = 0.50-quantile of ‖∇f‖.
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(c) C = 0.99-quantile of ‖∇f‖.

Figure 5.1 – Dependency between σ and ε for different C when clipping for both DP and
BDP.
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(a) C = 0.05-quantile of ‖∇f‖.
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(b) C = 0.50-quantile of ‖∇f‖.
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(c) C = 0.95-quantile of ‖∇f‖.

Figure 5.2 – Dependency between σ and ε for different C when clipping for DP and not
clipping for BDP.

Remark 9. Running Bayesian accountant in a forward manner, as we do in this section
and remaining chapters, only computes privacy guarantees for a particular “training
context”—a specific path taken by the optimiser in the parameter space—and indicates
what guarantees can be achieved in principle. This is done for comparison purposes. A
proper implementation would set a bound upfront and ensure that it is not exceeded,
regardless of the training path (maximisation over auxiliary inputs in Theorem 2 and
Corollary 1). Since we observe very little privacy loss variance in our experiments, we
believe the reported guarantees are not far from the actual.

5.5.1 Behaviour of Bayesian Differential Privacy

Let us start by studying the behaviour of Bayesian differential privacy with regards to
its parameters, as well as in comparison to classic differential privacy. All experiments
in this section are carried out on synthetic data, but as we show in the next section
these results hold for real data. The synthetic gradients are drawn from the Weibull
distribution with the shape parameter < 1 to imitate a more difficult case of heavy-tailed
gradient distributions.
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Effect of σ and bounded sensitivity

The primary goal of our research is to obtain more meaningful privacy guarantees
sacrificing as little utility as possible. The main factor in the loss of utility is the variance
of the noise we add during training. Therefore it is critical to examine how our guarantee
behaves compared to the classic DP for the same amount of noise. Or equivalently, how
much noise does it require to reach the same ε.

As stated above, there are two possible regimes of operation for the Gaussian noise
mechanism under Bayesian differential privacy: with bounded sensitivity and with
unbounded sensitivity. The first is just like the classic DP: there is a maximum bound
on the contribution of an individual example, and the noise is scaled to it. The second
does not have a bound on contribution and mitigates it by taking into account the low
probability of extreme contributions.

Figures 5.1 and 5.2 demonstrate the dependency between σ and ε for different clipping
thresholds C chosen relative to the quantiles of the gradient norm distribution. If we
bound sensitivity by clipping the gradients, it ensures that BDP always requires less
noise than DP to reach the same ε, as seen in Figure 5.1. As we decrease the clipping
threshold C, more and more gradients get clipped and the BDP curve approaches the DP
curve (Figure 5.1a). However, as we observe in Figure 5.2 comparing DP with bounded
sensitivity and BDP with unbounded sensitivity, using unclipped gradients results in less
consistent behaviour. It may require a more thorough search for the right noise variance
to reach the same ε.

Composition

In this experiment, we study the growth rate of the privacy loss over a number of
invocations of the mechanism. We do not clip gradients for BDP in order to show the
raw effect of the signal-to-noise ratio on the privacy loss evolution behaviour.

In Figure 5.3, we plot ε as a function of steps for different levels of noise. Naturally, as
the noise standard deviation gets closer to the expected gradients norm, the growth rate
of the privacy loss decreases dramatically. Even when the noise is at the 0.25-quantile,
the Bayesian accountant matches the moments accountant. It is worth noting, that
DP behaves the same in all these experiments because the gradients get clipped at the
noise level C. Introducing clipping for BDP yields the behaviour of Figure 5.3d, as we
demonstrate in the next section on real data.
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Figure 5.3 – Evolution of ε over multiple steps of the Gaussian noise mechanism with
σ = C for DP (with clipping) and BDP (without clipping). Sub-captions indicate the
noise variance relative to the gradient norms distribution.
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Figure 5.4 – Dependency of λ and ε for different clipping thresholds C, q = 64/60000,
σ = 1.0.

Effect of λ

As mentioned in Section 5.4.2, the privacy cost, and therefore the final value of ε, depend
on the choice of λ. We run the Bayesian accountant for the Gaussian mechanism with
the fixed pairwise gradient distances (s.t. these results apply exactly to the moments
accountant) for different signal-to-noise ratios and different λ.

Depicted in Figure 5.4 is ε as a function of λ for 10000 steps. We observe that λ has
a clear effect on the final ε value. In some cases this effect is very significant and the
change is sharp. It suggests that in practice one should be careful about the choice of
λ. We also note that for lower signal-to-noise ratios (e.g. C = 0.1, σ = 1) the optimal
choice of λ is much further on the real line and may well be outside the typically range
computed in the literature.

Effect of Hölder’s inequality in Theorem 1

In the advanced composition theorem, we use generalised Hölder’s inequality in order to
decompose the total privacy cost of the algorithm into privacy costs of each iteration. Its
use is necessitated by the fact that the additional training example that we are trying
to protect stays the same throughout all invocations of the privacy mechanism. But it
raises a question about the sharpness of this bound, and we address it by performing a
comparison with the naïve solution of simply swapping the produce and the expectation.

We again run experiments with synthetic gradients, generated by Weibull distribution, and
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Figure 5.5 – Illustration of the effect of Hölder’s inequality in Theorem 1. Each graph
depicts ε over multiple steps of the Gaussian noise mechanism with σ = C for BDP with
independence assumption, and for BDP with Hölder’s inequality. Sub-captions indicate
the noise variance relative to the gradient norms distribution.
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compare two privacy curves: the one obtained using the theorem with Hölder’s inequality,
and the other one obtained by naïvely swapping the product and the expectation over
the data distribution. As shown in Figure 5.5, the two curves remain close for the
duration of the algorithm, even in more difficult cases where the privacy loss spikes due
to outliers. In principle, larger spikes of privacy loss could lead to a more noticeable
difference between these two cases; however, for practical guarantees, one should choose
the privacy mechanism parameters such that sizeable spikes are ruled out or kept to the
minimum in any case.

5.5.2 Deep Learning

In this section, we consider the application to privacy-preserving deep learning. Our
setting closely mimics that of (Abadi et al., 2016) to enable a direct comparison with
the moments accountant and DP. We use a version of DP-SGD (Abadi et al., 2016)
that has been extensively applied to build differentially private machine learning models,
from deep neural networks to Bayesian learning. The idea of DP-SGD is simple: at
every iteration of SGD, clip the gradient norm to some constant C (ensuring bounded
sensitivity), and then add Gaussian noise with variance C2σ2.

We train a classifier represented by a neural network (unlike (Abadi et al., 2016), without
PCA) on MNIST (LeCun et al., 1998) and on CIFAR10 (Krizhevsky, 2009) using DP-
SGD. The first dataset contains 60,000 training examples and 10,000 testing images. We
use large batch sizes of 1024, clip gradient norms to C = 1, and σ = 0.1. The second
dataset consists of 50,000 training images and 10,000 testing images of objects split in
10 classes. For this dataset, we use the batch size of 512, C = 1, and σ = 0.7. We
fix δ = 10−5 in all experiments. In case of CIFAR10, in order for our results to be
comparable to (Abadi et al., 2016), we pre-train convolutional layers of the model on a
different dataset and retrain a fully-connected layer in a privacy-preserving manner.

Let us briefly outline how DP-SGD works in conjunction with the privacy accountant.
The non-private learning outcome at each iteration t is the gradient gt of the loss function
w.r.t. the model parameters, the outcome distribution is the Gaussian N (gt, σ2C2).
Before adding noise, the norm of the gradients is clipped to C. For the moments
accountant, privacy loss is calculated using this C and σ. For Bayesian accountant,
either pairs of examples xi, xj or pairs of batches are sampled from the dataset at each
iteration, and used to compute ĉT (λ, ξ,D,D′; γ,m). Although clipping gradients is no
longer necessary with BDP, as stated in Section 5.5.1, it is highly beneficial for incurring
lower privacy loss at each iteration and obtaining tighter composition. Moreover, as
previously discussed, it ensures the classic DP bounds on top of BDP bounds.

Figures 5.6a and 5.6b demonstrate the evolution of ε bound over training batches
computed on MNIST and CIFAR10 datasets accordingly. The first observation is that
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Figure 5.6 – Evolution of ε for δ = 10−5 when training CNN.

Table 5.2 – Estimated privacy bounds ε with δ = 10−5 for DP, δµ = 10−5 and δµ = 10−10

for BDP (marked as BDP and BDP* accordingly). BDP* bound corresponds to DP
bound for 0.99999-quantile of the data distribution.

Accuracy ε P (A)
Dataset Baseline Private DP BDP BDP* DP BDP BDP*
MNIST 99% 96% 2.18 0.62 0.95 89.84% 65.02% 72.1%
CIFAR10 86% 73% 8.0 0.51 0.76 99.97% 62.48% 68.1%
Abalone 77% 76% 7.6 0.5 0.61 99.95% 62.25% 64.9%
Adult 81% 81% 0.5 0.16 0.2 62.25% 53.99% 55.0%

Bayesian differential privacy allows to add far less noise to achieve comparable ε. Because
of this, the models reach the same test accuracy much faster. For example, our model
reaches 96% accuracy within 20 epochs for MNIST, while DP model requires hundreds
of epochs to avoid ε blowing up, like it is shown in Figures 5.6a and 5.6b. These results
also confirm our assumption that the actual disagreement between gradient directions is
much smaller than their norms, and therefore, requires less noise to hide.

Overall, using the information about gradient distribution allows the BDP models to
reach the same accuracy at a much lower ε. On MNIST, we manage to reduce it from
2.18 to 0.62. For CIFAR10, from 8.0 to 0.51. See details in Table 5.2. To make our
results more transparent, we include the potential attacker success probability P (A)
from Section 5.3.3 computed using Eq. 5.1. In this interpretation, the benefits of using
Bayesian differential privacy become even more apparent.

An important aspect of BDP, discussed in Section 5.4.6, is the potential privacy leakage
of the privacy cost estimator. Since at the moment we do not have a rigorous bound on
the amount of information it leaks, we conduct the following experiment. After training
the model (to ensure it contains as much information about data as possible), we compute
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(a) MNIST dataset.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Distance

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f s
am

pl
es

Pairwise gradient distances distribution, CIFAR10
Train
Test
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Figure 5.7 – Histograms of pairwise gradient distances for points within and outside of
the training set.

the gradient pairwise distances over train and test sets. We then plot the histograms of
these distances to inspect any divergence that would distinguish the data that was used
in training. Note that this is more information than what is available to an adversary,
who only observes ε.

As it turns out, these distributions are nearly identical (see Figures 5.7a and 5.7b), and
we do not observe any correlation with the fact of the presence of data in the training
set. For example, the sample mean of the test set can be both somewhat higher or lower
than that of the train set. We also run the t-test for equality of means and Levene’s test
for equality of variances, obtaining p-values well over the 0.05 threshold, suggesting that
the difference of the means and the variances of these distributions is not statistically
significant and the equality hypothesis cannot be rejected.

5.5.3 Variational Inference

While DP-SGD is widely applicable, some machine learning and statistical inference
techniques do not require additional noise at all. For example, it has been shown that
differential privacy guarantees arise naturally and “for free” in methods like sampling from
the true posterior (Dimitrakakis et al., 2014) and Stochastic Gradient MCMC (Wang
et al., 2015). Using Bayesian privacy accounting we can show that another popular
Bayesian approach–variational inference–also enjoys almost “free” privacy guarantees.

The goal of variational inference is to approximate a posterior distribution p(w|D) by a
member of a known family of “simple” distributions q(w; θ) parametrised by θ. Most
commonly, it is done via minimising the reverse KL-divergence DKL(Q||P ), but there
are a lot of modern variations, for example using χ-divergence (Dieng et al., 2017), Rényi
divergence (Li and Turner, 2016), or other variational bounds (Chen et al., 2018).
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As baselines, we use DPVI-MA (Jälkö et al., 2016) and DP-SGLD (Wang et al., 2015).
The first one employs DP-SGD combined with moments accountant to train a private VI
model, while the second is a stochastic gradient MCMC method achieving DP due to the
noisy nature of SGLD algorithm. Following (Jälkö et al., 2016), we run evaluation on two
classification tasks taken from UCI database: Abalone (Waugh, 1995) and Adult (Kohavi,
1996). Both are binary classification tasks: predicting the age of abalone from physical
measurements, and predicting income based on a person’s attributes. They have 4,177
and 48,842 examples with 8 and 14 attributes accordingly. We use the same pre-processing
and models as (Jälkö et al., 2016).

To translate variational inference to the language of our privacy accountant, q(w; θ) is
the outcome distribution, and we are interested in

Ex′
[
eλDλ+1(q(w;θ)||q(w;θ′))

]
,

where θ, θ′ are variational parameters learnt from D and D′. At each learning iteration,
w(t) are sampled from q(w; θ(t−1)), updates are computed using the variational bound
and data D (or its subsamples), and parameters are updated to θ(t). Therefore, for
Bayesian accounting, we sample x, x′ and w from D and q(w; θ(t−1)) and compute
ĉT (λ, ξ,D,D′; γ,m). The exact expression is slightly different from the one for the
classical Gaussian noise mechanism because of non-identical variances. To derive it,
one could either do it directly by following the steps of Theorem 3, or plug the Rényi
divergence formula for two normal distributions in the expressions for the general
subsampled mechanism (Theorem 4).

To enable differential privacy for variational inference methods, we have to deal with
two important restrictions. First, parameters θ of variational distribution q(w; θ) are not
differentially private and need to be concealed or made private by other means. Second,
as a result of the previous point, MAP or MLE estimates based on θ would also reveal
private information. However, samples w ∼ q(w; θ) are differentially private and can be
used to perform the same tasks. We haven’t observed significant loss of accuracy when
using a batch of samples w instead of true parameters θ, and thus, we consider it a minor
cost. Note also that each sample needs to be accounted for, both in training and after
training. In our tests, we run logistic regression using an average of up to 10 samples
from variational distribution, significantly less than what is necessary to recover true
variational parameters.

We observe in Figures 5.8a and 5.8b that our modified variational inference with Bayesian
accountant achieves consistent advantage over DPVI-MA and DP-SGLD both in terms
of accuracy and privacy accounting. It is the only method reaching non-DP accuracy on
Abalone data and the first to reach it on Adults data, at a fraction of other methods’
privacy budget. At any point, the trade-off curve of our technique remains above others.
Moreover, the test variance of our approach (computed over 10 trials) is considerably
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Figure 5.8 – Accuracy-privacy trade-off for variational inference (logistic regression model)
with Bayesian DP compared to prior work.

smaller, presumably because there is no noise added in the learning process.

Privacy loss bounds for the same levels of accuracy can be found in Table 5.2. Similarly to
the deep learning scenario, the Bayesian accountant with its access to the distribution of
gradients has a remarkable advantage. It is also worth mentioning, that for our methods
we decreased δ to 10−5 on Adult dataset, because the failure probability 10−3 originally
set in (Jälkö et al., 2016) is too high for almost 50k samples.

5.6 Conclusion

In this chapter, we introduced the notion of (εµ, δµ)-Bayesian differential privacy, a
relaxation of (ε, δ)-differential privacy for sensitive data that are drawn from an arbitrary
(and unknown) distribution µ(x). This relaxation is reasonable in many machine learning
scenarios where models and algorithms are designed for and trained on specific data
distributions (e.g. emails, face images, ECGs, etc.). For example, it may be unjustified
to try hiding the absence of music records in a training set for ECG analysis, because
the probability of them appearing there is actually much smaller than δ.

We state and proof the advanced composition theorem for Bayesian differential privacy
that allows for efficient and tight privacy accounting. Since the data distribution
is unknown, we design an estimator that overestimates the privacy loss with high,
controllable probability. Moreover, as the data sample is finite, we employ the Bayesian
parameter estimation approach with the flat prior and the maximum entropy principle to
reduce the chance of underestimating probabilities of unseen examples. As a result, our
interpretation of δµ is slightly different: not only is it the probability of the privacy loss
exceeding εµ in the tails of its distribution, but it also is the probability of underestimating
the privacy loss based on a finite sample of data.
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5.6. Conclusion

Our evaluation confirms that Bayesian differential privacy is highly beneficial in machine
learning context where the additional assumptions on data distribution are naturally
satisfied. First, it requires less noise to reach the same privacy guarantees. Second, as a
result, models train faster and can reach higher accuracy. Third, it may be used along
with DP to perform tighter analysis of privacy budget for the population while still
maintaining general DP guarantees. In our deep learning experiments with convolutional
neural networks and variational inference experiments, εµ always remained well below 1,
allowing for much more meaningful bounds on the potential attacker success probability.
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6 Federated Learning with
Bayesian Differential Privacy

6.1 Introduction

After having established the novel definition of privacy, more tailored for machine learning
and providing a superior balance between privacy and utility, we return to the setting
of federated learning (FL) (McMahan et al., 2016). Unlike Chapter 4, here we focus on
discriminative models and seek to adapt and evaluate the notion of Bayesian differential
privacy in this context.

As shown in recent work (McMahan et al., 2017), federated learning can be combined
with differential privacy to provide joint benefits. However, unless the number of users is
exceedingly high (e.g. in the scenario of a large population of mobile users considered
in (McMahan et al., 2017)), differentially private federated learning provides only weak
guarantees. As a reminder, contrary to a wide-spread opinion in machine learning
community, values of ε close to 10 can hardly be seen as reassurance to a user: for certain
types of attacks, an adversary can theoretically reach accuracy of 99.99%.

We propose to augment federated learning with Bayesian differential privacy instead. It
would allow to provide tighter, and thus, more meaningful guarantees. The key idea
remains the same and is based on the observation that federated learning tasks, just
like the centralised one, are often specialised on a particular type of data (for example,
finding a film review in the MRI dataset is very unlikely). The differentiating feature of
FL is that these data can be generated by a set of non-identical distributions associated
with individual users or groups of users. We demonstrate that this characteristic does not
prevent the use of BDP, and that one can account privacy using the mixture of user data
distributions. Furthermore, we consider different levels of privacy in federated learning
(client level and instance level) and how to jointly provide and quantify privacy at both
levels.

This chapter is based on the paper published in 2019 IEEE International Conference on Big
Data (Triastcyn and Faltings, 2019b).
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We extend the notion of Bayesian differential privacy to the federated learning setting in
Section 6.4. Our experiments, in Section 6.5, show significant advantage, both in privacy
guarantees and the model quality.

The main contributions of this chapter are the following:

• we adapt the notion of Bayesian differential privacy to federated learning, including
more natural non-i.i.d. settings (Section 6.4.1), to provide strong theoretical privacy
guarantees under minor and practical assumptions;

• we propose a novel joint accounting method for estimating client-level and instance-
level privacy simultaneously and securely (Section 6.4.3);

• we experimentally demonstrate advantages of our method, such as shrinking the
privacy budget to a fraction of the previous state-of-the-art, and improving the
accuracy of the trained models by up to 10% (Section 6.5).

6.2 Related Work

We provided a short overview of the federated learning research in Chapter 4, and more
details can also be found in (Yang et al., 2019). Here, we will focus more narrowly on the
literature related to privacy protection in federated learning, and particularly, providing
formal privacy guarantees.

The first example of augmenting federated learning with theoretical privacy guarantees
is given by McMahan et al. (2017). They train large RNNs with client-level differential
privacy, using DP-FedAvg and DP-FedSGD, inspired by DP-SGD, as well as the moments
accountant (Abadi et al., 2016). Experiments show that strong privacy guarantees for
large populations of users can be achieved with only negligible loss in prediction accuracy.
This approach is well suited for many large-scale scenarios at Google, Apple, and other
technology companies with massive client bases. For example, Snap Inc. deployed a
distributed learning framework under an even stronger local privacy model (Pihur et al.,
2018). However, in smaller-scale scenarios, privacy guarantees will be too loose to be
practical.

An earlier attempt to design a solution for settings with fewer participants (Geyer et al.,
2017) does not ideologically differ from the aforementioned work. Geyer et al. similarly
implement a differentially private version of FedAvg and use the moments accountant, but
experiment with a smaller set of clients. However, the chosen ε is too large for meaningful
guarantees and the paper appears to contain some errors that may invalidate the privacy
guarantee (e.g. tuning the clipping threshold using the gradient norm median).

Since differential privacy leads to a poor privacy-utility trade-off for more complicated

92



6.3. Setting

models and small-scale scenarios, pairing federated learning with an alternative privacy
notion might prove beneficial.

Truex et al. (2019) propose to combine differential privacy with secure multi-party
computation in a hybrid approach to reduce the amount of noise necessary for maintaining
strong privacy guarantees. Their experiments show advantages over the previous local
DP approaches and some are performed with just 10 participating clients. However,
they report declining accuracy for other methods with the increase in participants given
the unchanged privacy level, which goes against the conventional wisdom that privacy
is easier to achieve with larger populations. Intuitively, even using the local privacy
model should not lead to increases in privacy budget in this case. Furthermore, the deep
learning related evaluation on MNIST only considers a binary classification task between
digits 0 and 9, which is a considerably simpler problem compared to the full 10-digit
classification, prohibiting a direct comparison to other centralised and federated methods.
Consequently, it appears that this work needs further investigation.

Another “hybrid” approach is distributed differential privacy (Shi et al., 2011; Rastogi
and Nath, 2010). In essence, this technique provides guarantees in the central model
of differential privacy, but the noise is added by clients, like in the local model. It is
accomplished by using a specifically designed cryptographic scheme, achieving aggregator
obliviousness, and the noise distribution satisfying algebraic constraints for multi-user
composition of privacy mechanisms (e.g. geometric distribution). The latter condition is
necessary due to discretisation required by homomorphic encryption. Providing a middle
ground between local and global DP models, this approach brings a lot of promise in
federated learning scenarios. Applying a similar approach to our privacy definition when
shifting the noise addition to the client side is a promising future research direction.

Finally, our observations and contributions about instance privacy versus client privacy
can be associated with the considerations in differentially private meta learning (Li
et al., 2020). More specifically, the notions of Task-Global DP and Task-Local DP have
definitive parallels with instance privacy, because they also focus on protecting individual
training examples rather than entire model updates submitted by clients.

6.3 Setting

In Chapter 5, while describing the concept of Bayesian differential privacy, we considered
a general iterative learning algorithm, such that each iteration t produces a non-private
learning outcome g(t) (e.g. a gradient over a batch of data). In this chapter, we consider
the equivalent federated learning setting, where each communication round t produces a
set of non-private learning outcomes u(t)

i , one for each client i.

The non-private outcome, similarly to the previous chapter, gets transformed into a
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private learning outcome w(t) that is used as a starting point for the next iteration or
communication round. The learning outcome can be made private by different means,
but in this work we consider the most common approach of applying an additive noise
mechanism (e.g. a Gaussian noise mechanism). We denote the distribution of private
outcomes by p(w(t)|w(t−1), D) (assuming the Markov property of the learning process for
brevity of notation, although it is not necessary in general) or p(w(t)|w(t−1),U), depending
on the scenario.

During the training process, we can sample subsets of clients in each communication
round. In this case, w(t) comes from the distribution p(w(t)|w(t−1),U(t)), where U(t) is a
set of updates from users participating in the communication round t. Privacy is then
amplified through sampling (see Sections 5.4.3, 5.4.4 for Bayesian DP; and for DP, Abadi
et al. (2016); Balle et al. (2018)).

For each iteration, we would like to compute a quantity ct (we call it a privacy cost)
that accumulates over the learning process and allows to compute privacy loss bounds
ε, δ using concentration inequalities. The overall privacy accounting workflow does not
significantly differ from Chapter 5 conceptually, but is adapted to federated learning
setting and may potentially be enhanced with secure aggregation schemes.

6.4 Federated Learning with Bayesian Differential Privacy

In this section, we adapt the Bayesian differential privacy framework and its accounting
method to guarantee the client-level privacy, the level most frequently addressed in
the literature. We then justify and explore the instance-level privacy and two different
techniques for accounting it. Finally, we propose a method to jointly account instance-
level and client-level privacy for the FedSGD algorithm in order to provide the strongest
trade-off between utility and privacy guarantees.

6.4.1 Client Privacy

When it comes to reinforcing federated learning with differential privacy, the foremost
attention is given to the client-level privacy (McMahan et al., 2017; Geyer et al., 2017).
The goal is to hide the presence of a single user, or to be more specific, to bound the
influence of any single user on the learning outcome distribution (i.e. the distribution of
the model parameters).

Under the classical DP (McMahan et al., 2017; Geyer et al., 2017), the privacy is enforced
by clipping all user updates ui to a fixed L2-norm threshold C and then adding Gaussian
noise with the variance C2σ2. The noise parameter σ is calibrated to bound the privacy
loss in each communication round, and then the privacy loss is accumulated across the
rounds using the moments accountant (Abadi et al., 2016).
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We use the same privacy mechanism, but employ the Bayesian accounting method instead
of the moments accountant. Intuitively, our accounting method should have a significant
advantage over the moments accountant in the settings where data is distributed similarly
across the users because in this case their updates would be in a strong agreement. In
order to map the Bayesian differential privacy framework to this setting, let us introduce
some notation.

Let N denote the number of clients in the federated learning system. Every client i
computes and sends to the server a model update ui ∼ pi(u) drawn from the client’s
update distribution pi(u). Considering individual client distributions ensures that our
approach is applicable to non-i.i.d. settings that are natural in the federated learning
context. Generally, not all users participate in a given communication round. We denote
the probability of a user i participating in the round by αi. Thus, the overall update
distribution is given by a mixture:

p(u) =
N∑
i=1

αipi(u). (6.1)

In our experiments, we fix α1 = α2 = . . . = αN = α.

To match the notation above, let wt indicate the privacy-preserving model update:

wt ← A({ui|ui ∈ U(t)}), (6.2)

where A({ui|ui ∈ U(t)}) , 1
|U(t)|

(∑
i ui +N (0, C2σ2)

)
in the case of Gaussian mechanism,

and U(t) is the set of updates from users participating in the round t.

To bound ε and δ of Bayesian differential privacy, one needs to compute cT (λ, ξ,D,D′) =
max

{
cLT (λ, ξ,D,D′), cRT (λ, ξ,D,D′)

}
, where

cLT (λ, ξ,D,D′) = 1
T

logEu
[
eTλDλ+1(pt‖qt)

]
,

cRT (λ, ξ,D,D′) = 1
T

logEu
[
eTλDλ+1(qt‖pt)

]
,

and

pt = p(w(t)|w(t−1),U(t))
qt = p(w(t)|w(t−1),U(t) \ {u})

Since the randomness of w comes from the subsampled Gaussian noise mechanism,
we use Theorem 3, in combination with user sampling and the privacy cost estimator
(Definition 17) for both expressions, to obtain ĉT (λ, ξ,D,D′; γ,m) that upper-bounds
cT (λ, ξ,D,D′) with high probability. Finally, we use Theorems 1 and 2 to compute ε
and δ. The required assumption of exchangeability is naturally satisfied because users

95



Chapter 6. Federated Learning with Bayesian Differential Privacy

Algorithm 3 Server-side code for FL with client-level privacy.
Input:

Clients {1, · · · , N}, loss function L(·).
Parameters: client sampling probability q, update clipping threshold C,
noise parameter σ.

Initialise w0 randomly, Bayesian accountant with λ, q, σ, C, T
for t ∈ [1..T ] do
C(t) ← sample users with probability q, K = qN
for k ∈ C(t) do

∆(t)
k ← ClippedUserUpdate(k, w(t−1), C)

end for
∆(t) ← CombinedUpdate(∆(t)

1:K)
w(t) ← w(t−1) + ∆(t) +N (0, σ2C2I) . Update shared model
ĉt ← AccumulatePrivacyCost(ĉt−1, ∆(t)

1:K) . Estimate privacy cost
end for
(εµ, δµ)← GetPrivacy(ĉT )

Output: wT , (εµ, δµ).

are sampled independently and uniformly. Algorithms 3 and 4 present a pseudo-code of
the overall training and privacy accounting process.

6.4.2 Instance Privacy

As noted above, we have not changed the privacy mechanism itself, and the same
mechanism can be used in conjunction with the moments accountant to get the classical
DP guarantees (McMahan et al., 2017; Geyer et al., 2017). In that case, (ε, δ)-DP at the
client level implies the same guarantee at the instance level (i.e. bounding the influence
of a single data point). However, it does not hold for Bayesian DP. Moreover, the same
privacy guarantee may not be meaningful at the instance level. For example, δ = 10−3

might be reasonable for 100 clients, but if a client has tens of thousands of data points,
it is not a reasonable failure probability at the data point level.

At the same time, instance privacy is extremely important in some scenarios. Imagine
federated training on medical data from different hospitals: while a hospital participation
may be public knowledge, individual patients data must be protected to the highest
degree. Another reason for considering instance-level privacy is that it provides an
additional layer of protection for users in case of a malicious or untrusted server.

In order to get tighter instance privacy guarantees, we apply the subsampled Gaussian
noise mechanism to gradient computation on user devices. The accounting follows the
same procedure as described above, except that the noise parameter σ and the sampling
probability q may be different, depending on which of the settings below is used.
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Algorithm 4 Client-side code for FL with client-level privacy.
Input:
Dataset Dk = {x1, · · · , xNk} on client k, loss function L(·).
Parameters: learning rate ηi, batch size B, number of local iterations Ik, gradient
norm bound C.

function ClippedUserUpdate(w(0), C)
for i ∈ [1..Ik] do

Sample a random batch of examples Bi
gi ← ∇wL(w(i−1),Bi) . Compute gradient
w(i+1) ← w(i) − ηig̃i . Make a gradient step

end for
∆k ← w(Ik) − w(0) . Compute update
∆k ← ∆k/max

(
1, ‖∆k‖2

C

)
. Clip update

return ∆k

end function

There are two possible accounting schemes,sequential and parallel, described below. We
found that sequential accounting produces better results in our experiments; however, it
may not necessarily be the case in other settings.

Sequential Accounting

Part of the accounting is performed locally on user devices and part on the server. Overall
privacy cost is equivalent to the centralised training with the data sampling probability
q = Bi

N , where N is the total number of data points across all users, and Bi is the local
batch size.

The process proceeds as follows. At each communication round, the server sends
N to participating clients, every client performs private gradient updates, computes
ĉT (λ, ξ,D,D′; γ,m), and sends it to the server. The server then aggregates the sum
of ĉT (λ, ξ,D,D′; γ,m) from all users. Since the privacy costs are data-dependent, it is
possible to use secure multi-party computation to allow the server know the sum without
learning individual costs.

The disadvantage of this method is that every participating client learns the total number
of data points, and especially in the settings with a small number of users it may not be
desirable. Furthermore, the obtained bounds apply to the commonly learnt model but
not to the individual updates of each user, requiring them to maintain a separate local
bound. These issues are addressed by parallel accounting.
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Parallel Accounting

In this scheme, every client computes ĉT (λ, ξ,D,D′; γ,m) using q = Bi
Ni
, where Ni is

the local dataset size of the client. Consequently, since Ni ≤ N , the privacy costs will
be higher. But this is compensated by using parallel composition instead of sequential:
the server aggregates the maximum of ĉT (λ, ξ,D,D′; γ,m) over all users. Again, using
secure multi-party computation is possible to prevent the server from learning individual
privacy costs. However, the server would still learn one of the privacy costs—the true
maximum.

Parallel composition is applicable in this scenario because user updates within a single
round are independent. However, the server needs to sum up maximum privacy costs
over the rounds because updates are dependent on previous rounds. As we show in
Section 6.5, parallel accounting may also require more communication rounds to converge
to the same quality solution with the same privacy guarantee. The gap is more notable
on non-identically distributed data.

6.4.3 Joint Privacy

Instance privacy provides tighter and more meaningful guarantees for every data point
contribution to the trained model. Nevertheless, there is a downside: adding noise both
during the on-device gradient descent and during the averaging phase on the server
results in slow convergence or complete divergence of the federated learning algorithm.

To tackle this problem, we propose joint accounting, where the noise added on the client
side is re-counted towards the client-level privacy guarantee. The main idea of joint
accounting is the following. When instance privacy is enforced, the client updates sent to
the server are already noisy. Instead of introducing more noise, the server could re-count
the added noise to compute the client-level bound. However, without changes in the
accounting protocol, the server would not be able to estimate cT (λ, ξ,D,D′), as it would
no longer have access to non-private client updates distribution.

Fortunately, the inner expectation in cLT (λ, ξ,D,D′) and cRT (λ, ξ,D,D′) can be computed
locally, suggesting the following procedure. Every client computes D̂(t)

λ+1 (see Definition 17)
with p̂t and q̂t being the private outcome distributions with and without their entire update.
Then, the server computes M(t), S(t) (also from Definition 17), and ĉT (λ, ξ,D,D′; γ,m)
by simple averaging. Additionally, one can implement this averaging step with secure
multi-party computation to further privacy protection. For the moment, however, it can
only be used with FedSGD, and not FedAvg, because every noisy step in FedAvg would
change the point at which the gradient is computed, potentially leading to a different
gradient distribution or underestimated total noise variance.

Joint accounting allows to achieve tight instance and client privacy guarantees and preserve
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the speed of convergence almost at the level of client-only privacy (see Section 6.5.4).

6.5 Evaluation

In this section, we provide results of the experimental evaluation of our approach. We
begin by describing the datasets we used, as well as the setting details shared by all
experiments. The subsequent structure follows that of the previous section. We first
evaluate the client-level privacy by comparing accuracy and privacy guarantees of the
traditional DP method (Geyer et al., 2017) to ours (Section 6.5.2). Then, in Section 6.5.3,
we perform experiments on the two proposed methods of instance privacy accounting.
Finally, Section 6.5.4 describes the results of the joint accounting approach.

6.5.1 Experimental Setting

We perform experiments on two datasets. The first dataset is MNIST (LeCun et al., 1998),
which we have been using throughout this thesis and described in detail in Chapter 3.
The second dataset is the APTOS 2019 Blindness Detection challenge dataset1 (in figures,
tables and text, we refer to this dataset as Retina or APTOS). It consists of 3662 retina
images taken using fundus photography. The images are labelled by clinicians to reflect
the severity of diabetic retinopathy on the scale from 0 to 4. Unlike other datasets
commonly evaluated in the privacy literature (Abadi et al., 2016; McMahan et al., 2017;
Geyer et al., 2017), this one actually has more serious implications of a privacy leak.

All experiments have the following general setup. There is a server, that coordinates
federated training of the shared model, and a number of clients (100, 1000, or 10000),
each holding a subset of data. Some setups with a higher number of users will entail
repetition of data, like in (Geyer et al., 2017), which can be natural in some scenarios, e.g.
shared or very similar images on different smartphones. In MNIST experiments, each
user holds 600 examples. For the APTOS dataset, we use data augmentation techniques
(e.g. random cropping, resizing, etc.) to obtain a larger training set, and then split it
such that every client gets ∼350 images. Testing is performed on the official test split for
MNIST, and on the first 500 samples in case of APTOS.

We use the following models, and they remain the same in all experiments. For MNIST,
we build a simple CNN with two convolutional layers and two fully connected layers
(similar to the one described in the TensorFlow tutorial2). In case of APTOS, due to
the small dataset size and a harder learning task, we employ ResNet-50 (He et al., 2016)
pre-trained on ImageNet (Deng et al., 2009) and re-train only the last fully-connected
layer of the network. We do not do extensive hyper-parameter tuning in general, since

1https://www.kaggle.com/c/aptos2019-blindness-detection/overview/description
2https://www.tensorflow.org/tutorials/images/deep_cnn
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Table 6.1 – Accuracy and privacy guarantees (reported as a pair (ε, δ)) on MNIST,
non-i.i.d. setting.

Accuracy Privacy
Clients Baseline DP BDP DP BDP
100 97% 78% 88% (8, 10−3) (4.0, 10−3)
1K 98% 95% 96% (3, 10−5) (1.5, 10−5)
10K 99% 96% 97% (1, 10−6) (0.6, 10−6)

we are interested in relative performance of private models compared to non-private ones
rather than the best classification accuracy, and thus, our non-private baseline results
may not match the ones reported in (McMahan et al., 2016) or on Kaggle. For the same
reason, we restrict the number of communication rounds (≤ 300) and use FedSGD instead
of FedAvg, although all the methods, except for joint accounting, are compatible with
FedAvg.

One of the important aspects of federated learning is that data might not be distributed
identically among users. In agreement with previous work (McMahan et al., 2016; Geyer
et al., 2017), we include experiments in both i.i.d. and non-i.i.d. settings for MNIST,
because it allows for a natural non-identical split. More specifically, in the i.i.d. setting,
every user is assigned a subset of uniformly sampled examples. In the non-i.i.d. setting,
we follow the same scheme as (McMahan et al., 2016) and (Geyer et al., 2017): splitting
the dataset on shards of 300 points within the same class and then assigning 2 random
shards to each client. The scenario of 100 clients with non-identically distributed data is
particularly hard for privacy applications: there are

(10
2
)

= 45 possible digit combinations
that clients can hold and only 100 clients, meaning that some clients might be easily
distinguishable by their data distribution. Therefore, it is important to note that it may
not be possible to obtain a reasonable privacy bound in this scenario without seriously
compromising accuracy.

The privacy accounting is performed by two methods. To obtain the bounds on ε and δ
of differential privacy, we use the moments accountant (Abadi et al., 2016). In the case
of Bayesian differential privacy, we follow the technique described in Sections 5.4 and 6.4,
i.e. sample a number of user updates (or gradients for instance privacy), estimate the
upper bound on the privacy cost, and use it to compute the corresponding pair of ε, δ.

6.5.2 Client Privacy

In this experiment, we test adding client privacy the same way it is done by McMahan
et al. (2017) and Geyer et al. (2017). We fix the noise level σ and account DP and
Bayesian DP in parallel using the moments accountant and Bayesian accountant, as
described in Section 6.4.1, accordingly.
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Table 6.2 – Accuracy and privacy guarantees (reported as a pair (ε, δ)) on MNIST, i.i.d.
setting.

Accuracy Privacy
Clients Baseline DP BDP DP BDP
100 97% 86% 92% (8, 10−3) (2.0, 10−3)
1K 98% 97% 97% (3, 10−5) (1.0, 10−5)
10K 99% 97% 98% (1, 10−6) (0.5, 10−6)

Table 6.3 – Accuracy and privacy guarantees (reported as a pair (ε, δ)) on APTOS 2019,
i.i.d. setting.

Accuracy Privacy
Clients Baseline DP BDP DP BDP
100 70% 60% 65% (8, 10−3) (2.1, 10−3)
1K 71% 67% 68% (2, 10−5) (0.5, 10−5)
10K 72% 68% 69% (1, 10−6) (0.2, 10−6)

Tables 6.1, 6.2, and 6.3 summarise accuracy and privacy guarantees obtained in this
setting for MNIST (non-i.i.d. and i.i.d.) and APTOS respectively. The first column
indicates the number of clients; the second, the baseline accuracy of a non-private
federated classifier (models described in the previous section). The following columns
contain accuracy and privacy parameters obtained for private models using the classical
DP and BDP. Despite being trained in parallel, the two techniques may differ in accuracy,
because in some cases, we do early stopping for DP to prevent exceeding the privacy
budget.

In all cases and for all datasets, we observe substantial benefits of using Bayesian
accounting. The accuracy gains are most notable in the non-i.i.d. setting of MNIST,
where our method can achieve 10% higher accuracy in the 100 clients setting, because
it presents a more difficult learning scenario as explained in the previous section. The
privacy gains are consistently significant across all datasets and settings, and taking
into account the fact that ε is exponentiated to get the bound on outcome probability
ratios, BDP can reach e8/e2 ≈ 400 times stronger guarantee under its assumptions.
Nevertheless, in the settings with few clients, even Bayesian differential privacy does not
reach a more comfortable guarantee of ε = 1, suggesting that a better privacy-accuracy
trade-off may not be feasible due to higher clients identifiability, or that more work is
needed in improving training with noise and developing novel privacy mechanisms for
federated learning.

Importantly, there is no computation or communication overhead from the users’ point
of view in these experiments since the privacy accounting code is executed on the server.
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Figure 6.1 – Change in ε relative to its initial value for parallel and sequential composition
modes of instance privacy in the settings of 100 and 1000 clients.

6.5.3 Instance Privacy

As noted in Section 6.4.2, instance privacy is very important in scenarios like training on
medical data from a number of hospitals where patient privacy is at least as crucial as
hospital privacy. In this section, we compare two accounting methods proposed earlier:
sequential and parallel accounting.

Depicted in Figure 6.1 are the curves showing the growth of ε estimate with communication
rounds. We subtracted the initial value and applied logarithmic scale in order to better
show the difference in the rate of growth. Across all settings, it can be seen that parallel
accounting leads to faster growth rates, despite the fact that the parallel composition is
more efficient (taking maximum over clients instead of a sum). This behaviour can be
explained by the fact that each client is unaware of the total dataset size and, having
a small number of data points, is convinced that every data example has significant
influence on the outcome. The unawareness about other clients in the case of parallel
accounting can also explain the fact that we don’t observe any improvement in the
ε growth rate with increasing number of clients. The only exception is the non-i.i.d.
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Table 6.4 – Accuracy and privacy guarantees (a pair (ε, δ)), at instance and client levels,
using joint privacy accounting in the setting of 100 clients.

Accuracy Privacy
Dataset Baseline DP BDP Client Instance
APTOS 2019 70% 42% 64% (1, 10−3)

(0.1, 10−5)MNIST (iid) 97% 15% 74% (2, 10−3)
MNIST (non-iid) 97% 12% 62% (4, 10−3)

MNIST experiment, where the difference likely comes from increasing stability of training
and decreasing gradient variability with more clients.

The main takeaway from this experiment is that it appears to be beneficial to use
sequential accounting for privacy of the federated model whenever communicating the
total size of the dataset to users is acceptable. In other cases, and for personal privacy
accounting in case of the untrusted curator, parallel accounting can be used, but more
noise is needed for reasonable privacy guarantees and further investigation is necessary
to protect the client with the maximum privacy cost.

6.5.4 Joint Privacy

Lastly, we would like to test the proposed method of joint accounting for instance-level
and client-level privacy, and contrast it with accounting at these two levels separately.
We perform experiments in the same settings as above, fixing the client privacy at a
certain level (ε = 1) and evaluating the speed and quality of training. We also compare
to what can be achieved by introducing privacy only at the client level.

Figure 6.2 displays the test accuracy evolution over communication rounds in the setup of
100 clients for APTOS and 1000 clients for MNIST. The graphs contain curves for training
without privacy, client-level-only privacy, and the two accounting paradigms: joint and
split. As expected, the non-private training achieves the best accuracy. Nevertheless, in
the i.i.d. setting, client-only private training quickly approaches non-private training in
quality. Notably, training with both instance and client privacy using the joint accounting
performs nearly as well, while training with the separate accounting completely fails due
to excessive amounts of noise at both instance and client levels. For the non-i.i.d. setting,
private training is slower, but there is little difference between introducing privacy only
at the client level and using the joint accounting at both levels: after a slightly larger
number of rounds, training with the joint accounting reaches similar performance. Based
on these experiments, we conclude that by using joint accounting we can introduce
instance privacy on clients and get client-level privacy at almost no cost.

Finally, we evaluate our method in the strong privacy setting. We set the instance-level
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(b) MNIST, i.i.d., 1000 clients.

(c) MNIST, non-i.i.d., 1000 clients.

Figure 6.2 – Test accuracy as a function of a communication round for non-private,
client-level-only private, and jointly private (using either joint or separate accounting)
scenarios.

privacy to ε = 0.1 and stop training when the client privacy reaches the level similar to
previous experiments (except APTOS dataset, where we were able to achieve comparable
results with lower privacy cost), and report the accuracy that can be achieved in this
strict setting. We have also chosen the most difficult scenario of 100 clients. As seen
in Table 6.4, the algorithm with differential privacy performs very poorly on APTOS
dataset, and fails to learn on MNIST, in both i.i.d. and non-i.i.d. setting. Its performance
is especially affected by the strict instance privacy requirement, since such low levels of ε
necessitate large quantities of noise to be added. It is worth noting, that it might be
possible to achieve better results with DP by performing per-example gradient clipping,
as in (Abadi et al., 2016), but we do not use this technique due to its impracticality.

On the other hand, our approach manages to achieve reasonable accuracy even under
such a strict privacy budget. On APTOS dataset, it is just 6% lower than the non-private
baseline, while on MNIST, it correctly classifies more than 70% of the test data in the
i.i.d. setting and over 60% in the non-i.i.d. setting. One could potentially add more
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noise on the server and combine the accounting with the instance level noise to slow
down the growth of ε and reach even better performance, but we leave these experiments
for future work.

Both instance and joint privacy accounting add some computation overhead on user
devices due to multiple gradient calculations. However, performing FL routines when
devices are idle and charging, as suggested in (Bonawitz et al., 2019), alleviates this
problem. Communication overhead is negligible because only a single floating point
number is added to user messages.

6.6 Conclusion

We employed the notion of Bayesian differential privacy, a relaxation of (ε, δ)-differential
privacy, to obtain tighter privacy guarantees for clients in the federated learning settings.
Similarly to the centralised setting, the idea of this approach is to utilise the fact that
users come from a certain population with similarly distributed data, and therefore, their
updates will likely be in agreement with each other.

We adapt an efficient and tight privacy accounting method for Bayesian differential
privacy to the federated setting in order to estimate client privacy guarantees. Moreover,
we emphasise the importance of instance-level privacy and propose two variants of privacy
accounting at this level. Finally, we introduce a novel technique of joint accounting
suitable for obtaining privacy guarantees at instance and client levels jointly from only
instance-level noise.

Our evaluation provides evidence that Bayesian differential privacy is more appropriate
for federated learning. It allows models to train in fewer communication rounds and
achieve higher accuracy by using significantly less noise, compared to DP, to reach strong
privacy protection. When the number of clients reaches an order of thousands, which is
realistic in many federated learning scenarios, εµ of BDP can be kept below 1. Finally,
we demonstrate that by using joint accounting we can get client privacy “for free” when
adding instance privacy. This way, the privacy budget can be kept close to εµ = 1
for client privacy and εµ = 0.1 for instance privacy while maintaining reasonably high
accuracy.
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7 Generating Data with Bayesian
Differential Privacy

7.1 Introduction

With machine learning (ML) becoming ubiquitous in many aspects of our society, questions
of its privacy and security take centre stage. A growing field of research in privacy attacks
on ML (Fredrikson et al., 2015; Shokri et al., 2017; Hitaj et al., 2017; Truex et al., 2018)
tells us that it is possible to infer information about training data even in a black-box
setting, without access to model parameters. However, this primarily remains a matter of
interest of the research community. A wider population, on the other hand, is concerned
with privacy practices used in the ML development cycle, such as company employees or
contractors manually inspecting and annotating user data1,2.

Conversely, using federated learning (FL), differential privacy (DP) and other privacy
practices creates an additional hurdle for developers, as they cannot inspect data,
especially in decentralised settings, making it difficult to understand the model behaviour
and find bugs in data and implementations. To the best of our knowledge, Augenstein
et al. (2019) were the first to formulate these questions, provide a more complete
characterisation and propose a solution similar in spirit to our FedGP framework.

This chapter circles back to that idea of adopting generative adversarial networks (GAN)
trained in a privacy-preserving manner, a concept first introduced in Chapter 3, for
addressing these issues. Augenstein et al. (2019) use the conventional DP notion and
strongly rely on the user population sizes of millions to provide acceptable guarantees
and data quality. In contrast, we use the notion of Bayesian differential privacy, enabling
significantly more practical privacy guarantees for in-distribution samples. More details
on the overall approach and privacy are provided in Section 7.4.

This chapter is based on the paper available as a preprint (Triastcyn and Faltings, 2020c).
1https://www.theguardian.com/technology/2020/jan/10/skype-audio-graded-by-workers-in-china-

with-no-security-measures
2https://www.bloomberg.com/news/articles/2019-04-10/is-anyone-listening-to-you-on-alexa-a-

global-team-reviews-audio
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An important advantage of using our privacy definition is that it enables generating
data of higher fidelity (i.e. visual quality) compared to previous work on GANs with
DP, allowing for finer-grained inspection of data. While some problems with data or
data pipelines can be discovered using very coarse samples (e.g. pixel intensity inversion
in (Augenstein et al., 2019)), more subtle bugs, like partial data corruption, would require
samples of much better quality, rendering the DP guarantee too loose to be meaningful.
Moreover, if fidelity is high enough, synthetic data can be used for annotation and
training itself, removing the related privacy concerns and extending applicability of FL.
We evaluate our solution in these two aspects in Section 7.5.

On the other hand, Bayesian DP is also superior to average-case DP, considered in
our private data release solutions in Part I. Bayesian DP provides a stricter theoretical
guarantee, closer in strength and generality to the traditional DP. Therefore, protecting
generative models with BDP is preferable, if the generated sample quality is not greatly
affected.

Our main contributions in this chapter are as follows:

• we use Bayesian DP to enable higher quality GAN samples, while still providing a
strong privacy guarantee;

• we demonstrate that this technique can be used to discover finer data errors than
previously reported;

• we also show that for some tasks synthetic data are of high enough quality to be
used for labelling and training.

7.2 Related Work

Up until recently, the aspect of human involvement in the development cycle and manual
data processing has been largely overlooked in privacy-preserving machine learning.
These issues can be mitigated, at least partially, by federated learning (FL) (McMahan
et al., 2016), which brings a great promise for user privacy. Yet, FL paradigm creates
additional problems of its own. Augenstein et al. (2019) provide a good starting point,
systematising these problems and proposing a solution by the use of synthetic data. Their
solution is based on generating synthetic datasets using federated differentilly private
GANs. Privacy-preserving data synthesis using GANs, including with differential privacy,
has been introduced in earlier works (Beaulieu-Jones et al., 2017; Xie et al., 2018; Zhang
et al., 2018; Triastcyn and Faltings, 2019a; Jordon et al., 2018; Long et al., 2019), but
these papers mainly focused on achieving high utility of synthetic data without addressing
a broader scope of privacy leakage via manual data handling. A major contribution of
Augenstein et al. (2019) is the taxonomy of common ML modeller tasks and the extension
of the GAN-based paradigm to solving these tasks. Apart from that, this topic has
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not been extensively studied in the literature, and in addition to what we have already
covered in this thesis, we could only add the survey by Humbatova et al. (2019) on faults
in deep learning systems, also highlighted by Augenstein et al. (2019).

A common problem of differentially private GANs, however, is that the generated samples
have very low fidelity, unless the privacy guarantee is unreasonably weak. For example,
observe the quality of image samples in Augenstein et al. (2019, Figure 3). While the
quality is sufficient to detect the change of background colours, individual symbols are
not distinguishable, although symbols in itself should not reveal any private information
unless the handwriting style is preserved. Further, consider Augenstein et al. (2019,
Table 3). The authors show that privacy guarantees are strong in scenarios of millions of
users, but in the simulations with hundreds or thousands of users the values of ε and δ
are extremely high, rending the guarantees meaningless.

Our approach makes progress in exactly this perspective: we can achieve much higher
quality outputs with little compromise in privacy guarantees (and only for outliers
that are difficult to hide). As a result, our synthetic data yield better performance of
downstream analytics and provide more powerful data inspection capabilities.

7.3 Preliminaries

This chapter largely relies on the notions and methods introduced earlier in this thesis.
In particular, we use generative adversarial networks as the means to create privacy-
preserving synthetic datasets, the approach introduced and described in detail in Chap-
ter 3. Although we do not run experiments in the federated learning setting, due to
computational intensiveness, Chapter 4 could provide a roadmap for mapping our solu-
tions from this chapter to federated scenarios. Instead of average-case DP, initially used
with our GAN-based data release, we employ Bayesian differential privacy, defined in
Chapter 5 and extended to federated learning in Chapter 6.

Additionally, in parts of the chapter, we refer to Augenstein et al. (2019) classification of
ML developer tasks, which can be condensed to:

T1 Sanity checking data.
T2 Debugging mistakes.
T3 Debugging unknown labels / classes.
T4 Debugging poor performance on certain classes / slices / users.
T5 Human labelling of examples.
T6 Detecting bias in the training data.

We refer the reader to Augenstein et al. (2019, Section 2) for further details.

Augenstein et al. (2019) were primarily interested in the tasks T3 and T4, testing the
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ability of generative models to produce private samples of sufficient quality to detect
out-of-vocabulary words or to investigate a drop in the model performance for a sub-
population of users. We compare Bayesian DP GAN with their solution in the data
inspection experiment in Section 7.5.2. However, our other focus is the task T5, as
we believe it is under-represented in the private ML literature and is important to the
broader society.

In short, the task T5 arises when the data used to train the ML model are not labelled,
annotated, or cannot be self-annotated. An example of self-annotating the data is the
next word prediction when typing on a smartphone keyboard. In situations, where
this is not possible, data are typically annotated by the employees of the company or
contractors, because this task if often too burdensome for users. It is also possible that
users would not be qualified to label their own data, for example, in the case of a medical
application.

7.4 Our Approach

We employ the same approach as in Chapters 3 and 4 of this thesis, and as in (Augenstein
et al., 2019). The primary distinction is using Bayesian differential privacy instead of
average-case DP or the traditional DP. The fact that BDP takes into account the data
distribution and assumes that all data points are drawn from that same distribution,
although the distributions can be multimodal, highly complex, and generally unknown,
maps well to the context of generative models, especially GANs. The task of generative
modelling in itself is to learn the underlying data distribution, and thus, a common
distribution is an implicit belief. This results in an organic match with BDP, because
there are no assumptions to add to the problem.

7.4.1 Formal Overview

We are given a dataset D of labelled ({(xi, yi) | (xi, yi) ∼ µ(x, y), i = 1..n}) or unlabelled
({xi | xi ∼ µ(x), i = 1..n}) examples. This dataset can be decentralised, in which case
we would use FL (see the next subsection). Our task is to train a GAN, which consists of
the generator G and the critic C (discriminator), to generate synthetic samples from µ.

Our privacy mechanism follows the previous work on differentially private GANs (Beaulieu-
Jones et al., 2017; Xie et al., 2018). More specifically, it applies Gaussian mechanism to
the discriminator updates at each training step. That is, we clip the updates to norm C

and add Gaussian noise with variance C2σ2. Privacy of the generator is then guaranteed
by the post-processing property of BDP. It is worth mentioning, however, that clipping
and/or adding noise to the generator gradients can be beneficial for training in some
cases, to keep a better balance in the game between the critic and the generator, and it
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Figure 7.1 – Architecture of our solution using an unconditional GAN and a separate
annotator with Bayesian DP. The lock icon indicates the models trained with the noisy
gradient descent.

should not be overlooked by developers.

We choose not to implement more complicated schemes, such as PATE-GAN (Jordon
et al., 2018) or G-PATE (Long et al., 2019), which use PATE framework (Papernot
et al., 2018) to guarantee differential privacy for GANs. Our key rationale is that a more
complicated structure of these solutions could create unnecessary errors and additional
privacy leakage (e.g. leaking privacy by backpropagating through the teachers’ votes
to the generator, thereby neglecting the added noise). Nevertheless, we show in our
evaluation that due to the distribution-calibrated BDP accounting (and hence, less
added noise) our GAN generates better quality samples compared to these more complex
solutions.

There is another notable difference between our current technique and prior work, as
well as our approach in Chapters 3 and 4. Instead of training conditional GANs and
generating labelled exampled directly, we train unconditional GANs along with a separate
private classifier. We then label GAN samples with this classifier. This tweak allows for
a closer imitation of external labelling of data examples. Besides, we found that this
approach helps mitigate the problem of noisy gradient descent for GANs to a certain
extent in our experiments. Although, we do not have sufficient observations to claim
that it is universally better. Figure 7.1 presents a birds-eye view of the technique.

Remark 10. Despite the substantially lower amount of noise needed for meaningful
BDP guarantees, training GANs with it still presents a serious challenge. We believe
that the reason lies in the subtle balance between the two networks: disproportionately
hindering training of one of them causes the other to converge to a poor local optimum.
At best, it could make hyper-parameter search more difficult. At worst, render the
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approach impractical for some applications. Possible remedies include rolling back to a
weaker ADP-based solution (Chapter 3) or pre-training on public data.

7.4.2 Additional Privacy Control

Our solution has an additional lever to control privacy leakage, which would not be
possible neither with ADP nor with the conventional DP. It is based on the intuition that
the foremost source of privacy leakage are outliers. On the one hand, outliers’ privacy
loss is discounted in Bayesian accounting due to their low probability. On the other hand,
we can reduce the number of samples generated by the GAN to decrease the chances of
these outliers appearing in the synthetic dataset.

Remember the interpretation of BDP guarantees we proposed in Section 5.4.6. More
specifically, we considered the following random variable:

∆(ε, x′) = Pr
[
L(w,D,D′) > ε | D,D′ = D ∪ {x′}

]
.

For DP, the moments accountant outputs δ, an upper bound on ∆(ε, x):

max
x

∆(ε, x) ≤ δ.

Bayesian DP, however, can be shown to produce the expectation upper bound:

Ex [∆(ε, x)] ≤ δµ.

Having the expectation bound, one could compute privacy guarantees for different
percentiles of the data distribution and determine the probability of a “privacy outlier”
being drawn. This can be done using Markov’s inequality:

Pr[∆(ε, x) ≥ φ] ≤ Ex[∆(ε, x)]
φ

≤ δµ
φ
.

Say we achieved (1, 10−8)-BDP. Then we can calculate that the probability of drawing a
data sample x′, for which ∆(ε, x′) ≥ 10−5, is equal to δµ

φ = 10−8

10−5 = 0.001. Or, alternatively,
99.9% of the data distribution upholds (1, 10−5)-DP guarantee.

If the generative model has properly converged to the underlying distribution, one
could limit the size of the generated set to control the probability of a “privacy outlier”
appearing in this set. For the example above, if we create a synthetic set of size 1000, the
chance that at least a single outlier would appear in it is 1− 0.9991000 ≈ 0.632. However,
if the size is only 100, this chance is 1− 0.999100 ≈ 0.095.

In Section 7.5.3, we show that learning from artificial data samples saturates quicker than
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for real ones, meaning that fewer synthetic examples need to be generated. And given our
results in Chapter 5, going from δµ = 10−5 to δµ = 10−10 does not significantly degrade
εµ, suggesting that the additional privacy control described above could help create
entire synthetic datasets with strong guarantees. Nonetheless, it is worth noting that this
would be a heuristic guarantee, as it relies on the assumption that the generative model
is closely approximating the data distribution. An interesting future direction would be
to analyse this guarantee based on some measure of the generative model convergence to
the true distribution.

7.4.3 Federated Learning Case

It is worth mentioning that we did not make any assumptions on where the data are
located. A logical scenario to consider would be federated learning, like in (Augenstein
et al., 2019), such that the data remain on user devices at all times.

To accommodate FL scenarios, minimal modifications to the approach are required.
Training of the generative model would be performed in the same way as any other
federated model, and privacy accounting would be done at the user-level (Augenstein
et al., 2019). Alternatively, we could modify the federated learning protocol and keep
critics private to each client, following FedGP approach (see Chapter 4). This is especially
beneficial in cases when each client has sufficient data to train a good discriminator. For
example, it could be applied when there is a hierarchical structure and each client is not
an individual user but an entity, such as a hospital or a bank.

Baysian DP analysis is also directly transferable to FL (see Chapter 6), and privacy
bounds are generally even tighter in this case. Moreover, given the difficulty of training
GANs with gradient noise, discussed throughout this thesis, as well as in the next section,
federated learning with BDP and on-device discriminators trained without noise could
significantly boost the overall performance. Hence, it is an especially promising direction
for future work.

7.5 Evaluation

We evaluate two major applications of the technique. First, we show that the generated
samples can be used for debugging ML model through data inspection, resembling tasks
T1–T4 from (Augenstein et al., 2019). Second, we examine the quality of the downstream
ML model trained directly on synthetic samples, thus demonstrating a possibility of
solving T5 (data labelling/annotation) as well.

In the debugging experiment, we attempt to detect a more subtle bug compared to (Au-
genstein et al., 2019): an incorrect image rotation that yields lower model performance.
While the pixel intensity inversion can be easily spotted using low-fidelity synthetic
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samples, image rotation requires higher fidelity to be detected.

7.5.1 Experimental Setting

We use two image datasets, MNIST (LeCun et al., 1998) and Fashion-MNIST (Xiao
et al., 2017). Both have 60000 training and 10000 test examples, where each example is a
28× 28 size greyscale image. The task of Fashion-MNIST is the clothes type recognition.
Although these datasets may not be of particular interest from the privacy viewpoint,
this choice is directed by the ability to compare to prior work.

For the generative model, we experimented with variations of Wasserstein GAN (Arjovsky
et al., 2017) and WGAN-GP (Gulrajani et al., 2017), but found the former to produce
better results, probably because gradient clipping is already a part of the privacy mecha-
nism. Our critic consists of three convolutional layers with SELU activations (Klambauer
et al., 2017) followed by a fully connected linear layer with another SELU and then a
linear classifier. The generator starts with a fully connected linear layer that transforms
noise (and possibly labels) into a 4096-dimensional feature vector which is then passed
through a SELU activation and three deconvolution layers with SELU activations. The
output of the third deconvolution layer is down-sampled by max pooling and normalised
with a tanh activation function.

All models are trained using Adam with the learning rate 0.0001. The clipping threshold
for gradients of discriminators is set to 0.5, no clipping is done for generators, and the
noise standard deviation is 0.01 for MNIST and 0.02 for Fashion-MNIST. The reported
accuracy and privacy were achieved with 400 epochs for both datasets.

Although we use the centralised setting throughout this section, the results are readily
transferable to federated scenarios. Our previous work suggests that neither the GAN
sample quality (Chapter 4) nor BDP guarantees (Chapter 6) should be significantly
affected.

7.5.2 Data Inspection

The data inspection experiment is setup in the following way. We introduce the rotation
bug through randomly rotating some images by 90◦. We then train the two generative
models, on correct images and on altered images, and visually compare their samples.
We also train a model with DP to show that its image quality would not be sufficient to
detect the error. In the process of experimentation, we explored other possible bugs and
corruption schemes, such as downsampling images (reducing its resolution) or randomly
removing parts of images. Although Bayesian DP ensures higher image quality in all
these cases, we found that the rotation example demonstrates its advantages more clearly.

114



7.5. Evaluation

(a) Real. (b) Synthetic.

Figure 7.2 – Real and synthetic samples on Fashion-MNIST.

(a) Trained on correct images
with BDP.

(b) Trained on altered images
with BDP.

(c) Trained on altered images
with DP.

Figure 7.3 – GAN output for detecting unwanted rotations on MNIST.
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Figure 7.3 shows the output of generative models trained on MNIST with and without
image rotation. By examining the samples, developers can clearly determine that a
portion of images was rotated. This way, the error can be promptly identified and fixed.
On the other hand, with generative models that uphold the traditional DP guarantee
(Figure 7.3c), it would be difficult to detect such a pre-processing error, as the produced
samples have very low fidelity. Also, ε in this case is unjustifiably high at the order of
107, which is consistent with the results of Augenstein et al. (2019). On the other hand,
Bayesian DP results are achieved with a strong privacy guarantee: under (1, 10−10)-BDP.

We also observe that the synthetic data quality under BDP (see Figures 7.2 and 7.3a)
might be sufficient to detect previously unseen classes or dataset biases, such as under-
represented classes. Naturally, biases can also be introduced by GANs itself, and it is
important to be able to distinguish these two cases. This is another attractive direction
for future research on the topic.

7.5.3 Learning Performance

Now, we evaluate the generalisation ability of the student model trained on artificial data.
The experiments are set up in the same way as in Chapters 3 and 4. More specifically,
we train a student model on generated data and report test classification accuracy on a
real held-out set.

The goal of this experiment is to show that, having a privacy-preserving generative
model, we can use synthetic samples to fully replace the real data. Not only it allows to
eliminate manual labelling of real (and potentially sensitive) data, but also expand the set
of problems that can be solved by FL (task T5 in Augenstein et al. (2019) classification).
For example, some medical data cannot be automatically annotated, and users are not
qualified to do that, so high-quality synthetic data would allow the annotation to be
performed by doctors without privacy risks for users.

We imitate human annotation by training a separate classifier (with the same privacy
guarantee as the generative model) and using it to label synthetic images. While this
approach is different from prior work on generating data for training ML models, which
used conditional GANs, comparisons in this section are still valid because our annotator
maintains the same privacy guarantee. Figure 7.1 depicts this aspect of our technique.

We choose to compare with the method called G-PATE (Long et al., 2019), because it
is one of the best recent techniques in terms of privacy-utility trade-off. As the name
suggests, it uses PATE framework (Papernot et al., 2016) to train GANs with differential
privacy. This framework enables more efficient DP training by relying on the idea that
the privacy loss should be small when multiple independent models strongly agree on the
outcome. Long et al. (2019) showed that their method outperforms another PATE-based
approach, PATE-GAN (Jordon et al., 2018), as well as DP-GAN (Xie et al., 2018), based
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Table 7.1 – Accuracy of models: (1) non-private baseline (convolutional network); (2)
private classifier (convolutional network trained with BDP); and student models: (3) for
G-PATE with (1, 10−5)-DP guarantee; (4) for WGAN with (1, 10−10)-BDP guarantee
(our method).

Dataset Non-private Private classifier G-PATE Our approach
MNIST 99.20% 95.59% 56.31% 93.64%

Fashion-MNIST 91.51% 82.20% 51.74% 76.83%
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(b) Fashion-MNIST.

Figure 7.4 – Relative accuracy (a percentage of maximum achievable accuracy) for
different numbers of labelled images.

on DP-SGD. A direct comparison with the latter would be more fair than with G-PATE,
but the quality of samples with the comparable privacy guarantee would not be sufficient
for learning.

Student model accuracy is shown in Table 7.1. Apart from G-PATE, we compare our
method to a non-private classifier trained directly on the real dataset, and a private
classifier, trained on the real dataset with Bayesian DP. In the case of generative models,
the same (non-private) classifier is trained on the private synthetic output. All results
in the table are obtained with the privacy guarantee of (1, 10−5)-DP, or (1, 10−10)-BDP,
which is equivalent to (1, 10−5)-DP for this data with high probability. Although Long
et al. (2019) report better results for (10, 10−5)-DP, we do not include those in the study,
because ε = 10 is too high for providing meaningful guarantee (see Section 5.3.3).

Generally, we observe that switching from real to synthetic data with privacy protection
does not seriously reduce accuracy of the student models on these datasets. On MNIST,
the drop in performance between a private discriminative and a private generative
approach is less than 2% (from 95.6% to 93.6). It is more noticeable on Fashion-MNIST
(from 82.2% to 76.8%), but is still within about 7% and is still lower than the drop
between a non-private and a private classifiers. At the same time, BDP GANs significantly
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(b) Average-case DP.

Figure 7.5 – Cross-entropy loss for real and artificial validation sets.

outperform G-PATE on both datasets. The DP-based approach only reaches ∼ 56% and
∼ 52% accuracy on MNIST and Fashion-MNIST correspondingly. Even considering the
results with a looser privacy guarantee of ε = 10 from Long et al. (2019, Table 2), our
solution has the edge.

In another experiment, Figures 7.4a and 7.4b show a percentage of maximum accuracy
(i.e. numbers reported in Table 7.1) achievable by the model when only a part of the
generated data is labelled. Notably, the models trained on synthetic data achieve the
same percentage faster than the ones trained on the real data, which is especially evident
for Fashion-MNIST dataset. Moreover, as little as 100 labelled samples is enough to
outperform models trained on data generated with comparable DP guarantees. It is
worth mentioning that these graphs do not mean that a smaller number of labelled
synthetic samples is better for learning than the real examples. Nevertheless, it allows
to make a more educated decision about the trade-offs. For instance, 100 labelled
synthetic Fashion-MNIST samples produce the same quality model as 100 real samples.
Consequently, if one only had resources to label 100 examples, the loss of utility would
not be a part of consideration.

Non-private synthetic data (not shown in the table) allow to reach somewhat better
results compared to private synthetic data. On MNIST, the student model reaches
96.09%, while on Fashion-MNIST, 84.86%. It suggests that about half of the accuracy
loss comes from the limited capacity of the generative model. Figures 7.4a and 7.4b seem
to corroborate this finding, as the learning curve for synthetic data saturates quicker.
This kind of performance would be reached by our approach taken in Chapter 3, which
essentially trains a GAN without additional noise and uses average-case DP to estimate
expected privacy loss. However, one should be careful about comparing these two directly,
because the Bayesian DP guarantee is substantially stronger than ADP. We leave a more
detailed discussion on how ADP and BDP compare for Section 8.2.
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Finally, we consider another important aspect of learning—model validation. We perform
an experiment on using synthetic data for validation, as we did in Section 3.6.4. Figure 7.5
shows cross-entropy loss curves on real and artificial validation sets. We compare the
curves produced by GANs with Bayesian DP and with average-case DP (i.e. trained
without gradient noise). On MNIST, we see a similar picture for both privacy notions,
with correlation coefficients between real and artificial validation scores being high: 0.987
for BDP and 0.981 for ADP. On Fashion-MNIST, however, both ADP- and BDP-based
solutions fail to reflect the true direction of the validation curve, despite capturing some
of the finer scale details (at least in case of BDP). Correlation coefficients for Fashion-
MNIST are negative, −0.058 and −0.581. It suggest that, despite initially optimistic
results, the validation aspect warrants further research. Potentially, one could relate such
behaviour to faster saturation of the learning curve for synthetic Fashion-MNIST.

7.6 Conclusion

We explored the use of generative adversarial networks to tackle the problem of privacy-
preserving data inspection and annotation in machine learning. While the previous
approaches to this problem, including ours in Chapters 3 and 4, involve generative
models either without a rigorous privacy guarantee or with differential privacy, we opt
for Bayesian differential privacy, introduced in Chapter 5. By capturing the inherent
properties of data and allowing for non-uniform privacy loss throughout the dataset, it
enables higher-quality synthetic data while still maintaining a strong privacy guarantee,
comparable to DP under mild conditions.

We perform data inspection evaluation by introducing image corruption before training
the generative model. Our experiments show that privacy-preserving GANs with BDP
can be used to detect these bugs, in the data itself or pre-processing pipelines. To the
contrary, this particular mistake would be difficult to catch using DP GANs due to low
samples fidelity. Similarly, we presume that biases in the data and previously unseen
classes can be discovered in a similar way.

In addition, the generated data can be directly annotated and used for training in place
of the real data. We demonstrate it by training student models on our synthetic samples
labelled by a separate privacy-preserving classifier, imitating a human annotator. These
student models are shown to achieve significantly higher accuracy compared to prior
state-of-the-art, represented by a DP GAN trained with PATE, and exhibit only a mild
drop in performance compared to private classification with real data. Furthermore, this
gap is determined by the quality of the generative model to a large extent, and hence,
will get smaller with advances in that field.
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8 Conclusion

8.1 Summary

Machine learning and data analytics gradually take over the world, becoming common-
place in many aspects of our lives, from smartphones to hospital rooms. This is not
surprising, given the potential benefits that these methods bring. At the same time, as
society becomes more aware and concerned with privacy protection, security and privacy
issues in machine learning take centre stage. Even if the training data itself remain
secure, it has been recently shown that certain attacks can infer information about these
data from the trained models, in both white-box and black-box settings (Fredrikson
et al., 2015; Shokri et al., 2017).

On the other hand, providing meaningful privacy guarantees in machine learning remains
an open question. Existing methods typically fall into one of the two categories: the ones
that value privacy over accuracy, and the ones that value accuracy over privacy. The first
provide strong, formal privacy guarantees, but often have significantly lower learning
performance. The second achieve the learning performance comparable to non-private
models, but offer very weak and limited privacy protection. This trade-off between
privacy and utility is manifested even stronger in privacy-preserving data release, where
the task is to publish or provide (almost) unrestricted access to a dataset containing
sensitive information.

In this thesis, we explore ways to improve the privacy-utility trade-off in machine learning
applications. As a result, we achieve significantly better performance for private models
while still maintaining theoretical privacy guarantees, and enable private data release for
complex real-world datasets.

First, we propose a method based on generative adversarial networks (GANs) to produce
artificial datasets that can be used in place of the original data. This is a promising
technique to solve the problem of privacy-preserving data release. The choice of GANs
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as a generative model is motivated by its scalability and it improves the technique
applicability to real-world data with complex structure. Unlike many previous methods,
ours uses a customised data-aware privacy definition and is able to generate higher
quality data while providing an empirical privacy guarantee. Relaxing the privacy notion
also allows to avoid unrealistic assumptions, such as access to similar publicly available
data, necessary for many DP methods to produce usable results. In our experiments, we
demonstrate that student models, trained with artificial data, reach high classification
accuracy on MNIST and SVHN. On these datasets, models can also be validated on
artificial data, and the validation scores correlate with those obtained from real validation
sets. Although, this result should be taken with a grain of salt, as we explain in Chapter 7.
At the same time, we show that training on artificial data makes classifiers more resistant
to model inversion attacks, for example, reducing the face detection rate in reconstructed
face images from 63.6% to 1.3%, and the face recognition rate from 2.8% to 0.1%.

Second, we develop an empirical notion of privacy, (µ, γ)-Average-Case Differential
Privacy (ADP), oriented towards private synthetic data release. This notion relaxes the
requirements of DP by considering an average-case scenario instead of the worst-case.
Moreover, due to complexity of data distributions, we substitute the rigorous theoretical
bound with an empirical bound based on sampling from the dataset. These relaxations
allow to avoid adding excessive amounts of noise, like it is done in DP, and enable ex post
privacy analysis of generative models. Although ADP does not offer a formal guarantee,
its empirical bound is useful for evaluating typical privacy risks of generative models,
especially when achieving DP guarantees is not feasible or when the model has already
been deployed.

Third, we design a new variant of differential privacy, called (εµ, δµ)-Bayesian Differential
Privacy (BDP), tailored to provide guarantees for sensitive data that are all drawn from
the same data distribution µ(x). The data distribution can be arbitrary and is generally
unknown. Such a relaxation is sensible in many machine learning applications, since
models and algorithms are typically trained on particular data distributions (e.g. emails,
face images, MRIs, and so on). We formulate and prove basic properties of BDP, as well
as the advanced composition theorem that enables tight and efficient privacy accounting.
We employ the Bayesian parameter estimation approach, along with the flat prior and the
maximum entropy principle to address the fact that the data distribution is unknown and
the sample size is finite. It allows us to overestimate privacy loss, under mild assumptions
on its prior, with high, controllable probability and avoid underestimating probabilities of
unseen examples. Our experiments confirm that Bayesian DP is highly advantageous in
ML scenarios where the additional data distribution assumptions are organically satisfied.
Bayesian DP requires less noise than DP for comparable privacy guarantees, and hence,
training converges faster and models achieve higher accuracy. Most importantly, BDP is
best used in combination with DP in order to determine significantly tighter ε values for a
majority of users or data points, simultaneously maintaining the classical DP guarantees
for all. We experimented with deep learning and variational inference applications, and εµ
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consistently remains well below 1, allowing for much more meaningful privacy guarantees.

Forth, we explore federated learning settings and adapt both Average-Case DP and
Bayesian DP to these scenarios. We propose the first private federated data release
approach based on GANs. It combines important advantages of both federated learning
and private data release, such as higher flexibility and reduced requirements for user
expertise and trust, and enables hierarchical data pooling and data trading. We also
improve performance of private federated discriminative models by employing (εµ, δµ)-
Bayesian differential privacy. Since it requires less noise than DP to reach comparable
privacy guarantees, models can be trained in fewer communication rounds. Simultaneously,
privacy guarantees are significantly tighter, and thus, more meaningful. For client bases in
the order of thousands, which is realistic in many federated learning scenarios, per-client
ε can be as low as 1 or better. Lastly, we show that using the joint accounting technique
allows to achieve client-level privacy “for free” when enforcing instance privacy. This
way, we can maintain reasonably high accuracy, while keeping client privacy budgets
close to ε = 1 and instance privacy budgets close to ε = 0.1.

Finally, we study the use of generative adversarial networks to tackle the problem of
privacy-preserving data inspection and annotation in machine learning. Unlike the earlier
approaches, which either provide no privacy guarantee or utilise differential privacy, we
take advantage of Bayesian differential privacy. By capturing the inherent properties
of data and allowing for non-uniform privacy loss throughout the dataset, it enables
higher-fidelity synthetic data while still maintaining privacy guarantees comparable to DP.
We show that privacy-preserving GANs with BDP can enable detection of subtle bugs in
pre-processing pipelines or the data itself. This could not be achieved with DP GANs
due to low quality of samples. Similarly, data biases and unseen classes can be discovered.
Additionally, for some applications, generated data can be directly annotated and used
for training in place of the real data. We demonstrate that student models trained on
synthetic samples achieve significantly higher accuracy compared to prior state-of-the-art
and exhibit only a mild drop in performance compared to directly learning a private
classifier from real data. Moreover, to a large extent, this gap is explained by the quality
of the generative model, and hence, will get smaller as the field advances.

8.2 Discussion

This thesis consists of two parts dedicated to two alternative privacy notions, average-case
differential privacy, in Part I, and Bayesian differential privacy, in Part II. Apart from
a few cross-references, these parts are largely independent, and before concluding this
thesis, we find it important to discuss their relation in the bigger picture.

Both definitions share the idea of improving privacy guarantees by taking into account
the data distribution. Effectively, it amounts to a shift in the definition of sensitivity.
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In traditional privacy notions, sensitivity is defined as a hard, deterministic bound on a
change in the output given a change in the input. In both ADP and BDP, sensitivity
is a probabilistic quantity dependent on the natural randomness of the data and the
data sampling process. However, the crucial difference between the two is that ADP is a
function of past outputs, while BDP is a guarantee on future outputs. Consequently, it
is more appropriate to think of ADP as a statistical measure of sensitivity. On the other
hand, BDP is a privacy notion in the traditional sense, except that it uses a probabilistic
sensitivity measure under the hood.

This conceptual difference transfers to differences in practical applications of these two
definitions. First of all, due to the weakness of the ADP guarantee (i.e. it only bounds
the expected value of the privacy loss), Bayesian DP is more suited for the applications
that require stricter privacy protection. Conversely, average-case DP can be used when
the goal is to assess potential privacy leakage in generative models, but not necessarily
to impose additional protection. Second, related to the previous point, Bayesian DP is
designed for privacy mechanisms with a controlled source of randomness independent
of the data. In other words, mechanisms that impose additional privacy protection
using a pre-defined noise distribution on top of the intrinsic data randomness. It means
that BDP cannot be used unless such a mechanism is present, for example for ex post
analysis of a generative model. To the contrary, we initially devised ADP for this kind
of situations, where the developer has a reason to believe that the innate, uncontrolled
sources of randomness and architecture of the model are sufficient to hide sensitive data
characteristics. A prominent example of this is GANs. Furthermore, ADP can be used
for models that are already deployed, while BDP only during training.

Finally, let us address a more direct, practical comparison of these notions in the
application where both were applied – generating private artificial datasets using GANs.
As follows from the discussion above, we cannot directly compare privacy guarantees
because they bound different quantities. But keeping this in mind, we can contrast
other aspects, such as the model quality and the real-world applicability. As mentioned
in Chapter 7, only a part of the synthetic data utility loss comes from using a BDP
mechanism in training. The major challenge is to find a set of hyper-parameters for
which mode collapse does not occur. Once the stable training is achieved, the data
quality is defined by the GAN capacity to a large extent. It suggests that ADP models,
in spite of a considerably weaker guarantee, do not significantly gain in utility. Moreover,
Bayesian DP is easier to implement, more computationally efficient (especially when
per-example gradients are available (Goodfellow, 2015)), and relies on a much more
principled and robust estimation framework. Hence, the only advantages of ADP are the
increased training stability and a moderate improvement in utility. And if stability can
be maintained in the presence of noise, Bayesian DP is clearly preferable.

In summary, Bayesian DP is the right choice if one needs a theoretical privacy guarantee
and if training is robust enough against additional noise. If the model quality is severely
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affected by noise, or if one just needs a statistical sensitivity measure for an already
trained model, average-case DP can be used.

8.3 Future Directions

With ever increasing real-world use of machine learning, privacy research in this area
is important, and at the moment, there is still a lack of good solutions, particularly for
private data publishing. Hence, there are a lot of potential directions of future work.

One important question is the automation of privacy parameters search, such as noise
variance and gradient clipping threshold. We treated these parameters similar to learning
hyper-parameters, but it complicates the training process and increases the privacy budget
(due to accounting all cross-validation or grid search runs). An adaptive procedure for
choosing these parameters will be a significant contribution; not only for Bayesian DP,
but for any differentially private and privacy-preserving ML. There were some attempts
to address this problem, e.g. Abadi et al. (2016) proposing to use the median of gradient
norms as a clipping threshold, but using non-sanitised information for such decision
making is a potential privacy risk. Thus, it warrants further investigation.

For Bayesian DP in particular, a possible future direction is detection and mitigation
of users and data points for which BDP privacy guarantees are not applicable, such as
extreme outliers or out-of-distribution samples. We described a way of computing the
probability of encountering “privacy outliers” in Chapters 5 and 7. It is also possible to
compute a general DP bound in parallel with BDP. However, it would be preferable to
provide tighter guarantees for points from similar distributions. More generally, given that
the mechanism was calibrated to one data distribution, x′ ∼ µ(x), what are the privacy
guarantees for data points whose distribution, x′ ∼ ν(x), imposes a different distribution
on privacy loss. Perhaps, it is possible to derive expressions based on distances between
protected and unprotected distributions. In high-dimensional spaces, which we primarily
consider in this thesis, the privacy loss distribution is not likely to change significantly,
but it would still be valuable to quantify this change and the change in the guarantee.
A related question is how can auxiliary information about the privacy loss distribution
affect guarantees of Bayesian DP, e.g. when conditions of Theorem 5 are not satisfied.

Another interesting direction for BDP is analysing the composition of privacy mechanisms
for different data distributions. In this thesis, we considered composition of mechanisms
applied to the data generated by the same distribution µ(x), and it is a common
assumption in real-world applications. Nonetheless, in some applications, there may exist
two or more different data distributions, i.e. µ1(x) and µ2(x), and it may be necessary
to compose the mechanisms tailored to these individual distributions. Intuitively, both
the basic and the advanced composition theorems should hold in this case, but a formal
proof and analysis would be a worthwhile contribution.
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More discriminative and generative models could be evaluated with both average-case DP
and Bayesian DP. In model release settings, we were primarily interested in convolutional
neural networks, but there are other commonly used models, such recurrent neural
networks (RNNs). Training RNNs with privacy is more complicated, especially for long
sequences, due to unrolling over time, and it presents a valuable experimental work. For
data release scenarios, we used a rather basic Wasserstein GAN, but there are more
advanced GANs for image data, GANs for discrete inputs, RNNs, VAEs, as well as other
classes of generative and hybrid methods. A particularly interesting direction is studying
behaviour of Bayesian differential privacy with the models that are difficult to train
under the conventional DP. Again taking the example of RNNs, successful incorporation
of BDP in RNNs could enable generating new classes of data privately, including audio
sequences, location traces, texts, and so on.

In the context of using synthetic datasets for data annotation and ML troubleshooting,
it would be interesting to perform a large scale crowdsourcing study to test possibilities
of discovering irregularities in the datasets, such as under-represented classes, previously
unseen classes, or biased distributions. For instance, one could eliminate examples of
certain classes (e.g. shoes from Fashion-MNIST), and then set up an A/B style test
where crowdsource workers would be shown synthetic images generated with DP and
with Bayesian DP and asked if they could detect a bias in the synthetic dataset. Similar
experiments could be arranged for data annotation. In Chapter 7, we used a private
classifier to label artificial images, but it will not necessarily have perfect correlation with
human annotators. Analysing these differences is another interesting research direction.

In the area of federated learning, a very prominent research direction is achieving
practical local privacy guarantees, that is using the local model of differential privacy (see
Definition 9). This notion is stronger than than the centralised model and requires more
noise to be added at the clients. Bayesian DP can straightforwardly be adjusted to work
in the local model, but if a client does not have information about other client updates
distribution, there could be little or no gain in comparison with the traditional DP. An
alternative is to employ a “hybrid” approach to BDP, akin to distributed differential
privacy (Shi et al., 2011; Rastogi and Nath, 2010), and use a cryptographic scheme to
compute privacy guarantees centrally while adding noise locally at the clients.

In general, research in machine learning methods with privacy guarantees can potentially
have a very broad impact, even beyond fending off potential attacks. It could help
improve accuracy of AI methods by unlocking access to more sensitive data, accelerate
and extend AI development and deployment on mobile, wearable, and IoT devices, and
facilitate medical research and data sharing.
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A Appendix

A.1 Proofs of Propositions

This section contains proofs of propositions.

Proposition 2. (εµ, δµ)-strong Bayesian differential privacy implies (εµ, δµ)-Bayesian
differential privacy.

Proof. Let us define a set of outcomes for which the privacy loss variable exceeds the ε
threshold: F (x′) = {w : LA(w,D,D′) > ε}, and its compliment F c(x′).

Observe that L ≤ ε implies Pr[A(D) ∈ S ∩ Fc(x′)] ≤ eε Pr[A(D′) ∈ S ∩ Fc(x′)], and
therefore, Pr[A(D) ∈ S ∩ Fc(x′) | x′] ≤ eε Pr[A(D′) ∈ S ∩ Fc(x′) | x′], because A(D)
does not depend on x′, and A(D′) is already conditioned on x′ through D′. Thus,

Pr[A(D) ∈ S] =
∫

Pr[A(D) ∈ S, x′] dx′ (A.1)

=
∫

Pr[A(D) ∈ S ∩ Fc(x′), x′] (A.2)

+ Pr[A(D) ∈ S ∩ F(x′), x′] dx′ (A.3)

=
∫

Pr[A(D) ∈ S ∩ Fc(x′)|x′]µ(x′) (A.4)

+ Pr[A(D) ∈ S ∩ F(x′), x′] dx′ (A.5)

≤
∫
eε Pr[A(D′) ∈ S ∩ Fc(x′)|x′]µ(x′) (A.6)

+ Pr[A(D) ∈ S ∩ F(x′), x′] dx′ (A.7)

≤
∫
eε Pr[A(D′) ∈ S, x′] (A.8)

+ Pr[A(D) ∈ S ∩ F(x′), x′] dx′ (A.9)
≤ eε Pr[A(D′) ∈ S] + δµ, (A.10)
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where in the first line we used marginalisation and the last inequality is due to the fact
that ∫

Pr[A(D) ∈ S ∩ F(x′), x′] dx′ (A.11)

≤
∫

Pr[A(D) ∈ F(x′), x′] dx′ (A.12)

=
∫
µ(x′) Pr[A(D) ∈ F(x′) | x′] dx′ (A.13)

=
∫
µ(x′)

∫
w∈F(x′)

pA(w|D,x′) dw dx′ (A.14)

= Ex′ [Ew [1{L > ε}]] (A.15)
≤ δµ (A.16)

Proposition 3 (Post-processing). Let A : D → R be a (εµ, δµ)-Bayesian differentially
private algorithm. Then for any arbitrary randomised data-independent mapping f :
R → R′, f(A(D)) is (εµ, δµ)-Bayesian differentially private.

Proof. By Proposition 2, (εµ, δµ)-strong BDP implies

Pr [A(D) ∈ S] ≤ eεµ Pr
[
A(D′) ∈ S

]
+ δµ, (A.17)

for any set of outcomes S ⊂ R.

For a data-independent function f(·):

Pr [f(A(D)) ∈ T ] = Pr [A(D) ∈ S] (A.18)
≤ eεµ Pr

[
A(D′) ∈ S

]
+ δµ, (A.19)

= eεµ Pr
[
f(A(D′)) ∈ T

]
+ δµ (A.20)

where S = f−1[T ], i.e. S is the preimage of T under f .

Proposition 4 (Basic composition). Let Ai : D → Ri, ∀i = 1..k, be a sequence of
(εµ, δµ)-Bayesian differentially private algorithms. Then their combination, defined as
A1:k : D → R1 × . . .×Rk, is (kεµ, kδµ)-Bayesian differentially private.

Proof. This property applies to both strong and weak senses of Bayesian DP. Let us
begin with proving it for the strong sense.

128



A.1. Proofs of Propositions

Denote L = log p(w1,...,wk|D)
p(w1,...,wk|D′) and let Li = log p(wi|D,wi−1,...,w1)

p(wi|D′,wi−1,...,w1) . Then,

Pr [L ≥ kεµ] = Pr
[
k∑
i=1

Li ≥ kεµ

]
(A.21)

≤
k∑
i=1

Pr[Li ≥ εµ] (A.22)

≤
k∑
i=1

δµ (A.23)

≤ kδµ (A.24)

For the weak sense of BDP, the proof is similar to the proof of the basic composition
theorem for the approximate DP (Dwork et al., 2014). For the case of two mechanisms:

Pr [(A1(D),A2(D)) ∈ S] =
∫
S1
pA1(w1) Pr [(w1,A2(D)) ∈ S] dw1 (A.25)

≤
∫
S1
pA1(w1)

((
eεµ Pr

[
(w1,A2(D′)) ∈ S

])
∧ 1 + δµ

)
(A.26)

≤
∫
S1
pA1(w1)

((
eεµ Pr

[
(w1,A2(D′)) ∈ S

])
∧ 1
)

+ δµ (A.27)

≤
∫
S1

(eεµpA′1(w1) + δµ) (A.28)

×
((
eεµ Pr

[
(w1,A2(D′)) ∈ S

])
∧ 1
)

+ δµ (A.29)

≤ e2εµ
∫
S1
pA′1(w1) Pr

[
(w1,A2(D′)) ∈ S

]
+ 2δµ (A.30)

≤ e2εµ Pr
[
(A1(D′),A2(D′)) ∈ S

]
+ 2δµ, (A.31)

where ∧ operator defines the minimum between the left and the right arguments.

The general case of k mechanisms follows by induction.

Proposition 5 (Group privacy). Let A : D → R be a (εµ, δµ)-Bayesian differentially
private algorithm. Then for all pairs of datasets D,D′ ∈ D, differing in k data points
x1, . . . , xk s.t. xi ∼ µ(x) for i = 1..k, A(D) is (kεµ, kekεµδµ)-Bayesian differentially
private.

Proof. Let us define a sequence of datasets Di, i = 1..k, s.t. D = D0, D′ = Dk, and Di

and Di−1 differ in a single example. Then,

p(w|D)
p(w|D′) = p(w|D0)p(w|D1) . . . p(w|Dk−1)

p(w|D1)p(w|D2) . . . p(w|Dk) (A.32)
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Denote Li = log p(w|Di−1)
p(w|Di) for i = 1..k.

Applying the definition of (εµ, δµ)-strong Bayesian differential privacy,

Pr [L ≥ kεµ] = Pr
[
k∑
i=1

Li ≥ kεµ

]
(A.33)

≤
k∑
i=1

Pr[Li ≥ εµ] (A.34)

≤ kδµ (A.35)

For (εµ, δµ)-BDP,

Pr [A(D) ∈ S] ≤ eεµPr
[
A(D1) ∈ S

]
+ δµ (A.36)

≤ eεµ
(
eεµPr

[
A(D2) ∈ S

]
+ δµ

)
+ δµ (A.37)

≤ e2εµPr
[
A(D2) ∈ S

]
+ eεµδµ + δµ (A.38)

≤ e3εµPr
[
A(D3) ∈ S

]
+ e2εµδµ + eεµδµ + δµ (A.39)

≤ . . . (A.40)

≤ ekεµ Pr
[
A(Dk) ∈ S

]
+ ekεµ − 1

eεµ − 1 δµ (A.41)

≤ ekεµ Pr
[
A(Dk) ∈ S

]
+ kεµe

kεµ

εµ
δµ (A.42)

≤ ekεµ Pr
[
A(D′) ∈ S

]
+ kekεµδµ, (A.43)

where in (A.41) we use the formula for the sum of a geometric progression; in (A.42),
the facts that ex − 1 ≤ xex, for x > 0, and ex ≥ x+ 1.
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