
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

The Hidden Complexity of Distributed Systems

Karolos ANTONIADIS

Thèse n° 8271

2020

Présentée le 15 octobre 2020

Prof. E. Telatar, président du jury
Prof. R. Guerraoui, directeur de thèse
Prof. R. Friedman, rapporteur
Prof. F. Pedone, rapporteur
Prof. M. Grossglauser, rapporteur

à la Faculté informatique et communications
Laboratoire de calcul distribué
Programme doctoral en informatique et communications

Τό νά ὁραματίζεσαι ἕνα σκοπό, αὐτό δέν εἶναι ἀντίθετο μέ τήν πράξη, ἀπεναντίας εἶναι ἡ

ἀρχή της. Ἀλλά πρέπει ἐν συνεχείᾳ να ὁρίσεις τα μέσα τοῦ σκοποῦ, τά συγκεκριμένα

σκαλοπάτια ἕνα ἕνα καί νά τά πατᾶς. ᾿Εδῶ ὃμως πιά ὁ ἡδονισμός τοῦ ὡραίου καί τοῦ

ὑψηλοῦ σέ ἐγκαταλείπει καί θἄπρεπε νά τόν ἀντικαταστήσει ἡ πειθαρχία καί ἡ ἄσκηση τῆς

συγκέντρωσης καί τῆς δουλειᾶς.

—Κωνσταντίνος Τσάτσος

Man muss nur gehn: Kein Gefühl ist das fernste.

— Rainer Maria Rilke

To my parents,

Sigrid and Jannis

Acknowledgements
I am extremely grateful to Prof. Rachid Guerraoui for giving me the opportunity to freely pur-

sue the work presented in this thesis. I want to thank him for being a great mentor, extremely

patient, and encouraging during all those years.

I was lucky enough to meet some amazing people during my studies that I have the honor

of considering good friends: Georgios Chatzopoulos, Georgios Damaskinos, David Kozhaya,

Dragos-Adrian Seredinschi, Vasileios Trigonakis, and Igor Zablotchi. Special thanks go to Igor

Zablotchi: without our discussions this work would not have been possible. Additionally,

the whole PhD experience would have been rather dull without the interaction with Aggelos

Biboudis, Panayiotis Danassis, Tudor David, Chi Thang Duong, El Mahdi El Mhamdi, Jad

Hamza, Lê Nguyên Hoang, Christos Kotsalos, Rhicheek Patra, Matej Pavlovic, Javier Picorel,

Georg Stefan Schmid, Mahsa Taziki, and Jingjing Wang. Furthermore, I would like to thank

France Faille and Fabien Salvi for always being there to help and answer my bureaucratic, and

not only questions.

I would like to express my gratitude to two persons that played a great role in my academic

path. I owe a lot to Prof. Panagiota Fatourou at University of Crete for inspiring me in my early

study years and introducing me to research, and to Prof. Souzana Papadopoulou for being a

lifelong mathematics mentor and a great role model.

Naturally, I owe everything to my parents, Sigrid and Jannis, and my siblings Katerina and

Antonios, for always being there for me, no matter what. Words cannot describe how thankful

and fortunate I am to be part of this great family.

Finally, I want to thank my wife, Maria. Meeting her is the best and most beautiful thing that

ever happened to me. I am glad she was part of this journey. The best is yet to come.

Bern, September 11, 2020 K. A.

i

Preface
The work presented in this thesis was conducted in the Distributed Computing Laboratory at

EPFL under the supervision of Prof. Rachid Guerraoui.

The results of this thesis are based on the following articles:

• Karolos Antoniadis, Vincent Gramoli, Rachid Guerraoui, Eric Ruppert, and Igor Zablotchi.

“Leaderless Consensus.” Under submission.

• Karolos Antoniadis, Diego Didona, Rachid Guerraoui, and Willy Zwaenepoel. “The

Impossibility of Fast Transactions.” In the Proceedings of the 34th International Parallel

and Distributed Processing Symposium (IPDPS), 2020.

• Karolos Antoniadis, Rachid Guerraoui, Dahlia Malkhi, and Dragos-Adrian Seredinschi.

“State Machine Replication is More Expensive than Consensus.” In the 32nd International

Symposium on Distributed Computing (DISC), 2018.

Despite the aforementioned papers, during my doctoral studies, I was also involved in work

that resulted in the following publications:

• Karolos Antoniadis, Rachid Guerraoui, and Vasileios Trigonakis. “Thread-Placement

Learning.” In the Proceedings of the 40th International Conference on Distributed

Computing Systems (ICDCS), 2020.

• (Book Chapter) Karolos Antoniadis and Rachid Guerraoui. “The Notions of Time and

Global State in a Distributed System.” In the book “Concurrency: The Works of Leslie

Lamport”, 2019.

• Karolos Antoniadis, Peva Blanchard, Rachid Guerraoui, and Julien Stainer. “The entropy

of a distributed computation random number generation from memory interleaving.” In

the Distributed Computing Journal, 2018.

iii

Abstract
The field of distributed computing has a long history, of more than fifty years. During that

time, our understanding of the field has improved immensely and a certain body of folklore

beliefs has formed. However, such folklore beliefs are not necessarily always true.

In this thesis, we identify hidden complexities (in the sense of intricacies or costs) of distributed

systems that contradict some of these folklore beliefs. Specifically, in this thesis, we challenge

accepted beliefs in the following way: i) consensus algorithms need not be leader-based: there

exists a deterministic leaderless consensus algorithm that is robust to non-synchronous peri-

ods, ii) completing a state machine replication command can be arbitrarily more expensive

than solving a consensus instance, and iii) no data store actually provides fast transactions

because they are impossible. Our results are associated to some of the fundamental problems

in the field of distributed computing and are of significant practical relevance.

Keywords: consensus, fast transactions, leaderless, state machine replication

v

Zusammenfassung
Der Bereich des verteilten Rechnens hat eine lange Geschichte von mehr als fünfzig Jahren.

In dieser Zeit hat sich unser Verständnis auf diesem Gebiet immens verbessert, und es hat

sich ein gewisser “Volksglaube” herausgebildet. Solche Überlieferungen sind jedoch nicht

unbedingt immer wahr.

In dieser Arbeit identifizieren wir versteckte Komplexitäten (im Sinne von Feinheiten oder

Kosten) verteilter Systeme, die einigen dieser überlieferten Annahmen widersprechen. Kon-

kret stellen wir in dieser Arbeit akzeptierte Überzeugungen auf folgende Weise in Frage: i)

Konsensusalgorithmen müssen nicht führerbasiert sein: Es gibt einen deterministischen füh-

rerlosen Konsensusalgorithmus, der robust gegenüber nicht-synchronen Perioden ist, ii) die

Ausführung einer Replikation von Zustandsautomaten kann beliebig teurer sein als die Lösung

einer Konsensusinstanz, und iii) kein Datenspeicher bietet tatsächlich schnelle Transaktio-

nen, weil sie unmöglich sind. Unsere Ergebnisse stehen im Zusammenhang mit einigen der

grundlegenden Probleme auf dem Gebiet des verteilten Rechnens und sind von erheblicher

praktischer Relevanz.

Schlüsselwörter: Konsensus, schnelle Transaktionen, führerlos, Replikation von Zustandsau-

tomaten

vii

Contents
Acknowledgements i

Preface iii

Abstract (English/Deutsch) v

List of Figures xi

1 Introduction 1

1.1 Distributed Computing Models . 2

1.2 Consensus and State Machine Replication . 3

1.3 Transactions . 3

1.4 Contributions . 4

1.5 Roadmap . 6

I Consensus and State Machine Replication 7

2 Leaderless Consensus 9

2.1 Introduction . 9

2.2 Model . 11

2.3 Leaderless Termination . 14

2.4 Archipelago: Leaderless Consensus . 17

2.5 Archipelago: Proof of Correctness . 21

2.6 Leaderless Consensus in Message Passing . 31

2.7 ArchSMR: Archipelago in Practice . 37

2.8 Related Work . 40

2.9 Conclusion . 41

3 State Machine Replication is More Expensive Than Consensus 43

3.1 Introduction . 43

3.2 Model . 46

3.2.1 Consensus . 47

ix

Contents

3.2.2 State Machine Replication . 49

3.3 Complexity Lower Bound on State Machine Replication 58

3.3.1 Complexity Lower Bound . 58

3.3.2 Extension to other Models . 60

3.4 The Empirical Perspective . 61

3.4.1 Experimental Methodology . 61

3.4.2 Experimental Results on a Single Machine 63

3.4.3 Wide-area Experiments . 65

3.5 Discussion . 67

3.6 Conclusion . 68

II Transactions 71

4 The Impossibility of Fast Transactions 73

4.1 Introduction . 73

4.2 Model . 75

4.3 Fast Transactions Are Impossible . 85

4.4 Unbounded-Version Data Store . 90

4.5 Conclusion . 100

5 Concluding Remarks 103

Bibliography 105

Curriculum Vitae 113

x

List of Figures

2.1 Graphical depiction of a synchronous−1 execution. 13

2.2 With 2 processes, Archipelago might never decide in a synchronous−1 execution

(v ′ > v). 23

2.3 Execution pattern that appears when the minimum value propagates to the next

adopt-commit-max object (x ≥ 2). 25

2.4 Lemma 7 (1) . 29

2.5 Lemma 7 (2) . 30

2.6 Lemma 7 (3) . 30

2.7 Performance of ZooKeeper and ArchSMR upon server suspension. 39

2.8 Performance of ArchSMR upon rotating suspensions of all servers. 40

3.1 Constructed execution of Theorem 4. Red dashed lines correspond to rounds

where a replica is suspended. Replica p1 is suspended for a1 rounds, replica p2

for a2 rounds, etc. 59

3.2 Experimental results with LibPaxos on a single-machine setup. We compare the

cost of SMR commands with the cost of consensus instances in three scenarios. 63

3.3 Experimental results with LibPaxos on the WAN. Similar to Figure 3.2, we com-

pare the cost of SMR commands with the cost of consensus instances. 65

3.4 Experimental results with Raft on the WAN. Similar to Figures 3.2 and 3.3, we

compare the cost of SMR commands with the cost of consensus instances. . . . 66

4.1 A transaction t that reads, among others, objects o and o′ cannot read values vi

and v j due to the existence of ew . However, transaction t can read values v and

v j for objects o and o′ respectively. Note that all three writes ewi ,ew , and ew j are

performed by the same client c. 84

4.2 Executions α1 and α2 where client cw writes (in red) objects o1 and o2. Client ch

issues a finite number of transactions (in green) between the cw ’s writes and cr

performs a transaction that reads both objects o1 and o2 (in blue). 86

xi

List of Figures

4.3 At the top, we depict execution α where client cw alternates between writing (in

red) objects o1 and o2. Client ch issues a finite number of transactions (in green)

after client’s cw write of value v j
o2

until values (v j
o1

, v j
o2

) are visible. At the bottom,

we depict execution αi . Due to space constraints, we depict the transactions of

ch until values (v i
o1

, v i
o2

) and (vk+2
o1

, vk+2
o2

) are visible with shortened green boxes.

The events of client’s cr transaction that read objects o1 and o2 are depicted in

blue. 88

xii

1 Introduction

Since the completion of the first fully automatic digital computer in 1941 [126], computers

have been fundamentally enhanced in at least two ways. First, the fundamental work of

ARPANET in the sixties [88] has led to computer networks, making computers substantially

more practical and subsequently changing the world as we know it. Second, with the advent of

multicores and multiprocessors, computers have now multiple processing units, and hence the

ability to perform computations in parallel that allowed for groundbreaking new technologies

to emerge. Both of these fundamental enhancements brought distributed systems to the

foreground of computing.

A distributed system is intuitively a set of independent processes coordinating with each other

to achieve a common goal. One might think of a “distributed system” as a set of geographically

distant computers that achieve a specific goal by communicating over a network (e.g., Internet).

However, it is not necessary that the processes are geographically distant. Based on the

above intuitive definition, a multi-threaded program running on top of a multicore can be

characterized as a distributed system.

Distributed systems can provide us with a few key benefits, such as speed and robustness.

Speed, because we can use multiple resources to solve a problem. For example, a multi-

threaded program can take advantage of the machine’s underlying cores and hence complete

its tasks faster. Also, we can reduce a user’s experienced latency, by sharing, for example

the resources of an application in a such a way so that the the user’s desired resources are

geographically closer to the user. Robust, because even if some process crashes, the system

can still take advantage of the remaining non-crashed processes to perform computations.

Distributed systems are the cornerstone of today’s Internet services, such as search engines,

social networks, banking, etc. However, distributed systems are also found in industrial

settings [101], or even the Boeing 777 aircraft system [124].

1

Chapter 1. Introduction

The field of distributed computing studies distributed systems, and has a long history of more

than fifty years starting from the fundamental work of pioneers such as Edsger W. Dijkstra that

investigated the mutual exclusion problem [46]. Distributed computing examines whether

a problem is solvable in a distributed system, as well as the efficiency of such a solution.

Although distributed computing can be practical in nature, in this thesis and unless said

otherwise, when we talk about distributed computing we refer to theoretical distributed

computing. Specifically, distributed computing concerns mathematical models that capture

the characteristics of real or theoretical distributed systems.

In the rest of this chapter, we describe some preliminary notions behind models used in dis-

tributed systems. Then, we present the fundamental abstractions of consensus, state machine

replication, and of a transaction in a distributed system before listing the contributions of this

thesis. We conclude this chapter by presenting the roadmap for the rest of this dissertation.

1.1 Distributed Computing Models

To study a distributed system, we need to abstract the underlying distributed system by

devising a mathematical model. There two broad categories of models that we typically use,

depending on whether we are modeling a message-passing (i.e., processes communicate over

a network) or a shared-memory (e.g., processes communicate by sharing memory) distributed

system. For example, we can model a message-passing distributed system as a set of state

machines where each state machine corresponds to a process and these state machines change

their state in response to a received message or of some local computation.

A model should be as general as possible but should also try to capture the peculiarities of the

modeled distributed system. Therefore, we can further classify a message-passing or shared-

memory model as synchronous or asynchronous. For example, in an embedded processor

we may assume that there are bounds on the time it takes for a process to read from or write

to shared memory, and those bounds are strictly enforced. Similarly, in an industrial setting

we may assume that there are bounds on the time it takes for a message to be transmitted

to another process. A model that assumes such bounds is called synchronous. However, a

synchronous model would not be able to capture a general multicore machine, because a

long context switch might violate these timing assumptions. Similarly, modeling a distributed

system running on top of a wide-area network with a synchronous model is a bad idea, because

the transmission of a message over the network might take an arbitrary amount of time. We

can therefore devise a model that makes no such timing assumptions. We call such a model

asynchronous. We say that a model is eventually synchronous when there is a point after which

it behaves synchronously (i.e., some timing assumptions eventually hold).

Having a model, we can formally answer on whether we can solve a specific problem by using

2

1.2. Consensus and State Machine Replication

the underlying (modeled) distributed system, and how efficient such a solution is. Solving a

problem is equivalent to devising an algorithm, namely defining the set of state machines.

Finally, we can further augment a model by capturing the type of failures that can occur in

the underlying distributed system. For example, a machine might crash, some process might

behave in a malicious way, there might be a network partition in the network, etc. We say that

an algorithm is fault-tolerant if the algorithms operates in a model that allows for some of the

processes to be faulty (e.g., crashed).

1.2 Consensus and State Machine Replication

The problem of consensus, formally introduced by Pease, Shostak, and Lamport [103] is one

of the fundamental problems in the field of distributed computing. In this problem, a set

of distributed processes need to reach agreement on a single value. Consensus has been

extensively studied with fundamental results such as FLP [51] and also plays an important role

in shared-memory systems [61].

Agreeing only once on something is arguably not that useful in a distributed system. However,

by utilizing multiple instances of consensus, we can create what is known as state machine

replication (SMR). Essentially, SMR consists of replicating a sequence of commands – often

known as a log – on a set of processes which replicate the same state machine. These com-

mands represent the ordered input to the state machine. SMR can be used to transform almost

any algorithm into a fault-tolerant one. This is achieved by replicating the same state machine

across multiple servers. When one crashes, the remaining servers remain accessible, giving

the illusion of a single always available machine.

SMR has been successfully deployed in applications ranging from storage systems [102], to

lock and coordination services [64]. At a high level, SMR can be viewed as a sequence of

consensus instances, so that each value output from an instance corresponds to a command

in the SMR log.

1.3 Transactions

A transaction is a fundamental abstraction for manipulating multiple objects atomically in a

data store. Data stores can exhibit erratic behaviour for a plethora of a reasons: computers

might crash, there could be bugs in the code of the database, etc. [69]. Transactions ameliorate

the negative effects of these problems, as well as aid the programmer’s job. For this reason,

transactions are now ubiquitous in the world of data stores, and most of the well-known

database systems provide them (e.g., MySQL, PostgreSQL, and MongoDB).

3

Chapter 1. Introduction

The most basic interface of a data store is a read-write interface [74] on a set of objects, where

the objects can be identified by what is called a key. At a high-level, the client issues a request

on the data store by identifying the object (e.g., by providing the key) the client wants to

access. Subsequently, the server responds back to the client with the desired data. Data

stores augment their interface by providing transactions. Data stores being extensively used

for read-heavy workloads, aim to optimize read-only transactions since they are the most

frequent in practice [28]. It is thus natural to seek implementations for read-only transactions

that are as fast as possible.

Lately, there has been an attempt to introduce the notion of a fast transaction [87]. A fast

transaction captures the fact that a read-only transaction is one round-trip, non-blocking, and

one-version. One round-trip means that a client does not contact a server more than once

during a transaction. Non-blocking states that servers should not communicate with each

other before responding to the client. Finally, one-version asks that a server only sends one

value for each read object.

1.4 Contributions

The field of distributed computing has a long and rich history. During its long history, dis-

tributed computing produced an impressive battery of theoretical results with which we can

understand the field very well. Thus, for better or for worse, a certain body of folklore beliefs,

has formed. However, these folklore beliefs are not necessarily always true.

Oxford English Dictionary defines “complexity” as “the state or quality of being intricate or

complicated.” Contemporary distributed systems exhibit a level of complexity that sometimes

refute the formed beliefs.

In this thesis, we uncover hidden complexities (in the sense of intricacies or costs) of dis-

tributed systems that challenge accepted beliefs in the following way: i) consensus algorithms

need not be leader-based: there exists a deterministic leaderless consensus algorithm that

is robust to non-synchronous periods, ii) completing a state machine replication command

can be arbitrarily more expensive than solving a consensus instance, and iii) no data store

actually provides fast transactions because they are impossible. In what follows, we present

three flavors of intricacies and present our concrete contributions.

Consensus Classic synchronous consensus algorithms are leader-based. A leader helps them

converge fast when the system is initially synchronous, but impacts performance when

the system is not. Therefore, a leader-based algorithm has to pay a substantial perfor-

mance cost when the leader is slow or crashes. In other words, leader-based consensus

algorithms are not robust to non-synchronous periods of time. This thesis asks whether,

4

1.4. Contributions

under eventual synchrony, it is possible to deterministically solve consensus without a

leader. Someone might believe that some form of leader is inherently needed, because

the weakest failure detector to solve consensus provides a leader [37]. We prove that this

is not the case.

Specifically, we:

1. study the very definition of a leaderless consensus algorithm;

2. devise and prove correct an eventually synchronous deterministic leaderless con-

sensus algorithm;

3. utilize our leaderless consensus algorithm to build a state machine replication

algorithm and illustrate its robustness.

State Machine Replication (SMR) Consensus and SMR are generally considered to be equiv-

alent problems. Indeed, the two problems are computationally equivalent: any solution

to the former problem leads to a solution to the latter, and vice versa. In this thesis,

we study the relation between consensus and SMR from a complexity perspective. We

find that, surprisingly, completing an SMR command can be more costly than solving a

consensus instance.

Our contributions are:

1. proving that completing an SMR command is more expensive than solving a

consensus instance (i.e., in a model where each consensus instance takes bounded

time to complete, completing an SMR command might take an arbitrary amount

of time);

2. empirically showing that our result corresponds to practical phenomena.

Transactions We prove that fast transactions in a fault-tolerant data store have to perform a

write and argue that a transaction that writes cannot be non-blocking. This by definition

contradicts the very existence of fast transactions and renders them impossible. Specif-

ically, we show that fast transactions are impossible if we want to tolerate the failure

of even one server. In other words, by unveiling the hidden cost (i.e., writing) of fast

transactions, we refute the belief that fast transactions are possible.

In this thesis, we:

1. devise a formal framework that is general enough to capture any data store, while

at the same time precisely captures the notion of fast read-only transactions;

2. prove that fast transactions, as well as a weaker definition of fast transactions are

impossible.

Our impossibility results are extremely useful because they clarify the limitations of real

data stores and prevent practitioners’ from chasing impossible designs.

5

Chapter 1. Introduction

1.5 Roadmap

The thesis consists of two parts. In the first part (chapters 2 and 3) we investigate general

concepts regarding consensus and SMR. Specifically, in Chapter 2 we study the very definition

and feasibility of a leaderless consensus algorithm. We provide a definition and present an

eventually synchronous deterministic leaderless consensus algorithm. Among others, we

use this consensus algorithm in an SMR implementation and show its robustness against

arbitrary server failures. Then, in Chapter 3 we prove the surprising result that SMR is more

expensive than a repetition of consensus instances. In the second part (Chapter 4), we prove

that transactions cannot be fast in an asynchronous fault-tolerant system. Finally, in Chapter 5

we conclude this thesis and discuss future research directions.

6

Part IConsensus and State Machine
Replication

7

2 Leaderless Consensus

Unlike classic synchronous consensus algorithms, eventually synchronous consensus al-

gorithms are leader-based. A leader helps them converge fast when the system is initially

synchronous, but impacts performance when the system is not.

In this chapter, we ask whether, under eventual synchrony, it is possible to deterministically

solve consensus without a leader. Actually, the fact that the weakest failure detector to solve

consensus provides a leader [37] seems to indicate that some form of leader is inherently

needed. We show that consensus algorithms need not be leader-based: there exists an eventu-

ally synchronous deterministic leaderless consensus algorithm.

In the rest of this chapter, we first address the question of the very meaning of a leaderless

consensus algorithm. For pedagogical reasons, we do so in a shared memory system. Then, we

present Archipelago, a new leaderless eventually synchronous consensus algorithm for shared

memory and its message passing variant, and prove it correct. We also present a conjecture

on how an Archipelago modification can tolerate Byzantine failures. Finally, we implement

a leaderless state machine replication algorithm based on the message passing variant of

Archipelago and illustrate its robustness in a failure scenario against ZooKeeper.

2.1 Introduction

Deterministic consensus algorithms that tolerate periods of asynchrony are considered robust

because their safety is preserved even if the system is asynchronous [58]. These algorithms are

typically leader-based [16,35,37,72,77]. A leader is convenient because it schedules commands

when used in the context of state machine replication (SMR), helps ensure the uniqueness of a

decision, and enforces a fast decision in good cases, i.e., when the system is synchronous and

there is no failure or contention.

9

Chapter 2. Leaderless Consensus

Unfortunately, the leader is a limitation in many ways, especially when used in the general

context of SMR [6, 15, 30, 41, 57, 60, 64, 91, 96, 121, 125]. The leader is often considered the

bottleneck in large distributed systems [64,96]. A faulty leader has to be replaced through view-

change procedures that are usually complex and error-prone [6]. In periods of asynchrony,

a correct leader can be wrongly suspected. In addition, the choice of the timeout before

suspecting a leader impacts the performance of practical systems [64, 100]. For example, the

leader election of Zookeeper takes at least 200 ms [67] but a view change may delay concurrent

operations by two orders of magnitude [57].

A lot of work has been devoted to minimizing the role of the leader by, for example, changing

the leader frequently [30, 125] or tolerating multiple concurrent leaders [57, 91]. Note however

that this work only eliminates the leader from the SMR algorithm. The underlying consensus

algorithm for a single SMR slot or consensus instance remains Paxos-like and hence leader-

based. In this work, we investigate whether an algorithm is leaderless firstly at the level of a

single consensus instance. Hence, the leaderless property of the overlying SMR is obtained

naturally by combining multiple consensus instances.

The natural question arises: Is it possible to eliminate the very notion of a leader completely

in a deterministic consensus algorithm and still tolerate periods of asynchrony? Actually, the

facts that (a) the weakest failure detector to solve consensus provides a leader [37] and that (b)

one correct process must have as many eventually timely links as there can be failures [7, 26],

in order to solve consensus in eventually synchronous systems, seem to indicate that some

form of leader is inherently needed.

To address this question it is necessary to first define what a leaderless algorithm is. Although

motivated by a message passing system, we start by doing so, for pedagogical reasons, in a

shared memory system, before going to message passing. Intuitively, we capture the intuition

that a leaderless consensus algorithm would be an algorithm that terminates and solves con-

sensus even in scenarios where an adversary can suspend any process within each round of

an eventually synchronous execution. In fact, the idea can be generalized to not only sus-

pending 1 process but suspending k. We define the notion of a synchronous−k (which reads

“synchronous minus k”) round-based model where executions are (eventually) synchronous

and at most k < n processes can be suspended per round. A leaderless algorithm is one that

decides in an eventually synchronous−1 (or ¦synchronous−1) system.

With this definition of a leaderless algorithm at hand, we face the second challenge of asking

whether we can devise a deterministic algorithm that solves consensus in an eventually

synchronous−1 system. To illustrate the difficulty, assume the system is synchronous−1

from the start and consider the classic idea of exchanging values in rounds and adopting the

maximum one. Because the adversary can suspend the process with the maximum value for

as long as it wants, it is hard to guarantee that this process decides the same value as others.

10

2.2. Model

Despite this powerful adversary, we show the existence of an eventually synchronous con-

sensus algorithm that is leaderless. This algorithm, called Archipelago, builds upon a new

variation of an adopt-commit object [52] whose invocation by different processes help them

converge towards the same output value without a leader. Proving its leaderless property is

not immediate because it requires at least n ≥ 3 processes.

Based on this leaderless algorithm for shared memory, we derive algorithms for other models.

First, we generalize it to the message passing model with crash failures. Second, we discuss

how to transform this message passing leaderless algorithm to tolerate Byzantine failures.

Finally, based on a sequence of Archipelago consensus instances, we build a state machine

replication (SMR) algorithm, called ArchSMR. Our comparison against Apache ZooKeeper [64]

in a distributed setting, shows the robustness of ArchSMR that keeps treating requests, while

the ZooKeeper service gets disrupted.

Roadmap. Section 2.2 presents our model. Section 2.3 formalizes the notion of a leaderless

consensus algorithm and discusses why well-known leader-based consensus algorithms do not

fulfill this property. Section 2.4 presents a leaderless consensus algorithm in shared memory

that makes use of a sequence of modified adopt-commit objects. Section 2.5 describes the

proof, which we believe is interesting in its own right. Section 2.6 discusses the message

passing leaderless algorithms that tolerate crash and Byzantine failures. Section 2.7 shows

empirically the robustness advantage of an SMR based on Archipelago over ZooKeeper. Finally,

Section 2.8 lists the related work.

2.2 Model

We consider an asynchronous shared-memory model with n processes P = {p1, p2, . . . , pn}.

Processes have access to (an infinite) set R of atomic registers that can each store values from

a set V . Initially, all registers contain the initial value ⊥. For notational simplicity, we assume

that R includes an infinite set of single-writer multi-reader (SWMR) arrays of n registers each.

We denote these arrays as R1,R2, . . . where a process pi can write locations R1[i],R2[i],

Processes communicate by reading from and writing to atomic registers. A process is a state

machine that can change its state as a result of reading a register or writing to a register. An

algorithm is the state machine for each process. A configuration corresponds to the state of all

processes and the values in all registers in R. An initial configuration is a configuration where

all processes are in their initial state and all registers in R contain value ⊥.

When a process p performs a read or a write, we say that p performs a read or write

event respectively. An execution corresponds to an alternating sequence of configura-

tions and events, starting from an initial configuration. For example, in the execution

11

Chapter 2. Leaderless Consensus

α = C ,read(r, v)p ,C ′,write(r ′, v ′)p ′ ,C ′′ we have processes p, p ′ ∈ P , registers r,r ′ ∈ R, val-

ues v, v ′ ∈ V , and configurations C ,C ′,C ′′ where C is an initial configuration, and the system

moves from configuration C to C ′ when p reads v from r and from C ′ to C ′′ when p ′ writes v ′

to r ′. We assume that all executions are well-formed, which roughly speaking means, that for a

process p to perform an event after configuration C in an execution, there must be a transition

specified by p’s state machine from p’s state in C . In this work, we consider deterministic

algorithms and hence the initial state of processes and the sequence of processes that take

steps uniquely defines a unique well-formed execution.

An executionα′ is called an extension of a finite executionα ifα is a prefix ofα′. Two executions

α and β are equal if both executions contain the exact same configurations and events in the

same order. An algorithm A is a set of state machines for each process and their initial states.

Synchronous−k execution. After setting up the main characteristics of our model, we can

now define what it means for an execution to be synchronous in a shared-memory system.

Our definition is inspired by message passing, because our main motivation is to devise a

leaderless consensus algorithm for the message passing model. In message passing models,

during periods of synchrony behavior there is a bound on the time needed for a message to

propagate from one process to another and for the receiver to process this message. Hence, in

message passing we can divide time into rounds [48] such that, in each round, every process p

does the following: (i) sends a message to every other process in the system, and (ii) delivers

any message that was sent to p and performs some local computation.

We adapt this notion of synchrony to shared memory. We assume that processes take steps

in rounds. Specifically, in each round, every process pi does the following: (i) performs a

write in some R j [i], and (ii) collects all the values written in array R j . In one round, different

processes can read from different arrays.

We precisely define this notion of synchrony below. A collect by a process pi on an array R j is

defined as a sequence of n read events: collect(R j)pi = read(R j [1], ·)pi , . . . ,read(R j [n], ·)pi . By

abuse of notation and because for defining collect we are not interested in the read values, we

use the “·” symbol. Similarly, in the rest of this chapter, we use · at any point where we do not

know or are not interested in the exact operation, value, etc. We define a step of R j by a process

pi as a write event and then a collect on R j . So, step(R j)pi = write(R j [i], ·)pi ,collect(R j)pi .

A round consists of all the write events write(R j1 [1], ·)p1 , . . . ,write(R jn [n], ·)pn , followed by a

sequence collect(R j1)p1 , . . . ,collect(R jn)pn of collects by the exact same processes that per-

formed a write event. Note that indices ja and jb could be the same for a 6= b. For example, if

we only consider two processes {p1, p2}, then a round r could be the following sequence of

events r =write(R j1 [1], ·)p1 ,write(R j2 [2], ·)p2 ,collect(R j1)p1 ,collect(R j2)p2 .

12

2.2. Model

p1

p2

1 2 3 4 5 6 7 8 9 10 11

step(R5)p1 step(R2)p1 step(R6)p1 step(R3)p1 step(R3)p1 step(R2)p1 step(R1)p1 step(R4)p1 step(R1)p1

step(R2)p2 step(R4)p2 step(R2)p2 step(R1)p2

X X

X X X X X X X

Figure 2.1 – Graphical depiction of a synchronous−1 execution.

To capture the notion that a process is suspended in a round r , we denote by r |−P s (notice the

minus − in the notation) all the steps except the ones taken by processes in P s . For instance,

for the above sequence r , we have r |−{p1} =write(R j2 [1], ·)p2 ,collect(R j2)p2 .

We say that an execution is synchronous−k (which reads “synchronous minus k”) if α is equal

to a sequence of rounds r1|−P s1
,r2|−P s2

,r3|−P s3
, . . . and |P si | ≤ k for i ≥ 1. In other words,

at most k processes can be suspended in each round. A suspended process p in a round r

performs no events in r . For this reason, we call such an execution “synchrony minus k,”

since all processes except k behave synchronously in each round. We say that an infinite

execution α is eventually synchronous−k (or ¦synchronous−k) if an infinite suffix of α is equal

to a synchronous−k execution. Naturally, a synchronous−k execution for k = 0 corresponds

to a fully synchronous execution, while synchronous−k with k > 0 allows for some asynchrony

in an execution.

In a synchronous−k or ¦synchronous−k executionα, we say that a round r ′ occurs after round

r if the events of round r ′ appear after the events of round r in α.

We say that a process p is correct in an infinite execution α if p is not suspended forever in α.

More precisely, a process p is correct in an infinite execution if, for every round r there exists a

later round r ′ such that process p is not suspended in r ′. Figure 2.1 depicts a synchronous−1

execution for two processes p1 and p2. Processes p1 and p2 take steps in a sequence of rounds,

starting from round 1 and ending in round 11. The X symbol in a round indicates that the

process is suspended in this round. In Figure 2.1, both processes perform steps in the first

round, process p1 in array R5, while process p2 in array R2. Then, in the next round, process

p1 is suspended, etc.

Our shared-memory model is inspired by message-passing models [10, 105, 106, 108, 109] that

allow for message omissions in each round, as well as by shared-memory models that combine

an update and a collect (or scan), such as the iterated immediate snapshot model [24, 25].

Nevertheless, we opted for our simple model that mainly refers to synchronous executions

and can easily be used to capture the notion of a leaderless algorithm. Additionally, note that

in our model, a process is fully suspended (i.e., all communication from and to this process is

omitted) in a round or not.

13

Chapter 2. Leaderless Consensus

Consensus. In consensus [33], each process proposes a value by invoking a propose(v) func-

tion and then all processes have to decide on a single value. Consensus is defined by the

following three properties. Validity states that a value decided was previously proposed. Agree-

ment states that no two processes decide different values, and termination states that every

correct process eventually decides. We say that consensus algorithm decides in an execution α

if a propose(v) function call by some process p returns in α.

2.3 Leaderless Termination

We introduce a new liveness property that captures the notion that an algorithm can terminate

without a leader.

Definition 1 (Leaderless Termination). A consensus algorithm A satisfies leaderless termina-

tion if, in every ¦synchronous−1 execution of A , every correct process decides.

We can now define what it means for a consensus algorithm to be leaderless.

Definition 2 (Leaderless Consensus Algorithm). A consensus algorithm is leaderless if it satis-

fies validity, agreement and termination, as well as leaderless termination.

Note that in Definition 2, termination does not imply leaderless termination (see Section 2.5). A

consensus algorithm that is not leaderless, is called leader based. To the best of our knowledge,

this is the first formal definition of what leaderless means. The definition can be easily

extended to the message-passing model, as we describe in Section 2.6.

Intuitively, Definition 2 is based on the idea that a leader-based algorithm encompasses the

notion of a leader process. A process has first to become a leader and subsequently the

leader process should be able to continuously perform a number of rounds in order for the

consensus algorithm to decide. Therefore, after a process becomes a leader, the leader has to

be unsuspended for at least one round in order for the consensus algorithm to decide. This

implies that a potential adversary could prevent a leader-based consensus algorithm from

deciding by selectively suspending a process the moment it becomes a leader. Therefore, an

algorithm that decides even if we have the right to suspend one process per round, has to be

a leaderless algorithm. Note that we do not argue that a leaderless algorithm always has an

advantage over a leader-based algorithm, because it always decides in an ¦synchronous−1

execution. For example, in an execution with no suspensions, a leader-based algorithm could

perform better. The reason we devise Definition 2 is to capture whether an algorithm is

leaderless or leader based.

Naturally, we do not argue that this is the only way to capture the notion of a leaderless

algorithm. As a matter of fact, settling to Definition 2 was an arduous task. For instance,

14

2.3. Leaderless Termination

one might be tempted to define a consensus algorithm as leaderless, if during an execution,

irrespectively of which process crashes (i.e., gets suspended forever), the algorithm decides in

the exact same number of rounds. More specifically, the idea would be to “stop” an execution

in a bivalent state and examine what is the minimum number of rounds the algorithm needs

to decide when crashing different processes. If the number of rounds is the same irrespectively

of which process we crash, this suggests that no process has more responsibility than another

and hence the algorithm is leaderless. However, we favor Definition 2, because an algorithm

that satisfies our definition is robust against adaptive behavior of a dynamic adversary.

Examples. It is easy to design a consensus algorithm that decides in finite time in

all synchronous−1 executions, but could however violate safety (e.g., agreement) in an

¦synchronous−1 execution. For completeness, in what follows, we describe such an algo-

rithm. We present Algorithm 1, an example of a consensus algorithm that decides in every

synchronous−1, but that violates safety (i.e., agreement) when executed in an ¦synchronous−1

execution.

Algorithm 1 Consensus algorithm that correctly decides in every synchronous−1 execution

1: . Shared state
2: Reg[n] ← {⊥, . . . ,⊥} . array of n single-writer multi-reader registers
3:

4: . process pi proposes value v
5: procedure propose(v)
6: . first round
7: Reg[i] ← v
8: vals ← collect(Reg) \ {⊥}
9: if ∃〈commit,cv〉 ∈ vals then

10: dv ← cv . pi was suspended in the first round, hence adopt committed value
11: else
12: dv ← max({v : v ∈ vals∨〈·, v〉 ∈ vals})

13:

14: . second round
15: Reg[i] ←〈commit,dv〉
16: return dv

Algorithm 1 satisfies validity, agreement, and decides in finite time in every synchronous−1

execution. Clearly, Algorithm 1 does not have a distinguished (leader) process that drives

the decision, and the algorithm decides in two rounds if the system is synchronous−1. How-

ever, this algorithm is not leaderless according to Definition 1, because it does not tolerate

asynchrony: in an ¦synchronous−1, then the algorithm can violate safety.

We prove that Algorithm 1 satisfies validity, agreement, and decides in finite time in every

15

Chapter 2. Leaderless Consensus

synchronous−1 execution below. Validity. Each process writes the proposed value in Reg[i]

(Line 7) and then collects (Line 8) all the values written in Reg. Hence, variable vals contains

only proposed values. Then, if there is a 〈commit,cv〉 pair in vals the algorithm decides

cv, stores 〈commit,cv〉 in Reg[i] and returns (lines 9, 10, and 15). Otherwise, the algorithm

retrieves the maximum value stored in val s, and hence retrieves a proposed value (Line 12).

The process then stores 〈commit,cv〉 in Reg[i] and returns (Line 15).

Agreement. Algorithm 1 satisfies agreement in a model with n ≥ 3 processes. In a model with

n ≥ 3 processes, at least one process p performs steps in both rounds one and two. Process

p writes 〈commit, v〉 (Line 15) in the second round and the algorithm decides v . If multiple

processes were unsuspended in the first round, then all of the processes retrieve the same

maximum value (Line 12), and hence write the exact same 〈commit,dv〉 pair in the second

round (Line 15). Any process that was suspended in the first or second round, reads the

committed value (Line 10) and hence decides on the same value.

In a model with n = 2 processes, Algorithm 1 could violate agreement, even in a synchronous−1

execution. For example, assume two processes p1 and p2 that propose v and v ′ respectively

(with v < v ′). Then, consider that process p2 is suspended in the first round and process p1

is suspended in the second round. Both processes p1 and p2 are unsuspended in the third

round. In such an execution, p1 writes v to Reg[0] and then retrieves the maximum value in

Reg, which is v . Then, in the second round, process p2 writes v ′ to Reg[1] and retrieves the

maximum value in Reg, which now is v ′. Hence in the third round, processes p1 and p2 decide

v and v ′ respectively.

Algorithm 1 is a straight-forward algorithm. The real challenge, is to devise a leaderless

consensus algorithm that decides in finite time in every ¦synchronous−1 execution and never

violates safety. We present such an algorithm in Section 2.4.

Consider Algorithm 2, a leader-based shared-memory algorithm that is at the heart of the

well-known Paxos [77] algorithm. As a matter of fact, Algorithm 2 combined with a leader

election algorithm corresponds to Paxos in shared memory.

In Algorithm 2, all processes share an array R of n single-writer multi-reader (SWMR) registers

(Line 2); each element of R is a pair 〈a,b〉 where a corresponds to a value and b to a times-

tamp. Additionally, each process stores locally a ts value (Line 5). When a process pi invokes

propose(v), pi first stores its current timestamp value to R[i] (Line 10). Then, pi retrieves a

value from array R, the one associated with the highest timestamp (Line 11). If no such value

exists and hence val =⊥, then pi proposes its own value v (Line 13). Otherwise, process pi

proposes the values that p retrieved from array R . Then, pi stores the pair 〈val, ts〉 to array R[i]

(Line 14) and examines whether the highest timestamp in R is the one that pi wrote (Line 15).

If this is the case, the algorithm decides (Line 16), otherwise pi increases ts and repeats the

16

2.4. Archipelago: Leaderless Consensus

Algorithm 2 Leader-based consensus algorithm

1: . Shared state
2: R[n] ← {〈⊥,0〉, . . . ,〈⊥,0〉} . one SWMR registers per process
3:

4: . Local state
5: ts ← i . for process pi

6:

7: . process pi proposes value v
8: procedure propose(v)
9: while true do

10: R[i].ts ← ts
11: val ← getHighestTspValue(R)
12: if val =⊥ then
13: val ← v
14: R[i] ←〈val, ts〉
15: if ts = getHighestTsp(R) then
16: return val
17: ts ← ts+n

loop (Line 17).

We can think of Algorithm 2 using Paxos terminology [78]. A timestamp is used like the

proposal (or ballot) number of Paxos. Getting the timestamp and retrieving the value with the

highest associated timestamp constitutes the prepare phase. Then, writing the 〈val, ts〉 pair

and checking whether the highest timestamp has not been modified constitutes the propose

phase.

According to Definition 2, Algorithm 2 is leader based. In a ¦synchronous−1 execution, where

in each round, the adversary suspends the process who has written the highest value in the R

array so far, then the algorithm never decides. Specifically, when a process p is about to check

whether its timestamp ts is the highest timestamp (Line 15), an adversary can suspend p until

some other process p ′ stores a timestamp ts′ that is greater than ts in array R (Line 10). This

can occur even if the execution is synchronous−1.

2.4 Archipelago: Leaderless Consensus

We introduce Archipelago, our new leaderless consensus algorithm. Archipelago is leaderless

according to Definition 1, when n ≥ 3 and never violates safety (i.e., validity and agreement).

Let us first recall the adopt-commit object and present our adopt-commit-max variant used in

Archipelago.

17

Chapter 2. Leaderless Consensus

Adopt-commit-max implementation. The adopt-commit object [52] has the following speci-

fication. Every process p proposes an input value v to such an object and obtains an output,

which consists of a pair 〈d , v〉; d can be either commit or adopt. The following properties are

satisfied:

• CA-Validity: If a process obtains output 〈commit, v〉 or 〈adopt, v〉, then v was proposed

by some process.

• CA-Agreement: If a process p outputs 〈commit, v〉 and a process q outputs 〈commit, v ′〉
or 〈adopt, v ′〉, then v = v ′.

• CA-Commitment: If every process proposes the same value, then no process may

output 〈adopt, v〉 for any value v .

• CA-Termination: Every correct process eventually obtains an output.

Algorithm 3 depicts a new implementation of an adopt-commit object. It differs from the

classic implementation [52] in that if the collect of A by process p that proposes v returns

different values, then p stores 〈adopt,mv〉 to array B (Line 8) instead of storing 〈adopt, v〉,
where mv is the maximum of the values collected from A (max(S A)). Additionally, if all pairs

collected from B are of the form 〈adopt, ·〉, then process p returns 〈adopt,mv〉, where mv is

max(S A) (Line 12). Note that Algorithm 3 is just a different implementation of the classic

implementation [52] and that the main properties of an adopt-commit object remain the same.

These modifications are crucial in order for Archipelago to satisfy leaderless termination.

Algorithm 3 The adopt-commit-max algorithm

1: . Shared state
2: A and B , two arrays of n single-writer multi-reader registers, all initially ⊥
3:

4: procedure propose(v) . taken by a process pi

5: A[i] ← v . step A starts
6: S A ← collect(A) . step A ends
7: if (S A \ {⊥} = {v ′}) then B[i] ←〈commit, v ′〉 . step B starts
8: else B[i] ←〈adopt,max(S A)〉 . or step B starts

9: SB ← collect(B) . step B ends
10: if SB \ {⊥} = {〈commit, v ′〉} then return 〈commit, v ′〉
11: else if 〈commit, v ′〉 ∈ SB then return 〈adopt, v ′〉
12: else return 〈adopt,max(S A)〉

In what follows we prove the correctness of Algorithm 3, which is similar to that of an adopt-

commit object [52]. Algorithm 3 satisfies CA-Validity (the max function preserves validity) and

18

2.4. Archipelago: Leaderless Consensus

CA-Termination (Algorithm 3 does not use waiting or loops). To prove CA-Agreement and

CA-Commitment, we first prove the following lemma.

Lemma 1. If B contains two entries (commit, v1) and (commit, v2), then v1 = v2.

Proof. Assume not. Since every process writes in A and B at most once, it must be that some

process p1 wrote (commit, v1) and some other process p2 wrote (commit, v2). Thus, it must be

that p1 wrote v1 in A, took a collect of A and only saw v1 in that collect. Similarly, it must be

that p2 wrote v2 in A, took a collect of A and only saw v2 in that collect. This is impossible:

since the processes update A before collecting, it must be that either p1 saw p2’s value, or

vice-versa. We have reached a contradiction.

CA-Agreement. In order for a process p to commit v , p must write v to A, collect A and see

only entries equal to v ; p must then write 〈commit, v〉 to B , collect B and see only entries equal

to 〈commit, v〉 and finally return 〈commit, v〉.

Assume by contradiction that process p commits v and some process q commits or adopts

v ′ 6= v . q’s collect of B cannot include the 〈commit, v〉 entry written by p, otherwise q would

adopt v (remember that by Lemma 1, q cannot see any entry 〈commit, v ′〉 with v ′ 6= v in B

since p writes 〈commit, v〉 to B). Therefore, q ’s collect of B must happen before p’s write to B .

Furthermore, q ’s collect of B must include some entry e = 〈·, v ′〉 with v ′ 6= v (written either by

q or some other process). But then p’s collect of B (which is after p’s write to B and therefore

after q’s collect of B) will also include e, and thus p cannot commit v . We have reached a

contradiction.

CA-Commitment. Assume all proposed values are equal. Then no process can write 〈adopt, ·〉
in B ; B contains only entries of the form 〈commit, ·〉. By Lemma 1, all such entries have equal

values, so all processes that return must commit.

Archipelago Algorithm. The main idea of Algorithm 4 is to use a sequence of adopt-commit-

max objects,1 in combination with a max register. A max register r is a wait-free register that

provides a write operation, as well as a read operation (readmax) that retrieves back the largest

value that was previously written to r [12]. A max register can be implemented by simply

letting each process write to a single-writer multi-reader register and then collecting all the

values written by all processes and taking the maximum. The adopt-commit-max objects

ensure safety, while the max register and the maximum component (Line 12) of the adopt-

commit-max help the processes converge on the value the processes propose to some later

1For brevity, we use the terms “adopt-commit-max implementation” and “adopt-commit-max object” inter-
changeably.

19

Chapter 2. Leaderless Consensus

adopt-commit-max object in the sequence of adopt-commit-max objects. In a synchronous−1

execution, the processes converge on one value and there is an adopt-commit-max object

where all processes propose this exact single value. Then, due to CA-commitment property of

the adopt-commit-max object, the adopt-commit-max outputs 〈commit, ·〉 and Archipelago

decides in finite time.

Algorithm 4 contains Archipelago. In Archipelago, all processes share an infinite sequence

of adopt-commit-max objects (C) and a max register m (lines 14 to 16). Additionally, each

process stores locally in variable c the index of the next adopt-commit-max object to be used

(Line 19), thus a process intends to use C [c]. Each process p in Archipelago first writes 〈c, v〉
to m (Line 23) and then retrieves the maximum tuple 〈c ′, v ′〉 stored in m (Line 24). Note

that values c and v are not necessarily equal to c ′ and v ′. Process p then proposes value

v ′ to C [c ′] (i.e., p invokes C[c′].propose(v′) at Line 25) and sets c to correspond to the next

to-be-used adopt-commit-max object (Line 26). If process p receives a commit response from

some adopt-commit-max object (Line 28), then process p decides and can return. Otherwise,

when process p receives an 〈adopt, v ′′〉 response, process p stores this result in the m register

(Line 27) and repeats the loop.

Algorithm 4 The Archipelago leaderless consensus algorithm

13: . Shared state
14: C[0, . . . ,+∞], an infinite array of adopt-commit-max objects in their initial state
15: m, a max register object that initially contains 〈0,⊥〉.
16: Note that 〈x, y〉 > 〈x ′, y ′〉 if x > x ′ or (x = x ′ and y > y ′)
17:

18: . Local state
19: c, index of the adopt-commit-max object to use, initially 0
20:

21: procedure propose(v)
22: while true do
23: m.write(〈c, v〉) . step R starts
24: 〈c ′, v ′〉← m.readmax() . step R ends
25: 〈control, v ′′〉← C[c ′].propose(v ′)
26: c ← c ′+1
27: if control = adopt then v ← v ′′

28: else return v ′′

Recall from Section 2.2 that a step consists of a write and a subsequent collect. Algorithm 4

operates by repeatedly performing three steps. First, a process performs what we call an R step

(lines 23-24). Namely, an R step corresponds to the writing and the reading of max resister m.

Then, during the proposal of an adopt-commit-max object (Line 25), a step A is performed

(lines 5-6) in the underlying adopt-commit-max object (Algorithm 3). Finally, a step B starts

either in Line 7 or in Line 8 of Algorithm 3 and the subsequent collect takes place in Line 9. We

20

2.5. Archipelago: Proof of Correctness

use the notion of steps R, A, and B in the next section, where we prove that Archipelago is a

leaderless consensus algorithm.

The cautious reader might think that by solving consensus in an ¦synchronous−1 execution

with Archipelago, we could implement the Ω failure detector [37]. We could then augment

Algorithm 2 withΩ so that Algorithm 2 decides in every ¦synchronous−1 execution. There is

work that implements Ω in crash-recovery settings, however only when a crashed process can

recover a finite number times [33, 50, 93]. This is in contrast to our model, where a process can

crash and recover an infinite number of times. In other words, in our model every process is

unstable [93] and hence questions the existence ofΩ in our model.

2.5 Archipelago: Proof of Correctness

Archipelago is a leaderless consensus algorithm. First we show that it satisfies the consensus

properties (validity, agreement, and termination under ¦synchrony) and then we prove that it

provides leaderless termination, which is more interesting and significantly more challenging.

Note that Archipelago solves multi-valued consensus. Naturally, we could have presented

and proved correct a modified version of Archipelago for binary consensus. However, we

do not believe that such an approach would simplify either the presentation or the proof of

Archipelago as we explain later on.

Validity, agreement, termination. Algorithm Archipelago satisfies validity. We prove that if

an adopt-commit-max object C [c] returns a 〈·, v〉 tuple, then v was proposed by some process.

We can easily show this using induction. For c = 0, this is clearly the case, since all the values

that were proposed to C [0] are written in m and were initially proposed. Let c ≥ 0. Assume that

for every adopt-commit-max object C [c ′] with c ′ ≤ c, C [c ′] returns a value that was initially

proposed by some process. Then, for a value v to be proposed to C [c +1], this means that

a process read 〈c +1, v〉 from m (Line 24). This implies that at some point, some process p

writes 〈c +1, v〉 to m (Line 23). But for this to happen, p retrieved 〈adopt, v〉 from an adopt-

commit-max object C [c ′] with c ′ < c+1 and by induction, this means that v is a proposed value.

Since all the values returned by adopt-commit-max objects are proposed, and Archipelago

decides (Line 28) upon a value that Archipelago retrieves from some adopt-commit-max

object, Archipelago satisfies validity.

Algorithm Archipelago satisfies agreement. To see this, assume by way of contradiction that

two processes p and p ′ decide on different values v and v ′ respectively. This means that

process p returned v after receiving a 〈commit, v〉 response for an adopt-commit-max object

C [c] and process p ′ received a 〈commit, v ′〉 response for an adopt-commit-max object C [c ′].
Because the adopt-commit-max object satisfies CA-agreement, it has to be the case that c 6= c ′,

21

Chapter 2. Leaderless Consensus

otherwise v = v ′. Without loss of generality, assume that c < c ′. All the processes (including

p ′) that received a response from C [c] either received 〈commit, v〉 or 〈adopt, v〉 due to the

agreement property of the adopt-commit-max object. Hence, all processes that write to

m (Line 23), write 〈c +1, v〉, since they retrieved v from C [c]. Therefore, all possible values

that are proposed to the C [c +1] adopt-commit-max object, propose v , and hence C [c +1]

returns 〈commit, v〉. Similarly, all upcoming adopt-commit-max-objects return 〈commit, v〉
contradicting the fact that C [c ′] (c < c ′) responds with 〈commit, v ′〉 with v ′ 6= v .

Leaderless termination. It is far from obvious that Archipelago satisfies leaderless termi-

nation. As a matter of fact, Archipelago does not provide leaderless termination for n = 2

processes. However, Archipelago satisfies leaderless termination for n ≥ 3 processes. Before

we describe the proof, we introduce some auxiliary notation.

Notation. For an execution α we say that a process p takes a step Ai (v) when p performs an

A step that belongs to adopt-commit-max object C [i] (lines 5 and 6). We denote with A0
i (v)

the fact that p is the first process that performed the A step for adopt-commit-max object C [i]

in execution α. Note that a single round might contain multiple A0
i (v) steps taken by different

processes. We denote with A+
i (v) the fact that this step is not the first A step on C [i]. We denote

with Bi (1, v) the B step of a process on adopt-commit-max object C [i] that writes 〈commit, v〉
(lines 7 and 9). With Bi (0, v), we denote the B step of a process on adopt-commit-max object

C [i] that writes 〈adopt, v〉 (lines 8 and 9). Similarly to the notation of an A step, we use the

notation B 0
i (1, v), and B+

i (1, v). We say that in an execution α values v1, v2, . . . , vk are proposed

to C [i] if there are steps Ai (v j) ∀1 ≤ j ≤ k in α. We denote with R〈c, v〉 the R step of a process

and the fact that the process read 〈c, v〉 as the maximum value in m (lines 23 and 24). As with

steps A and B , we use the R0〈c, v〉 and R+〈c, v〉 notation. Specifically, with R0〈i , ·〉 we denote

the first R step that reads 〈i , ·〉. Note that in this notation when we have Ai (v) and Bi (·, v), this

v is the value that is written, while in R〈c, v〉 the value v is read from m. Furthermore, note

that R is not part of an adopt-commit-max operation like the A and B steps and hence has no

subscript.

n = 2 processes. For n = 2 processes, we can devise a synchronous−1 execution in which the

Archipelago algorithm never decides. This execution is depicted in Figure 2.2. Figure 2.2 has

a pattern that repeats every 5 rounds (light-green boxes). In Figure 2.2, processes p1 and p2

propose values v ′ and v respectively with v ′ > v . In the first round, process p1 is suspended, so

process p2 performs an R step, writes 〈0, v〉, and retrieves 〈0, v〉 from m. Then, in the second

round both processes p1 and p2 take steps. Process p1 writes 〈0, v ′〉 and retrieves 〈0, v ′〉 since

〈0, v ′〉 > 〈0, v〉. In the same round, p2 writes v to C [0].A[2]. Then, in the third round, when

process p1 takes an A step it writes value v ′ in C [0].A[1] and when p1 collects the values written

in array A (Line 6), p1 sees that there are two different values (v and v ′) in C [0].A. Therefore, in

22

2.5. Archipelago: Proof of Correctness

. . .
p1

p2

R+〈0, v ′〉 A+
0 (v ′) B 0

0 (0, v ′) R+〈1, v ′〉 A+
1 (v ′) B 0

1 (0, v ′)

R0〈0, v〉 A0
0(v) B+

0 (1, v) R0〈1, v〉 A0
1(v) B+

1 (1, v) R0〈2, v〉

X X X X X

X X X X

Figure 2.2 – With 2 processes, Archipelago might never decide in a synchronous−1 execution
(v ′ > v).

the fourth round, when process p1 performs a B step, it retrieves back 〈adopt, v ′〉. Process p2

takes a B step in the fifth round after being suspended in the third and fourth rounds, p2 writes

〈commit, v〉 in C [0].B [2], and then during the collect of B , p2 sees that 〈adopt, v ′〉 is written in

C [0].B [1] and p2 returns 〈commit, v〉 (Line 11). Afterwards, starting from the sixth round the

processes behave in the exact same way: processes p1 and p2 propose v ′ and v to the next

adopt-commit-max object respectively. This can happen ad infinitum and Archipelago never

decides.

n ≥ 3 processes. We consider synchronous−1 executions that start from an arbitrary, albeit

valid (i.e., state corresponds to a configuration in a well-formed execution), initial state. We

prove that in every synchronous−1 execution, irrespectively of the initial state, Archipelago

terminates in finite time. Therefore, in every ¦synchronous−1 execution, eventually the

execution becomes synchronous−1 and hence Archipelago decides in finite time.

Theorem 1. Archipelago satisfies leaderless termination for n ≥ 3.

To prove Theorem 1, we show that as Archipelago traverses adopt-commit-max objects, the

current minimal value, among those values still being proposed to adopt-commit-max objects,

eventually gets eliminated (i.e., processes only propose larger values in later adopt-commit-

max objects). Therefore, eventually only one value gets proposed to some adopt-commit-max

object, and every correct process decides.

Note that to prove Theorem 1, we have to show that Archipelago terminates in finite time in ev-

ery synchronous−1 execution, irrespectively of the initial state (i.e., any state that corresponds

to a configuration in a well-formed execution). Therefore, in every ¦synchronous−1 execution,

eventually the execution becomes synchronous−1 and hence Archipelago decides in finite

time.

Before we prove Theorem 1, we first need to prove some auxiliary lemmas.

Lemma 2. If an execution α contains step R0〈i , v〉, then for any step R〈 j , v ′〉 with j > i that is

in α, it is the case that v ′ ≥ v.

Proof. Consider an execution α that contains a step R0〈i , v〉 in a round r taken by process

23

Chapter 2. Leaderless Consensus

p. Then, when process p continues, p proposes value v to adopt-commit-max object C [i].

Similarly and since each process retrieves the maximum value when reading array R (Line 24),

any later process that performs an R step in round r or after r reads at least 〈i , v〉, and hence

retrieves a value at least as great as v . Note that a process that performs an R step in round r

cannot read 〈 j , v ′〉 with j > i and v ′ < v , since process p takes step R0〈i , v〉. Hence, all values

that are proposed to adopt-commit-max object C [j] (j ≥ i) are ≥ v and therefore for any step

R〈 j , v〉 with j > i , it holds that v ′ ≥ v .

Lemma 3. If an execution α contains step B 0
i (1, v), then Archipelago decides v in α.

Proof. Assume an execution α contains step B 0
i (1, v) in round r . If a process p takes a step

Bi (·, ·), then p definitely takes the step in a round k with k ≥ r . Therefore, process p sees

〈commit, v〉 when collecting B (Line 9) and either returns 〈commit, v〉 (Line 10 and then

Line 28) and decides, or returns 〈adopt, v〉 (Line 11). Due to CA-agreement, p cannot re-

turn 〈commit, v ′〉 〈adopt, v ′〉 with v ′ 6= v . Thus, process p proposes v in adopt-commit-max

object C [i +1]. However, when all processes propose the same value v to adopt-commit-max

object C [i +1], then Archipelago decides v .

Lemma 4. If an execution α contains at least two steps A0
i (v) from processes p and p ′ (p 6= p ′),

and there is no process performing step A0
i (v ′) with v ′ 6= v in α, then either p, or p ′, or both

perform step B 0
i (1, v) in α.

Proof. Suppose that a round r contains two A0
i (v) events by processes p and p ′ respectively.

Since in a round, there can be at most one suspended process, this means that at least one of

the processes p and p ′ take a step in round r +1. Since both processes p and p ′ write value v

in array C [i].A, and no process wrote another value in C [i].A during that round, v is the only

value that p and p ′ read when collecting A, and hence in the upcoming step in round r +1, at

least one of the two processes writes B 0
i (1, v).

Roughly speaking, the following lemma states that if an execution contains a step A0
i (v ′) where

v ′ > mi n({v : ∃Ai (v) ∈α}), then any value proposed to a later adopt-commit-max object (i.e.,

written in A) is greater than mi n({v : ∃Ai (v) ∈α}), namely is greater than the minimum value

proposed in adopt-commit-max object C [i].

Lemma 5. In an execution α, consider V f = {v : ∃Ai (v) ∈α} and let vm be mi n(V f). If there is a

step A0
i (v) ∈α with v > vm , then for any step A j (v ′) ∈α with j > i , it is the case that v ′ > vm .

Proof. Because execution α contains step A0
i (v) with v > mi n(V f), any step A j with j > i on

adopt-commit-max object C [j] sees value v written in array A (Line 8) and hence adopts a

value v ′ with v ′ ≥ v > vm .

24

2.5. Archipelago: Proof of Correctness

pa

pb

pc

...

. . . r−1 r r+1 . . . r+x−1 r+x r+x+1 r+x+2 r+x+3 . . .

· A0
i (vm) B+

i (1, vm) R〈i+1, vm〉 ·

· · · · A+
i (v) B 0

i (0, v) ·

· · · · · · · · ·

X X X X

X X

@ R〈i +1, ·〉 step before round r +x +2.

Figure 2.3 – Execution pattern that appears when the minimum value propagates to the next
adopt-commit-max object (x ≥ 2).

To prove Theorem 1 we show that as Archipelago traverses adopt-commit-max objects, the

current minimal value, among those values still being proposed to adopt-commit-max objects,

eventually gets eliminated (i.e., processes only propose larger values in later adopt-commit-

max objects). Specifically, we show that in at most three consecutive adopt-commit-max

objects, the minimal value gets eliminated. Since we have n processes, we can have at most n

distinct proposed values. Therefore, using at most 3n adopt-commit-max objects, Archipelago

decides in finite time. From the moment of synchrony, Archipelago needs O (n) rounds to

decide.

Towards this goal, the following lemma is useful. Lemma 6 captures the idea that if in an

execution α, the minimum value proposed to an adopt-commit-max object C [i] appears in a

later adopt-commit-max object C [j] with j > i , then α contains a specific execution pattern.

By execution pattern we mean, that some process has to take a step, then be suspended, then

another process has to take some step, etc.

Figure 2.3 captures the fact that there is some process pa that takes an A0
i (vm) step and before

pa performs Bi (1, vm) some other process pb performs A+
i (v) and B 0

i (0, v), etc.

Lemma 6. In an execution α, consider V f = {v : ∃Ai (v) ∈ α} and let vm be mi n(V f). If

Archipelago does not decide in α and there is a step A j (vm) ∈ α with j > i , then ∃x ≥ 2 and

∃pa , pb ∈P and round r such that pa , pb perform steps as depicted in Figure 2.3 and there is

no R〈i +1, ·〉 step taken before round r +x +2.

Proof. Suppose that α has no step A0
i (vm) and hence α contains a step A0

i (v) with v > vm .

Then, due to Lemma 5, we know that for every A j (v ′) with j > i it is the case that v ′ > vm .

But this implies that there is no A j (vm) with j > i in α and this is not the case we consider.

Therefore, for an A j (vm) to exist in α, execution α must contain A0
i (vm).

25

Chapter 2. Leaderless Consensus

Assume that process pa takes step A0
i (vm) in some round r . Lemmas 3 and 4 imply that if

there is another A0
i (vm) step in α taken by some process p 6= pa , then the algorithm decides.

Since in the lemma we assume that Archipelago does not decide, we can exclude this case and

consider that there is at most one A0
i (vm) in round r .

Suppose that process pa takes a step in round r +1. Then, process pa takes a B 0
i (1, vm) step

since pa was the process that first performed an A step on adopt-commit-max object C [i].

However, if process pa takes a B 0
i (1, vm), due to Lemma 3, the algorithm decides. Again, we

do not consider this case. Similarly, if process pa takes a B step in round r +2, then process

pa takes a B 0
i (1, vm) step and due to Lemma 3, the algorithm decides. Therefore, we need to

consider the case where process pa is suspended in both rounds r +1 and r +2. Process pa can

potentially be suspended for more rounds, up to round r +x where x ≥ 2. Therefore, for vm to

appear in a later adopt-commit-max object C [j] with j > i with an A j (vm) step, execution α

has to be similar to the execution depicted below.

pa

pb

pc

...

. . . r−1 r r+1 . . . r+x−1 r+x r+x+1 r+x+2 r+x+3 . . .

· A0
i (vm) Bi (1, vm) · ·

· · · · · · · · ·

· · · · · · · · ·

X X X X

We now show that there cannot be an R〈i +1, ·〉 step before round r + x +2. Assume by way

of contradiction that there exists an R〈i +1, ·〉 step before round r + x +2 in α. If multiple

such steps exist in α, consider the one that takes place in the earliest round. Suppose that

this R0〈i +1, v〉 has v > vm . This means that a later process reads value v > vm and hence

when later processes perform an R in some later round, they see a value (Line 24) greater than

vm and hence propose only values greater than vm to upcoming adopt-commit-max objects

(Lemma 2). This contradicts the fact that there is a j > i with A j (vm).

This means that if an R0〈i +1, v ′〉 step appears before round r + x +2 in α, then it has to be

that v ′ = vm . Suppose that this R0〈i +1, vm〉 is taken by some process p in round r + y . Before

round r + y process p has to take steps Ai and Bi since p performs the first R0〈i +1, vm〉 step.

This means that value y has to be greater than 2, since otherwise it implies that step Ai taken

by p occurs in a round smaller or equal than r . However, process pa is the only process that

takes an A0
i (vm) in round r .

Since R0〈i +1, vm〉 occurs in round r + y , where 2 < y < x +2, then p must perform an Ai (v)

step in round r + y −2 and a B 0
i (·, ·) step in round r + y −1 (p cannot be suspended between

26

2.5. Archipelago: Proof of Correctness

r +y−2 and r +y because pa is already suspended). If v = vm , then p’s Bi step will be B 0
i (1, vm)

and so, due to Lemma 3, the algorithm decides (Line 10 and Line 28), which we assume does

not happen in α. If v > vm , then p’s Bi step will be B 0
i (0, v), which contradicts the fact that p

does R0〈i +1, vm〉 immediately afterwards.

Therefore, there cannot be an R〈i +1, ·〉 step before round r + x +2. This is depicted in the

figure below where all rounds less than r + x +2 highlighted in light-red cannot contain an

R〈i +1, ·〉 step.

@ R〈i +1, ·〉 step before round r +x +2.

pa

pb

pc

...

. . . r−1 r r+1 . . . r+x−1 r+x r+x+1 r+x+2 r+x+3 . . .

· A0
i (vm) Bi (1, vm) · ·

· · · · · · · · ·

· · · · · · · · ·

X X X X

If between rounds r and r +x+1 no other process performs a B 0
i (·, ·) step, then process pa is the

first to take a B-Step in adopt-commit-max object C [i] and thus its B-Step is B 0
i (1, vm). Hence

Archipelago decides due to Lemma 3, which contradicts our initial assumption. Therefore,

there is at least one process pb that performs B 0
i (·, ·) between rounds r +1 and r + x +1. If

process pb takes step B 0
i (·, ·) in a round smaller than r +x, then it performs R〈i +1, ·〉 before

round r +x +2 since process pb has to take continuous steps because pa is suspended from

round r +1 to round r + x +1, a contradiction. Therefore, process pb performs a step Ai (v)

with v > vm in round r +x −1 and B 0
i (0, v) in round r +x. The current execution is depicted

below.

@ R〈i +1, ·〉 step before round r +x +2.

pa

pb

pc

...

. . . r−1 r r+1 . . . r+x−1 r+x r+x+1 r+x+2 r+x+3 . . .

· A0
i (vm) Bi (1, vm) · ·

· · · · A+
i (v) B 0

i (0, v) · · ·

· · · · · · · · ·

X X X X

Due to Lemma 2, process pb must be suspended in round r +x+1, as well as in round r +x+2.

Since otherwise, if process pb is not suspended in rounds r +x +1 and r +x +2, this implies

27

Chapter 2. Leaderless Consensus

that process pb takes an R0〈i +1, v〉 step, where v > vm . Due to Lemma 2, this implies that

no process proposes vm to all upcoming adopt-commit-max objects, because all R〈i +1, ·〉
appear after round r +x +1, which contradicts the if-statement of our lemma. Since process

pb is suspended in round r +x +2 and at most one process can be suspended in each round,

process pa takes an R0〈i +1, vm〉 step in round r +x +2.

We are therefore in the following setting that is the exactly the same execution pattern as the

one in Figure 2.3.

@ R〈i +1, ·〉 step before round r +x +2.

pa

pb

pc

...

. . . r−1 r r+1 . . . r+x−1 r+x r+x+1 r+x+2 r+x+3 . . .

· A0
i (vm) Bi (1, vm) R0〈i+1, vm〉 ·

· · · · A+
i (v) B 0

i (0, v) ·

· · · · · · · · ·

X X X X

X X

To conclude, given an adopt-commit-max object C [i] where the minimum value proposed is

vm , for value vm to be proposed in the next adopt-commit-max object C [i +1], it has to be that

the execution is as shown in Figure 2.3. In other words, there is some process pa that takes an

A0
i (vm) step alone and, before pa performs Bi (1, vm), some other process pb performs A+

i (v)

and B 0
i (0, v), etc.

Lemma 7. In an execution α, consider V f = {v : ∃Ai (v) ∈ α}, then for any A j (v) step with

j ≥ i +3 in α, it is the case that v > mi n(V f) or the algorithm decides.

Proof. The proof is by contradiction and the idea is to apply Lemma 6 on three consecutive

adopt-commit-max objects (C [i], C [i +1], and C [i +2]) and show that either the algorithm

decides or that vm (= mi n(V f)) does not propagate beyond these three adopt-commit-max

objects. Due to Lemma 6 we know that all processes, except pa , pb execute continuously

for at least four rounds. We also know that operating on an adopt-commit-max object in

Archipelago has only three round-steps (R, A, and B). Because of this, after three adopt-

commit-max objects, we can show that for adopt-commit-max-object C [i +2], there are r ′′

and x ′′ such that a process takes a step R〈i +3, ·〉 before some r ′′+ x ′′+2, which contradicts

Lemma 6.

To prove this lemma, assume by way of contradiction that there is an execution α such that

(1) the algorithm does not decide in α, (2) α contains an Ai (vm) step and (3) α contains an

A j (vm) step, where j ≥ i +3.

28

2.5. Archipelago: Proof of Correctness

Due to Lemma 6, we know that if there is a j ≥ i +3 with A j (vm), then the execution looks like

Figure 2.4. Because x ≥ 2, we have at least 4 continuous suspensions from round r +1 to round

r +x +2.

pa

pb

pc

...

. . . r−1 r r+1 . . . r+x−1 r+x r+x+1 r+x+2 r+x+3 . . .

· A0
i (vm) Bi (1, vm) R0〈i+1, vm〉 ·

· · · · A+
i (v) B 0

i (0, v) ·

· · · · · · · · ·

X X X X

X X

Figure 2.4 – Lemma 7 (1)

Note, that in any execution, a process takes a sequence of steps:

R〈i1, ·〉, Ai1 ,Bi1 ,R〈i2, ·〉, Ai2 ,Bi2 , . . . where i1 < i2 < We show that all processes must

perform certain steps in this sequence prior to certain rounds. One of the three steps that pc ’s

takes in rounds r +1, r +2 or r +3 is an R step that returns a value that is at least 〈i , ·〉, since

process pa performed an A0
i step in round r . Thus, by round r + x +2, pc must perform an

A j step with j ≥ i . Processes pa and pb have also performed a step Ai by round r +x +2. So,

every process in the system has performed an A j step with j ≥ i by round r +x +2.

By assumption, value vm does not get eliminated, and hence when the algorithm operates

on adopt-commit-max object C [i +1] we have the exact same execution as in Figure 2.3 but

for adopt-commit-max object C [i +1]. See Figure 2.5. Again, let pa′ and pb′ be the processes

described in Lemma 6 with respect to Ai+1 and let pc ′ be any other process. Note that in

process pa′ is not necessarily the same as process pa , etc., since it could be that a different

process is the one that performs the A0
i+1(vm) now. For example, it could be that pa′ = pc and

pb′ = pa . Also, note that round numbers are now based upon r ′ 6= r . By Lemma 6, no R〈i +1, ·〉
occurs before round r + x +2 and since pa′ does an R〈i +1, ·〉 step before round r ′, we have

r ′ > r + x +2. Thus, pc ′ must perform a step A j with j ≥ i before round r ′. Then, pc ′ takes

at least four more steps by round r ′+ x ′+2. So, pc ′ must perform a step Bk with k ≥ i +1 by

round r ′+x ′+2. Processes pa′ and pb′ have performed step Bi+1 by round r ′+x ′+2. So, every

process performs a step Bk with k ≥ i +1 by round r ′+x ′+2.

Again, because of Lemma 6, this pattern of execution should appear for adopt-commit-max

object C [i + 2]. Consider Figure 2.6. Again, let pa′′ and pb′′ be the processes described in

Lemma 6 with respect to Ai+2 and let pc ′′ be any other process. By Lemma 6, no R〈i +2, ·〉 step

occurs before round r ′+ x ′+2 and since process pa′′ does such a step before round r ′′, we

have r ′′ > r ′+ x ′+2. Thus, pc ′′ must perform a step Bk with k ≥ i +1 before round r ′′. Then,

pc ′′ takes at least four more steps by round r ′′+x ′′+2. Hence, by round r ′′+x ′′+2, pc ′′ must

perform a step R〈`, ·〉 with ` ≥ i +3. This contradicts the fact that no R〈i +3, ·〉 step occurs

29

Chapter 2. Leaderless Consensus

pa′

pb′

pc ′

...

. . . r ′−1 r ′ r ′+1 . . . r ′+x ′−1 r ′+x ′ r ′+x ′+1 r ′+x ′+2 r ′+x ′+3 . . .

· A0
i+1(vm) Bi+1(1, vm)R0〈i+2, vm〉 ·

· · · · Ai+1(v) B 0
i+1(0, v) ·

· · · · · · · · ·

X X X X

X X

Figure 2.5 – Lemma 7 (2)

pa′′

pb′′

pc ′′

...

. . . r ′′−1 r ′′ r ′′+1 . . . r ′′+x ′′−1 r ′′+x ′′ r ′′+x ′′+1 r ′′+x ′′+2 r ′′+x ′′+3 . . .

· A0
i+2(vm) Bi+2(1, vm)R0〈i+3, vm〉 ·

· · · · A+
i+2(v) B 0

i+2(0, v) ·

· · · · · · · · ·

X X X X

X X

Figure 2.6 – Lemma 7 (3)

before step r ′′+x ′′+2 dictated by Lemma 6.

Lemma 7 implies Theorem 1, because either the algorithm decides or the minimum value

proposed to an adopt-commit-max object C [i] does not propagate in any later adopt-commit-

max object C [j] with j ≥ i +3. Hence, due to the continual elimination of the current minimal

value, eventually only one value gets proposed to an adopt-commit-max object and hence the

algorithm decides. Finally, note that if we had devised Archipelago for binary consensus, this

would not substantially simplify the proof. We would still need to prove that the minimum

value, in this case 0, does not propagate in later adopt-commit objects.

Termination. Archipelago satisfies termination for n ≥ 3, meaning that in an ¦synchronous

execution, every correct process eventually decides. In such an execution, Archipelago needs

at most 5 rounds, after processes have been aligned in rounds. This alignment can take place

after the global stabilization time (GST) round [48]. Note that after the GST round, it is not

guaranteed that the rounds are aligned (i.e., all processes start and end a round at the same

time). Therefore, after the GST round, the rounds need to be aligned first. When the alignment

occurs, Archipelago needs at most 5 rounds to decide.

Specifically, we show that Archipelago terminates in any ¦synchronous execution with up to

f = n −1 crashes. Consider such an execution and let r be a round such that (1) the system

30

2.6. Leaderless Consensus in Message Passing

has reached synchrony by round r and (2) each process p is either correct or p has crashed

by round r . In such an ¦synchronous execution, Archipelago needs at most 5 rounds starting

from round r in order to decide.

As in the proof of leaderless termination for Archipelago, we assume a model with n ≥ 3

processes. In this scenario, since processes take steps without crashes starting from round

r , every correct process p takes steps R, A, and B without suspensions somewhere between

round r and r +5. Each process p performs an R step at least by round r +2, because p can

perform step A in round r and then B in round r +1. Consider a process p that performs

an R0〈i , v〉 step with the greatest 〈i , v〉 value. This means, that p immediately afterwards

performs A0
i (v) and then B 0

i (1, v) and due to Lemma 3 Archipelago decides. If multiple such

processes perform R0〈i , v〉, then all the processes retrieve the same maximum value 〈i , v〉
from m (Line 24) and hence propose the same value to adopt-commit-max object C [i] and

perform steps A0
i (v) and B 0

i (1, v) and hence the algorithm decides (see Lemma 3).

The above discussion implies that Archipelago satisfies termination, thus meaning that in an

¦synchronous execution, Archipelago decides. Furthermore, note that the Archipelago can

withstand up to f = n −1 crashes and decides in an ¦synchronous execution. Naturally, the

message passing variant of Archipelago (Section 2.6) can only withstand up to f = (n −1)/2

crashes.

2.6 Leaderless Consensus in Message Passing

In this section we show how our shared memory results translate to the message passing model.

The definition of ¦synchronous−1 in message passing is the same as in shared memory: an

execution is ¦synchronous−1 if it is equal to a sequence of rounds, such that at most 1 process

can be suspended in each round. We say that a process p is suspended [10] in a round r , if p

does not send any messages in r and does not receive any messages sent by other processes in

round r .

Additionally, we assume that up to f −1 (where, for simplicity, n = 2 f +1) processes may fail

by crashing forever.2

We use the following notion of round: in each round r , every (correct, non-suspended) process

pi (i) broadcasts a message (we call this first message a request), (ii) delivers all requests that

were sent to pi in r , (iii) sends a message (we call this second message a response) for every

request it has delivered in (ii), and (iv) delivers all replies sent to it in r . Note that this notion

2We allow up to f −1 crashes (instead of the more typical f) so that, taking into account at most one additional
suspended process per round, we can use the familiar f +1 quorum size.

31

Chapter 2. Leaderless Consensus

of round involves 2 message delays. With this definition of ¦synchronous−k, the leaderless

termination property remains the same as in Definition 1.

It is easy to see that Paxos (in message-passing) is not leaderless. With our notion of round,

the prepare and propose phases correspond to a round each. At each round, the adversary

selects the proposer p that has completed the prepare phase with the highest ballot number

so far and suspends p in its propose phase.

The Crash Case. In order to obtain a leaderless consensus algorithm in a message-passing

system with crash failures, one might be tempted to apply the ABD emulation [13] to Al-

gorithm 4. However, this ABD-emulated version of Archipelago would require at least two

message-passing rounds per step (R, A and B): one round for the write and one round for the

collect (n reads in parallel). It is unclear whether this emulated algorithm would be leaderless,

since our Archipelago’s proof hinges on each step (R, A and B) taking exactly one round.

Instead, we obtain a message-passing version of Archipelago (shown in Algorithm 5) by

combining the write and the collect in a single round. The broadcast in lines 16, 24, and 31

acts as both the write invocation and the read invocation. Processes’ responses in lines 42, 46,

and 50 serve to confirm the write, and return all values written so far.

32

2.6. Leaderless Consensus in Message Passing

Algorithm 5 Archipelago in message passing with n = 2 f +1

1: . Local State

2: i , the current adopt-commit-max object, initially 0

3: R, a set of tuples, initially empty

4: A[0,1, . . .], a sequence of sets, all initially empty

5: B [0,1, . . .], a sequence of sets, all initially empty

6:

7: procedure propose(v)

8: while true do

9: 〈i , v ′〉←R-Step(v)

10: 〈flag, v ′′〉←A-Step(v ′)
11: 〈control,val〉←B-Step(flag, v ′′)
12: if control = commit then return val

13: else i ← i +1

14:

15: procedure R-Step(v)

16: broadcast(R, i , v)

17: wait until receive (R-response, i ,R) from f +1 processes

18:

19: R ← R ∪ { union of all Rs received in Line 17}

20: 〈i ′, v ′〉← max(R) . note that 〈x, y〉 > 〈x ′, y ′〉 if x > x ′ or (x = x ′ and y > y ′)
21: return 〈i ′, v ′〉
22:

23: procedure A-Step(v)

24: broadcast(A, i , v)

25: wait until receive (A-response, i , A[i]) from f +1 processes

26:

27: S ← union of all A[i]s received

28: if S contains only one value val then return 〈true,val〉
29: else return 〈false,max(S)〉

33

Chapter 2. Leaderless Consensus

30: procedure B-Step(flag, v))

31: broadcast(B , i ,flag, v)

32: wait until receive (B-response, i ,B [i]) from f +1 processes

33:

34: S ← union of all B [i]s received

35: if S contains only 〈true,val〉 for some val then

36: return 〈commit,val〉
37: else if S contains some entry 〈true,val〉 then return 〈adopt,val〉
38: else return 〈adopt, v〉
39:

40: upon event reception of (R, j , v) from p do

41: Add 〈 j , v〉 to R

42: send(R-response, j ,R) to p

43:

44: upon event reception of (A, j , v) from p do

45: add v to A[j]

46: send(A-response, j , A[j]) to p

47:

48: upon event reception of (B , j ,flag, v) from p do

49: add 〈flag, v〉 to B [j]

50: send(B-response, j ,B [j]) to p

This way of combining writes and reads can break atomicity, but is sufficient to guarantee

safety (of consensus) during asynchronous periods. More precisely, the R-Step behaves like

a “regular” max-register, one that returns valid, non-decreasing values to each invoker (see

Lemma 8), and the A- and B-Steps together behave like an adopt-commit object (see Lemma 9).

As such, our proof of safety in Section 2.5 applies to Algorithm 5 as well.

The non-atomic behavior exhibited during asynchronous periods is due to the overlap in time

of the request and response parts of each round. However, during synchronous−1 periods, we

can assume that requests are delivered by all processes before any response is sent out. Thus,

once the system becomes permanently synchronous−1, the R-Step satisfies the (atomic) max-

register properties and the A- and B-Steps together behave like an adopt-commit-max object.

Therefore, our proof of leaderless termination in Section 2.5 remains valid for Algorithm 5 as

well.

In what follows, we provide some lemmas that show the safety of Algorithm 5. Note that all

results and line numbers refer to Algorithm 5.

34

2.6. Leaderless Consensus in Message Passing

Lemma 8. The R-Step satisfies the following properties:

Validity For a fixed i , if some process returns v, then v was the input of some process.

Monotonicity If process p returns (i , vi) in an R-Step and p returns (j , v j) in a later R-Step, then j ≥ i

and v j ≥ vi .

Proof.

Validity At Line 20 (i , v ′) (the value returned by the R-Step) is computed as the maximum of

all tuples ever received, which must in turn have been broadcast at Line 16 by some

process.

Monotonicity Assume by contradiction that some process p returns (i , vi) in R-Step r1 and later returns

(j , v j) in R-Step r2 such that (j , v j) < (i , vi). During r1, p selected and returned (i , vi)

as the maximum element of its local R set. Since elements can only be appended to a

process’s R set, (i , vi) will still be in R during r2. Thus, p cannot select and return a tuple

smaller than (i , vi) during r2. We have reached a contradiction.

Lemma 9. For a fixed i , an A-Step followed by a B-Step corresponds to an adopt-commit object.

Proof. Validity holds because at lines 28, 29, 36, 37, and 38, processes only return values that

were sent at lines 46 or 50. In turn, these values must be input values of some process who

broadcast them at lines 24 or 31.

Termination holds because the only waiting is done at lines 25 and 32; processes always wait

for f +1 responses; since f +1 = n − f , processes eventually receive these responses.

Commitment holds because if all processes enter A-Step with the same value v , then the

check at Line 28 will succeed and all processes will enter B-Step with (true, v); thus the check

at Line 35 will succeed and all processes will return (commit, v) in the B-Step.

Agreement. Assume by contradiction that process p outputs (commit, v) and process p ′

outputs (·, v ′) with v 6= v ′. Then p must have received B-responses containing only (true, v)

from a set Rp of f +1 distinct processes; p ′ must have also received B-responses from a set Rp ′

of f +1 distinct processes. Since f +1 > n/2, Rp and Rp ′ must intersect in at least one process

q .

Let S be the union of all B [i]s received by p ′ in B-responses. We distinguish three cases, based

on the number of distinct values val for which the S contains (true,val).

35

Chapter 2. Leaderless Consensus

• S does not contain any (true,val) tuples. In this case, q ’s B-response to p ′ must contain

a (false,val) tuple. If q responded to p before p ′, then by Lemma 10 q ’s B-response to p ′

must include a (true, v) tuple — a contradiction. If q responded to p ′ before p, then by

Lemma 10 q’s B-response to p must include (false,val) — a contradiction.

• S contains (tr ue,val) tuples for a single value val. Then val 6= v , otherwise p ′ would

either commit v or adopt v . Assume without loss of generality that q responds to

p before it responds to p ′. Then q’s response to p ′ must contain both (true, v) and

(true,val), contradicting Lemma 11.

• S contains more than one value v . This is impossible by Lemma 11.

Lemma 10. For a fixed i , if a process p sends a B-response (B-response, i ,B [i]) to some process

q at time t and p sends a B-response (B-response, i ,B [i]′) to some process q ′ at time t ′ > t , then

B [i] ⊆ B [i]′.

Proof. This is because items can only be added to B [i] (Line 49).

Lemma 11. For a fixed i , if two processes p and q broadcast (true, v) and (true, v ′) at Line 31,

then v = v ′.

Proof. Assume not, then p must have received A-responses containing only v from a set Rp

of f +1 processes and q must have received A-responses containing only v ′ from a set Rp ′ of

f +1 processes. Since f +1 > n/2, Rp and Rp ′ must intersect in at least one process r . Assume

without loss of generality that r responded to p first and then to q : then the response to q

must also include v by Lemma 10. We have reached a contradiction.

The Byzantine Case. We conjecture that modifying Algorithm 5 in the following way yields a

Byzantine-fault tolerant3 leaderless consensus algorithm:

1. The number of processes becomes n = 3 f +1.

2. Processes wait for 2 f +1 (instead of f +1) responses at lines 17, 25 and 32.

3. Replace the max function in lines 20 and 29 with the max− f function; this function

takes 2 f +1 or more arguments, orders them in decreasing order, discards the first f

values in this order and returns the first remaining value.

3We refer here to the weak Byzantine agreement version of the problem [76], whose validity property is: With no
faulty processes, if some process decides v, then v is the input of some process.

36

2.7. ArchSMR: Archipelago in Practice

4. Replace the B-Step as shown in Algorithm 6.

5. All messages are signed. At each step (R, A and B) except the very first R step, when

broadcasting, processes include a certificate consisting of all 2 f +1 responses received in

the previous step. Processes only respond to requests with valid certificates, i.e., requests

for which v , flag and/or i (depending on the step) were chosen correctly according to

the responses in the certificate.

6. Replace broadcast with reliable broadcast.

Algorithm 6 Fragment: B-Step in Byzantine version of Archipelago in message passing where
n = 3 f +1

1: procedure B-Step(flag, v))

2: broadcast(B , i ,flag, v)

3: wait until receive (B-response, i ,B [i]) from 2 f +1 processes

4:

5: S ← { all B [i]s received }

6: if f +1 sets in S contain only 〈true, val〉 for some val then

7: return 〈commit, val〉
8: else if f +1 sets in S contain some entry 〈true, val〉 then

9: return 〈adopt, val〉
10: else return 〈adopt, v〉

Our changes have the following rationales: (1) and (2) increase the quorum size such that

any two quorums intersect in (at least) one correct process. Change (3) serves to eliminate

any maliciously-chosen high values in the R- and A-Steps. Note that our proofs in Section 2.5

remain valid if we replace max by max− f since both functions discard the minimum value

as long as one correct process does not propose the minimum value. Change (4) aims to

prevent Byzantine processes from getting an invalid value adopted or committed by sending

B-responses fake 〈false, ·〉 or 〈true, ·〉 tuples. Change (5) aims to allow honest processes to

validate that other processes have correctly processed the responses received at the previous

step.

2.7 ArchSMR: Archipelago in Practice

To demonstrate the different impact of failures on leaderless and leader-based consensus

algorithms, we implemented ArchSMR, a state machine replication (SMR) algorithm based on

Archipelago (Algorithm 5), deployed it in a distributed setting and compared its behavior to

Apache ZooKeeper [64], a production-level leader-based SMR.

37

Chapter 2. Leaderless Consensus

As ZooKeeper is written in Java, we implemented Archipelago in Java and built ArchSMR with

an unbounded sequence of separate Archipelago instances just as Multi-Paxos uses a sequence

of separate Paxos instances [78]. We deployed ArchSMR along with ZooKeeper on 3 Amazon

EC2 t2.large instances with 2 vCPUs, 8 GB of memory running Ubuntu Server v18.04, all within

the same availability zone.

Specifically, in the following experiments, we have n = 3 servers on distinct VMs and 3 clients,

each sending requests to and receiving responses from one server. Note that the goal of our

experiments is to show that the leaderless algorithm Definition 2, as well as Archipelago can

be of practical relevance. We are not interested in the maximum throughput without failures

but by the average throughput during failures, so we fixed the sending rate to 500 requests by

second (∼166 requests per second per client) for both SMRs.

In order to experiment the ¦synchronous−1 model described in Section 2.2, we stop a server by

sending a POSIX.1-1990 standard SIGSTOP signal to one server process and later resuming it by

sending a POSIX.1-1990 standard SIGCONT signal. In practice, the effects of such a suspension

can occur in case of a software bug, CPU overload, overheating, etc. Naturally, our results also

hold if we crash and restart a server instead of suspending it.

In what follows, we first consider the case where we suspend the leader server in ZooKeeper

and some arbitrary server in ArchSMR. Afterwards, we show how ArchSMR performs when

there are recurring suspensions of different servers.

Single Suspension. The main characteristic of a leaderless algorithm is that suspending or

crashing one server does not decimate throughput (i.e., drop throughput to 0). Definition 2

precisely captures this characteristic by arguing that irrespectively of which server we suspend,

the algorithm is still able to complete operations and hence throughput is not decimated.

To confirm this experimentally, we suspended one server while running ArchSMR and

ZooKeeper and sampling their throughput every 100 ms. Figure 2.7 depicts the through-

put evolution of ArchSMR and ZooKeeper over time without depicting the warm-up and

cool-down phases of the experiments. The suspension, depicted with a vertical solid line,

suspends an arbitrary server in ArchSMR, since all servers have the same role, and suspends

the leader server in ZooKeeper.

As expected, when we suspend the leader server in ZooKeeper, throughput drops to 0. Note

that the throughput remains 0 for more than 3 seconds. This is due to the default configuration

(tickTime and initLimit [66]) of ZooKeeper. When the leader server is suspended, the

ZooKeeper cluster needs more than 10 s to initiate a new leader election. In contrast, if we

crash the leader server in ZooKeeper, then the socket connection closes and the rest of the

servers immediately recognize the leader crash and initiate a leader election. By default,

38

2.7. ArchSMR: Archipelago in Practice

20000 21000 22000 23000 24000 25000 26000
Time (ms)

0

100

200

300

400

500

600

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

s)

ArchSMR
ZooKeeper
server suspension

Figure 2.7 – Performance of ZooKeeper and ArchSMR upon server suspension.

ZooKeeper needs at least 200 ms to initiate a new leader election [67] after a leader crash.

One can anyway expand ZooKeeper downtime, by suspending a server from the moment it

becomes leader until it gets deposed.

In contrast to ZooKeeper, the throughput of ArchSMR simply drops to about 330 requests per

second, due to the fact that one of the 3 clients keeps sending around 166 requests per second

to the suspended process. This shows that the leaderless algorithm Definition 2 is of practical

interest for robustness.

Recurring Suspensions. Definition 1 suggests that a leaderless consensus algorithm decides

even if we suspend at most one server at a time. Naturally, we would expect the same to be

the case for ArchSMR. Here, we investigate how ArchSMR performs when we have a recurring

number of suspensions.

Figure 2.8 depicts the throughput of ArchSMR during recurring suspensions. Specifically, in a

round-robin fashion, we suspend each server for two seconds and then wait for one second

before suspending the next server, etc. We wait for one second to guarantee that we have all

servers up and running. As can be seen in Figure 2.8, throughput drops by one third during the

suspension of a server and when the server gets unsuspended we have a jump in throughput

39

Chapter 2. Leaderless Consensus

20000 30000 40000 50000 60000 70000 80000 90000 100000
Time (ms)

0

500

1000

1500

2000

2500

3000

3500

4000

Th
ro

ug
hp

ut
 (r

eq
ue

st
s/

s)

ArchSMR

Figure 2.8 – Performance of ArchSMR upon rotating suspensions of all servers.

since the previously issued commands of the client get decided. Notice that even though

throughput drops when a server is suspended, the average throughput (e.g., from 20 s to 30 s)

in the shaded area of the plot remains at around 480 requests per second. So, even though,

throughput drops, the average throughput remains almost the same when considering no

suspensions.

2.8 Related Work

Given that the limitation of a leader in consensus or SMR is well-known [6, 15, 30, 41, 57, 60,

64, 91, 96, 121, 125], it is surprising to see that the notion of leaderless has never been defined.

But with the recent need to scale SMRs to blockchain networks [31, 35, 41, 121, 125], this

limitation is exacerbated. Crain et al. [41] proposed DBFT for blockchains. It relies on n

binary consensus instances, each using a weak coordinator to converge even if sufficiently

many correct processes propose distinct values. DBFT is not leaderless according to our

definition as the same weak coordinator can be used by all instances. Maofan et al. [125]

replaced the leader’s large proposals of PBFT [35] by smaller message digests to obtain HotStuff.

HotStuff throughput still drops to zero when the leader fails and until some view-change

completes [121]. These observations serve as motivations for our work.

40

2.9. Conclusion

In a brief announcement [81], Lamport proposed a high level transformation of a class of

leader-based consensus algorithms into a class of leaderless algorithms using repeatedly a

synchronous virtual leader election algorithm where all processes try to agree on a set of

proposals. In a corresponding patent document [82], Lamport explains that during a period of

asynchrony, if the virtual leader election fails, then the consensus algorithm may not progress

but should not violate safety as long as it tolerates malicious leaders [81]. The adopt-commit-

max object of Archipelago allows processes to converge towards a unique value, hence sharing

similarities with the proposal of some virtual leader. Yet, neither a leaderless definition nor a

virtual leader specification were given.

Borran and Schiper proposed a so-called “leader-free” consensus algorithm [38] without

offering a leader-freedom definition. The algorithm has an exponential complexity, which

limits its applicability.

In randomized consensus algorithms (e.g., [20, 98, 104]), correct processes typically execute

the same series of steps, but they do not converge to the same value deterministically.

Interestingly, SMR algorithms that rely on multiple leaders (e.g., Mencius [91]) do not neces-

sarily rely on a leaderless consensus algorithm. Moraru et al. [96] used multiple “command

leaders” in EPaxos. Each command leader commits one command as long as commands are

compatible. However, in the general case, where commands have dependencies, then only one

of the command leaders can get its command committed at a time, as if there were successive

leader-based consensus instances. If a leader fails after receiving a positive acknowledgement

from a fast quorum of n −1 processes, it rejoins with a new identifier and a greater ballot

without being able to acknowledge the previous commit message. Despite being specified in

TLA+, EPaxos specification was recently shown incorrect [115], indicating that designing a

multi-leader algorithm is error prone.

2.9 Conclusion

In this chapter, we defined what it means for a consensus algorithm to be leaderless. To the

best of our knowledge, this work is the first to formally introduce the notion of a leaderless con-

sensus algorithm. Then, we devised Archipelago, a leaderless consensus algorithm. We proved

that Archipelago is correct, a daunting task since we had to prove that in any synchronous−1

execution that starts from an arbitrary initial state, Archipelago decides. We then translated

our result to the message-passing model. Afterwards, we conjectured that Archipelago can be

modified to tolerate Byzantine failures. Finally, we used Archipelago to build a state machine

replication algorithm, and illustrated its robustness in a failure scenario against ZooKeeper.

41

3 State Machine Replication is More
Expensive Than Consensus

Consensus and State Machine Replication (SMR) are generally considered to be equivalent

problems. In certain system models, indeed, the two problems are computationally equivalent:

any solution to the former problem leads to a solution to the latter, and vice versa.

In this chapter, we study the relation between consensus and SMR from a complexity perspec-

tive. We find that, surprisingly, completing an SMR command can be more expensive than

solving a consensus instance. Specifically, given a synchronous system model where every

instance of consensus always terminates in constant time, completing an SMR command

does not necessarily terminate in constant time. Besides theoretical interest, our result also

corresponds to practical phenomena we identify empirically. We experiment with two well-

known SMR implementations (Multi-Paxos and Raft) and show that, indeed, SMR is more

expensive than consensus in practice. One important implication of our result is that—even

under synchrony conditions—no SMR algorithm can ensure bounded response times.

3.1 Introduction

Consensus is a fundamental problem in distributed computing. In this problem, a set of

distributed processes need to reach agreement on a single value [77]. Solving consensus is one

step away from implementing State Machine Replication (SMR) [75, 110]. Essentially, SMR

consists of replicating a sequence of commands—often known as a log—on a set of processes

which replicate the same state machine. These commands represent the ordered input to

the state machine. SMR has been successfully deployed in applications ranging from storage

systems, e.g., LogCabin built on Raft [100], to lock [36] and coordination [64] services. At a

high level, SMR can be viewed as a sequence of consensus instances, so that each value output

from an instance corresponds to a command in the SMR log.

From a solvability standpoint and assuming no malicious behavior, SMR can use consensus

43

Chapter 3. State Machine Replication is More Expensive Than Consensus

as a building block. When the latter is solvable, the former is solvable as well (the reverse

direction is straightforward). Most previous work in this area, indeed, explain how to build

SMR assuming a consensus foundation [53, 78, 83], or prove that consensus is equivalent from

a solvability perspective with other SMR abstractions, such as atomic broadcast [37, 99]. An

important body of work also studies the complexity of individual consensus instances [54, 68,

80, 108]. SMR is typically assumed to be a repetition of consensus instances [69, 79], so at first

glance it seems that the complexity of an SMR command can be derived from the complexity

of the underlying consensus. We show that this is not the case.

In practice, SMR algorithms can exhibit irregular behavior, where some commands complete

faster than others [34, 96, 123]. This suggests that the complexity of an SMR command can

vary and may not necessarily coincide with the complexity of consensus. Motivated by this

observation, we study the relation between consensus and SMR in terms of their complexity.

To the best of our knowledge, we are the first to investigate this relation. In doing so, we take a

formal, as well as a practical (i.e., experimental) approach. Counter-intuitively, we find that

SMR is not necessarily a repetition of consensus instances.

We show that completing an SMR command can be more expensive than solving a consensus

instance. Constructing a formalism to capture this result is not obvious. We prove our result by

considering a fully synchronous system, where every consensus instance always completes in

a constant number of rounds, and where at most one process in a round can be suspended (e.g.,

due to a crash or because of a network partition). A suspended process in a round is unable to

send or deliver any messages in that round. Surprisingly, in this system model, we show that it

is impossible to devise an SMR algorithm that can complete a command in constant time, i.e.,

completing a command can potentially require a non-constant number of rounds. We also

discuss how this result applies in weaker models, e.g., partially synchronous, or if more than

one process is suspended per round (see Section 3.3.2).

At a high level, the intuition behind our result is that a consensus instance “leaks,” so that

some processing for that instance is deferred for later. Simply put, even if a consensus instance

terminates, some protocol messages belonging to that instance can remain undelivered.

Indeed, consensus usually builds on majority quorum systems [117], where a majority of

processes is sufficient and necessary to reach agreement; any process which is not in this

majority may be left out. Typically, undelivered messages are destined to processes which are

not in the active majority—e.g., because they are slower, or they are partitioned from the other

processes. Such a leak is inherent to consensus: the instance must complete after gathering a

majority, and should not wait for additional processes. If a process is not in the active majority,

that process might as well be faulty, e.g., permanently crashed.

In the context of an SMR algorithm, when successive consensus instances leak, the same

process can be left behind across multiple SMR commands; we call this process a straggler.

44

3.1. Introduction

Consequently, the deferred processing accumulates. It is possible, however, that this straggler

is in fact correct. This means that eventually the straggler can become part of the active

quorum for a command. This can happen when another process fails and the quorum must

switch to include the straggler. When such a switch occurs, the SMR algorithm might not be

able to proceed before the straggler recovers the whole chain of commands that it misses.

Only after this recovery completes can the next consensus instance (and SMR command)

start. Another way of looking at our result is that a consensus instance can neglect stragglers,

whereas SMR must deal with the potential burden of helping stragglers catch-up.1

We experimentally validate our result in two well-known SMR systems: a Multi-Paxos imple-

mentation (LibPaxos [3]) and a Raft implementation (etcd [2]). Our experiments include the

wide-area and clearly demonstrate the difference in complexity, both in terms of latency and

number of messages, between a single consensus instance and an SMR command. Specif-

ically, we show that even if a single straggler needs to be included in an active quorum,

SMR performance noticeably degrades. It is not unlikely for processes to become strag-

glers in practical SMR deployments, since these algorithms typically run on commodity

networks [19]. These systems are subject to network partitions, processes can be slow or

crashed, and consensus-based implementations can often be plagued with corner-cases or

implementation issues [22, 36, 62, 73], all of which can lead to stragglers.

Our result—that an SMR algorithm cannot guarantee a constant response time, even if other-

wise the system behaves synchronously—brings into focus a trade-off in SMR. In a nutshell,

this is the trade-off between the best-case performance and the worst-case performance of

an SMR algorithm. On the one hand, such an algorithm can optimize for the worst-case

performance. In this case, the algorithm can dedicate resources (e.g., by provisioning addi-

tional processes or assisting stragglers) to preserve its performance even when faults manifest,

translating into lower tail latencies; there are certain classes of SMR-based applications where

latencies and their variability are very important [11, 40, 42]. On the other hand, an SMR

algorithm can optimize for best-case performance, i.e., during fault-free periods, so that the

algorithm advances despite stragglers being left arbitrarily behind [63,96]. This strategy means

that the algorithm can achieve superior throughput, but its performance will be more sensible

to faults.

The contribution we present in this chapter is twofold. First, we initiate the study of the

relation, in terms of complexity, between consensus and SMR. We devise a formalism to

capture the difference in complexity between these two problems, and use this formalism to

prove that completing a single consensus instance is not equivalent to completing an SMR

command in terms of their complexity (i.e., number of rounds). More precisely, we prove that

1We note that this leaking property seems not only inherent in consensus, but in any equivalent replication
primitive, such as atomic broadcast.

45

Chapter 3. State Machine Replication is More Expensive Than Consensus

it is impossible to design an SMR algorithm that can complete a command in constant time,

even if consensus always completes in constant time. Second, we experimentally validate our

theoretical result using two SMR systems in both a single-machine and a wide-area network.

Roadmap. The rest of this chapter is organized as follows. We describe our system model

in Section 3.2. In Section 3.3 we present our main result, namely that no SMR algorithm can

complete every command in a constant number of rounds. Section 3.4 presents experiments

to support our result. We describe the implications of our result in Section 3.5, including ways

to circumvent it and a trade-off in SMR. Finally, Section 3.6 concludes this chapter.

3.2 Model

This chapter studies the relation in terms of complexity between consensus and State Machine

Replication (SMR). In this section we formulate a system model that enables us to capture this

relation, and also provide background notions on consensus and SMR.

We consider a synchronous model and assume a finite and fixed set of processes Π =
{p1, p2, . . . , pn}, where |Π| = n ≥ 3. Processes communicate by exchanging messages. Each

message is taken from a finite set M = {m1, . . .}, where each message has a positive and a

bounded size, which means that there exists a B ∈N+ such that ∀m ∈ M ,0 < |m| ≤ B .

A process is a state machine that can change its state as a consequence of delivering a message

or performing some local computation. Each process has access to a read-only global clock,

called round number, whose value increases by one on every round. In each round, every

process pi : (1) sends one message to every other process p j 6= pi (in total pi sends n − 1

messages in each round);2 (2) delivers any messages sent to pi in that round; and (3) performs

some local computation.

An algorithm in such a model is the state machine for each process and its initial state. A

configuration corresponds to the internal state of all processes, as well as the current round

number. An initial configuration is a configuration where all processes are in their initial state

and the round number is one. In each round, up to n(n −1) messages are transmitted. More

specifically, we denote a transmission as a triplet (p, q,m) where p, q ∈Π(p 6= q) and m ∈ M .

For instance, transmission (pi , p j ,mi , j) captures the sending of message mi , j from process pi

to process p j . We associate with each round an event, corresponding to the set of transmissions

which take place in that round; we denote this event by τ⊆ {(pi , p j ,mi , j) : i , j ∈ {1, . . . ,n}∧i 6= j }.

An execution corresponds to an alternating sequence of configurations and events, starting

with an initial configuration. An execution e+ is called an extension of a finite execution e if e

2As a side note, if a process pi does not have something to send to process p j in a given round, we simply
assume that pi sends an empty message.

46

3.2. Model

is a prefix of e+. Given a finite execution e, we denote with E(e) the set of all extensions of e.

We assume deterministic algorithms: the sequence of events uniquely defines an execution.

Failures. Our goal is to capture the complexity—i.e., cost in terms of number of synchronous

rounds—of a consensus instance and of an SMR command, and expose any differences in

terms of this complexity. Towards this goal, we introduce a failure mode which omits all

transmissions to and from at most one process per round.

We say that a process pi is suspended in round r associated with the event τ, if ∀m ∈ M and

∀ j ∈ {1, . . . ,n} with j 6= i , (pi , p j ,m) ∉ τ and (p j , pi ,m) ∉ τ, hence |τ| = n(n −1)−2(n −1) =
(n −1)(n −2). If a process pi is not suspended in a round r , we say that pi is correct in round r .

In a round associated with an event τ where all processes are correct there are no omissions,

hence |τ| = n(n −1). A process pi is correct in a finite execution e if there is a round in e where

pi is correct. Process pi is correct in an infinite execution e if there are infinite many rounds in

e where pi is correct. For our result, it suffices that in each round a single process is suspended.

Note that each round in our model is a communication-closed layer [49], so messages omitted

in a round are not delivered in any later round. This form of suspension is similar to the one

presented in the model (Section 2.2) of Chapter 2.

A suspended process represents a scenario where a process is slowed down. This may be

caused by various real-world conditions, e.g., a transient network disconnect, a load imbal-

ance, or temporary slowdown due to garbage collection. In all of these, after a short period,

connections are dropped and message buffers are reclaimed; such conditions can manifest as

message omissions. The notion of being suspended also represents a model where processes

may crash and recover, where any in-transit messages are typically lost.

There is a multitude of work [23, 105, 106, 108, 109] on message omissions (e.g., due to link

failures) in synchronous models. Our system model is based on the mobile faults model [105].

Note however that our model is stronger than the mobile faults model, since we consider

that either exactly zero or exactly 2(n −1) message omissions occur in a given round.3 Other

powerful frameworks, such as layered analysis [97], the heard-of model [38], or RRFD [52] can

be used to capture omission failures, but we opted for a simpler approach that can specifically

express the model which we consider.

3.2.1 Consensus

In the consensus problem, processes have initial values which they propose, and have to

decide on a single value. Consensus [33] is defined by three properties: validity, agreement,

and termination. Validity requires that a decided value was proposed by one of the processes,

3If a process p is suspended, then n −1 messages sent by p and n −1 messages delivered to p are omitted.

47

Chapter 3. State Machine Replication is More Expensive Than Consensus

whilst agreement asks that no two processes decide differently. Finally, termination states

that every correct process eventually decides. In the interest of having an “apples to apples”

comparison with SMR commands (defined below, Section 3.2.2), we introduce a client (e.g.,

learner in Paxos terminology [78]), and say that a consensus instance completes as soon as the

client learns about the decided value. This client is not subject to being suspended, and after

receiving the decided value, the client broadcasts this value to the other processes. Algorithm 7

is a consensus algorithm based on this idea.

It is easy to see that in such a model consensus completes in two rounds: processes broadcast

their input, and every process uses some deterministic function (e.g., maximum) to decide

on a specific value among the set of values it delivers. Since all processes deliver exactly the

same set of n−1 (or n) values, they reach agreement. In the second round, all processes which

decided send their decided value to all the other processes, including the client. Since n ≥ 3

and at least n −1 processes are correct in the second round, the client delivers the decided

value and thus the consensus instance completes by the end of round two. Afterwards (starting

from the third round), the client broadcasts the decided value to all the processes, so eventually

every correct process decides, satisfying termination. Note that if a process is suspended in

the first round (but correct in the second round), it will decide in the second round, after

delivering the decided value from the other processes. Algorithm 7 represents this solution.

We remark that Algorithm 7 does not contradict the lossy link impossibility result of Santoro

and Widmayer [105], even though our model permits more than n −1 message omissions in a

round, since the model we consider is stronger.

Algorithm 7 Consensus

1: procedure propose(pi , vi) . pi proposes value vi

2: . round 1
3: decision ←⊥
4: ∀p ∈Π\ {pi }, send(p, vi) . Π is the set of processes
5: values ← {vi }∪ { each value v delivered from process p (∀p ∈Π\ {pi }) }
6: if |values| 6= 1 then . pi is correct in round 1
7: decision ← deterministicFunction(values)
8: else . pi was suspended
9: . pi cannot decide yet

10:

11: . round k (k ≥ 2): consensus instance completes in round 2
12: if decision 6=⊥ then . pi knows the decided value
13: ∀p ∈ (Π\ {pi })∪ {client}, send(p,decision) . broadcast decided value
14: else
15: decision ← received decision .message received from other process

We emphasize that although correct processes can decide in the first round, we consider that

48

3.2. Model

the consensus instance completes when the client delivers the decided value. Hence, the

consensus instance in Algorithm 7 completes in the second round. In more practical terms,

this consensus instance has a constant cost.

3.2.2 State Machine Replication

The SMR approach requires a set of processes (i.e., replicas) to agree on an ordered sequence

of commands [75, 110]. We use the terms replica and process interchangeably. Informally,

each replica has a log of the commands it has performed, or is about to perform, on its copy of

the state machine.

Log. Each replica is associated with a sequence of decided and known commands which

we call the log. The commands are taken from a finite set C = {c1, . . . ,ck }. We denote the log

with `(e, p) where e is a finite execution, p is a replica, and each element in `(e, p) belongs to

the set C ∪ {ε}. Specifically, `(e, p) corresponds to commands known by replica p after all the

events in a finite execution e have taken place (e.g., `(e, p) = ci1 ,ε,ci3). For 1 ≤ i ≤ |`(e, p)|, we

denote with `(e, p)i the i -th element of sequence `(e, p). If there is an execution e and ∃p ∈Π
and ∃i ∈N+ such that `(e, p)i = ε, this means that replica p does not have knowledge of the

command for the i -th position in its log, while at least one replica does have knowledge of this

command. We assume that if a process knows about a command c, then c exists in `(e, p). To

keep our model at a high-level, we abstract over the details of how each command appears in

the log of each replica, since this is typically algorithm-specific. Additionally, state-transfer

optimizations or snapshotting [100] are orthogonal to our discussion.

An SMR algorithm is considered valid if the following property is satisfied for any finite execu-

tion e of that algorithm: ∀p, p ′ ∈Π and for every i such that 1 ≤ i ≤ mi n(|`(e, p)|, |`(e, p ′)|), if

`(e, p)i 6= `(e, p ′)i then either `(e, p)i = ε or `(e, p ′)i = ε. In other words, consider a replica p

which knows a command for a specific log position i , i.e., `(e, p)i = ck , where ck ∈C . Then for

the same log position i , any other process p ′ can either know command ck (i.e., `(e, p ′)i = ck),

not know the command (i.e., `(e, p ′)i = ε), or have no information regarding the command

(i.e., |`(e, p ′)| < i). Note that we only consider valid SMR algorithms.

In what follows, we define what it means for a replica to be a straggler, as well as how replicas

first learn about commands.

Stragglers. Intuitively, stragglers are replicas that are missing commands from their log.

More specifically, let L be maxp |`(e, p)|. We say that q is a k-straggler if the number of non-ε

elements in `(e, q) is at most L −k. A replica p is a straggler in an execution e if there exists

a k ≥ 1 such that p is a k-straggler. Otherwise, we say that the replica is a non-straggler. A

replica that is suspended for a number of rounds could potentially miss commands and hence

49

Chapter 3. State Machine Replication is More Expensive Than Consensus

become a straggler.

Client. Similar to the consensus client, there is a client process in SMR as well. In SMR,

however, the client proposes commands. The client acts like the (n +1)-th replica in a system

with n replicas and its purpose is to supply one command to the SMR algorithm, wait until

it receives (i.e., delivers) a response for the command it sent, then send another command,

etc. A client, however, is different from the other replicas, since an SMR algorithm has no

control over the state machine operating in the client and the client is never suspended. A

client operates in lock-step4 as follows:

• sends a command c ∈C to all the n replicas in some round r ;

• waits until some replica responds to the client’s command (i.e., the response of applying

the command).5

A replica p can respond to a client command c only if it has all commands preceding c in its

log. This means that ∃i : `(e, p)i = c and ∀ j < i ,`(e, p) j 6= ε. We say that the client is suggesting

a command c at a round r if the client sends a message containing command c to all the

replicas in round r . Similarly, we say that a client gets a response for command c at a round r if

some replica sends a message to the client containing the response of the command in round

r .

State Machine Replication Algorithm

Algorithm 7 shows that consensus is solvable in our model. It seems intuitive that SMR is

solvable in our model as well. To prove that this is the case, we introduce an SMR algorithm

for our model (Section 3.2). Roughly speaking, this algorithm operates as follows. Each replica

contains an ordered log of decided commands. A command is decided for a specific log

position by executing a consensus instance similar to Algorithm 7. The SMR algorithm takes

care of stragglers through the use of helping. Specifically, each replica tries to help stragglers

by sending commands which the straggler might be missing.

In contrast to the consensus Algorithm 7, the presented SMR algorithm is quite more involved.

For clarity, the algorithm is presented in two parts: Algorithm 8 and Algorithm 9. In Algorithm 8,

we present the local variables of each replica and the code each replica executes in every round,

4Clients need not necessarily operate in lock-step, but can employ pipelining, i.e., can have multiple commands
outstanding. Practical systems employ pipelining [2, 3, 100], and we account for this aspect later in our practical
experiments of Section 3.4.

5We consider that a command is applied instantaneously on the state machine (i.e., execution time for any
command is zero).

50

3.2. Model

and in Algorithm 9 we present the two main procedures of the algorithm: prepareMessages
and onReceive.

The high-level overview of the algorithm is that processes decide on a command similar to

Algorithm 7 and can help each other by sending commands to processes that are missing

them. A bit more specific, each process contains an ordered log of decided commands. For a

command to appear in the i -th position of this log, processes need to agree by performing

consensus instance i . Processes propose a command for the next consensus instance they are

missing and if this position is already decided, other processes will try to help them by sending

them their missing commands. In order to be able to help, each process has information6 on

the next consensus instance each other process tries to decide upon.

Algorithm 8 State Machine Replication: Local Variables for Process pi and Flow in Each Round

1: . Local Variables
2: ins ← 1 . next consensus instance number to get a decision for
3: maxIns ← 0 . greatest consensus instance number where a value is decided upon
4: nextMissingIns[p] ← 1(∀p ∈Π\ {pi }) . next instance each process needs
5: cmdsSet ←; . set of commands that are received from the client
6: cmdsDecided[i] ←⊥ (∀i ∈N+) . cmdsDecided[i] is the command decided for consensus instance

i , ⊥ means no decision is known yet
7: messageFor[p] ←⊥ (∀p ∈ (Π\ {pi })∪ {cl i ent }) .messages to be sent in each round
8: SM ← initSM . initialized state machine to be replicated
9: myProposal ← (pi ,⊥,0) . pi ’s last proposal in the format of (pid,value, instance)

10: clientResponses[i] ←⊥ (∀i ∈N+) . stores all the responses destined for the client
11: lastResponse ← 1 . index of clientResponses
12:

13: while new round do
14: send(messageFor)
15: responses ← receive()
16: onReceive(responses,myProposal)
17: (messageFor,myProposal) ← prepareMessages()

We continue by describing the local variables (Algorithm 8). Variable cmdsDecided corre-

sponds to a log of commands7 and contains the commands (in order) the process knows

have been decided. Note that cmdsDecided allows gaps, for example, a process might have

cmdsDecided[1] 6=⊥ and cmdsDecided[3] 6=⊥ but cmdsDecided[2] =⊥. It is guaranteed how-

ever that ∀i ∈N+ < ins,cmdsDecided[i] 6=⊥, where ins corresponds to the smallest position

in the log the process does not have a command. Similar to ins, maxIns corresponds to the

maximum decided instance number of all the other processes. Specifically, maxIns contains

the maximum number j such that a process has decided on a command for the j -th position

in its log (i.e,. there is some process that has cmdsDecided[j] 6=⊥). Initially maxIns is zero,

6Note that since this information is local, it might become stale and not accurately describe the system.
7You can think of the log as the `(e, p) construct presented in Section 3.2.

51

Chapter 3. State Machine Replication is More Expensive Than Consensus

since no process has decided on a command. Each time a process sends a message, it attaches

maxIns in it, so processes can get informed on the greatest consensus instance number for

the whole system where a value has been decided upon. Additionally, each process attaches

ins to each message it sends so that it can potentially get help from other processes. Helping

takes place when a process informs other processes about decided commands they may need.

For this, each process has an array (nextMissing) of the next instance each process needs.

A process looks at this array and sees if it can help another process, and if so it sends the

decided command to the other process. Variable cmdsSet corresponds to a set of commands

that are received from the client and are to be proposed by the process. messageFor is set

in prepareMessages as we will see later on, and it simply contains the message to be sent in

every round to the other processes or the client. Additionally, each replica has a state machine

SM that is initialized to initSM and it provides an apply operation that takes as a parameter

a command and returns the response of applying this command to the state machine. Vari-

able myProposal corresponds to a potential command proposed by the process. Finally, the

array clientResponses is used to store computed responses that are to be sent to the client and

lastResponse is used to index this array. This array is convenient in case a process is suspended

in a round. If this is the case, a process cannot send the response to the client in this round, so

the process keeps responses in the clientResponses array in order to be able to send a response

when it is not suspended.

The exact steps an algorithm executes in a round are presented in lines 13-17: initially the

process sends messages, then waits to receive back responses that are used together with

myProposal to change the state of the process and compute the next round’s messages

(messageFor).

We continue by describing how prepareMessages and onReceive operate. prepareMessages
operates as follows (Algorithm 9). First, it checks (Line 19) whether it has already decided

for instance ins. This could happen, if the processes retrieved a decision in Line 60 or in

Line 63 of onReceive. If the command exists in the set, the command is removed from it

(lines 20-21). Afterwards, the command is applied to the state machine (Line 22), the response

is stored in clientResponses (Line 23) and the latest response that has not yet been transmitted

to the client is stored in messageFor (Line 24) so it can be sent in the next round to the client.

Additionally, ins is incremented by one (Line 25). The algorithm then initializes messageFor

to contain the pair (ins,maxIns) (Line 26) for every message to be sent to each other process.

Including this pair in each message is helpful, since ins allows other processes to know the

consensus instance the process needs a command for, and maxIns ensures that processes only

accept proposals for positions that have not yet been decided. Then, myProposal (Line 27) is

cleared, since otherwise the algorithm might use a previous proposal message. Afterwards, if

there exists a command (Line 28) to be proposed and that is not decided yet by the process

(Line 30), the process concatenates the proposal to each message (the construct ‖ corresponds

52

3.2. Model

Algorithm 9 State Machine Replication (for process pi)

18: procedure prepareMessages()
19: if cmdsDecided[ins] 6=⊥ then
20: if cmdsDecided[ins] ∈ cmdsSet then
21: cmdsSet.remove(cmdsDecided[ins])

22: response ← SM .apply(cmdsDecided[ins])
23: clientResponses[ins] ← response
24: messageFor[client] ← clientResponses[lastResponse]
25: ins ← ins+1
26: messageFor[p] ← (ins,maxIns),∀p ∈Π\ {pi }
27: myProposal ← (pi ,⊥,0) . clear last proposal
28: if cmdsSet 6= ; then
29: cmd ← cmdsSet.get() . returns but does not remove an element from the set
30: if ∀ j : cmdsDecided[j] 6= cmd then . not decided yet in which order to execute cmd
31: ∀p ∈Π\ {pi }, messageFor[p] ← messageFor[p] ‖ pro(cmd, ins)
32: myProposal ← (pi ,cmd, ins)
33: else
34: cmdsSet.remove(cmd) . already have decided on cmd, so no need to propose it

35: for p ∈Π\ {pi } do
36: if ∃ j : nextMissingIns[p] = j ∧ cmdsDecided[j] = cmd 6=⊥ then
37: messageFor[p] ← messageFor[p] ‖ dec(cmd, nextMissingIns[p])

38: return (messageFor,myProposal)

39:

40: procedure onReceive(responses,myProposal)
41: if (client,cmd) ∈ responses then
42: cmdsSet.put(cmd)
43: responses ← responses \ {(client,cmd)}

44: . a received message sent by process p j is of the format p j , A‖B‖C , where
45: . A = (insj,maxInsj), B = pro(cmdj, insj) and C = dec(cmdj,nextMissingj)
46: if responses 6= ; then . else, pi is suspended in this round
47: if messageFor[client] 6=⊥ then
48: lastResponse ← lastResponse+1
49: messageFor[client] ←⊥
50: proposals ← decisions ←;
51: for p j , (insj,maxInsj)‖pro(pcmdj,pinsj)‖dec(dcmdj,nextMissj) in responses do
52: maxIns ←max(maxIns,maxInsj)
53: nextMissing[p j] ← insj +1
54: proposals ← proposals∪ {(p j ,pcmdj,pinsj)}
55: decisions ← decisions∪ {(dcmdj,nextMissj)}

56: proposals ← proposals∪ {myProposal}
57: if ∃(_,_,pins) ∈ proposals : pins = maxIns+1 then
58: commands ← {pcmd : ∃(_,pcmd,pins) ∈ proposals : pins = maxIns+1}
59: decision ← deterministicFunction(commands)
60: cmdsDecided[maxIns+1] ← decision
61: maxIns ← maxIns+1
62: for ∀(dmcd,nextMissing) ∈ decisions : cmdsDecided[nextMissing] =⊥ do
63: cmdsDecided[nextMissing] ← dmcd

53

Chapter 3. State Machine Replication is More Expensive Than Consensus

to concatenation of messages) (Line 31), and sets myProposal (Line 32). Then, in lines 35

to 37, the process checks if it can help other processes by sending it decided commands it

knows that other processes are missing. At the end it returns messageFor together with the

proposal (Line 38). Finally, note that each message sent to another processes consists of at

most three parts, a pair of instance numbers (ins,maxIns), a propose, and a decided message.

The careful reader might notice that consensus instance numbers can grow infinitely large.

Hence, messages can potentially have unbounded size. One option to avoid this, is to split a

large message into multiple smaller ones and keep the exact same algorithm, with the slight

change that it only considers a message when it has accepted all of its smaller messages.

Another option is to explicitly state that messages consist of two parts, a header part that

contains information such as instance numbers, signatures, etc., and an application part.

Then, we can just ask to bound the application part of the messages, but not the header

part [39]. We are not concerned with the header, which can grow so as to permit increasingly

larger consensus instance numbers. On the other hand, this bound on the application part of

a message is important to prevent “cheating” in the sense of batching all the commands from

multiple consensus instances in a single message.

onReceive operates as follows. First, it checks whether the client sent a message (Line 41), and

if so adds the sent command to cmdsSet (Line 42) and removes it from responses (Line 43).

Then, the process checks if it is suspended in this round (Line 46), and if this is the case it

does not perform any other operation. If the process is correct and messageFor[client] 6=⊥
(Line 47) it means that it successfully sent the previous response to the client, so it increases

lastResponse (Line 48) and clears messageFor[client] (Line 49). Then, it initializes proposals

and decisions to be empty sets (Line 50). Then, it goes through the responses (Line 51) to

update maxIns (Line 52), update nextMissing for each process (Line 53) and gather proposals

and decisions from the responses (lines 54-55)8. Afterwards, the process adds its own proposal

to the set of proposals (Line 56). Then, if there are proposals (Line 57) for instance number

equal to maxIns+1, all the commands are extracted from such proposals (Line 58) (note that

we employ pattern matching by using the symbol _). The extracted commands are passed

through some deterministic function (similar to Algorithm 7) and a value is decided upon

(Line 60). Subsequently, maxIns is incremented appropriately (Line 61). At the end, the process

goes through the decided messages (Line 62) and utilizes delivered commands that it needs.

Finally, note that the algorithm accepts optimizations (e.g., updating the nextMissing array

after deciding on a command in Line 60), but we omitted them for clarity.

Proof. In what follows we prove that the algorithm satisfies safety (i.e., it is a valid SMR

algorithm) and liveness (i.e., a clients eventually gets a response for any command it proposes)

in theorems 2 and 3 respectively. We start by proving some useful lemmas. Note that in what

8Note that a response might not contain a proposal or a decision.

54

3.2. Model

follows we consider that the commands proposed by the client are always distinguishable.

Furthermore, we denote with variablep [i] the value of variable[i] of process p. Finally, when

we state that a variable has a specific value in some round r , we refer to the beginning of round

r (exactly before Line 14).

Lemma 12. For any p ∈Π, maxInsp never decreases.

Proof. Note that maxInsp is only modified in lines 52 and 61. In Line 52, maxInsp cannot

decrease since it is updated to be the maximum of its own value and the maxIns received by

some other process, so it will be greater or equal to what it was before. In Line 61, maxInsp is

incremented by one, so again it does not decrease.

Lemma 13. For any p ∈Π and i ∈N+, if i ≥ maxInsp +1, then cmdsDecidedp [i] =⊥.

Proof. We use induction to prove this lemma. At the beginning of the first round, the property

trivially holds. Assume it holds at the beginning of round r . We will show it holds at the

beginning of round r + 1. During the execution of round r there are two possibilities for

cmdsDecidedp to be modified so that the property will not hold. One is for cmdsDecidedp to

be written in Line 60 and another to be written in Line 63. If a write occurs in Line 60 the

property does not hold but maxInsp is incremented immediately afterwards in Line 61, so

the property holds back up again. The other case is that cmdsDecidedp is written in Line 63.

If nextMissing = maxInsp +1, then the property will not hold in round r +1. However, this

would imply that some other replica sent a decided message with maxInsp +1 in the previous

round. But then maxInsp in Line 52 would have been updated to correspond to this fact, a

contradiction. Finally, note that due to Lemma 12 maxInsp never decreases, so the property

cannot be circumvented by a reduction in maxInsp . Therefore, the property holds at the

beginning round r +1 and hence of every round.

Lemma 14. For any p ∈Π and i ∈N+, cmdsDecidedp [i] is written at most once.

Proof. We note that cmdsDecidedp [i] for a specific i ∈N+ is only updated in Algorithm 9 and

in two places: Line 60 and Line 63. Furthermore, updates to cmdsDecidedp take only place

by processes that were not suspended in this round (Line 46). An update of cmdsDecidedp in

Line 60 occurs for the index maxInsp +1. Note that maxInsp since the start of the round might

have only increased in Line 52, so the result of Lemma 13 is still satisfied. Due to Lemma 13,

cmdsDecidedp [maxInsp +1] will be ⊥. Hence updates in Line 60 can only occur in slots of

cmdsDecidedp that do not contain a command (i.e., a slot i such that cmdsDecidedp [i] =⊥).

Therefore, slots that contain commands will not get overwritten in Line 60. Similarly, the up-

date in Line 63 only occurs if cmdsDecidedp [i] =⊥ (where i = nextMissing) and not otherwise,

55

Chapter 3. State Machine Replication is More Expensive Than Consensus

so a cmdsDecidedp [i] that already contains a command (6=⊥) will not get updated in Line 63.

Therefore, a specific position in cmdsDecidedp gets updated at most once.

Lemma 15. For any two processes p, p ′ ∈ Π that are correct in a round r , then maxInsp =
maxInsp ′ immediately after Line 52 in round r .

Proof. For this lemma, we use a similar argument to the one used to prove that the consensus

Algorithm 7 satisfies agreement. All the correct processes would be able to deliver their local

maxIns. Then each correct process will apply get the maximum for all the maxIns values it

delivered (Line 52), as well as its own. Hence, they will have the exact same value.

Theorem 2. Algorithm 9 is a valid SMR algorithm.

Proof. To show that the algorithm is valid, we have to show that the logs (cmdsDecided) are

always consistent with each other.

We prove by induction that Algorithm 9 has the following property: for any two processes

p, p ′ ∈Π, if cmdsDecidedp [i] 6= cmdsDecidesp ′ [i] for some i ∈N+, then cmdsDecidedp [i] =⊥ or

cmdsDecidedp ′ [i] =⊥. In the first round, the property trivially holds since cmdsDecidedp [i] =⊥
∀i ∈ N+ and ∀p ∈ Π. Assume the property holds for all the rounds up to the r -th one. We

will prove that it holds for round r +1. For this, we note that cmdsDecided is updated in two

different places, so we consider two cases:

• If a proposal takes place in Line 60. Due to Lemma 15, all correct processes will have the

exact same maxIns values, so they would all consider the exact same set of proposals

(Line 58). Similar to the consensus Algorithm 7, correct processes will choose the exact

same set of commands as well and pass them through the deterministicFunction to make

a decision. Therefore, all replicas will store the exact same decision in their cmdsDecided

log and hence the property still holds.

• If cmdsDecided is updated in Line 63, this means that the process received a decided

message. This decided message was computed in a previous round (Line 37), but in the

previous round the property holds (by induction). Therefore, if more than one process

updates the nextMissing array, they will update it with the exact same command.

Finally, since the same log position is never updated more than once due to Lemma 14, the

property will always be satisfied. Therefore, based on the definition of a valid SMR Algorithm

(Section 3.2), Algorithm 3 is valid.

Lemma 16. If cmdsDecidedp [i] = cmd 6=⊥ for some process p ∈Π, then there are at least n −1

processes with cmdsDecided[i] = cmd.

56

3.2. Model

Proof. In other words, this lemma states that each decided command exists in the log of n −1

replicas. When a command is first decided upon in Line 60, every correct process at that round

(and there are at least n −1 correct processes in each round) decides on the exactly same

command, since all correct processes see the exact same maxIns value (Lemma 15). Hence, at

least n −1 processes will store this command in cmdsDecided.

Lemma 17. If cmdsDecidedp [i] 6=⊥, then eventually at least n −1 processes, for all j : 1 ≤ j ≤ i

will have cmdsDecided[j] 6=⊥.

Proof. Recall, that in every round, every process sends ins (Line 26) to the other processes

informing them on the instance it is currently trying to get a command for. If the process is

correct in the round, at least n −1 of the other correct processes in this round will deliver the

message and update their local nextMissing array (Line 53). From Lemma 16 we know that

each decided command exists in the log of at least n−1 processes. Since n ≥ 3 and at most one

process can be suspended in a round, we know that there will always be one correct process

that contains a command that we are missing and that can help (Line 37). Therefore, in the

next round if this process is correct it will receive a decision. Hence, eventually at least n −1

processes will eventually fill up their log up to position i .

Lemma 18. If a command c is decided (∃p ∈Π and ∃ j ∈N+ such that cmdsDecidedp [j] = c),

then the client eventually gets a response for command c.

Proof. Due to Lemma 17, we know that if a command c appears in the log of some process,

eventually c will appear in the logs of at least n − 1 processes, as well as all the previous

commands in the log. Each process would have applied the command to the local state

machine and stored the response in clientResponses (Line 23). Note however, that a process

sends a response of a command to the client only if it is certain that the response to the

previous command has been successfully delivered by the client. So only if the process is

correct in a round and it can be assured that the previous response message was sent to the

client (see lines 48 and 49), only then, the process sends the response to the next command to

the client. Therefore, the client will eventually get a response for command c.

Theorem 3. If a client suggests a command, then the client eventually gets a response.

Proof. Assume by contradiction that the k-th command ck is the first command that is sug-

gested by the client in which the client never gets a response for. We will prove that the

client will eventually get a response for ck and hence a contradiction. First, note that since

at least n −1 processes are correct in each round, at least n −1 processes will add ck to their

log (Line 42). The client only suggests a command if it received a response for the previous

command (see Section 3.2). Hence, processes have already decided on the ck−1 command.

57

Chapter 3. State Machine Replication is More Expensive Than Consensus

From Lemma 16, we know that ck−1 exists in the log of at least n −1 processes. Furthermore,

due to Lemma 17, eventually all processes will fill their logs up to command ck−1. This means

that eventually cmdsSet will contain ck as a the first command for at least n −1 processes,

since all the other commands will be decided and removed from the set (Line 21 and 34).

Therefore, ck will be eventually proposed with instance number k, where k = maxInsp +1 for

some process p, and hence it will be decided. Finally, from Lemma 18, since command ck is

decided, the client will eventually get a response for this command.

As we show next (Section 3.3), no SMR algorithm can respond to a client in a finite number of

rounds. Hence, even with helping, our SMR algorithm cannot guarantee a constant response

either.

3.3 Complexity Lower Bound on State Machine Replication

We now present the main result of this chapter, namely we show that there is no State Machine

Replication (SMR) algorithm that can always respond to a client in a constant number of

rounds. We also discuss how this result extends beyond the model of Section 3.2.

3.3.1 Complexity Lower Bound

We briefly describe the idea behind our result. We observe that there is a bounded number

of commands that can be delivered by a replica in a single round, since messages are of

bounded size, a practical assumption (Lemma 19). Using this observation, we show that

in a finite execution e, if each replica pi is missing βi commands, then an SMR algorithm

needs Ω(mini βi) rounds to respond to at least one client command suggested in e+ ∈ E(e)

(Lemma 20). Finally, for any r ∈ N+, we show how to construct an execution e where each

replica misses enough commands in e, so that a command suggested by a client in e+ ∈ E(e)

cannot get a response in less than r rounds (Theorem 4). Hence, no SMR algorithm in our

model can respond to every client command in a constant number of rounds.

Lemma 19. A single replica can deliver up to a bounded number (that we denote by Ψ) of

commands in a round.

Proof. Since any message m is of bounded size B (∀m ∈ M , |m| ≤ B), the number of commands

message m can contain is bounded. Let us denote withψ the maximum number of commands

any message can contain. Since the number of commands that can be contained in one

message is at most ψ, a replica can transmit at most ψ commands to another replica in one

round. Therefore, in a given round a replica can deliver from other replicas up to Ψ= (n −1)ψ

commands. In other words, a replica cannot recover faster thanΨ commands per round.

58

3.3. Complexity Lower Bound on State Machine Replication

Lemma 20. For any finite execution e, if each replica pi misses βi commands (i.e., pi is a

βi -straggler), then there is a command suggested by the client in some execution e+ ∈ E(e) such

that we need at least dmini (βi /Ψ)e rounds to respond to it.

Proof. Consider an execution e+ ∈ E(e) such that in a given round r , a client suggests to all

replicas a command c, where round r exists in e+ but does not exist in e. This implies that

replicas are not yet aware of command c in e, so command c should appear in a log position i

where i is greater than maxp |`(e, p)|. In order for a replica to respond to the client’s command

c, the replica first needs to have all the commands preceding c in its log. For this to happen,

some replica needs to get informed about βi commands. Note that from Lemma 19, a replica

can only deliverΨ commands in a round. Therefore, a replica needs at least dβi /Ψe rounds

to get informed about the commands it is missing (i.e., recover), and hence we need at least

dmini (βi /Ψ)e rounds for the client to get a response for c.

p1

p2
. . .
pn

a1 a2 . . . an

Figure 3.1 – Constructed execution of Theorem 4. Red dashed lines correspond to rounds
where a replica is suspended. Replica p1 is suspended for a1 rounds, replica p2 for a2 rounds,
etc.

Theorem 4. For any r ∈ N+ and any SMR algorithm with n replicas (n ≥ 3), there exists an

execution e, such that a command c which the client suggests in some execution e+ ∈ E(e)

cannot get a response in less than r rounds.

Proof. Assume by contradiction that, given an SMR algorithm, each command suggested by

a client needs at most a constant number of rounds k to get a response. Since we can get a

response to a command in at most k rounds, we can make a replica “miss” any number of

commands by simply suspending it for an adequate amount of rounds.

To better convey the proof we introduce the notion of a phase. A phase is a conceptual

construct that corresponds to a number of contiguous rounds in which a specific replica is

suspended. Specifically, we construct an execution e consisting of n phases. Figure 3.1 conveys

the intuition behind this execution. In the i -th phase, replica pi is suspended for αi rounds,

and αi 6=α j for i 6= j . The idea is that after the n-th phase, each replica is a straggler and needs

more than k rounds to become a non-straggler and be able to respond to a client command

59

Chapter 3. State Machine Replication is More Expensive Than Consensus

suggested in a round o, where o exists in e+ but not in e. We start from the n-th phase, going

backwards. In the n-th phase, we make replica pn miss enough commands, say βn . In general,

the number βn of commands is such, that if a client suggests a command at the end of the

n-th phase, the client cannot get a response from within k rounds of the command being

suggested. For this to hold, it suffices to miss βn = kΨ+1 commands. In order to miss βn

commands, we have to suspend pn for at least βnk rounds, since a client may submit a new

command every (at most) k rounds. Thus, we set αn =βnk. Similarly, replica pn−1 has to miss

enough commands (βn−1) such that it cannot get all the commands in less than k rounds.

Note that after pn−1 was suspended forαn−1 rounds, replica pn took part inαn rounds. During

these αn rounds, replica pn−1 could have recovered commands it was missing. Therefore,

pn−1 must miss at least βn−1 = (αn +k)Ψ+1 commands and αn−1 =βn−1k. In the same vein,

∀i ∈ {1, . . . ,n} βi = ((
n∑

j=i+1
α j)+k)Ψ+1.

With our construction we succeed in having βi /Ψ = (
n∑

j=i+1
α j)+ k + 1/Ψ > k for every i ∈

{1, . . . ,n}. Therefore, using Lemma 20, after the n phases, each replica needs more than k

rounds to get informed about commands it is missing from its log, a contradiction.

Theorem 4 states that there exists no SMR algorithm in our model that can respond to every

client command in a constant number of rounds.

3.3.2 Extension to other Models

The system model we use (Section 3.2) lends itself to capture naturally the difference in

complexity (i.e., number of rounds) between consensus and SMR. It is natural to ask whether

this difference extends to other system models—and which are those models. Identifying all

the models where our result applies, or does not apply, is a very interesting topic which is

beyond the scope of this work, but we briefly discuss it here.

Consider models which are stronger than ours. An example of a stronger model is one that

is synchronous with no failures; such a model would disallow stragglers and hence both

consensus and SMR can be solved in constant time. Similarly, if the model does not restrict

the size of messages (see Lemma 19), then an SMR command can complete in constant

time, circumventing our result. We further discuss how our result can be circumvented in

Section 3.5.

A more important case is that of weaker, perhaps more realistic models. If the system model is

too weak—if consensus is not solvable [51]—then it is not obvious how consensus relates to

SMR in terms of complexity. Such a weak model, however, can be augmented, for instance

with unreliable failure detectors [37], allowing consensus to be solved. Informally, during well-

60

3.4. The Empirical Perspective

behaved executions of such models, i.e., executions when the system behaves synchronously

and no failures occur [68], SMR commands can complete in constant time.

Most practical SMR systems [36, 40, 96, 100] typically assume a partially synchronous or an

asynchronous model with failure detectors [37], and executions are not well-behaved, because

failures are prone to occur [19]. We believe our result applies in these practical settings,

concretely within synchronous periods (or when the failure detector is accurate, respectively)

of these models. During such periods, if at least one replica can suffer message omissions,

completing an SMR command can take a non-constant amount of time. Indeed, in the next

section, we present an experimental evaluation showing that our result holds in a partially

synchronous system.

3.4 The Empirical Perspective

Our goal in this section is to substantiate empirically the theoretical result of Section 3.3. We

first cover details of the experimental methodology. Then we discuss the evaluation results

both in a single-machine environment, as well as on a practical wide-area network (WAN).

3.4.1 Experimental Methodology

We use two well-known State Machine Replication (SMR) systems: (1) LibPaxos, a Multi-Paxos

implementation [3], and (2) etcd [2], a mature implementation of the Raft protocol [100].

We note that LibPaxos distinguishes between three roles of a process: proposer, acceptor,

and learner [78]. To simplify our presentation, we unify the terminology so that we use the

term replica instead of acceptor, the term client replaces learner, and the term leader replaces

proposer. Each system we deploy consists of three replicas, since this is sufficient to validate

our result and moreover it is a common deployment practice [40, 55]. We employ one client.

In LibPaxos, we use a single leader, which corresponds to a separate role from replicas. In Raft,

one of the three replicas acts as the leader.

Using these two systems, we measure how consensus relates to SMR in terms of cost in the

following three scenarios:

1. Graceful: when network conditions are uniform and no failures occur; this scenario

only applies to the single-machine experiments of Section 3.4.2;

2. Straggler: a single replica is slower than the others (i.e., this is a straggler) but no failures

occur, so the SMR algorithm needs not rely on the straggler;

3. Switch: a single replica is a straggler and a failure occurs, so the SMR algorithm has to

61

Chapter 3. State Machine Replication is More Expensive Than Consensus

include the straggler on the critical path of agreement on commands.

Due to the difficulty of running synchronous rounds in a practical system, our measurements

are not in terms of rounds (as in the model of Section 3.2). Instead, we take a lower-level

perspective. We report on the cost, i.e., number of messages, and the latency measured at the

client.9 Specifically, in each experiment, we report on the following three measurements.

First, we present the cost of each consensus instance i in terms of number of messages which

belong to instance i , and which were exchanged between replicas, as well as the client. Each

consensus instance has an identifier (called iid in LibPaxos and index in Raft), and we count

these messages up to the point where the instance completes at the client. Recall that in our

model (Section 3.2.1) we similarly consider consensus to complete when the client learns the

decided value. This helps us provide an “apples to apples” comparison between the cost of

consensus instances and SMR commands (which we describe next).

Second, we measure the cost of each SMR command c. Each command c is associated with a

consensus instance i . The cost of c is similar to the cost of i : we count messages exchanged

between replicas and the client for instance i .10 The cost of a command c, however, is a

more nuanced measurement. As we discussed already, a consensus instance typically leaks

messages, which can be processed later. Also, both systems we consider use pipelining, so

that a consensus instance i may overlap with other instances while a replica is working on

command c. Specifically, the cost of c can include messages leaked from some instance

j , where j < i (because a replica cannot complete command c without having finished all

previous instances) but also from some instance k, with k > i (these future instances are being

prepared in advance in a pipeline, and are not necessary for completing command c).

Third, we measure the latency for completing each SMR command. An SMR command starts

when the client submits this command to the leader, and ends when the client learns the

command. In LibPaxos, this happens when the client gathers replies for that command from

two out of three replicas; in Raft, the leader notifies the client with a response.

We consider both a single-machine setup and a WAN. The former setup serves as a controlled

environment where we can vary specifically the variable we seek to study, namely the impact

of a straggler when quorums switch. For this experiment, we use LibPaxos and we discuss the

results thoroughly. The latter setup reflects real-world conditions which we use to validate

against our findings in the single-machine setup, and we experiment with both systems. In all

executions the client submits 1000 SMR commands; we ignore the first 100 (warm-up) and the

last 50 commands (cool-down) from the results. We run the same experiment three times to

confirm that we are not presenting outlying results.

9Note that it is simple to convert rounds to messages, considering our description of rounds in Section 3.2.
10For LibPaxos, the cost of consensus and SMR includes additionally messages involving the leader.

62

3.4. The Empirical Perspective

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 200 300 400 500 600 700 800 900
 0

 2

 4

 6

 8

 10

 12

 14

 16

C
o

s
t

(#
 o

f
m

e
s
s
a

g
e

s
)

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

SMR command number

SMR cost
Consensus cost

Latency

(a) Graceful scenario: all replicas experience uniform conditions and no failures occur.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 200 300 400 500 600 700 800 900
 0

 2

 4

 6

 8

 10

 12

 14

 16

C
o

s
t

(#
 o

f
m

e
s
s
a

g
e

s
)

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

SMR command number

SMR cost
Consensus cost

Latency

(b) Straggler scenario: one of the three replicas is a straggler.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 100 200 300 400 500 600 700 800 900
 0

 2

 4

 6

 8

 10

 12

 14

 16

C
o

s
t

(#
 o

f
m

e
s
s
a

g
e

s
)

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

SMR command number

SMR cost
Consensus cost

Latency

Quorum switches
 to include the straggler

(c) Switch scenario: one of the three replicas is a straggler and the active quorum switches to
include this straggler.

Figure 3.2 – Experimental results with LibPaxos on a single-machine setup. We compare the
cost of SMR commands with the cost of consensus instances in three scenarios.

3.4.2 Experimental Results on a Single Machine

We experiment on an Intel Core i7-3770K (3.50GHz) equipped with 16GB of RAM. Since there

is no network in these experiments, spurious network conditions—which can arise in practice,

as we shall see next in Section 3.4.3—do not create noise in our results. To make one of the

replicas a straggler, we make this replica relatively slower through a random delay (via the

select system call) of up to 500 us when this replica processes a protocol message.

63

Chapter 3. State Machine Replication is More Expensive Than Consensus

In Figure 3.2a we show the evolution of the three measurements we study for the graceful exe-

cution. The mean latency is 5590 us with a standard deviation of 730 us, i.e., the performance

is very stable. This execution serves as a baseline.

In Figure 3.2b we present the result for the straggler scenario. The average latency, compared

with Figure 3.2a, is slightly smaller, at 5005 us; the standard deviation is 403 us. The explanation

for this decrease is that there is less contention (because the straggler backs-off periodically),

so the performance increases. In this scenario, additionally, there is more variability in the

cost of SMR commands, which is a result of the straggler replica being less predictable in how

many protocol messages it handles per unit of time.

For both Figures 3.2a and 3.2b, the average cost of an SMR command is the same as the average

cost of a consensus instance, specifically around 12 messages. There is, however, a greater

variability in the cost of SMR commands—ranging from 5 to 30 messages—while consensus

instances are more regular—between 11 and 13 messages. As we mentioned already, the

variability in the cost of SMR springs from two sources: (1) consensus instances leak into each

other, and (2) the use of pipelining, a crucial part in any practical SMR algorithm, which allows

consensus instances to overlap in time [64, 107].

Pipelining allows the leader to have multiple outstanding proposals, and these are typically

sent and delivered in a burst, in a single network-level packet. This means that some com-

mands can comprise just a few messages (all the other messages for such a command have

been processed earlier with previous commands, or have been deferred), whereas some com-

mands comprise many more messages (e.g., messages leaked from previous commands, or

processed in advance from upcoming commands). In our case, the pipeline has size 10, and

we can distinguish in the plots that the bumps in the SMR cost have this frequency. Larger

pipelines allow higher variability in the cost of SMR. Importantly, to reduce the effect of pipelin-

ing on the cost of SMR commands, this pipeline size of 10 is much smaller than it is used in

practice, which can be 64, 128, or larger [2, 3].

Figure 3.2c shows the execution where we stop one replica, so the straggler has to take part in

the active quorum. The moment when the straggler has to recover all the missing state and start

participating is evident in the plot. This happens at SMR command 450. We observe that SMR

command 451 has considerably higher cost. This cost comprises all the messages which the

straggler requires to catch-up, before being able to participate in the next consensus instance.

The cost of consensus instance 451 itself is no different than other consensus instances. Since

the straggler becomes the bottleneck, the latency increases and remains elevated for the rest

of the execution. The average latency in this case is noticeably higher than in the two previous

executions, at 10730 us (standard deviation of 4726 us). For this execution, we observe the

same periodical bumps in the cost of SMR commands. Because the straggler replica is on the

critical path of agreement, these bumps are more pronounced and less frequent: the messages

64

3.4. The Empirical Perspective

concerning the straggler (including to and from other replicas or the client) accumulate in the

incoming and outgoing queues and are processed in bursts.

3.4.3 Wide-area Experiments

We deploy both LibPaxos and Raft on Amazon EC2 using t2.micro virtual machines [1]. For

LibPaxos, we colocate the leader with the client in Ireland, and we place the three replicas in

London, Paris, and Frankfurt, respectively. Similarly, for Raft we colocate the leader replica

along with the client in Ireland, and we place the other two replicas in London and Frankfurt.

Under these deployment conditions, the replica in Frankfurt is naturally the straggler, since

this is the farthest node from Ireland (where the leader is in both systems). Therefore, we do

not impose any delays, as we did in the earlier single-machine experiments. Furthermore,

colocating the client with the leader minimizes the latency between these two, so the latency

measurements we report indicate the actual latency of SMR.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100 200 300 400 500 600 700 800 900
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

C
o

s
t

(#
 o

f
m

e
s
s
a

g
e

s
)

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

SMR command number

SMR cost
Consensus cost

Latency

(a) Straggler scenario: the replica in Frankfurt is a straggler, since this is the farthest from the leader
in Ireland. The system forms a quorum using the replicas in London and Paris.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100 200 300 400 500 600 700 800 900
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

C
o

s
t

(#
 o

f
m

e
s
s
a

g
e

s
)

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

SMR command number

SMR cost
Consensus cost

Latency

Quorum switches
 to include the straggler

(b) Switch scenario: at SMR command 450 we switch out the replica in London. The straggler in
Frankfurt then becomes part of the active quorum.

Figure 3.3 – Experimental results with LibPaxos on the WAN. Similar to Figure 3.2, we compare
the cost of SMR commands with the cost of consensus instances.

Figures 3.3 and 3.4 present our results for LibPaxos and Raft, respectively. To enhance visibility,

65

Chapter 3. State Machine Replication is More Expensive Than Consensus

please note that we use different scales for the y and y2 axes. These experiments do not include

the graceful scenario, because the WAN is inherently heterogeneous.

 0

 20

 40

 60

 80

 100

 120

 140

 100 200 300 400 500 600 700 800 900
 0

 20

 40

 60

 80

 100

C
o

s
t

(#
 o

f
m

e
s
s
a

g
e

s
)

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

SMR command number

SMR cost
Consensus cost

Latency

(a) Straggler scenario: the replica in Frankfurt is a straggler. The active quorum consists of the
leader in Ireland and the replica in London.

 0

 20

 40

 60

 80

 100

 120

 140

 100 200 300 400 500 600 700 800 900
 0

 20

 40

 60

 80

 100

C
o

s
t

(#
 o

f
m

e
s
s
a

g
e

s
)

L
a

te
n

c
y
 (

m
ill

is
e

c
o

n
d

s
)

SMR command number

SMR cost
Consensus cost

Latency

Quorum switches
 to include the straggler

(b) Switch scenario: we stop the replica in London at SMR command 450. Thereafter, the active
quorum must switch to include the straggler in Frankfurt.

Figure 3.4 – Experimental results with Raft on the WAN. Similar to Figures 3.2 and 3.3, we
compare the cost of SMR commands with the cost of consensus instances.

The most interesting observation is for the switch scenarios, i.e., Figures 3.3b and 3.4b. In

these experiments, when we stop one of the replicas at command 450, there is a clear spike

in the cost of SMR, which is similar to the spike in Figure 3.2c. Additionally, however, there is

also a spike in latency. This latency spike does not manifest in single-machine experiments,

where communication delays are negligible. Moreover, on the WAN the latency spike extends

over multiple commands, because the system has a pipeline so the latency of each command

being processed in the pipeline is affected while the straggler is catching up. After this spike,

the latency decreases but remains slightly more elevated than prior to the switch, because

the active quorum now includes the replica from Frankfurt, which is slightly farther away; the

difference in latency is roughly 5 ms.

Beside the latency spike at SMR command 450, these experiments reveal a few other glitches,

for instance around command 830 in Figure 3.3a, or command 900 in Figure 3.4b. In fact, we

observe that unlike our single-machine experiments, the latency exhibits a greater variability.

66

3.5. Discussion

As we mentioned already, this has been observed before [34, 96, 123] and is largely due to the

heterogeneity in the network and the spurious behavior this incurs. This effect is more notable

in LibPaxos, but Raft also shows some variability. The latter system reports consistently lower

latencies because an SMR command completes after a single round-trip between the leader

and replicas [100].

As a final remark, our choice of parameters is conservative, e.g., execution length or pipeline

width. For instance, in executions longer than 1000 commands we can exacerbate the differ-

ence in cost between SMR commands and consensus instances. Longer executions allow a

straggler to miss even more state which it needs to recover when switching.

3.5 Discussion

The main implication of Theorem 4 is that it is impossible to devise a State Machine Replication

(SMR) algorithm that can bound its response times. There are several conditions, however,

which allow to circumvent our lower bound, which we discuss here. Moreover, when our result

does apply, we observe that SMR algorithms can mitigate, to some degree, the performance

degradation in the worst-case, i.e., when quorums switch and stragglers become necessary.

These algorithms experience a trade-off between best-case and worst-case performance. We

also discuss how various SMR algorithms deal with this trade-off.

Circumventing the Lower Bound. Informally, our result applies to SMR systems which fulfill

two basic characteristics: i) messages are bounded in size, and ii) replicas can straggle for

arbitrary lengths of time. Simply put, if one of these conditions does not hold, then we can

circumvent Theorem 4. We discuss several cases when this can happen.11

For instance, if the total size of the state machine is bounded, as well as small in size, then

the whole state machine can potentially fit in a single message, so a straggler can recover in

bounded time. This is applicable in limited practical situations. We are not aware of any SMR

protocol that caps its state. But this state can be very small in some applications, e.g, if SMR is

employed towards replicating only a critical part of the application, such as distributed locks

or coordination kernels [64, 89].

The techniques of load shedding or backpressure [122] can be employed to circumvent our

result. These are application-specific techniques which, concretely, allow a system to simply

drop or deny a client command if the system cannot fulfill that command within bounded time.

Other, more drastic, approaches to enforce strict latencies involve resorting to weak consis-

tency or combining multiple consistency models in the same application [59], or provisioning

11We do not argue that we can guarantee bounded response times in a general setting, only in the model we
consider in Section 3.2.

67

Chapter 3. State Machine Replication is More Expensive Than Consensus

additional replicas proactively when stragglers manifest [42, 111].

Best-case Versus Worst-case Performance Trade-off. When our lower bound holds, an SMR

algorithm can take steps to ameliorate the impact which stragglers have on performance in the

worst-case (i.e., when quorums switch). Coping with stragglers, however, does not come for

free. The best-case performance can suffer if this algorithm expends resources (e.g., additional

messages) to assist stragglers. Concretely, these resources could have been used to sustain

a higher best-case throughput. When a straggler becomes necessary in an active quorum,

however, this algorithm will suffer a smaller penalty for switching quorums and hence the

performance in the worst-case will be more predictable.

This is the trade-off between best- and worst-case performance, which can inform the design

of SMR algorithms. Most of the current well-known SMR protocols aim to achieve superior

best-case throughput by sacrificing worst-case performance. This is done by reducing the

replication factor, also known as a thrifty optimization [96]. In this optimization, the SMR

system uses only F +1 instead of 2F +1 replicas—thereby stragglers are non-existent—so

as to reduce the amount of transmitted messages and hence improve throughput or other

metrics [3, 85, 96]. In the worst-case, however, when a fault occurs, this optimization requires

the SMR system to either reconfigure or provision an additional replica on the spot [84, 85],

impairing performance.

Multi-Paxos proposes a mode of operation that can strike a good balance between best- and

worst-case performance [77]. Namely, replicas in this algorithm can have gaps in their logs.

When gaps are allowed, a replica can participate in the agreement for some command on log

position k even if this replica does not have earlier commands, i.e., commands in log positions

l with l < k. As long as the leader has the full log, the system can progress. Even when quorums

switch, stragglers can participate without recovery. If the leader fails, however, the protocol

halts [92, 120] because no replica has the full log, and execution can only resume after some

replica builds the full log by coordinating with the others. It would be interesting in future

work to experiment with an implementation that allows gaps, but LibPaxos does not follow

this approach [3], and we are not aware of any such implementation.

3.6 Conclusion

We examined the relation between consensus and State Machine Replication (SMR) in terms of

their complexity. We proved the surprising result that SMR is more expensive than a repetition

of consensus instances. Concretely, we showed that in a synchronous system where a single

instance of consensus always terminates in a constant number of rounds, completing one

SMR command can potentially require a non-constant number of rounds. Such a scenario can

68

3.6. Conclusion

occur if some processes are stragglers in the SMR algorithm, but later the stragglers become

active and are necessary to complete a command. We showed that such a scenario can occur

if even one process is a straggler at a time.

Additionally, we supported our formal proof with experimental results using two well-known

SMR implementations (a Multi-Paxos and a Raft implementation). Our experiments high-

lighted the difference in cost between a single consensus instance and an SMR command.

69

Part IITransactions

71

4 The Impossibility of Fast Transactions

In this chapter, we prove that transactions cannot be fast in an asynchronous fault-tolerant

system. Our result holds in any system where we require transactions to ensure monotonic

writes, or any stronger consistency model, such as, causal consistency. Thus, our result unveils

an important, and so far unknown, limitation of fast transactions: they are impossible if we

want to tolerate the failure of even one server.

4.1 Introduction

The surge of cloud computing and big data has led to the design of large-scale and highly avail-

able online services. A fundamental component of large-scale online services is a distributed

data store [4, 43, 74]. Naturally, the demand for highly available online services translates to

the demand for highly available data stores.

The CAP theorem [27, 56] states that a distributed system has to choose between availability

and strong consistency during a network partition. In practice, networks are not reliable [19],

and thus we can never eliminate the possibility of network partitions. For this reason, highly

available data stores choose to sacrifice strong consistency in favor of availability [4, 43, 70,

74]. A number of well-known data stores support eventual consistency [4, 43, 70]. Eventual

consistency [65] simply states that if we reach a quiescent state where no updates are taking

place (i.e., no writes are issued by the clients), eventually all the servers contain non-conflicting

data.1 Recent work has shown that the strongest consistency model that can be achieved in

the presence of network partitions is causal consistency [14,90]. As a result, causal consistency

has recently gained attention in academia [18, 45, 86, 87, 112–114], as well as in industry, where

most notably, the MongoDB [4] data store supports causal consistency.

1In contrast to its name, eventual consistency is a liveness, rather than a safety property.

73

Chapter 4. The Impossibility of Fast Transactions

Typically, the interface of a data store is a read-write interface [74] on a set of objects, where the

objects can be identified by what is called a key. To handle the enormous amount of data, data

stores partition2 the data (e.g., based on a key) across multiple servers. To avoid loss of data,

these systems replicate the data to multiple servers. To remain highly available and reduce the

latency of client operations, data stores are replicated across multiple geographically separated

data centers. At a high-level, the client issues a request on the data store by identifying the

object (e.g., by providing the key) the client wants to access. Subsequently, the server responds

back to the client with the desired data. A number of data stores [4,9,45,47,86,87,94] augment

their interface by providing transactions. Transactions operate on multiple objects at once

and substantially aid the programmer’s job. Data stores being extensively used for read-

heavy workloads, aim to optimize read-only transactions since they are the most frequent in

practice [28]. It is thus natural to seek implementations for read-only transactions that are as

fast as possible.

Lu et al. [87] provide a first informal description of what it means for a read-only transaction

to be fast, or as they call it, latency-optimal. Their definition, captures the fact that a read-only

transaction is one round-trip, non-blocking, and one-version. One round-trip means that

a client does not contact a server more than once during a transaction. Non-blocking [87]

states that servers should not communicate with each other before responding to the client.

Finally, one-version asks that a server only sends one value for each read object. In the

same work, Lu et al. prove that fast read-only transactions are possible by presenting COPS-

SNOW, a causally-consistent data store that provides fast read-only transactions. Because

of the critical importance of fast read-only transactions for industrial data stores, fast read-

only transactions have received much attention of late [44, 45, 71, 87, 118]. However, all this

research [44, 45, 71, 87, 118] targets the ideal case where servers never fail.

In practice, distributed systems are deployed in settings where failures are the norm. Dis-

tributed systems ought to be fault-tolerant. Fault-tolerance is usually achieved by means of

replication or logging. However, replication and logging are synchronous (i.e., blocking) opera-

tions. As expected, achieving fault-tolerance has a cost on the performance of transactions that

write to objects. Write transactions cannot be fast since they are blocking: write transactions

have to replicate data before committing. It is therefore natural that the description of fast

transactions [87] only refers to read-only transactions.

In this chapter we prove that, surprisingly, read-only transactions cannot be fast either. Fast

transactions in general are impossible in a system that aims to be fault-tolerant. To show that

read-only transactions cannot be fast, we examine the concept of the visibility of transactions,

and investigate whether fast read-only transactions can be invisible. Transactions are said

to be invisible if they do not modify the state of the servers with which they communicate.

2In this context, we use the term “partition” in the sense of sharding.

74

4.2. Model

Intuitively, visible read-only transactions modify the state of the server they are operating on.

Thus, visible read-only transactions are blocking, since the modification on the server has to

be performed in a fault-tolerant way (e.g., by replicating the modification to other servers).

This means, that in a fault-tolerant system, read-only transactions can only be fast if they are

invisible.

We prove that in an asynchronous system, if we require transactions to ensure monotonic

writes, a minimal level of consistency that is weaker than causal consistency, then read-only

transactions cannot be both fast and invisible. In fact, our proof holds for a weaker definition

of fast transactions, one where a server can send a bounded number of versions (instead of

just one) back to the client. In this sense, we prove a more general result. Our result sheds

some light on a so far unexplored limitation of fast transactions: they are impossible if we

want to tolerate the failure of even one server. Furthermore, we prove that if a server can send

an unbounded number of versions back to the client, then transactions can be non-blocking

and one round-trip. To prove this, we devise a new data store algorithm that we believe is

interesting in its own right, called ubvStore, that provides non-blocking and one round-trip

transactions.

The practical implications of our theoretical results are threefold. First, similar to the CAP

theorem [27, 56], we demonstrate a new trade-off for data stores: either fast transactions or

fault-tolerance can be achieved, even with the weak consistency model of monotonic writes.

Second, our results allow designers to avoid chasing impossible designs. Third, we show that

fault-tolerance should be a first-class concern when proposing new theoretical properties, in

order for the properties to have practical utility.

To prove our results, we devised a new formal framework that is general enough to capture

any data store, while at the same time the framework is able to precisely capture notions

such as bounded-version, non-blocking, etc., a challenging endeavor. As far as we know, our

formalism is the first that precisely captures the notion of fast read-only transactions. We

consider the framework as a contribution on its own.

Roadmap. The rest of this chapter is organized as follows. We present our framework in

Section 4.2. In Section 4.3, we prove the impossibility of fast transactions and we discuss the

ramifications of our result. Then, in Section 4.4, we describe the ubvStore algorithm. Finally,

in Section 4.5, we discuss related work before concluding.

4.2 Model

We consider an asynchronous model that captures the notion of a data store that supports write

operations on single objects, as well as read-only transactions that operate on groups of objects.

75

Chapter 4. The Impossibility of Fast Transactions

Our model does not support transactions that write to objects, hence our impossibility result

is stronger. Since we only consider read-only transactions, whenever we refer to a transaction,

we refer to a read-only transaction. We distinguish between servers and clients in our system

and clearly define the ways they can communicate and the exact type of messages a client can

send to the server. Nevertheless, the model provides great flexibility on how the processes (i.e.,

clients and servers) can communicate.

We consider a data store as a message-passing system with servers and clients that commu-

nicate. Servers store objects that the clients can read or write. Specifically, a data store is a

tuple (S ,C ,O ,V ,M ,dec) where S ,C ,O ,V , and M are sets and dec is a function, as described

below. We consider that a data store consists of n servers contained in a set S = {s1, . . . , sn}, as

well as a finite set C = {c1,c2, . . . ,cm} of m clients. We consider that both servers and clients are

deterministic. Clients with servers, as well as servers with servers communicate by exchanging

messages, where messages can take arbitrary time to be delivered but eventually are delivered

(i.e., no message is lost). We assume that clients cannot communicate with each other. Addi-

tionally, we consider a set O = {o1, . . . ,ol } of l objects and an infinite set V = {v1, v2, . . .}∪ {⊥} of

finite values that the objects can take. Value ⊥ corresponds to the initial value of each object.

No write operation can write ⊥ value to an object. Note that depending on the context, we

refer interchangeably to a value as a version. We also consider an infinite set of messages M ,

where each message m ∈M is created over some alphabet. All the infinite sets we consider

are countable. Finally, we consider the decoding function dec : M → 2V , that given a message

m returns a set of values that are encoded in m. We use function dec to bound the number of

values a client can utilize from a given message.

We introduce some notation that we use throughout this chapter. For a set S we define

S≤k = S1∪S2∪S3∪·· ·∪Sk , where S1 = S and for i > 1 Si = S×Si−1. For a tuple v = (v1, v2, . . . , vg)

we denote with vi the i -th element of v , e.g., (3,8,1)2 is 8. Finally, given a sequence of elements

α= a1, a2, . . . , we denote with ai ∈α that ai appears in α.

Server. We model a server as a state machine s = (Σ,σ0,E ,∆,obj) where Σ is the set of possible

states, σ0 ∈ Σ is the initial state and E is the set of possible events. ∆ : Σ×E → Σ is a partial

function that captures the possible state transitions a server can take based on a given event.

The set obj ⊆O is the set of objects that the server handles. For a server s, we denote with s.Σ,

s.σ0, s.E , s.∆, and s.obj the set of states Σ of server s, the set of events E of server s, etc. We say

that a server s serves objects s.obj or a server serves an object o where o ∈ s.obj. We consider a

system where all the objects are served by some server, hence
⋃n

i=1 si .obj =O , and additionally

we assume that every object is being served by a single server, hence ∀s, s′ ∈ S with s 6= s′

s.obj∩ s′.obj =;.

In what follows, we refer to either a server or a client as a process. For each server s ∈S , the

76

4.2. Model

set of events is defined as s.E = {send(m, p),receive(m, p) : m ∈ M , p ∈ S ∪C }. Specifically,

a send(m, p) event corresponds to server s transmitting message m to process p. Event

receive(m, p) corresponds to server s receiving message m from process p.

Client. We model a client as a state machine c = (Σ,σ0,E ,∆,ρ) where Σ, σ0, and ∆ are defined

in the same way as of a server. Function ρ captures the notion of the exact values a client

reads for a transaction. We consider an infinite set T = {t1, t2, . . .} of finite transactional

identifiers. Then, function ρ : Σ×T → V ≤l (note that |O | = l) is given a state σ ∈ Σ and a

transactional identifier and returns an arbitrary number of values. Function ρ is used to define

the monotonic writes consistency property (see later on). Additionally, the set of events E for a

client is different than that of a server, since for a client c we restrict the events c can take (i.e.,

the messages a client can send and receive).

A client can either perform a write operation on a single object, or a transaction on a set of

objects that are served by more than one server. To clearly capture the notion of a transaction

in our model, we consider that a client splits a transaction into multiple read operations where

each read operation is destined to a different server with the objects to be read. Specifically, a

client can only issue two kinds of operations, a read and a write operation. In what follows, we

first describe the exact operations a client can issue. We then describe what kind of messages a

client c can send and receive (i.e., events a client can take) based on the operations c performs.

A read(Os , t ,d) operation reads ` objects defined in `-tuple Os ∈ O`, and d ∈ M as part of

some transaction with identifier t ∈T . Note that a read operation reads from distinct objects,

thus for a read read(Os , t ,d) where Os = (o1,o2, . . . ,o`) is an `-tuple, ∀i , j ∈ {1, . . . ,`} with i 6= j ,

it is the case that oi 6= o j . A read(Os , t ,d) operation is always part of a transaction. Naturally, a

client can perform a transaction on objects that reside on different servers. In such a case, a

client sends two read operations with the same transactional identifier to two different servers.

For example, assume we have two servers s1, s2 ∈ S with s1.obj = {o1}, s2.obj = {o2}, and a

client c ∈C wants to perform a transaction that reads both objects o1 and o2. Then, client c

has to issue a read((o1), ti d ,d1) operation to server s1 and a read((o2), ti d ,d2) to server s2.

A write(o, v,d) operation writes value v to single-object o where o ∈O , v ∈ V \ {⊥}, and d ∈M .

Note that both the read and write operations take as a parameter a message d . This message

is not necessarily bounded (since a message can be of any size) and can contain additional

information the client might want to include in its operation. We specifically allow clients

to send any message d in order to have a model as general as possible. This way, we do not

restrict the possible data stores the model expresses.

Client responses. The response to a read(Or , t ,d) operation with |Or | = r is res(x) where

x ∈O r ×M . Specifically, res(x) = (Or ,m) where m ∈M . In other words, the response to a read

reading r objects is a pair of one tuple that contains the to-be-read r objects and the message

77

Chapter 4. The Impossibility of Fast Transactions

m containing the values for the r objects. Naturally, a response to a single-object read(o, t ,d)

is res(x) where x = (o,m) and m ∈M . Note that a message m can contain multiple values (i.e.,

versions) for a specific object. We present later how to use dec to restrict the possible values a

client can retrieve from a message.

Similarly to a read operation, we consider that a response to a write operation is res(d) where

d ∈M . Note that we can get a response res(d) with d ∈M only in response to a write operation.

A client can issue a transaction that consists of multiple read operations. The responses from

the read operations are used to extract the values the transaction reads using ρ.

Client events. We describe the set of all messages the client can send or receive. The set

of messages the client can send is Ms = {m : m = read(Or , ti d ,d) and Or ∈ O≤l , ti d ∈ T ,d ∈
M }∪ {m : m = write(o, v,d) and o ∈O , v ∈ V \ {⊥},d ∈M }. The set of messages the client can

receive is Mr = {m : m = res(x) and x ∈ O≤l ×M }∪ {m : m = res(d) and d ∈ M }. The set of

possible events a client c ∈C can take is c.E = {send(ms , p) : ms ∈Ms , p ∈S }∪{receive(mr , p) :

mr ∈Mr , p ∈S }. Finally, note that clients cannot communicate with each other but only with

servers, a natural assumption [9, 86, 87]. It might seem that a client can issue a read or a write

operation for an object o to a server s that does not serve o. We restrict these cases later, when

we define what a well-formed execution is.

Execution. We say that an event e is enabled in state σ if ∆(σ,e) is defined. An execution is

a (possibly infinite) sequence of events occurring at the servers and the clients. A sequence

of events occurring at a process p (i.e., p is either a server or a client) is well-formed if there

is a sequence of states, σ1,σ2, . . . such that σi = p.∆(σi−1,ei) for all 2 ≤ i ≤ (the length of

the sequence). An execution has correct issues of operations if every read(Or , t ,d) with Or =
(o1, . . . ,o`) that a client issues is destined to a server s where ∀i ,1 ≤ i ≤ `,oi ∈ s.obj, as well as

every write(o, v,d) operation is destined to a server s where o ∈ s.obj. We assume that clients

have some initial knowledge on which server contains which objects, a reasonable assumption

in practice since such information could be stored in the initial state of each client.

We say that an event e is a client write request if e corresponds to the send event of a client

for a write operation. We say that an event e is a client read request if e corresponds to the

send event of a client for a read operation. For example, event send(read(Or , t ,d), s) taken by

some client is a client read request, while event send(write(o, v,d), s) is a client write request.

We say that an event e is a client request if e is a client read or write request. Similarly, we

say that an event e is a client read response if e corresponds to the receipt event of a client

with res(x) and x ∉M (i.e., e = receive(res(Or ,m),c)). We call an event e a client write response

if e corresponds to the receipt event of client with a res(d) event where d ∈ M . We say that

an event e is a client response if e is a client read or write response. For brevity, we also use

78

4.2. Model

the notation e = read(Os , t ,d), e = write(o, v,d), or e = res(x), when it is clear from the context

whether event e is being sent or received by a client or by a server.

For a given client request e we define obj(e) to be the tuple of objects e is operating on. For

example, if e is a read((o5,o8), t ,d), then obj(e) = (o5,o8). Similarly, for a client read request

e that is associated with a transaction, tx(e) provides the transactional identifier associated

with e. Again, if an event e is taken by a client, we denote with cl(e) ∈C the client that took

e. For every process p ∈ C ∪S , given an execution α, we define the process execution α|p
to be the subsequence of α that contains all the events of α taken by process p. Given an

execution α, we define the read execution α|read to be the subsequence of α containing only

client read requests and client read responses. Similarly, we define execution α|write to be the

subsequence of α containing only client write requests and client write responses.

Valid responses. An execution α has no-thin-air responses, if for every client c ∈C , for every

client response event e ′ = res(x) in α|c , there is a client request event e that precedes e ′ in

α|c such that e is either a write event if x ∈ M , or e is a read(Os , t ,d) event if x = (Os ,m)

with Os ∈O≤l and m ∈M . As the name suggests, no-thin-air responses captures the notion

that client responses are not created out of thin-air (i.e., a client request should trigger the

response).

An execution α has written-values responses, if for every client c ∈ C , for every client read

response event e ′ = res(x) with x = (Os ,m), then for every v ∈ dec(m), there should be an object

o ∈Os such that there is a client write request e = write(o, v,d) that appears before e ′ in α. In

other words, the values a client is reading were written by some server at some previous point

in time.

An execution α has valid responses if α has no-thin-air and written-values responses.

Sequential clients. Clients can issue reads as part of the same transaction to objects belong-

ing to different servers. For example, a client might issue a transactional read((o1,o2), t ,d) to a

server s1 and another read read((o4,o5), t ,d) to a server s2. Clients are said to be sequential.

This means that a client can issue a write or a read operation only if the client has received

responses to all its previous requests. Furthermore, a client c can issue a read with a trans-

actional identifier t if c has received responses to a previous write request, as well as to all

transactional reads of a transaction t ′ with t ′ 6= t . In other words, a client c can issue parallel

read operations for the same transaction, but c has to wait for a response to its previous

operations before issuing a write or a new transaction.

Formally, we say that an execution α has sequential clients if for every client c ∈C , for every

client request e ∈α|c , where e is not the last event in e ∈α|c , the following holds:

79

Chapter 4. The Impossibility of Fast Transactions

• if e = read(Or , t ,d), then the event e ′ that immediately succeeds e inα|c has tx(e ′) = tx(e)

or e ′ = res(x) with x = (Or ′ ,m) with m ∈M (Or ′ is not necessarily equal to Or);

• if e = write(o, v,d), then the event e ′ that immediately succeeds e is res(d) with d ∈M .

Valid values. Next, we provide auxiliary definitions that help us capture the notion of a

bounded-version data store.

Definition 3 (Corresponding event). Given an execution α that has no-thin-air responses,

consider a client response e ′ = res(x) where e ′ ∈α. Event e ′ is received by client c ∈C in response

to client’s c request e. We say that event e ′ has e as its corresponding event, or that response

e ′ has e as its corresponding request. Conversely, request e has e ′ as its corresponding client

response.

Given a client request e and its corresponding client response e ′ in an execution α, we denote

e’s corresponding client response with cor(e). We say that a client request e is completed

in an execution α if cor(e) ∈ α. Note that a transaction can be split into many client read

requests and the completion of some of these requests does not imply that the transaction has

completed.

We say that a client read response e is associated with a transaction t if e’s corresponding read

request e ′ has tx(e ′) = t . A transaction t is completed in an executionα if there is a read request

event e ∈αwith tx(e) = t and cl(e) = c and there is a read request event e ′ that succeeds e inα|c
such that tx(e ′) 6= t . Given an execution α, we define as comp(α) ⊆T the set of all completed

transactions in α.

Definition 4 (Last state of a transaction). Consider an execution α and a transaction t ∈
comp(α) issued by a client c, we denote with σlast(t ,α) the last state of client c that was part

of transaction t . σlast(t ,α) corresponds to the state immediately after the last event associated

with t took place in α by c.

The following definition helps us define correctness in an execution on what a transaction

reads. For this, we need to know what values are read by a transaction.

Definition 5 (Values of a transaction). Given an execution α, we say a transaction t ∈ comp(α)

reads values ρ(σlast(t ,α), t).

Consider an executionα and consider a client c ∈C , we define as msg(α,c) the set of messages

contained in all the client responses in (α|read)|c .

The definition below captures the notion that a transaction by a client can only read the initial

value (⊥) or values that were at some point received by a server.

80

4.2. Model

Definition 6 (Valid values). Given an execution α and a transaction t ∈ comp(α), we say that t

reads valid values if for every v ∈ ρ(σlast(t ,α), t), there is an m ∈ msg(t ,α) such that v ∈ dec(m).

Well-formed execution. An execution α has distinct values if for every two write operations,

write(o, v,d) and write(o′, v ′,d ′) where o,o′ ∈O v, v ′ ∈ V ,d ,d ′ ∈M , it is the case that v 6= v ′. We

can achieve this in practice by having a client append its client identifier and a monotonically

increasing counter to the value it intends to write. We say that an execution has no-transacton

reuse when each client c uses different transactional identifiers for each of c’s transactions, as

well as different transactional identifiers from other clients.

An execution α is well-formed if the following conditions hold for α:

• ∀p ∈S ∪C , a|p is well-formed;

• α has correct issues, valid responses, sequential clients, distinct values, and no-

transaction reuse;

• for every t ∈ comp(α), transaction t reads valid values;

• if there is a receive(m, p j) event e ′ taken by some process pi in α, then there is an event

e that precedes e ′ in α and e = send(m, pi) by process p j ;

• for a specific m ∈M if there are z identical events send(m, pi) taken by process p j in α,

then there are at most z receive(m, p j) events taken by process pi in α.

The last two conditions state that a message is not received out of thin air and that there

is no message duplication. Both conditions can be implemented in practice with common

techniques, such as the use of timestamps [33]. In this chapter and unless stated otherwise, we

consider only well-formed executions. When we talk about an implementation in our model,

we refer to the state machines of all the servers (i.e., function ∆) and all the clients, as well

as the sets S , C , O , V , M , and function dec. We denote an implementation with I and say

that α ∈I to denote that execution α can be generated by implementation I . Note that if a

data store I can generate an execution α′, I can also generate any execution α where α is a

contiguous prefix of α′. Formally, a data store is:

Definition 7 (Data store). A data store is an implementation I such that for every execution

α ∈I , α is a well-formed execution.

Bounded-version data store. In response to a client’s read operation to an object o, a server

can potentially send an unbounded number of values that were written to o back to the client.

81

Chapter 4. The Impossibility of Fast Transactions

In this work, we prove that non-blocking and one round-trip transactions are impossible when

a server can only send a bounded number of values to a client. Therefore, we need to define

what it means for a data store to be bounded-version. Instead of restricting the number of

values a server can send to a client, we allow a server to send an unbounded number of values,

and then use (among others) the dec function to restrict the number of values a client can

utilize.

Definition 8 (k-version data store). We say that a data store I is k-version if for every m ∈M ,

|I .dec(m)| ≤ k.

Although messages are finite, they are unbounded, hence the above definition allows a server

to send back an arbitrary long message m ∈M to the client, and hence an unbounded number

of values to a client. This allows a client to cache old values and use them in future transactions.

However, in combination with valid values (Definition 6) the client can only extract up to a

bounded number of values. Note that even if a client uses a cache to store retrieved values,

these values cannot be used by the client unless they belong to a decoding of an already

received message.

If for a data store I , there is a k > 0 ∈N such that I is a k-version data store, then we say that

I is a bounded-version data store, otherwise we say that I is an unbounded-version data store.

To the best of our knowledge, function dec is the first one that is able to formally capture the

notion of a k-version data store in an elegant way. Other approaches [44, 45, 71] are not formal

enough and can be potentially circumvented (see Section 4.5).

Fast reads. In what follows, we define the notion of invisible reads, which refers to the fact

that servers do not update their state when they perform a read operation.

Definition 9 (Invisible reads). A data store I has invisible reads, if for every execution α ∈I ,

for every received read request event or every sent read response event e by some server s ∈S ,

σ= s.∆(σ,e).

Definition 9 captures the fact that if the state of the server s is σ before event e, then it remains

σ after event e takes place. A data store I that does not provide invisible reads, is said to have

visible reads. Next, we define non-blocking reads.

We consider function nc that given an execution α and an event e ∈α returns a subsequence

of α. Formally, consider an execution α, a client c, and client response e ′ ∈α|c , then nc(α,e ′)
corresponds to execution α where all the events between the corresponding request e of e ′ to

a server s and e ′ are removed from α, except the events that correspond to server s receiving

request e and responding e ′ back to c.

82

4.2. Model

Intuitively, a data store supports non-blocking reads if a server can respond to a read operation

without blocking. This means that the server does not have to communicate with other servers

in order to respond to the client. Formally:

Definition 10 (Non-blocking reads). We say that a data store I has non-blocking reads, if for

every finite execution α ∈I that ends in a client read response e, then nc(α,e) ∈I .

We now define what it means for a transactional read to take a specific number of rounds.

Roughly speaking, an operation takes r rounds, if a clients performs r client responses (i.e.,

received from the same server) for one client read request.

Definition 11 (r -round reads). We say that a data store I has r -round reads, if for every

execution α ∈I , every transaction t ∈T , every client c performs at most r client read responses

for a specific read request associated with transaction t .

For instance, in a data store that has 1-round reads this means that a client that issues a

transaction t only communicates with a specific server at most once for transaction t .

Definition 12 (Fast reads). We say that a data store I has fast reads if I is a 1-version data

store, and I has non-blocking and 1-round reads.

Definition 12 captures the notion of latency-optimal reads as informally described by Lu et

al. [87], since a client can utilize only one value per read object. We relax the definition of fast

reads, by defining what we call semi-fast reads.

Definition 13 (Semi-fast reads). We say that a data store I has semi-fast reads if I is a

bounded-version data store, and I has non-blocking and 1-round reads.

In contrast to fast reads, semi-fast reads allow a server to send more than one value back to a

client in response to a read request. In this sense, semi-fast reads are not latency-optimal as

devised by Lu et al. [87]. We prove our impossibility result for semi-fast reads and hence our

impossibility result is stronger (i.e., also holds for fast reads).

Monotonic writes. We consider data stores that provide the client-centric consistency

model [119] of monotonic writes [116].

Given an execution α and a client c ∈ C , we define with ordw (α,c) the set of pairs (e,e ′)
such that e and e ′ are in (α|c)|write and e precedes e ′ in α (and hence in α|c). We define with

ord+
w (α,c) the transitive closure of ordw (α,c).

Roughly speaking, a data store provides monotonic writes consistency if the write operations

performed by a specific client in some specific order, are seen by any other client in this order.

83

Chapter 4. The Impossibility of Fast Transactions

Note that monotonic writes do not specify anything regarding the order of write operations

between different clients. We use the notation t ∈α to denote that there is an event e ∈α such

that tx(e) = t .

Definition 14 (Monotonic writes.). Consider an execution α and consider every transaction t ∈
comp(α) with values ρ(σlast(t ,α), t) = (v1, v2, . . . , vr). Values (v1, v2, . . . , vr) are written by client

write requests that correspond to events ew1 ,ew2 , . . . ,ewr . We say that α provides monotonic

writes if for any two client write requests ewi and ew j with c = cl(ewi) = cl(ew j) there is no client

write request ew with cl(ew) = c such that (ewi ,ew) ∈ ord+
w (α,c) and (ew ,ew j) ∈ ord+

w (α,c) and

obj(ewi) = obj(ew).

Figure 4.1 depicts the intuition behind Definition 14. It should not be possible for a transaction

reading, among others, objects o and o′ to read values vi and v j , since the same client wrote

value v to object o after writing value vi to o.

client c: ewi (o = vi) ew (o = v) ew j (o′ = v j)

Figure 4.1 – A transaction t that reads, among others, objects o and o′ cannot read values vi

and v j due to the existence of ew . However, transaction t can read values v and v j for objects
o and o′ respectively. Note that all three writes ewi ,ew , and ew j are performed by the same
client c.

Definition 15 (Monotonic writes). We say that a data store I provides monotonic writes if

every execution α ∈I has monotonic writes.

Note that current definitions of monotonic writes [29, 116] refer to single-object operations

(i.e., no transactions). Bailis et al. [17] provide an intuitive transactional description but lacks

adequate formality. In this sense, this is the first formal definition of monotonic writes in a

transactional setting.

Minimal progress. A data store implementation where every read operation performed by a

client reads back the initial value of the object ⊥ is a data store that provides monotonic writes.

However, such a data store is of no practical interest. We need to incorporate some notion

of liveness in the data store to make it useful. For this, we introduce the notion of minimal

progress, that roughly speaking states that if only one client writes a value v to an object o,

this value is visible after some some point in time, unless the same client writes a new value or

some other client writes o. We start by defining the notion of being eventually responsive. The

intuition behind this definition, is that if a client requests a read or write operation, then the

client eventually gets a response.

Definition 16 (Eventually Responsive). A data store I is eventually responsive if for every

84

4.3. Fast Transactions Are Impossible

finite execution α ∈I with last event e that is a client request, every infinite extension α′ ∈I of

α has a client response e ′ such that e ′’s corresponding request is e.

Another way to think of the above definition is that given a finite execution α that ends with a

request to a client, there is an extension of α that contains the response to the client.

We say that a transaction t appears for the first time after an event e ′ in an execution α if there

is no event e ∈α that appears before e ′ in α with tx(e) = t . The following definition captures

the idea that from some point onwards, all transactions keep returning the newer written

values. If a single write with value v is performed to an object o, then there is a point after

which all transactions that appear for the first time read v or a later written value for object o.

Definition 17 (Bounded Visible). A data store I is called eventually visible if for every finite ex-

ecution α ∈I with last event ew that is a client write request to object o. Consider all r > 0 com-

pleted client write requests before ew to o: ew1 , . . . ,ewr inα. In other words, cor(ew1), . . . ,cor(ewr)

appear before ew in α. Each of these client write requests, writes a value. Consider these values

to be contained in the set vol d . Then, there is a bound b ≥ 0, such that for every extension α′ ∈I

of α, every transaction that appears for the first time after |α|+b in α′ and that requests o, does

not read a value that belongs to vold ∪ {⊥} for o.

Definition 18 (Minimal Progress). A data store I provides minimal progress if I is eventually

responsive and bounded visible.

Note that if a data store I provides minimal progress, I cannot use the stable snapshot

approach [118]. In the stable snapshot approach, servers totally order write operations, as well

as servers keep track of the most recent stable snapshot. A stable snapshot is a point in the

serial order of the write operations, for which all updates are known to have been applied to

all objects. When reading, a client c indicates the last known stable snapshot, and then c reads

from that snapshot and retrieves information about the current last known stable snapshot

(that c uses in the next transaction). Thus client c can always make progress, albeit by reading

from the past. However, using the stable snapshot approach, when a client c that has been

inactive (i.e., not performing any operations) for an arbitrary long amount of time, issues a

new transaction, c could potentially read old values and violate bounded visibility.

4.3 Fast Transactions Are Impossible

In this section, we prove that fast transactions are impossible. Specifically, we prove our main

result.

Theorem 5. No data store can provide monotonic writes, minimal progress, and invisible

semi-fast reads.

85

Chapter 4. The Impossibility of Fast Transactions

Fast reads. For pedagogical purposes, we first present the proof of the following theorem:

Theorem 6. No data store can provide monotonic writes, minimal progress, and invisible fast

reads.

For our result, we consider two servers s1, s2 ∈S and two objects o1,o2 ∈O served by servers

s1 and s2 respectively. Furthermore, we consider three clients cr ,ch ,cw ∈C , where client ch

issues a finite number of transactions where each transaction reads both objects o1 and o2,

client cr issues a single transaction t to both objects o1 and o2, and client cw performs writes.

Before we continue, we introduce some auxiliary notation to simplify the proof.

α1: wo1 (v1
o1

) wo2 (v1
o2

) t1 . . . tl1 wo1 (v2
o1

) wo2 (v2
o2

) tl1+1 . . . tl2
r eqo1 r eqo2 r espo1 (m1

1) r espo2 (m1
2)

α2: wo1 (v1
o1

) wo2 (v1
o2

) t1 . . . tl1
r eqo1 r eqo2 r espo1 (m2

1) wo1 (v2
o1

) wo2 (v2
o2

) tl1+1 . . . tl2 r espo2 (m2
2)

Figure 4.2 – Executions α1 and α2 where client cw writes (in red) objects o1 and o2. Client ch

issues a finite number of transactions (in green) between the cw ’s writes and cr performs a
transaction that reads both objects o1 and o2 (in blue).

A read operation in a data store with fast reads consists of 4 events e1,e2,e3,e4 in this

order. Event e1 is send(read(o, ti ,ms), s), event e2 is receive(read(o, ti ,ms),c), and since a

data store with fast reads is non-blocking, this means the server s can respond right away

to the client with e3 = send(res((o,mr)),c), and finally the client c receives the message

e4 = receive(res((o,mr)), s). In what follows we are going to denote event e1 as reqo and the

remaining three events as respo(mr), meaning that for object o the client got back response

mr .

Similarly, we denote with wo(v) the sequence of events needed to write value v to object o. In

contrast to a read operation event, a write operation event might span an arbitrary, however

finite, number of events. Arbitrary since write operations are not necessarily non-blocking

and hence a server might communicate with other servers before completing the write. Finite

since we consider a data store with eventual responsiveness (i.e., the write should eventually

complete).

For the proof of Theorem 6 we assume by way of contradiction that a data store exists that

provides monotonic writes, minimal progress, and invisible fast reads. For this, we consider

execution:

α= wo1 (v1
o1

), wo2 (v1
o2

), t1, . . . , tl1 , wo1 (v2
o1

), wo2 (v2
o2

), tl1+1, . . . , tl2

where the first two writes are performed by client cw and transactions t1, . . . , tl1 are performed

by client ch until values v1
o1

and v1
o2

become visible. Then, client cw performs two more writes

to objects o1 and o2 and afterwards client ch takes steps until values v2
o1

and v2
o2

are visible.

86

4.3. Fast Transactions Are Impossible

Based on execution α, we construct executions α1 and α2:

α1 = wo1 (v1
o1

), wo2 (v1
o2

), t1, . . . , tl1 , wo1 (v2
o1

), wo2 (v2
o2

), tl1+1, . . . , tl2 ,reqo1
,reqo2

,respo1
(m1

1),respo2
(m1

2)

α2 = wo1 (v1
o1

), wo2 (v1
o2

), t1, . . . , tl1 ,reqo1
,reqo2

,respo1
(m2

1), wo1 (v2
o1

), wo2 (v2
o2

), tl1+1, . . . , tl2 ,respo2
(m2

2)

Note the differences between executions α1 and α2 (see Figure 4.2). In execution α1, client cr

performs both read operations on objects o1 and o2 when the values v2
o1

and v2
o2

are visible.

In execution α2, cr read requests are sent after values v1
o1

and v1
o2

are visible. However, the

request to object o1 is received by s1 before value v2
o2

is visible and the request to object o2 is

received by s2 after value v2
o2

is visible.

In execution α1 client cr receives only two messages, m1
1 and m1

2. Message m1
1 cannot contain

a value for object o2 since o2 is not served by server s1 and s1 can only contain values for object

o1. Therefore, for cr to read value v2
o2

for object o2, it should be the case that message m1
2 in

execution α1 contains v2
o2

. Assume by way of contradiction that m1
2 does not contain v2

o2
, this

means that there is no way for client cr to have read value v2
o2

, therefore v2
o2

∉ ρ(σlast(t ,α1), t),

hence the value is not visible yet. A contradiction, therefore v2
o2

∈ dec(m1
2).

In executionα2 note that m2
1 cannot contain v2

o1
(due to the written-values responses property)

since at this point in execution α2, v2
o1

has not been written yet. We argue that message m2
2

in execution α2 should contain value v1
o2

. Assume it does not. Then, the only other possible

values m2
2 can contain are ⊥ and v2

o2
(recall that we consider fast reads, hence 1-version reads).

However the pair (v1
o1

,⊥) would not satisfy minimal progress since value v1
o2

is visible when

client cr performed its transaction. Furthermore, pair (v1
o1

, v2
o2

) violates monotonic writes,

since the same client wrote v2
o1

to object o1 before writing v2
o2

to object o2. A contradiction in

both cases. Therefore v1
o2

∈ dec(m2
2).

Executions α1 and α2 are indistinguishable to server s2. Indeed, in both executions α1 and α2,

server s2 receives, performs, and responds to the client’s cr request (respo2
) to read object o2

after values v2
o1

and v2
o2

have been written and are visible. Since all the transactions performed

by client ch are invisible, server s2 cannot distinguish between the executions and respond

back to client cr in the same way in both executions, and therefore messages m2
2, and m1

2 are

equal (m1
2 = m2

2 = m2). Since we consider distinct values, v1
o2

6= v2
o2

, and both are in dec(m2), it

is the case that |dec(m2)| = 2 > 1, a contradiction. Hence, Theorem 6 holds.

Semi-fast reads. We prove Theorem 5 by contradiction. We assume that a data store I exists

that provides monotonic writes, minimal progress, and invisible semi-fast reads. Specifically,

we assume that data store I is a k-version data store. We prove that there is an execution

where server s2 sends a message back to a client that contains more than k values in order for

I to satisfy monotonic writes. To prove our impossibility result, we construct k +1 executions

87

Chapter 4. The Impossibility of Fast Transactions

α1,α2, . . . ,αk+1 and show that all these executions are indistinguishable to server s2. We show

that in execution αi , server s2 needs to respond with a message that contains value v i
o2

.

Before presenting the construction of executions αi (1 ≤ i ≤ k+1), we first construct execution

α ∈I in which all executions αi are based upon. We construct execution α as follows. First,

client cw writes value v1
o1

to object o1, waits for the response of server s1 to acknowledge

the write, and then writes value v1
o2

to object o2 and waits for server s2 to acknowledge the

write. Servers s1 and s2 acknowledge the writes since I provides minimal progress, and hence

I is eventually responsive. Afterwards, client ch issues transactions until values (v1
o1

, v1
o2

)

are visible, again due to minimal progress. After the values are visible, we allow cw to write

value v2
o1

to object o1 and afterwards value v2
o2

to object o2. Then, we allow client ch to issue

transactions until values (v2
o1

, v2
o2

) are visible. We keep repeating the same procedure until

values (vk+2
o1

, vk+2
o2

) are visible. Namely cw writes both objects o1 and o2 and then ch issues

transactions until the latest written values by cw become visible. Execution α (see top of

Figure 4.3) is therefore:

α= wo1 (v1
o1

), wo2 (v1
o2

), t1, . . . , tl1 , wo1 (v2
o1

), wo2 (v2
o2

), tl1+1, . . . , tl2 , wo1 (v3
o1

), wo2 (v3
o2

), . . . ,

wo1 (vk+2
o1

), wo2 (vk+2
o2

), tlk+1+1, . . . , tlk+2

α: wo1 (v1
o1

) wo2 (v1
o2

) t1 . . . tl1 wo1 (v2
o1

) wo2 (v2
o2

) . . . wo1 (vk+2
o1

) wo1 (vk+2
o1

) tllk+1+1 . . . tlk+2

αi : wo1 (v1
o1

) wo2 (v1
o2

) . . . wo1 (v i
o1

) wo2 (v i
o2

) r eqo1 r eqo2 r espo1 (mi
1) . . .

. . . wo1 (vk+2
o1

) wo2 (vk+2
o2

) r espo2 (mi
2)

Figure 4.3 – At the top, we depict execution α where client cw alternates between writing (in
red) objects o1 and o2. Client ch issues a finite number of transactions (in green) after client’s

cw write of value v j
o2

until values (v j
o1

, v j
o2

) are visible. At the bottom, we depict execution αi .
Due to space constraints, we depict the transactions of ch until values (v i

o1
, v i

o2
) and (vk+2

o1
, vk+2

o2
)

are visible with shortened green boxes. The events of client’s cr transaction that read objects
o1 and o2 are depicted in blue.

Before we continue with each individual execution αi , we prove the following lemma for

transactions in execution α, where we consider that v0
o1

= v0
o2

=⊥.

Lemma 21. No transaction introduced in execution α that appears for the first time after

transaction tli (i > 0) completes can read values v j
o1

and v j
o2

with 0 ≤ j < i for objects o1 and o2

respectively.

Proof. By construction of execution α, we know that after transaction tli , values v i
o1

and v i
o2

are visible. By the definition of minimal progress, no transaction that appears for the first time

88

4.3. Fast Transactions Are Impossible

after transaction tli has completed can return an older value for objects o1 and o2. Hence no

transaction after tli can read values v j
o1

and v j
o2

with 0 ≤ j < i .

Lemma 22. No transaction introduced in α that reads objects o1 and o2 can read values

(v a
o1

, vb
o2

) with a < b.

Proof. Assume by way of contradiction that we can introduce a transaction t in α that reads

(v a
o1

, vb
o2

) with a < b. If a < b, then since client cw issues writes in this order v a
o1

→···→ vb
o1

→
vb

o2
, transaction t that reads (v a

o1
, vb

o2
) with a < b violates monotonic writes, a contradiction,

since t should have read value vb
o1

for o1.3

We construct execution αi for 1 ≤ i ≤ k +1 as follows (with l0 = 0):

αi = wo1 (v1
o1

), wo2 (v1
o2

), . . . , wo1 (v i
o1

), wo2 (v i
o2

), tli−1+1, . . . , tli ,reqo1
,reqo2

,respo1
(mi

1),

wo1 (v i+1
o1

), wo2 (v i+1
o2

), . . . , wo1 (vk+2
o1

), wo2 (vk+2
o2

), tlk+1+1, . . . , tlk+2 ,respo2
(mi

2)

Lemma 23. Value v i
o2

∈ dec(mi
2) in execution αi .

Proof. Assume by way of contradiction that v i
o2

∉ dec(mi
2) in execution αi . Due to Lemma 21,

transaction t can only read values (v a
o1

, vb
o2

) with a ≥ i . Since the read to o1 is performed

before the write of value v i+1
o1

takes place, this means that t should read value v i
o1

for object

o1. Therefore the only allowed values for object o2 is v i
o2

since returning v j
o2

with j < i implies

that v i
o2

is not visible yet (Lemma 21) and returning v j
o2

with j > i violates monotonic writes

(Lemma 22). In other words, if v i
o2

∉ dec(mi
2), transaction t has no correct values to return. A

contradiction.

Due to Lemma 23, we know that v i
o2

∈ dec(mi
2) for every i , 1 ≤ i ≤ k+1. However, all executions

αi are indistinguishable to server s2 and therefore m2 = mi
2 for every 1 ≤ i ≤ k +1. Due to

the distinct values property, all values v i
o2

6= v j
o2

for i 6= j and hence v i
o2

∈ dec(m2) implies that

|dec(m2)| > k, a contradiction.

Circumventing the impossibility. In a synchronous system, where the duration of a transac-

tion cannot span more than one synchronous round, Theorem 5 collapses. Meaning that in

a synchronous system, we can have a data store with fast invisible reads that also provides

minimal progress and monotonic writes. In such a scenario, every server stores the latest

value written to an object. In each round, in case of a read, the server returns this latest

3With va → vb we denote that a client first performs the write of value va , and afterwards the write of value vb .

89

Chapter 4. The Impossibility of Fast Transactions

value, and in case of a write it overwrites the currently stored value. However, highly avail-

able data stores [4, 70, 74] are deployed in the wide-area (i.e., not synchronous setting), since

synchronous settings are not realistic, because among others, they prevent the possibility of

partitions. Additionally, in a synchronous system we need to choose the duration of rounds in

a conservative manner which contradicts the idea of having transactions as fast as possible.

Fast transactions and fault-tolerance. At first sight, the ramifications of Theorem 5 are incon-

spicuous. Someone might think that whether transactions are visible or not has little impact on

the latency of transactions. This might be the case if we assume that the client communicates

with a distant server. Nevertheless, in practice, we have to consider the possibility that if a

visible transaction updates the state of a server s, s might fail (i.e., crash). In case server s fails,

we might lose all the information that was written by s during the update. Highly available data

stores have to implement fail-over, therefore, in case server s fails, another server s′ should

take over in place of s. However, server s′ does not contain the data that was written during

the update. The only way for server s′ to know about the updated state of s, is if s replicated

the update to s′ before failing. In such a scenario, the transaction is blocking since it has to

wait for the underlying writes, to be replicated before responding to the client. To summarize,

a data store with fast transactions cannot be fault-tolerant, and conversely, a fault-tolerant

data store cannot provide fast transactions.

4.4 Unbounded-Version Data Store

Theorem 5 states that we cannot devise a bounded-version data store with non-blocking and

1-round reads. This raises the question on whether we can achieve non-blocking and 1-round

reads in an unbounded-version data store. With Theorem 7 we answer this question in the

affirmative.

Theorem 7. There is an unbounded-version data store that provides monotonic writes, minimal

progress, non-blocking and 1-round reads.

To prove Theorem 7, we devise ubvStore, a new unbounded-version data-store with non-

blocking and 1-round reads. ubvStore is unbounded-version since a server can send an

unbounded number of values to a client (i.e,. @k : ∀m ∈M |dec(m)| < k). Note that we do not

claim that ubvStore is a practical algorithm. We use ubvStore to generalize our impossibility

result (Theorem 5).

Overview. We base ubvStore on three ideas: (i) servers assign version numbers to values,

(ii) servers and clients store locally the write history (i.e., sequence of writes performed by a

client) of each client and exchange write histories whenever they communicate, and (iii) a

90

4.4. Unbounded-Version Data Store

read-only transaction by a client c is performed on c’s local knowledge of the write histories.

We describe in detail these three ideas below.

An object o is served by a single server s (o ∈ s.obj). Therefore, server s can order the writes

issued by clients to an object o by assigning incrementally increasing version numbers to

values written to an object o. We say that a value v written to an object o, has version number

vn, if v was the vn-th value written to object o. For example, if two writes to object o with

values v1 and v2 are performed by two different clients cw1 and cw2 respectively, server s can

assign version number 1 to value v1 and version number 2 to value v2. We consider that the

initial value ⊥ of each object has version number 0.

Both servers and clients in ubvStore contain local information about the write history of each

client. The write history of a client c corresponds to the ordered list of the write operations

client c has performed. Specifically, the write history of a client is a list of triples, where

each triple is of the format (object,value,version number). We denote with histp [c] the write

history of client c as it is known to process p. Naturally, note that process p might have stale

information on the write history of client c and hence histp [c] is a subset of client’s c actual

write history. For example, in a system with one server s and two clients c1 and c2, server s

might store locally hists[c1] = (o1, v1,3) · (o2, v3,1) and hists[c2] = ε. This means that s is aware

that client c1 first performed the write of value v1 to object o1 and then the write of value

v3 to object o2, and since hists[c2] = ε, this means that s has no information about the write

history of client c2 (potentially client c2 has not performed any writes). Similarly, client c1

might locally contain histc1 [c2] = (o5, v9,6).

Whenever a client c performs a write operation to an object served by a server s, c sends all

its write histories (histc) to server s. Similarly, when a server s responds to the read request

of a client c, s sends all its write histories (hists) to client c. This way, whenever servers and

clients communicate, they can potentially extend their local write histories. Note that a server

stores only values (i.e., versions) of objects that it serves. Nevertheless, a server s can store the

write histories of all the clients, and which objects these clients wrote, even though s might not

serve these objects. For example, a server s with o1 ∉ s.obj could contain hists[c3] = (o1,_,9)

where _ implies that s does not “know,” and hence does not store the value of object o1 since s

does not serve o1.

In ubvStore, transactions are 1-round and non-blocking. This means that when a client c

performs a transaction, c sends messages to the servers serving the transaction’s objects and

the servers respond immediately to c. Then, client c retrieves the responses from the servers

and potentially extends histc . Afterwards, c attempts to read the latest (i.e., by looking at the

version number) values of each object it wants to read without violating monotonic writes. If

it can read the latest values without violating monotonic writes, then client c reads these latest

values. If not, client c attempts to read potentially earlier values of objects until it finds a tuple

91

Chapter 4. The Impossibility of Fast Transactions

of values that satisfies monotonic writes.

To give an example of how ubvStore performs a transaction, consider execution α2 in Fig-

ure 4.2. In execution α2, client cr sends messages to both s1 and s2 as part of transaction

t . Server s1 receives the message after value v1
o1

is visible and before value v2
o1

is written.

Therefore, s1 sends value v1
o1

to cr . Server s2 receives cr ’s message after value v2
o2

is visible

and hence s2 sends value v2
o2

to cr . The issue with execution α2 is that values (v1
o1

, v2
o2

) cannot

be read for t since these values violate monotonic writes. However, since we consider an

unbounded-version data store, server s2 can also send value v1
o2

to cr . In ubvStore, when

client cr receives the message from server s1, cr has histcr [cw] = (o1, v1
o1

,1).

When cr receives the message from s2, cr knows that histcr [cw] = (o1, v1
o1

,1)·(o2, v1
o2

,1)·(o1,_,2)·
(o1, v2

o1
,2). Knowing histcr , client cr can safely read values (v1

o1
, v1

o2
) for transaction t .

ubvStore in detail. The algorithm of ubvStore is presented in algorithms 10 and 11. Lines 1-

106 correspond to the code for the client and lines 107-118 correspond to the server code.

Note however that the server code uses the EXTEND and subsequently the mergeClientHist
procedure. ubvStore uses both procedures, as well as event-based (i.e., trigger and upon

event) techniques [33]. A trigger event corresponds to the transmission of a message, while an

upon event corresponds to the receipt of a message. A client cl has the following local variables

(lines 2-4): histcl, responses, and versionNumber. Client cl stores the write histories in histcl,

that is an array of lists, where each list (except histcl[cinit] – see below) is initially empty (ε). For

a list list, we denote with |list| its length. We consider that there is some initial client cinit ∉C

that wrote value ⊥ with version number 0 to all the objects. This way, if a client c performs a

transaction on an object o that has not been written, the initial value ⊥ is read.

92

4.4. Unbounded-Version Data Store

Algorithm 10 ubvStore for a client cl

1: . Client’s cl local variables
2: histcl[c] ← ε ∀c ∈C

3: histcl[cinit] ← (o1,⊥,0) · (o2,⊥,0) · · · · · (ok ,⊥,0)
4: responses ← ε, versionNumber ←−1
5:

6: . client cl to read objects in Os

7: procedure read(Os , t ,d)
8: for server s in {server that serves an object o ∈Os} do
9: . ask server s only of objects in Os that s serves

10: trigger 〈s, READ | Os ∩objectsServedBy(s), t ,d〉
11: wait until |responses| = |servers|
12: histcl ← extend(histcl,responses)
13:

14: verToRead[o] ← 0 ∀o ∈Os

15: for object o in Os do
16: verToRead[o] ←maxVerNumber(histcl,o)

17: while true do
18: result ← getValues(histcl,verToRead)
19: (safe,prObj) ← isSafe(histcl,result)
20: if safe then
21: return result
22: else
23: verToRead[prObj] ← verToRead[prObj]−1

24: responses ← ε

25:

26: . client cl to write value v to object o
27: procedure write(o, v,d)
28: s ← server that serves o
29: histToSend ← clean(histcl, s)
30: trigger < s, WRITE | o, v,histToSend >
31: wait until versionNumber 6= −1
32: histcl[c] ← histcl[c] · (o, v,versionNumber)
33: versionNumber ←−1
34: return ack
35:

36: upon event < cl, READRESPONSE | r > do
37: responses ← responses · r

38:

39: upon event < cl, WRITERESPONSE | vn > do
40: versionNumber ← vn

93

Chapter 4. The Impossibility of Fast Transactions

41: procedure isSafe(histcl,result)

42: if ∃o : o.val = _∧o ∈ result then

43: return (false,o)

44: for client c in C do

45: . for triple t ← (val,o,vn), v(tr) corresponds to val and obj(tr) to o

46: if ∃t1, t2, t3 ∈ histcl[c] : v(t1), v(t3) ∈ result then

47: if r1 → t2 ∧ t2 → t3 ∧obj(t1) = obj(t2) then

48: return (false, obj(t3))

49: return true
50:

51: . returns the extension of hist when utilizing responses

52: procedure extend(hist,responses)

53: histRes[c] ← ε ∀c ∈C

54: for response r in responses do

55: for client c in C do

56: histRes[c] ←mergeClientHist(histRes[c],r [c])

57: histRes[c] ←mergeClientHist(histRes[c],hist[c])

58: return histRes

59:

60: procedure getValues(histcl, verToRead)

61: for object o in verToRead do

62: result ← ε

63: vn ← verToRead[o]

64: val ← getVersion(histcl,o,vn)

65: result ← result · (o,val,vn)

66: return result

94

4.4. Unbounded-Version Data Store

67: procedure mergeClientHist(aHist, bHist)
68: if size(aHist) < size(bHist) then
69: return mergeClientHist(bHist,aHist)

70:

71: . it is guaranteed that size(aHist) ≥ size(bHist)
72: mergedHist ← ε

73: for triple ← (o, v,vn) in bHist do
74: if v 6= _ then
75: mergedHist ← mergedHist · triple
76: else
77: if (o, v ′,vn) ∈ aHist with v ′ 6= _ then
78: mergedHist ← mergedHist · (o, v ′,vn)
79: else
80: mergedHist ← mergedHist · (o,_,vn)

81: append remaining elements of aHist to mergedHist

82: . removes values in history of objects that s does not serve

83: procedure clean(history,server)

84: histToReturn ← ε

85: for triple ← (o, v,vn) in history do

86: if o ∈ objectsServedBy(server) then

87: histToReturn ← histToReturn · triple

88: else

89: histToReturn ← histToReturn · (o,_,vn)

90: return histToReturn

91:

92: . returns the vn-th version value for object o in history hist

93: procedure getVersion(hist,o,vn)

94: for client c in C do

95: for triple ← (o′, v,vn′) in hist[c] do

96: if vn′ = vn and o′ = o then

97: return v

98:

99: . returns the greatest version number for object o found in history hist

100: procedure maxVerNumber(hist,o)

101: maxvn ← 0

102: for client c in C do

103: for triple ← (o′, v,vn) in hist[c] do

104: if maxvn < vn and o′ = o then

105: maxvn ← vn

106: return maxvn

95

Chapter 4. The Impossibility of Fast Transactions

Algorithm 11 ubvStore for a server s

107: . Server’s s local variables
108: hists[c] ← ε ∀c ∈C

109: mem[o] ← (⊥,0) ∀o served by s
110:

111: upon event < s, READ | Os , t ,d > do
112: trigger < cl , READRESPONSE | hists >
113:

114: upon event < s, WRITE | o, v,hi stcl > do
115: mem[o] ← (v,mem[o].ver+1)
116: hists[c] ← hists[c] · (o, v,mem[o].ver)
117: hists ← extend(hists ,histcl)
118: trigger < cl, WRITERESPONSE | mem[o].ver >

Variables responses and versionNumber are used in the READ and WRITE procedures in order to

inform the client that a message has been received from the server. Specifically, responses con-

tains the messages received from servers during a read transaction. versionNumber contains

the version number the server assigns to the object the client writes.

Client cl performs a transaction by calling the read procedure (lines 7-24) and providing as

parameters the objects Os , a transactional identifier t , and an additional message d . For every

server s that serves an object o ∈Os , client cl triggers a server READ event (lines 8-10). Note

that client cl only “asks” from a server s the objects that s serves using the objectsServedBy
procedure. We assume that objectServedBy returns the set of all the objects served by s and

this information is stored locally in cl (i.e., no communication with the server is needed). The

client then waits until it receives messages from all the servers it sent a message to (Line 11).

For this, client cl uses the responses variable that is initially ε and each time cl receives a

response (READRESPONSE) from the server, the response is appended to responses (lines 36-37).

When cl receives messages from all the servers it has communicated with, then |responses| is

equal to |servers| (Line 11). After receiving the responses from the servers, client cl calls the

extend procedure (Line 12) that extends histcl if cl received potentially additional information

from some of the servers (e.g., received information such that cl can extend a write history

histcl[c] for some client c). The extend procedure (lines 52-58) takes two write histories and

combines them to get the maximum possible write histories using mergeClientHist as a helper

procedure (lines 67-81). Afterwards, client cl stores to the verToRead array all the versions that

it intends to read from this transaction. Initially, cl intends to get the latest version of each

object (lines 15-16) and cl is able to retrieve the latest version number (as known by cl) of each

object using the maxVerNumber procedure. The maxVerNumber (lines 100-106) procedure

accepts write histories (hist) and an object o and finds the maximum version number of object

o by utilizing the information in hist.

96

4.4. Unbounded-Version Data Store

Client cl then enters the loop (lines 17-23), where cl attempts to read the latest values that

satisfy monotonic writes, until it succeeds. It does so by calling the getValues procedure

(lines 60-66). The getValues procedure loops through the objects to be read and finds the

desired version for each object using the getVersion procedure. The getVersion (lines 93-97)

procedure loops through all the write histories (similar to the maxVerNumber procedure) to

find the value of object o with the specific version number.

Then, the client verifies that the read values are safe (i.e., satisfy monotonic writes) by calling

isSafe (Line 19). The isSafe procedure (lines 41-49) takes as input the write histories (clientHist)

and the read values (result) and examines whether the read values by cl violate monotonic

writes (Line 47). Note that in isSafe client cl might get back _ as the value of an object (Line 42),

meaning that cl knows that a value was written by some client but is not aware of this value.

In such a case, client cl attempts to read the immediately previous value of that object in

the next loop, by decrementing the version that is about to be read for that object (Line 23)

and repeating the loop. At the end, the client sets responses back to ε (Line 24). Specifically,

isSafe checks whether there exist 3 triples (i.e., 3 writes) t1, t2, and t3 performed by the same

client, where the first write takes place before the second write (t1 → t2) and the second write

before the third write (t2 → t3). Furthermore, isSafe checks whether the two values v(t1) and

v(t3) that have been read by the client, and value v(t1) of obj(t1) has been overwritten before

the write of value v(t3). If this is the case, the values violate monotonic writes and isSafe
returns obj(t3) (Line 48). Note that the monotonic writes property is violated because the

client attempted to read the version of obj(t3), and therefore we call obj(t3) the problematic

object. If the read values are safe (Line 49), the read values are returned (Line 21). Otherwise,

the version needed for object prObj is decremented by one (Line 23) and the loop repeats.

To perform a write operation, client cl calls the write procedure (lines 27-34). Client cl retrieves

the server that serves object o (Line 28), cleans history histcl by removing values of objects

server s does not serve (Line 29) and then cl sends a WRITE message to the server (Line 30).

Recall that a server does not store values of objects that it does not serve. Therefore the client

calls the clean procedure (lines 83-90) that simply goes through all the triples in the provided

history and if the history of some client contains a value that is not served by the server it

stores _ as the value. Afterwards, the client waits until the server responds (Line 31) (i.e.,

versionNumber is updated when receiving a WRITERESPONSE from the server (lines 39-40).

Finally, client cl updates its write histories from the one received by the client (Line 32), sets

versionNumber back to −1 and returns an acknowledgment.

The code for a server s is presented in Algorithm 11. As with a client, server s stores locally all

the write histories (hists). Additionally, s stores the values of the objects it serves in the mem

array (Line 109). For each object o ∈ s.obj, mem[o] corresponds to a pair with the latest written

value and its corresponding version number. When server s receives a READ event, it responds

97

Chapter 4. The Impossibility of Fast Transactions

to the client with a READRESPONSE that contains hists (Line 112). Note that server s does not

update its state in response to a read event, and hence reads in ubvStore are invisible. When

server s receives a WRITE event to write a value v to object o (Line 114), s stores the value

in mem[o] and increases its version number by one (Line 115). Then, server s (potentially)

extends its current knowledge of hists by the one received (histcl) from the client using the

extend procedure (Line 117). Finally, server s responds to the client with a WRITERESPONSE

including a version number (Line 118).

The cautious reader might notice that some parameters (e.g., d) are not used. Nevertheless,

such parameters appear in ubvStore to adhere to the model we present in Section 4.2.

Correctness. To prove that ubvStore is correct, we have to show that ubvStore: (i) is a valid

data store (i.e., all its executions are well-formed), (ii) provides monotonic writes, and (iii)

provides minimal progress.

Valid data store. Naturally each per-process execution is well-formed since processes follow

ubvStore’s algorithm. Any execution has correct issues, since clients send requests for objects

to servers that serve them (Line 10). A server only responds to a client after receiving a request

and hence any execution has valid responses. Additionally, clients are sequential if we force

them to wait for an operation’s response before invoking a new operation. Furthermore, any

execution has distinct values and no-transaction reuse; we assume that clients append their

client identifier and a constantly increasing counter to the values they write, as well as the

transactional identifiers they use. Any execution generated by ubvStore has valid values since

a client c only reads values contained in histc . The values contained in histc are received

by some server and hence were written; values are only appended to a client history by the

server (Line 116). Finally, we assume that any execution messages are not received out of

thin air and that there is no message duplication. We can achieve this by implementing well-

known techniques [33]. We do not incorporate these techniques in ubvStore to avoid making

ubvStore verbose.

Monotonic writes. ubvStore trivially provides monotonic writes. A client returns values

from a read-only transaction only if these values are safe (Line 49 in Algorithm 10). The fact

that values are safe means that there is no monotonic writes violation (Line 47) and the isSafe
procedure is successful. However, we still have to prove the following lemma to show that

ubvStore does not attempt to read versions that do not exist.

Lemma 24. For every read(Os , t ,d) performed by a client c, for every object o ∈Os , it is the case

that verToRead[o] ≥ 0.

Proof. Someone might think that verToRead[o] < 0 due to Line 23. We show that this is not the

98

4.4. Unbounded-Version Data Store

case. Assume by way of contradiction that during a read(Os , t ,d) operation by some client c,

there is an object o ∈Os such that verToRead[o] < 0. For this to happen, it should be the case

that verToRead[o] = 0 and a subsequent isSafe call (Line 19) returns (false,o). This would imply

that verToRead[o] gets decremented by one and hence verToRead[o] < 0. However, we show

that if verToRead[o] = 0, the isSafe cannot return o as a problematic object. Since for o to be

returned as a problematic object the following needs to happen. When isSafe is called, there

exist a client c ′ such that there exist triples t1, t2, t3 ∈ clientHist[c ′] such that t1 → t2 ∧ t2 → t3,

obj(t1) = obj(t2) and obj(t3) = o. The fact that t2 → t3 implies that client c ′ first performed a

write to obj(t2) and later to object obj(t3) = o. However, if verToRead[o] = 0 this means that

the read value is the initial value, namely ⊥, and t3 should have been some initial write which

is not the case. A contradiction. Note that we also need to consider the case where isSafe
returns (false,o) for object o after successfully executing the if-statement in Line 42. This

is not possible because all the clients have the value ⊥ for version number 0, and hence if

verToRead[o] = 0, then o.val =⊥6= _.

Minimal progress. To show that ubvStore provides minimal progress we have to show

that ubvStore is eventually responsive and bounded visible. ubvStore is eventually respon-

sive since by construction the servers respond to the client’s requests (i.e., reads or writes).

ubvStore is also bounded visible. To see this, consider a finite execution α ∈ I which last

event ew is a client write request that writes value v to object o served by server s, as in Defini-

tion 17. Furthermore, consider all r > 0 completed client write requests to o before ew that

write values, where all the written values are contained in the set vold. Then for b = 0, for any

extensionα′ ∈I ofα, every transaction that appears for the first time after |a|+b inα′ and that

requests o does not read a value that belongs to vold ∪ {⊥}. By way of contradiction, consider a

transaction t that appears for the first time after |a|+b and that reads o and that reads a value

that belongs to vold ∪ {⊥}. When transaction t contacts server s, server s sends back at least the

latest value v of object o. For transaction t to read a value that belongs to vold ∪ {⊥}, it must

be the case that isSafe returns (false,o) from Line 48. Note that isSafe cannot return (false,o)

from Line 42 because server s returns value v 6= _ for object o. Because transaction t started its

execution after the write of v (due to a third write t3 as seen in Line 47), transaction t also sees

the write of t2 and t1. Therefore, object o cannot be the problematic object. A contradiction.

As a final note, we devised ubvStore to clarify and generalize our theoretical impossibility

result (Theorem 5). In practice, sending several versions in one round is costly. Therefore, we

expect that an implementation of ubvStore would perform worse than COPS-SNOW [87].

However, this is not an apples to apples comparison, because COPS-SNOW can violate consis-

tency during an asynchronous period, while ubvStore never violates consistency.

99

Chapter 4. The Impossibility of Fast Transactions

4.5 Conclusion

Our framework is inspired by the models of Attiya et al. [14] and Burckhardt et al. [32]. However,

in addition, our framework captures transactions. As far as we know, our formal framework

is the first to precisely capture the notion of fast transactions, and specifically the notion

of bounded-version data stores. We formally defined bounded-version data stores by intro-

ducing the decoding function dec and the definition of valid values, something we believe

is a contribution in itself. In contrast, other models [45, 71, 87] that attempt to define fast

transactions, fail to precisely define the restrictions imposed by one-version reads (i.e., servers

could potentially “cheat” and respond with more than one version).

Lu et al. [87] introduce the informal notion of latency-optimal read-only transactions (i.e., fast

reads in Definition 12), as well as present the SNOW theorem. The SNOW theorem states that

we cannot devise a read-only transaction algorithm that satisfies the following four properties:

(i) strict serializability, (ii) non-blocking reads, (iii) one-round and one-version reads, and

(iv) coexistence with write transactions. Konwar et al. [71] revisit the SNOW theorem and

present some new results that consider the role of client-to-client messaging to the SNOW

theorem. Tomsic et al. [118] investigate the relation between the consistency, the speed, and

the freshness of reads and among others show that visible fast transactions are possible by

reading an arbitrarily old snapshot of the database and hence such a data store does not

provide the weak property of bounded visibility. Didona et al. [44, 45] look into causally-

consistent data stores and investigate the cost fast read-only transactions impose on writes, as

well as prove that a data store cannot provide fast read-only transactions in combination with

write transactions. In contrast to previous work [44, 45, 71, 87, 118], we consider the weaker

consistency model of monotonic writes and hence we strengthen our impossibility result.

Finally, note that real systems [5, 8, 40] that provide fast transactions, either assume strong

synchrony (e.g., Spanner [40] relies on global time), or provide visible read-only transactions

and hence are not fault-tolerant.

Finally, to the best of our knowledge, our work is the first to bring fault-tolerance and fast

transactions together into attention. As a matter of fact, the original work of Lu et al. [87] that

informally introduces fast transactions, presents the COPS-SNOW data store that supports

such fast transactions. COPS-SNOW is able to keep operating during a network partition and

hence the loss of one or more data centers. However, COPS-SNOW cannot tolerate the failure

of even a single server, since otherwise consistency is violated.

In this chapter, we proved that invisible fast transactions are impossible in a data store that

supports the weak consistency model of monotonic writes. To prove our result, we devised a

formalization to precisely capture notions such as one-round, one-version, etc. Our proof is

the first one to shed light on an important and unexplored consequence of fast transactions,

that is, a data store that supports fast transactions cannot tolerate the failure of even one server.

100

4.5. Conclusion

Additionally, with ubvStore, we showed that the number of versions a server can send to a

client is consequential to whether transactions can be both non-blocking and 1-round trip.

101

5 Concluding Remarks

In this thesis, we revealed hidden complexities (in the sense of intricacies or costs) of dis-

tributed systems that challenge accepted truths in the field of distributed computing. In

what follows, we summarize the main findings of this thesis and propose avenues for future

research.

Consensus. In Chapter 2 we defined what it means for a consensus algorithm to be lead-

erless. To the best of our knowledge, this work is the first to formally introduce the notion

of a leaderless algorithm, initiating the study of provable leaderless consensus algorithms.

Then, we devised and proved correct Archipelago, a leaderless consensus algorithm for the

shared-memory model, and subsequently translated our result to the message-passing model.

Additionally, we conjectured that Archipelago could be transformed to tolerate Byzantine fail-

ures. It would be interesting to see if this conjecture holds and how such a Byzantine-tolerant

algorithm performs in practice.

State Machine Replication. In Chapter 3, we examined the relation between consensus and

State Machine Replication (SMR) in terms of their complexity. We proved the surprising result

that SMR is more expensive than a repetition of consensus instances. Concretely, we showed

that in a synchronous system where a single instance of consensus always terminates in a

constant number of rounds, completing one SMR command can potentially require a non-

constant number of rounds. Additionally, we supported our formal proof with experimental

results using two well-known SMR implementations (a Multi-Paxos and a Raft implementa-

tion). An interesting direction for future work would be to optimize SMR performance for the

worst-case, for example by expediting recovery [95], perhaps with applicability in performance-

sensitive applications. Another possible direction would be to investigate whether it is possible

to design SMR algorithms where replicas balance among themselves the burden of keeping

each other up to date collaboratively (e.g., as attempted in [21]).

103

Chapter 5. Concluding Remarks

Transactions. In Chapter 4, we proved that fast transactions are impossible. Specifically, we

proved that invisible fast transactions are impossible in a data store that supports the weak

consistency model of monotonic writes. Our proof sheds light on an important and unexplored

consequence of fast transactions, that is, a data store that supports fast transactions cannot

tolerate the failure of even one server. In this regard, this thesis brings a better understanding

of the relationship between fault-tolerance and fast transactions. A possible direction for

future research is to investigate whether a different reasonable definition of fast transactions

exists that allows for practical fault-tolerant data stores.

104

Bibliography

[1] Amazon EC2. http://aws.amazon.com/ec2/. [Online; accessed 8-July-2020].

[2] etcd. https://github.com/coreos/etcd. [Online; accessed 8-July-2020].

[3] LibPaxos3. https://bitbucket.org/sciascid/libpaxos. [Online; accessed 8-July-2020].

[4] MongoDB. https://www.mongodb.com. [Online; accessed 8-July-2020].

[5] MySQL Cluster. https://www.mysql.com/products/cluster/. [Online; accessed 8-July-

2020].

[6] I. Abraham, G. Gueta, D. Malkhi, L. Alvisi, R. Kotla, and J.-P. Martin. Revisiting fast

practical Byzantine fault tolerance. CoRR, abs/1712.01367, 2017.

[7] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Communication-

efficient leader election and consensus with limited link synchrony. In PODC, 2004.

[8] M. K. Aguilera, J. B. Leners, and M. Walfish. Yesquel: Scalable sql storage for web

applications. In SOSP, 2015.

[9] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa, N. M. Preguiça, and

M. Shapiro. Cure: Strong semantics meets high availability and low latency. In ICDCS,

2016.

[10] K. Antoniadis, R. Guerraoui, D. Malkhi, and D.-A. Seredinschi. State machine replication

is more expensive than consensus. In DISC, 2018.

[11] B. Arun, S. Peluso, R. Palmieri, G. Losa, and B. Ravindran. Speeding up Consensus by

Chasing Fast Decisions. In DSN, 2017.

[12] J. Aspnes, H. Attiya, and K. Censor. Max registers, counters, and monotone circuits. In

PODC, 2009.

[13] H. Attiya, A. Bar-Noy, and D. Dolev. Sharing memory robustly in message-passing

systems. JACM, 42(1):124–142, 1995.

105

http://aws.amazon.com/ec2/
https://github.com/coreos/etcd
https://bitbucket.org/sciascid/libpaxos
https://www.mongodb.com
https://www.mysql.com/products/cluster/

Bibliography

[14] H. Attiya, F. Ellen, and A. Morrison. Limitations of highly-available eventually-consistent

data stores. TPDS, 28(1):141–155, 2017.

[15] P. Aublin, S. B. Mokhtar, and V. Quéma. RBFT: redundant byzantine fault tolerance. In

ICDCS, 2013.

[16] P.-L. Aublin, R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić. The next 700 BFT

protocols. TOCS, 32(4):12:1–12:45, Jan. 2015.

[17] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Highly

available transactions: Virtues and limitations. In VLDB, 2013.

[18] P. Bailis, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Bolt-on causal consistency. In

SIGMOD, 2013.

[19] P. Bailis and K. Kingsbury. The network is reliable. ACM Queue, 12(7):20, 2014.

[20] M. Ben-Or. Another advantage of free choice (extended abstract): Completely asyn-

chronous agreement protocols. In PODC, 1983.

[21] A. Bessani, M. Santos, J. Felix, N. Neves, and M. Correia. On the efficiency of durable

state machine replication. In ATC, 2013.

[22] A. Bessani, J. Sousa, and E. E. Alchieri. State machine replication for the masses with

bft-smart. In DSN, 2014.

[23] M. Biely, P. Robinson, U. Schmid, M. Schwarz, and K. Winkler. Gracefully degrading

consensus and k-set agreement in directed dynamic networks. TCS, 726:41 – 77, 2018.

[24] E. Borowsky and E. Gafni. Immediate atomic snapshots and fast renaming. In PODC,

1993.

[25] E. Borowsky and E. Gafni. A simple algorithmically reasoned characterization of wait-

free computation (extended abstract). In PODC, 1997.

[26] Z. Bouzid, A. Mostfaoui, and M. Raynal. Minimal synchrony for Byzantine consensus.

In PODC, 2015.

[27] E. A. Brewer. Towards robust distributed systems (abstract). In PODC, 2000.

[28] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris, A. Giardullo,

S. Kulkarni, H. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J. Song, and V. Venkataramani.

TAO: Facebook’s distributed data store for the social graph. In ATC, 2013.

[29] J. Brzezinski, C. Sobaniec, and D. Wawrzyniak. From session causality to causal consis-

tency. In PDP, 2004.

[30] E. Buchman, J. Kwon, and Z. Milosevic. The latest gossip on BFT consensus. CoRR,

abs/1807.04938, 2018.

106

Bibliography

[31] Y. Buchnik and R. Friedman. Fireledger: A high throughput blockchain consensus

protocol. VLDB, 13(9):1525–1539, 2020.

[32] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated data types: specifica-

tion, verification, optimality. In POPL, 2014.

[33] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to Reliable and Secure Dis-

tributed Programming. Springer, 2011.

[34] D. Cason, P. J. Marandi, L. E. Buzato, and F. Pedone. Chasing the tail of atomic broadcast

protocols. In SRDS, 2015.

[35] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive recovery.

TOCS, 20(4):398–461, 2002.

[36] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: An engineering perspec-

tive. In PODC, 2007.

[37] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.

JACM, 43(2):225–267, 1996.

[38] B. Charron-Bost and A. Schiper. The heard-of model: computing in distributed systems

with benign faults. Distributed Computing, 22(1):49–71, Apr 2009.

[39] G. Chockler, R. Guerraoui, and I. Keidar. Amnesic distributed storage. In DISC, 2007.

[40] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev,

C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik,

D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,

R. Wang, and D. Woodford. Spanner: Google’s globally distributed database. TOCS,

31(3):8:1–8:22, 2013.

[41] T. Crain, V. Gramoli, M. Larrea, and M. Raynal. DBFT: Efficient leaderless Byzantine

consensus and its application to blockchains. In NCA, 2018.

[42] J. Dean and L. A. Barroso. The tail at scale. CACM, 56(2):74–80, 2013.

[43] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Siva-

subramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value

store. In SOSP, 2007.

[44] D. Didona, P. Fatourou, R. Guerraoui, J. Wang, and W. Zwaenepoel. Distributed transac-

tional systems cannot be fast. In SPAA, 2019.

[45] D. Didona, R. Guerraoui, J. Wang, and W. Zwaenepoel. Causal consistency and latency

optimality: friend or foe? In VLDB, 2018.

[46] E. W. Dijkstra. Cooperating sequential processes, technical report ewd-123. Technical

report, 1965.

107

Bibliography

[47] J. Du, C. Iorgulescu, A. Roy, and W. Zwaenepoel. Gentlerain: Cheap and scalable causal

consistency with physical clocks. In SoCC, 2014.

[48] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony.

JACM, 35(2):288–323, Apr. 1988.

[49] T. Elrad and N. Francez. Decomposition of distributed programs into communication-

closed layers. Science of Computer Programming, 2(3):155 – 173, 1982.

[50] C. Fernández-Campusano, M. Larrea, R. Cortiñas, and M. Raynal. Eventual leader

election despite crash-recovery and omission failures. In PRDC, 2015.

[51] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus

with one faulty process. JACM, 32(2):374–382, 1985.

[52] E. Gafni. Round-by-round fault detectors (extended abstract): Unifying synchrony and

asynchrony. In PODC, 1998.

[53] Á. García-Pérez, A. Gotsman, Y. Meshman, and I. Sergey. Paxos consensus, deconstructed

and abstracted (extended version). CoRR, abs/1802.05969, 2018.

[54] C. Georgiou, S. Gilbert, R. Guerraoui, and D. R. Kowalski. On the complexity of asyn-

chronous gossip. In PODC, 2008.

[55] S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google File System. In SOSP, 2003.

[56] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services. SIGACT News, 33(2):51–59, June 2002.

[57] V. Gramoli, L. Bass, A. Fekete, and D. Sun. Rollup: Non-disruptive rolling upgrade with

fast consensus-based dynamic reconfigurations. TPDS, 27(9):2711–2724, Sep 2016.

[58] R. Guerraoui. Indulgent algorithms (preliminary version). In PODC, 2000.

[59] R. Guerraoui, M. Pavlovic, and D.-A. Seredinschi. Incremental consistency guarantees

for replicated objects. In OSDI, 2016.

[60] D. Gupta, L. Perronne, and S. Bouchenak. BFT-Bench: Towards a practical evaluation of

robustness and effectiveness of BFT protocols. In DAIS, 2016.

[61] M. Herlihy. Wait-free synchronization. TOPLAS, 13(1):124–149, Jan. 1991.

[62] H. Howard and J. Crowcroft. Coracle: Evaluating Consensus at the Internet Edge. In

SIGCOMM, 2015.

[63] H. Howard, D. Malkhi, and A. Spiegelman. Flexible Paxos: Quorum Intersection Revisited.

In OPODIS, 2016.

[64] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-free coordination for

internet-scale systems. In ATC, 2010.

108

Bibliography

[65] P. R. Johnson and R. Thomas. Maintenance of duplicate databases. RFC 677, 1975.

[66] ZooKeeper documentation. https://zookeeper.apache.org/doc/r3.6.1/. [Online; ac-

cessed 8-July-2020].

[67] F. Junqueira and B. Reed. ZooKeeper: Distributed Process Coordination. O’Reilly Media,

Inc., 2013.

[68] I. Keidar and S. Rajsbaum. On the cost of fault-tolerant consensus when there are no

faults: Preliminary version. SIGACT News, 32(2):45–63, June 2001.

[69] M. Kleppmann. Designing Data-Intensive Applications: The Big Ideas Behind Reliable,

Scalable, and Maintainable Systems. O’Reilly Media, 2017.

[70] R. Klophaus. Riak core: Building distributed applications without shared state. In CUFP,

2010.

[71] K. M. Konwar, W. Lloyd, H. Lu, and N. A. Lynch. The SNOW theorem revisited. CoRR,

abs/1811.10577, 2018.

[72] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva: Speculative Byzantine

fault tolerance. In SOSP, 2007.

[73] T. Kraska, G. Pang, M. J. Franklin, S. Madden, and A. Fekete. MDCC: Multi-data center

consistency. In EuroSys, 2013.

[74] A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system. ACM

SIGOPS Operating Systems Review, 44(2):35–40, 2010.

[75] L. Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. CACM,

21(7):558–565, 1978.

[76] L. Lamport. The weak Byzantine generals problem. JACM, 30(3):668–676, July 1983.

[77] L. Lamport. The part-time parliament. TOCS, 16(2):133–169, 1998.

[78] L. Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25, 2001.

[79] L. Lamport. Lower bounds for asynchronous consensus. In Future Directions in Dis-

tributed Computing, pages 22–23. Springer, 2003.

[80] L. Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

[81] L. Lamport. Leaderless Byzantine consensus, 2010. United States Patent, Microsoft,

Redmond, WA (USA).

[82] L. Lamport. Brief announcement: Leaderless Byzantine Paxos. In DISC, 2011.

[83] L. Lamport, D. Malkhi, and L. Zhou. Stoppable Paxos. TechReport, Microsoft Research,

2008.

109

https://zookeeper.apache.org/doc/r3.6.1/

Bibliography

[84] L. Lamport and M. Massa. Cheap paxos. In DSN, 2004.

[85] B. Liskov, S. Ghemawat, R. Gruber, P. Johnson, L. Shrira, and M. Williams. Replication in

the Harp File System. In SOSP, 1991.

[86] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t settle for eventual:

Scalable causal consistency for wide-area storage with cops. In SOSP, 2011.

[87] H. Lu, C. Hodsdon, K. Ngo, S. Mu, and W. Lloyd. The SNOW theorem and latency-optimal

read-only transactions. In OSDI, 2016.

[88] S. Lukasik. Why the Arpanet was built. IEEE Annals of the History of Computing, 2011.

[89] J. MacCormick, N. Murphy, M. Najork, C. Thekkath, and L. Zhou. Boxwood: Abstractions

as the foundation for storage infrastructure. In OSDI, 2004.

[90] P. Mahajan, L. Alvisi, and M. Dahlin. Consistency, availability, and convergence. Techni-

cal Report TR-11-21, The University of Texas at Austin, 2011.

[91] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius: Building efficient replicated state

machines for wans. In OSDI, 2008.

[92] P. J. Marandi, S. Benz, F. Pedone, and K. Birman. Practical experience report: The

performance of paxos in the cloud. CoRR, 2014.

[93] C. Martín, M. Larrea, and E. Jiménez. Implementing the omega failure detector in the

crash-recovery failure model. Journal of Computer and System Sciences, 75(3):178–189,

2009.

[94] S. A. Mehdi, C. Littley, N. Crooks, L. Alvisi, N. Bronson, and W. Lloyd. I can’t believe it’s

not causal! scalable causal consistency with no slowdown cascades. In NSDI, 2017.

[95] O. M. Mendizabal, F. L. Dotti, and F. Pedone. High performance recovery for parallel

state machine replication. In ICDCS, 2017.

[96] I. Moraru, D. G. Andersen, and M. Kaminsky. There is More Consensus in Egalitarian

Parliaments. In SOSP, 2013.

[97] Y. Moses and S. Rajsbaum. A layered analysis of consensus. SICOMP, 31(4):989–1021,

2002.

[98] A. Mostéfaoui, H. Moumen, and M. Raynal. Signature-free asynchronous binary byzan-

tine consensus with t < n/3, o(n2) messages, and o(1) expected time. JACM, 62(4):1–21,

2015.

[99] A. Mostefaoui and M. Raynal. Low cost consensus-based atomic broadcast. In Proceed-

ings. 2000 Pacific Rim International Symposium on Dependable Computing, 2000.

110

Bibliography

[100] D. Ongaro and J. Ousterhout. In search of an understandable consensus algorithm. In

ATC, 2014.

[101] M. Oriol, M. Wahler, R. Steiger, S. Stoeter, E. Vardar, H. Koziolek, and A. Kumar. Fasa: A

scalable software framework for distributed control systems. In ISARCS, 2012.

[102] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal, C. Lee, B. Montazeri, D. Ongaro, S. J.

Park, H. Qin, M. Rosenblum, S. Rumble, R. Stutsman, and S. Yang. The ramcloud storage

system. TOCS, 33(3):7:1–7:55, Aug. 2015.

[103] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults.

JACM, 27(2):228–234, Apr. 1980.

[104] M. O. Rabin. Randomized Byzantine generals. In FOCS, 1983.

[105] N. Santoro and P. Widmayer. Time is not a healer. In STACS, 1989.

[106] N. Santoro and P. Widmayer. Agreement in synchronous networks with ubiquitous faults.

TCS, 384(2):232 – 249, 2007.

[107] N. Santos and A. Schiper. Tuning paxos for high-throughput with batching and pipelin-

ing. In ICDCN, 2012.

[108] U. Schmid, B. Weiss, and I. Keidar. Impossibility results and lower bounds for consensus

under link failures. SICOMP, 38(5):1912–1951, 2009.

[109] U. Schmid, B. Weiss, and J. Rushby. Formally verified byzantine agreement in presence

of link faults. In ICDCS, 2002.

[110] F. B. Schneider. Implementing fault-tolerant services using the state machine approach:

A tutorial. ACM Computing Surveys, 22(4):299–319, Dec. 1990.

[111] E. Sit, A. Haeberlen, F. Dabek, B.-G. Chun, H. Weatherspoon, R. Morris, M. F. Kaashoek,

and J. Kubiatowicz. Proactive Replication for Data Durability. In IPTPS, 2006.

[112] K. Spirovska, D. Didona, and W. Zwaenepoel. Optimistic causal consistency for geo-

replicated key-value stores. In ICDCS, 2017.

[113] K. Spirovska, D. Didona, and W. Zwaenepoel. Wren: Nonblocking reads in a partitioned

transactional causally consistent data store. In DSN, 2018.

[114] K. Spirovska, D. Didona, and W. Zwaenepoel. Paris: Causally consistent transactions

with non-blocking reads and partial replication. In ICDCS, 2019.

[115] P. Sutra. On the correctness of egalitarian Paxos. CoRR, abs/1906.10917, 2019.

[116] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer, M. Theimer, and B. W. Welch. Session

guarantees for weakly consistent replicated data. In PDIS, 1994.

111

Bibliography

[117] R. H. Thomas. A majority consensus approach to concurrency control for multiple copy

databases. TODS, 4(2):180–209, 1979.

[118] A. Z. Tomsic, M. Bravo, and M. Shapiro. Distributed transactional reads: the strong, the

quick, the fresh & the impossible. In Middleware, 2018.

[119] M. van Steen and A. S. Tanenbaum. Distributed Systems. CreateSpace Independent

Publishing Platform, 2017.

[120] G. M. D. Vieira, I. C. Garcia, and L. E. Buzato. Seamless paxos coordinators. CoRR,

abs/1710.07845, 2017.

[121] G. Voron and V. Gramoli. Dispel: Byzantine SMR with distributed pipelining. CoRR,

abs/1912.10367, 2019.

[122] M. Welsh, D. Culler, and E. Brewer. Seda: An architecture for well-conditioned, scalable

internet services. In SOSP, 2001.

[123] B. Wester, J. A. Cowling, E. B. Nightingale, P. M. Chen, J. Flinn, and B. Liskov. Tolerating

latency in replicated state machines through client speculation. In NSDI, 2009.

[124] Y. C. Yeh. Safety critical avionics for the 777 primary flight controls system. In DASC,

2001.

[125] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and I. Abraham. Hotstuff: BFT consensus

with linearity and responsiveness. In PODC, 2019.

[126] K. Zuse. The Computer-My Life. Springer Science & Business Media, 1993.

112

Karolos Antoniadis

Phone: +41 (0) 76 70 23 10 6Contact
Email: karolos.antoniadis@epfl.ch

English: TOEFL iBT Test (2012, score: 107/120)Languages
German: Mittelstufe Goethe-Institut (2007, C1)
Greek: Mother tongue

Doctoral Student in Computer and Communication SciencesEducation
École Polytechnique Fédérale de Lausanne (EPFL)
Distributed Computing Laboratory
September 2016 – (expected) August 2020

Master’s Degree in Computer Science
Eidgenössische Technische Hochschule (ETH) Zürich
September 2012 – November 2015 (GPA 5.24/6)

Degree (Ptychio) in Computer Science
University of Crete, Greece
September 2007 – July 2012 (GPA 9.44/10, summa cum laude)

Software Engineer Intern, Twitter, SeattleWork
Experience June – September 2019: Member of the Coordination team working on ZooKeeper.

Among others, implemented a Jepsen-like tool for injecting faults in a ZooKeeper clus-
ter. Identified and fixed bugs in ZooKeeper’s leader election algorithm.

Agile Software Engineer Intern, eBay, Zurich
March – September 2014: Member of a Scrum team developing tools for real-time
monitoring of eBay’s retail campaigns. Coded and tested back-end components written
in Java.

Leaderless Consensus, co-authored with Vincent Gramoli, Rachid Guerraoui, EricPublications
Ruppert, and Igor Zablotchi. (under submission)

Thread-Placement Learning, co-authored with Rachid Guerraoui, and Vasileios
Trigonakis. (to appear) (40th International Conference on Distributed Computing
Systems (ICDCS), 2020)

The Impossibility of Fast Transactions, co-authored with Diego Didona, Rachid
Guerraoui, and Willy Zwaenepoel. (34th International Parallel and Distributed Pro-
cessing Symposium (IPDPS), 2020)

[Book Chapter] The Notions of Time and Global State in a Distributed
System, co-authored with Rachid Guerraoui in “Concurrency: The Works of Leslie
Lamport.”, 2019
In personal communication, Turing Award Laureate Leslie Lamport said:

I was asked to check the page proofs of the ACM book about my work [...] You
gave a very nice presentation of the work and said more about its influence than
I would have been able to. And yours was the one chapter in which I didn’t find
even the tiniest error–a testimony to the effort you must have put into it.

113

State Machine Replication is More Expensive than Consensus, co-authored
with Rachid Guerraoui, Dahlia Malkhi, and Dragos-Adrian Seredinschi. (32nd Inter-
national Symposium on Distributed Computing (DISC), 2018)

The entropy of a distributed computation random number generation from
memory interleaving, co-authored with Peva Blanchard, Rachid Guerraoui, and
Julien Stainer. (Distributed Computing Journal, Volume 31, 2018)

Sequential Proximity - Towards Provably Scalable Concurrent Search Algo-
rithms, co-authored with Rachid Guerraoui, Julien Stainer, and Vasileios Trigonakis.
(5th International Conference on Networked Systems (NETYS), 2017)

Concurrent Algorithms, EPFL (Fall 2018, 2019)Teaching
Assistant
Experience

Software Engineering, EPFL (Fall 2017)
Practice of Object-Oriented Programming, EPFL (Spring 2017, 2018, 2019)
Probability II, University of Crete (Spring 2009)

Research Intern at EPFL School of Computer and Communication SciencesAdditional
Research
Experience

Distributed Computing Laboratory
January – June 2016: Worked on a random number generator that leverages the un-
predictability of memory interleaving in modern processors.

May – November 2015: Finished my master thesis titled “Sequential Proximity - To-
wards Provably Scalable Concurrent Search Algorithms,” in which I formalized prop-
erties that lead to scalable concurrent search data structures.

Undergraduate Research Fellow at Foundation for Research & Technology
- Hellas (FORTH), Institute of Computer Science
Computer Architecture and VLSI Systems Laboratory
October 2011 – July 2012: Finished my diploma thesis titled “On Multi-Version Soft-
ware Transactional Memories” which surveyed some of the most important multi-
version software transactional memory algorithms.

Information Systems Laboratory
July – September 2009: Developed an application for generating RDF Schemas.

Computer and Communication Sciences Fellowship at EPFL (2016) for outstandingHonors and
Awards academic achievements

Distinguished undergraduate scholarship “Stelios Orphanoudakis” from FORTH (years:
2009, 2010)

Scholarship from State Scholarships Foundation (IKY) for being the first in my class
the first, second and third year of my studies (years: 2008, 2009, 2010)

Honors prize award, “Thales” competition, 2007, hosted by the Greek Mathematical
Society

Honors prize award, “Second Phase”(2007) and “First Phase”(2006) Informatics Com-
petition (PDP) hosted by the Greek Computer Society

(in order of experience) Java, C, and PythonProgramming
Languages

114

	Acknowledgements
	Preface
	Abstract (English/Deutsch)
	Contents
	List of Figures
	Introduction
	Distributed Computing Models
	Consensus and State Machine Replication
	Transactions
	Contributions
	Roadmap

	I Consensus and State Machine Replication
	Leaderless Consensus
	Introduction
	Model
	Leaderless Termination
	Archipelago: Leaderless Consensus
	Archipelago: Proof of Correctness
	Leaderless Consensus in Message Passing
	ArchSMR: Archipelago in Practice
	Related Work
	Conclusion

	State Machine Replication is More Expensive Than Consensus
	Introduction
	Model
	Consensus
	State Machine Replication

	Complexity Lower Bound on State Machine Replication
	Complexity Lower Bound
	Extension to other Models

	The Empirical Perspective
	Experimental Methodology
	Experimental Results on a Single Machine
	Wide-area Experiments

	Discussion
	Conclusion

	II Transactions
	The Impossibility of Fast Transactions
	Introduction
	Model
	Fast Transactions Are Impossible
	Unbounded-Version Data Store
	Conclusion

	Concluding Remarks

	Bibliography
	Curriculum Vitae

