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Abstract

Whether one aims to design treatments for diseases such as cancer or diabetes, engineer cells

to produce valuable biochemicals sustainably, or to grasp the behavior of living organisms,

it is essential to understand how cells react to genetic, environmental, and biochemical per-

turbations. Responses of living systems to such perturbations are tied to the dynamics of

the biochemical networks implementing the various biological functions necessary for its

survival. Thus, knowledge about the dynamics of these biochemical networks is crucial to

understand how living entities react to changes in their environment, genes, or biochemistry.

The environment within cells is filled with proteins, lipids, polysaccharides, RNA, and DNA,

creating various kinds of structures such as droplets, aggregates, and filaments and occupying

up to 40% of the intracellular volume. Many of the reactions within the biochemical reaction

networks can only be studied in detail when isolated from the intracellular environment.

Interaction of the reactants with these structures and other molecules within the cellular

volume affects the dynamics properties of the biochemical reactions. The data obtained from

experiments that measure the reaction dynamics isolated from the intracellular environment

in a dilute setup, omit the effects originating from the interactions with this complex intracel-

lular environment. This discrepancy can result in misinformed models unable to capture the

cellular responses. Theoretical and computational models can provide insight into how the

reaction kinetics is altered due to the structures inside the cell.

In this thesis, we studied the behavior of reactions confined to different structures inside the

cell. Therefore, we focused our efforts on the dynamic capture of chromatin-binding proteins

as well as the effects of macromolecular crowding on enzyme kinetics and enzyme reaction

networks. Firstly, we used computational modeling and parameter estimation methods to

identify the binding mechanism of a heterochromatin effector protein binding to a posttransla-

tional modification mark. We then identified the key parameters of this binding mechanism to

investigate the potential effects of the intracellular environment on the binding behavior. Sec-

ondly, we investigated the reaction kinetics of enzymes in a solution of macromolecules, such
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as other enzymes, proteins, DNA, and others. We, therefore, developed a new computational

framework that allowed us to parameterize approximate reaction kinetic based on particle sim-

ulations. This method allowed us to show that maximal enzyme rates and Michaelis-Menten

constants are reduced up to 10 fold upon introducing macromolecules into the system. We

continued the analysis of crowded enzyme kinetics by developing a new theoretical model

of crowded diffusion-controlled reaction networks. We then used this model to study the

role of diffusion in crowded enzyme kinetics. Thirdly, we combined the approximate kinetics

with the theoretical model to investigate the impact of crowding on prototypical metabolic

networks consisting of multiple enzymatic reactions. Our results suggest that crowding can

have significant and unintuitive effects on the sensitivities of the reaction network, making

a strong for the application of the derived methods in large scale metabolic models. Finally,

we outline the path towards application-specific in vivo like models from the integration of

revaluated in vitro data.

Keywords

Chemical kinetics, protein binding, chromatin, epigenetic factors, macromolecular crowding,

enzyme kinetics, metabolic control analysis.
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Zusammenfassung

Möchte man neuartige Therapien für Krankheiten wie Krebs oder Diabetes entwickeln, Che-

mikalien mittels genmodifizierter Zellen nachhaltig produzieren oder das biochemische

Verhalten lebender Organismen begreifen, ist es erforderlich zu verstehen, wie Zellen auf

Veränderungen in ihrer Umwelt, in ihrem Genom oder auf biochemischer Ebene reagieren.

Die Antwort der biochemischen Signale lebender Organismen auf solche Veränderungen

ist an das dynamische Verhalten der biochemischen Interaktionen gebunden, welche die

verschiedenen überlebensnotwendigen, biologischen Funktionen beinhalten. Deshalb ist

das Wissen über das dynamische Verhalten dieser biochemischen Interaktionen auschlagge-

bend, um zu verstehen, wie Lebewesen auf diese Veränderungen reagieren. Die Umgebung im

Zellinneren ist voller Proteine, Lipide, Polysaccharide, RNA und DNA. Diese Makromolekü-

le formen verschiedene Strukturen, wie zum Beispiel Tröpfchen, Aggregate oder Filamente

und füllen somit bis zu 40% des Zellvolumens aus. Viele der biochemischen Reaktionen

innerhalb dieser Reaktionsnetzwerke können nur untersucht werden, wenn diese aus der

intrazellulären Umgebung isoliert werden. Interagieren die an diesen Reaktionen beteiligten

Moleküle mit den Strukturen und Makromolekülen innerhalb des Zellinneren, verändert

dies die dynamischen Eigenschaften der biochemischen Reaktionen. Experimentelle Daten,

die durch das Extrahieren dieser Reaktionen aus ihrer intrazellulären Umgebung, erhoben

werden, vernachlässigen die Effekte, die durch die Interaktion mit dieser komplexen Umge-

bung stammen. Diese Diskrepanz zwischen der in vitro Messung und der in vivo Dynamik

kann dazu führen, dass Modelle mit falschen Informationen gefüttert werden und nicht in

der Lage sind, das komplexe Verhalten der biochemischen Interaktionen zu reproduzieren.

Theoretische und informationstechnische Modelle können dabei helfen, die Veränderungen

der Reaktionsdynamik innerhalb einer Zelle zu bestimmen .

In dieser Arbeit haben wir das Verhalten von biochemischen Reaktionen untersucht, bei denen

die Reaktionspartner in ihrer Mobilität durch zelluläre Strukturen beschränkt sind. Dabei

haben wir uns auf das Erforschen des dynamischen Verhaltens von Chromatin-bindenden
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Zusammenfassung

Proteinen sowie dem Untersuchen von Molecular Crowding-Effekten auf den Michaelis-

Menten Mechanismus und auf Metabolische Reaktionsnetzwerke fokussiert. In einem ersten

Schritt nutzen wir Computer Simulationen und Parameter Identifikationsverfahren, um den

Bindungsmechanismus eines Heterochromatin-Effektor-Proteins zu charakterisieren. An-

schließend haben wir die Schlüsselparameter des Bindungsmechanismus identifiziert, um die

potenziellen Effekte der intrazellulären Umgebung auf das Bindungsverhalten zu analysieren.

In einem zweiten Schritt untersuchen wir die Reaktionskinetik von Enzymen in einer Lösung

aus Makromolekülen, wie Proteinen, Lipiden, Polysacchariden, RNA und DNA. Dafür haben

wir ein neuartiges, computerbasiertes Framework geschaffen, das es uns erlaubt, approximier-

te Reaktionsgeschwindigkeitsgesetze mithilfe von Partikelsimulationen zu parametrisieren.

Diese Methodik erlaubt es uns zu zeigen, dass die maximale Reaktionsgeschwindigkeit und

die Michaelis-Menten Konstante um das 10-fache reduziert werden, wenn Makromoleküle in

das System eingebracht werden. Wir haben diese Analyse fortgesetzt und ein theoretisches

Model für diffusionslimitierte Reaktionsnetzwerke mit Crowding Effekten entwickelt. Folgend

konnten wir mit diesem Model das Zusammenspiel von Diffusion und Molecular Crowding-

Effekten auf die Enzymkinetik analysieren. In einem nächsten Schritt kombinierten wir das

approximierte Reaktionsgeschwindigkeitsgesetz mit dem theoretischen Modell, um den Ein-

fluss von Molecular Crowding-Effekten auf prototypische Reaktionsnetzwerke zu untersuchen.

Unsere Resultate zeigen, dass Crowding-Effekte zu signifikanten und unerwarteten Verände-

rungen der Systemsensitivitäten führen. Abschließend geben wir einen Überblick über die

Aufgaben, die für die Integration von in vitro Daten in applikationsspezifische Modelle mit in

vivo artigem Verhalten notwendig sind.

Stichwörter

Chemische Reaktionsgeschwindigkeit, Protein Adsorption, Chromatin, Epigenetische-Faktoren,

Molecular Crowding, Enzymkinetik, Metabolische-Kontroll-Analyse
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1 Background and Scope

Living cells reproduce by consuming energy-rich nutrients in their environment and use the

energy and their atoms to create new molecules that make up their very own building blocks.

This process, called metabolism, sustains every living organisms and is the foundation of our

existence. Cells have evolved a piece of sophisticated machinery to sustain this reproductive

behavior. This machinery allows them to transform information stored in the form of poly-

meric molecules, deoxyribonucleic acid (DNA), into functional polymer units called proteins.

Therefore the information stored centrally on the DNA is transcribed into other polymers,

messenger ribonucleic acid (mRNA), by some part of this machinery, RNA polymerase, to

allow. The mRNA then provides this information to the Ribosomes, a piece of the machinery

that uses the recipe transcribed into the mRNA to assemble a protein as a sequence of specific

amino acids. These proteins then implement biological functionalities by binding to other

proteins (Jones and Thornton, 1996), change their configuration (Pivovarov et al., 2018; Skou,

1957; Deng et al., 2014), assemble into structures (Pieters et al., 2015), catalyze biochemical

reactions (Buchner, 1897; Sumner, 1935) or by a combination of these principles (Boyer, 1997).

Enzymes, proteins catalyzing biochemical reactions, allow cells to breakdown molecules from

their environment and create new molecules from their fragments and the energy harvested

by breaking the original molecules down. Some organisms, such as plants and cyanobacteria,

even evolved proteins that use the energy stored in light photons directly, allowing them

to utilize low energy molecules such as carbon dioxide (CO2) to construct the molecules

necessary for their reproduction (Tabita et al., 2007). Other proteins implement signaling

networks that allow cells to process chemical signals from their environment and then execute

response programs to adapt to changes in the environment in a time- and space-dependent

manner (Kornberg and Tabata, 1993; Goehring et al., 2011). Therefore, proteins located at the

periphery of the cell modify proteins within the cells to delay the input signal to the location of
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Chapter 1. Background and Scope

the DNA to regulate wich information on the DNA is translated to proteins. The interactions

between the modified proteins and the proteins to be activated and repressed can, in this

way, implement complex programs in response to the biochemical information outside the

cells. The display specific proteins on the cell surface or the expression of transported proteins

allow then further to send chemical signals between cells enabling them to coordinate their

responses. The dynamics of these biochemical reaction networks are crucial for understand-

ing and predicting how living entities, such as cells and organisms, react upon genetic and

environmental perturbations.

1.1 Confinement of biochemical reactions

All this complex biochemical machinery that allows the cell to adaptively produce its compo-

nents, including the components necessary to build and maintain this machinery, is confined

within a small membrane-enclosed space (Lombard, 2014). In eukaryotic cells, the interior

of this membrane-enclosed space is further separated into compartments with specialized

functions, resulting in a different composition of macromolecules for every separated com-

partment (Alberts, 2014). The biochemical reactions that govern the cellular functions occur

within these membrane-enclosed spaces. The molecules participating in these reactions are

thus traveling through a complex and diverse environment shaped by the different kinds of

macromolecules inside these spaces. The complexity of the environment has a significant

effect on the transport properties of the molecules involved in the biochemical reactions

(Benichou et al., 2010; Zhou et al., 2008). These transport properties are essential for the

characteristics of biochemical reactions. As for a reaction to occur, the reactants need to

be in close proximity. The relative transport dynamics between the reactants are thus the

determining factor for the dynamic behavior of the biochemical reactions.

The most prominent of the macromolecules inside the intracellular subvolumes are proteins,

lipids, polysaccharides, RNA, and DNA (Ellis, 2001). Proteins are the most abundant among

these macromolecules implementing most of the cellular functions. Proteins can form many

different structures, such as filaments (Dominguez and Holmes, 2011; Carlier and Pantaloni,

1981), aggregates (Pieters et al., 2015), or phase-separated droplets (Hyman et al., 2014).

However, many of the proteins do not participate in any structure, diffusing throughout the

complex solute along with the small molecules. Further, a significant fraction of proteins

participate in biochemical reactions as enzymes. Thus, their transport properties are relevant

to many biological functions.
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1.1. Confinement of biochemical reactions

Lipids make up the very membranes that enclose these subvolumes but also form smaller

structures such as micelles and vesicles Gorter and Grendel (1925); Šegota and Težak (2006).

Vesicles enclose themselves small subspaces creating small separated environments. These

lipid membranes can further bind proteins from the intercellular space that are bound to

a lipid anchor (Ferguson, 1991). Other proteins are directly synthesized as transmembrane

proteins and, therefore, only functioning when assembled across as well as tightly bound to it

(Vinothkumar and Henderson, 2010). Proteins that are bound to a membrane are restricted in

their movement to two dimensions, exhibiting thus different transport properties. Polysac-

charides can often be secreted and can form layers at the periphery of the extracellular space

(Flemming and Wingender, 2010) or aggregate at specific cellular locations to be used as long

term energy storage (Robyt, 2001) or to from support structures (Pauly and Keegstra, 2016).

RNA and DNA molecules are filamentous structures that act as binding sites for different

kinds of proteins. Their string-like structure leaves the molecules binding unspecifically to the

molecules with a single spatial degree of freedom, resulting in diffusion along with the DNA or

RNA molecules.

Filamentous protein structures such as actin (Dominguez and Holmes, 2011) and microtubules

(Carlier and Pantaloni, 1981; Desai and Mitchison, 1997) can bind specific proteins that are

then actively driven by the dephosphorylation of adenosine triphosphate (ATP) to walk along

the filamment, resulting in an actively driven transport along the protein structure (Sweeney

and Houdusse, 2010). Depending on the cell type, compartment, and spatial localization,

these macromolecules can occupy up to 40% of the intracellular volume (Ellis, 2001; Ellis and

Minton, 2003; Minton, 2001), resulting in a reduced accessible volume for the molecules that

diffuse through this space The reduced volume also increases the probability of collisions

between molecules. These collisions lead to deflections along the path of diffusion, changing

the effective transport properties of all the molecules in the solution (McGuffee and Elcock,

2010; Jeon et al., 2016).

Based on the cellular structures and transport mechanisms, we may classify the confinement

of the biochemical reactions into several different categories. Therefore, we classify the con-

finement transport problems based on two criteria i) their molecular transport mechanism

and ii) the ideal dimension of their accessible space. This dimension considers the ideal

spatial degrees of freedom of the reactants. Based on the molecular transport mechanism, we

can distinguish between active and passive transport. Active transport involves a transport

mechanism that uses chemical energy for a directed movement, such as the use of ATP de-

phosphorylation by myosin to sustain a directed movement along an actin filament (Sweeney
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A

B

C

E

Figure 1.1 – Illustrations of different categories of confined reactions systems in a prokaryotic
cell. A) A membrane-bound enzyme (yellow) is catalyzing membrane-bound substrates (red)
to membrane-bound products (blue). B) A membrane-bound enzyme (yellow) catalyzing
substrates (red) to products (blue) that diffuse thought the cytosolic space. C) Proteins (green),
e.g., Transcription factors, binding to DNA (red) D) Enzymes (yellow) catalyzing, substrates
(red) to products (blue) within the crowed cytosol (grey).

and Houdusse, 2010). Passive transport inside the cell is transport by thermal diffusion and

diffusion along a concentration gradient. Based on the ideal dimension of the accessible space,

we find three different scenarios in the cases described above i) three-dimensional (3D) trans-

port inside the intracellular space, ii) two-dimensional transport (2D) of membrane-bound

molecules, and iii) one-dimensional transport (1D) of species bound to string-like structures

such as RNA, DNA and protein fibers. Considering that the reacting part of the molecules is

linked rigidly to the part of the molecule binding to a structure, confined biochemical reactions

can be classified by the transport properties of the respective educts and products. It should

be noted here that if the structure-bound part of the molecules is linked flexibly to the reactive

part, adding a layer of complexity to this classification.
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1.1. Confinement of biochemical reactions

All the effective transport spaces are crowded with different kinds of macromolecules. Each

transport mode, active or passive, and in 1D, 2D, or 3D is differently affected by this macro-

molecular crowding. All of the transport modes are affected by some form of anomalous

diffusion (Hofling and Franosch, 2013). So it has been shown that for transcription factors

diffusion along a DNA string, other transcription factors on the DNA facilitate the dissociation

resulting in a mixed 1D, 3D transport model for the transcription factor binding dynamics

(Li et al., 2009). It was also shown that static obstacles decrease the mean first passage times

for targets in close proximity as opposed to those far away and that this relation holds in

two and three dimensions for any diffusion-based transport mechanism (Benichou et al.,

2010). Crowding in 3D domains can introduce anisotropic diffusion effects (Grima et al., 2010).

Further, heterogenous crowding conditions in three dimensions can direct the motion of

molecules by introducing an advective like velocity component directed towards less crowded

regions. (Smith et al., 2017).

As mentioned above, the change in the transport properties between the reactants affects their

reaction dynamics (Examples in figure 1.1). This has been shown in the work of (Smoluchowski,

1927). He could show already that if every encounter leads to the diffusion and the capture

radius, drive the kinetics of the reaction. His work was then generalized to include partially ab-

sorbing boundary conditions to consider that not all encounters lead to a successful reaction

(Collins and Kimball, 1949a,b) However, the overall reaction dynamics are affected by more

than merely the transport between the reactants. They are also impacted by the structure of

the fluid and the thermodynamics of the solution. One of the early works on macromolecular

crowding revealed that volume exclusion shifts the thermodynamic equilibrium of reactions

Minton (1981). The fluid-structure also has an impact on the reaction dynamics. It was

first shown by Debye (1942) as he was the first to consider electrostatic forces in irreversible

diffusion-limited reactions. These results were then later generalized to include any other

forces and partially absorbing boundary conditions (Szabo, 1989; Berezhkovskii and Szabo,

2016). Finally, the Smoluchwski theory was generalized to describe reaction networks close to

equilibrium (Gopich and Szabo, 2002, 2018). Despite these efforts, no conclusive theoretical

model has been developed that accounts for i) the thermodynamics, ii) the fluid-structure as

well as the changes in iii) transport properties for diffusion-controlled biochemical reactions

in crowded environments. Instead, crowding effects on reaction kinetics were usually investi-

gated using lattice-based monte claro methods (Schnell and Turner, 2004; Grima and Schnell,

2007, 2008; Grima, 2010; Mourao et al., 2014; Sturrock, 2016), or Brownian reaction dynamics

simulations (Schoneberg and Noe, 2013; Biedermann et al., 2015; Smith and Grima, 2017).

Although these methods potent to investigate stochastic and inhomogeneous systems as they
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allow to characterize noise, they are computationally relatively expensive. Generally speak-

ing, the lattice-based models are computational less expensive but limited in their spatial

resolution, whereas the Brownian reaction-based methods allow introducing a wide range of

particle sizes. However, especially when the system dynamics span across multiple orders of

magnitude in their characteristic times, the computational cost starts to increase significantly.

Even the comprehensive simulation of a partial reaction network of an organism in crowded

conditions, e.g., glycolysis, is a task still to be completed. Also, simulations of crowded reaction

dynamics have so far be limited to species diffusing in three or two dimensions, leaving out

mixed scenarios of cytosolic enzymes that adsorb to the membrane and catalyze reactions in

involving the lipids on the membrane.

Intuitively macromolecular crowding effects can be separated into two counteracting contri-

butions i) the decrease of the effective diffusion constant and ii) the reduction of the available

volume. The diffusion constant decreases since the average diffusion path between two reac-

tants increases as these have to diffuse around the macromolecules. Additionally, collisions

of the reactants with the macromolecules reduce their diffusion as these collisions deflect

the path of free diffusion, further increasing the average diffusion path. This decrease of

the effective diffusion constant of the respective reactants results in a reduced collision fre-

quency and with that in a reduction of the effective reaction rate constant. On the other hand,

the macromolecular crowding decreases the available volume for the respective reactants.

This decrease of the available volume has to contributions i) the volume occupied by the

macromolecules themselves ii) and the volume that is not available to the reactant due to

its interaction with the macromolecules. The second contribution depends strongly on the

relative size of the macromolecules and the reactants and vanishes in the limit of large macro-

molecules and small reactants and increases in the reverse case. The reduction in the available

volume effectively increases the concentrations of the reactants. This effective increase in the

concentration increases the collision frequency and, therefore, the effective reaction rate con-

stants counteracting the effect of decreased diffusion. The effect of macromolecular crowding

on the effective reaction rates depends thus on the relative contributions of the reduction in

diffusion constant and the reduction of the available volume of the individual reactants. The

relative size distributions of different reactants, such as enzymes and substrates is thus a key

factor for the rate of the effective reaction rates.
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1.2 In silico reevaluation of in vitro data

The intracellular environment has a significant effect on the biochemical reaction kinetics,

introducing several layers of complexity. Thus, when extracting components from the cell

to study them in a in vitro setup, this complexity is lost, and the transport properties of

the biochemical reactants simplify to their dilute transport properties. Thus the dynamic

properties of biochemical reactions observed in vitro are not the ones we expect in the intra-

cellular environment. Nevertheless, in vitro studies are an essential tool to deceiver cellular

function experimentally as they offer tools to perturb biochemical systems in a controlled

setting, excluding unknown factors from the cellular systems (Shaw et al., 1990; Visco et al.,

2016; Su et al., 2016). They further allow us to study enzyme reaction kinetics by perturbing

the substrate concentrations and measuring turnover rates, an experiment that in within

the cellular environment would not be possible as the enzyme concentration, as well as the

metabolite concentrations, would need to be measured, controlled and varied within a living

cell (Brooks et al., 2004). With the amount of in vitro kinetic enzyme data available, it is thus

tempting to reconstitute the partial subsystems characterized in vitro to complete systems

using computational methods (Schomburg et al., 2013; Wittig et al., 2012). Such an approach

is widely used for building kinetic models (Emiola et al., 2015; Watterson et al., 2013). Here

enzyme rate laws characterized in vitro are directly incorporated into kinetic models and then

used to analyze the properties of the system. Such an approach assumes that the reaction

kinetics within the cellular environment are the same as the ones reconstituted in vitro. As we

have discussed in detail above, this is most likely not the case for most biochemical reactions.

The other most common way to gain information on the biochemical parameters inside the

cell is by using parameter identification methods such as genetic algorithms (Deb et al., 2002;

Deb and Jain, 2014), covariance matrix adaptation evolutionary strategy (Hansen et al., 2003;

Igel et al., 2007) as well as other strategies based on optimal transport (Öcal et al., 2019) or

adaptive sampling (Asmus et al., 2017). In all these parameter identification methods, a set of

experimental perturbations is used to match to find a set or sets of parameters for a model so

that its predictions are in agreement with measured data. Thereby an objective function is

used to evaluate the agreement between simulated and measured data, and the parameters

are changed until one or multiple satisfying parameter sets are found. The different parameter

identification methods differ mainly in two aspects i) how these parameter sets generated ii)

how the parameter sets are selected. The different methods of generating and selecting data

sets aim to optimize the parameter identification methods for various tasks, such as finding

parameter sets that full fill the objective functions with large variability in the parameter sets
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(Asmus et al., 2017), identifying trade-offs between multiple objective functions (Deb et al.,

2002; Deb and Jain, 2014; Igel et al., 2007) or dealing with uncertainty in the determination of

the objective function (Öcal et al., 2019).

By using directly the data from perturbation experiments done in living cells, we can gain

insight into the effective parameters within the cell. As the knowledge of cellular biochemistry

grows with increasing speed, models become more and more detailed. In contrast, the

quantitative data on the system in question is often limited as it is expensive to generate.

With increasing network complexity, the parameter uncertainty increases. This increase in

uncertainty can be circumvented by including more experimental data to fit the model. To

circumvent this increase in parameter uncertainty models are often simplified (Mayer et al.,

2010). On the other hand, generating a purposefully smaller model reduces the pre-existing

knowledge of the structure of the biochemical reactions network, thus reducing the model’s

structural information. With this, the parameter identification problem becomes a theoretical

information problem where the information within the data is information to be extracted

into the information on the model parameters (the more information, the less uncertainty

(Shannon, 1948)) given a set of structural information. From a theoretical information point

of view, it is easy to argue that the model with most structural information and parameter

information is the best model as it can extract the most from the data. This might not be the

case anymore when using the model to address a biological or an engineering question. Since,

as soon as the question is asked, the information within the network, i.e., the parameters

and the model structure, becomes differently important. Therefore not model with the most

information, but the model with the most information regarding the question becomes the

most useful model to identify the model parameters.

In this thesis, we advocate for increasing the amount of information in those models by making

use of a combinatorial approach that utilizes both i) parameter identification using in vivo

perturbation experiments and ii) the integration of in vitro measured data. To integrate these

two approaches successfully, we propose to use theoretical and computational models to

reconstitute the in vitro data in an in vivo like environment to find appropriate corrections

of the effective reaction kinetic parameters. Such a two-fold approach may help address the

shortcomings of both parametrization methods and make the most of the already existing

information. To apply the in silico reconstitution of in vitro experimental data in an in vivo

like environment on a large scale new efficient computational methods will be essential. In

this thesis, we provide methods and studies that aid this development.

8



1.3. Thesis overview

1.3 Thesis overview

This thesis is organized into six chapters. We here give a brief overview of the content discussed

in this thesis. In this first chapter, we introduced the concept of confined reaction kinetics and

the concepts of parameter estimation and parameter correction.

In chapter 2, we present a study on multivalent protein binding to chromatin. In this study, we

make use of parameter estimation techniques to identify the binding mechanism and study

the model cellular conditions.

In chapter 3, we present a particle-based analysis of the Michaelis-Menten kinetics in crowded

conditions. We present a novel method to approximate the reaction kinetics of crowded

reactions efficiently.

In chapter 4, we derive a comprehensive mean-field model for crowded, diffusion-controlled

kinetics based on the Smoluchowski equation in non-equilibrium situations. We provide

an analytical solution for the steady-state flux of diffusion-controlled bimolecular reactions

displaced from equilibrium. We then use this model to study the effect of crowding on diffusion

and reaction controlled enzymes.

In chapter 5, we use the mean-field model derived in chapter four in combination with the

efficient approximate reaction kinetics to formulate a metabolic control analysis method for

crowded reaction kinetics. We apply this crowded metabolic control analysis to analyze the

steady-state responses of prototypical reaction networks.

Finally, in chapter 6, we summarize the conclusions of this thesis and provide perspectives for

the future study of confined reaction networks and in vitro parameter corrections.
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2 Modeling of multivalent protein bind-

ing on chromatin

This chapter is part of work published as: Bryan, L. C., Weilandt, D. R., Bachmann, A. L.,

Kilic, S., Lechner, C. C., Odermatt, P. D., Fantner, G. E., Georgeon, S., Hantschel, O., Hatzi-

manikatis, V., and Fierz, B. (2017). Single-molecule kinetic analysis of HP1-chromatin binding

reveals a dynamic network of histone modification and DNA interactions. Nucleic Acids Res,

45(18):10504–10517.

For this work, the deterministic and stochastic modeling, the parameter identification, as well

as the sensitivity analysis, were performed by Daniel Weilandt under the supervision of Beat

Fierz and Vassily Hatzimanikatis.

2.1 Introduction

In this first chapter, we investigate the kinetics of a protein (HP1) that has the ability to bind to

a 1D like structure (Chromatin). Chromatin is a complex of proteins and DNA that organizes

the eukaryotic DNA. It forms a filament-like structure that compacts the DNA with a length

of about 2m to fit into the nucleus with a diameter of 5−10µm (Alberts, 2014). The core

structures of the filament are the nucleosomes, these are assembled from Proteins and DNA.

A nucleosome consists of a protein core around which 147 base pairs (bp) of DNA are wrapped.

The protein core is made up of an octamer of two of each of the four core histones H2A H2B

H3 and H4. The nucleosomes are connected by 30-70 bp of linker DNA forming a bead on a

string like structure (Luger et al., 2012). This complex exists in different states, depending on

the function of the underlying genomic sequence. In regions of active gene transcription, the

beads form an open structure, mediated by acylation of the core histones called euchromatin.

The open structure is highly dynamic and constantly remodeled to control gene expression.
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Chapter 2. Modeling of multivalent protein binding on chromatin

In regions of repressed transcription, the histones are not acetylated, and the presence of

repression associated post-translational modifications (PTMs) on the core histones, linker

histones H1 and structural effect proteins such as HP1 result in a compacted chromatin state.

These PTMs are thought to serve as binding sites for proteins that assist in the compaction

of the chromatin structure, e.g., triple methylation of the ninth lysine of the core histone H3

(H3K9me3) is such a PTM has been shown to promote binding of the HP1 (Kilic et al., 2015).

Combinations of further PTMs in all core histones allow further discrimination of chromatin

in multiple distinct functional states (Smith and Shilatifard, 2010; Kharchenko et al., 2011).

A key question in chromatin research considers how PTM combinations are translated into

biological function. Multivalent interactions between effector proteins carrying specific reader

domains and histone PTM patterns seem at the core of chromatin regulation. Currently, the

molecular determinants of multivalent PTM recognition are not well understood.

HP1 family proteins function as fundamental components of heterochromatin involved in

gene regulation including suppression of latent viruses and transposable elements in the

genome (Elgin and Grewal, 2003). Heterochromatin denotes compact and transcription-

ally repressed chromatin domains characterized by H3 di- and tri-methylated at lysine 9

(H3K9me2/3), the absence of histone acetylation and the presence of linker histone H1

(Jenuwein and Allis, 2001). H3K9me2/3 serve as binding sites for HP1, which accumulates at

heterochromatin loci and induces gene silencing (Maison and Almouzni, 2004). In mammals,

HP1 proteins include three isoforms: HP1α, HP1β and HP1γ (Maison and Almouzni, 2004)

with different sub-nuclear localization and function (Dialynas et al., 2007; Singh, 2010; Brown

et al., 2010): Both HP1α, and HP1β associate with heterochromatin, while HP1γ has also been

shown to localize in euchromatin. HP1 proteins are similar in structural architecture: they

contain a chromodomain (CD), which specifically interacts with H3K9me2/3 with affinities

around 1–10µM (Kouzarides, 2007), a flexible hinge region (HR) that interacts with nucleic

acids as well as a dimerization domain (chromoshadow domain, CSD) (Thiru et al., 2004).

Dimeric HP1 can bind to chromatin in a multivalent fashion by engaging two H3K9me3 sites,

thereby cross-bridging nucleosomes (Canzio et al., 2011; Hiragami-Hamada et al., 2016), and

reducing access for the transcription machinery (Woodcock and Ghosh, 2010; Azzaz et al.,

2014). In spite of their structural role, HP1 proteins are in rapid exchange in living cells

(Müller et al., 2009; Festenstein et al., 2003; Cheutin et al., 2003), forming locally dynamic

compartments that are nevertheless stable over time. Such local dynamic behavior is indeed

important, enabling the cell to rapidly react when local access to chromatin is required (Ayoub

et al., 2008). Intriguingly, this organization of spatial chromatin states has been found to

involve phase-separation behavior, dependent on multivalent interactions (Larson et al., 2017;
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2.2. Experimental data

Strom et al., 2017). Due to the complexity of multivalent effector–chromatin interactions, it

is however not well understood how HP1 proteins are dynamically recruited and retained at

their target sites and how they contribute to establishing the heterochromatin state. It is thus

of importance to determine how the local arrangement (chromatin conformation) and nature

of binding sites on the chromatin fibers (histone PTMs or other structural features) control

dynamic HP1 association.

To investigate the dynamic interactions between effectors and modified chromatin we em-

ployed a single single-molecule total internal reflection fluorescence (smTIRF) imaging ap-

proach. In combination with mathematical modeling, it could be shown that the recruitment

and retention kinetics of a key effector, HP1α, to modified chromatin fibers is dependent

on multiple factors, including the density of PTMs in the chromatin substrate. Moreover,

we proposed a model for chromatin interactions, based on a kinetic capture mechanism.

According to this model, effectors are dynamically trapped by sequential binding, dissocia-

tion and re-binding reactions in the high-avidity environment of a chromatin fiber, carrying

PTMs. From such a model, it follows that the interaction dynamics of multivalent effectors

with chromatin depend on structural features of the chromatin fiber, modulating the local

concentration of binding sites.

2.2 Experimental data

We used single-molecule total internal reflection fluorescence (smTIRF) imaging to measure

the binding kinetic of the different HP1 subtypes (Figure 2.1A). Therefore, Chromatin fibers

were immobilized in PEG-passivated flow chambers and imaged in the far-red channel to

determine the location of the chromatin fibers. Then labeled HP1 is injected into the flow

chamber, and the binding events are detected by single-molecule colocalization. Therfore,

a binding event is detected by exact matching of the positions of the fluorescent emitter

with the localization of the chromatin (Kilic et al., 2015) (Figure 2.1B). From the recorded

movies, fluorescence emission traces were extracted for each chromatin position. The kinetic

traces showed transiently bound HP1 proteins as peaks in fluorescence emission (Figure

2.1C). Cumulative lifetime-histograms were constructed from the detected interaction events

and analyzed. All HP1 subtypes exhibited bi-exponential dissociation kinetics for all HP1

subtypes (Figure 2.1D, Table 2.1), while the association kinetics were well described with

single-exponential kinetics (Figure 2.1E and Table 2.1).
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Figure 2.1 – Detection of effector–chromatin interactions on the single-molecule level. A)
Schematic representation of the smTIRF imaging experimental setup showing HP1 interacting
with a chromatin fiber B) Representative microscopy images showing the localization of the
chromatin fibers (left panel) and individual HP1α molecules bound to chromatin (right panel).
The scale bar is 5µm. B) Characteristic time trace (blue) of HP1α binding dynamics to a
single chromatin fiber and fitted with a step function (red). Each intensity peak represents
one binding event. C) Dissociation kinetics: cumulative histograms of HP1α dwell times of
100 traces fitted with a double-exponential function. D) Association kinetics: cumulative
histogram of times between each binding event of the same 100 traces, fitted with a mono-
exponential function

Table 2.1 – Fit results from smTIRF measurements of HP1α, β and γ chromatin interactions.
*Values taken from Kilic et al. (2015)

Chromatin Effector τo f f ,1 (s) A1(%) τo f f ,2 (s) A2(%) kon (M−1s−1)×106 n
H3K9me3* HP1α 0.25±0.03 87±7 2.26±1.22 13±7 3.64±1.56 16
H3K9me3 HP1β 0.19±0.03 95±2 3.60±1.13 5±2 0.67±0.19 12
H3K9me3 HP1γ 0.17±0.02 93±3 2.64±0.48 7±3 0.89±0.23 6
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2.3 Mathematical model

To dissect the detailed mechanisms of HP1-chromatin binding dynamics, the binding process

is modeled in an unbiased way. The result is a kinetic model that accounts for all conceivable

interactions between mono- (X) or dimeric HP1 (Y) and histone and DNA sites on the chro-

matin fibers and their respective transitions. The kinetic model considers all elementary steps

of protein - chromatin interactions, up to third-order reactions. The protein monomers (de-

noted by X i j ) it has the ability to form homodimers (denoted by Y i j ), it can remain unbound

(superscript 0), bind unspecifically to DNA (indicated by superscript 1) or specifically to the

histone PTM, H3K9me3 (indicated by the superscript 2). The model assumes that protein

monomers can either bind to a section of the DNA or to a PTM binding site. In a dimer, on

the other hand, the individual protomers to bind independently to either a DNA binding site

or to the histone PTM. Thus, dimers can bind in a monovalent mode as HP1:HP1:DNA (Y 01),

HP1:HP1:H3K9 (Y 02) or in a bivalent mode as DNA:HP1:HP1:DNA (Y 11), DNA:HP1:HP1:H3K9

(Y 12), H3K9:HP1:HP1:H3K9 (Y 22). In addition to the binding and unbinding of the proteins to

DNA and H3K9 the model considers migration of chromatin-bound proteins between binding.

Such migrations occur, for example, if DNA-bound proteins slide along the DNA and then

bind to a modified histone tail. In order to avoid biasing the model due to its structure, all

possible migration reactions up the third order are considered. Thus, dimers can migrate from

monovalent bound states to bivalent bound states as well as from DNA bound states to PTM

bound states and vice-versa. A rules-based modeling tool BioNetGen (Faeder et al., 2009) is

then used to generate an extended reaction network from the simple reactions rules defined

above, resulting in the reaction network shown in figure 2.2.

The overall parameter space is reduced by introducing thermodynamics constraints (Table

2.2). Additionally, we assume that the free energy difference of binding to a single site is the

same for monomers and dimers: K0|1 ≡ K00|01and K0|2 ≡ K00|02. The complete mathematical

model also accounts for incomplete fluorescent labeling of HP1. Thus, every monomer can

exist in a labeled and unlabeled form. The ordinary differential equations (ODEs) of the

reaction system were solved using the CVODE solver from the SUNDIALS toolbox for MATLAB

(Serban and Hindmash, 2005; Hindmarsh et al., 2005).

2.4 Parameter identification

In the next step, we aim to find parameters that enable us to reproduce the experimentally

observed behavior. We, therefore, used a variant of the genetic multi-objective optimization
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Figure 2.2 – Full reaction netowrk model of HP1 chromatin interactions. All reactions between
the indicated states are reversible and governed by equilibrium and rate constants.

algorithm (NSGA-II) (Deb et al., 2002) to generate a population of parameter sets for the

kinetic model that match the experimental data. The NSGA-II provides a multi-objective

selection algorithm to select parameter sets close to the Pareto front of the objectives. The

selection of Pareto optimal parameter sets allows extracting possible trade-off when fitting

to multiple data sets simultaneously. In addition to the Pareto optimal selection function,

we used a Gaussian mutation function to sample the parameter space robustly within the

initially set bounds. We then tuned the parameters of the Gaussian mutation function to

capture the Pareto front of the two objective functions used. We chose this genetic algorithm

multi-objective as it allows us to sample the parameter space along the Pareto front and, at the

same time, generating a robust parameter population within the predetermined search space.

The generated parameter populations further allow us to provide a measure of uncertainty for

the individual parameter set giving us insight into which parameters are more constraint by
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Table 2.2 – Thermodynamic constraints on the equilibrium parameters

K0,1|01 = KD
K00|01

K0|1
K01|02 = K00|02

K00|01
K1,1|11 = KD

K00|01

K0|1
K0,2|02 = KD

K00|02

K0|2
K01|11 = K00|11

K00|01
K2,2|22 = KD

K00|02

K0|2
K1|2 = K0|2

K0|1
K02|22 = K00|22

K00|02
K22|12 = K00|12

K00|02K00|22

K11|12 = K00|12

K00|01K00|11
K11|22 = K00|02K00|22

K00|01K00|11
K01|22 = K00|02K00|22

K00|01

K02|12 = K00|12

K00|02
K01|12 = K00|12

K00|01
K02|11 = K00|01K00|11

K00|02

the experimental data and which ones are less determined. It shall be noted here that we did

not compare the performance of this parameter identification algorithm with other parameter

identification methods that provide similar features as such an analysis was not in the scope

of this work.

To compare the kinetic model with the single-molecule data, we perform association and

dissociation simulations, where we first HP1 introduce at the nominal concentration and

solve the set of ODEs until the chemical equilibrium is reached, using the equilibrium concen-

trations of bound HP1 as initial conditions a second simulation performed were the initial

free HP1 concentration is zero. We then measure the characteristic times scales necessary

for the HP1 to dissociate from the chromatin by fitting a double exponential of the form

A1,det exp(t/τ1,o f f )+A2,det exp(t/τ2,o f f ) to the normalized decay curve. We compare the rela-

tive amplitudes of the determinstic model with the relative amplitudes of the the experimental

data, as the amplitudes from the expmerimental data are obtained from a cummulative his-

togram data, we have to scale the amplitudes of the ODE model relative to their respective

time scales A2,si m = A2,det /τ2/(A1,det /τ1 + A2,det /τ2). To train the model parameters, we used

the results of the single-molecule TIRF experiments with HP1α at 1nM concentration and

with HP1β at 5nM concentration (Table 2.1). We assigned each experiment an objective

function that compares the dissociation times τ1, τ2, the scaled relative exponential fraction

A2 as well as the equilibrium amount of adsorbed protein at equilibrium N0 = [HP1]V Na with

the experimental results. The objective for each experiment is then calculated as:

R =
√√√√( |N0,exp −N0,si m |

N0,exp

)2

+
( |τ1,exp −τ1,si m |

τ1,exp

)2

+
( |τ2,exp −τ2,si m |

τ2,exp

)2

+
( |A2,exp − A2,si m |

A2,exp

)2

(2.1)

To simplify the parameter estimation, we used dimensionless quantities to describe our

system. The only independent units of our system are concentration and time. Thus we

scale our system using a characteristic concentration cr e f = [HP1]tot and a characteristic

time tr e f = rD,r e f [HP1]tot . Here we chose the characteristic concentration to be [HP1]tot the
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Table 2.3 – A list of all dimensionless model variables given a short description and expression
in terms of the reference concentrations.

Symbols Description Expression

X0 Unbound monomeric HP1 concentration [HP1]
[HP1]tot

Y00 Unbound dimeric HP1 concentration [2HP1]
[HP1]tot

D Concentration of free DNA binding sites [DN A]
[HP1]tot

S Concentration of free PTM binding sites (H3K9) [H3K 9]
[HP1]tot

X1 Monomeric, DNA bound HP1 concentration [HP1:DN A]
[HP1]tot

Y01 Dimeric, monovalent DNA bound HP1 concentration [2HP1:DN A]
[HP1]tot

Y11 Dimeric, bivalent 2xDNA bound HP1 concentration [2HP1:2DN A]
[HP1]tot

Y12 Dimeric, DNA and PTM bound HP1 concentration [H3K 9:2HP1:DN A]
[HP1]tot

X2 Monomeric, PTM (H3K9) bound HP1 concentration [HP1:H3K 9]
[HP1]tot

Y02 Dimeric, monovalent, PTM (H3K9) bound HP1 concentra-
tion

[H3K 9:2HP1]
[HP1]tot

Y22 Dimeric, bivalent PTM (2H3K9) bound HP1 concentration [2H3K 9:2HP1]
[HP1]tot

Table 2.4 – A list of all dimensionless model variables given a short description and expression
in terms of the reference concentrations.

Symbols Description Unit median lower quartile upper quartile
KD Dimerization µM 0.36 0.30 1.92
K1,2|12 1D mixed Dimerization µM 62.15 42.68 70.42
K0,1 Monomer DNA bound µM 6.19 4.54 8.12
K00,01 Dimer monovalent DNA bound µM 6.19 4.54 8.12
K00,11 Dimer bivalent DNA bound µM×M 2.20×10−4 1.79×10−4 5.81×10−4

K0,2 Monomer PTM bound µM 8.35 1.74 11.76
K00,02 Dimer monovalent PTM bound µM 8.35 1.74 11.76
K00,12 Dimer bivalent DNA-PTM bound µM×M 9.10×10−5 2.75×10−5 3.03×10−4

K00,22 Dimer bivalent DNA-PTM bound µM×M 9.30×10−5 8.11×10−5 3.72×10−3

overall concentration of protein. The characteristic time is derived from a reference value for

the dimerization rate rD,r e f assumed to be 106 M−1 s−1. The resulting dimensionless variables

are listed in Table 2.3, and a description of the dimensionless parameter can be found in Table

2.4 and Table 2.5. We performed the parameter optimization using the data of HP1α and HP1β,

inferring the relative difference in their DNA and PTM binding constants (Hiragami-Hamada

et al., 2011; Nishibuchi et al., 2014). From the results of the genetic algorithm, we obtained 168

parameter sets with different parameter combinations. For the investigations presented in

this work, we used either the median of these populations as parameters for the model (Tables

2.4 and 2.5) or we simulated all parameter sets, e.g. to compare the sensitivities across the

parameter population.
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Table 2.5 – A list of all dimensionless forward rates. The first half of the table denotes the
reaction rates for the three-dimensional reactions and the second half of the table denotes the
reaction rates for the migration rates.

Symbols Description Unit median lower q. upper q.
kD Dimerization M−1 s−1 1.12×107 5.88×106 2.16×107

k0|1 Monomer DNA binding M−1 s−1 5.75×105 4.91×105 7.93×105

k0|2 Monomer PTM binding M−1 s−1 9.56×105 3.12×105 1.32×106

k0,1|01 Dimerization of free and DNA bound
protein

M−1 s−1 1.32×105 2.29×104 2.58×105

k0,2|02 Dimerization of free and PTM bound
protein

M−1 s−1 7.93×104 4.72×104 1.23×107

k00|01 Monovalent, DNA binding of a dimer M−1 s−1 2.01×107 1.23×107 7.51×107

k00|02 Monovalent, PTM binding of a dimer M−1 s−1 1.33×107 7.68×106 1.72×107

k00|11 Bivalent, DNA binding of a dimer M−2 s−1 2.55×1014 1.38×1014 5.22×1015

k00|22 Bivalent, PTM binding of a dimer M−2 s−1 2.07×1013 1.03×1013 4.04×1014

k00|12 Bivalent, PTM-DNA binding of a dimer M−2 s−1 8.37×1013 3.34×1013 2.33×1014

k1,1|11 Dimerization of two DNA bound
monomers

M−1 s−1 1.39×1010 5.68×109 4.27×1010

k2,2|22 Dimerization of two PTM bound
monomers

M−1 s−1 1.49×1011 7.13×109 3.32×1011

k1,2|12 Dimerization of a PTM and a DNA
bound monomer

M−1 s−1 6.74×109 3.37×109 1.97×1010

k01|11 Migration from monovalent DNA bind-
ing to bivalent DNA binding

M−1 s−1 8.75×1010 2.59×1010 1.22×1011

k02|22 Migration from monovalent PTM bind-
ing to bivalent PTM binding

M−1 s−1 2.41×108 3.24×1010 3.57×1011

k01|12 Migration from monovalent DNA bind-
ing to bivalent, PTM-DNA binding

M−1 s−1 6.08×109 4.28×109 7.17×1010

k02|12 Migration from monovalent PTM bind-
ing to bivalent, PTM-DNA binding

M−1 s−1 6.74×107 2.65×107 1.75×108

k11|12 Migration from bivalent, DNA binding
to bivalent, PTM-DNA binding

M−1 s−1 5.72×108 5.12×108 9.49×1010

k22|12 Migration from bivalent PTM binding
to bivalent, PTM-DNA binding

M−1 s−1 3.67×107 6.48×106 1.46×1010

k11|22 Migration from bivalent DNA binding
to bivalent, PTM binding

M−2 s−1 3.17×1018 1.02×1018 3.70×1019

k01|02 Migration from monovalent DNA bind-
ing to monovalent, PTM binding

M−1 s−1 7.75×108 3.61×107 1.33×1011

k1|2 Migration of a monomer from DNA
binding to PTM binding

M−1 s−1 4.08×108 1.75×107 2.60×109

k01|22 Migration from monovalent, DNA
binding to bivalent, PTM binding

M−2 s−1 1.02×1019 1.10×1017 2.67×1019

k02|11 Migration from monovalent, PTM
binding to bivalent, DNA binding

M−2 s−1 3.37×1019 1.22×1019 4.43×1019
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2.5 Stochastic simulations of protein binding in vitro

We verified our deterministic parameter estimation using stochastic simulations, directly

simulating the single molecule binding experiments. To translate the deterministic model

into a stochastic simulation we transferred the rate equations into propensities as described

by Gillespie (Gillespie, 1977). The stochastic model was then simulated using StochPy (Maar-

leveld et al., 2013). To evaluate the stochastic simulations, bright and dark times, i.e. the

durations a labeled protein is bound to a chromatin array and the times the array remains free,

were determined. To this end, we simulated a single chromatin array as 24 H3K9 and 120 DNA

binding sites. Subsequently, we compared the simulations to the experiments using cumula-

tive histograms of the bright and dark times. Since the experimental procedure cannot resolve

events shorter than 0.05s these events were removed by a low-pass filter in our simulations.

Comparing the complete lifetime histograms in log(t ) space we clearly can see that the model

captures events that are beyond the resolution of the experimental measurement (Figure 2.3 A

vs. B). From the simulated cumulative lifetime histograms, observable rate (time) constants

are then retrieved (Figure 2.4 B,C), dependent on the input parameters. To vary the overall

binding affinity of H3K9me3 and DNA interactions we scaled the free energy of the a single

DNA or H3K9me3 binding site. Thus, the binding constants of bivalent bound species are

scaled by the a square of the scaling factor for the respective monovalent bound species. These

simulations allowed to track the origins of the apparent bi-exponential kinetics observed for

HP1 dissociation in the experimental data back to multivalent interactions: simulating HP1

interaction kinetics without multivalent binding did not reproduce the slow kinetic phase

(τo f f ,2) whereas inclusion of multivalency gave rise a population HP1 molecules engaged in

long-lived interactions (Figure 2.3 D).

2.6 Sensititiy analsysis

Our parameterized simulations revealed that the predominant binding pathways involved

DNA bound states (Figure 2.4A). Further, we observed that individual observable binding

events were composed of multiple rapid transitions between different H3K9me3 and intrinsi-

cally short-lived DNA bound states. We then applied our model to better understand how PTM-

and DNA-dependent interactions modulate the chromatin recruitment kinetics of HP1αand

HP1β. We thus probed the response of the apparent association (kon , Figure 2.4B) and dis-

sociation rate constants (ko f f = 1/τo f f ,1, Figure 2.4C) to changes in either the equilibrium

constant for H3K9me3 interactions (KPT M ) or in the equilibrium constant for DNA binding

(KDN A). Indeed, when systematically altering KPT M and KDN A over two orders of magnitude
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event cutoff (right). C-D) Comparison of the stochastic simulations of E) HP1α wt. with D) a
simulation where the dimerization is inhibited i.e. the equilibrium constant of the dimer was
increased by a factor of 103.
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Chapter 2. Modeling of multivalent protein binding on chromatin

around the measured values for the HP1 isoforms (≈ 1–100µM), kon was found to be more

sensitive to changes in KDN A , whereas HP1 retention on chromatin (ko f f ) depended more

strongly on KPT M . Moreover, changes in KDN A could be partially compensated by respec-

tive changes in KPT M and vice versa. In accordance with results from current and earlier

experiments Kilic et al. (2015), this analysis shows that charge-based DNA interactions are

instrumental in guiding HP1 proteins to their binding sites.

Finally, our model allowed us to identify the key parameters governing chromatin interactions.

We, therefore, performed a global sensitivity analysis on the model. In a global sensitivity

analysis, we aim to determine the input parameters that exhibit the larges sensitivity with

respect to a set of outputs over i) large ranges of input parameter changes and ii) input

parameters changing simultaneously. We, therefore, defined a set of output parameters

(bound HP1 concentration, the two apparent dissociation time constants τo f f ,1 and τo f f ,2

and the percentage of the amplitude of the slow dissociation process A2). The analysis was

performed for all the model parameters given in tables 2.4, and 2.5 with the total amount of

HP1, varying all parameters randomly within the minimal and maximal values found across

all parameters sets. For each parameter variation, we extracted the ten-fold change of the

model in- and output for the reference model and used linear regression to extract the most

probable trend for the respective parameter. This yields the most probable global effect on the

model for a given set of parameters. The indices show whether correlation, anti-correlation,

or no-correlation is expected between the respective model output and a parameter, see

figure 2.5.

The sensitivity analysis revealed the set of microscopic rate constants that had the largest

impact on a set of key observables: the amount of bound HP1, the two apparent residence

times (τo f f ,2, τo f f ,2) as well as the fraction molecules engaged in long-lived interactions (i.e.

the relative amplitude of the slow process, A2). Apart from the total HP1 concentration and

the microscopic rate constants governing binding to DNA and to H3K9me3, HP1 dimerization

and a number of internal migration pathways appeared as a key determinant for chromatin

retention (Figure 2.5). This allows us to make predictions about how the HP1 dynamics change

in a cellular environment. Increasing the local HP1 concentration results in more chromatin

bound protein. Cellular proteins that stabilize HP1 dimerization increase the chromatin bound

population and prolong the residence times by inducing multivalent states. Contrariwise, an

increase in migration reaction rates, potentially stimulated by local competition in the nucleus

or active mechanisms such as chromatin remodeling, results in faster HP1 release times as

they provide dissociation pathways. Finally, the combination of DNA and PTM interactions are
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Figure 2.4 – A) Full kinetic model of HP1-chromatin interactions, showing the pathways
associated with high flux (arrow thickness). Gray arrows denote reactions associated with
low but non-zero flux. Arrowhead size indicates the direction of net flux. B) Dependence
of simulated HP1 dissociation rate constants (ko f f = 1/τo f f ,1) on relative changes in KPT M

and KDN A . Parameters for circle: HP1α, cross: HP1β, square: HP1γ. The color code and
contour lines indicate changes in the dissociation on a logarithmic scale. C) Dependence of
simulated HP1 binding rate constants (kon) on relative changes in methyllysine (KPTM) and
DNA (KDNA) interactions. Parameters for O: Parameters for circle: HP1α, cross: HP1β, square:
HP1γ. The color code and contour lines indicate changes in the binding rate on a logarithmic
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Chapter 2. Modeling of multivalent protein binding on chromatin

Figure 2.5 – Fold change of the model outputs in GSA. The tenfold change of the model
outputs (HP1 bound, τo f f ,1, τo f f ,2, A2) is plotted vs the tenfold change of the most important
model parameters. Data is given as blue dots. The slope of the red lines indicates the mean
fold-change of the output parameters with respect to a fold-change in the input parameter

responsible for chromatin targeting, as DNA binding has strong effects across all parameters,

whereas histone PTM binding provides specificity for heterochromatic regions (Figure 2.5).

2.7 Discussion

Chromatin presents different chemical and structural features which are integrated by chro-

matin effectors and transcription factors to enact a biochemical response. Chromatin recog-

nition by multivalent effectors not only depends on the presence of specific histone PTMs

in a given chromatin state, but also on their spatial arrangement. Thus, the density of PTMs

as well as spatial features, including positioning of nucleosomes, linker DNA lengths, higher

order chromatin structure as well as asymmetrical modification patterns (Rhee et al., 2014;

Voigt et al., 2012) are an important part of the recognition landscape and determine chromatin
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2.7. Discussion

function. In addition to histone PTM-specific readers, effectors often contain additional inter-

action domains, enabling binding to DNA or RNA, to the nucleosome surface, to transcription

factors or to other chromatin associated proteins (Müller et al., 2016; Francis et al., 2004; Son

et al., 2013; Zhen et al., 2016). For a quantitative understanding of chromatin recognition,

knowledge of these different factors is required.

Here, we probed the relative influences of spatial and chemical features in chromatin on

the interaction dynamics on a class of multivalent effectors, the human HP1 family proteins.

We employed single-molecule TIRF measurements to directly monitor chromatin binding

and dissociation kinetics and, coupled with modeling the complete kinetic system, extracted

mechanistic information on these transient interactions. Combined single-molecule experi-

ments comparing all three human HP1 subtypes, together with computational efforts further

allowed us to generate a detailed picture of the dominant chromatin interaction pathways.

In this dynamic capture model, the most common HP1 recruitment and retention pathways

involve charge-dependent DNA interactions, which increase the capture radius for specific

sites (i.e. H3K9me3 modified nucleosomes). This situation, where lower-affinity interactions

guide an effector protein to its molecular target are reminiscent to the target search of tran-

scription factors (Wang et al., 2009). From initial short-lived dynamic encounter complexes,

HP1 molecules can transition into states involving more long-lived PTM-based interactions,

either mono-, bivalent or mixed states where DNA and PTMs are simultaneously engaged.

Moreover, DNA interactions enable rapid transitions between neighboring nucleosomes, fa-

cilitating rapid re-binding after dissociation from H3K9me3. Previous results (Kilic et al.,

2015) indicated a critical importance of HP1 dimerization and the thus resulting multivalency.

Here, we demonstrate that reducing the strength of charge-based interactions directly lowers

the probability of H3K9me3 binding. Simultaneously the residence times of HP1 proteins

is decreased as re-binding reactions are disfavoured. For this reason, the HP1β and HP1γ

isoforms both exhibit slower binding and reduced chromatin retention in comparison to the

HP1α isoform, in spite of their higher affinity for H3K9me3.

Taken together, we have gained insight into the mechanisms of chromatin interaction by

multivalent effectors. Importantly, we have determined a key function of helper-interactions

via the DNA in target search and chromatin retention for effector proteins. We propose that this

is a general paradigm for chromatin associated proteins. Effectors are transiently trapped by

multiple moderate-affinity interactions, and sequential dissociation and re-binding reactions

result in effector accumulation in the high-avidity environment of chromatin. Such a dynamic

capture mechanism enables a fast response to changes in the local environment or cell state
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Chapter 2. Modeling of multivalent protein binding on chromatin

(Ayoub et al., 2008; Fischle et al., 2005). It further predicts that the interaction kinetics of

effectors with chromatin depend on both the multivalency properties of effectors and the

structural features of the chromatin fiber, modulating the local concentration of binding

sites. Indeed, protein subdomains or regions conferring DNA or general nucleosome binding

properties are commonly encountered among chromatin effectors, e.g. in SUV39H1 (Müller

et al., 2016), PRC1 (Francis et al., 2004; Zhen et al., 2016), PRC2 (Son et al., 2013) or BRDT

(Miller et al., 2016), in addition to specific PTM reader modules. These interactions are thus

required for initial chromatin localization of effector complexes, whereas specific histone PTM

recognition directs their accumulation in target chromatin domains
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3 Particle-based modeling of crowding

effects on enzyme kinetics

This chapter is part of work published as: Weilandt, D. R. and Hatzimanikatis, V. (2019).

Particle-Based Simulation Reveals Macromolecular Crowding Effects on the Michaelis-Menten

Mechanism. Biophysical Journal, 117(2):355–368.

All the reasearch in this paper was conducted by Daniel Weilandt under the supervision of

Vassily Hatzimanikatis.

3.1 Introduction

For this next chapter, we switch gears and focus on the effects that high macromolecular con-

centrations have on effective enzyme kinetics. The intracellular environment of living cells is a

crowded place, about 20–40% of the interior volume occupied by a variety of macromolecules,

including proteins, RNA, DNA, and lipids (Ellis, 2001; Minton, 2001). The composition of

the intracellular mixture depends considerably varies between organisms, the cell types, and

their environment. Even within a single cell, the density and sizes of macromolecules vary

between depending on the location and the compartment (Zhou and Qin, 2013; Aon and

Cortassa, 2015; Hancock, 2004). So is the center of bacterial cells, the location of most DNA,

a region with increased density compared to the remaining cytosol (Spitzer and Poolman,

2013). The presence of such massive amounts of macromolecules impacts the properties of

molecules in the cytosol, as diffusion constants, the conformation of proteins their folding

process and aggregation properties, catalytic rates of enzymes, and enzyme-substrate affini-

ties (Poggi and Slade, 2015; Yadav, 2013; van den Berg et al., 1999). In consequence, these

changed properties are governing the properties of the biochemical reaction networks that

implement the various cellular functions necessary for translation, transcription, signaling,
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Chapter 3. Particle-based modeling of crowding effects on enzyme kinetics

and metabolism. Often components of these cellular systems are studied in vitro to determine

their characteristic parameters since such studies allow to perturb isolated subsystems and

often enable experiments, not permissive in vivo. Such experiments generate data under

well-controlled conditions and to characterize the individual parts of the system. A promi-

nent example of such a study is the characterization of enzyme kinetics as a submodule of

metabolism, first performed by Michaelis and Menten (1913). Thereby the rate of substrate

conversion of an enzyme extract is measured with varying substrate concentration to enable

the characterization of the effective reaction rate law. Such in vitro characterizations are

usually performed in dilute, homogenous conditions (Brooks et al., 2004), whereas reactions

in the cytoplasm occur in the inhomogeneous and densely packed environment described

above.

Today computational models are used to analyze and predict cell physiology. Although these

studies are continuously improved through the integration of experimental data obtained

in vivo, such as metabolomics and fluxomics, they are mostly limited in their frequent reliance

on in vitro characteristics to parameterize their models directly (Emiola et al., 2015; Watterson

et al., 2013), reduce uncertainty (Andreozzi et al., 2016a,b), or to evaluate predicted parameters

(Khodayari et al., 2014). The extensive use of in vitro data in physiological models results in

the actual enzyme in vivo characteristics not being captured such that the model predictions

from these studies might deviate significantly from the ones measured in vitro.

The relevance of environmental impact on enzyme kinetics is therefore an important topic

of study, especially in terms of crowding in the densely packed intracellular space. In early

studies of crowded enzyme catalysis, it was believed that the main effect of diffusion-limited

Michaelis-Menten kinetics was caused by altered, anomalous diffusion accompanied by

increased effective concentrations. These studies were limited, however, in that volume

exclusion effects caused by the reactive partners themselves were often neglected, which

results in the change in activity due to interaction with macromolecules not being captured

(Zimmerman and Trach, 1991; Schnell and Turner, 2004; Grima and Schnell, 2006b; Klann

et al., 2011). A more recent work on the subject was presented by Mourao et al. (2014), in

which fractal behavior, indicating that the diffusion and the apparent order of the elementary

reactions is altered, was studied using a lattice-based model for an irreversible Michaelis-

Menten mechanism. They showed that fractal kinetics only occur under very restrictive

conditions, suggesting that it might be less common than previously assumed.

Further recent work has shown that the effective rate constant for bimolecular reactions

changes under crowded conditions (Berezhkovskii and Szabo, 2016; Galanti et al., 2016).
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Berezhkovskii and Szabo demonstrated that it is possible to express the effective rate for

bimolecular reactions as a function of a crowding-induced interaction potential between two

reaction partners, which results from an interaction with the surrounding particles when

two reactants are in contact. Repulsive interactions between the reactants and particles

would, therefore, result in an attractive effective potential between the reactants and vice

versa. Relatedly, it has been shown that for rate-limited reactions, the influence of diffusion is

minimal, indicating that the effective crowding-induced interaction potential might be more

dominant for some enzymatic reactions (Benichou et al., 2010).

Because of its importance in modeling in vivo systems, the effects of crowding on biochemical

reactions have been extensively studied by various computational and experimental methods,

as seen in several reviews (Ellis, 2001; Minton, 2001; Shim et al., 2017). Most of the effort in

these studies have been directed toward investigating the impact of diffusion in fractal media

on the reaction kinetics (Benichou et al., 2010), with little focus on characterizing the effect of

crowding on the mean effective enzyme kinetics. However, because it has now been shown

that in vitro, some enzymes might not be limited by their translational diffusion but by their

apparent association rate constants (Bar-Even et al., 2011; Vijaykumar et al., 2017; Ivancic

et al., 2018; Cross et al., 2018; Westerhoff and Welch, 1992), the reevaluation of crowding in

these reactions is important.

In this work, therefore, we introduced computational methods for studying spatial effects

of any kind, applying our work to the effects of crowding on reaction-limited enzymes with

the goal of bridging the discrepancy between the in vitro measurement of kinetic parameters

and the actual in vivo conditions. The proposed method will also allow for studying the

differences in the impact of spatial effects for single reactions and for integrated reaction

networks. Although the scope of this work is the study of a reaction-limited system, we further

evaluated the performance of the proposed method for a simple system under diffusion-

limited conditions.

In contrast to the previous studies on the Michaelis-Menten kinetics, which used a diffusion-

limited irreversible reaction scheme, we studied the effect of crowding on enzyme kinetics

by employing a fully reversible reaction scheme and present herein an example with a repre-

sentative catalytic activity and affinities that result in a reaction-limited enzyme. Additionally,

our molecular particle model accounts for volume exclusion and the diffusion of all species,

including reactants and crowding agents, and this was used to study the effect of different size

distributions of crowding agents on reaction kinetics.

29



Chapter 3. Particle-based modeling of crowding effects on enzyme kinetics

Previous studies on crowding conditions were often limited by their computational cost

and lack of global insight into the sensitivity of the reaction kinetics or are missing a direct

connection to the first physical principles. They often use spatial simulation techniques

to simulate multiple realizations of reaction trajectories to determine the influence on the

effective kinetics under very specific conditions, meaning that these studies only gain insight

into the local sensitivity of the kinetics with respect to the crowding conditions. Furthermore, it

is computationally very expensive to resolve the reaction trajectories from particle simulations

for reaction-limited reactions because the timescale to resolve the diffusion of the particle is

up to seven orders of magnitude faster than the reaction timescale. This requires billions of

time steps to be solved for tens of thousands of particles, resulting in a month of simulation

time for a single trajectory (Feig and Sugita, 2013). An effective approach to reduce the

computational complexity of the Brownian is the crowder-free formulation of the Cichocki-

Hinsen algorithm (Cichocki and Hinsen, 1990), which has been validated for homogenous

and locally homogenous crowding conditions (Smith and Grima, 2017). Whether the validity

of the homogenous or local homogenous crowding assumption holds for inert molecules

with a diverse size distribution remains to be examined and shall be discussed elsewhere.

Another way to overcome the computational challenges is mesoscopic formulations based on

the reaction-diffusion master equation (Grima and Schnell, 2007; Hattne et al., 2005). These

formulations require additional models to capture the microscopic effect of obstacles on

the macroscopic rate constant, meaning that they can capture the effect of obstacles on the

apparent transport coefficient but need additional models to capture how the microscopic

collision dynamics are altered.

In this chapter, we resolve these challenges with a new, to our knowledge, formulation entitled

generalized elementary kinetics (GEEK). The formulation allows us to characterize kinetic

mechanisms that are influenced by various spatial effects, including volume exclusion, con-

finement (one-dimensional/two-dimensional diffusion), strong and weak interaction forces,

localization, or any combination of similar phenomena. In this work, we use a coarse-grained

particle model based on HSRB to parameterize this formulation, which can be used in a

straightforward way to build ordinary differential equation (ODE) models that use power-law

approximations to capture the characteristics of spatial effects and to directly quantify the

impact of fractal diffusion. The formulation presented here is achieved by a regression model

that is trained from data governed by simulating the microscopic diffusion and collisions

from the first physical principle. For the workflow, any kind of simulation algorithm with

single molecule detail can be used. Possible alternatives are, for example, the Cichocki-Hinsen

algorithm (Cichocki and Hinsen, 1990), the reaction Brownian dynamic algorithm (Morelli
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and ten Wolde, 2008), the Green’s function reaction dynamics algorithm (van Zon and ten

Wolde, 2005), smoldyn (Andrews et al., 2010), or Readdy (Schoneberg and Noe, 2013). In this

work, we used an algorithm that combines hard-sphere Brownian dynamics (Strating, 1999)

and Brownian reaction dynamics (Allen, 1980; Northrup et al., 1984; Wilson et al., 2018; Kim

et al., 2014).

We applied our method to the investigation of macromolecular crowding on the function

of phosphoglycerate mutase (PGM) in Escherichia coli. Our example clearly demonstrates

that accounting solely for an increased local concentration and anomalous diffusion is not

sufficient to properly describe crowding effects. We show that a mechanism-dependent

effect emerges upon crowding that is facilitated by an increase in both product and substrate

association activity and a decrease in the dissociation activity. For reversible Michaelis-Menten

kinetics, these effects result in an increase in the binding affinity for the product and substrate

as well as a decrease in the maximal reaction rate. Finally, we investigated the effects of

crowding on a linear pathway, in which we show that crowding can significantly redistribute

the relative flux responses with respect to enzyme overexpression, indicating that the impact

of altered kinetics is also propagated on a network level.

3.2 Modeling enzyme kinetics

3.2.1 Approximation of non ideal enzyme kinetics

In this study the focus is to investigate the effects of crowding on a two step Michaelis-Menten

mechanism. In this mechanism a substrate S binds to an enzyme E to form a complex ES via a

reversible reaction, which can reversibly transform the substrate and reversibly dissociate the

product P. The overall reaction scheme is given below:

E+S
k1, f−−*)−−
k1,b

ES
k2, f−−*)−−
k2,b

E+P (3.1)

where k1, f , k1,b , k2, f and k2,b denote the rate constants of the elementary reactions. The

typical form of the reaction rate v as a function of substrate and product concentrations

(see equation (3.2)) is derived from the assumption that all enzymes are conserved such

that [ES]+ [E ] = [ET ], where [ET ] denotes the total enzyme concentration and the enzyme-

substrate complex concentration[ES] is in a quasi-steady state, i.e., d [ES]/d t ≈ 0 (Heinrich
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and Schuster, 1996):

v([S], [P ]) =
V +

M
[S]

KM ,S
−V −

M
[P ]

KM ,P

1+ [S]
KM ,S

+ [P ]
KM ,P

(3.2)

where the parameters V +
M , V −

M , KM ,S andKM ,P are related to the elementary rate constants

k1, f , k1,b , k2, f , k2,b and the total enzyme concentration [ET ] via the relations shown in the

equations below.

V +
M = k2, f [ET ] (3.3a)

V −
M = k1,b[ET ] (3.3b)

as well as

KM ,S = k1,b +k2, f

k1, f
(3.4a)

KM ,S = k1,b +k2, f

k2,b
(3.4b)

The parameters of the steady-state reaction rate V +
M , V −

M , KM ,S andKM ,P as well as the elemen-

tary rate constants k1, f , k1,b , k2, f and k2,b are related to the overall equilibrium constant of

the two reactions:

Keq = k1, f

k1,b

k2, f

k2,b
= V +

M KM ,P

V −
M KM ,S

(3.5)

By introducing inert molecules a modification of the effective rate constants is observed due

to a change in the diffusion and the collision dynamics. In the most general case, this can,

compared to mass-action kinetics, result in a change of the effective order and effective rate

constant. Berezhkovskii and Szabo showed that the effective steady state (Collins-Kimball)

reaction rate constant kC K for a diffusion-influenced, irreversible, bimolecular reaction under

crowded conditions can be modeled in terms of an altered diffusion constant D1 and an

external crowding-induced interaction potential ∆U between the two reacting species. This

potential is an implicit representation of the interaction of the individual reactant species

with the molecules in their environment and whether these interactions keep the reactants in

contact or if they are tearing them apart. The expression for the Collins-Kimball rate constant
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was found to follow that described by Berezhkovskii and Szabo (2016):

kC K = 4πD1Rk0e∆Uζ

4πD1R +k0e∆Uζ
(3.6)

where k0 is the reaction rate upon collision and ζ the the inverse of the thermal energy (kB T )−1

with kB denoting the Boltzman constant and T the absolute temperture.

To approximate this deviation of the effective elementary rate constants - indicated by k j ,e f f ,

where j ∈ [(1, f ), (1,b), (2, f ), (2,b)] - from the reaction constants in ideal (dilute) conditions

k j ,0 the effective reaction rates are described as a power law:

k j ,e f f (φ,X) = k j ,0eβj

N∏
i=0

(
[Xi ]

[Xi ]0

)α
i j

(3.7)

where αi j are the coefficients quantifying the effect of one of the N reactants on the effective

rate of reaction j and β j is the effetive reaction rate constant relative to the ideal reaction

constant at the reference concentations [Xi ]0.

3.2.2 Generalized elementary Michaelis-Menten kinetics

Given the generalized elementary rate laws, the quasi-steady-state approximation for the

Michaelis-Menten reaction rate with GEEK can be defined. Therefore, it can be assumed that

the enzyme is conserved, [ES]+ [E ] = [ET ], and the enzyme complex is in a quasi-steady state,

i.e.,
d [ES]

d t
= v1, f − v1,b − v2, f + v2,b ≈ 0 (3.8)

where each flux v j is given by a generalized rate law as given in equation 3.7. For the case of

αi , j ∈ R and αi , j 6= 0, it is not possible to obtain an explicit expression for the reaction rate

vnet ,qss . To calculate the amount of enzyme-substrate complex in the quasi-steady state for

a given [ET ], [S], and [P ], the conservation relation [E ] = [ET ]− [ES] is introduced, and the

resulting nonlinear equation equation 3.8 is solved numerically for the steady-state enzyme

concentration [ES]qss using nsolve from the Python package sympy. The numerical solution

is obtained using the reference concentration [ES]0 as an initial guess for the nonlinear solver.

The reaction rate of the enzymatic reaction at steady state, for a set of constant [S] and [P ], is

then given by the net reaction rate of product formation at steady state:

vnet ,qss = [ES]qssk2, f ,e f f ([ES]qss ,P,S)− ([ET ]− [ES]qss)[P ]k2,b,e f f ([ES]qss ,P,S) (3.9)
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where [ES]qss is the enzyme-complex concentration at the quasi-steady state. The average

apparent Michaelis-Menten parameters are then extracted using a linear approximation of

v([X ]) with v([X ])/[X ] for either [S] = 0 or [P ] = 0, i.e., the Eadie-Hofstee form of Michaelis-

Menten kinetics (Eadie, 1942; Hofstee, 1959). The slope of these linear regressions yields the

respective KM , and the y-axis intercept yields the respective Vmax :

|v([S])| = −KM ,S
|v([S])|
|S| +V +

max (3.10)

|v([P ])| = −KM ,P
|v([P ])|
|P | +V −

max (3.11)

To express the thermodynamic driving forces, the elementary rate model was considered as M

reversible reactions ρ ∈ [1,2], with the forward flux vρ, f and the backward flux vρ,b . Using the

principle of detailed balance, the free energy of the reaction can be expressed as a function of

the displacement from equilibrium Γ= vb/v f (Demirel, 2013):

∆r G ′
ρ = RT lnΓρ = RT ln

(
vρ,b

vρ, f

)
(3.12)

where R is the general gas constant and T is the absolute temperature. With the fluxes

expressed in terms of the generalized elementary rate law the free energy reads

∆r G ′
ρ = RT ln

 kρ,b,0eβρ,b
∏M

i=1

(
[Xi ]
[Xi ]0

)ni ,ρ,b+αi ,ρ,b
[Xi ]

ni ,ρ,b

0

kρ, f ,0eβρ, f
∏M

i=1

(
[Xi ]
[Xi ]0

)ni ,ρ, f +αi ,ρ, f
[Xi ]

ni ,ρ, f

0

 (3.13)

In general, the overall free energy consists of ideal and nonideal contributions. The ideal

contribution consists of the standard free energy of the reaction and the concentration contri-

butions, and the nonideal contribution contains terms emerging from molecular interactions,

such as by steric repulsion, van der Waals forces, electrostatic interactions, or nonspecific

attractions.

∆r G ′
ρ =∆r G ′◦

ρ +
M∑

i=1
ni ,ρRT ln([Xi ])+∆r G ′

ρ,ster i c +∆r G ′
ρ,V DW +∆r G ′

ρ,el + . . . (3.14)

In this work, only the nonideal contributions due to steric repulsion were modeled by means

of a hard-sphere potential, though in the most general case, the formulation presented in this

work allows for the inclusion of any kind of nonideal contribution. The presented approach

shows that a power-law approximation suffices to describe the effect of steric repulsion. The

approximation of the effect of nonspecific attractions and other interactions in terms of

kinetic parameters and free energies will probably require alternative functional forms in
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3.2. Modeling enzyme kinetics

these approximations in addition to this power-law formulation. A functional to account for

the approximation of nonspecific attractions could be based on the derivations of Kim and

Mittal (Kim and Mittal, 2013).

By comparing the free energy of the generalized elementary rate model to the free energy of

the dilute mass-action equivalent, the ideal contribution can be identified as

∆r G ′
ρ,i deal = RT ln

(
kρ,b,0

kρ, f ,0

)
+

M∑
i=1

ni ,ρ,bRT ln([Xi ])−
M∑

i=1
ni ,ρ, f RT ln([Xi ]) (3.15)

=∆r G ′◦
ρ +

M∑
i=1

ni ,ρRT ln([Xi ]) (3.16)

The remaining contributions can be identified as the nonideal contribution:

∆r G ′
ρ,non−i deal = RT (βρ,b −βρ, f )+RT ln

∏M
i=1

(
[Xi ]
[Xi ]0

)αi ,ρ,b

∏M
i=1

(
[Xi ]
[Xi ]0

)αi ,ρ, f

 (3.17)

∆r G ′
ρ,non−i deal can be further partitioned into a reactant-independent and a reactant-dependent

contribution:

∆r G ′
ρ,non−i deal =∆r G ′

ρ,i ndep +∆r G ′
ρ,dep (3.18)

= RT (βρ,b −βρ, f )+RT ln

(
M∏

i=1

(
[Xi ]

[Xi ]0

)αi ,ρ,b−αi ,ρ, f
)

(3.19)

The free energy of the generalized elementary Michaelis-Menten kinetics is given by the sum

of all reversible-reaction free-energy contributions ∆r G ′
ρ :

∆r G ′ =
R∑
ρ
∆r G ′

ρ (3.20)

With [Xi ] = [[S], [E ], [ES], [P ]], the free energy of the reaction can be simplified to the well-

known ideal contribution containing only the chemically modified species [S] and [P ] as

well as a non-ideal contribution, wherein the non-ideal contribution is a phenomenological

description of free-energy change based on the GEEK.

∆r G ′ =∆r G ′◦+RT ln

(
[P ]

[S]

)
+∆r G ′

non−i deal ([S], [E ], [ES], [P ]) (3.21)

The formulation of the reversible Michaelis-Menten rate law in terms of GEEK allows for the

phenomenological capture of nonlinear effects on the collision level.
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Chapter 3. Particle-based modeling of crowding effects on enzyme kinetics

3.2.3 A hard sphere model for macromolecular crowding

To incorporate the spatial effects into the enzymatic reaction system, hard-sphere Brownian

reaction dynamics (HSBRD) were used. This method is using the elastic hard-sphere Brownian

dynamics algorithm (Strating, 1999) to compute the transport and the collisions dynamics of

the particles and implement reactions according to the Brownian dynamics algorithm (Allen,

1980; Northrup et al., 1984). Similar methods combining these two approaches have been

presented Wilson et al. (2018) and Kim et al. (2014).

The method describes the movement of independent particles as a random walk of point

particles diffusing in a viscous medium. Thereby, HSBRD neglects the hydrodynamic interac-

tions between the particles. The equations of motion are given in terms of the overdamped

Langevin equation. Using the Einstein-Smoluchwoski relation, its velocity is given by Wang

and Uhlenbeck (1945):

dx

d t
=− D

kB T
F(x)+

p
2D

dη

d t
(3.22)

where F(x) is a force acting on the particle, kB is the Boltzmann constant, T is the absolute

temperature of the surrounding fluid, and η(t) is the result of a three-dimensional Wiener

process. An explicit Euler formulation was used to update the positions at every time step, ∆t ,

as follows:

xt+∆t = x+∆t
D

kB T
F(x)+

p
2D∆tηt (3.23)

where ηt is a random vector drawn from a normal distribution.

Reaction-diffusion dynamics methods account for bimolecular and unimolecular reactions by

a Monte Carlo simulation of the local reaction dynamics. For bimolecular reactions, the Monte

Carlo simulation was performed when two reactants collided, i.e., their radii overlapped after

the positions were updated. Then a uniform distributed random number r was compared to

the reaction with a probability p to determine if the reaction occurred within this time step ∆t .

The probability p is given by the microscopic reaction rate k j ,mi cr o (Morelli and ten Wolde,

2008):

p = 1−e−
k j ,mi cr o∆t

4πI (D,R,∆t ) (3.24)

where I (D,R,∆t) is a normalization factor for the effective collision volume in Brownian
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3.2. Modeling enzyme kinetics

reaction dynamics simulations to account for all possible diffusion path within ∆t , as de-

rived by Morelli and ten Wolde (Morelli and ten Wolde, 2008). Using the relation derived by

Collins and Kimball, the observed steady-state reaction rate k j ,0 for a bimolecular reaction,

j ∈ [(1, f ), (2,b)] with educts A and B, in homogenous, dilute conditions is related to its mi-

croscopic or transition rate constant k j ,mi cr o and the diffusion-limited reaction rate constant

γ j = 4π(D A+DB )(r A+rB )(Collins and Kimball, 1949b). Assuming that the Collins-Kimball rate

constant corresponds to the observed rate constant in the experimental in vitro system and

the dilute particle simulation, the corresponding microscopic rate constant can be expressed

as a function of the rate constant observed in vitro k j ,0 and the diffusion-limited rate constant

γ j , calculated based on the molecular properties of the collision radii r A , rB and self-diffusion

constants D A , DB :

k j ,mi cr o = γ j k j ,0

γ j −k j ,0
(3.25)

In the case of a particle collision without a subsequent reaction, an elastic hard-sphere collision

was assumed to take place. The new particle position was computed from the momentum

conservation using the average velocity vi =∆r/∆t of the move that led to the particle overlap

(Strating, 1999).

First-order reactions, j ∈ [(1,b), (2, f )], are modeled similarly to bimolecular reactions by

comparing a uniformly distributed random variable to the probability that the reaction took

place in the time interval ∆t , with the reaction probability of p = 1− exp(k j ,mi cr o∆t). The

reaction products are placed in contact around the original position of the educt using a

random orientation. If the products were to collide with any other particles, the move would

be rejected, and the educt would remain at its original position. Otherwise, the educt would

be removed, and the products would be placed instead.

Furthermore, constant particle boundary conditions were applied at every time step through

the random insertion or removal of particles of a given species to match the specified particle

count of the species. The HSBRD particle simulation was implemented in C++ using the

OPENFPM framework (Incardona et al., 2019).

3.2.4 Measuring effective reaction rate constants

Because it is necessary to resolve the particle movement on the nanosecond timescale as

opposed to the timescales of the reaction dynamics, which are found to be in the order of
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seconds to hours, a separated timescale approach was proposed to efficiently bridge these

differences. The effective elementary reaction rates at constant concentrations and crowding

conditions in particle simulation were therefore measured. To measure the effective rate con-

stants from a particle simulation, two separate schemes for monomolecular and bimolecular

rate constants were used.

For monomolecular rate constants, j ∈ [(1,b), (2, f )], the effective reaction rates were extracted

by probing the space around the enzyme-substrate complexes. Therefore, for every valid educt

molecule k of a monomolecular reaction j , L dissociation reactions were attempted with a

random orientation. For each molecule k and reaction j , the success of the l -th attempt ω j kl

is determined. If the dissociation were to be successful, meaning that the dissociated particles

would not collide, ω j kl = 0. If the dissociation were to yield a collision, ω j kl = 0. Averaging

over the results of all dissociation attempts ω j kl of the probed molecule k, a local success

probability of was obtained. To describe the equivalent homogenous system, the reaction

success probability was computed as the mean of the local average success rate over all N

probed particles. In the limit of continuous concentrations, the effective rate constant, k j ,e f f ,

is given by the rate constant k j ,0 scaled by the reaction success probability ω j :

k j ,e f f = k j ,0〈ω j 〉 (3.26)

The effective bimolecular rate constants, j ∈ [(1, f ), (2,b)], can be extracted from the effective

collision frequency zA,B between the two educts A and B of reaction j . This collision frequency

is estimated as the number of collisions between A and B in an integration time interval

cA,B (t , t +∆t ) per time step ∆t , as described in Appendix A.1.

k j ,e f f =
〈zA,B 〉
NA NB

(
1−e−

k j ,mi cr o∆t

4πI (D,R,∆t )

)
(3.27)

3.2.5 Modeling framework

In this work, we propose a new, to our knowledge, simulation framework using the above-

described concept of GEEK. In our simulation framework, an equivalent particle model is

first created from an elementary step mechanism (Figure 3.1, part 1). To create an equivalent

particle model, only the elementary reactions of the enzyme mechanism are required. If only

phenomenological constants, e.g., parameters for the quasi-steady-state approximation, are

given for the enzymatic reaction, it is necessary to map these to the elementary reaction rate

constants. Furthermore, all species involved in the elementary reaction properties need to
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Figure 3.1 – Modeling framework for crowded generalized elementary kinetics (GEEK). The
input for the modeling framework is an arbitrary elementary step model containing in vitro
data for the enzyme kinetics. 1) This model is then translated into an equivalent in vitro
particle model of the enzymatic reaction. 2) The space is filled with inert molecules that are
drawn from a size distribution p(r ) until the fraction φ of the simulation space is occupied. 3)
A reference concentration state is then chosen for the GEEK model, and 4) the space around
the concentration space is sampled. 5) The k particle model realizations are then simulated
for each concentration sample, i.e., repeat step 2 and simulate. 6) From the resulting particle
traces, the effective rate constants are measured from the particle collision frequencies and
the locally available volume. 7) These effective reaction rate constants are log transformed,
and a linear regression is performed with respect to the scaled logarithmic concentrations.
The output of the linear regression directly links to the GEEK parameters; see Eqs. 7 and 8. 8)
Finally, the GEEK model can approximate the crowded kinetics using ODEs.
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be assigned to describe their molecular movement, i.e., a diffusion coefficient, a collision

radius, and a mass. Given the molecular data, the rate constants of the particle model are

matched with the rate constants of the elementary step model with the assumption that the

measured or calculated rate constants were measured in homogenous, dilute conditions. In

the case of monomolecular reactions, the observed rate constants are then equivalent to the

microscopic transition rates. For bimolecular reactions, j ∈ [(1,b), (2, f )], the diffusion-limited

rate constant γ j is first computed based on the diffusion coefficients and collision radii and

then matched to the effective reaction rate of the dilute, homogenous particle system with

the rate constant in the elementary step model by adapting the corresponding microscopic

rate constant k j ,mi cr o using equation (3.25). A volume that is large enough to capture the

local bulk properties of a locally well-mixed enzyme-substrate system is then chosen such

that the number of particles of each species in the system is large enough to discretize the

concentration space of interest.

In the second step, the system is perturbed on the microscopic level to investigate the influence

of crowding (Fig. 2, part 2). Therefore, inert particles are introduced into the system that

therefore alter effective particle interactions between the reactive species (Berezhkovskii

and Szabo, 2016). To model a realistic crowding environment, a size distribution function

p(r) is estimated from the mass distribution p(Mw) and an empirical mass size relation r =
0.0515M 0.392

w [nm], with Mw in [Da], as reported for proteins in E. coli by Kalwarczyk et al.

(2012). The simulation volume is then populated with inert molecules by randomly drawing

collision radii from the size distribution until the specified inert volume fraction φ is reached.

The diffusion constant of the individual species is then calculated using the Stokes-Einstein

relation, assuming that the hydrodynamic radius is equal to the collision radius Einstein

(1905):

D = kB T

6πηrhyd
(3.28)

where rhyd is the hydrodynamic radius and η is the dynamic viscosity of the solvent, here

assumed to be water.

Next, the model is sampled around a chosen reference state (Figure 3.1, parts 3 and 4). In this

work, we chose to generate our sample with a full-factorial design. For each concentration sam-

ple, a particle simulation is performed where the effective rate constants keff,j are measured

for every elementary reaction as described in the previous section (Figure 3.1, part 5).

Subsequently, multivariate linear regression is used to estimate the mean GEEK parameters

αi j and β j for the specified crowding conditions (Figure 3.1, part 6). Finally, the GEEK, as
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3.3. Effects of crowding on the reversible Michaelis Menten kinetics

described above, is used to analyze the response behavior of an equivalent crowded ODE-

enzyme model (Figure 3.1, part 7).

3.2.6 Weighted linear regressions

To estimate the GEEK parameters using multivariate regression, a multivariate regression was

performed. Because the variance of the reaction rate would be expected to be dependent on

the regression variables, a weighted linear regression was performed to avoid fitting data with

large heteroscedasticity. The conditional variance of the residuals was therefore extracted,

and a weighted linear regression was performed in which each observation was weighted by

the inverse of the conditional variance of the residual (Details described in Appendix A.3). To

perform these calculations, the Python package statsmodels was used (Seabold and Perktold,

2010).

3.2.7 Computational details

The Brownian reaction dynamics simulations were performed with a time step ∆t of 0.25ns.

The dynamics viscosity of the liquid between the particles was assumed to be water with

0.7Pas at T = 310.15K. The system is considered to be isothermal (T = constant). At each time

step, all possible first-order reactions are attempted L = 100 times. For the regression input

space, all combinations of substrate and product concentrations that were n-fold increased

and decreased with respect to the reference concentration of [S]0 = [P ]0 = 49µM were used,

with n ∈ [1,2,3,4,5], in combination with all free-enzyme and enzyme-complex concentrations

that yielded saturations of σ= [ES]/[ET ] = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] given a total

amount of enzyme [Etot ] = [ES]+ [E ] = 64µM. Each sampled concentration state is simulated

1µs, where the first 0.1µs are discarded. Furthermore, 10 independent realizations of the

crowding population were used for every concentration sample to capture the variability that

comes from differently sized crowding agents drawn from the size distribution.

3.3 Effects of crowding on the reversible Michaelis Menten kinetics

To address the pitfalls currently associated with computational studies of enzymatic reactions

in the intracellular space, this work presents GEEK, a novel, to our knowledge, approach

to capture spatial effects, such as crowding, in ODE models. The framework is available

in the form of two Python packages: a package to implement GEEK expressions into ODE

(https://github.com/EPFL-LCSB/geek) and a package to perform openfpm-based HSBRD
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Chapter 3. Particle-based modeling of crowding effects on enzyme kinetics

simulations (https://github.com/EPFL-LCSB/openbread). The GEEK formulation directly

quantifies the deviation from dilute mass-action behavior in a systematic and efficient pro-

cedure, and we have focused our studies on the impact of crowding due to the influence of

densely packed biomolecules on enzyme reaction rates in vivo.

3.3.1 Validation of GEEK

We validate the GEEK framework by comparing the an HSBRD-based GEEK model with the

exact solutions obtained by HSBRD. We therefore used the initial rate experiment of a simple

association-dissociation system. We simulated this system in dilute conditions and with single-

sized inert molecules, r = 2.1nm, for volume fractions between φ= 0.0 and φ= 0.4. We show

that for this reaction system, the GEEK models are able to capture the dynamics and the impact

of crowding on the dynamics as predicted by the respective full simulation of the system (see

figures A.4 to A.7). To perform these comparisons, we used a simple association-dissociation

A+B 
C model with two different parameter sets.

We validate the GEEK framework by comparing i) an HSBRD-based GEEK model with the

exact solutions obtained by HSBRD and ii) a GEEK model based on the crowder-free Cichocki-

Hinsen algorithm with the respective solution of the full simulation (see details described

in Appendix A.3). We therefore used the initial rate experiment of a simple association-

dissociation system. We simulated this system in dilute conditions and with single-sized

inert molecules, r = 2.1nm, for volume fractions between φ = 0.0 and φ = 0.4. We show

that for this reaction system, the GEEK models are able to capture the dynamics and the

impact of crowding on the dynamics as predicted by the respective full simulation of the

system. We further discuss the results of i and ii with respect to their modeling assumptions in

appendix A.3.

We then applied the described modeling framework to investigate the effects of macromolec-

ular crowding on the enzymatic activity of PGM in E. coli. PGM is part of the lower glycol-

ysis pathway and functions by reversibly transforming 3-phospho-D-glycerate (g3p) into

2-phospho-D-glycerate (g2p). We use PGM for our investigation because it exhibits a proto-

typical reversible Michaelis-Menten kinetics and its in vitro kinetics are well-known (Fraser

et al., 1999).
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Table 3.1 – In vitro Michaelis-Menten parameters and calculated elementary rate constants for
PGM in E. coli, as found by Fraser et al. (1999)

Michaelis-Menten parameters Elementary rate constants
KM ,g 3p 210µM k1, f 1.52×105 s−1M−1

KM ,g 2p 97µM k1,b 22×105 s−1

kcat g3p to g2p 22s−1 k2, f 11×105 s−1

kcat g2p to g3p 11s−1 k2,b 3.29×105 s−1M−1

3.3.2 Impact of crowding on the elementary reaction level

We then applied the described modeling framework to investigate the effects of macromolec-

ular crowding on the enzymatic activity of PGM in E. coli. PGM is part of the lower glycol-

ysis pathway and functions by reversibly transforming 3-phospho-D-glycerate (g3p) into

2-phospho-D-glycerate (g2p). We use PGM for our investigation because it exhibits a proto-

typical reversible Michaelis-Menten kinetics and its in vitro kinetics are well-known (Fraser

et al., 1999).

For our reference elementary step mass-action model, which will serve as a basis for construct-

ing the GEEK model, we calculated the elementary rate constants by the relations given in

equations 3.3a, 3.3b, 3.4a and 3.4b from the in vitro Michaelis-Menten parameters measured

by Fraser et al. (1999) (Table 3.1). Based on this in vitro elementary step model, we built

an equivalent in vitro particle model that required additional information on the molecular

parameters, including mass, diffusion, and collision radius, of all the species involved in a

reaction, meaning the substrates, products, free enzymes, and enzyme complexes. To esti-

mate the collision radius of the enzyme and the enzyme-substrate complex, we followed the

suggestions of Gameiro et al. (2016) and used the empirical relation between mass and size

to estimate the inert molecule size from the enzyme mass (Kalwarczyk et al., 2012; Gameiro

et al., 2016). In the same way, we applied the Stokes-Einstein relation to calculate the diffusion

constants from the collision radius. We additionally assumed that the enzyme-substrate

complex entirely enclosed the substrate with its binding pocket, thus rendering the collision

radius of the complex and enzyme equal. To estimate the collision radius of g3p and g2p, we

also followed the suggestions of Gameiro et al. and used the method developed by Zhao et al.

to estimate their van der Waals volume and to calculate the equivalent sphere radius (Gameiro

et al., 2016; Zhao et al., 2003). The diffusion constants of g2p and g3p were obtained from the

literature (56). All molecular properties are summarized in Table 3.2.

Given the effective elementary rate constants and the molecular properties of the species, we

calculated the effective microscopic rate constants using the relation given in equation 3.25 (Ta-
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Table 3.2 – Molecular Properties of the Reacting Particles, data obtained from: a) Perry (1973),
calculated according to the approximations suggested by b) Gameiro et al. (2016) as well as
obtained from c) Gameiro et al. (2016)

Species Diffusion (µ2 s−1) Collision Radius (nm) Mass (kDa)
g3p 940 a 1.11 b 0.186 b
g2p 940 a 1.11 b 0.186 b
PGM 84.8 b 3.87 b 61 c
PGM complex 84.8 b 3.87 b 61.186

Table 3.3 – Microscopic reaction rates per reacting particle (p), or per collision (c), and
diffusion-limited rate constants of the bimolecular reactions.

k1, f 1.57×105s−1 M−1

k1,b 10s−1

k2, f 22s−1

k2,b 3.40×105s−1 M−1

ble 3.3). Comparing the microscopic rate constants in table 3.3 with the diffusion-limited rate

constants, it can be seen that the diffusion-limited constants γ1, f = γ2,b = 3.88×1010M−1 s−1

are about five orders of magnitude higher than the microscopic reaction constants. This

indicates that the microscopic binding process is much slower than the diffusion process and

that the kinetics are reaction limited and not diffusion limited. Thus, the mean time until the

first collision between two reactants, i.e., the mean first passage time, is orders of magnitudes

shorter than the mean time to the first reaction. For a reaction to be successful, tens of thou-

sands of collisions are occurring; hence, the impact of any increase in high-frequency first

passage events due to fractal diffusion is limited (Benichou et al., 2010).

To build a GEEK model that allows us to characterize the enzyme kinetics in a crowded envi-

ronment, we sampled the concentration space. This was done using a full-factorial design,

allowing us to study the effect of several variables on the response output, as well as interac-

tions between those variables, that sampled both the product and substrate concentrations

as well as different enzyme saturation levels, indicating the percentage of bound enzyme

with respect to the total enzyme concentration. The computational details of the simulation

procedure are summarized in the respective method subsection above.

In total, we generated 21 generalized elementary kinetic models for five different inert volume

fractions φk and four different size distributions pk (r ), plus one without any crowding. This

allowed for a detailed comparison of the effects of the volume fraction and size distribution

of the crowding agents on enzyme kinetics. For the size distributions, we used 1) the E. coli

distribution derived from Kalwarczyk et al. (2012), 2) a population containing only particles
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Figure 3.2 – Size distribution function of the inert particles, numerically calculated from
the mass distribution and empirical mass size relation as reported for proteins in E. coli by
Kalwarczyk et al. (2012).

of the median size of the E. coli distribution, 3) a population the size of the upper quartile

of the E. coli size distribution, and 4) a population the size of the lower quartile (Figure 3.2;

(Kalwarczyk et al., 2012)). These crowding populations were each investigated for inert volume

fractions of φ ∈ [0.0,0.1,0.2,0.3,0.4,0.5].

For each crowding condition, we estimated the mean GEEK parameters αi j and β j using

multivariate weighted linear regression, which indicate conditions that likely influenced the

enzyme kinetics. To further quantify the uncertainty of the mean GEEK parameters, the 95%

confidence intervals of the regression results are given in Table 4. For parameter estimates with

a p-value ≤ 0.05, it was assumed that no significant correlation existed, and these parameters

were not accounted for in the GEEK model. A closer analysis shows that the offset β j could

always be determined with statistical significance; only some of the coupling parameters

αi j were not able to be determined with the required significance level. Note that this mean

GEEK parameter model assumes that the crowding composition of an average cell is given by

the average effect of a crowding configuration on the rate constant, which should accurately

reflect the mean behavior of cell populations. Further, it should be taken into account that

the calculations leading to the effective rate constants are based on the assumption of the

microscopic model, considering that effective association rate constants are proportional to

the collision frequency of their educts and that effective dissociation reaction constants are

proportional to the surface accessible to the products. The validity of the GEEK approximation
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Table 3.4 – Parameters of the generalized elementary kinetics, i.e. αi j and β j , for all elemen-
tary reactions at different inert volume fractions, where * denotes GEEK parameters with a
significance of p ≤ 0.05.

Parameters 0% 10% 20% 30% 40% 50%
β1, f 7.31×10−2 2.61×10−1 4.57×10−1 6.87×10−1 9.57×10−1 1.25
αS,1, f 4.74×10−3 * 3.22×10−3 7.22×10−3 6.95×10−3 3.23×10−3

αE ,1, f 1.07×10−2 1.89×10−2 9.67×10−3 8.07×10−3 1.23×10−2 *
αES,1, f * 1.34×10−2 * * * *
αP,1, f * 2.51×10−3 −3.47×10−3 * * 2.42×10−3

β1,b −1.48×10−2 −1.17×10−1 −2.80×10−1 −5.46×10−1 −1.03 −2.265
αS,1,b −2.94×10−3 −3.56×10−3 −4.53×10−3 −6.09×10−3 −8.33×10−3 −9.58×10−3

αE ,1,b −1.90×10−4 1.71×10−3 6.47×10−4 3.32×10−3 * 3.16×10−3

αES,1,b * 3.46×10−3 * 2.03×10−3 −1.22×10−3 *
αP,1,b −2.94×10−3 −3.58×10−3 −4.52×10−3 −6.09×10−3 −8.33×10−3 −9.58×10−3

β2, f −1.48×10−2 −1.17×10−1 −2.80×10−1 −5.46×10−1 −1.03 −2.26
αS,2, f −2.94×10−3 −3.56×10−3 −4.53×10−3 −6.09×10−3 −8.34×10−3 −9.58×10−3

αE ,2, f −1.90×10−4 1.71×10−3 6.53×10−4 3.31×10−3 * 3.13×10−3

αES,2, f * 3.46×10−3 * 2.01×10−3 1.20×10−3 *
αP,2, f −2.94×10−3 −3.58×10−3 −4.52×10−3 −6.10×10−3 −8.34×10−3 −9.57×10−3

β2,b 6.88×10−2 2.54×10−1 4.58×10−1 6.85×10−1 9.52×10−1 1.25
αS,2,b * * 2.29×10−3 * 3.09×10−3 *
αE ,2,b * * 1.05×10−2 * * *
αES,2,b * * * −7.78×10−3 * *
αP,2,b 6.59×10−3 2.76×10−3 4.70×10−3 6.85×10−3 8.45×10−3 3.74×10−3

is therefore always dependent on the validity of the underlying microscopic model used to

compute the effective rate constants. As mentioned in the introduction, the workflow within

the GEEK framework will remain valid even if a more detailed microscopic model is used for

the estimation of the rate constant.

Comparing the parameters αi j and β j of each elementary reaction j (Table 3.4), it can gen-

erally be observed that the direct effect β j is about one to two orders of magnitude larger

than each corresponding coupling coefficient, αi j . Therefore, the direct effect is on the order

of ±10−2 to ±100, whereas the coupling coefficients are on the order of ±10−4 to ±10−2. As-

suming a twofold increase in a concentration, the change in the coupling is smaller than 1%,

whereas the direct effect varies between one and 1000%. This suggests that the effect of the

reduced dimensionality only plays a small role compared to the effective interaction potential

and the diffusion inhibition.

3.3.3 Effect on the Michaelis Menten parameters

We used the results of the linear regression to parameterize GEEK models to compare the ODE

simulations of the classical Michaelis-Menten experiment with the mass-action model. The
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3.3. Effects of crowding on the reversible Michaelis Menten kinetics

basis of this experiment involved an initial substrate concentration [S]i ni t that was added to a

volume with a fixed enzyme concentration [E ]i ni t = [E ]tot . When the substrate was added, the

enzyme started to convert the substrate into a product. If the enzyme was operating reversibly,

part of the product would also be converted back to a substrate, and the reaction would

become indistinguishable as it approached equilibrium. In this equilibrium state, the overall

free energy of the reaction was close to zero. Therefore, the ratio between the product and

substrate concentrations could be used to estimate the apparent equilibrium constant Keq .

To characterize the dynamics of this system, the time to half-equilibrium teq /2 was measured,

which indicates the time needed for the ratio between the product and substrate concen-

trations to equal Keq /2 (Figure 3.3 a). In general, an increase in the teq /2 was seen with an

increasing substrate concentration (Figure 3.3 a). The time to half-equilibrium for the intercon-

version between g3p to g2p was reduced for small substrate concentrations and inert molecule

fractions, up to φ = 30–40%. In the case of [S]i ni t = [S]r e f /4, the time to half-equilibrium

was reduced to a minimal value for an inert volume fraction of φ = 40% (Figure 3.3 a). For

[S]i ni t = [S]r e f and [S]i ni t = 2[S]r e f , this decrease in half-life time persists, though the overall

half-life times are larger than for [S]i ni t = [S]r e f /4, and the minimal point occurs at lower

inert volume fractions. Finally, in the [S]i ni t = 4[S]r e f case, this decrease in teq /2 is no longer

visible. It follows from this that the average initial rate increases with substrate concentration

and decreases with an increasing volume occupancy. This suggest that the same substrate

concentrations yield higher enzyme saturations, meaning that the ratio of enzyme-substrate

complex/total amount of enzyme increases and that the dissociation of the enzyme-substrate

complex is inhibited.

For a closer analysis of these findings, the Michaelis-Menten parameters were estimated

using Eadie-Hofstee diagrams, solving for the steady-state flux of the substrate and product

concentrations between 4.9 and 490µM (Equation 3.8). The Eadie-Hofstee diagrams reveal

that for both high- and low-occupancy volume fractions, a slight nonlinearity with respect to

the linear Eadie-Hofstee form of the reversible Michaelis-Menten is introduced with the GEEK.

This indicates that the effective maximal flux V +/−
max and effective Michealis-Menten constant

KM ,X ,e f f are actually functions of the reactant concentrations [S] and [P ]. For the case of

φ= 0%, this nonlinearity is only pronounced at small reactant concentrations, whereas for

higher volume occupancy conditions, the nonlinearity is visible over the entire measurement

range. Nevertheless, we used linear regression to estimate the effective average parameters to

compare the steady-state GEEK model to the traditional Michaelis-Menten kinetics.

Interestingly, the steady-state analysis revealed that all the effective Michaelis-Menten pa-
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Figure 3.3 – (a) [P ]/[S] dynamics determined for mass-action and GEEK models for different
initial substrate concentrations [S]i ni t and different occupied volume fractions (φ) for the
E. coli molecular weight distributions. The light dashed lines represent the dilute mass-action
model, whereas the thin solid lines represent a population of 100 resampled GEEK models.
(b) Time to half-equilibrium teq /2 as a function of the occupied volume fraction for different
initial substrate concentrations [S]i ni t is shown. The colors of the lines denote the different
initial concentrations: blue corresponds to [S]i ni t = [S]r e f /4, yellow to [S]i ni t = [S]r e f , green
to [S]i ni t = 2[S]r e f , and red to [S]i ni t = 4[S]r e f .
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3.3. Effects of crowding on the reversible Michaelis Menten kinetics

rameters V +/−
max , KM ,X ,e f f decreased as a function of the inert occupied volume φ, shown in

figure 3.4, a and b respectively. These results complement our primary analysis because the

maximal flux of the enzyme directly relates to the ability of the enzyme-substrate complex

to dissociate, and the Michaelis-Menten constant is a measure of the affinity of the reactant

binding to the enzyme. The lower the Michaelis-Menten constant, the higher the binding

affinity to the enzyme. Consequently, a decreasing Michaelis-Menten constant indicates

more enzyme bound at the same reactant concentration, or in other words, an increased

enzyme saturation. For the effective flux through the enzyme, this results in two counteracting

effects: a potential increase in flux due to an increase in saturation or a decrease in flux due

to the reduced dissociation. From the analysis of teq /2 and the effective Michaelis-Menten

parameters, it is evident that the flux-increasing effect is dominating if enough free enzyme is

available to increase the saturation. If the enzyme capacity does not allow more substrate to

associate, the flux-decreasing effect dominates.

3.3.4 Influence of crowder size on the Michaelis Menten kinetics

We further investigated the influence of the size of the inert molecules on the enzyme kinetics

by comparing crowding with different inert molecule sizes obtained using the results for the

E. coli size distribution. When comparing the teq /2 as a function of the volume occupancy

obtained from crowding using the E. coli distribution to the population consisting of a single

inert molecule size, a general flux-decreasing effect was observed for crowding in the single-

sized population, shown in figure 3.5 a. Furthermore, smaller inert molecule sizes showed a

stronger flux-decreasing effect that was alleviated as the size of the inert molecules increased.

When we compared the enzyme saturation at equilibrium for the different inert molecule

sizes, the single-sized crowding showed an increased saturation, and smaller crowding sizes

had a stronger effect, illustrated in figure 3.5 b. This shows that the overall substrate affinity is

increased more if the inert molecules are smaller than the enzyme-substrate collision radius.

Finally, we determined the effective standard free energy of the reaction from the effective equi-

librium constant∆r G ′◦ = RT ln(Keq ) where the effective equilibrium constant was determined

from the reactant concentrations at equilibrium Keq = [P ]eq /[S]eq , seen in figure 3.5 c. This

showed that the overall apparent standard free energy of reaction does not vary significantly

with crowding size or volume fraction. Because the nonideal contributions, which contain

the terms emerging from molecular interactions, from steric interaction for the substrates

and products are exactly equal, we would expect the overall nonideal contribution to the free

energy of the enzymatic reaction to be zero. The deviation in the effective standard energy
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volume occupied by inert molecules. The errors in the values calculated from uniformly
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Figure 3.5 – Effects of the particle size distribution. (a) Time to half-equilibrium teq /2, (b)
enzyme saturation [ES]/[E ]tot for [S]r e f = 49µM, and (c) apparent standard free energy of the
reaction measured as RT log([P ]eq /[S]eq ) under different crowding conditions are shown. The
circles represents the apparent equilibrium measured from the E. coli size distribution; crosses,
diamonds, and squares are obtained using a single size of inert molecules corresponding to
the lower quartile, the median quartile, and the upper quartile of the E. coli size distribution,
respectively. The error bars denote the upper and lower quartile of the resulting population
that was obtained by resampling the GEEK model parameters within their confidence bounds.
The horizontal black line denotes the equilibrium constant calculated from the in vitro kinetic
parameters.

using GEEK can be attributed to the approximation over the state space at points far from

equilibrium.

3.4 Discussion

In this chapter we present a method for characterizing spatial effects of any nature on biochem-

ical reactions based on the mapping of average effects to ODEs. We, therefore, supplement

recent work on the transport properties of macromolecule in heterogeneous environments

(Grima et al., 2010; Smith et al., 2017) and improvements on Brownian reaction dynamics

in crowded media (Smith and Grima, 2017), as well as efforts to integrate models for altered

diffusion and rate constants into macroscopic transport equations (Grima and Schnell, 2007;

Grima, 2010), with a framework that allows for efficiently characterizing the observable rate

constant from Brownian reaction dynamics simulations. In addition, we consider the reaction-

diffusion dynamics in a diverse, heterogeneous environment represented by a size distribution.

Besides studying the effects of intracellular crowding as we have done, this framework can

influence the study of membrane-confined biochemical reactions, enzyme channeling, and

DNA- or actin-bound reaction systems, which are all current topics in biochemistry that lack
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Chapter 3. Particle-based modeling of crowding effects on enzyme kinetics

dedicated study tools.

Using a representative example, we confirm the hypothesis of recent research in the field that

for reaction-limited enzyme kinetics, the diffusion effects in fractal spaces are negligible and

are most likely not dominating in reaction networks. Instead, we confirm earlier research

by Grima (2010) that observed a strong direct effect of crowding on the effective rates, for

which a decrease in dissociation rates and an increase in association rates was observed

when increasing occupied volume fraction. Both effects can be sufficiently explained by an

effective increase of the crowding-induced potential with the volume fraction, confirming

that this is a better predictor of intracellular enzyme kinetics than the diffusion. Furthermore,

we show that the effective Michaelis-Menten parameters strongly depended on the volume

occupancy and the size distribution of inert molecules, indicating that the kinetics is likely

to vary dramatically in different cellular compartments. We finally show that crowding at

a simplified network level can lead to a redistribution of the effective control on the flux

response, suggesting that crowding can have a stabilizing effect with respect to fluctuation

in enzyme levels, potentially indicating why enzymatic systems in vivo systems show higher

robustness compared to in vitro.
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4 Theoretical model of crowded kinetics

4.1 Introduction

In the previous chapter, we demonstrate that crowding alters the substrate affinity and the

maximal enzyme rate of the Michaelis-Menten kinetics by approximating their kinetics using

particle simulations based on the first physical principle. The presented method provides an

essential speed up compared to the traditional particle simulation techniques, although it

still requires substantial computational effort to construct the approximate models. These

approximate models are also only able to characterize the effective reaction rate constants

around a reference concentration state. In this chapter, we aim to create an improved model

for the calculation of maximal velocity Vmax and the Michaelis-Menten constants KM ,i that

is suitable to calculate crowding corrections for a variety of enzyme mechanisms in large

scale models. In the previous chapter, we further focused our efforts on simulating a single

enzyme based on in vitro data instead of providing mechanistic insights into the observed

phenomena.

Instead of a stochastic, agent-based model, we provide a mean-field model that can accounts

for macromolecular crowding in terms of altered thermodynamic parameters, such as ac-

tivities, equilibrium distribution functions, and diffusion coefficients. Mean-field models

have been wieldy used to obtain effective chemical reaction constants for diffusion-limited,

and diffusion influenced reaction kinetics. Thereby, studies focused mainly on the effects of

diffusion on irreversible reaction kinetics, calculating the steady-state (Smoluchowski, 1927;

Debye, 1942; Collins and Kimball, 1949a) or time-dependent reaction rate constants (Szabo,

1989). Later studies extended these models to study the effects of diffusion on reversible

reactions (Agmon and Szabo, 1990; Szabo, 1991). These early models all have in common
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that they are considering the average association kinetics of a single reactant pair neglecting

the changes in the pair distribution that originate from the bulk conversion rates. Gopich

and Szabo (2002) have first taken into account these bulk conversion rates by linearizing the

effective kinetics close to equilibrium. Their model produced good results for the relaxation

times to equilibrium at the expense of not reproducing the correct irreversible limit. Their

formalism was used by Szabo and Zhou (2012) to study the effects of diffusion on the two-step

reversible Michaelis-Menten mechanism. The most recent contributions are the extension of

the formalism of Szabo and Zhou (2012) for reaction networks by Gopich and Szabo (2018)

and the introduction of crowding effects for the irreversible reactions employing an effective

potential by Berezhkovskii and Szabo (2016).

All these studies demonstrated that under quasi-homogeneous conditions, the effects of

diffusion on the effective reaction kinetics could be taken into account using a mean-field

model based on the Smoluchowksi equation (Smoluchowski, 1927). However, all studies

on reversible reaction kinetics consider closed systems. This couples the non-equilibrium

effects always to a decay dynamic so that they vanish at long times as the system approaches

equilibrium. In a living organism, enzymatic reactions are driven out of equilibrium as they will

be in a constant supply of nutrients that are catabolized to store chemical energy in the form

of ATP, NADH, and NADPH as well es to produce the building blocks of Macromolecules that

make up the cells of the organism. As mentioned in the previous chapter, these reactants travel

through a liquid environment where about 20–40% is occupied by a variety of macromolecules

including proteins, RNA, DNA, and lipids (Ellis and Minton, 2003; Hall and Minton, 2003;

Zhou et al., 2008; Rivas and Minton, 2018) to find their respective binding targets, catalysts or

substrates. With some exceptions, such as active vesicle transport (Hirokawa and Takemura,

2005), their primary transport mechanism is diffusion.

Zooming in on a single enzymatic reaction, we are left with a time-dependent, non-equilibrium

reaction-diffusion system that is affected by multibody forces du to the interaction of the

reactants with the macromolecules in its environment. We address the effects of the interaction

with macromolecules on i) the diffusion, ii) the fluid-structure, and iii) the activities using

a hard-sphere model. The properties of dense hard-sphere mixtures have been extensively

studied during the second half of the 20th century. Especially for the fluid-structure and the

species activity in hard-sphere mixtures there exist many reasonably good approximations,

starting from the most simple ones derived from the Percius-Yevick equation (Lebowitz, 1964;

Lebowitz and Rowlinson, 1964; Leonard et al., 1971) to Scaled Particle Theory (Helfand et al.,

1960; Lebowitz et al., 1965) to more recent approximations (Grundke and Henderson, 1972;
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Tang and Lu, 1995; Yuste et al., 1998). To models the effects of macromolecular crowding on

the effective dissociation rate constant, we derive a dissociation rate based on the results of the

previous chapter and the detailed balance. We likewise use the hard-sphere simulation results

to find an approximation for the change of the effective diffusion constant in a hard-sphere

mixture.

In this chapter, we present a non-equilibrium model of the Michaelis-Menten mechanism

based on the Smoluchowski formalism derived by Gopich and Szabo (2018). We additionally

present and validate analytical models to models for the effective diffusion constant, the effec-

tive dissociation rates, and the equilibrium radial distribution function in a dense hard-sphere

fluid modeling macromolecular crowding conditions. For a simple association mechanism,

we show analytically that the steady-state reaction rate constants of bi-molecular diffusion-

controlled reactions strongly dependent on the displacement from equilibrium. Reactions

displaced towards association tend towards the irreversible Collins-Kimbal rate constant.

In contrast, reactions that are displaced towards dissociation experience an increase in the

reaction rate as reassociation becomes more likely as diffusion becomes a limiting factor. We

then use a finite element formulation of the full model of the Michaelis-Menten mechanism

to determine how the effective Michaelis-Menten parameters of diffusion and reaction limited

enzymes change. Finally, we show that the results of the bi-molecular diffusion-controlled

can be used to derive approximate expressions for the effective Michaelis-Menten parameters

under crowded conditions, which are in good agreement with the finite element results.

4.2 Mathematical model

For the analysis presented in this chapter, we consider a prototypical reversible Michaelis-

Menten mechanism consisting of three reversible reactions: i) association and dissociation of

the substrate, ii) catalytic transformation, and dissociation, and iii) association of the product.

E+S
k1, f−−*)−−
k1,b

ES
k2, f−−*)−−
k2,b

EP
k3, f−−*)−−
k3,b

E+P (4.1)

Both the association and dissociation reaction strongly dependent on the transport of enzyme

and substrate towards and away from each other. This transport is based on the effective

diffusion constant as well as the accessible space for diffusion (Benichou et al., 2010; Trovato

and Tozzini, 2014).
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4.2.1 Pairwise reaction-diffusion model

The reaction rate of diffusion influenced reactions can be modeled by describing the time

evolution of the pair distribution of the reactants at contact (Gopich and Szabo, 2018). This

approach also allows accounting for many-body interactions by means of a potential of mean

force that characterizes the deviation from the pair distribution function of an ideal solution

at equilibrium (Gopich and Szabo, 2002; Kirkwood, 1935). The recently proposed theory

for diffusion influenced reaction networks models bimolecular molecular reaction rates as

a function of the pair-distribution ρmn . Previous work used analytical approximations to

derive the time-dependent rate constants for closed systems near equilibrium (Gopich and

Szabo, 2002, 2018). For this work, the theoretical description was adapted to model systems

that maintain a steady-state far away from equilibrium. From the theoretical description

of Gopich and Szabo (2018) the time-dependent bi-molecular reaction rates wmn,l for the

reaction [Xn][Xm] → [Xl ] are described by

wmn,l = k0
mn→l

∫
drρmn(r, t )σmn,l (r)−kl→mn[Xl ] (4.2)

where k0
mn→l is the association rate constant in contact, kl→mn is the effective dissociation

rate constant, σmn,l (r) is the probablity that the reaction occurs for a pair with distance r.

Gopich and Szabo (2018) modeled the time evolution of the pair-distributions ρmn by ac-

counting for i) diffusion, ii) pair interconversion due to dissociation and association at the

boundary as well as iii) pair interconversion due to reaction in the bulk. The corresponding

equation describing the time evolution of the tensor P with elements ρmn is then:

∂t P =∇2(DP +PD)+K P +PK T −R i r r (r)◦P −V (r) (4.3)

were ∂t denotes the partial derivative with respect to time, D is a diagonal matrix with the

effective self-diffusion coefficients and the elements κi j of K , describe the interconversion

rates between pairs, R i r r are the irreversible association fluxes, and V are the effectively irre-

versible dissociation fluxes of reactions mn → l , and ◦ denotes element-wise matrix product,

as introduced by Gopich and Szabo (2018). The bulk interconversion rates κi j account for

the interconversion of the pair m,n to pairs m, i or j ,n due to bulk reactions and are directly
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derived from the effective reaction rate of the species m and n (Gopich and Szabo, 2018):

κi j = ∂[X j ]∂t [Xi ] (4.4)

To describe an open system were up- and downstream processes responsible for the correlated

creation and depletion of species, a source term S(r) is added to the equation (4.3). This

source describes the difference from the bulk rate for the creation of a pair at a distance r .

The source term is becoming non zero if the upstream or downstream processes create or

deplete species in a correlated manner. This can be the case if the enzymes that produce the

substrates upstream to the modeled enzyme are colocalized.

In addition to the source term the transport description of the model is refined accounting for

crowding effects using the relative equilibrium radial distribution gmn(r) = ρmn(r)/[Xm][Xn].

The relative equilibrium radial distribution of each pair of species describes how the ther-

modynamic forces affect the pair distribution at equilibrium, i.e. in the absence any net

reaction fluxes (Barker and Henderson, 1976). For dilute systems the relative equilibrium

radial distribution is close to unity. Smoluchowski (1927) showed that the transport operator

Lmn = ∇·Dmn gmn(r)∇[gmn(r)]−1 models the altered transport equilibrium correctly, were

Dmn denotes the relative diffusion constant between species m and n. Introducing the source

term and the refined transport of the partial differential equation describing the time evolution

of the pair distribution P reads:

∂t P =L P +K P +PK T −R i r r (r)◦P −V (r)+Smn(r) (4.5)

The time evolution of the species bulk concentration is then given by

d X

d t
= N1u(X )+N2w(P, X )+ f (4.6)

where u are the unimolecular reaction rates transforming species m → n and w are the

modified reaction rates as described in equation (4.2) and f denotes the source fluxes of

material into the system.

We further consider that all molecules are spherical reactions only occur when two reacting

species m and n are in contact. Therefore σ(r) reduces to the surface of the contact sphere
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resulting in the simplification of equation (4.2):

wmn,l = k0
mn→lρmn(Rmn , t )−kl→mn[Xl ] (4.7)

Due to the symmetry equation (4.5) can be easily expressed in radial coordinates. Further the

terms R i r r (r)◦P and V (r) can be expressed as flux boundary at the contact sphere, similar to

the original work of Gopich and Szabo (2002). We can thus express the dynamic equations for

the pair distribution functions as

ρmn = r−2∂r r 2 jmn +∑
k
κmkρkn +∑

k
ρmkκnk + smn(r ) (4.8)

jmn = Dmn gmn(r )∂r [gmn(r )]−1ρmn (4.9)

subject to the boundary

4πR2
mn jmn(Rmn) =∑

l
k0

mn→lρmn(Rmn)−kl→mn[Xl ] (4.10)

The resulting set of partial and ordinary differential equations can be solved exactly at equilib-

rium or for the steady-state with constant bulk concentrations. As we show later, an approxi-

mate solution can be found for closed systems with kinetics linearized close to equilibrium

Gopich and Szabo (2002, 2018).

4.2.2 Finite element model

To solve the set of partial differential equations given in (4.8) subject to the boundary (4.10)

together with the set of ordinary differential equations (4.6) for any system of elementary

reactions a discretized model based on the finite element method (FEM) is derived. The finite

element model is used to solve for the time derivative of ρmn at time t given by the partial

differential equations. The time derivatives of the species concentrations ∂t [Xm] and the time

derivatives of the pair distributions are then integrated over time based on their initial values

X 0 and P 0 solving for their time evolution.

To compute the time derivative of ρmn the spatial dependent quantities ∂tρmn , ρmn and

jmn are approximated arround the i th node using the basis functions φi within the inter-
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val [Rmn ,L].

∂tρmn ≈ ∂tρ
h
mn =∑

i
φi∂t Pmn,i

ρmn ≈ ρh
mn =∑

i
φi Pmn,i

jmn ≈ j h
mn =∑

i
φi Jmn,i (4.11)

In this work, a set of second-order Lagrange basis functions is used (Larson and Bengzon,

2013). Then Galerkin’s method is applied to derive an approximation for the partial differential

equations. This method approximates the solution to the differential equation by constraining

the weighted residuals for the approximated functions ∂tρ
h
mn , ρh

mn and j h
mn to 0 (Mikhlin,

1964). Applications of Galerkin’s method to the partial differential equations in (4.8) result in

two integral equations for every pair distribution:

0 =∑
i

∫ L

R

{
φi∂t Pmn,i − r−2∂r r 2 [

φi Jmn,i
]−∑

k
κmkφi Pkn,i −

∑
k
φi Pmk,iκnk −Smn

}
φ j dr

(4.12)

0 =∑
i

∫ L

R

{
J −Dmn gmn(r )∂r [gmn(r )]−1 [

φi Pmn,i
]}
φ j dr (4.13)

To formulate the problem in terms of a matrix multiplication equations (4.12) and (4.13) may

be rewritten as:

0 =∑
i

∫ L

R

[
φiφ j∂t Pm,n,i −2r−1φiφ j Jm,n,i −∂rφiφ j Jm,n,i

−∑
k
κm,kφiφ j Pk,n,i −

∑
k
φiφ j Pm,k,iκn,k −Sm,nφ j

]
(4.14)

0 =∑
i

∫ L

R

[
Jm,n,iφiφ j − f1∂r f2Pm,n,iφiφ j −DmnPm,n,i∂rφiφ j

]
dr (4.15)

with f1 = Dmn gmn(r ) and f2 = [gmn(r )]−1. Summarizing the discretizations of the integration

vairables into the vetors ∂t ~Pm,n , ~Pm,n and ~Jm,n we can express the integral equations in
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terms of the matrix equations Amn , B mn
1 , B mn

2 and the vector ~C mn :

~0 = Amn ·∂t ~Pm,n −B mn
1 · ~Jm,n −∑

k
κm,k Amn · ~Pk,n −∑

k
Amn · ~Pm,kκn,k −~C mn (4.16)

~0 = Amn · ~Jm,n −B mn
2 · ~Pm,n (4.17)

where elements of A, B1 and B2 and ~C are calculated by integration over the basis functions:

Amn
i j =∑

i

∫ L

R
φiφ j dr (4.18)

B mn
1,i j =

∑
i

∫ L

R
2r−1φiφ j +∂rφiφ j dr (4.19)

B mn
2,i j =

∑
i

∫ L

R
f1∂r f2φiφ j −Dmn∂rφiφ j dr (4.20)

~C mn
j =∑

i

∫ L

R
Smnφ j dr (4.21)

The time differential of the discretized radial distribution functions at time t are thus computed

as follows:

~Jm,n(t ) := (Amn)−1B mn
2 · ~Pm,n(t ) (4.22)

Jm,n,0(t ) :=
∑

l k0
mn→l Pm,n,0 −kl→mn[Xl ]

4πR2
mn

(4.23)

∂t ~Pm,n(t ) := (Amn)−1B mn
1 · ~Jm,n(t )+∑

k
κm,k

~Pk,n −∑
k

~Pm,kκn,k −~C mn (4.24)

where (Amn)−1 dentoes the inverse matrix of Amn . Simultaneous time integration of ∂t ~Pm,n(t )

and ∂t X yields a numerical solution for the time course of species and pair distributions.

We solve the finite element problem on the integration domain [Rmn ,L] with L = 100Rmn

using a discretization of NE = 100 elements on a linearly increasing grid, i.e., the nodes are

equidistant in the 1/r space. To test whether the proposed FEM model converges to the

solution of the differential equation, we test the model against the steady-state analytical

solution of the pair distribution function of an irreversible bi-molecular reaction Collins and

Kimball (1949a). Our results indicate that the FEM model converges to the analytical solution

in the limit of [L, NE ] → [∞,∞] (Figure 4.1 A and B)

For the time integration, a variable order backward differentiation formula (BDF) scheme

is used as implemented by the CVODE solver implementation of SUNDIALS (Serban and
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4.3. Effects of crowding on the model parameters

A) B)

Figure 4.1 – A) Comparison of the analytical solution for the pair-distribution function ρmn for
an irreversible reaction m +n → l with constant constant concentrations and at steady state
at different discretizations NE . B) Error at of the pair distribution ρmn function at the collision
interface as a function of NE and L.

Hindmash, 2005; Hindmarsh et al., 2005).

4.3 Effects of crowding on the model parameters

The presence of macromolecules in the reaction domain can actively alter the effective dif-

fusion constant by obstruction of the mean free path, the equilibrium pair distribution, and

the effective dissociation rate by reducing the available volume (Minton, 1981; Zhou et al.,

2008). The reduction of the available volume near dissociation complexes additionally reduces

the effective dissociation rate constants (Grima, 2010; Weilandt and Hatzimanikatis, 2019).

The presence of macromolecules is taken into account by analytical models that describe the

changes of these three parameters as a function of the volume occupancy and macromolecular

size distribution.

4.3.1 Equilibrium radial distribution function

As discussed in the introduction, many different approximations have been developed to cal-

culate the equilibrium pair distribution in hard-sphere mixtures. In this chapter, the solution

derived from the Percus-Yevick closure of the Ornstein-Zernike compressibility relation is

used to compute the equilibrium pair distribution functions for a m component mixture of

hard-spheres with the radius Rl and the number density ρl . Like for all analytical approxima-

tions of the equilibrium pair distribution functions the expression for gmn(r ) is derived by

introducing the Laplace transform of r gmn(r ) as a explicit closed form of gmn(r ) can not be
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obtained (Lebowitz, 1964; Blum and Hoeye, 1977):

Gmn(s) =
∫ ∞

0
d te−sr r gmn(r ) (4.25)

The generalized expressions for the laplace tansfrom of a m component mixture are defined

by the following set of equations (Lebowitz, 1964; Blum and Hoeye, 1977):

Gmn(s) = e sRmn

sD∆

{
s
[

Rmn +RmRn
π

∆
ξ2

]
+1+ π

2∆
ξ3 + 2πs

∆

∑
l
ρlθ1(2Rl )(Rl −Ri )(Rl −R j )

}
(4.26)

with the denominator

D = 1− 2π

∆

{∑
l
ρlθ1(2Rl )

[
2Rl

(
1+ π

2∆
ξ2Rl

)
+ π

∆

∑
k
ρkθ1(2Rk )(Rk −Rl )2

]}

− 2π

∆

∑
l
ρlθ2(2Rl )

(
1+ π

2∆
ξ3

)
(4.27)

The functions θ1 and θ2 are modified gamma functions of the form

θ1(σk ) =(1− sσk −e−sσk )/s2 (4.28)

θ2(σk ) =(1− sσk + s2σ2
k /2−e−sσk )/s3 (4.29)

and ξ2, ξ3 and ∆ are given as the following expressions:

ξ2 =
∑
ρk (2Rk )2 (4.30)

ξ3 =
∑
ρk (2Rk )3 (4.31)

∆=1−πξ3/6 (4.32)

Numerical inversion of the Laplace transform Gmn(s) allows then to calculate gmn(r ). The

algorithm developed by de Hoog et al. (1982) is deployed to compute the inverse Laplace

transform using the implementation in the python package mpmath (Johansson et al., 2013).

To compute the radial distribution function, we assume that the components of the system,

i.e., enzymes [E], enzyme complex [ES], [EP], substrate [S], and product [P] concentrations

are sufficiently small so that their effect on the overall occupied volume is negligible. This

assumption holds for most individual components of a cell (Ellis and Minton, 2003). To

model the macromolecular mixture in the intracellular environment, we use the same size

distribution model as used in chapter 3 based on the work of Kalwarczyk et al. (2012). As

the inversion of the Laplace transform is computationally expensive, the size molecular size
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4.3. Effects of crowding on the model parameters

Figure 4.2 – A) Equilibrium radial disitrbution functions for a pair pair m,n with Rm = 1mn
and Rn = 3mn in a mixture of hard-spheres with φ= 0.0 (line), φ= 0.2 (dashed) and φ= 0.4
(dotted) fraction of macromolecules following the discrete size distribution given in B) Discrete
(bars) and continous (line) size distribution of macromolecules Kalwarczyk et al. (2012).

distribution function is discretized to approximate this continuous size distribution function

(see figure 4.2 part B). Examples for the numerical calculation of radial distribution functions

for a pair m,n with Rm = 1mn and Rn = 3mn are shown in figure 4.2 part A for macromolecular

volume fractions of 0% 20% and 40%.

4.3.2 Effective dissociation constant

The previous chapter showed that the effective dissociation rate constant depends on macro-

molecular crowding conditions, see section 3.3.2. To model the effect of macromolecules

on the dissociation rates a dissociation probability pd , with d ∈ [(E ,S → ES), (EP → E ,P )] is

introduced to describe how a macromolecular solution affects the possibility of an associated

complex to dissociate. The effective dissociation rate constant is then given as the dissociation

react constant in dilute conditions multiplied with a dissociation probability that accounts for

the effects of macromolecular crowding kd = pd kd ,0. The probability model considers that if

dissociation of a species l into a pair m,n leads to a reduction in the excess free energy the

reaction probability remains equal to one and an increase in the excess free energy will reduce

the probability by the Boltzmann factor between the increased energies of the dissociated and

associated state exp(−β∆∆Fmn→l ), where ∆∆Fmn→l is the difference of the excess free energy

of the product pair in contact ∆Fmn with respect to the educt ∆Fl . The excess free energy of a

pair in contact ∆Fmn is calculated based on the thermodynamic cycle to introduce a pair in

contact and separate this pair under ideal and crowded conditions, see figure 4.3. As in an

ideal solution there exists no barrier to separate a pair, i.e., ∆E 0
s = 0, the excess free energy of
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∆ !ͦ = 0

∆$%& ∆$%+∆$&∆$%&=∆$%+∆$&-∆ !

∆ !

Figure 4.3 – Calculation of the excess free energy, based on the thermodynamic equivalence of
i) introducing a pair into an ideal solution, separating it and introducing crowded molecules,
and ii) introducing the pair in contact into a solution with the same crowding properties and
then separate it.

introducing a pair into a crowded solution can then be calculated by the excess free energy of

the individual species ∆Fm and ∆Fn and the energy that is necessary to separate that pair in

crowded conditions ∆Es .

The difference of the excess energy ∆∆Fm,n→l can then be calculated as

∆∆Fmn→l =∆Fmn −∆Fl =∆Fm +∆Fn −∆Fl −∆Es (4.33)

The excess free energies for the individual compounds is calculated, like the equilibrium radial

distribution function, based on expressions derived from the Percus-Yevick approximation for

64



4.3. Effects of crowding on the model parameters

a hard-sphere mixture (Lebowitz and Rowlinson, 1964):

β∆Fm =βµex
m =− ln(1−ζ3)+ π

6
βpc (2Rm)3

+ (2Rm)2

(1−ζ3)3

[
3ζ1 −6ζ3ζ1 + 9

2
ζ2

2 −
9

2
ζ3ζ

2
2 +3ζ2

3ζ1

]
+ 2Rm

(1−ζ3)3

[
3ζ2 −6ζ3ζ2 +3ζ2

3ζ2
]

(4.34)

where ζi =∑
l ρl (Rl )iπ/6 and the compressiblity consistent pressure (Lebowitz and Rowlinson,

1964):

βpc =
{∑

ρl
(
1+ζ3 +ζ2

3

)−6π
∑
l ,k
ρlρk (Rl −Rk )2 [2Rl k +4Rl Rkζ2]

}
(1−ζ3)−3 (4.35)

The energy necessary to separate a pair m,n can be obtained by considering that the equilib-

rium pair distribution can be interpreted as the exponential of the potential of mean force

between species m and n, gmn(r ) = exp(−βUmn(r )) (Kirkwood, 1935). The energy necessary

to separate the species is then

∆Es = lim
L→∞

∫ L

Rnm

dr∂r Umn(r ) = lim
L→∞

Umn(L)−Umn(Rmn) (4.36)

In a fluid, the pair distribution function tends to 1 for large r the potential of mean force

tends to 0 for large r (Kirkwood, 1935). Expressing the separation energy in terms of the radial

distribution of m and n in contact gmn(Rmn) then yields:

∆Es =−Umn(Rmn) =−β−1 ln(gmn(Rmn)) (4.37)

The value of the equilibrium radial distribution function in contact can be obtained from the

inverse Fourier transform or using Percus-Yevick the expressions derived by Lebowitz (1964):

gmn(Rmn) =Rm gnn(Rn)+Rn gmm(Rm)

Rm +Rn
(4.38)

gmm(Rm) = (1−ζ3)+ζ2Rm

(1−ζ)2 (4.39)
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Figure 4.4 – Change of the relative dissociation constant calculated using the hard-sphere
model of PGM as presented in the previous chapter (circles and crosses) compared to the
theoretical model derived in this chapter (solid line). The changes for the theoretical model are
calculated based on the size distribution of macromolecules by Kalwarczyk et al. (2012) and
for species l with Rn = 3mn dissociating into pairs m,n with sizes Rm = 1mn and Rn = 3mn.

Using the above-derived results, the effective dissociation rate constants are:

kmn→l =

k0
mn→l if ∆∆Fmn→l ≤ 0

k0
mn→l exp(−β∆∆Fmn→l ) if ∆∆Fm:n→l > 0

(4.40)

with ∆∆Fm:n→l =∆Fm +∆Fn −∆Fl +β−1 ln(gmn(Rmn)). As ∆Fm are the excess free energies

equation 4.40 can also be expressed in terms of the activity coefficients γm . Were the activity

coefficients relate to the excess free energies γm = exp(β∆Fn):

kmn→l =

k0
mn→l if gmn(Rmn)γmn→l ≥ 1

k0
mn→l gmn(Rmn)γmn→l if gmn(Rmn)γmn→l < 1

(4.41)

with the overall change in reaction activity γmn→l = γl (γmγn)−1.

Comparing the effective dissociation rate to the changed dissociation rates as calculated

from the hard-sphere Brownian reaction dynamics model presented in the previous chapter

(Figure 4.4) indicates that the energy-based models presented in this chapter predict a weaker

effect on the dissociation rate constant than the hard-sphere model. The difference in the
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4.3. Effects of crowding on the model parameters

models originates from their different assumptions. The hards-sphere model assumes that

any dissociation process that encounters a hindrance cannot occur. This model implies that

the macromolecules’ positions cannot change during the dissociation step. In the theoretical

model, we introduce the dissociation probability as the Boltzman factor between the associ-

ated and the dissociated state, i.e., the product pair in contact. In contrast to the hard-sphere

model, this model considers that an increase in free energy reduces the probability of transi-

tion towards this state, accounting for the possibility that the macromolecules position can

change during the dissociation step.

4.3.3 Effective diffusion constant

The final model parameter that is impacted by the presence of macromolecules is the effec-

tive diffusion constant of the reacting species. Diffusion in the intracellular environment is

anomalous due to interactions of the diffusing species with the macromolecules (Hofling

and Franosch, 2013; Hasnain et al., 2014). In this work, these interactions are reduced to

the hard-sphere repulsion that leads to volume exclusion and exchange of momentum upon

collision. The path of a tracer molecule in a solution of water is naturally driven by the thermal

fluctuations of the water molecules surrounding it. In the hard-sphere mixture, this path

changes with each collision with another molecule leading to a reduction in the effective

self-diffusion constant. The critical parameter for the reaction-diffusion model described

above is the relative diffusion between the reacting species. In a quasi-homogeneous solution,

this relative diffusion constant is given by the sum of the self-diffusion coefficients. In the

literature, approaches to calculate the self-diffusion coefficients for hard-sphere suspensions

consisting out of single-sized spheres (Leegwater and Szamel, 1992). For mixtures of hard-

spheres, models are limited to two-component mixtures (Imhof and Dhont, 1995; Peppin,

2019) and consider high volume fractions of the individual components. As discussed above,

the diffusion-reaction model presented in this chapter is based on the assumption that the

individual components of the system only occupy a small fraction of the volume. In the ab-

sence of a theory for Brownian diffusion in hard-sphere mixtures, we approximate the effects

of macromolecular crowding on the effective diffusion using hard-sphere simulations, see

figure 4.5. We calculate the effective diffusion constant using the mean squared displacement

as a function of time and the relation 〈xm −x0
m〉 = 6Dm t , where x are the positions of the tracer

particles Einstein (1905). Up to macromolecular volume fractions of about 0.4%, the effective
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Chapter 4. Theoretical model of crowded kinetics

Figure 4.5 – Effective diffusion coeffcient as a function of the macromolecular volume fraction
for species with R1 = 1mn (circles), R1 = 2mn (crosses) and R1 = 3mn (squares) in a hard-
sphere mixture following the size distribution given in Kalwarczyk et al. (2012).

diffusion constants are reasonably approximated by the linear relation:

Dm ≈ D0
m(1−φM ) (4.42)

here D0
m denotes the diffusion constant of species m in a dilute aqueous solution.

4.4 Apparent reaction rates at equilibrium

When macromolecules are introduced into a closed system at equilibrium, the system is

displaced into a non-equilibrium state. The interactions between macromolecules and re-

actants cause this displacement by changing the chemical potential of the reactants. After

sufficient time the closed system will settle in a new equilibrium state. This equilibrium

state is defined by the altered rate constants that arise from altered pair distributions in the

presence of macromolecules. As the above-described model for diffusion influenced reaction

networks considering macromolecular crowding can be solved at equilibrium, we derive the

basic equilibrium relations for the three-step Michaelis-Menten mechanism.

In a first step, we calculate the equilirbium relations for the bimolecular reactions E ,S 
 ES

and EP 
 E ,P . From equation (4.2) and the definition of gmn(r ), it follows that at equilibrium
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4.4. Apparent reaction rates at equilibrium

the relative pair distribution ρmn(r )/[Xm][Xn] of species m and n is gmn(r ). Introducing these

result into equation 4.2 and considering that at equilibrium, all net reaction rates are zero, we

find the equilibrium relation for bimolecular reactions:

K app
mn→l ,eq = [Xl ]eq

[Xm]eq [Xn]eq
= k0

mn→l

∫
drgmn(r)σmnl (r)

kl→mn
(4.43)

Considering the spherically symmetric partially absorbing boundary at contact, and the model

of the effective dissociation constant, see above equations (4.10) and (4.41), we show that the

equilibrium constant is shifted by the activity coefficients of the products and educts. This

result recovers the well-known relation obtained from thermodynamic considerations (Zhou

et al., 2008):

K app
mn→l ,eq = k0

mn→l gmn(Rmn)

k0
l→mn gmn(Rmn)γl→mn

= K 0
mn→l ,eq

γl

γmγn

= K 0
mn→l ,eq eβ(∆Fl−∆Fm−∆Fn ) (4.44)

As unimolecular reactions are neither affected by the diffusion nor by the pair distribution

function, they are not subject to any effects in the above-presented model. In the three-step

Michaelis-Menten mechanism, only the biotransformation in the catalytic pocket is a uni-

molecular reaction and thus not subject to any macromolecular effects. Therefore the effective

equilibrium constant for the unimolecular reactions is equal to their ideal.

K app
m→n,eq = K 0

m→n,eq (4.45)

Nevertheless, it has been suggested that crowding can stabilize enzyme configurations and

result in a change of the effective reaction rate constants of this transformation (Kinjo and

Takada, 2002; Xu et al., 2017). We note that with the presented model such effects can be taken

into account if the impact of macromolecules on the effective forward and backward rates is

known.

Considering the elementary reaction scheme for the Michaelis-Menten mechanism in 4.1 the
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overall apparent equilibrium constant is

K app
eq = K app

E ,S→ES,eq K app
ES→EP,eq K app

EP→E ,P,eq

= K 0
E ,S→ES,eq K 0

ES→EP,eq K 0
EP→E ,P,eq

γES

γEγS

γEγP

γEP
(4.46)

with K 0
E ,S→ES,eq K 0

ES→EP,eq K 0
EP→E ,P,eq = K 0

eq .

If the enzyme-substrate and enzyme-product complex are of the same size their activity

coefficients γES and γEP are equal, and the expression for the apparent equilibrium constant

further simplifies to

K app
eq = K 0

eq
γP

γS
. (4.47)

From these relations, it is clear that the apparent equilibrium is only effected by macro-

molecular crowding if i) the effective size of the substrate and product is different, ii) the

enzyme-substrate complex changes in size when transforming the substrate to the product,

or iii) the apparent K app
ES→EP is effected due to a changed enzyme conformation. For Uni-Uni

enzyme reactions, the effective size of the substrate is unlikely to change as the mass of the

molecule is conserved. Still, for other enzyme stoichiometries, the equilibrium constant may

be significantly affected by crowding, as suggested by Angeles-Martinez and Theodoropoulos

(2015).

4.5 Non-equilibrium effects on steady-state reaction rates

In a living organism, external driving forces such as a constant supply of substrates maintain

steady-state displaced from equilibrium. This situation requires a constant net transport of

enzyme and substrate molecules towards and a constant transport of enzymes and product

molecules away from each other. Under constant growth conditions, the metabolic enzymes

in the cell operate at a quasi-steady state (Monod, 1949; Campbell, 1957; Heineken et al., 1967;

Salvy and Hatzimanikatis, 2020). To investigate these steady-state properties in the presence

of macromolecular crowding, we first investigate the properties of the elementary reaction

and then simulate the steady-state behavior of the Michaelis-Menten mechanism. We further

derive an analytical approximation for the effective Michaelis Menten parameters based on

the properties of the elementary reactions.
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4.5.1 Elementary reactions

As mentioned above, Biochemical reactions inside the cells often operate at a non-equilibrium

steady state. A simple model to account for such a situation can be modeled as an association

reaction E ,S 
 ES that is subject to constant bulk concentrations. The constant bulk con-

centrations model that there exists an upstream and downstream process that continuously

maintains the value of the concentration. For this simple model, it is possible to find an ana-

lytical expression for steady-state reaction flux. As the bulk concentration are assumed to be

constant the bulk conversion rates κi j reduce to zero reducing all equations for the pair disitr-

bution function, expet forexcept for m = E , n = S and m = S, n = E , to ∂tρmn = Lmn(Dmnρmn).

The steady-state solution for the opertor Lmn is gmn(r ). Due to symetry ρmn = ρnm the system

is complectly described by the following set of equations:

ρmn = r−2∂r r 2DE ,S gE ,S(r )∂r [gE ,S(r )]−1ρE ,S (4.48)

subject to the boundary

4πR2
E ,S jE ,S(RE ,S) = k0

E ,S→ESρE ,S(RE ,S)−kES→E ,S[ES] (4.49)

We follow the derivation of Szabo (1989) by formaly solving the inhomogenous equation as

[C1 −C2 f (r )]g (r ) with f (r ) beeing the solution of the homogenous equation, i.e g (r ) = 1 and

subsequently comparing the constants for diffusion-limited boundary ρE ,S(RE ,S) = 0 with the

constants for above described boundary. Introducing the diffusion limited interface flux as

k sm
E ,S→ES[E ][S] we find the flux at the boundary to be:

vE ,S→ES =
k0

E ,S→ES g (RE ,S)
(
k sm

E ,S→ES +kES→E ,S
[ES]

[E ][S]

)
k0

E ,S→ES g (RE ,S)+k sm
E ,S→ES

[E ][S]−kES→E ,S[ES] (4.50)

were k0
E ,S→ES is the reaction rate at constant, k sm

E ,S→ES is the Smoluchowski (diffusion limiting)

rate constant and kES→E ,S is the effective dissociation rate constant.

4.5.2 Enzymatic reactions

Next, we characterize the effects of macromolecular crowding on different enzymes following

the Michaelis-Menten mechanism described in equation 4.1. We parameterize the rate con-

stants of the enzyme in a diluted environment based on six kinetic parameters in addition to

the size of the species and their dilute diffusion constants. We then use in silico enzyme assays
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to determine the maximal enzyme velocity Vmax and the Michaelis-Menten constants KM .

These kinetic parameters are the overall standard free energy of the reaction ∆S→PG0, the sub-

strate and product dissociation constants KD,E ,S→ES and KD,E ,P→EP , the ratio of rate constant

in contact to diffusion limitation rate to for the substrate association and the product associa-

tion dE ,S→ES and dE ,P→EP and finally the rate of the biocatalytic transformation kES→EP . In a

first step, the diffusion-limited rate constants are determined from the size and the diffusion

constant of the reactants (Smoluchowski, 1927). Thereby the diffusion constants Dm are

calculated from the radius Rm based on the Stokes-Einstein relation given in 3.28.

γmn→l = 4πDmnRmn (4.51)

From this the association rate constants at contact for the substrate product association are

calculated via the ratios dE ,S→ES and dE ,P→EP as

k0
E ,S→ES = dE ,S→ESγE ,S→ES (4.52)

k0
E ,P→EP = dE ,P→EPγE ,P→EP . (4.53)

Subsequently, the ideal dissociation rate constants are calculated from the ideal association

rate constants at contact and the dissociation constants KD,E ,S→ES and KD,E ,P→EP as

k0
ES→E ,S = k0

E ,S→ESKD,E ,S→ES (4.54)

k0
EP→E ,P = k0

E ,P→EP KD,E ,P→EP (4.55)

Finally, the reverse biocatalytic rate kEP→ES is calcualted based on the overall Gibbs free energy

∆S→PG0 and the dissociations rate constants KD,E ,S→ES and KD,E ,P→EP .

kEP→ES = e−RT∆S→P G0
KD,E ,S→ESKD,E ,P→EP (4.56)

The rate and diffusion constants are then modified accroding to the crowding models pre-

sented above in thourgh sections 4.3.1 to 4.3.3, introduced into the model discussed in section

4.2.1 and solved using the finite element scheme presented in section 4.2.2 with constant

boundary conditions for [S] and [P ] at different substrate concentrations with [P ] = 0. The

maximal velocity V app
max and KM ,S are then extraced from the enzyme flux as a function of

the substrate concentrations, see figure 4.6. As a first study, we choose an enzyme model

with RE = RES = REP = 3nm and RS = RP = 1nm. The respective diffusion constants are
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B)A)

Figure 4.6 – A) Enzyme essay at different volume occupacys,φM = 0.0, (sold)φM = 0.2 (dashed),
φM = 0.4 (dotted), for a reaction controlled enzyme dE ,S→ES = dE ,P→EP = 10−2. B) Enzyme
essay in log-lin-scale normalized by the apparent maximal velocity V app

max to illustrate the
change of KM ,S in corwded conditions.

calcualted based on the dynamic viscosisty of water at 25◦C ,i.e., η = 0.7Pas. The stan-

dard Gibbs free energy of the enzyme reactions is ∆S→PG0 =−1RT , its substrate and prod-

uct dissociation constants are KD,E ,S→ES = KD,E ,P→EP = 10µM, it diffusion limitation ratios

dE ,S→ES = dE ,P→EP = 10−2, and the rate of the biocatalytic transformation kES→EP = 103 s−1.

Inspection of the results of the enzyme assay reveals similar results, as found in chapter

3. We observe a reduction of the V app
max and the KM ,S with increasing macromolecular vol-

ume fraction φM . These results are not surprising as the effective enzyme parameters V 0
max

and K 0
M ,S are similar to those of the example, phosphoglycerate mutase, used in chapter

3. In the next step, we investigate the sensitivity of the enzymatic reaction regarding its

degree of diffusion control by varying the ratios between the reaction rates in contact and

the diffusion-limited rates dE ,S→ES and dE ,S→ES . The smaller these ratios, the less influence

has the diffusional transport on the effective association rate, larger ratios suggest that the

effective association rate is strongly impacted by the diffusion of two pairs towards each other.

To investigate the impact of the diffusion-control on the enzyme parameters we vary the

ratios of d = dE ,S→ES = dE ,S→ES with d = [10−6,10−2,100] across different macromolecular

volume fractions φ= [0.0,0.1,0.2,0.3,0.4] calculating their effective Vmax and their effective

KM ,S using enzyme assays as shown in figure 4.6. The analysis shows that the model suggests if

enzymes are driven towards diffusion limitation, the effect on the maximal velocity is reduced

compared to enzymes that are limited by their reaction rate at contact. Comparing the relative

change in maximal velocity Vmax /V 0
max to the relative change of the dissociation constant

kEP→E ,P /k0
EP→E , it is evident that the change of this dissociation rate constant is the driving
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factor for the change in maximal velocity when the complementary association is limited by

the relative reaction rate constant (Figure 4.7 part A). Interestingly, this effect is not observ-

able for the changes in the relative substrate affinity in the form of the relative change of the

Michaelis-Menten parameter KM ,S/K 0
M ,S . The Michaelis-Menten parameter changes propor-

tional to the effective equilibrium constant of the association reactions and is not affected

by the diffusion-controlled ratios (Figure 4.7 part B). To understand why Vmax seems to be

less affected by macromolecular crowding, we investigate the change of radial distribution

function of the associating pairs in contact ρE ,S(RE ,S)/ρ0
E ,S(RE ,S) and ρE ,P (RE ,P )/ρ0

E ,P (RE ,P ) at

the highest substrate concentration (Figure 4.7 part C and D). It can be clearly seen that the

radial distribution of the product association decreases ρE ,P (RE ,P )/ρ0
E ,P (RE ,P ) with increasing

macromolecular volume fraction. Revisiting equation 4.50, we understand that the effective

association rate constant in contact k0,app
E ,P→EP = k0

E ,P→EP gES(RE ,S) increases with the radial

distribution function in contact, which increases with the volume fraction (see section 4.3.1).

In contrast, the diffusion-limited rate constant k sm
E ,P→EP decreases. This results in an over-

all reduction of the effective association rate constant if the limited diffusion rate constant

k sm
E ,P→EP is in a similar order of magnitude as the association rate constant in contact k0,app

E ,P→EP .

The reduction of the effective product association increases the net flux, counteracting the

limitation by the crowding dependent decrease of the dissociation rate constant.

From the solution of the elementary reaction model, we expect a linear increase in the pair

distribution ρE ,P at the interface with respect to the concentration [EP ]/[E ]/[P ]. This linear

increase is not limited by any interactions taken into account in the model. When assessing

this quantity in the enzyme model, we likewise observe an increase of the ρE ,P as a function of

the substrate concentration. If we translate this observation into a conceptual model, this will

result in the accumulation of products in the vicinity of an enzyme that can occur without any

thermodynamic cost on the dissociation reaction. In reality, this boundary layer of products

around the enzymes will increase the activity of the products in that region around enzyme

(Figure 4.8), integrating this to the dissociation model discussed in section 4.3.2 results in a

decreasing dissociation probability with increasing accumulation of products close to the

enzyme. To capture this effect, we introduce a simple model that, in addition to the activity

in bulk, accounts for the activity due to the volume occupancy of product molecules at the

dissociation radius φP (Rmn).

kmn→l = k0
mn→l gmn(Rmn)γmn→l (1−φP (Rmn)) (4.57)

Note that we choose an underestimating model by the only accounting for the additional
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B)A)

D)C)

Figure 4.7 – A) Relative change in maximal enzyme rate Vmax /V 0
max compared to the relative

change in dissociation rate constant (solid line) as well as B) relative change of the Michaelis-
Menten parameter KM ,S/K 0

M ,S compared to the change of the equilibrium constant of the
association reaction (solid line), C) relative pair distribution function between products and
enzymes at highest substrate concentration ρE ,P /[E ][P ] and D) relative pair distribution
function between substrates and enzymes at highest substrate concentration ρE ,S/[E ][S] as a
function of macromolecular volume fraction for enzymes with different diffusion-controlled
ratios d = 10−6 (crosses), 10−2 (circles), 100 (squares).
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Figure 4.8 – Normalized pair distribution function at the contact radius ρE ,P (RE ,P )/[E ][P ] at
steady state as a function the substrate concentration with illustrations of the increasing local
concentration of product (blue) around the enzyme (yellow) surrounded by macromolecules
(grey).

occupied volume at the contact radius, as we only account for the first term of the excess

free-energy given in equation 4.34.

Correcting our diffusion-reaction model for the occupied volume at the contact interface, we

repeat measuring the apparent maximal enzyme velocity V app
max and the apparent Michaelis-

Menten constant K app
M ,S , as a function of the volume fraction occupied by macromolecules

φM .The simulation results reveal that when the product accumulation at the contact interface

is taken into account, the apparent maximal enzyme rate V app
max of the diffusion-controlled

case with d = 100 is less affected by macromolecular crowding (Figure 4.9). In contrast, this

correction has no significant effect on the maximal enzyme rate of the reaction controlled

cases d = 10−2 and d = 10−6 as well as the apparent Michaelis-Menten constant for all cases.

Thus, indicating that for the diffusion-controlled case d = 100, the reduction of the dissociation

constant, due to the direct effect of crowding and the accumulation of products at the enzyme-

product interface, is not limiting the maximal enzyme rate.

4.6 Discussion

The effect of diffusion and crowding on the effective reaction kinetics is a highly disputed

topic (Grima and Schnell, 2006a,b). Most studies focused their efforts on the time-dependent

reaction rate constants and discovered different forms of anomalies (Mourao et al., 2014;

Szabo, 1989; Gopich and Szabo, 2002, 2018). Other studies also include crowding effects

in closed systems (Smith and Grima, 2017; Cianci et al., 2017). In this chapter, we extend

the model developed by Gopich and Szabo (2018) to expose, for the first time, the effective

steady-state kinetics in an open system displaced from equilibrium. We also develop a nu-
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A) B)

Figure 4.9 – Comparing the A) maximal enzyme rate Vmax /V 0
max and B) relative change of the

Michaelis-Menten parameter KM ,S/K 0
M ,S as a function of macromolecular volume fraction

for enzymes with different diffusion-controlled ratios d = 10−6 (diamonds), 10−2 (circles), 100

(squares) between the orignial model (empy symbols) and the model corrected for product
accumulation in proximity to the enzyme (filled symbols).

merical formulation to solve the non-linear equation that has so far only been solved for

kinetics linearized around the thermodynamic equilibrium. Using models for thermodynamic

quantities as the excess free energy and the equilibrium pair-distribution as well as models for

the effective diffusion, we extend the models further to account for the average kinetics in a

crowded environment.

Although the analysis presented in this chapter focuses solely on the steady-state reaction

kinetics, the mathematical and numerical formulation of the problem also allows investigating

dynamic transition paths from one steady-state to another. Gopich and Szabo (2018) presented

an analysis of such transition paths for relaxation to equilibrium. In their analysis, they show

that the effective rate constants change as a function of time as the pair distribution function

of reactants in proximity is time-dependent for diffusion-controlled situations. Their analysis

hints that these effects may also occur in non-equilibrium systems that move from one

steady-state to another. Such a change in the steady-state can be caused by changes in the

environment of the system, e.g., when the concentration of nutrients around the cell changes.

We thus suggest that future work should also investigate the time course behavior between

non-equilibrium states.
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5 Crowded metabolic control

5.1 Introduction

In the previous chapters 3 and 4, we focus on the investigation of the behavior of individual

enzymes in a crowded environment. In this chapter, we aim to extend the analysis to small pro-

totypical metabolic networks and to provide a framework that enables studying the responses

of metabolic reaction networks to genetic and environmental changes.

Metabolic networks are descriptions of the cellular metabolism in the form of a reaction net-

work that connects the individual metabolites via biochemical transformations catalyzed by

enzymatic reactions. Based on such a network description, the mass balances of the metabo-

lites in the network can be deduced. The solution space of these mass-balances can, in the

absence of knowledge on the reaction rate law, be studied by constraint-based modeling under

the assumption the reactions network is in a quasi-steady-state (Vallino and Stephanopoulos,

1993; Varma and Palsson, 1993a,b; Orth et al., 2010). Constraint-based modeling methods

have evolved to include a variety of different aspects such as thermodynamics (Henry et al.,

2005, 2007), proteome limitations (Sánchez et al., 2017), as well as transcription and trans-

lation (Salvy and Hatzimanikatis, 2020), where the two latter methods require knowledge of

the maximal kinetic rate in the form of the catalytic rate constant. Nevertheless, all these

methods allow only to characterize the solution space of the reaction rates given the modeled

constraints. To additionally constraint the possible solution space, these methods consider an

objective function that is to be optimized, e.g., the maximal production of biomass. Under

the assumption of optimality, the solution space for the reaction rates and other variables is

then further reduced. This, however, does not allow to account for non-optimal responses,

as the resulting solution space for a perturbation in the environment will still be the solution
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space subject to the optimality assumption. Further, the solution spaces before and after the

perturbation can overlap, leading to inconclusive results. Describing the flux and concentra-

tion responses of a biochemical network requires the information on the reaction rate laws

of the enzymatic reaction or at least their sensitivities for changes in the concentrations and

biochemical parameters.

In this chapter, we make use of metabolic control analysis (MCA), a framework initially de-

veloped to study the sensitivity of metabolic networks for environmental changes (Kacser

and Burns, 1973). MCA provides the means to study the steady-state and dynamic responses

of concentrations and fluxes within metabolic networks, provoked by changes in the en-

zyme activities, extracellular concentrations, or other system parameters Kacser and Burns

(1973); Heinrich and Rapoport (1974); Reder (1988); Hatzimanikatis and Bailey (1996, 1997).

The framework has since been used to address various questions in fundamental biology,

biotechnology, biophysics, and medicine Kholodenko and Westerhoff (1993); Schuster (1999);

Cascante et al. (2002); Wang et al. (2004); Wang and Hatzimanikatis (2006b,a); Tokic et al.

(2020).

We use the MCA framework in combination with the approximate crowded kinetics (GEEK)

introduced in chapter 3 to calculate the local and global sensitivities of the enzymatic reaction

rates for changes in the enzyme activities in small prototypical reaction networks. Our analysis

reveals that substrate sizes, as well as the limitation by diffusion, are key factors that change

these sensitivities significantly when considering crowded conditions. This work suggests that

applying this framework to larger metabolic networks may yield new insights into cellular

responses to extreme changes in the environment.

5.2 Modeling perturbations in metabolic networks

5.2.1 Metabolic kinetic models

In this chapter, we consider a metabolic reaction network consisting out of M enzymatic

reactions that involve N metabolites. The dynamics of this system is given by the mass-

balance for each of the metabolites:

dx

d t
= Sv(x,p) (5.1)

were v ∈ RM is a function that describes the reaction rate of each enzymatic reaction as a

function of the metabolite concentrations x ∈RN and a set of parameters p ∈RU . The rate of
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accumulation of every metabolite is then given by the scalar product of the stoichiometric

matrix S ∈RM×N with the reaction rate vector v Such metabolic network models can include

conservation constraints. Such constraints emerge when the total amount of a group of

compounds is constant over the characteristic response time of the model. To consider these

conservation constraints, an additional set of parameters pc ∈RUc is introduced, representing

the total concentration of the conserved moieties. Given the total concentration of a conserved

moiety, one metabolite concentration can be expressed as a function of the other metabolite

concentrations. Subsequently, the set of metabolites is split into a subset of dependent

metabolites xd ∈ RUc and a subset of independent metabolitesxi ∈ RN−Uc . All dependent

metabolites are then a function of the independent metabolites and the total concentration

parameters xd (xi ,pc ). The conservation constraints introduce linearly dependent rows in

the stoichiometric matrix S, resulting in a rank deficient matrix. These linearly dependent

rows can be extracted to form a new stoichiometric matrix SR (Reder, 1988; Heinrich and

Schuster, 1996; Wang et al., 2004). Reformulation of the kinetic rate laws considering the

above-mentioned linear constraints gives then a reduced set of balance equations for the

model:

dxi

d t
= Sv(xi ,xd (xi ,pc ),p) (5.2)

5.2.2 (Log)linear formulation of Metabolic Control Analysis

To analyze flux and concentration responses with respect to parameter perturbations Kacser

and Burns introduced the flux and concentration control coefficients C v
p and C x

p , respectively.

These control coefficients are defined as the fractional change of metabolite concentration

and fluxes over the fractional change of the system parameters (Kacser and Burns, 1973). With

the help of the (log)linear formalism (Hatzimanikatis and Bailey, 1996, 1997; Reder, 1988) the

system (Equation 5.2) can be linearized and scaled around steady state, allowing to derive

expressions for the control coefficients (Wang et al., 2004):

C x
p =−(SRV (Ξi +Qd

i Ξd ))−1(SRVΠ) (5.3)

C v
p = (Ξi +Qd

i Ξd )C x
p +Π (5.4)

where V a square diagonal matrix of the fluxes, Ξi denotes the fractional changes of the net

fluxes with respect to the fractional changes of the independent concentrations, Ξd denotes

the fractional changes of the net fluxes with respect to the fractional changes of the dependent
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concentrations, Qd
i are the weights of the linear conservation constraints of the dependent

metabolites and Π are the fractional changes of fluxes with respect to the fractional change in

a parameter p.

5.3 Introducing crowding into metabolic reaction networks

5.3.1 Generliazed elementary enzyme model

In the next step, we aim to integrate a model of the response to a change of the environment

into the metabolic control framework. Therefore we use the generalized elementary kinetics

(GEEK) as presented in chapter 3. GEEK allows capturing the effective kinetics in a crowded

environment. This kinetic rate is a modified mass action law where the effective reaction

rate constant is expressed as a power-law of the scaled concentrations in the system. The

expression of the rate constants is given as

k j = k0
j eβ j

∏
i

(
[Xi ]

[X 0
j ]

)αi , j

(5.5)

where exp(β j ) characterizes the relative change of reaction rate constants at the reference

concentration, and the αi , j are the exponents of the scaled concentrations. In contrast to

the generalized mass action (Smith, 1992), GEEK is expressed in terms of the elementary

reactions and as a function of all concentrations in the system rather than only the reactant

concentrations. GEEK is a phenomenological description that can be directly characterized by

rate constants measurement at constant concentrations using weighted log-linear regression.

To derive a formalism that allows considering spatial effects in the metabolic control analysis,

we consider that each enzyme Em catalyzing a reaction transforming the metabolite Xk into

the metabolite Xp follows a three-step Michaelis-Menten mechanism

Em +Xk
km,2−−−*)−−−
km,1

EmXk
km4−−*)−−
km3

EmXp
km,6−−−*)−−−
km,5

Em +Xp (5.6)

To account for deviations of the mass-action mechanism in crowded conditions, we introduce

the generalized elementary kinetics (GEEK) to describe the kinetics each elementary step

(m, i ) with m ∈ M and i ∈ [1,6]. Thus the reaction rate constant of each elementary step is

km,i = k0
m,i eβm,i

∏
k∈X

(
[Xk ]

[X 0
k ]

)αm,i ,k ∏
e∈E

(
[E j ]

[E 0
j ]

)αm,i , j ∏
c∈C

(
[E Xc ]

[E X 0
c ]

)αm,i ,c

(5.7)
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Table 5.1 – Mass-action terms for the three step Michaelis-Menten mechanism

θm,1 θm,2 θm,3 θm,4 θm,5 θm,6

[Xk ][Em] [Em Xk ] [Em Xp ] [Em Xk ] [Em Xp ] [Xp ][Em]

where X is the set of metabolites in the metabolic network, E is the set of free enzymes in

the network C denotes the set of existing enzyme complexes in the network. For a metabolic

network consisting only of three-step Michaelis-Menten mechanisms X has the size N , E has

the size M , and C is of size 2M . The GEEK rate constants the reaction rate of the elementary

reactions can be then written in the form of

vm,i = km,iθm,i (5.8)

where θi , j denote the mass-action term of respective elementary reaction. The mass action

terms for the elementary reaction of the three-step mechanism given above are denoted in

table 5.1.

The translation and degradation of proteins occur on a much slower timescale than the turn

over of metabolic reactions as extensively reviewed in the supplemental material of (Salvy and

Hatzimanikatis, 2020). We, therefore, assume that the overall amount of the enzyme Em is

conserved. Thus the total amount of enzyme [Em,T ] constraints the number of free enzymes

and enzyme complexes linearly:

[Em,T ] = [Em]+ [Em Xk ]+ [Em Xp ] (5.9)

Each of these enzyme conservation relations reduces the effective degrees of freedom for each

enzyme by one. Thus, one of the enzyme species has to be part of the set of dependent species.

For every enzyme conservation relation, the free enzyme is chosen to be the dependent species.

Thus the enzyme complexes are within the set of independent species.

[Em] = [Em,T ]− [Em Xk ]− [Em Xp ] (5.10)

At this point, we introduce another useful quantity, the enzyme saturation σm . The saturation

σm denotes the fraction of bound enzyme. Given the conservation relation above the enzyme

saturation can be expressed as

σm = [Em Xk ]+ [Em Xp ]

[Em,T ]
= 1− [Em]

[Em,T ]
(5.11)
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5.3.2 An approximate model for crowded elementary reactions

In chapter 3, we investigate how the elementary kinetics of the Michaelis-Menten mechanism

is altered under crowded, non-equilibrium conditions. We could show that the power-law

formalism of GEEK can be used to approximate the steady-state reaction rates. Further,

we show that the exponents are significantly deviating from zero when diffusion becomes

a limiting factor in association reactions. In the following chapter 4, we find that isolated

diffusion-controlled association reactions like the association of the substrate to an enzyme,

when driven out of equilibrium towards the dissociated state, show an increased apparent

reaction rate constant. From solving the pair-wise Smoluchowski equation, it can be shown

that this increase is proportional to the ratio of products and educts of the association reaction.

The results suggest that diffusion inhibits the separation of the products leading to an increased

pair distribution at the contact, which appears as an increased association rate constant. This

accumulation can then lead to an inhibition of the dissociation rate in case the available

volume at the contact radius of the dissociated molecules approaches zero (Chapter 4).

In the above denoted enzyme model, equation 5.6, we find two association reactions, i.e.

(m,1) and (m,6) with their respective dissociation reactions (m,2) and (m,5) and one single

reversible unimolecular reaction modeling the biochemical transformation (m,3) and (m,4).

Choosing a set of reference concentrations allows us to approximate the effective kinetic rate

constants using GEEK. Due to its power-law nature, the GEEK parameters can be directly

calculated as:

αi , j =
∂ ln(k j /k0

j )

∂ln([C j ]/[C j ]0)

∣∣∣∣∣
[C j ]0

(5.12)

β j = ln

(
k j

k0
j

)∣∣∣∣∣
[C j ]0

(5.13)

for every irreversible elementary rate constant k j and component of the system C j .

If the enzyme operates in the forward directionality, i.e., producing a netflux of products Xp ,

the reaction pair (m,1), (m,2) is driven towards the association of the substrate Xk and the

reaction pair (m,5), (m,6) is driven towards the dissociation of the products Xp .

Using the theoretical model, presented in chapter 4, we calcualte the change in effective

reaction rate constants arround a set of reference concentrations, we then estimate αi , j and

β j for the elementary reactions i = [(m,1), (m,2), (m,5), (m,6)] of the enzymes in the network.

For the elementary reactions of the biotransfromation i = [(m,3), (m,4)] the model theoretical
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reaction-diffusion model assumes that the effective rate constants do not change due to

crowding thus αm,3, j = αm,4, j = 0 for j ∈ {X ,C ,E } as well as βm,3 = βm,4 = 0. To calculate

the remaining local concentration and parameter sensitivities for crowded and non-crowded

conditions we first use the theoretical reaction-diffusion model to calculate a reference steady-

state X0 for a given substrate and product concentration, here [S] = KM ,S and [P ] = 0.1KM ,P .

We then vary the individual concentrations of all the species (Figure 5.1) and finally estimate

the sensitivity αm,i , j of the elementary rate constants with respect to the concentrations of

the species at the reference concentration. To calculate the GEEK parameters, we use two

different enzyme models from the previous chapter, i) the diffusion-controlled enzyme with

where the ratio between the contact and diffusion-limited reaction rate constants is d = 100

and ii) the reaction controlled enzyme where this ratio is d = 10−2. The parameters for the

GEEK approximation are obtained via the slope and the offset at [C ]/[C ]0 = 1 in a double

logarithmic plot of relative changes of the reaction rate constants ke f f
j /k0

j as a function of

the relative change in the species concentrations [S]/[S]0, [E ]/[E ]0, [ES]/[ES]0, [EP ]/[EP ]0,

[P ]/[P ]0 (Table 5.2).

The results show clearly that in a reaction controlled situation d = 10−2, the concentration

dependency vanishes. In this case, all logarithmic sensitivities αi , j approach zero for all

concentrations. In contrast, we find that for diffusion-controlled d = 10−0 situations, some

of the logarithmic sensitivities significantly deviate from zero. In agreement with the analyti-

cal results from the non-equilibrium association-dissociation system, we find that only the

association reaction rate constant is sensitive to a change of the concentration of its educts

and products. Where increasing the respective dissociated products, [E ] and [P ] or [E ] and

[S], leads to a reduction of the rate constant, and an increase of the respective complex, [ES]

or [EP], results in an increased association constant. As discussed in the previous chapter,

this again illustrates that the law of mass action for chemical reaction kinetics does not even

hold in dilute conditions if the reaction is reversible and operates far away from equilibrium.

Introducing macromolecule into the system changes the reference conditions primarily, as

with the same product and substrate concentration, the system is driven towards an associated

state. As an effect, the macromolecular crowding alters the local logarithmic sensitivities of

the association reactions for the diffusion-controlled case.
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Figure 5.1 – Double logarithmic plot of the relative change of the effective reaction rate
constants with respect to the dilute rate constant for the substrate association and dissociation
reactions (m,1), (m,2) as well as the product dissociation and association reaction (m,5),
(m,6) as a function of the enzyme species concentrations calculated using the theoretical
reaction-diffusion model presented in chapter 4.

Table 5.2 – Logarithmic sensitivities αm,i , j for the association rate constants i ∈ [1,6] in dilute
and crowded φM = 0.3 conditions for diffusion controlled and reaction controlled enzymes.

d 100 100 10−2 10−2

φM 0.0 0.3 0.0 0.3
αm,1,S -0.52 -0.71 -0.01 -0.03
αm,1,E -0.52 -0.71 -0.01 -0.03
αm,1,ES 0.46 0.66 0.01 0.02
αm,6,P 0.39 0.60 0.01 0.01
αm,6,E -0.45 -0.65 -0.01 -0.02
αm,6,EP -0.45 -0.65 -0.01 -0.02
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Table 5.3 – Concentration elasticities of the elementary reactions for a three-step Michaelis-
Menten mechanism, as denoted in equation 5.6, with [Xl ] denoting all species of the system
that are not involved in the enzyme mechanism

i 1 2 3 4 5 6
d ln vm,i

d ln[Xk ] αm,1,k +1 αm,2,k αm,3,k αm,4,k αm,5,k αm,6,k
d ln vm,i

d ln[Xp ] αm,1,p αm,2,p αm,3,p αm,4,p αm,5,p αm,6,p +1
d ln vm,i

d ln[E j Xk ] αm,1, j ,k αm,2, j ,k +1 αm,3, j ,k +1 αm,4, j ,k αm,5, j ,k αm,6, j ,k
d ln vm,i

d ln[E j Xp ] αm,1, j ,p αm,2, j ,p αm,3, j ,p αm,4, j ,p +1 αm,5, j ,p +1 αm,6, j ,p
d ln vm,i

d ln[E j ] αm,1, j +1 αm,2, j αm,3, j αm,4, j αm,5, j αm,6, j +1
d ln vm,i

d ln[Xl ] αm,1,l αm,2,l αm,3,l αm,4,l αm,5,l αm,6,l

5.3.3 Generalized enzyme elasticities

Following the (log)linear formalism introduced above we introduce the concentration and

parameter elasticity matrix of the elementary-network:

Ξ=
{

(m, i ), j

∣∣∣∣ εm,i
j = ∂ ln vm,i

∂ ln x j

}
(5.14)

Π=
{

(m, i ), j

∣∣∣∣πm,i
j = ∂ ln vm,i

∂ ln p j

}
(5.15)

where x j ∈ {X ,C } and parameters p j are the total enzyme concentrations [Em,T ] and (m, i )

denote the elementary reactions i of each enzymatic reaction m. From equations 5.7 and

5.8 it can derived that the concentration elasticities of the generalized elementary kinetics

can be separated into a mass action contribution that is either one or zero and a non-ideal

contribution from the partial derivative of the GEEK rate constant.

εm,i
j = x j

km,i

∂km,i

∂x j
+ x j

θm,i

∂θm,i

∂x j
(5.16)

Calculating the respective elementary concentration elasticities based on an elementary

reaction network that follows the Michaelis-Menten scheme denoted in equation 5.6 yields

the results shown in table 5.3.

Due to the formulation in terms of elementary steps, the elasticity with respect to total enzyme

concentration is an elasticity for a conserved pool. We calculate the elementary parameter

elasticity by expressing the free enzyme concentrations in terms of the independent complex

concentrations (Equation 5.10). We then substitute the free enzyme concentration with these

expressions and calculate the parameter elasticity via the scaled partial derivative with respect

87



Chapter 5. Crowded metabolic control

Table 5.4 – Elementary parameter elasticities with respect to the total enzyme concentration.

i 1 2 3 4 5 6
d ln vm,i

d ln[Em,T ]
αm,1,m+1

1−σ
αm,2,m

1−σ
αm,3,m

1−σ
αm,4,m

1−σ
αm,5,m

1−σ
αm,6,m+1

1−σ

to the total enzyme concentration [Em,T ]. For practical purposes, the results are expressed in

terms of the enzyme saturation σ, see table 5.4.

In the next step, we compute the effective elementary flux elasticities Ξ:

Ξ=Ξi +ΞdQd
i (5.17)

where Ξi denotes the concentration elasticities of the independent species Ξd the concentra-

tion elasticities of the dependent species, and Qd
i are the relative weights derived from the

conservation relations:

Qd
i =

{
d , i | qd

i = ∂ ln xd

∂ ln xi

}
(5.18)

with xi ∈ {X i ,C } and xd ∈ {X d ,E }. From the enzyme conservation relation (Equation 5.10) we

find the relative weights with respect for the substrate and product complex as:

∂ ln[Em]

∂ ln[Em Xk ]
=− [Em Xk ]

[Em,T ]− [Em Xp ]− [Em Xk ]
(5.19)

∂ ln[Em]

∂ ln[Em Xp ]
=− [Em Xp ]

[Em,T ]− [Em Xp ]− [Em Xk ]
(5.20)

Using the above-described matrices, we can calculate the concentration control coefficients

as well as the flux control coefficients for the elementary reactions for an isolated enzyme

mechanism:

C X
p =−(MRV (Ξi +Qd

i Ξd ))−1(MRVΠ)+Π (5.21)

C vi
p =−(Ξi +Qd

i Ξd )LX
p +Π (5.22)

were MR is the reduced stoichiometric matrix of the mechanism, and V is diagonal a matrix

containing the elementary fluxes. We then introduce the thermodynamic displacement

γn = vn
b /vn

f of the net elementary reactions as it allows us to express V in terms of the net flux

of the enzyme and the displacements of the three reversible reactions.

Using the definition of γ and the knowledge that vn = v f −vb it can be shown the local control

coefficients can be rewritten as a weighted sum of the elementary forward and backward

elasticity (Wang et al., 2004; Miskovic et al., 2019). We, therefore, introduce G containing the
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weights for a change of the respective forward or backward flux affects the net flux:

G =
{

n, i |g n
i = ∂ ln vn

∂ ln vi

}
(5.23)

where vn are the elementary net fluxes, vi are the elementary fluxes. The elements of the

matrix are

g n
i = 1

1−γn
if i ∈ forward reaction of n (5.24)

g n
i =− γn

1−γn
if i ∈ reverse reaction of n (5.25)

g n
i = 0 else (5.26)

With this, the net flux control coefficients can be calculated as follows:

C vn
p =GC vi

p (5.27)

These local control coefficients can be interpreted, the effective parameter elasticities of

the enzyme within a network (Miskovic et al., 2019). Treating the substrate and product

concentrations as locally constant, we calculate the effective concentration elasticities in

the exact same fashion as the parameter sensitivity. To calculate the local concentration

and parameter sensitivities crowded and non-crowded conditions we use the theoretical

model to calculate a reference steady-state x0 = [[S], [E ], [ES], [EP ], [P ]] for a given substrate

and product concentration, here [S] = KM ,S and [P ] = 0.1KM ,P . We then vary the individual

concentrations of all the species to calculate the GEEK parameters of the elementary rate

constants as described above (Figure 5.1). From the reference steady state of the enzyme, we

are further able to extract the enzyme saturation σ and the thermodynamic displacements

γm for crowded and non-crowded conditions. Finally, we use the enzyme parameters αm,i , j ,

the enzyme saturation σ, and the thermodynamic displacements γm to populate the flux

and elasticity matrices to then calculate the effective elasticities with respect to substrate

concentration, product concentration, and total enzyme concentration.

We calculate these local control coefficients for a diffusion-controlled and a reaction controlled

scenario and compare their results to the control coefficients for the respective mass-action

system (See Figure 5.2). The results show again that for diffusion-controlled enzymes, the

parameters and concentration elasticities calculated with mass-action kinetics significantly

deviate from the generalized elementary kinetics approximation. In contrast, the dilute reac-
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A) B)

Figure 5.2 – Enzyme flux elasticities with respect to substrate, product and total enzyme con-
centrations calcualted with mass-action kinetics (blue), dilute (orange) and crowded (green)
(φM = 0.3) GEEK for A) diffusion controlled enzyme d = 100 and B) a reaction controlled
enzyme d = 10−2.

tion controlled case is well approximated based on the mass action kinetics. The deviation for

the diffusion-controlled case originates from the fact that even in dilute conditions, diffusion-

controlled enzymes do not follow mass action kinetics in the association rate. The GEEK

elasticities suggest that crowding can have adverse effects on the elasticities as we see an

increase of the substrate elasticity with crowding for the reaction-controlled case d = 10−2 and

decrease for the diffusion-controlled case. Nevertheless, we refrain from a general statement

as the effect on the local elasticity is subject to various impact factors. From the discussion, in

the previous chapter, we already know that for crowded conditions, the apparent Michaelis-

Menten constants are reduced according to the difference in excess free energy between educts

and products of the dissociation reaction. This increase in affinity leads to i) an increase in

the saturation of the enzyme and ii) to a shift of the displacement towards the association

of the free species [E], [S], [P] into the complexes [ES], [EP], translating to a decrease of γm,1

and increase of γm,3. Additionally, we know from table 5.2, that the logarithmic rate constant

sensitivities αm,i , j change to exhibit a stronger effect in crowded conditions. All these effects

appear collectively and cause the parameter and concentration elasticities to change in a

non-linear fashion. Therefore, the changes in elasticities are particularly case-specific.

5.4 Crowded control on prototypical networks

So far, we demonstrated how the effective enzyme sensitivities change for an isolated enzyme

when considering dilute or crowded kinetics. In the next step, we apply the same methods on

two prototypical networks: i) a linear pathway with three enzymes and ii) branched pathway
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Table 5.5 – Enzyme parameters for the linear pathway

∆Xk→Xp G KD,Xk ,Em→Em Xk KD,Xp ,Em→Em Xp kES→EP

Enzyme m RT [M] [M] [s−1]
1 -3 10−3 10−2 103

2 -2 10−2.5 10−1.5 103

3 -1 10−2 10−1 103

with three enzymes. Aim of these case studies is to compare the flux control coefficients

between dilute and crowded conditions. We, consequently, calculate the control coefficients

for the total enzyme concentration, as described in the previous section considering the

elementary network of the respective pathway. The enzymes for these pathways are designed

using the parametrization equations from section 4.5.2 in the previous chapter.

5.4.1 Linear pathway

The first case study for the linear pathway is designed as a pathway where the biochemical

reactions catalyze a substrate X1 to a substrate X4 with reduced volume. Each enzyme changes

the substrate to a product with 10% less volume starting with rX1 = 1nm. To calculate the

radius of the subsequent substrate X2, X3, and X4, we assume that the reduced volume is

homogenously distributed on a sphere.

Enzymes and enzyme-complexes are considered to have the same size RE = 3nm. The en-

zymes in the pathway further increase in free energy and a decrease in their dissociation

constants. We also create two variants of this pathway, one where all association reactions are

diffusion-controlled d = 100, and one where all association reactions are reaction-controlled

d = 10−1. The parameters of the three enzymes are summarized in table 5.5.

To calculate the control coefficients we first use the theoretical model to obtain a reference

steady-state here for all substrate, enzymes and enzyme complexes for a given concentration

of X1 = 10−1K E1
M ,S and X4 = 10−3K E1

M ,S . We then use the GEEK assay to determine the local

logarithmic sensitivities of each concentration on each irreversible elementary reaction m, i

in the network. From the reference steady state of the network, we are further able to extract

the enzyme saturations σm and the thermodynamic displacements γm . Finally, we use the

enzyme parameters αm,i , j , the enzyme saturation σ, and the thermodynamic displacements

γm to populate the flux and elasticity matrices to then calculate controll coeffcients with

respect total enzyme concentrations [E1,T ], [E2,T ] and [E3,T ] (Figure 5.3).

The results show that for the dilute reaction controlled case, the last enzyme appears to be
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A) B)

Figure 5.3 – Control coefficients of the linear pathway for the total enzyme concentrations
[E1,T ], [E2,T ] and [E3,T ] calculated with mass-action kinetics (blue), dilute (orange) and
crowded (green) (φM = 0.3) GEEK for A) diffusion controlled enzyme d = 100 and B) a re-
action controlled enzyme d = 10−2.

the rate-limiting step as it shows the larges control coefficient, whereas, in the diffusion-

controlled case, the first enzyme is the limiting factor, as the control coefficient indicated that

an increase of these total enzyme concentrations would have the most substantial effect on

the flux through the pathway. Also, the diffusion-controlled case appears to be less affected

by crowding as the control coefficients change only minimally for φM . Whereas the reaction-

controlled case it strongly impacted by the increase in the molecular volume fraction. Upon

increase of the macromolecular volume fraction to φ= 0.3, the reaction-controlled pathways

behave entirely differently as the first enzyme becomes the rate-limiting step, whereas the

last step becomes the least impact-full. To understand this phenomenon, we must consider

that the maximal rate Vmax of reaction-controlled enzymes appears to be stronger impacted

by crowding than for diffusion-controlled enzymes, as is shown in the previous chapter as

well as the fact that the last metabolite in this pathway has only 70% of the volume of the

first metabolite in the pathway. Thus, crowding impacts the kinetics of the first enzyme more

severely than that of the last one, driving it stronger towards saturation and reducing its

maximal rate until it becomes the rate-limiting step.

5.4.2 Branched pathway

For the second case study, we consider a simple branched pathway with three enzymes where

one of the subsequent enzymes is significantly larger than the first enzyme and the enzyme

of the alternative path. Both of the subsequent enzymes are assumed to have the same

dissociations constants KD,Xk ,Em→Em Xk , KD,Xp ,Em→Em Xp , standard free energy of the overall

reaction∆Xk→Xp G and the same biocatalytic rate constant kES→EP . With this, we aim to see the
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Table 5.6 – Enzyme parameters for the branched pathway

REm ∆Xk→Xp G KD,Xk ,Em→Em Xk KD,Xp ,Em→Em Xp kES→EP

Enzyme m [nm] RT [M] [M] [s−1]
1 3 -3 10−3 10−2 103

2 3.5 -2 10−2.5 10−1.5 103

3 3 -1 10−2.5 10−1.5 103

effect of enzyme size on the control coefficients in crowded conditions. It is further assumed

that all substrates are of the same size rX = 1nm.

We calculate the control coefficients as described above for the linear pathway with [X1] =
10−1K E1

M ,S and [X3] = [X4] = 10−2K E1
M ,S . In contrast to the linear pathway, we have three different

control coefficients as the pathway splits into v2 and v3 at X2 and upregulation in the upper

branch of the pathway would have a decreasing effect on the flux of the lower branch and vise

versa. For the branched pathway, we find surprisingly similar results between the diffusion-

controlled case (Upper row in figure 5.4) and the raction-controlled case (Lower row in figure

5.4 ). Further, comparing figure C) with E) and D) with F) we find that the substantially large

enzyme E2 has no significant effect on the control coefficients of v2and v2 with respect to

[E2,T ] and [E3,T ]. We find that the control coefficients between the two branches are symmetric

C v2
[E3,T ] ≈C v3

[E2,T ] and C v3
[E3,T ] ≈C v2

[E2,T ] suggesting that the size difference of the E2 is not impacting

the kinetics substrantially although the volume of E2 is 50% increased V2 = 1.5V2.

5.5 Discussion

In this chapter, we combine the theoretical model we presented in chapter 4 with the efficient

GEEK approximation presented in chapter 3. The combination of these two methods allowed

us to calculate control coefficients for crowded prototypical pathways efficiently. Our results

suggest that depending on the enzyme parameters, the enzyme elasticities, and with this

consequently, the control coefficients can be strongly altered when considering the changes

of the kinetics due to crowding and diffusion effect. As mentioned in chapter 4, we show for

the first time how the effective steady-state rate constants for a diffusion influenced reaction-

diffusion system change if the system is driven out of equilibrium. Here we show that for

diffusion-controlled kinetics, these effects propagate to the concentration and parameter

elasticities, and with this alter the expected response behavior of pathways. The difference in

the expected response may have severe consequences when evaluating metabolic engineering

strategies using metabolic control analysis.
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A) B)

C) D)

E) F)

Figure 5.4 – Control coefficients of the fluxes v1, v2 and v3 in the branched pathway with
respect to the total enzyme concentrations [E1,T ], [E2,T ] and [E3,T ] calculated with mass-
action kinetics (blue), dilute (orange) and crowded (green) (φM = 0.3) GEEK for A), C) and E) a
diffusion controlled enzyme d = 100 as well as B) D) and F) for a reaction controlled enzyme
d = 10−2
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5.5. Discussion

Based on the results obtained from the prototypical system, we believe that it is essential to

consider crowded kinetics for the design of new pathways. The here presented formulation

offers an efficient way to account for crowded kinetics in the metabolic control analysis. In

future work, we aim to apply the presented formulation in large-scale metabolic models, to

guide the analysis of diseased phenotype and aid the design of new pathways for the synthesis

of valuable biochemicals.
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6 Conclusions and Perspectives

This chapter outlines the conclusions of the previous chapters and suggests a path forward

account for confinement effects in large scale networks. We further provide perspectives on

how the methods developed in this thesis may aid in moving towards this goal and which other

problems still need to be addressed on the way towards large scale reevaluation of in vitro

data.

6.1 Conclusions

Computational studies, combined with in vitro experiments offer a powerful tool to interrogate

complex biochemical systems. In chapter 2, we dissected the reaction kinetic landscape of

protein binding to chromatin using computational modeling and in vitro experiments. It is

well known that the intracellular compartments are a complex environment that strongly alters

the effective transport mechanisms as well as the effective reaction kinetics. Such effects are

not captured when investigating a system in a dilute in vitro setup. Mathematical modeling

and computer simulation allow us to reevaluate the effective reaction kinetic parameters

in under in vivo like conditions. We showed that enzyme essays could be corrected using

approximate kinetic rate laws identified with particle simulation methods (Chapter 3) or mean-

field approaches based on the Smouchowski equation (Chapter 4). Finally, we integrated the

in silico generated knowledge of crowded enzyme kinetics into a prototypical reaction network

to study their responses to enzyme overexpression (Chapter 5).

It is essential to understand the kinetics of the biochemical reactions within the intracellular

environment to understand cellular function, diseased phenotypes, and enable the design of

new biotechnological applications. Therefore, new approaches are required to identify the
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parameters and structures most sensitive to the complexity of the intracellular environment in

large scale systems. Such approaches would enable then the targeted computational analysis

of the components most sensitive to the additional complexity introduced by phenomena

such as macromolecular crowding, one- or two-dimensional confinement, active transport

properties, or phase separation phenomena.

In chapter 2, we use computational modeling in combination with parameter identification

of in vitro experimental data to identify the molecular binding mechanism of a multivalent,

chromatin-binding protein (HP1). Using sensitivity analysis, we investigate how the binding

mechanism is altered for the different subtypes of HP1 that are responsible for different

functions. The results show that all the different HP1 subtypes shared a similar binding

mechanism where unspecific DNA mediated interactions were used to guide the protein to

the specific PTM binding sites were it then was retained for significantly longer times. Instead

of static interactions that are governed by long retention times, our combined computational

and experimental analysis (Bryan et al., 2017) suggests that effectors are generally trapped

in the vicinity of the PTM regions via multiple moderate affinity interactions. Fast on and

off rates lead to sequential rebinding of the effectors and thus their accumulation in the

vicinity of their PTM targets. Such a dynamic binding mechanism facilitates a fast response

of the epigenetic regulation system to changes in the environment or a change of the cell

state (Ayoub et al., 2008; Fischle et al., 2005). The parameters provided for the computational

model have been identified using a continuous deterministic model and a single parameter

identification method. This procedure assumes that the characteristic time scales of the

deterministic and the stochastic model are conserved. Although it was verified by stochastic

simulation methods that this assumption holds for the identified models, it remains to be

investigated whether parameter sets exist that exhibit the characteristic binding times only

in the stochastic formulation by identifying the parameters directly on the stochastic model

formulation, as in (Öcal et al., 2019). Nevertheless, we believe that the resulting computational

model of in vitro protein-chromatin interactions can provide the bases for more advanced

computational studies to account for crowding effects in the nucleus based on the methods

presented throughout chapters 3 to 5.

In chapters 3, we investigate the effect of macromolecular crowding on the in vitro data of

phosphoglycerate mutase, a well-characterized enzyme in glycolysis. We, therefore, introduce

a new type of power-law kinetics to capture crowding effects in ODE type models, generalized

elementary kinetics (GEEK). Using particle simulations, we identify the parameters of the

approximate kinetics and subsequently create effective in-silico enzyme assays to characterize
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the maximal enzyme rates V +/−
max and the Michaelis-Menten parameters KM ,S and KM ,P at

different volume fraction. We find that with increasing macromolecular volume fraction, the

association rate increases, and the dissociation rate decreases for this enzyme resulting in a

significant decrease of the maximal enzyme rates and the Michaelis-Menten parameters. Our

results are in agreement with in vitro studies for equimolar enzymes (Uni-Uni, Bi-Bi) (Pastor

et al., 2011; Balcells et al., 2014; Pastor et al., 2014), only for a (Uni-Bi) reaction mechanism

Pastor et al. (2014) report an increase in the Michaelis-Menten parameter with increasing

crowding agent concentration, such phenomena could be targets for future investigations.

Although the results are in reasonable agreement with in vitro experiments, it shall be noted

that the presented results only consider the volume exclusion of the molecules as hard-

sphere, neglecting any unspecific and specific attraction or "stickiness" of the molecules

and the crowding agents and among the crowding agents. Further, the simulation does not

account for hydrodynamic interactions and anisotropy of the molecules. It remains thus to

be determined how strong these complexities affect the reaction rate constants and if the

hard-sphere contribution is, in fact, dominant.

For chapter 4, we extend the analysis to diffusion-controlled enzymes in crowded conditions.

For such enzymes, diffusion is sufficiently slow so that it becomes a key factor for the reac-

tion kinetics as substrates and enzymes need to be transported towards and products and

enzymes aways from each other. We provide a theoretical model based on the Smouchowski

equation and solution thermodynamics extending the work of Gopich and Szabo (2018) and

Berezhkovskii and Szabo (2016) to crowded reaction networks displaced from equilibrium.

To solve the set equations for any reaction system, we further derive a FEM formulation for

the problem. Further, we derive an analytical solution for the steady-state flux of reversible,

bi-molecular, diffusion-controlled reactions. Our results show that the effective reaction rate

constant depends on the ratio between the educt and product concentrations, as well as the

dissociation rate constant, suggesting that diffusion-controlled reactions have an apparent,

displacement-dependent reaction rate constant. This shows for the first time that the ap-

parent steady-state reaction rate constant of diffusion-controlled kinetics depends on the

steady-state concentrations. The model further shows that this phenomenon occurs besides,

not instead, the time dependency of the apparent rate constant (Agmon and Szabo, 1990;

Grima and Schnell, 2006a). Finally, we used the model to investigate the different crowding

effects on reaction- and diffusion-controlled Michaelis-Menten mechanisms. The results

reveal that the maximal rate of diffusion-controlled reaction mechanisms is less impacted by

macromolecular crowding compared to reaction controlled mechanisms. Further, we show

that the Michaelis-Menten constant changes with the activity of the respective association
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reaction independent of reaction or diffusion limitation. This insight may offer a compu-

tationally inexpensive way to estimate changes of the effective Michaelis-Menten constant

for the integration into large-scale kinetic models. Similarly to chapter 3, we assume only

hard-sphere interactions between the molecules and neglect hydrodynamic and attractive

interactions as well as their anisotropy. It thus also remains here to be investigated wich of

these interactions dominate in a crowded environment. We further use an approximative

closure to express the thermodynamic and structural quantities of the resulting hard-sphere

mixture. As the results of chapter 3 and chapter 4 show similar effects on the reaction rate

constants for reaction controlled kinetics, we are confident that this approximation captures

the crowding effects sufficiently.

Finally, in chapter 5, we combine the previously developed methods of the generalize elemen-

tary kinetics (Chapter 3) with the theoretical model (Chapter 4) to investigate the effects of

macromolecular crowding on the sensitivities in reaction networks. Therefore, we present a

framework that allows calculating the control coefficients for elementary reaction networks

under crowded conditions extending the work of Kacser and Burns (1973), Hatzimanikatis

and Bailey (1996, 1997) as well as Hatzimanikatis (1999). Our results on prototypical reaction

networks suggest that the global sensitivity of concentrations and fluxes in a reaction network

are strongly impacted by diffusion and crowding. Therefore, we suggest that for a conclusive

analysis of a reaction network, detailed knowledge of the elementary in vitro reaction kinetics

is required. The knowledge of the enzyme parameters in dilute conditions is not sufficient to

determine the impact of crowding on the reaction system’s parameter sensitivities. Quantita-

tively, these results are subject to the same theoretical assumptions described for chapters 3

and 4 and are thus subject to the same limitations. Further, it should be noted that metabolic

control analysis is based on local elasticities and giving insight into which reaction is locally

rate-limiting. For large changes in the enzyme expression, the full non-linear system should

be considered to analyze the respective flux and concentration responses.

In this thesis, we provided some insight into protein adsorption systems confined to 1D like

domain as well as enzyme kinetics and enzymatic reaction network a confined by macromolec-

ular crowding. We developed novel methods to address crowding and non-ideal reaction

kinetics in a computationally efficient way. Although more work is needed to identify and

characterize the contributions of the different intermolecular interactions, these methods

enable us to progress towards a large scale revaluation of in vitro data for large scale kinetic

models. Such models will provide an improved tool to apply computational engineering strate-

gies to understand cellular function, diseased phenotypes, and design new biotechnological
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applications.

6.2 Future perspectives

In order to generate reliable models of the cellular biochemistry, tailored to specific applica-

tions, the set of tools to reevaluate the results of in vitro experimental data need to be extended

to include other phenomena in addition to macromolecular crowding in three dimensions.

We propose three key areas where we consider that translating the results of in vitro systems

into models with in vivo like properties is of great importance.

6.2.1 Membrane thermodynamics and reaction kinetics

Lipid membranes surround each biological cell and most of its various compartments. These

membranes sperate the biochemistry between the cell from their exterior as well as between

different compartments. Further, these membranes host many different enzymes that catalyze

reactions required for various biological functions such as signal transduction and transport

reactions (Bondar and Keller, 2018). The proteins attached to this membrane diffuse on

the fluid-like membrane rather than in an aqueous solution resulting in different effective

viscosity. In addition to experiencing a different kind of viscosity, their movement is restricted

to two dimensions (Bondar and Keller, 2018; Verger et al., 1973; Yogurtcu and Johnson, 2015).

The various proteins attached to the membrane occupy about 15-35% of the membrane

surface area resulting in macromolecular crowding effects (Zhou, 2009). We expect both

the crowding effects and the two-dimensional confinement to alter the effective transport

properties enzymes on the membranes. Considering those membrane-bound enzymes can

react with membrane-bound species or with species that diffusion from solution to the surface,

to different classes of problems, need to be addressed. Some of these enzymes catalyze further

reactions that involve the lipids of the membrane (Emiola et al., 2015; Bondar and Keller, 2018).

Thus these enzymes are effectively altering the nature of their solvent. We would expect this to

have significant effects on the reaction thermodynamics as the activity terms of the product

and educts are dependent on the solvent composition. We propose that thermodynamic

models, as used in chapter 4, may aid in modeling this effect in a dynamic matter. Also,

the theoretical model presented in chapter 4, can be adapted for the reactants to diffuse in

two dimensions (Szabo, 1989). To address mixed problems of reaction with mixed degrees

of freedom, we currently see no other option than either lattice or off-lattice methods to

characterize the reaction dynamics (Schnell and Turner, 2004; Grima and Schnell, 2007, 2008;
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Grima, 2010; Mourao et al., 2014; Sturrock, 2016; Schoneberg and Noe, 2013; Biedermann

et al., 2015; Smith and Grima, 2017) and identify the approximate reaction kinetics similar to

chapter 3.

6.2.2 Active processes

Processes that use chemically stored energy to drive dynamics systems out of equilibrium

are called active. Such processes can induce symmetry-breaking events that are especially

important in developmental biology(Goehring et al., 2011; Kruse et al., 2005; Blanchard et al.,

2010). The most studies biological active systems are the microtubules and actin-myosin

systems. These systems can induce direction-dependent shear forces within the intercellular

fluid, creating convective flows leading to the formation of something called an active-polar

gel (Kruse et al., 2004, 2005; Prost et al., 2015). These active flow strongly alter the transport

properties between reactions in the cytosol and the membrane. Recent work of Xu et al. (2019)

further suggests that enzyme activity can facilitate the diffusion within a crowded environment,

suggesting enzymes themselves could be active particles propelled by the driving force that

drives catalytic transformation (Zhang and Hess, 2019). As both these processes change

the fundamental transport properties of the molecules, it also expected that the change the

effective reaction kinetics MacDonald et al. (2019). We thus conclude that a comprehensive

computational analysis of these phenomena within an in vivo like environment will provide

further insight into their impact on the biochemical reaction kinetics. These insights will be of

special interest when studying biochemical processes during cell division and development.

6.2.3 Phase seperation

With the discovery of membrane-less compartment liquid-liquid like phase separation has

been introduced as a concept of vital importance for various biological functions (Banani

et al., 2017; Hyman et al., 2014). In these systems, phase-separation is often induced by

weakly interacting proteins that, upon a critical concentration, sperate into a liquid phase

with a higher protein concentration and a phase with lower protein concentration. Upon

phase separation, thermodynamic forces drive the concentrations inside and outside of

the separated droplets towards the local thermodynamic equilibrium concentrations. Thus,

when the number of protein molecules in the cell changes, the droplet size changes, but the

concentrations inside and outside the droplets remain constant. This phenomenon could act

as a possible regulatory mechanism to buffer enzyme levels in biochemical reaction networks

(Hyman et al., 2014; Holehouse and Pappu, 2018; Stoeger et al., 2016; Klosin et al., 2020).
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To the current day, most research on phase-separation involves the in vitro reconstitution of

the phase-separating systems (Patel et al., 2015; Visco et al., 2016; Larson et al., 2017; Strom

et al., 2017). Thus, methods to integrate this knowledge to models of the effective biochemical

reaction kinetics with in vivo like properties would be an invaluable asset to understand

how phase-separated systems interact with such reaction networks. Kinetic models of phase-

separation have already been shown to be a great tool to analyze noise in engineered phase

separation systems Klosin et al. (2020). Approaches to characterize the in vitro reconstituted

interactions between different classes of proteins in combination with corrections on their

free energy density would further aid the identification of phase separation systems in vivo.
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A Supplementary information particle

methods

A.1 Measuring the bimolecular elementary rate constants

As described in section 3.2.4, the effective bimolecular rate constant can be extracted from

the effective collision frequency zA,B between two species, A and B. This collision frequency

is estimated as the number of collisions between A and B in an integrated time interval

cA,B (t , t +∆t) per time step ∆t : zA,B (t , t +∆t) = cA,B (t , t +∆t)/∆t (A.1). In figure A.1, two

examples for time traces of collisions per time interval for a reaction-controlled association

reaction of S and E are presented. From the running mean, it can be seen that there is no

obvious time dependency of the collision frequency observable. This result is enforced by

the fact the distribution of the collisions at the beginning, the end, and over the complete

measurement interval follow a similar distribution

A.2 Regression for GEEK parameters

When investigating the measured relative rate constants for pgm as a function of the individual

rate constants, it can be seen that there is no dependency of the rate constants with respect to

the individual concentration. Only an increase in the conditional variance towards smaller

concentrations can be seen, see figure A.2. Thus ordinary least squares (OLS) fitting cannot be

applied as the data exhibits heteroscedasticity. We show that we obtain normally distributed

residuals by weighting the data points by the inverse of the conditional standard deviation
p

V (R|X ), where X is the n-dimensional input variable of the regression model and R are the

residuals of the OLS output variable. In figure A.2, it can be clearly seen that the weighted

residuals resemble a normal distribution.
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Figure A.1 – Left column time traces of collision events between E and S as a function of time
and the running mean over 100 time intervals. Right column histograms of all data point of the
collisions time trace (All), the first (Beginning), and the last (End) 100 data points compared
with a binomial distribution where p = 〈c(E ,S)〉/NE NS and n = NE NS . The upper row show
the results with φ= 0% the lower row for φ= 40% for the crowding size distribution in E. coli.
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A.2. Regression for GEEK parameters

Figure A.2 – Model results for OLS and WLS for the model output Yi = log(k1, f ,e f f /k1, f ,0).
Left column: Residuals vs. fitted output values Y ′

i Right column: Probability density of the
residuals. Upper row: Residuals of the OLS model. Lower row: Effective residuals of the WLS
model.
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Figure A.3 – Projection of the simulated data points onto the respective concentration axis
for (blue) φ= 0% (orange) φ= 30% and (green) φ= 50% inert volume fraction with the E. Coli
size distribution. The black line denoted the conditional mean, and the dashed line denoted
the conditional 5% and 95% percentiles at the corresponding concentration value for φ= 50%
inert volume fraction.
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A.3 Validation of GEEK

In the following section, we first validated whether the results of the GEEK approximation are

in agreement with detailed openbread simulations, as described in the main text. Second,

we validated whether geek is also able to capture the results of the crowder free Cichocki-

Hinsen algorithm (Smith and Grima, 2017). To perform these comparisons, we used a simple

association-dissociation model with two different parameter sets:

A+B
k f−−−*)−−−

KD k f

C (A.1)

A.3.1 Computational details of the validation simulations

The two parameter sets only differ in their association rate the remaining model parameters

considered a diffusion coefficient D A/B = 500µm2 s−1 a mass mA/B = 10kDa and a collision

radius r A/B = 2nm for the species A and B , a diffusion coefficient DC = 350µm2 s−1, a mass

mC = 20kDa and collision radius r A/B = 3nm for the species C and a cubic simulation volume

V = 10( −18)L. For the reaction parameters we consider a dissociation constant KD = 50µM

and an association rate constant k f ,di f f = 5×109 M−1 s−1 (k f ,di f f /γA,B ≈ 5) for the diffusion

controlled case. Whereas for the reaction controlled case we consider an association rate

constant k f ,r eact = 5×107 M−1 s−1 (k f ,r eact /γA,B ≈ 500). To simulate crowding we introduced

inert molecules of the size 2.6nm at different volume fractions. As in the case presented in the

main text, the dynamics viscosity of the liquid between the particles was assumed to be water

with 0.7Pas at T = 310.15K. The system is considered to be isothermal T = const . To compare

the methods we simulate ten independent time traces for an initial rate experiment with the

initial concentrations [A] = [B ] = 50µM and [C ] = 0µM. To apply the GEEK framework, each

timestep all possible first-order reactions are attempted L = 100 times. For the regression

input space, all combinations of substrate and product concentrations that were ni -fold

increased and nd -fold decreased with respect to the reference concentrations [A]0 = [B ]0 =
[C ]0 = 50µM were used, with nd ∈ [1,2] and ni =∈ [1,2,4]. Each sampled concertation state

is simulated 1µs where the first 0.5µs are not considered to fit the GEEK. Furthermore, ten

independent realizations of the crowding population were used for every concentration

sample to capture the variability that comes from differently sized crowding-agents drawn

from the size distribution.
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Figure A.4 – Concentration of [A] as a function of time t for φ= 0 for GEEK (blue) and open-
bread (red) (left column) and concentration in equilibrium for different φ (right column). For
the reaction controlled case (upper row) and the diffusion controlled case (lower row).

A.3.2 Validation of GEEK based on hard-sphere Brownian reaction dynamics

In a first step, we compare the time traces for GEEK and openbread for the dilute case, i.e.,

without any inert molecules, see Supporting Figure 5 left column. The results show that for the

reaction controlled case GEEK is able to capture the mean dynamics of the detailed openbread

very well, for the diffusion controlled case the mean dynamics of the initial rate is captured

very well, but a slight deviation of the equilibrium concentration [A] is visible. In a next step

we characterized the distribution of [A] close to equilibrium, i.e t ≥ 500µs in the reaction

controlled and t ≥ 5µs in the diffusion controlled case, for different inert volume fraction, see

figure A.4 right column. It can be seen that for higher volume fractions of inert molecules,

both the GEEK and the openbread results show that the equilibrium is shifted towards the

production of [C ], i.e., the equilibrium concentration [A]eq drops with increasing volume

fraction. We also observe that for higher volume fractions, the difference between the mean of

[A] in openbread and GEEK is reduced.

Finally, we compared the initial reaction rate characterized as the mean change of the reactant

[A] over an initial time interval [0, ti ni t ], where ti ni t = 0.5µs for the diffusion controlled case

andti ni t = 50µs for the reaction controlled case (see figure A.5). Similar to the equilibrium

properties, we see that the GEEK model is able to capture the mean initial rate of the hard-

sphere Brownian reaction dynamics model. It also can be seen that in the reaction controlled
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Figure A.5 – Initial reaction rate measured as the mean change of [A] for GEEK (blue) and
openbread (red) measured for different φ, for the reaction controlled case (left) and the
diffusion controlled case (right).

case, the GEEK approximation is in close agreement to the detailed simulation. In both cases,

GEEK captures the increase of the initial rate visible in the hard-sphere Brownian reaction

dynamics.

A.3.3 Validation of GEEK based on the crowder free Cichocki-Hinsen algorithm

To provide further evidence that GEEK is able to approximate the behavior of high-cost

simulations based on the first physical principle, we simulate the association-dissociation

system described above using the crowder free Cichoki-Hinsen algorithm Smith and Grima

(2017). As described above we compare the concentrations for t ≥ 500µs in the reaction

controlled and t ≥ 5µs in the diffusion controlled case as well as the initial reaction for

t ≤ 0.5µs in the diffusion controlled case and t ≤ 50µs in the reaction controlled case. We

again show that the GEEK models are able to approximate the dynamics of the high-cost model.

More importantly, GEEK models are able to approximate the effects crowding has on the initial

rate experiment. For both cases, GEEK is able to capture the trends of approximation for the

equilibrium concentrations (see figure A.6) and the initial reaction rates (see figure A.7). When

comparing the initial reaction rates, we observe that the estimated reaction limited initial

reaction rates are in better agreement with the GEEK approximation then the corresponding

diffusion controlled initial reaction rates (see figure A.7).
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Figure A.6 – Concentration of [A] as function of time t for φ= 0 for GEEK-CFCH (blue) and
CFCH (red) (left column) and concentration in equilibrium for different φ (right column). For
the reaction controlled case (upper row) and the diffusion controlled case (lower row).

Figure A.7 – Initial reaction rate measured as the mean change of [A] for GEEK- CFCH (blue)
and CFCH (red) measured for different φ, for the reaction controlled case (left) and the
diffusion controlled case (right).
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A.3.4 Discussion on the results of the HSBRD and CFCH simulations

A comparison between figures A.4 and A.5 as well as A.6 and A.7 show that the hard-sphere

Brownian dynamics algorithm and the crowder free Cichoki-Hinsen algorithm are not yielding

the same results for the same crowding conditions. We suspect that the difference in the

crowding sensitivity originates from the difference in the collision model of the two algorithms.

The hard-sphere Brownian dynamics algorithm models every non-reactive collision as an

explicit elastic hard-sphere collision (see figure A.8 b) ) both the Cichoki-Hinsen algorithm

and the crowder-free Cichoki-Hinsen algorithm are rejecting the propagation moves that

would lead to overlap. In this work, we used the hard-sphere Brownian dynamics algorithm as

described by Strating as it was successfully applied his algorithm to non-equilibrium systems

of hard-spheres (Strating, 1999). The algorithm presented by Cichoki and Hinsen ?? is only

valid to obtain the correct radial distribution functions in equilibrium systems. They show that

for non-equilibrium systems, an additional non-overlap correction has to be implemented ??.

This correction is not implemented in the crowder-free Cichoki-Hinsen algorithm (Smith and

Grima, 2017). Therefore, we acknowledge that the model predictions for these simulations

strongly depend on the microscopic model. Nevertheless, we showed that independent of the

microscopic simulation method GEEK models are able to approximate the dynamic behavior

of the complex particle simulation. Thus GEEK can be used as a reliable method to capture

the dynamics of crowed enzyme kinetics and incorporate crowded behavior into larger-scale

kinetic models.
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Figure A.8 – Comparison of different propagation schemes. a) Brownian motion where the
propagation is simply determined by the velocity v drawn from the respective velocity distri-
bution function. b) Explicit elastic hard-sphere collision, particles are moved with the initial
velocity v until time t +∆t1 when the collision occurs. The velocities are updated according to
the law of momentum conservation then propagated for the remaining part of the time step
∆t2 =∆t −∆t1. c) Propagation according to the Cichoki-Hinsen algorithm where the collision
is simply rejected if the hypothetical positions after the time ∆t lead to overlap with another
particle.
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