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Abstract. This paper presents an experiment in collective robotics in which a

group of autonomous robots searches for an infrared target beacon placed in a cor-

ner of the exploration area. This task is a more experimentally tractable version

of the plume tracing problem, in which robots search for the source of an odor

plume. Two di�erent exploration strategies (collaborative and non-collaborative)

are implemented and compared on the basis of several team performance metrics.

The collaborative strategy uses a simple, binary signaling schema among robots.

The experiment is implemented at three di�erent levels: in a physical setup com-

posed of groups of 1 to 8 Moorebot robots, in Webots, a 3D sensor-based, kine-

matic simulator, and with probabilistic simulations. Results show that the collabo-

rative approach drastically improves the search across several metrics. Furthermore,

the probabilistic model qualitatively and quantitatively reproduces the enhanced

team performance via collaboration. Additional investigations using the probabilis-

tic model indicate that the optimal number of robots is a function of the ratio

between target and exploration areas.

1 Introduction

The application of swarm intelligence principles to autonomous collective
robotics aims to develop robust task solving by minimizing the complexity of
the individual units [1]. The central idea of the swarm intelligence approach is
to distribute control over a group of numerous minimalist robots rather than
gathering and redistributing information with the help of a central unit. The
main advantages of this approach are two: �rst, scalability from a few to thou-
sands of units, second, increased system robustness, not only through unit
redundancy but also through the unit minimalistic design. Several examples
of collective robotics tasks solved with swarm intelligence principles can be
found in the literature: aggregation [2,3] and segregation [4], exploration [5],
stick pulling [6], and collective transportation [7,8].

One way to increase the performance of a robot swarm is collaboration.
In particular, if collaboration is obtained with simple explicit communication
schemes such as binary signaling, the team performance can be enhanced



without losing autonomy or signi�cantly increasing the complexity at the
individual level. The experiments presented in this paper deal with the im-
plementation of distributed exploration strategies for a group of autonomous
robots, and compare the e�ectiveness of the collaborative approach vs. the
non-collaborative one. The beacon �nding task is meant to address some of
the issues present in the more complex task of plume tracing, without having
to deal with the experimental complications of creating repeatable chemical
plume stimuli.

The aim of this case study is three-fold. Firstly, we want to show that col-
laboration can drastically improve the team performance. Secondly, we want
to show that Webots [9], a 3D sensor-based, kinematic simulator originally
developed for Khepera robots [10], can be successfully used for simulating
experiments with other, kinematically similar robots. Thirdly, the presented
experiments are used as a testbed for the development of a new character-
ization and prediction tool in the form of a probabilistic model, capable of
wider application across tasks and environments than previous models [3,5].

2 Non-Collaborative Collective Exploration

2.1 Experimental Setup with Real Robots
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Fig. 1. (a) The arena layout. (b) A Moorebot

The layout of the test arena is shown in Fig. 1a. The size is 6.7 by 6.7 m, and
the robots are 24 cm in diameter. The robots begin each trial in the corner
of the arena opposite the stopping area. They are started simultaneously,
at random positions and orientations within the starting area, and the time
required for each to enter the stopping area (as de�ned by a separate beacon
signal) is recorded.

We use Moorebots, as shown in Fig. 1b. In addition to the standard
con�guration, as described in [11], each robot is equipped with an infrared



transmitter and three binary infrared receivers (for determining teammate
communication, the target beacon, and the stopping area). All explicit inter-
robot communication is performed via the single binary channel.

When exploring the arena, the robots move in straight lines, avoiding walls
and teammates with random turns between 0 and 270 degrees. If a signal
is detected, the robots move directly toward the source beacon, although
obstacle avoidance takes precedence when necessary. In the non-collaborative
case, the only beacon signals present are the target and the stopping beacons.

2.2 Sensor-Based Simulations

To more systematically investigate the exploration strategies, we also im-
plemented this experiment in Webots, a 3D kinematic simulator originally
designed to simulate Khepera robots. Because of the morphological similar-
ities between the two platforms, it is possible to scale environment, robot
size, and speed to re
ect the relationships of the real robot experiments. In
addition to size, the main morphological di�erences between the Khepera
and Moorebot platforms are the position and number of proximity sensors.
Moorebot sensor outputs are generated by combining and thresholding the
outputs of the Khepera's four front and central built-in proximity sensors,
as shown in Fig. 2a. With the creation of a Moorebot-to-Khepera transla-
tion library, control algorithms can be transferred from the Moorebots to the
simulator with very few changes.
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Fig. 2. (a) Khepera and Moorebot sensor layouts. (b) Implementation of the ex-

periment in Webots

The simulator computes trajectories and sensory input of the robots in
an arena corresponding to the physical set-up (Fig. 2b). The simulation is
su�ciently faithful for the controllers to be transferred from the simulation
to real robots and achieve very similar performance (see Section 4). Working
in simulation not only increases the experimental reliability but also saves



time. For this experiment with 8 robots, the mean acceleration ratio between
Webots and real time is about 14 on a Pentium III 500.

2.3 The Probabilistic Model

In an e�ort to gain an understanding of the essential aspects of the system, as
well as to further decrease simulation time, we have developed a probabilistic
model which can generate a robot arrival time distribution for a given set of
experimental parameters (e.g. arena size, robot size, robot speed, avoidance
time, communication range, and number of robots). In order for this model
to be useful, it has to produce data similar to that observed in the embodied
experiments, predict results of future experiments, and contain no free pa-
rameters. All parameters in this model are determined from measurements
taken from the arena and experiments with a single robot.

The basic idea behind the model is similar to that of [3,5], where the ex-
periment is treated as a series of stochastic events with probabilities based on
geometrical relationships. However, because this experiment depends heavily
on the spatial location of the individual robots (their distribution cannot be
assumed to be uniform across the arena, as was the case in [3,5]), a di�erent
method must be used. To capture spatial information, the arena is divided
into four distinct states, as shown in Fig. 3a. At any given point in time each
robot occupies one state. As the arena is partitioned with greater granular-
ity, more information is included in the simulator, but more computation is
required to complete each simulation. Since this model should be as simple
and as fast as possible, the minimum number of states for accurate data
generation are used. As a result, it is about 15,000 times faster than Webots.
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Fig. 3. (a) Arena partitioning in the non-collaborative experiment. The dark bands

represent the distribution of locations occupied by any robot entering State 1. (b)
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The transition probabilities between states in which the robots move ran-
domly (States 0 and 1) are calculated from the perimeters of each state,
which are o�set from the physical perimeters of the arena to account for the
spatial extent of the robots. Each time a robot encounters the outer edge of
a state, it can transition into another state or bounce o� a wall back into its
current state (with an avoidance time penalty corresponding to the average
avoidance time of a real robot). Collisions are also modeled as an avoidance
time penalty, applied stochastically based on state size, e�ective robot area,
and number of robots currently in a given state.

For states in which the robots move in a particular direction (State 2,
when a robot sees a beacon signal), the expected time before transitioning
into the next state was taken to be the average distance to the next state
divided by the robot speed. This assumes that robots never lose an acquired
signal, which does not entirely capture the behavior of the real robots, but is
a close approximation in this case. In principle, data could be collected from
a real robot and this probability of signal loss incorporated into the model.

A di�culty with the probabilistic model is the generation of the perime-
ter encounter probability. Based on the average robot speed and the average
distance across the state (average chord length - see Fig. 3b), the expected
time to perimeter encounter can be generated. Treating the system as a sim-
ple Markov process would result in a geometric time-to-perimeter-encounter
distribution (with a single parameter p), as at each time step the probability
of encountering the perimeter would be a constant value, as given by:

p = v=m (1)

where v is the robot speed and m is the average chord length. This distribu-
tion does not accurately re
ect the spatial realities of the embodied systems,
as many times are unreasonably short, and a few are unreasonably long (for
instance, if a robot moves at 1 m/s, and an area has a maximum chord
length of 10 m, it cannot go for more than 10 seconds without encountering
something). Despite the fact that the expected value of the distribution is ac-
curate, overall robot arrival times have bigger variances than those observed
in the embodied experiments.

To account for this defect, a hybrid distribution is used{ basically a ge-
ometric distribution in which the parameter p is a function of the amount
of time a robot has been in a given state. If the maximum chord length of
a state is l, robots must not be able to wait longer than l=v = k seconds
between encounters, so p(k) should be set to 1. This suggests an equation of
the form:

p(x) = x=k (2)

In order that the expected value of the distribution can be set independently
of this cuto� time, two parameters are needed:

p(x) =
x
�

A
(3)



The form of the resulting probability density function is quite similar to that
of the geometric distribution:

P (x) = p(x) �

x�1Y

i=1

(1� p(i)) (4)

For the experiments in this paper, the values of � and A are set numer-
ically based on geometrical considerations, as further analysis of this distri-
bution is ongoing. See Fig. 4a to compare the transition distributions from
State 0 to State 1 generated by Webots, this hybrid process, and a simple
Markov process.
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Fig. 4. (a) Histogram of the number of encounters as a function of time-to-

perimeter for State 0, N = 1000. (b) Arena partitioning during collaboration

Note that the Webots data in Fig. 4a includes repeated encounters with
the same wall, due to the nature of the collision sensors and avoidance behav-
ior, and this increases the number of small waiting times. Such encounters
are not included in the probabilistic model because they are a result of spa-
tial correlation between successive encounters which are not captured within
the probabilistic framework. Even though the hybrid distribution generates
perimeter encounter data which are closer to the target distribution, it can-
not be truly accurate because the model does not incorporate exact robot
trajectories.

The lack of complete spatial information also in
uences the state tran-
sition probabilities in a way that is di�cult to capture in the model. For
example, the location of a robot that has just transitioned into State 1 is
represented by a probability distribution at the perimeter of the state, as
shown by the dark band in Fig. 3a. Thus it is possible for a robot in the
model to transition from State 0 to State 3 more quickly than if it had to
follow a real trajectory (as is necessary in the embodied simulator and the
real world). To be truly accurate, the state transition probability (which in



the model is based on static perimeter ratios) must change with the entrance
point and amount of time spent within the state. Calculating the nature
of these changes would be complex, and incorporating them into the model
would restrict simulation speed. Instead, we model the position dependent
e�ects as a constant time penalty added to the simulated trials (roughly
counteracting the fact that robots in the model can change states too fast).
Since the behavior of one robot captures the spatial dependencies of the task,
we take the time penalty to be the di�erence between the mean arrival time
for one real robot and one uncompensated simulated robot (in this case, 31.5
seconds).

3 Collaborative Collective Exploration

3.1 Experimental Setup with Real Robots

For the collaborative experiments, when a robot sees either the target bea-
con or the stop beacon, it turns on a beacon of its own, thus attracting
surrounding robots. The range of the robot beacons generally extends across
the arena, but due to slight hardware di�erences (e.g. LED orientation), the
communication range is not uniform across all robot pairs. Because these
heterogeneities are di�cult to quantify, they are not included in either of
the simulations. Other than the robot beacon activity, the collaborative and
non-collaborative trials are exactly the same.

3.2 Sensor-Based Simulations

Beacon signaling was implemented via the external supervisor module of
Webots. The supervisor module is based on an External Authoring Interface
API similar to the one implemented in VRML97 for enabling Java applets to
communicate with VRML 97 scenes within a Web browser. This module can
read and edit the world loaded in the simulator, including some customized
robot features such as virtual signaling beacons.

For the sake of simplicity, the range of the robot beacons was assumed to
be su�cient for communication across the entire arena.

3.3 The Probabilistic Model

Collaboration is modeled by reorganizing the distribution of states whenever
a robot beacon becomes active (see Fig. 4b). State 1 does not appear because
it is assumed that as soon as a robot leaves State 0, it sees a beacon and
begins directed motion toward the �nal state. State 0 slightly changes shape
because beacon signals become visible in some areas, so those regions join
State 2. Note this reorganization does not wholly capture the behavior of the
embodied robots, but it provides a close approximation because it captures
the principle features of the collaborative system.



4 Results

4.1 Exploration with collaborative and non-collaborative

strategies
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Fig. 5. Number of trials per experiment: real=15, Webots=100, p-model=500. (a)

Arrival times for a group size of 8 robots. The lower set of curves is the collaborative

data. (b) Group arrival times for groups of 1 to 8 robots.

Figure 5a shows arrival times for both non-collaborative and collaborative
trials generated by all three experimental levels for a group size of 8 robots.
Figure 5b shows the group arrival times for group sizes from 1 to 8 robots.
Figure 6a gives the average power consumption per robot for both types of
trials. All error bars represent standard error. Note the good qualitative and
quantitative agreement among the di�erent experimental levels.

4.2 Increasing the ratio between exploration and goal area

The bene�t of using an increasing number of collaborating robots is not clear
from the above experiments because performance saturates at a small group
size. As shown in Fig. 5b, the 3 point running average of group arrival time in
the collaborative case shows less than 1% improvement at group sizes larger
than 3 (Webots) or 4 (p-model) robots. Further simulations were performed
both in Webots and with the probabilistic model in a larger environment, 20.1
m per side (9 times larger area), but with the start, stop, and target beacon
areas kept the same. Figure 6b shows that even in a di�erent environment
the probabilistic model shows good correspondence with Webots. Also, in
this larger arena, performance (using the same de�nition as above) saturates
at increased group sizes: 7 (Webots) or 9 (p-model). Based on the interaction
between increasing search speed and increasing inter-robot interference, we
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Fig. 6. (a) Per-robot power consumption for groups of 1 to 8 non-collaborating

(upper curve) and collaborating (lower curve) robots (same trials as Fig. 5). (b)

Group arrival times for groups of 1 to 14 robots searching a larger arena. Number

of trials per experiment: Webots=100, p-model=500.

conjecture that the optimum group size is dependent upon the relationship
among the target area, exploration area, and the communication range.

5 Discussion and Conclusion

In this paper, we investigated collaborative and non-collaborative exploration
strategies for a group of autonomous robots at three di�erent experimental
levels: real robots, sensor-based simulations, and probabilistic simulations.
The data shows that simple collaboration among robots drastically improves
the team performance by reducing the arrival time of the group as well as
the group power consumption. Collaborative group performance saturates
as the team size grows, and the smaller the ratio between target area and
exploration area or the signaling range, the greater the optimal team size.

Furthermore, we have shown that the results obtained with a zero-free
parameter probabilistic model are qualitatively and quantitatively in good
agreement with those obtained from more sophisticated sensor-based simu-
lations and real robots.

Considering the tremendous acceleration ratio between the probabilistic
model and the other implementations, we believe that it represents an ex-
tremely useful tool for capturing the role of the crucial experimental parame-
ters in distributed exploration experiments. This could be particularly useful
for investigating team performances with thousands of units before actually
building them or developing a dedicated sensor-based simulator for the given
task. It is unknown how the model will perform on more complex environ-
ments and tasks (such as plume tracing), and this is a subject of ongoing
research.
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