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Abstract

We describe the design and testing of a mowvel
biologically-inspired wind sensor, based on the
cricket’s cercal filiform hair cells. The sensor is
mounted on a Khepera mobile robot, and competence
at following a real wind plume is shown, even at low
wind speeds. Further testing demonstrates the abil-
ity of the system to perform a dynamic maze solving
task, and the exploitation of the hair sensors as tactile
whiskers is discussed.

1 Introduction

Robot designs can be improved by considering bi-
ological mechanisms. There is evidence that a variety
of organisms can detect wind direction, and use this
information to orientate and locomote upwind (posi-
tive anemotaxis). Such behaviour is known in beetles
[1], moths, flies, wasps [2] and crickets [4], as well as in
mammals such as rodents and larger predators includ-
ing cats, dogs and apes. The primary reason appears
to be related to the detection of airborne chemical
odours. Chemicals released into the atmosphere are
carried along in the direction of the air flow, creating
a plume. Locating the source of the plume will neces-
sarily reveal the source of the odour, be it food or a
predator [3].

To measure wind direction, an animal must either
sense the passing mass of air directly, or some causal
effect of it, such as a surface temperature cooling. Ex-
ample mechanical equivalents of these techniques in-
clude the wind vane and hot-wire anemometer respec-
tively. Equivalent biological structures are wind sen-
sitive hair cells and temperature sensors in the skin.
A particularly well studied biological system capa-
ble of determining wind direction is the cercal system
found in insects such as the cricket and cockroach [4].
The cerci, two antennae-like appendages that protrude
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Figure 1: Diagrammatic representation of a single
minimal wind sensor [5].

from the rear of the animal, are covered by hundreds
of filiform hair cells. These hair cells, which vary in
length from 0.1-2mm, have been shown to respond to
both constant wind and wind puff stimuli. In addi-
tion, the response of each hair cell exhibits a char-
acteristic wind directionality tuning curve, typically
with a unidirectional preference. From the response
of these hair cells the cricket is able to calculate the
direction of approach of an incoming predator, such
as the digger wasp, and execute a suitably oriented
escape behaviour.

This paper describes the design of a neuromor-
phic wind-sensor inspired by the unidirectional filiform
hairs of the cricket. The sensor is mounted on a Khep-
era mobile robot and its ability to track a wind plume
under a range of conditions is demonstrated.

2 Transduction
The basic sensor device is a spring surrounded by

four metal pins, as shown in Figure 1. The spring wire
was 0.004ml stainless steel wound to 2mm diameter,



and the signal pins are gold-plated 0.7mm square Au-
gat Wirewrap Headers. The spring was longer than
the pins, and stretched and end-weighted so that it
deflected in the presence of wind. The spring was con-
nected to +5V, so that when it made contact with the
signal pin, the pin was pulled high. The contacts were
supposedly binary, but due to the bouncing knife-edge
reaction of the spring against the pins, the output sig-
nals were far more stochastic than expected. The sen-
sitivity of the sensor could be adjusted by changing
the properties of the spring (length and stiffness) and
adjusting the heat shrink counterweights so that the
inherent stability of the sensors was always at thresh-
old, providing a significant noise floor but also opti-
mising sensitivity.

The sensor design utilized the signal from only one
of the four available pins per spring. The potential in-
formation that is discarded is offset by an increase in
the accuracy to which the sensitivity of the device can
be tuned. The tuning task therefore changes from one
of balancing the four non-independent pins, to min-
imising the separation of a single pin from the spring.
The result is that, like the cricket filiform hairs, each
device can be tuned for maximum sensitivity in a sin-
gle direction.

Sensitivity to wind from other directions can be
added easily by combining more of the basic hair de-
vices oriented at the desired angles. In theory an ar-
bitrary number of homogeneous or heterogeneous de-
vices could be combined to increase the range of sen-
sitivity of the combined sensor. The sensor used in
these experiments consisted of four devices arranged
at right angles to one another.

The sensor was placed on a Khepera robot equipped
with a standard I/O turret, as shown in Figure 2. The
outputs from the four sensors were connected to four
digital inputs and read from the K-Bus using standard
operating system calls. Power for the sensor was taken
from the 45V and GND turret connections. The wind
source used was a 12” diameter desktop fan.

3 Algorithms
3.1 Minimalist Algorithm

As in Figure 3, the hair sensors are numbered 0 to 3
clockwise from the front-left. The first algorithm that
we tested was designed to set a baseline for the mini-
mum processing required to generate the behaviour:

1. READ INPUTS FROM ALL HAIRS.

The combined wind sensor mounted
on the Khepera miniature mobile robot. The
fan used as the wind stimulus can be seen

Figure 2:

in the background. Videos of the behaviours
described in this paper can be found at
ftp://ganglion.stir.ac.uk/pub/Floella-videos/.

2. Ir HAIR 3 (BACK-LEFT) IS ON THEN TURN RIGHT
SLOWLY.

3. ELSE IF HAIR 2 (BACK-RIGHT) IS ON THEN TURN
LEFT SLOWLY.

4. ELSE IF HAIR 1 (FRONT-RIGHT) IS ON THEN
TURN LEFT QUICKLY.

5. ELSE IF HAIR O (FRONT-LEFT) IS ON THEN TURN
RIGHT QUICKLY.

6. ELSE MOVE FORWARD SLOWLY.

7. GO TO STEP 1.

The algorithm was allowed to run at full speed on the
Khepera’s MC68331 processor. It proved to be suc-
cessful at locating the wind source from a distance of
2 metres (wind speed "1 m/s), despite the inherent
asymmetry in the turning priority introduced by or-
dering the hair sensors with an If...else construct. The
algorithm was also tested in reverse by inverting the
speed and direction of turns for each of the sensors.
This resulted, as expected, in the robot orienting and
moving away from the fan. Competence level at this
task was also good.

Qualitative analysis of the robot’s behaviour sug-
gested that the task competence involved using the
two front sensors as ‘error’ signals and the two back
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Figure 3: A minimal algorithm to perform the positive
anemotaxis behaviour.

sensors for ‘fine-tuning’. When the robot faced away
from the wind source one or both of the front sensors
would be stimulated the most, in either case causing
the robot to turn rapidly until it was oriented roughly
upwind. In this situation the front sensors became
very unlikely to fire (the wind blowing the spring away
from the active pin), instead, the back sensors were
used to make fine adjustments to the robot’s course.

Simple ablation studies conducted by placing an in-
sulating material over the appropriate signal pins sup-
ported these hypotheses. As expected, removing the
two front ‘error’ signals did not entirely prevent the
robot from locating the wind source, but did increase
the time taken to turn around when facing away from
the wind source. Removing only a single front sig-
nal pin, however, did not significantly degrade perfor-
mance as compared with the full sensor. This evidence
strongly supports the notion that the informational
content of the front pins is equivalent to a ‘severe di-
rectional error’ signal.

Removing the two back ‘fine-tuning’ signals had a
more severe impact on performance. Without these
the robot seemed to lose its ability to ‘lock on’ to the
target, resulting in a circuitous path with many loops.
Removing only a single back hair improved the situa-
tion somewhat, but performance was still poor.

3.2 Temporal Binning Algorithm

Two main problems with the minimal algorithm
became apparent. Firstly, a directional bias, due to
the asymmetry of algorithm. Secondly, a tendency to
‘jitter’ left and right, because the algorithm was exe-
cuting (and thus changing the motor speeds) at many

thousands of cycles per second. To correct these prob-
lems we proposed a new ‘temporal binning’ algorithm,
as follows:

1. CREATE A BIN COUNTER FOR EACH HAIR.
2. ZERO ALL COUNTERS.
3. READ INPUTS FROM ALL HAIRS.

4. FOR EACH HAIR THAT IS ON, INCREMENT THE
RESPECTIVE BIN COUNTER

5. REPEAT STEPS 3 AND 4 FOR A FIXED NUMBER
OF BINNING CYCLES

6. IF THE COMBINED TOTAL OF THE FRONT HAIRS
IS GREATER THAN THE BACK HAIRS THEN

(a) TURN QUICKLY AND PROPORTIONALLY TO
THE TOTALS OF THE FRONT HAIRS.

(b) ELSE TURN SLOWLY AND PROPORTIONALLY
TO THE TOTALS OF THE BACK HAIRS.

7. GO TO STEP 2.

As before, the algorithm was executed at full speed
on the Khepera. The bin size parameter could be ad-
justed from a single cycle (equivalent to the minimalist
algorithm) up to many millions of cycles (lasting sev-
eral minutes).

For small bin sizes the model behaved similarly to
the minimalist model described above, with the added
enhancement of correcting the asymmetry problem.
Increasing the bin size also corrected the ‘jitter’ prob-
lem, with bin sizes of around 100 to 1,000 cycles re-
sulting in the robot taking longer and smoother turns,
and the ability to track the wind plume from over 4
metres (wind speed ~.6 m/s). Bin sizes up to 10,000
cycles produced a noticeably curved path, but did not
greatly reduce the ability of the robot to locate the
wind source under moderate conditions. Even with
bin sizes of 100,000 cycles, which allowed the robot
sufficient time to perform a complete 360° turn be-
tween motor updates, the wind source could still be
located, although by now the performance was much
impaired. Nevertheless, these tests demonstrate the
robustness of the temporal binning algorithm across
bin sizes spanning six orders of magnitude and the
advantages gained by integrating sensory input over
an extended period on time.



3.3 Other Factors

Ego-motion Before testing the system, we expected
the motion of the Khepera robot to affect the hair sen-
sors far more than the wind itself. Surprisingly how-
ever, even though the springs were greatly affected by
the movement of the robot, the wind direction could
still be determined properly. This was due to integra-
tion of the signal over a long time period, relative to
the vibration rate of the hairs.

Biases Perfectly balancing the sensitivity levels of
the four hair sensors proved to be almost impossi-
ble, and certainly would not have been robust had we
achieved it. The result of this was the introduction of
a small bias in the turning preference. In the presence
of a wind stimulus the effects of this bias were insignif-
icant, however, with no wind present the result was to
cause the robot to travel in a circle. Rather than be-
ing a hindrance, however, this behaviour assisted the
robot if it moved out of the wind stream. For example,
with a clockwise bias, if the robot left the wind plume
on the left-hand side the clockwise circle naturally re-
turned it towards the fan. If, conversely, the robot
left the wind plume on the right, the bias caused it
to loop back until it returned to the stimulus further
downwind. This is reminiscent of behaviours observed
in real animals, such as ants following a chemical trail.

4 Maze Solving

Much of the behaviour of a real world situated
agent is derived from its ability to exploit the physical
characteristics of its environment through the agent-
environment feedback loop [6]. Exploitation of the
turning bias as a way to relocate the wind stream
is one example of this. Location of a wind source
through the dynamic interaction of the air flow, hair
sensors and mobile base is another. We were inter-
ested in testing these properties in a more complex
and challenging situation, as well as developing a more
controlled test environment. Maze solving presented
itself as the ideal solution.

No internal representation of the maze was used by
the robot. Instead the maze was solved directly in
the environment by exploiting the natural properties
of air flow. This approach conferred two major ben-
efits to the robotic system. Firstly, it simplified the
control structure from a full-blown generic maze nav-
igation algorithm to a sub-representational wind fol-
lower. Secondly, the nature of the problem solving was

A
Figure 4: Layout of the 4 component T-Maze. A -
entrance, B - exit, * - choice point.

inherently dynamic; the robot necessarily reacts in a
sensible manner to any changes that occur in the envi-
ronment, such as moved obstacles or new wind sources.
Using physical sensors as matched filters for a particu-
lar stimulus in this way solves many of the difficulties
associated with traditional navigation problems.

The maze design chosen for these experiments was
based on a classic “T-maze” design, more commonly
used for testing forced choice decisions in rats. The
maze, shown in Figure 4, was based around four T
components, thus providing four choice points. At
each of these junctions the robot had to “make a deci-
sion” about which way to turn. This method provides
an explicit mapping of the internal dynamics of the
system into a behaviour that can be observed clearly
and unambiguously. Correct decisions were defined
as those choice points at which, on its first encounter
with the junction, the robot departed along the corri-
dor nearest to the maze exit. Departure in any other
direction was counted as an incorrect decision. This
provided us with a convenient 5 point error scale on
which to rate the successfulness of a given trial. Time
taken to complete (or fail, by leaving through the en-
trance) the maze was also recorded as a second mea-
sure of task performance.

The robot executed the temporal binning algorithm
described in Section 3.2, with the bin size parameter
set to 100 cycles. In addition to the previous algo-
rithm, the Khepera’s built-in IR obstacle proximity
sensors were used to provide a simple mechanism for
preventing the robot from getting stuck on the walls of
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Figure 5: Percentage success rates for forward and
reverse maze directions.

the maze. The avoidance algorithm was: if the com-
bined output from the IR sensors is greater than a
threshold value then turn away from the side with the
larger activation value.

Three different wind conditions were tested: ‘wind’,
‘no wind’ and ‘no sensors’. In the ‘wind’ condition the
sensors were active and the fan was positioned at the
exit to the maze and set on either ‘high’ or ‘low’ (50%
of the trials each). In the ‘no wind’ condition the wind
stimulus was switched off in all trials, although the
sensors were still active. In the ‘no sensors’ condition
both the fan and the hair sensors were inactive. Two
maze direction conditions were also tested. The first
was as shown in Figure 4, the second was identical ex-
cept that the entrance and the exit of the maze (points
A and B) were reversed. This condition introduced an
interesting challenge for the robot because the appro-
priate moment to turn is no longer forced. Instead the
decision must be made spontaneously whilst navigat-
ing along the corridor.

5 Results

For each condition, time taken to reach the exit,
and the number of errors made during the journey
were recorded. Trials where the robot failed to solve
the maze (by exiting through the entrance) scored
maximum errors and were removed from the timing
data.

Forward Direction The robot solved the maze on
more than 80% of trials in the forward direction (Fig-
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Figure 6: Mean times and errors taken to solve the
maze in the forward direction. Error bars show stan-
dard deviations.

ure 5). The timing data (Figure 6) shows that the
‘wind’ group performed the best, having a clear ad-
vantage over the ‘no wind’ group. The ‘no sensors’
group timings were anomalous: the times were both
relatively fast and remarkably consistent, suggesting
a high level of performance. However, inspection of
the error graph shows that the performance was at
chance level. Closer inspection of these trials showed
that in every case the robot followed ezactly the same
path, making exactly the same errors, a result con-
firmed by the 100% success rate (Figure 5). The re-
sults can therefore be attributed to the high quality
of the Khepera’s engineering combined with the fact
that a T-Maze acts as funnel towards its exit.

The error data supports the timing data. The mean
number of errors for the ‘wind’ group was close to zero,
indicating reliable, error-free performance. Compara-
tively, the ‘no wind’ and ‘no sensors’ groups were per-
forming at around chance level.

Reverse Direction In this more difficult condition
the ‘wind’ group performed only slightly worse. The
success rate was still over 80% but more errors were
made (Figures 5 and 7). The ‘no wind’ group, how-
ever, performed surprisingly well considering that the
maze no longer funnels the robot towards the exit.
Figure 5 shows that the ‘no wind’ group actually suc-
ceeded more often in the reverse direction. The ‘no
sensors’ group failed on every trial (by travelling to
the first dead-end, performing a 180° turn to avoid
the wall, and proceeding back out of the maze) so no
data were available for the time analysis and maxi-
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Figure 7: Mean times and errors taken to solve the
maze in the reverse direction. Error bars show stan-
dard deviations. Note that the ‘no sensors’ group
failed on every trial.

mum errors were scored in every trial.

We were interested (and concerned) as to how the
‘no wind’ group was performing so well in the re-
verse maze condition without a wind stimulus. Per-
haps there was a latent flow of air through the maze?
Close inspection, however, revealed that this was not
the case. Rather, the robot was using a combination of
hair sensor bias and mechanoreception. In short, the
initial and final turns (both right-hand) were made
due to the clockwise turning bias described in Section
3.3. The second and third left-hand turns were nav-
igated by the left hair sensors (0 and 3 in Figure 3)
brushing along the inner wall of the maze. The effect
of this was to support the hairs slightly, keeping them
from making contact with their respective signal pins
and, therefore, the robot from making a right-hand
turn. Without this balancing force, the movement of
the right hair sensors induced from ego-motion alone
was enough to produce regular left turns. The result
was that the robot tracked its way efficiently along the
left-hand wall and around the two corners, using its
wind sensors as whiskers.

6 Conclusions

We have described the design and preliminary test-
ing of a biologically-inspired wind sensor. The sensor
was mounted on a mobile robot and we demonstrated
its ability to track a wind plume using only a minimal
control algorithm. An improved algorithm employing

temporal binning techniques to allow better extrac-
tion of the signal from ego-motion induced noise, by
integration of sensory input over time, enhanced the
range and performance of the system.

We demonstrated the utility and robustness of the
system by applying it to a maze solving task. The
robot performed well above chance level under both
the easier (forward) and more difficult (reverse) con-
ditions. Interesting results were found when the wind
stimulus was removed, as the robot was still able to
solve the maze under the reverse condition by exploit-
ing its wind sensors as impromptu tactile whiskers and
feeling its way along the walls. Further investigation
of this phenomena is in progress, along with a more
precise characterisation of the sensor properties.

The sensor has applications in a range of wind sens-
ing tasks. Its digital output simplifies interfacing is-
sues, the power usage is low, and the sensor itself
is physically robust. Planned uses of the sensor in-
clude the location of unexploded ordinance by chemi-
cal plume following and as a tool for robotic modelling
of biology.
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