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Abstract

We consider two problems regarding arithmetic progressions in symmetric sets
in the finite field (product space) model.

First, we show that a symmetric set S ⊆ Znq containing |S| = µ · qn elements
must contain at least δ(q, µ) ·qn ·2n arithmetic progressions x, x+d, . . . , x+(q−1) ·d
such that the difference d is restricted to lie in {0, 1}n.

Second, we show that for prime p a symmetric set S ⊆ Fnp with |S| = µ · pn

elements contains at least µC(p) ·p2n arithmetic progressions of length p. This estab-
lishes that the qualitative behavior of longer arithmetic progressions in symmetric
sets is the same as for progressions of length three.
Mathematics Subject Classifications: 11B25

1 Introduction

In this paper we consider problems in the finite field model in additive combinatorics.
This model has been a fruitful area of research, originally considered as a “playground”
for classical problems over integers, but subsequently becoming a source of many results
that are interesting on their own. The reader can consult two surveys [Gre05a, Wol15]
that are removed in time by ten years.

The most well-known problem in this setting concerns arithmetic progressions: Given
a subset S ⊆ Znq with density µ(S) := |S|/qn, what are the bounds on the number of
arithmetic progressions of length k contained in S? The case q = k = 3 is called the
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capset problem. There, it has long been known [Rot53, Mes95] that any subset of Fn3 of
constant density must contain an arithmetic progression of length three for large enough
n. Subsequent improvements culminating in recent breakthrough applying the polyno-
mial method [CLP17, EG17] establish that (contrary to the integer case as evidenced
by the Behrend’s construction) the largest progression-free set in Fn3 has density that is
exponentially small in n. It is also well known that this last statement is equivalent to
the following: There exists a constant C > 0 such that every set S ⊆ Fn3 with density
µ contains at least µC · 9n arithmetic progressions of length three (including among 9n

progressions degenerate ones with difference zero).
As for longer progressions, while it is known (for example using the density Hales-

Jewett theorem [FK91]) that dense subsets of Fnp contain a dense proportion of pro-
gressions of any length k, the quantitative bounds are quite weak with the exception of
progressions of length four (see [GT12]), where it has been established by Green and Tao
that a set of density µ contains at least an exp(− poly(1/µ)) proportion of all progressions.

We present a result that achieves a µC type of bound for arbitrarily long progressions,
at the expense of restricting ourselves to symmetric sets: Subsets S ⊆ Fnp where mem-
bership x ∈ S is invariant under permutations of coordinates. More formally, for x ∈ Znq
and a ∈ Zq we define the weight wa(x) := |{i ∈ [n] : xi = a}|. We say that S ⊆ Znq is
symmetric if membership x ∈ S depends only on the weight tuple (w0(x), . . . , wq−1(x)).

In fact, we prove a more general removal lemma. In the following we find it useful to
frame our statements in terms of probabilities. For that purpose, let X(1), . . . , X(p) ∈ Fnp
be random variables representing a uniformly random arithmetic progression of length p,
i.e., X(j) = (X

(j)
1 , . . . , X

(j)
n ) for j = 1, . . . , p, and tuples (X

(1)
i , . . . , X

(p)
i ) for i = 1, . . . , n

are independent and distributed uniformly among p2 possible progressions x, x+d, . . . , x+
(p− 1)d for x, d ∈ Fp.

Theorem 1. Let p > 3 be prime and 0 < µ < 1. There exist n0 and C > 0 such that for
all n > n0, if S(1), . . . , S(p) are symmetric subsets of Fnp satisfying

Pr
[
X(1) ∈ S(1) ∧ . . . ∧X(p) ∈ S(p)

]
< µC ,(1)

then there exist symmetric sets S ′(1), . . . , S ′(p) ⊆ Fnp , each of density at most µ, such that
letting T (j) := S(j) \ S ′(j) we have

Pr
[
X(1) ∈ T (1) ∧ . . . ∧X(p) ∈ T (p)

]
= 0 .

Taking S(1) = · · · = S(p) = S and noting that due to trivial progressions with difference
d = 0n the probability Pr[X(1), . . . , X(p) ∈ S] = 0 if and only if S is empty, it follows that
a symmetric set of density µ contains at least (µ/p)C · p2n progressions.1 We remark that
Theorem 1 has a weakness in that its conclusion holds only for large enough n after fixing
the density µ. The technical reason is that we apply a version of the local limit theorem
without an explicit error bound. We do not attempt to fix this deficiency in this work.

1We note that the question of existence of an arithmetic progression in a symmetric set has a positive
answer for a less interesting reason: If a symmetric set S contains an element x with all weights wa(x)
non-zero, then it is easy to find a progression in S consisting only of permutations of coordinates of x.
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The second problem we consider concerns arithmetic progressions in Znq with the differ-
ence restricted to lie in {0, 1}n. Accordingly, we call them restricted progressions. Again,
an application of the density Hales-Jewett theorem establishes that a dense set S ⊆ Znq
contains a non-trivial restricted progression of length q for large enough n. However,
the author is not aware of a proof that a dense set contains a dense fraction of all such
progressions.

Our second result is a removal lemma for symmetric sets with respect to restricted
progressions:

Theorem 2. Let q > 3 and µ > 0. There exists δ := δ(q, µ) > 0 such that for every
tuple of symmetric sets S(1), . . . , S(q) ⊆ Znq the following holds: Letting X(1), . . . , X(q) be
a random arithmetic progression in Znq with a difference restricted to {0, 1}n, if

Pr
[
X(1) ∈ S(1) ∧ · · · ∧X(q) ∈ S(q)

]
< δ ,

then there exists a symmetric set S ′ with density at most µ such that for T (j) := S(j) \ S ′
we have

Pr
[
X(1) ∈ T (1) ∧ · · · ∧X(q) ∈ T (q)

]
= 0 .

Similar as in the case of Theorem 1, it follows that a symmetric set S of density µ
contains a dense fraction of all restricted progressions.

1.1 Proof idea

The proofs of Theorems 1 and 2 are applications of the same technique, proceeding in
two stages. First, we use a local central limit theorem to show that those theorems are
implied (in fact, equivalent to) certain additive combinatorial statements over the integers
(more precisely, over Zq−1). Since the membership x ∈ S depends only on the weight tuple
(w0(x), . . . , wq−2(x)) (we omit wq−1(x), since, knowing n, it can be inferred from the other
components), we can think in terms of weight tuples in Zq−1 rather than vectors in Znq .
Furthermore, the CLT argument shows that sampling a random arithmetic progression
of length q can be approximated by sampling q random weight tuples uniformly, under
some additional constraints.

In case of Theorem 2 these constraints have the form of linear equations with integer
coefficients. For illustration, we show below a statement for q = 3, which is equivalent to
the same-set case of Theorem 2 (a more general statement that we need for full Theorem 2
is given as Theorem 17). For N > 0, let [−N,N ] denote the set {n ∈ Z : |n| 6 N}.

Theorem 3. Let µ > 0 and let A1, B1, A2, B2 be i.i.d. uniform in [−N,N ]. There exists
δ := δ(µ) > 0 such that for every subset R ⊆ [−N,N ]2 with density µ(R) := |R|/(2N +
1)2 > µ we have

Pr [(A1, B1) ∈ R ∧ (A2, B2) ∈ R ∧ (A1 +B1 −B2, A2 +B2 − A1) ∈ R] > δ .
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To prove Theorems 17 and 3 we use a (hyper)graph removal lemma argument, similar
as in the classical proof of Szemerédi’s theorem or in works on removal lemmas for sets of
linear equations [KSV09, Sha10, KSV12]. This application of graph removal makes the
constant δ to be very small compared to the density µ and we do not attempt to make it
explicit.

Moving to Theorem 1, it turns out that, since there are more progressions to choose
from, there is a larger collection of possible arrangements of p weight tuples. As a result,
the constraints in the relevant problem over Zp−1 turn out to be linear equations modulo
p, which can be directly handled in an easier and more abstract fashion, at least for prime
p.

While the restriction to symmetric sets is a strong one and the application of central
limit theorem might be considered quite natural, the author finds it interesting that this
technique results in an easier proof and a better bound in Theorem 1 as compared to
Theorem 2.

1.2 Correlated spaces

One can view the finite field problems we consider as instances in a more general framework
of correlated product spaces. Namely, let Ω be a finite set, ` > 2 and P a probability
distribution over Ω` such that all of its ` marginals are uniform over Ω. We call such a
distribution P an `-step correlated space. We consider the product probability space with
n i.i.d. coordinates, where coordinate i ∈ [n] gives rise to a random tuple X(1)

i , . . . , X
(`)
i

distributed according to P .
The random variables X(j)

i form ` random vectors X(j) :=
(
X

(j)
1 , . . . , X

(j)
n

)
. Each of

those vectors is individually uniform in Ωn, but their joint distribution exhibits correlation
across the steps. We consider a setting with fixed correlated space and n going to infinity.

Most generally, given sets S(1), . . . , S(`) ⊆ Ωn with densities µ(1), . . . , µ(`) we want to
study the probability

Pr
[
X(1) ∈ S(1) ∧ . . . ∧X(`) ∈ S(`)

]
.

For example, one can ask about the same-set case S(1) = . . . = S(`) = S with µ :=
µ(S) > 0. That is, for a given correlated space we can ask if there exists a bound

Pr
[
X(1) ∈ S ∧ . . . ∧X(`) ∈ S

]
> c (P , µ) > 0 ?(2)

This problem was introduced in [HHM18] and we call a space satisfying (2) same-set
hitting. Note that indeed the capset problem is captured by the same-set hitting on the
three-step correlated space where Ω = F3 and P is uniform in the set of progressions of
length three, i.e., {000, 111, 222, 012, 120, 201, 021, 102, 210}.

Considering “dictator” sets, for which the membership depends on a single coordinate,
it is easy to see that a necessary condition for same-set hitting is that the diagonal

diag(Ω) := {(ω, . . . , ω) : ω ∈ Ω}
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is contained in the support of P . In [HHM18] we proved that this condition is sufficient
for ` = 2. As a matter of fact, we state the following conjecture:

Conjecture 4. Every correlated space with diag(Ω) ⊆ supp(P) is same-set hitting.

Generalizing Theorem 2 to arbitrary sets would confirm Conjecture 4 in case of re-
stricted arithmetic progressions. A related, more general question is if general removal
lemma holds for correlated product spaces:

Question 5. Is it the case that for every correlated space P and every µ > 0 there exists
δ(P , µ) > 0 such that if

Pr
[
X(1) ∈ S(1) ∧ . . . ∧X(`) ∈ S(`)

]
< δ ,

then it is possible to remove a set S ′ of density at most µ from S(1), . . . , S(`) and obtain
T (j) := S(j) \ S ′ with

Pr
[
X(1) ∈ T (1) ∧ . . . ∧X(`) ∈ T (`)

]
= 0 ?

For all the author knows, we cannot even exclude a positive answer to Question 5 with
δ > µC(P) for every correlated space P . On the other hand, while it is plausible that with
some effort Theorems 1 and 2 can be generalized to hold for arbitrary correlated spaces,
in this work we leave even this problem unresolved. We also leave open the problem
of characterizing the correlated spaces which allow a stronger polynomial bound from
Theorem 1. The class of spaces for which we can confirm Conjecture 4 is limited and we
discuss known results in the following section.

1.3 Related works

We mention here some works that we find most relevant to our results and proofs.
As we said before, one well-studied example of a correlated space corresponds to the

problem of arithmetic progressions in the finite field model. Extensive recent line of work
based on the polynomial method [Gre05b, BX15, FK14, BCC+17, KSS18, Nor19, Peb18,
FL17, FLS18, LS19] culminated in establishing that for random k-cycles, i.e., solutions
to the equation x1 + · · ·+xk = 0 over finite field Fp indeed the removal lemma holds with
δ > µC .

More generally, another interesting instance of a correlated space arises when we take
Ω = G for a group G and P is uniform over solutions to some (full-rank) fixed linear
equation system over G. For example, a random arithmetic progression a1, . . . , aq over
Zq is a random solution of the equation system {aj + aj+2 = 2aj+1}j∈{1,...,q−2}. Green
[Gre05b] established such removal lemma for a single equation and any abelian group G
(not necessarily in the product setting) and further work by Shapira [Sha10] and Král’,
Serra and Vena [KSV12] extended it to systems of equations over finite fields, and it can
be seen that their results carry over to the product model Fnp .

Our proof of Theorem 17, which is the second part of the proof of Theorem 2, is related
to this previous work on removal lemmas in systems of linear equations in the following
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way: On the one hand, the statement of Theorem 17 is a removal lemma for a particular
type of a system of linear equations. Since it is a special system with some additional
structure, more involved constructions from [Sha10] and [KSV12] are not required and we
make a simpler argument, similar as in the proof of Szemerédi’s theorem or in [KSV09].
On the other hand, since we consider subsets W ⊆ Zq−1, our result is not directly covered
by [Sha10] or [KSV12], which concern only W ⊆ Z.

Regarding Theorem 2, the problem of restricted progressions in Znq seems to be partic-
ularly challenging, with most relevant questions being wide open. For example, it follows
from known results that a linear subspace of Fn3 free of restricted progressions has dimen-
sion at most n/2 and that a subset of Fn3 that does not contain a restricted progression
of length two must have size at most 2n [Lev18]. It is also known [HHM18] that every
subset of Fn3 of density µ contains at least δ(µ) · 6n restricted progressions of length two,
where δ is a triply exponentially small in µ.

More generally, a paper by Cook and Magyar [CM12] shows that a set of constant
density S ⊆ Fnp in the finite field model contains a constant proportion of arithmetic
progressions with differences restricted to lie in a sufficiently well-behaved algebraic set.
However, the author does not see how to apply their result in a very restricted setting of
differences from {0, 1}n.

One reason we find the framework of correlated spaces interesting is that it encom-
passes some important problems from analysis of discrete functions, with applications in
computer science. A canonical example of this setting are two steps ` = 2 over binary
alphabet Ω = {0, 1} with P(00) = P(11) = (1 − p)/2, P(01) = P(10) = p/2 for some
p ∈ [0, 1]. More generally, one can take any correlated space P and add to it a small
amount of uniform noise, e.g., taking P ′ := (1 − ε) · P + ε · U , where U is the uniform
distribution over Ω`.

It turns out that the theory of reverse hypercontractivity [MOS13] can be used to show
that in such setting (and, more generally, whenever supp(P) = Ω`), one gets a general set
hitting : For any S(1), . . . , S(`) with µ(S(j)) > µ it holds that

Pr
[
X(1) ∈ S(1) ∧ . . . ∧X(`) ∈ S(`)

]
> µC .

More generally, [HHM18] established Conjecture 4 for ` = 2, as well as whenever
a certain correlation value is bounded with ρ(P) < 1. The latter condition intuitively
corresponds to the following: For all possible assignments of values to ` − 1 of the steps
in P , the value of the remaining step is not determined. Note that this is quite a different
regime that what is usually encountered in additive combinatorics. For example, the
condition does not hold for full-rank systems of r linear equations over m variables, where
fixing m − r variables determines the values of the remaining r variables. [HHM18] is
based on the invariance principle by Mossel [Mos10], which together with a follow-up
work2 [Mos20] establishes set-hitting and, more precisely, Gaussian bounds, in spaces
with ρ(P) < 1 for sets with small low-degree Fourier coefficients.

A work by Friedgut and Regev [FR18] applied the invariance principle and previous
work with Dinur [DFR08] to establish a removal lemma in the two-step case ` = 2. This

2The technique from [Mos20] implies another proof of same-set hitting for spaces with ρ(P) < 1.

the electronic journal of combinatorics 27(3) (2020), #P3.61 6



removal lemma has tower-type dependence between µ and δ, which is worth contrasting
with [HHM18] which established an easier property of same-set hitting but with “only”
triply exponential dependence between µ and δ. [DFR08] and [FR18] also studied the
structure of sets with hitting probability zero, establishing that any such set must be
almost contained in a junta.

The invariance principle can be compared with the Fourier-analytic approach to Sze-
merédi’s theorem due to Gowers [Gow98, Gow01], which takes as its starting point the
fact that the space of arithmetic progressions of length k is set hitting for all sets with
low Gowers uniformity norm Uk.

Finally, we note a work by Austrin and Mossel [AM13] that established set hitting for
low-Fourier degree sets with small Fourier coefficients in all correlated spaces where the
distribution P is pairwise independent.

Organization of the paper In the following we prove Theorems 1 and 2. In Section 2
we introduce some notation, as well as the local limit theorem we use in the remaining
proofs.

For convenience of a less committed reader, in Section 3 we prove the same-set case
of Theorem 1 for q = 3. This proof utilizes main ideas of our technique, while being
somewhat less technical and lighter in notation.

We proceed to prove Theorem 1 in Section 4 and Theorem 2 in Section 5. Each of the
latter three sections is intended to be self-contained.

2 Preliminaries

We use both O(·) and Ω(·) asymptotic notation, as well as constants C > 0 that will vary
from time to time. All such implicit constants are allowed to depend on the alphabet size
denoted by p or q.

Given x ∈ Znq and a ∈ Zq, we define the respective weight to be wa(x) := |{i ∈ [n] :

xi = a}|. In the context of arithmetic progressions x(1), . . . , x(q) of length q, we will often
speak of weight tuples w(j) = (w

(j)
0 , . . . , w

(j)
q−2), where coordinates of w(j) will be weights

wa(x
(j)) shifted by a normalizing term approximately equal to n/q. A collection of q

weight tuples w = (w(1), . . . , w(q)) will be referred to as a weight arrangement.
In some of the estimates we employ standard notation ‖x‖2 =

√∑n
i=1 x

2
i and ‖x‖∞ =

maxi=1,...,n |xi| for x ∈ Rn.
We will apply several times the following corollary of the local multidimensional central

limit theorem (see, e.g., Chapter 5 in [BR10] or Section 7 in [Spi76]):

Theorem 6. LetW1, . . . ,Wn be i.i.d. random tuples such that eachWi = (W
(1)
i , . . . ,W

(`)
i )

is distributed uniformly in

{0`} ∪
{

0j10`−j−1 : 0 6 j 6 `− 1
}
.
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For any tuple w ∈ Z` with d := w − n
`+1
· (1, . . . , 1) we have

Pr

[
n∑
i=1

Wi = w

]
=

(`+ 1)(`+1)/2

(2π)`/2
· 1

n`/2
· exp

−`+ 1

2n

‖d‖22 +

(∑̀
j=1

dj

)2


+ o

(
1

n`/2
·min

(
1,

n

‖d‖22

))
,(3)

where the error term converges uniformly in w. In particular, we have

1

Cn`/2
·
(

exp

(
−C‖d‖

2
2

n

)
+ o(1)

)
6 Pr

[
n∑
i=1

Wi = w

]
6

C

n`/2
(4)

for some C > 0 that depends only on `.

3 Restricted Progressions of Length Three

In this section we prove the same-set case of Theorem 2 for q = 3. For simplicity of
exposition we additionally assume that n is divisible by six. We first show that our result
is implied by Theorem 3 and then prove Theorem 3 via the triangle removal lemma. Let
us start with the statement of the theorem.

Theorem 7. Let X, Y, Z ∈ Zn3 be a random arithmetic progression with difference re-
stricted to lie in {0, 1}n, where n is a multiple of six. For every symmetric set S ⊆ Zn3
with density µ(S) > µ > 0 we have

Pr [X ∈ S ∧ Y ∈ S ∧ Z ∈ S] > δ(µ) > 0 .(5)

The crucial part of the proof is a lemma that characterizes which weight arrangements
are likely to be sampled in a random restricted progression. For this purpose, it is useful
to introduce two random tuples. The first one is

M := (M000,M111,M012,M120,M201) ,

where Mabc := |{i ∈ [n] : (Xi, Yi, Zi) = (a, b, c)}|−n/6 for (a, b, c) = (x, x+ d, x+ 2d), x ∈
Z3, d ∈ {0, 1}. That is, the tuple M expresses normalized counts of six restricted progres-
sions across n coordinates. Note that M222 is omitted, since it can be inferred from the
remaining components of M .

The second random tuple represents weight arrangements of elements of the restricted
progression:

W := (WX ,WY ,WZ) := (w0(X), w1(X), w0(Y ), w1(Y ), w0(Z), w1(Z))− (n/3, . . . , n/3) .

Again, we omit weights w2(·), since they can be deduced from the rest. Note that W is
determined by M , but, as it turns out, not the other way around.
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Lemma 8. Let (X, Y, Z) be a random restricted progression with n divisible by six. Let
w := (x0, x1, y0, y1, z0, z1) ∈ [−N,N ]6 with N = C1

√
n for some C1 > 0. Then,

Pr[W = w] is

{
at least C2/N

4 if (z0, z1) = (x0 + x1 − y1, y0 + y1 − x0) ,
0 otherwise,

for some C2 := C2(C1) > 0 and N large enough (also depending on C1).

Proof. Let us call a tuple w that satisfies (z0, z1) = (x0 + x1− y1, y0 + y1− x0) feasible. If
w is not feasible, then clearly Pr[W = w] = 0, since restricting the progression difference
to {0, 1}n implies that

w0(Z) = M000 +M120 + n/3 = w0(X) + w1(X)− w1(Y ) ,

w1(Z) = M111 +M201 + n/3 = w0(Y ) + w1(Y )− w0(X) .

For a feasible w, one can see that a tuple m gives rise to the weight arrangement w if and
only if it is an integer solution of the equation system

x0 = m000 +m012

x1 = m111 +m120

y0 = m000 +m201

y1 = m111 +m012

,

and these solutions are given as

m = (m000,m111,m012,m120,m201) = (k, y1 − x0 + k, x0 − k, x1 − y1 + x0 − k, y0 − k)

for k ∈ Z. Now we can calculate

Pr[W = w] =
∑
k∈Z

Pr [M = (k, y1 − x0 + k, x0 − k, x1 − y1 + x0 − k, y0 − k)]

>
bC1
√
nc∑

k=0

Pr [M = (k, y1 − x0 + k, x0 − k, x1 − y1 + x0 − k, y0 − k)] .(6)

Each tuple m = m(k) in the summation (6) is contained in [−4N, 4N ]5 and therefore
satisfies ‖m‖22 = O(C2

1 · n). Applying lower bound in (4) to M and m, each term in the
summation (6) must be at least C/n5/2, where C depends on C1 and n is large enough.
Finally, summing up over k we get

Pr[W = w] >
C

n2
=
C2

N4
,

as claimed.
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Theorem 3 implies Theorem 7. Let µ > 0 and S ⊆ Zn3 be a symmetric set with µ(S) >
µ > 0. Note that we can assume that n is big enough.

Recall the random tuple W = (WX ,WY ,WZ) and for x ∈ Zn3 let Wx := (w0(x) −
n/3, w1(x) − n/3). Since S is symmetric, there exists a set R := R(S) ⊆ Z2 such that
x ∈ S if and only if Wx ∈ R. Since, by a standard concentration bound, we can find C(µ)
such that

Pr
[
‖WX‖∞ > C

√
n
]
< µ/2 ,

from now on we will assume w.l.o.g. that R ⊆ [−N,N ]2 for N := C
√
n.

Observe that, due to upper bound in (4) applied to random variable WX , for each
w ∈ R we have

Pr [WX = w] 6 O(1/n) ,

and therefore |R| = Ω(µ/n), implying |R|
(2N+1)2

> c(µ) > 0. Now, Theorem 3 gives

# {(x0, x1, y0, y1) : (x0, x1) ∈ R ∧ (y0, y1) ∈ R ∧ (x0 + x1 − y1, y0 + y1 − x0) ∈ R}
(2N + 1)4

> c(µ) > 0 ,

but that, due to Lemma 8, yields

Pr[X ∈ S ∧ Y ∈ S ∧ Z ∈ S] = Pr[WX ∈ R ∧WY ∈ R ∧WZ ∈ R]

=
∑

(x0,x1)∈R
(y0,y1)∈R

1R(x0 + x1 − y1, y0 + y1 − x0) ·

· Pr [W = (x0, x1, y0, y1, x0 + x1 − y1, y0 + y1 − x0)]

>c(µ) ·N4 · C2(µ)

N4
> δ(µ) > 0.

We proceed to the proof of Theorem 3, which we restate here for convenience.

Theorem 3. Let µ > 0 and let A1, B1, A2, B2 be i.i.d. uniform in [−N,N ]. There exists
δ := δ(µ) > 0 such that for every subset R ⊆ [−N,N ]2 with density µ(R) := |R|/(2N +
1)2 > µ we have

Pr [(A1, B1) ∈ R ∧ (A2, B2) ∈ R ∧ (A1 +B1 −B2, A2 +B2 − A1) ∈ R] > δ .

The proof is a variation on the triangle removal proof of Roth’s theorem. Let us start
by stating the removal lemma:

Theorem 9 (Triangle removal lemma). For every ε > 0 there exists δ = δ(ε) > 0 such
that if a simple graph G = (V,E) contains at most δ|V |3 triangles, then it is possible to
make G triangle-free by removing from it at most ε|V |2 edges.

the electronic journal of combinatorics 27(3) (2020), #P3.61 10



Proof of Theorem 3. Let N ∈ N and R ⊆ [−N,N ]2 with density µ(R) > µ > 0. As
before, we will call a triple of points (a1, b1), (a2, b2), (a3, b3) ∈ Z2 feasible if (a3, b3) =
(a1 + b1 − b2, a2 + b2 − a1). We define a tripartite graph G as follows:

• There are three groups of vertices V1, V2, V3. In each group the vertices are labeled
with elements of [−M,M ]2 for M := 3N . Note that the total number of vertices of
G is |V | = 3(2M + 1)2.

• Edge adjacency is defined by:

V1 3 (ia, ib) ∼ (ja, jb) ∈ V2 iff (a1, b1) := (ib − jb, ja − ia + jb − ib) ∈ R ,(7)
V2 3 (ja, jb) ∼ (ka, kb) ∈ V3 iff (a2, b2) := (ka − ja + kb − jb, ja − ka) ∈ R ,(8)
V1 3 (ia, ib) ∼ (ka, kb) ∈ V3 iff (a3, b3) := (ka − ia, kb − ib) ∈ R .(9)

Given a triple of vertices (ia, ib), (ja, jb), (ka, kb), we associate with it a triple of points
(a1, b1), (a2, b2), (a3, b3) ∈ Z2 given by the right-hand sides of equations in (7) to (9).
One checks that this triple of points is feasible. Furthermore, by definition, whenever
(ia, ib), (ja, jb), (ka, kb) form a triangle, the points (a1, b1), (a2, b2), (a3, b3) all belong to R.

Conversely, given a point (a, b) ∈ R, we can see that each triple of vertices (ia, ib), (ia+
a+ b, ib−a), (ia+a, ib+ b) for (ia, ib) ∈ [−N,N ]2 forms a triangle. Therefore, the graph G
contains at least µ·(2N+1)4 > µ·

(
2M+1

3

)4
= µ

36
|V |2 triangles. Furthermore, it is clear that

all those triangles are edge-disjoint. Hence, G requires at least µ
36
|V |2 edge deletions to

become triangle-free and, by triangle removal lemma, contains at least δ(µ)|V |3 triangles.
Finally, we note that each feasible triple of points (a1, b1), (a2, b2), (a3, b3) ∈ R gives

rise to at most (2M + 1)2 triangles. This is because each vertex (ia, ib) ∈ V1 determines
at most one triangle associated with this triple. Since G contains at least δ|V |3 triangles,
the number of feasible triples contained in R must be at least

δ|V |3

(2M + 1)2
= 27δ(2M + 1)4 > δ(2N + 1)4 ,

but this means

Pr [(A1, B1) ∈ R ∧ (A2, B2) ∈ R ∧ (A1 +B1 −B2, A2 +B2 − A1) ∈ R] > δ > 0 ,

as we wanted.

4 Proof of Theorem 1

In this section we prove Theorem 1.
As a very preliminary point, note that it suffices to consider only densities µ 6 1−1/p

that are bounded away from one. If µ is greater than 1− 1/p, one can, for example, take
T (j) := S(j) ∩ {x :

∑n
i=1 xi = 0 (mod p)} for j 6= p and T (p) := S(p) ∩ {x :

∑n
i=1 xi = 1

(mod p)} in order to obtain progression-free sets T (1), . . . , T (p).
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As in the proof of Theorem 7, we start with observing that there exist sets R(1), . . . ,
R(p) ⊆ Fp−1 such that x ∈ S(j) if and only if W (x) := (w0(x) − pbn/p2c, . . . , wp−2(x) −
pbn/p2c) ∈ R(j) (the choice of the pbn/p2c shift will become apparent in the next para-
graph). Furthermore, using standard concentration bound

Pr [|wa(X)− n/p| > tn] 6 2 exp(−2nt2)

for any fixed a ∈ Fp together with the union bound, we also establish that there exists
some C1 > 0 such that

Pr
[∥∥W (X(j))

∥∥
∞ > C1

√
n · ln 1/µ

]
6
µ

2
,

and therefore we can remove from each of S(1), . . . , S(p) a symmetric set of density at most
µ/2 and assume from now on that the weight sets R(1), . . . , R(p) have limited range: If
w ∈ R(j), then ‖w‖∞ 6 C1

√
n · ln 1/µ.

For a, d ∈ Fp, define random variables

M(a, d) :=
∣∣∣{i ∈ [n] : x

(1)
i = a ∧ x(2)i − x

(1)
i = d

}∣∣∣− bn/p2c .
Consider the random tuple M consisting of p2 − 1 coordinates M(a, d) except for M(p−
1, 0). We note for future reference that M can be written as a sum of i.i.d. random tuples
M =

∑n
i=1Mi such that Theorem 6 is applicable. We also note that there exists a matrix

A ∈ {0, 1}p(p−1)×(p2−1) such that letting W := (W (X(1)), . . . ,W (X(p))) we can write a
linear system of equations W = AM .

At this point we need to understand how solutions to the system W = AM look like.
This is done in the following lemma:

Lemma 10. A general solution to the equation system w = Am for w ∈ Rp(p−1) is given
by

m =
1

p
Bw +K · Rp−1(10)

for some integer-valued matrices B ∈ Z(p2−1)×p(p−1) and K ∈ Z(p2−1)×(p−1). In particular,
matrix A has full rank over reals.

Furthermore, if the vector 1
p
Bw is not integer for some integer w ∈ Zp(p−1), then the

system w = Am does not have an integer solution.

Proof. We start by showing that matrix A has full rank with a solution given asm = 1
p
B′w

for some B′ ∈ Z(p2−1)×p(p−1). To do this, we explicitly construct the columns of B′. That
is, for every j ∈ [p] and a ∈ Fp, a 6= p − 1, we find a solution mj,a ∈ Rp2−1 to equation
wj,a = Amj,a where wj,a has value one at the coordinate corresponding to Wa(x

(j)) and
zero everywhere else. Furthermore, this solution satisfies p ·mj,a ∈ Zp2−1. We give mj,a
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as:

mj,a(b, d) :=



−(p− 2)/p if b = a, d = 0 ,

−(p− 1)/p if b 6= a, d = 0 ,

2/p if d 6= 0, b+ (j − 1)d = a ,

1/p if d 6= 0, b+ (j − 1)d /∈ {a, p− 1} ,
0 if d 6= 0, b+ (j − 1)d = p− 1 .

(11)

As a sanity check we can convince ourselves that mj,a features one coordinate with value
−(p − 2)/p, p − 2 coordinates with value −(p − 1)/p, p − 1 coordinates with value 2/p,
(p− 1)(p− 2) coordinates with value 1/p and p− 1 coordinates with value zero. Indeed,
we have wj,a = Amj,a as can be seen by indexing coordinates of w = Amj,a as w(j′, b)
with j′ ∈ [p], b ∈ Fp \ {p− 1} and computing

w(j, a) = −p− 2

p
+ (p− 1) · 2

p
= 1

w(j, b) = −p− 1

p
+ (p− 1) · 1

p
= 0 for b /∈ {a, p− 1} ,

w(j′, a) = −p− 2

p
+ (p− 2) · 1

p
= 0 for j′ 6= j ,

w(j′, b) = −p− 1

p
+

2

p
+ (p− 3) · 1

p
= 0 for b /∈ {a, p− 1}, j′ 6= j .

By a similar check we can characterize the (p−1)-dimensional kernel of the linear operator
A concluding that Am = 0 holds if

m(b, d) :=

{
−
∑p−1

d′=1 αd′ if d = 0 ,

αd if d 6= 0 ,
(12)

for α1, . . . , αp−1 ∈ R. Since matrix A is full rank, its kernel has dimension p − 1 and
equation (12) represents all elements in the kernel.

Combining (11) and (12) allows us to write a general solution to w = Am as

m =
1

p
B′w +K · Rp−1

for B′ ∈ Z(p2−1)×p(p−1) and K ∈ Z(p2−1)×(p−1).
As for the “furthermore” claim, notice that another general solution to w = Am can be

obtained by adding an arbitrary kernel vector Kv to one of the columns of B′. Applying
this observation repeatedly together with (12), we obtain another integer matrix B such
that we still have the equation

m =
1

p
Bw +K · Rp−1

and, additionally, for every column bj,a of B we have bj,a(0, d) = 0 for d = 1, . . . , p − 1.
But this ensures that a solution m = 1

p
Bw + Kv has m(0, d) = vd, so v must be integer

in order for m to be integer, which implies that 1
p
Bw is integer as well.
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Consider an integer tuple w ∈ Zp(p−1) and a tuple w (mod p) ∈ Fp(p−1)p which consists
of entries of w reduced modulo p. Since by Lemma 10 w = Am has an integer solution
m ∈ Zp2−1 if and only if 1

p
Bw is integer, in particular this property depends only on w

(mod p).
Furthermore, if w with ‖w‖∞ 6 D has at least one integer solution, then taking

m = 1
p
Bw+K ·[D]p−1 we get Dp−1 integer solutionsm with bounded norm ‖m‖∞ 6 O(D)

and, consequently, ‖m‖22 6 O(D2). Taking D = C1

√
n ln 1/µ and applying lower bound

in (4) to random tuple M , we see that, for n big enough, we will have for each such m

Pr[M = m] >
µC

n(p2−1)/2 ,

and, as a result,

Pr[W = w] >
µC

n(p2−1)/2 ·
(
C1

√
n ln 1/µ

)p−1
>

µC

np(p−1)/2
.(13)

To finish the proof, divide each set S(j) into pp−1 “congruence classes” S(j)
v indexed by

v = (v0, . . . , vp−2) ∈ Fp−1p and defined as

S(j)
v := S(j) ∩

{
x : wa(x)− pbn/p2c = va (mod p), a = 0, . . . , p− 2

}
.

Now, if |S(j)
v | 6 µ

2pp−1 · pn, we remove S(j)
v from S(j). Clearly, we removed from each

S(j) a symmetric set of density at most µ. The final claim is that there can be no tuple
arrangement v(1), . . . , v(p) such that:

1. None of S(j)

v(j)
has been removed.

2. There exists an integer solution to v = Am, where v = (v(1), . . . , v(p)).

Otherwise, each of the sets S(j)

v(j)
has density at least µ/2pp−1. A set S(j)

v(j)
is symmetric

with the corresponding set of tuples R(j)

v(j)
⊆ Zp−1 bounded by ‖w(j)‖∞ 6 C1

√
n ln 1/µ for

w(j) ∈ R(j)

v(j)
. Applying Theorem 6 to the random tuple W (j) = (W

(j)
0 , . . . ,W

(j)
p−2), we see

that each such tuple w(j) ∈ R(j)

v(j)
has

Pr[W (j) = w(j)] 6 O

(
1

n(p−1)/2

)
,

and therefore, we can bound the size of R(j)

v(j)
by∣∣∣R(j)

v(j)

∣∣∣ > Ω
(
µ · n(p−1)/2) .

As a result, we get a set of Ω
(
µp · np(p−1)/2

)
weight arrangements w = (w(1), . . . , w(p)) with

‖w‖∞ 6 C1

√
n ln 1/µ and for each of them the system w = Am has an integer-valued

solution and, by (13), Pr[W = w] > µC

np(p−1)/2 , which finally gives us

Pr
[
X(1) ∈ S(1) ∧ . . . ∧X(p) ∈ S(p)

]
>

1

C
· µp · np(p−1)/2 · µC

np(p−1)/2
> µC ,
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which contradicts assumption (1) if the constant C is chosen large enough.
We established that there are no “mod p” weight arrangements (v(1), . . . , v(p)) that

satisfy the two conditions above. But it follows that there are no weight arrangements
w = (w(1), . . . , w(p)) left in R(1) × · · · × R(p) for which there is an integer solution to
w = Am, and therefore no arithmetic progressions left in the product set S(1)×· · ·×S(p),
and we are done.
Remark 11. We make no attempt to precisely estimate the constant C in the exponent,
but following the argument above one can see that it is bounded by a polynomial function
of p.

5 Proof of Theorem 2

In the following we prove Theorem 2. We start with some definitions:

Definition 12. For q > 3 and n > 1, we let

P := P(q, n) :=
{

(x, x+ d, . . . , x+ (q − 1)d) : x ∈ Znq , d ∈ {0, 1}
n}

Note that |P(q, n)| = (2q)n. We will call an element of P(q, n) a restricted progression.
We will restate our removal lemma now:

Theorem 13. For all µ > 0 there exists δ := δ(q, µ) > 0 such that for all symmetric sets
S(1), . . . , S(q) ⊆ Znq :

If S(1)× . . .×S(q) contains at most δ ·(2q)n restricted progressions, then it is possible to
remove a total number of at most µqn elements from S(1), . . . , S(q) and obtain symmetric
sets T (1), . . . , T (q) such that T (1) × . . .× T (q) contains no restricted progressions.

As before, the proof consists of two parts: First, we make a CLT argument reducing
Theorem 13 to a variation on removal lemma for certain linear equations over Zq−1N . Then,
we apply the hypergraph removal lemma to establish the linear equation removal property.
To state the removal property over Zq−1N we need another definition specifying the allowed
weight arrangements of restricted progressions.

Definition 14. For x ∈ Znq , we define the weight tuple of x as W (x) := (W1(x), . . . ,
Wq−1(x)) ∈ Zq−1, where

Wa(x) := wa(x)− 2bn/2qc = |{i ∈ [n] : xi = a}| − 2bn/2qc .

Definition 15. An arrangement of tuples (w
(1)
1 , . . . , w

(1)
q−1), . . . , (w

(q)
1 , . . . , w

(q)
q−1) (under-

stood, depending on the context, as element of Zq(q−1) or Zq(q−1)N ) is feasible if

∀j = 3, . . . , q :

w
(j)
1 =

q−1∑
a=1

w(j−2)
a −

q−1∑
a=2

w(j−1)
a(14)

∀a = 2, . . . , q − 1 : w(j)
a = −w(j−2)

a−1 + w
(j−1)
a−1 + w(j−1)

a(15)
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For q > 3 and N > 1 we let E := E(q,N) ⊆ Zq(q−1)N to be the set of all feasible arrange-
ments of tuples.

Note that |E(q,N)| = N2(q−1). The definition of a feasible tuple is motivated by the
following claim, which can be seen to be true by inspection:

Claim 16. Let x(1), . . . , x(q) ∈ Znq be a restricted progression. Then, the weight arrange-
ment w(x(1)), . . . , w(x(q)) ∈ Zq(q−1) is feasible.

Finally, we are ready to state the removal property for feasible arrangements. In this
case it seems slightly more convenient (but not much different) to work in the cyclic group
ZN rather than in Z.

Theorem 17. For all µ > 0 there exists δ := δ(q, µ) > 0 such that for all sets R(1), . . . ,
R(q) ⊆ Zq−1N :

If the product R(1) × . . .× R(q) contains at most δN2(q−1) feasible arrangements, then
it is possible to remove a total number of at most µN q−1 tuples from R(1), . . . , R(q) and
obtain sets R′(1), . . . , R′(q) such that the product R′(1)× . . .×R′(q) contains no feasible tuple
arrangements.

5.1 Theorem 17 implies Theorem 13

The CLT argument that we use to prove that Theorem 13 is implied by Theorem 17 can
be encapsulated in the following lemma that will be proved last. Before stating the lemma
we need one more definition:

Definition 18. Let w ∈ Zq−1 be a weight tuple and w(1), . . . , w(q) ∈ Zq(q−1) a weight
arrangement. We let

#w :=
∣∣{x ∈ Znq : w(x) = w

}∣∣
#
(
w(1), . . . , w(q)

)
:=
∣∣{(x(1), . . . x(q)) ∈ P : ∀j = 1, . . . , q : w(x(j)) = w(j)

}∣∣
Lemma 19. Let q > 3, C1 > 0 and let N := C1

√
n. For any weight tuple w ∈ [−N,N ]q−1

and any weight arrangement w(1), . . . , w(q) ∈ [−N,N ]q(q−1) we have the following:

1. If w(1), . . . , w(q) is not feasible, then #
(
w(1), . . . , w(q)

)
= 0.

2. If w(1), . . . , w(q) is feasible, then

1

C
6 #

(
w(1), . . . , w(q)

)
· N

2(q−1)

(2q)n
6 C ,(16)

for large enough n and some C > 0 that may depend on C1.

3. Similarly, 1
C
6 #w · Nq−1

qn
6 C for large enough n.
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Proof of Theorem 13 assuming Theorem 17 and Lemma 19. Let S(1), . . . , S(q) ⊆ Znq be
the sets from the statement. Since they are symmetric, there are sets R(1), . . . , R(q) ⊆ Zq−1
such hat

x ∈ S(j) ⇐⇒ W (x) ∈ R(j) .

The first observation is that we can assume without loss of generality that n is large
and that the weights are restricted such that R(j) ∈ [−N,N ]q−1 for N := C1

√
n for some

C1 := C1(q, µ) > 0. This is because by a standard concentration bound∣∣{x : W (x) /∈ [−N,N ]q−1
}∣∣ 6 µ

2q
qn

for a big enough C1 and therefore it takes at most µ/2 · qn removals to get rid of all the
elements giving rise to weight tuples outside [−N,N ]q−1.

By Lemma 19.2, there exists some C := C(q, C1) > 0 such that each feasible ar-
rangement in R(1) × . . . × R(q) induces at least (2q)n

C·N2(q−1) restricted progressions in S(1) ×
. . . × S(q). Let µ′ := µ

2C(2q)q−1 and let δ′(µ′) > 0 be given by Theorem 17. We set
δ(µ) := (2q)2(q−1)δ′/C.

Since, by assumption, S(1)× . . .×S(q) contains at most δ(2q)n restricted progressions,
R(1)×. . .×R(q) contains at most δCN2(q−1) feasible arrangements (understood as elements
of Zq(q−1)). Furthermore, taking N ′ := 2qN and inspecting Definition 15, we conclude
that R(1)× . . .×R(q) contains at most δC

(2q)2(q−1)N
′2(q−1) = δ′N ′2(q−1) feasible arrangements

understood as elements of Zq(q−1)N ′ .
Applying Theorem 17 for N ′ and µ′, we get that one can remove at most µ′N ′q−1 =

µ
2C
N q−1 elements from R(1), . . . , R(q) and obtain R′(1), . . . , R′(q) ⊆ [−N,N ]q−1 such that

R′(1)×. . .×R′(q) contains no feasible arrangements (understood either as elements of Zq(q−1)N ′

or Zq(q−1)). Finally, due to Lemma 19.3, we can remove at most µ
2
qn elements from the

sets S(1), . . . , S(q) to obtain symmetric sets T (1), . . . , T (q) such that, by Lemma 19.1, the
product T (1) × . . .× T (q) contains no restricted progressions.

It remains to prove Lemma 19. We achieve this by utilizing Theorem 6.

Proof of Lemma 19. Point 1 is just a restatement of Claim 16.
We turn to Point 3 next. Consider X ∈ Znq sampled uniformly at random. Recall our

notation W (x) = (W1(x), . . . ,Wq−1(x)) = (w1(x) − 2bn/2qc, . . . , wq−1(x) − 2bn/2qc) for
x ∈ Znq and the random variable W = W (X). Clearly, we can apply (4) to W and obtain

1

Cn(q−1)/2 6 Pr[W = w] =
#w

qn
6

C

n(q−1)/2 ,

which yields the conclusion after rearranging the terms.
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As for Point 2, consider a choice of uniform random restricted progression X(1), . . . ,
X(q). We will apply Theorem 6 to random variables

Msame(a) :=
∣∣∣{i ∈ [n] : X

(1)
i , . . . , X

(q)
i = a, a, . . . , a

}∣∣∣− ⌊ n
2q

⌋
,

Mcycle(a) :=
∣∣∣{i ∈ [n] : X

(1)
i , . . . , X

(q)
i = a, a+ 1, . . . , a− 1

}∣∣∣− ⌊ n
2q

⌋
.

We let M := (Msame(1), . . . ,Msame(q − 1),Mcycle(0), . . . ,Mcycle(q − 1)) (note that M ∈
Z2q−1). Now we need to specify a relation between possible values ofM and feasible weight
arrangements w(1), . . . , w(q). Observe that each possible valuem ofM uniquely determines
a feasible weight arrangement w(1), . . . , w(q). It turns out that there is a reasonably simple
characterization of the set of tuples m that give rise to a given arrangement w(1), . . . , w(q).
Namely, we check that these values form a linear one-dimensional solution space with
triangular structure given by

mcycle(0) = k ,(17)

msame(a) = w(2)
a −mcycle(a− 1) , a = 1, . . . , q − 1 ,(18)

mcycle(a) = w(1)
a −msame(a) , a = 1, . . . , q − 1 .(19)

for every k ∈ Z. Let us denote each solution given by (17)-(19) by m(w(1), . . . , w(q); k).
Therefore, we have

#
(
w(1), . . . , w(q)

)
= (2q)n

∑
k∈Z

Pr
[
M = m

(
w(1), . . . , w(q); k

)]
.(20)

To establish (16) we will separately bound this sum from below and from above. For the
lower bound, first observe that as long as |k| 6 N , then also |w(j)

a | 6 N , we can bound
absolute values of all elements of the tuple m

(
w(1), . . . , w(q); k

)
with

|mcycle(a)| , |msame(a)| 6 2qN

and consequently obtain bounds on the 2-norm and use (4) to bound the probability
in (20): ∥∥m (w(1), . . . , w(q); k

)∥∥2
2
6 8q3N2 ,

Pr
[
M = m

(
w(1), . . . , w(q); k

)]
>

1

Cn(2q−1)/2 .

Consequently,

#
(
w(1), . . . , w(q)

)
> (2q)n

∑
k∈[−N,N ]

Pr
[
M = m

(
w(1), . . . , w(q); k

)]
>

(2q)nN

Cn(2q−1)/2 >
(2q)n

CN2(q−1) ,
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and rearranging gives the lower bound in (16). For the upper bound, first note that clearly∥∥m (w(1), . . . , w(q); k
)∥∥2

2
> mcycle(0)2 = k2 .

This time we need to use the more precise error bound from (3). Continuing the compu-
tation,

#
(
w(1), . . . , w(q)

)
(2q)n

=
∑
k∈Z

Pr
[
M = m

(
w(1), . . . , w(q); k

)]
6

1

n(2q−1)/2 ·

(∑
k∈Z

O

(
exp

(
− k2

Cn

))
+ o

(
min

(
1,
n

k2

)))

6
1

n(2q−1)/2 ·

 ∞∑
D=0

∑
D
√
n6k<(D+1)

√
n

O
(
exp

(
−D2/C

))
+ o

(
1/D2

)
6

1

nq−1
·

(
∞∑
D=0

O
(
exp

(
−D2/C

))
+ o

(
1/D2

))
6

C

N2(q−1) ,

and another rearrangement of terms finishes the proof.

Remark 20. Strictly speaking, we did not need slightly more complicated upper bound
in (16) to establish that Theorem 17 implies Theorem 13. However, this upper bound
allows us to reverse the reasoning and obtain also that Theorem 13 implies Theorem 17.
We omit the details, but the proof is a straightforward reversal of the “forward” argument.

5.2 Proof of Theorem 17

To prove Theorem 17 we will need the hypergraph removal lemma originally used in the
proof of Szemerédi’s theorem. To state the removal lemma we first define hypergraphs
and simplices.

Definition 21. A k-uniform hypergraph is a pairH = (V,E), where E is a set of subsets of
size k (edges) of a finite set of vertices V . A k-simplex is the unique k-uniform hypergraph
with k + 1 vertices and k + 1 edges.

Theorem 22 ([RS04, NRS06, Gow07]). For every k > 2 and every ε > 0 there exists
δ := δ(k, ε) > 0 such that for all k-uniform hypergraphs H with N vertices: If H contains
at most δNk+1 simplices, then it is possible to remove at most εNk edges from H and
obtain a hypergraph that does not contain any simplices.

Note that a 2-uniform hypergraph is a simple graph, a 2-simplex is a triangle and
Theorem 22 restricted to k = 2 is the triangle removal lemma. With Theorem 22 we are
ready to prove the removal property for feasible arrangements.

Let R(1), . . . , R(q) ⊆ Zq−1N . We define a (q − 1)-uniform hypergraph H = (X,E). The
set of vertices of H consists of q disjoint parts X = X(1)∪ . . .∪X(q) with each of the parts
indexed by Zq−1N . Therefore, H has qN q−1 vertices.
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The edge set also consists of q disjoint parts E = E(1) ∪ . . . ∪ E(q) such that

E(j) ⊆ X(1) × . . .×X(j−1) ×X(j+1) × . . .×X(q) .

Therefore, every simplex in H must contain one vertex from each X(j) and one edge from
each E(j).

Recall that a vertex x(j) ∈ X(j) is of the form x(j) =
(
x
(j)
1 , . . . , x

(j)
q−1

)
∈ Zq−1N . To define

the edges of H it will be useful to let x(j)0 := −
∑q−1

a=1 x
(j)
a . With that in mind, we say that(

x(1), . . . , x(j−1), x(j+1), . . . , x(q)
)
∈ E(j) ⇐⇒

(
w

(j)
1 , . . . , w

(j)
q−1

)
∈ R(j) ,

where

w(j)
a :=

q−1∑
t=1

a∑
b=a−t+1

x
(j−t)
b .(21)

In the expression above the indices b and j − t are understood to “wrap around” modulo
q. To clarify by example (which might be useful to keep in mind throughout the proof),
for q = 4, j = 2 and a = 1 we get

w
(2)
1 = x

(1)
1 + x

(4)
0 + x

(4)
1 + x

(3)
3 + x

(3)
0 + x

(3)
1 .

We use the tuple arrangement
(
w

(j)
1 , . . . , w

(j)
q−1

)
∈ R(j) defined in (21) as a label of the

edge
(
x(1), . . . , x(j−1), x(j+1), . . . , x(q)

)
∈ E(j).

We now proceed to checking that simplices in H and feasible arrangements in R(1) ×
. . . × R(q) correspond to each other. To that end we start with some preparation. First,
observing that by definition

∑q−1
a=0 x

(j)
a = 0, we can rewrite (21) as

w(j)
a =

q−1∑
t=0

a∑
b=a−t+1

x
(j−t)
b , a = 1, . . . , q − 1, j = 1, . . . , q .(22)

Let w(j)
0 := −

∑q−1
a=1w

(j)
a and check that (22) naturally extends to

w
(j)
0 =

q−1∑
t=0

0∑
b=−t+1

x
(j−t)
b .

We now make two claims going from simplices to feasible arrangements and vice versa.

Claim 23. If some q vertices x(1), . . . , x(q) of the hypergraph H form a simplex, then the
corresponding arrangement formed by edge labels

(
w(1), . . . , w(q)

)
∈ R(1) × . . . × R(q) is

feasible.
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Proof. The feasibility requirement from (14) and (15) can be rewritten using w(j)
0 as

∀j = 1, . . . , q − 2 : ∀a = 1, . . . , q − 1 : w(j+2)
a = −w(j)

a−1 + w
(j+1)
a−1 + w(j+1)

a .(23)

To verify (23) we compute (taking special care for t ∈ {0, q− 1} and still keeping in mind∑q−1
a=0 x

(j)
a = 0)

−w(j)
a−1 + w

(j+1)
a−1 + w(j+1)

a =

q−1∑
t=0

(
−

a−1∑
b=a−t

x
(j−t)
b +

a−1∑
b=a−t−1

x
(j−t)
b +

a∑
b=a−t

x
(j−t)
b

)
(24)

=

q−1∑
t=0

a∑
b=a−t−1

x
(j−t)
b =

q−1∑
t=0

a∑
b=a−t+1

x
(j+2−t)
b = w(j+2)

a .

Claim 24. For every feasible arrangement w(1), . . . , w(q) ∈ R(1) × · · · × R(q) there exist
exactly N (q−1)(q−2) simplices in H labeled with w(1), . . . , w(q). Furthermore, these simplices
are edge disjoint.

Proof. We will show that every x(2), . . . , x(q−1) ∈ Z(q−1)(q−2)
N can be extended to a simplex

x(1), . . . , x(q) labeled with the feasible arrangement w(1), . . . , w(q) ∈ R(1)× . . .×R(q). First,
by inspection we see that for fixed x(2), . . . , x(q−1), w(1), . . . , w(q) the value of x(1) can be
determined from the formula for w(2) given by (21). Similarly, the value of x(2) can be
determined from (21) for w(1).

We still need to check that the vertices x(1), . . . , x(q) obtained in this way satisfy (21)
for j = 3, . . . , q. But this follows by induction, using (23) (recall that arrangement
w(1), . . . , w(q) is feasible) and a rearrangement of the computation in (24).

To argue that the simplices are edge disjoint, we first observe that two different sim-
plices x(1), . . . , x(q) and y(1), . . . , y(q) with the same label w(1), . . . , w(q) have to differ on at
least two vertices. This is because for two simplices x(1), . . . , x(j−1), x, x(j+1), . . . , x(q) and
x(1), . . . , x(j−1), y, x(j+1), . . . , x(q) with xa 6= ya, the formula (21) implies that

w(j+1)
a

(
x(1), . . . , x, . . . , x(q)

)
6= w(j+1)

a

(
x(1), . . . , y, . . . , x(q)

)
.

Therefore, any two (q− 1)-hyperedges of simplices x(1), . . . , x(q) and y(1), . . . , y(q) with the
same label must differ on at least one vertex.

With the two claims the proof is almost finished: For µ > 0 we let µ′ := µ/qq+1 and
take δ := δ(q − 1, µ′) from the hypergraph removal lemma. Let R(1), . . . , R(q) ⊆ Zq−1N be
such that the product W (1)× . . .×W (q) contains at most δN2(q−1) feasible arrangements.
By Claims 23 and 24, the hypergraph H contains at most δN q(q−1) = δ

qq
· |X|q 6 δ|X|q

simplices. By the hypergraph removal lemma, it is possible to remove at most µ′|X|q−1 =
µ′qq−1N (q−1)2 edges from H to make it simplex-free. Let Ẽ be the set of removed edges.

We define

Z(j) :=
{
w(j) ∈ R(j) : at least N (q−1)(q−2)/q edges in Ẽ are labeled with w(j)

}
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and let V (j) := R(j) \ Z(j). Observe that
∣∣Z(j)

∣∣ 6 µ′qqN q−1 = µ/q · N q−1, and therefore
indeed the set of removed arrangements has total density at most µ.

We argue that the product V (1) × · · · × V (q) does not contain a feasible arrangement.
Indeed, let w(1), . . . , w(q) be a feasible arrangement in R(1) × · · · × R(q). By Claim 24,
the hypergraph H contains N (q−1)(q−2) edge disjoint simplices labeled with w(1), . . . , w(q).
Since those simplices disappear from H after removing Ẽ, each of them must intersect
Ẽ on at least one edge. By averaging, there must exist j such that Ẽ contains at least
N (q−1)(q−2)/q edges labeled with w(j). But that implies that w(j) was removed from R(j)

and the arrangement w(1), . . . , w(q) does not occur in V (1) × · · · × V (q).
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