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Self-Organized Flocking with Agent Failure:
Off-Line Optimization and Demonstration with

Real Robots
Adam T. Hayes, Parsa Dormiani-Tabatabaei

Abstract— This paper presents an investigation of flock-
ing, the formation and maintenance of coherent group move-
ment, by teams of autonomous mobile robots using princi-
ples of Swarm Intelligence. First, we present a simple flock-
ing task, and we describe a leaderless distributed flocking
algorithm (LD) that is more conducive to implementation
on embodied agents than the established algorithms used
in computer animation. Next, we use an embodied simula-
tor and reinforcement learning techniques to optimize LD
performance under different conditions, showing that this
method can be used not only to improve performance but
also to gain insight into which algorithm components con-
tribute most to system behavior. Finally, we demonstrate
that a group of real robots executing LD with emulated sen-
sors can successfully flock (even in the presence of individ-
ual agent failure) and that systematic characterization (and
therefore optimization) of real robot flocking parameters is
achievable.

Keywords— Collective Autonomous Robotics, Flock-
ing, Off-line Optimization, Swarm Intelligence, Self-
Organization

I. Introduction

FLOCKING, the formation and maintenance of coher-
ent group movement, has long been studied in natu-

ral systems, and more recently efforts have been made to
reproduce this type of behavior in artificial systems. The
first such work appeared in the context of computer anima-
tion [1], and since then this behavior has been extensively
studied in simulation (e.g. [2]), and less so on real robots
[3], [4]. Theoretical treatments of the stability of flock-
ing behavior have also been presented [5], [6]. The study
of flocking is distinct from that of formation control (e.g.
[7], [8]), because the goal of flocking is simply to achieve
and maintain coherent group movement rather than to gov-
ern specific inter-agent position relationships. Flocking is
better suited for implementation on large groups of agents
(hundreds to thousands) where the overhead of extensive
inter-agent communication and unique agent identification
renders formation control inefficient. Also, like formation
control, flocking is not an end in itself, but rather can be
used as a component of a larger multi-agent system, per-
haps simplifying the transport of large numbers of agents
or organizing the nodes of a distributed sensing system.

This paper presents an investigation of flocking by
groups of autonomous mobile robots using principles of
Swarm Intelligence (SI), a computational and behavioral
metaphor for solving distributed problems that takes its
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inspiration from biological examples provided by social in-
sects. In most biological cases studied so far, robust and
capable group behavior has been found to be mediated by
nothing more than a small set of simple interactions among
individuals and between individuals and the environment
[9]. The application of SI principles to autonomous collec-
tive robotics aims to develop robust task solving by mini-
mizing the complexity of the individual units and empha-
sizing parallelism, exploitation of direct or indirect inter-
actions, and distributedness. There are three main advan-
tages of this approach: first, scalability from a few to thou-
sands of units, second, flexibility, as units can be dynam-
ically added or removed without explicit reorganization,
and third, increased system robustness, not only through
unit redundancy but also through the design of minimalist
units. Several examples of collective robotics tasks solved
with SI principles can be found in the literature: aggrega-
tion [10], segregation [11], foraging [12], and odor localiza-
tion [13].

Solving a task using the SI approach reduces to determin-
ing a set of local rules which, when carried out in parallel
by a group of agents, has the desired global effect. These
rules can involve the control of behavior (software medi-
ated) and/or direct physical interactions (hardware medi-
ated). Each rule can have a set of associated parameters,
and once the rules have been chosen, maximizing team per-
formance involves solving a global optimization problem.
Because SI systems depend heavily on sensitive agent-to-
agent and agent-to-environment interactions, performance
is often stochastic, and evaluative, rather than gradient
based, search methods are appropriate. This type of con-
trol optimization has been extensively studied for the case
of a single agent [14], [15], [16], as well as for multiple agents
[17], [18], [19].

II. The Flocking Task

A. Task Definition

The flocking task examined in this paper is similar in
form to the cooperative movement task studied in [20].
The agents begin each trial at random positions and orien-
tations within an area A located in the corner of a square
arena of length L. During the trial the agents move diago-
nally across the arena through an obstacle field to an area B
in the opposite corner. There is some uniform probability
of failure per time period θ that an agent will ’fail’ during
traversal, meaning that it stops moving but other agents
can still see it. To reduce the number of trials that can
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never complete the task, the number of failures is capped
at no more than half of the total number of agents, and
the trial is declared finished when half of the agents have
entered area B.

For the purposes of this work we define the system perfor-
mance to be a combination of the time required to complete
the task T , the average distance traveled by each of the
successful agents D, and the average inter-agent distance
of operational agents I . These factors can be combined to
form a cost metric C:

C = αT + βD + γI (1)

α is taken to be the cost per unit time of not complet-
ing the task, β is the cost per unit distance of running
each agent, and γ the cost incurred per unit distance of
inter-agent separation (e.g. if the agents provide mutual
protection when grouped together, looser groups would be
associated with lower protection and higher costs due to
agent loss). C represents the total cost incurred before the
task is completed. By choosing specific values for α, β,
and γ the appropriate relationship between time required,
energy used, and inter-agent spacing can be generated for
evaluating any particular application.

B. The LD Flocking Algorithm

[1] identifies three behavior types that lead to simulated
flocking: separation, alignment, and cohesion. However,
much of the robotic work on flocking ([3], [4]) relies solely
on balanced combinations of separation and cohesion (i.e.,
flock centering) to produce flocking behavior. It is likely
that the inclusion of an alignment term into robotic flock-
ing algorithms will improve performance (particularly by
speeding up flock formation times), but there is a cost to
making heading information explicitly available within a
system. LD is essentially an extension of the flock centering
algorithm presented in [2], incorporating an explicit colli-
sion avoidance mechanism (as they suggest) as well as an
implicit velocity matching behavior (i.e., an alignment term
– via the comparison of sequential flock centering data).
Thus LD should exhibit better flocking performance than
previous robotic algorithms (though comparative data is
unavailable) while not significantly complicating implemen-
tation on real robots. Because LD does not explicitly use
the alignment of other group members, individual agents
need not be able to sense their neighbors’ orientation, and
range- and-bearing information suffices.

Specifically, LD is defined as follows. There are two basic
behaviors, collision avoidance and velocity matching flock
centering. Collision avoidance is activated whenever an
agent’s collision sensors detect the presence of an obstacle
(which may be either an environmental obstacle or another
team member), and it mediates a turn away from the obsta-
cle. Flock centering is active whenever collision avoidance
is not, and it involves the generation of a target vector and
a target difference vector as well as a mapping from those
vectors to wheel speed commands.

After every sensory input cycle, each agent can utilize
information from up to N closest neighbors residing in a
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Fig. 1. Each robot in the flock can sense the range and bearing of up
to N neighbors within a sensory area defined by a maximum range
M . In this example N = 3.

region surrounding the agent defined by a maximum range
M , as shown in Figure 1. Range (‖ni‖) and bearing (−π ≤
n̂i ≤ π) information from this set of m neighbors (i =
1...m, 0 ≤ m ≤ N), along with the desired cushion distance
C between each agent and its neighbors, can be used to
generate an instantaneous center of mass vector CoM for
each agent.

CoM =

m
∑

i=1

(

‖ni‖ − C

N
, n̂i

)

+ (P, b̂) (2)

CoM is normalized by the maximum number of neigh-
bors to reduce the vector sizes seen at large values of N . P

is a tunable system parameter that represents the strength
of the attraction to the goal area, and b̂ is the (agent cen-
tered) heading of the goal area (e.g. supplied by a GPS type
signal). Because the flocking task being studied not only
favors coherent movement with flock neighbors but also di-
rected movement toward the goal, this vector is added to
CoM to encourage movement in the proper direction.

To generate ∆CoM , the value of CoM generated in the
previous sensory cycle (CoMprev) is transformed into the
current agent coordinates (CoM ′) and combined with the
current CoM :

CoM ′ =

[(

CoMprev −
∆h

2

)

− e

]

−
∆h

2
(3)

∆CoM = CoM − CoM ′ (4)

∆h is the agent’s change in heading between sensory cy-
cles, and e is the agent’s change in position. The relation-
ships between the algorithm components are summarized
in Figure 2.

The agent has access to its desired position with respect
to its neighbors CoM as well as how that location is moving
with respect to the agent ∆CoM . These values are used
to generate the motor commands:

U =
M + K2 ‖CoM‖ cos( ˆCoM)

M
(5)

LSpeed = (V −K0( ˆCoM ′ + K1
ˆCoM)) ∗ U (6)

RSpeed = (V + K0( ˆCoM ′ + K1
ˆCoM)) ∗ U (7)
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Fig. 2. A summary of the generation of CoM+.

The motor speeds are biased at a desired travel speed
V . They are changed differentially to rotate toward the
heading specified by a weighted sum of the direction of
the desired location and the direction of movement of the
desired location. K0 is a weighting parameter that deter-
mines how fast an agent can approach this target heading.
K1 weights the influence of the desired location direction
versus the desired location movement direction. A small
K1 will induce agents to align with their neighbors (thus

minimizing ˆCoM ′) rather than to move toward their de-
sired locations, although once alignment is achieved the
agents will gradually steer toward CoM . The agents also
uniformly speed up or slow down to approach CoM using
‖CoM‖ and another gain parameter K2. Note that it is not
necessary to calculate the optimal movement necessary to
reach the goal position in order to have a functional sys-
tem. As long as the commanded wheel speeds bring each
agent closer to its desired position during each sensory cy-
cle (and CoM cannot move faster than the agent itself), in
steady state all agents will approach their goal positions.
Formal stability conditions and proofs are not examined in
this paper, although stable flocking systems were observed
over a broad range of algorithm parameters. There are 8
tunable algorithm parameters, as shown in Table I.

TABLE I

Leaderless Distributed Flocking Algorithm Parameters

V Desired forward speed
N Maximum number of neighbors
C Desired distance between agents
M Maximum sensor range

K0− 2 Motor speed gain parameters
P Target attraction

III. Materials and Methods

A. Embodied Simulation

To maintain a close correspondence with the structure
and function of the real robots, we used Webots [21], a
3D sensor-based, kinematic simulator, originally developed
for Khepera robots [22], to systematically investigate the
performance of LD in simulation. This embodied simulator

has previously been shown to generate data that closely
matches real Khepera [23], [10], and Moorebot [13] (see
Section III C) experiments, so we were confident that real
robot behavior was accurately captured.

The physical arena was captured in Webots to allow com-
parison with data generated by the real robots, and two
different obstacle fields were studied. The simpler of the
two (Obs1) contained only cylindrical obstacles that were
twice as large as each agent, while the more complex (Obs2)
also contained a three-sided barrier that obstructed the di-
rect path between the start (A) and goal (B) areas. These
environments are shown in Figure 3a and b.

B

A

B

A

(a) (b)

Fig. 3. (a) Obs1 and (b) Obs2, seen from above. The start and goal
areas are indicated. The large disks are the obstacles, and the smaller
disks (shown here within the start area) are the agents.

B. Off-Line Machine Learning Optimization

When a multi-agent system returns highly stochastic
performance values and possesses complex interactions
among its different sub-tasks, the use of homogeneous con-
trollers with a global reward signal provides a way of ad-
dressing the credit assignment problem for off-line control
optimization. By making the learning agent operate in the
space of algorithm parameters and providing only measures
of group performance (rather than feedback from individ-
ual actions), there effectively becomes one agent and one
reward signal and the credit assignment problem no longer
applies [24]. This may be an extreme simplification of the
problem of learning in distributed multi-agent systems, but
it allows the optimization of team performance when eval-
uation is expensive, as is often the case with real-world
environments that include a strong stochastic component.

The optimization procedure for this flocking task in-
volves the off-line tuning of 8 parameters. Since a full 8-
dimensional optimization is not computationally feasible,
we instead perform 8 sequential 1-dimensional optimiza-
tions (termed an optimization cycle), with each parameter
optimized while the others remain fixed. While this restric-
tion may make finding the optimal parameter set difficult
in some search domains, it does not do so in the particular
case being studied (see Section IV), and it allows perfor-
mance improvements to be achieved in a reasonable amount
of time. In this initial study the selection of design points
(i.e., specific parameter values over which to optimize) is
done a priori, although there are techniques for selecting
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them adaptively [16], [25] which may be utilized in further
studies. Each parameter space is bounded and linearly
discretized to include a range of important values, as de-
termined by preliminary experiments. At the beginning
of each optimization run the variable values are randomly
initialized.

For a given parameter, once the design points xi ( i =
1...Rp, where Rp is the total number of points for parameter
p), are selected, the optimization is performed as follows:

1) Initialize the set of active points B to include all xi.
2) At each iteration j, simulate a trial at each xi in B,

storing the result −C = y
j
i in Yi. C is defined in equation

1. The negative of the cost function is used so that the
maximum value is the optimum.

3) If j > ε, first, using Tukey’s HSD procedure [26],
determine the critical difference D (to significance γ which
must be equalled or exceeded by the difference of two means
for that difference to be declared significant. Next, let

Pmax = max
i

E(Yi) = E(Ym) (8)

For each xi ∈ B, if

(1− η)Pmax −E(Yi) > D (9)

where i 6= m, remove xi from A. E(x) represents the ex-
pected value of x.

4) If more than one xi remains in B, go to Step 2.
At the end of the process, the remaining point xMax

represents the best guess at the optimum value for the pa-
rameter currently being optimized given the other fixed
parameter values. After each cycle through all parame-
ters, the resulting parameter set sampled (via 30 trials)
and then used as the input set for the next cycle. This
algorithm is defined by the initial design choice method
and three parameters: η, γ, and ε. η defines the margin
around xMax in which it is defined to be not cost effective
to further optimize (e.g., if η = .1 and all remaining design
points are determined to be less than 10% greater than the
maximum, the optimization stops). γ defines the desired
level of certainty of achievement of the margin defined by
η. ε sets the minimum number of trials necessary so that
Tukey’s HSD procedure is accurate. Tukey’s HSD proce-
dure was chosen for this multiple comparison task because
it has been shown to be relatively robust to violations in
assumptions about the data (namely normality of data and
equal variances among samples).

The cycle stopping condition for an optimization run ide-
ally would be reached when the input and output of a cycle
are the same parameter set. However, due to the stochas-
tic nature of the optimization process and the size of the
parameter space this event is unlikely. Therefore, in this
work we set the number of cycles per run to 10.

C. Real Robots

We use a group of 10 Moorebots , as shown in Figure 4.
The flocking arena is 6.7 by 6.7 m, and the robots are 24 cm
in diameter. The layout of the arena is the same as shown
in Figure 3, in this case a single obstacle was placed in the

center of the arena. In addition to the standard configu-
ration, as described in [27], each robot is equipped with
four Sharp GP2-D02 infra-red range sensors for collision
avoidance.

Fig. 4. 10 Moorebots flocking.

An overhead camera tracking system, combined with a
radio LAN among the robots and an external workstation,
is used to log position data during the trials, reposition the
robots between trials, and emulate the range and bearing
sensor signals.

IV. Results and Discussion

A. Optimization with the Embodied Simulator

We optimized under four different conditions consisting
of 10 runs each: Obs1 and Obs2, each with F and without
failures NF. Optimization parameter values were as follows:
η = .05, γ = .05, and ε = 10.
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Fig. 5. Per-cycle flocking performance for each experimental condi-
tion.

Figure 5 shows the flocking performance at each cycle for
each of the four conditions. Cycle 0 data represents the per-
formance of the initial parameter sets. Obs1NF converges to
the highest performance value, with Obs1F slightly worse,
followed by Obs2NF and then Obs2F. This shows that Obs2
is a more difficult environment than Obs1, and the pres-
ence of agent failures can hurt performance. Under all four
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conditions the means and standard deviations stabilize af-
ter 4 optimization cycles, showing that optimization does
improve performance and is complete after a small num-
ber of cycles. The fact that all conditions have a small
standard deviation across runs once optimized (after cycle
4) suggests that even though the optimization algorithm
searches only one dimension at a time, it is performing an
effective search of the fitness landscape and is not suscep-
tible to being trapped in local minima. The standard devi-
ations for the F and Obs2 conditions are larger because in
these environments occasional runs fail to complete within
the timeout period, and thus the performance metrics (for
individual parameter sets) have higher variances.
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Fig. 6. The optimal result frequency curves for N , the maximum
number of neighbors observed while flocking.

The optimization procedure can do more than improve
system performance, because by looking at the optimized
parameter values one can gain insight into the operation of
the algorithm itself. We analyzed the optimized parame-
ters first by combining cycle results 4-10 from each run, and
then averaging the selected parameter distributions across
the 10 runs for each condition (this results in an optimiza-
tion result frequency curve). Figure 6 shows that there are
optimal values of N for each environment and that they
are different, with Obs2 preferring smaller neighborhoods.
This result makes intuitive sense because when an agent is
listening to fewer neighbors, it is less likely to be impeded
by a neighbor that is caught behind a barrier (which is
more common in Obs2), while larger neighborhoods allow
for tighter flocks and thus a higher performance level. Us-
ing pointwise one-way ANOVA comparisons (p < .01) and
a threshold of > 1 significant difference, we determined that
the optimization result frequency curves for the Obs1 condi-
tions differ from those of Obs2, while they remain the same
within each simulated environment. In fact, for the Obs1

conditions the result frequency curves did not differ for any
parameter, indicating that the best solution in that envi-
ronment remained the best even in the presence of agent
failure. This makes sense because a failed agent simply
becomes another circular obstacle, although it might have
been expected that the presence of failed agents would re-
duce the size of the agent neighborhood (so failed agents
do not impede the progress of those still active).
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Fig. 7. The optimal result frequency curves for P , the attractive
power of the goal area.

In the Obs2 environment, the optimal parameter values
are influenced by the presence of agent failure, as shown
in Figure 7. In the absence of agent failure, a low value of
P is optimal, so that the agents are able to move around
the barrier as a group. When agents can fail, however, the
task becomes so difficult (because failed agents can trap
others within the barrier) that the best solution is to move
as individuals toward the goal whenever the opportunity
presents itself. Note that for the Obs1 conditions, there
is a broad region of the parameter space over which the
performance landscape is effectively flat. these types of
findings suggest that in some cases the parameter space
being searched and the amount of discretization may be
reduced, resulting in faster optimization runs without a
loss of performance.

B. Real Robots

Because local range and bearing hardware has not yet
been completed, the Moorebots must rely on emulated sen-
sory information from the overhead camera system to per-
form LD. The processing burden thus placed on the cam-
era system limits the maximum speed of the robots, as
the camera system must be able to track the robots from
frame to frame by position only. This restriction, along
with the fact that control is not truly distributed, renders
extensive experimental effort unwarranted. However, to
demonstrate that we have the capability to quantitatively
characterize real robot flocking performance (and thus in
principle can reproduce the simulated optimization exper-
iments presented above in the real world), we chose a set
of reasonable parameter values and looked at the influence
of varying N on the flocking performance of a group of 10
real robots.

For each value of N, 10 trials were run (T = 210 [sec])
under both the F and NF conditions, and the resulting per-
formance values are shown in Figure 8. LD at N = 0
represents a baseline traversal behavior (because there is
no interaction between agents), and for this case the nor-
malization by N was omitted. The data demonstrates that
LD does enable this group of robots to flock, as flocking
performance is greater at N = 4 than N = 0 (significant



6

0 2 4
0.5

0.55

0.6

0.65

0.7

0.75

N

1/
C

 w
/s

td
er

r

NF
F

Fig. 8. Flocking performance of a group of 10 real robots vs. N , the
maximum number of visible neighbors.

via ANOVA to p < .01), while agent failure does not sig-
nificantly influence performance (via ANOVA to p < .01 –
although it is likely that a difference would be significant at
larger sample sizes). Because the specifics of these results
are likely to be highly dependent on the particular param-
eter values chosen (most of which are arbitrary rather than
optimized), detailed comparison with the simulation results
is not meaningful.

V. Conclusion

In this paper we presented a simple flocking task, and we
described a leaderless distributed flocking algorithm (LD)
that is more conducive to implementation on embodied
agents than the established algorithms used in computer
animation. The key point of this algorithm is that it uses
the time derivative of the perceived center of the flock to
align the robots without explicit knowledge of robot head-
ing. We also used an embodied simulator and reinforce-
ment learning techniques to optimize LD performance in
different environments, showing that this method can be
used not only to improve performance but also to gain in-
sight into which algorithm components contribute most to
system behavior. An issue for further study is the automa-
tion of the selection, or perhaps improvement of, the pa-
rameter ranges and discretization levels that are searched.
Also, using optimization data it may eventually be possi-
ble to construct models that directly relate environmental
characteristics to parameter values. Finally, we demon-
strated that a group of real robots executing LD with em-
ulated sensors can successfully flock and that systematic
characterization of real robot flocking parameters is achiev-
able. Members of the lab are currently working on the
hardware necessary to implement LD fully locally, and this
will enable full verification of the optimization experiments
to be performed on the real robots.
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