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Abstract

Gossip protocols (also called rumor spreading or epidemic protocols) are widely used to disseminate
information in massive peer-to-peer networks. These protocols are often claimed to guarantee privacy
because of the uncertainty they introduce on the node that started the dissemination. But is that
claim really true? Can the source of a gossip safely hide in the crowd? This paper examines, for the
first time, gossip protocols through a rigorous mathematical framework based on differential privacy
to determine the extent to which the source of a gossip can be traceable. Considering the case of a
complete graph in which a subset of the nodes are curious, we study a family of gossip protocols
parameterized by a “muting” parameter s: nodes stop emitting after each communication with a
fixed probability 1− s. We first prove that the standard push protocol, corresponding to the case
s = 1, does not satisfy differential privacy for large graphs. In contrast, the protocol with s = 0
(nodes forward only once) achieves optimal privacy guarantees but at the cost of a drastic increase
in the spreading time compared to standard push, revealing an interesting tension between privacy
and spreading time. Yet, surprisingly, we show that some choices of the muting parameter s lead to
protocols that achieve an optimal order of magnitude in both privacy and speed. Privacy guarantees
are obtained by showing that only a small fraction of the possible observations by curious nodes
have different probabilities when two different nodes start the gossip, since the source node rapidly
stops emitting when s is small. The speed is established by analyzing the mean dynamics of the
protocol, and leveraging concentration inequalities to bound the deviations from this mean behavior.
We also confirm empirically that, with appropriate choices of s, we indeed obtain protocols that are
very robust against concrete source location attacks (such as maximum a posteriori estimates) while
spreading the information almost as fast as the standard (and non-private) push protocol.
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8:2 Quantifying the Natural Differential Privacy Guarantees of Gossip Protocols

1 Introduction

Gossip protocols (also called rumor spreading or epidemic protocols), in which participants
randomly choose a neighbor to communicate with, are both simple and efficient means to
exchange information in P2P networks [23, 39, 33, 8]. They are a basic building block to
propagate and aggregate information in distributed databases [13, 9] and social networks
[14, 27], to model the spread of infectious diseases [29], as well as to train machine learning
models on distributed datasets [15, 12, 43, 35].

Some of the information gossiped may be sensitive, and participants sharing it may not
want to be identified. This can for instance be the case of whistle-blowers or individuals that
would like to exercise their right to freedom of expression in totalitarian regimes. Conversely,
it may sometimes be important to locate the source of a (computer or biological) virus, or
fake news, in order to prevent it from spreading before too many participants get “infected”.

There is a folklore belief that gossip protocols inherently guarantee some form of source
anonymity because participants cannot know who issued the information in the first place
[26]. Similarly, identifying “patient zero” for real-world epidemics is known to be a very hard
task. Intuitively indeed, random and local exchanges make identification harder. But to what
extent? Although some work has been devoted to the design of source location strategies
in specific settings [31, 38, 41], the general anonymity claim has never been studied from
a pure privacy perspective, that is, independently of the very choice of a source location
technique. Depending on the use-case, it may be desirable to have strong privacy guarantees
(e.g., in anonymous information dissemination) or, on the contrary, we may hope for weak
guarantees, e.g., when trying to identify the source of an epidemic. In both cases, it is crucial
to precisely quantify the anonymity level of gossip protocols and study its theoretical limits
through a principled approach. This is the challenge we take up in this paper for the classic
case of gossip dissemination in a complete network graph.

Our first contribution is an information-theoretic model of anonymity in gossip protocols
based on (ε, δ)-differential privacy (DP) [16, 17]. Originally introduced in the database
community, DP is a precise mathematical framework recognized as the gold standard for
studying the privacy guarantees of information release protocols. In our proposed model,
the information to protect is the source of the gossip, and an adversary tries to locate the
source by monitoring the communications (and their relative order) received by a subset of f
curious nodes. In a computer network, these curious nodes may have been compromised by a
surveillance agency; in our biological example, they could correspond to health professionals
who are able to identify whether a given person is infected. Our notion of DP then requires
that the probability of any possible observation of the curious nodes is almost the same no
matter who is the source, thereby limiting the predictive power of the adversary regardless of
its actual source location strategy. A distinctive aspect of our model is that the mechanism
that seeks to ensure DP comes only from the natural randomness and partial observability of
gossip protocols, not from additional perturbation or noise which affects the desired output as
generally needed to guarantee DP [18]. We believe our adaptation of DP to the gossip context
to be of independent interest. We also complement it with a notion of prediction uncertainty
which guarantees that even unlikely events do not fully reveal the identity of the source
under a uniform prior on the source. This property directly upper bounds the probability of
success of any source location attack, including the maximum likelihood estimate.

We use our proposed model to study the privacy guarantees of a generic family of gossip
protocols parameterized by a muting parameter s: nodes have a fixed probability 1 − s
to stop emitting after each communication (until they receive the rumor again). In our
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Table 1 Summary of results to illustrate the tension between privacy and speed. n is the total
number of nodes and f/n is the fraction of curious nodes in the graph. δ ∈ [0, 1] quantifies differential
privacy guarantees (smaller is better). Spreading time is asymptotic in n.

Muting param. δ ensuring (0, δ)-DP Spreading time
Standard push

(minimal privacy, maximal speed) s = 1 1 O(logn)

Muting after infecting
(maximal privacy, minimal speed) s = 0 f

n
O (n logn)

Generic parameterized gossip
(privacy vs. speed trade-off) 0 < s < 1 s+ (1− s) f

n
O (log(n)/s)

biological parallel, this corresponds to the fact that a person stops infecting other people
after some time. The muting parameter captures the ability of the protocol to forget initial
conditions, thereby helping to conceal the identity of the source. In the extreme case where
s = 1, we recover the standard “push” gossip protocol [39], and show that it is inherently
not differentially private for large graphs. In contrast, we also show that, at the other end of
the spectrum, choosing s = 0 leads to optimal privacy guarantees among all gossip protocols.

More generally, we determine matching upper and lower bounds on the privacy guarantees
of gossip protocols. Essentially, our upper bounds on privacy are obtained by tightly lower
bounding the probability that the source node contacts a curious node before another node
does, and upper bounding the probability that this happens for a random node fixed in
advance, in a way that holds for all gossip algorithms. Remarkably, despite the fact that the
source node always has a non-negligible probability of telling the rumor to a curious node
first, our results highlight the fact that setting s = 0 leads to strong privacy guarantees in
several regimes, including the pure (ε, 0)-DP as well as prediction uncertainty.

It turns out that, although achieving optimal privacy guarantees, choosing s = 0 leads
to a very slow spreading time (log-linear in the number of nodes n). This highlights an
interesting tension between privacy and spreading time: the two extreme values for the
muting parameter s recover the two extreme points of this trade-off. We then show that more
balanced trade-offs can be achieved: appropriate choices of the muting parameter lead to
gossip protocols that are near-optimally private with a spreading time that is logarithmic in
the size of the graph. In particular, the trade-off between privacy and speed shows up in the
constants but, surprisingly, some choices of the parameter lead to protocols that achieve an
optimal order of magnitude for both aspects. Our results on this trade-off are summarized in
Table 1: for a proportion f/n of curious nodes, one can see that setting the muting parameter
s = f/n achieves almost optimal privacy (up to a factor 2) while being substantially faster
than s = 0 (optimal up to a factor f/n). Similarly, if one wants to achieve (0, δ0)-differential
privacy with δ0 > 2f/n, then it is possible to set s = δ0/2 and obtain a protocol that respects
the privacy constraint with spreading time O(log(n)/δ0). From a technical perspective,
these privacy results are obtained by showing that only a small fraction of the possible
observations by curious nodes have different probabilities when two different nodes start
with the gossip. This requires to precisely evaluate the probability of well-chosen worst-case
sequences, which is generally hard as randomness is involved both when nodes decide to stop
spreading the rumor (with probability 1− s) and when they choose who to communicate
with. Our parameterized gossip protocol can be seen as a population protocol [4], and we
prove its speed by analyzing its mean dynamics and leveraging concentration inequalities to
bound the deviations from the mean dynamics.

DISC 2020



8:4 Quantifying the Natural Differential Privacy Guarantees of Gossip Protocols

We support our theoretical findings by an empirical study of our parameterized gossip
protocols. The results show that appropriate choices of s lead to protocols that are very
robust against classical source location attacks (such as maximum a posteriori estimates)
while spreading the information almost as fast as the standard (and non-private) push
protocol. Crucially, we observe that our differential privacy guarantees are very well aligned
with the ability to withstand attacks that leverage background information, e.g., targeting
known activists or people who have been to certain places.

The rest of the paper is organized as follows. We first discuss related work and formally
introduce our concept of differential privacy for gossip. Then, we study two extreme cases
of our parameterized gossip protocol: the standard push protocol, which we show is not
private, and a privacy-optimal but slow protocol. This leads us to investigate how to better
control the trade-off between speed and privacy. Finally, we present our empirical study and
conclude by discussing open questions.

For pedagogical reasons, we keep our model relatively simple to avoid unnecessary
technicalities in the derivation and presentation of our results. For completeness, we discuss
the impact of possible extensions (e.g., information observed by the adversary, malicious
behavior, termination criterion) in the full version of this paper [6]. Due to space limitations,
some detailed proofs are also deferred to the full version.

2 Background and Related Work

2.1 Gossiping
The idea of disseminating information in a distributed system by having each node push
messages to a randomly chosen neighbor, initially coined the random phone-call model, dates
back to even before the democratization of the Internet [39]. Such protocols, later called
gossip, epidemic or rumor spreading, were for instance applied to ensure the consistency of a
replicated database system [13]. They have gained even more importance when argued to
model spreading of infectious diseases [29] and information dissemination in social networks
[14, 27]. Gossip protocols can also be used to compute aggregate queries on a database
distributed across the nodes of a network [34, 9], and have recently become popular in
federated machine learning [32] to optimize cost functions over data distributed across a large
set of peers [15, 12, 43, 35]. Gossip protocols differ according to their interaction schemes,
i.e., pull or push, sometimes combining both [33, 36, 2].

In this work, we focus on the classical push form in the standard case of a complete graph
with n nodes (labeled from 0 to n − 1). We now define its key communication primitive.
Denoting by I the set of informed nodes, tell_gossip(i, I) allows an informed node i ∈ I
to tell the information to another node j ∈ {0, ..., n − 1} chosen uniformly at random.
tell_gossip(i, I) returns j (the node that received the message) and the updated I (the new
set of informed nodes that includes j). Equipped with this primitive, we can now formally
define the class of gossip protocols that we consider in this paper.

I Definition 1 (Gossip protocols). A gossip protocol on a complete graph is one that (a)
terminates almost surely, (b) ensures that at the end of the execution the set of informed
nodes I is equal to {0, ..., n− 1}, and (c) can modify I only through calls to tell_gossip.

2.2 Locating the Source of the Gossip
Determining the source of a gossip is an active research topic, especially given the potential
applications to epidemics and social networks, see [31] for a recent survey. Existing approaches
have focused so far on building source location attacks that compute or approximate the



A. Bellet, R. Guerraoui, and H. Hendrikx 8:5

maximum likelihood estimate of the source given some observed information. Each approach
typically assumes a specific kind of graphs (e.g., trees, small world, etc.), dissemination
model and observed information. In rumor centrality [41], the gossip communication graph
is assumed to be fully observed and the goal is to determine the center of this graph to
deduce the node that started the gossip. Another line of work studies the setting in which
some nodes are curious sensors that inform a central entity when they receive a message
[38]. Gossiping is assumed to happen at random times and the source node is estimated by
comparing the different timings at which information reaches the sensors. The proposed
attack is natural in trees but does not generalize to highly connected graphs. The work
of [22] focuses on hiding the source instead of locating it. The observed information is a
snapshot of who has the rumor at a given time. A specific dissemination protocol is proposed
to hide the source but the privacy guarantees only hold for tree graphs.

We emphasize that the privacy guarantees (i.e., the probability not to be detected) that
can be derived from the above work only hold under the specific attacks considered therein.
Furthermore, all approaches rely on maximum likelihood and hence assume a uniform prior
on the probability of each node to be the source. The guarantees thus break if the adversary
knows that some of the nodes could not have started the rumor, or if he is aware that the
protocol is run twice from the same source.

We note that other problems at the intersection of gossip protocols and privacy have
been investigated in previous work, such as preventing unintended recipients from learning
the rumor [25], and hiding the initial position of agents in a distributed system [28].

2.3 Differential Privacy
While we borrow ideas from the approaches mentioned above (e.g., we assume that a subset
of nodes are curious sensors as in [38]), we aim at studying the fundamental limits of
any source location attack by measuring the amount of information leaked by a gossip
scheme about the identity of the source. For this purpose, a general and robust notion of
privacy is required. Differential privacy [16, 18] has emerged as a gold standard for it holds
independently of any assumption on the model, the computational power, or the background
knowledge that the adversary may have. Differentially private protocols have been proposed
for numerous problems in the fields of databases, data mining and machine learning: examples
include computing aggregate and linear counting queries [18], releasing and estimating graph
properties [37, 42], clustering [30], empirical risk minimization [10] and deep learning [1].

In this work, we consider the classic version of differential privacy which involves two
parameters ε, δ ≥ 0 that quantify the privacy guarantee [17]. More precisely, given any two
databases D1 and D2 that differ in at most one record, a randomized information release
protocol P is said to guarantee (ε, δ)-differential privacy if for any possible output S:

p(P(D1) ∈ S) ≤ eεp(P(D2) ∈ S) + δ, (1)

where p(E) denotes the probability of event E. Parameter ε places a bound on the ratio of
the probability of any output when changing one record of the database, while parameter δ
is assumed to be small and allows the bound to be violated with small probability. When
ε = 0, δ gives a bound on the total variation distance between the output distributions, while
δ = 0 is sometimes called “pure” ε-differential privacy. DP guarantees hold regardless of the
adversary and its background knowledge about the records in the database. In our context,
the background information could be the knowledge that the source is among a subset of all
nodes. Robustness against such background knowledge is crucial in some applications, for
instance when sharing secret information that few people could possibly know or when the
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8:6 Quantifying the Natural Differential Privacy Guarantees of Gossip Protocols

source of an epidemic is known to be among people who visited a certain place. Another
key feature of differential privacy is composability: if (ε, δ)-differential privacy holds for a
release protocol, then querying this protocol two times about the same dataset satisfies
(2ε, 2δ)-differential privacy. This is important for rumor spreading as it enables to quantify
privacy when the source propagates multiple rumors that the adversary can link to the same
source (e.g., due to the content of the message). We will see in Section 6 that these properties
are essential in practice to achieve robustness to concrete source location attacks.

Existing differentially private protocols typically introduce additional perturbation (also
called noise) to hide critical information [18]. In contrast, an original aspect of our work
is that we will solely rely on the natural randomness and limited observability brought by
gossip protocols to guarantee differential privacy.

3 A Model of Differential Privacy for Gossip Protocols

Our first contribution is a precise mathematical framework for studying the fundamental
privacy guarantees of gossip protocols. We formally define the inputs of the gossip protocols
introduced in Definition 1, the outputs observed by the adversary during their execution,
and the privacy notions we investigate. To ease the exposition, we adopt the terminology of
information dissemination, but we sometimes illustrate the ideas in the context of epidemics.

3.1 Inputs and Outputs
As described in Section 2.3, differential privacy is a probabilistic notion that measures the
privacy guarantees of a protocol based on the variations of its output distribution for a change
in its input. In this paper, we adapt it to our gossip context. We first formalize the inputs
and outputs of gossip protocols, in the case of a single piece of information to disseminate
(multiple pieces can be addressed through composition, see Section 2.3). At the beginning
of the protocol, a single node, the source, has the information (the gossip, or rumor). This
node defines the input of the gossip protocol, and it is the actual “database” that we want to
protect. Therefore, in our context, input databases in Equation (1) have only 1 record, which
contains the identity of the source (an integer between 0 and n− 1). Therefore, all possible
input databases differ in at most one record, and differential privacy aims at protecting the
content of the database, i.e., which node started the rumor.

We now turn to the outputs of a gossip protocol. The execution of a protocol generates an
ordered sequence Somni of pairs (i, j) of calls to tell_gossip where (Somni)t corresponds to
the t-th time the tell_gossip primitive has been called, i is the node on which tell_gossip
was used and j the node that was told the information. If several calls to tell_gossip
happen simultaneously, ties are broken arbitrarily. We assume that the messages are received
in the same order that they are sent. This protocol can thus be seen as an epidemic
population protocol model [4] in which nodes interact using tell_gossip. The sequence
Somni corresponds to the output that would be observed by an omniscient entity who could
eavesdrop on all communications. It is easy to see that, for any execution, the source can be
identified exactly from Somni simply by retrieving (Somni)0.

In this work, we focus on adversaries that monitor a set of curious nodes C of size f , i.e.
they observe all communications involving a curious node. This model, previously introduced
in [38], is particularly meaningful in large distributed networks: while it is unlikely that
an adversary can observe the full state of the network at any given time, compromising or
impersonating a subset of the nodes appears more realistic. The number of curious nodes
is directly linked with the release mechanism of DP: while the final state of the system is
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always the same (everyone knows the rumor), the information released depends on which
messages were received by the curious nodes during the execution. Formally, the output
disclosed to the adversary during the execution of the protocol, i.e., the information he can
use to try to identify the source, is a subsequence of Somni as defined below.

I Assumption 2. The sequence S observed by the adversary through the (random) execution
of the protocol is a (random) subsequence S = ((Somni)t|(Somni)t = (i, j) with j ∈ C), that
contains all messages sent to curious nodes. The adversary has access to the relative order
of tuples in S, which is the same as in Somni, but not to the index t in Somni.

It is important to note that the adversary does not know which messages were exchanged
between non-curious nodes. In particular, he does not know how many messages were sent in
total at a given time. As we focus on complete graphs, knowing which curious node received
the rumor gives no information on the source node. For a given output sequence S, we write
St = i to denote that the t-th tell_gossip call in S originates from node i. Omitting the
dependence on S, we also denote ti(j) the time at which node j first receives the message
(even for the source) and td(j) the time at which j first communicates with a curious node.

The ratio f/n of curious nodes determines the probability of the adversary to gather
information (the more curious nodes, the more information leaks). For a fixed f , the adversary
only becomes weaker as the network grows bigger. Since we would like to study adversaries
with fixed power, unless otherwise noted we make the following assumption.

I Assumption 3. The ratio of curious nodes f/n is constant.

Finally, we emphasize that we do not restrict the computational power of the adversary.

3.2 Privacy Definitions
We now formally introduce our privacy definitions. The first one is a direct application of
differential privacy (Equation 1) for the inputs and outputs specified in the previous section.
To ease notations, we denote by I0 the source of the gossip (the set of informed nodes at time
0), and for any given i ∈ {0, ..., n− 1}, we denote by pi(E) = p(E|I0 = {i}) the probability
of event E if node i is the source of the gossip. The protocol is therefore abstracted in this
notation. Denoting by S the set of all possible outputs, we say that a gossip protocol is
(ε, δ)-differentially private if:

pi(S) ≤ eεpj(S) + δ, ∀S ⊂ S, ∀i, j ∈ {0, ..., n− 1}, (2)

where p(S) is the probability that the output belongs to the set S. This formalizes a notion
of source indistinguishability in the sense that any set of output which is likely enough to
happen if node i starts the gossip (say, pi(S) ≥ δ) is almost as likely (up to a eε multiplicative
factor) to be observed by the adversary regardless of the source. Note however that when
δ > 0, this definition can be satisfied for protocols that release the identity of the source
(this can happen with probability δ). To capture the behavior under unlikely events, we also
consider the complementary notion of c-prediction uncertainty for c > 0, which is satisfied if
for a uniform prior p(I0) on source nodes and any i ∈ {0, ..., n− 1}:

p(I0 6= {i}|S)/p(I0 = {i}|S) ≥ c, (3)

for any S ⊂ S such that pi(S) > 0. Prediction uncertainty guarantees that no observable
output S (however unlikely) can identify a node as the source with large enough probability:
it ensures that the probability of success of any source location attack is upper bounded
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by 1/(1 + c). This holds in particular for the maximum likelihood estimate. Prediction
uncertainty does not have the robustness of differential privacy against background knowledge,
as it assumes a uniform prior on the source. While it can be shown that (ε, 0)-DP with ε > 0
implies prediction uncertainty, the converse is not true. Indeed, prediction uncertainty is
satisfied as soon as no output identifies any node with enough probability, without necessarily
making all pairs of nodes indistinguishable as required by DP. We will see that prediction
uncertainty allows to rule out some naive protocols that have nonzero probability of generating
sequences which reveal the source with certainty.

Thanks to the symmetry of our problem, we consider without loss of generality that node
0 starts the rumor (I0 = {0}) and therefore we will only need to verify Equations (2) and (3)
for i = 0 and j = 1.

4 Extreme Privacy Cases

In this section, we study the fundamental limits of gossip in terms of privacy. To do so, we
parameterize gossip protocols by a muting parameter s ∈ [0, 1], as depicted in Algorithm 1.
We thereby capture, within a generic framework, a large family of protocols that fit Definition 1
and work as follows. They maintain a set A of active nodes (initialized to the source node)
which spread the rumor asynchronously and in parallel: this is modeled by the fact that at
each step of the protocol, a randomly selected node i ∈ A invokes the tell_gossip primitive
to send the rumor to another node (which in turn becomes active), while i also stays active
with probability s. This is illustrated in Figure 1. The muting parameter s can be viewed
as a randomized version of fanout in [21].1 Algorithm 1 follows the population protocol
model [4], and is also related to the SIS epidemic model [29] but in which the rumor never
dies regardless of the value of s ∈ [0, 1] (there always remain some active nodes). Although
we present it from a centralized perspective, we emphasize that Algorithm 1 is asynchronous
and can be implemented by having active nodes wake up following a Poisson process.

In the rest of this section, we show that extreme privacy guarantees are obtained for
extreme values of the muting parameter s.

4.1 Standard Push has Minimal Privacy
The natural case to study first in our framework is when the muting parameter is set to s = 1:
this corresponds to the standard push protocol [39] in which nodes always keep emitting
after they receive the rumor. Theorem 4 shows that, surprisingly, the privacy guarantees of
this protocol become arbitrarily bad as the size of the graph increases (keeping the fraction
of curious nodes constant).

I Theorem 4 (Standard push is not differentially private). If Algorithm 1 with s = 1 guarantees
(ε, δ)-DP for all values of n and constant ε <∞, then δ = 1.

This result may seem counter-intuitive at first since one could expect that it would be
more and more difficult to locate the source when the size of the graph increases. Yet, since
the ratio of curious nodes is kept constant, this result comes from the fact that the event
{td(0) ≤ ti(1)} (node 0 communicates with a curious node before node 1 gets the message)
becomes more and more likely as n grows, hence preventing any meaningful differential

1 Unlike in the classic fanout, nodes start to gossip again each time they receive a message instead of
deactivating permanently.
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Algorithm 1 Parameterized Gossip.

Require: n {Number of nodes}, k {Source
node}, s {Probability for a node to remain
active}

Ensure: I = {0, . . . , n − 1} {All nodes are
informed}

1: I ← {k}, A← {k}
2: while |I| < n do
3: Sample i uniformly at random from A

4: A← A \ {i} with probability 1− s
5: j, I ← tell_gossip(i, I), A← A ∪ {j}
6: end while

step 1 step 2

step 3

step 1

step 1

step 2

step 2

Figure 1 Left: Parameterized Gossip. Right: Illustration of the role of muting parameter s. S
indicates the source and C a curious node. Green nodes know the rumor, and red circled nodes are
active. When s = 0, there is only one active node at a time, which always stops emitting after telling
the gossip. In the case s = 1, nodes always remain active once they know the rumor (this is the
standard push gossip protocol [39]). When 0 < s < 1, each node remains active with probability s
after each communication.

privacy guarantee when n is large enough. The proof can be found in [6]. Theorem 4 clearly
highlights the fact that the standard gossip protocol (s = 1) is not differentially private in
general. We now turn to the other extreme case, where the muting parameter s = 0.

4.2 Muting After Infecting has Maximal Privacy
We now study the privacy guarantees of generic Algorithm 1 when s = 0. In this protocol,
nodes forward the rumor to exactly one random neighbor when they receive it and then
stop emitting until they receive the rumor again. Intuitively, this is good for privacy: the
source changes and it is quickly impossible to recover which node started the gossip (as
initial conditions are quickly forgotten). In fact, once the source tells the rumor once, the
state of the system (the set of active nodes, which in this case is only one node) is completely
independent from the source. A similar idea was used in the protocol introduced in [22].

The following result precisely quantifies the privacy guarantees of Algorithm 1 with
parameter s = 0 and shows that it is optimally private among all gossip protocols (in the
precise sense of Definition 1).

I Theorem 5. Let ε ≥ 0. For muting parameter s = 0, Algorithm 1 satisfies (ε, δ)-differential
privacy with δ = f

n

(
1− eε−1

f

)
and c-prediction uncertainty with c = n

f+1 − 1. Furthermore,
these privacy guarantees are optimal among all gossip protocols.

Proof of Theorem 5. We start by proving the fundamental limits on the privacy of any
gossip protocol, and then prove matching guarantees for Algorithm 1 with s = 0.

(Fundamental limits in privacy) Proving a lower bound on the differential privacy
parameters can be achieved by finding a set of possible outputs S (here, a set of ordered
sequences) such that p0(S) ≥ p1(S). Indeed, a direct application of the definition of
Equation (2) yields that given any gossip protocol, S ⊂ S and w0, w1 ∈ R such that w0 ≤
p0(S) and p1(S) ≤ w1, if the protocol satisfies (ε, δ) differential privacy then δ ≥ w0 − eεw1.

DISC 2020



8:10 Quantifying the Natural Differential Privacy Guarantees of Gossip Protocols

The proofs need to consider all the messages sent and then distinguish between the ones that
are disclosed (sent to curious nodes) and the ones that are not.

Since I = {0} then tell_gossip is called for the first time by node 0 and it is called
at least once otherwise the protocol terminates with I = {0}, violating the conditions of
Definition 1. We denote by S(0) the set of output sequences such that S0 = 0 (i.e., 0 is the
first to communicate with a curious node). We also define the event T c0 = {td(0) 6= 0} (the
source does not send its first message to a curious node). For all i /∈ C ∪ {0}, we have that
p0(S0 = i|T c0 ) ≤ p0(S0 = 0|T c0 ) since p0(A1 = {0}) = p0(i ∈ A1), where A1 is the set of
active nodes at time 1. From this inequality we get∑

i/∈C p0(S0 = 0|T c0 ) ≥
∑
i/∈C p0(S0 = i|T c0 ) = 1 ≥

∑
i/∈C p0(S0 = 1|T c0 ),

where the equality comes from the fact that S0 = i for some i /∈ C. The second inequality
comes from the fact that pj(S0 = i|T c0 ) = pj(S0 = k|T c0 ) for all i, k 6= j. Therefore, we
have p0(S0 = 0|T c0 ) ≥ 1

n−f and p0(S0 = 1|T c0 ) ≤ 1
n−f . Combining the above expressions, we

derive the probability of S(0) when 0 started the gossip. We write p0(S(0)) = p0(S(0), td(0) =
0) + p0(S(0), T c0 ) and then, since p0

(
S(0)|td(0) = 0

)
= 1:

p0
(
S(0)) = p0

(
td(0) = 0

)
p0
(
S(0)|td(0) = 0

)
+ p0

(
S(0)|T c0

)
p0
(
T c0
)
≥ f

n
+ 1
n− f

(
1− f

n

)
In the end, p0(S(0)) ≥ f

n + 1
n . If node 1 initially has the message, we do the same split and

obtain p1(S(0)|td(0) = 0) = 0 and so p1(S(0)) = p1(T c0 )p1(S(0)|T c0 ) ≤ 1
n .

The upper bound on prediction uncertainty is derived using the same quantities:

p(I0 6= 0|S(0))
p(I0 = 0|S(0))

=
∑

i/∈C∪{0}

pi(S(0))
p0(S(0))

≤ (n− f − 1)p1(S(0))
p0(S(0))

≤ n− f − 1
f + 1 = n

f + 1 − 1.

Note that we have never assumed that curious nodes knew how many messages were sent
at a given point in time. We have only bounded the probability that the source is the first
node that sends a message to curious nodes.

(Matching guarantees for Algorithm 1 with s = 0) For this protocol, the only
outputs S such that p0(S) 6= p1(S) are those in which td(0) = 0 or td(1) = 0. We write:

p0(S0 = 0) = p0(td(0) = 0)p0(S0 = 0|td(0) = 0) + p0(T c0 )p0(S0 = 0|T c0 ).

For any i /∈ C where C is the set of curious nodes, we have that p0(S0 = 0|T c0 ) = p0(S0 =
i|T c0 ) = 1

n−f . Indeed, given that td(0) 6= 0, the node that receives the first message is selected
uniformly at random among non-curious nodes, and has the same probability to disclose the
gossip at future rounds. Plugging into the previous equation, we obtain:

p0(S0 = 0) = f

n
+
(

1− f

n

) 1
n− f

= f + 1
n

.

For any other node i /∈ C ∪ {0}, p0(S0 = i) = p0(T c0 )p0(S0 = i|T c0 ) = 1
n because p0(S0 =

i|td(0) = 0) = 0. Combining these results we get p0(S(0)) ≤ eεp1(S(0)) + δ for any ε > 0 and
δ = f

n (1− eε−1
f ). By symmetry, we make a similar derivation for S(1).

To prove the prediction uncertainty result, we use the differential privacy result with
eε = f + 1 (and thus δ = 0) and write that for any S ∈ S:

p(I0 6= 0|S)
p(I0 = 0|S) =

∑
i/∈C∪{0}

pi(S)
p0(S) ≥ (n− f − 1)e−ε = n

f + 1 − 1. J
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Theorem 5 establishes matching upper and lower bounds on the privacy guarantees of
gossip protocols. More specifically, it shows that setting the muting parameter to s = 0
provides strong privacy guarantees that are in fact optimal. Note that in the regime where
ε = 0 (where DP corresponds to the total variation distance), δ cannot be smaller than the
proportion of curious nodes. This is rather intuitive since the source node has probability
at least f/n to send its first message to a curious node. However, one can also achieve
differential privacy with δ much smaller than f/n by trading-off with ε > 0. In particular,
the pure version of differential privacy (δ = 0) is attained for ε ≈ log f , which provides good
privacy guarantees when the number of curious nodes is not too large. Furthermore, even
though the probability of disclosing some information is of order f/n, prediction uncertainty
guarantee shows that an adversary with uniform prior always has a high probability of
making a mistake when predicting the source. Crucially, these privacy guarantees are made
possible by the natural randomness and partial observability of gossip protocols.

I Remark 6 (Special behavior of the source). A subtle but key property of Algorithm 1 is
that the source follows the same behavior as other nodes. To illustrate how violating this
property may give away the source, consider this natural protocol: the source node transmits
the rumor to one random node and stops emitting, then standard push (Algorithm 1 with
s = 1) starts from the node that received the information. While this delayed start gossip
protocol achieves optimal differential privacy in some regimes, it is fundamentally flawed. In
particular, it does not guarantee prediction uncertainty in the sense that c→ 0 as the graph
grows. Indeed, the adversary can identify the source with high probability by detecting that
it communicated only once and then stopped emitting for many rounds. We refer to the full
version of this paper [6] for the formal proof.

5 Privacy vs. Speed Trade-offs

While choosing s = 0 achieves optimal privacy guarantees, an obvious drawback is that it
leads to a very slow protocol since only one node can transmit the rumor at any given time.
It is easy to see that the number of gossip operations needed to inform all nodes can be
reduced to the time needed for the classical coupon collection problem: it takes O(n logn)
communications to inform all nodes with probability at least 1− 1/n [19]. As this protocol
performs exactly one communication at any given time, it needs time O(n logn) to inform all
nodes with high probability. This is in stark contrast to the standard push gossip protocol
(s = 1) studied in Section 4.1 where all informed nodes can transmit the rumor in parallel,
requiring only time O(logn) [23].

These observations motivate the exploration of the privacy-speed trade-off (with parameter
0 < s < 1). We first show below that nearly optimal privacy can be achieved for small values
of s. Then, we study the spreading time and show that the O(logn) time of the standard
gossip protocol also holds for s > 0, leading to a sweet spot in the privacy-speed trade-off.

5.1 Privacy Guarantees

Theorem 7 conveys a (0, δ)-differential privacy result, which means that apart from some
unlikely outputs that may disclose the identity of the source node, most of these outputs
actually have the same probability regardless of which node triggered the dissemination. We
emphasize that the guarantee we obtain holds for any graph size with fixed proportion f/n
of curious nodes.
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I Theorem 7 (Privacy guarantees for s < 1). For 0 < s < 1 and any fixed r ∈ N∗, Algorithm 1
with muting parameter s guarantees (0, δ)-differential privacy with:

δ = 1− (1− s)
∞∑
k=0

sk
(

1− f

n

)k+1
≤ 1− (1− sr)

(
1− f

n

)r
.

For example, choosing r = 1 leads to δ ≤ s+ (1− s) fn , as reported in Table 1. Slightly tighter
bounds can be obtained, but this is enough already to recover optimal guarantees as s→ 0.

Proof. We first consider that S is such that td(0) ≥ td(1). Then, p0(S) ≤ p1(S) since node
0 needs to receive the rumor before being able to communicate it to curious nodes, and
Equation (2) is verified. Suppose now that S is such that td(0) ≤ td(1). In this case, we note
tm the first time at which the source stops to emit (which happens with probability 1− s
each time it sends a message). Then, we denote F = {td(0) ≤ tm} (and F c its complement).
In this case, p0(S|F c) ≤ p1(S|F c). Indeed, conditioned on F c, td(0) ≥ ti(0) if node 0 is not
the source and td(0) ≥ max(tm, ti(0)) if it is. Then, we can write:

p0(S) = p0(S, F c) + p0(S, F ) ≤ p1(S, F c) + p0(F ) ≤ p1(S) + p0(F ).

Denoting Tf the number of messages after which the source stops emitting, we write:

p0(F ) =
∞∑
k=1

p0(Tf = k)p0(F |Tf = k) =
∞∑
k=0

(1− s)sk
(

1−
(
1− f

n

)k+1
)
, for s > 0.

Note that we can also write for k ≥ 1 that p0(F ) = p0(F, Tf ≤ k) + p0(F, Tf > k), and so:

p0(F ) ≤ (1− sk)
(

1−
(
1− f

n

)k)+ sk = 1− (1− sk)
(

1− f

n

)k
. J

The differential privacy guarantees given by Theorem 7 and the optimal guarantees of
Theorem 5 are of the same order of magnitude when s is of order f/n. Indeed, consider
ε = 0. Then, setting r = 1 in Theorem 7 leads to an additive gap of s(1 − f/n) between
the privacy of Algorithm 1 and the optimal guarantee, showing that one can be as close as
desired to the optimal privacy as long as s is chosen close enough to 0. In particular, the
ratio between the privacy of Algorithm 1 and the lower bound is less than 2 for all s ≤ f/n.
This indicates that the privacy guarantees are very tight in this regime. We also recover
exactly the optimal guarantee of Theorem 5 in the case s = 0 (without the ability to control
the trade-off between ε and δ). Importantly, we also show that Algorithm 1 with s < 1
satisfies prediction uncertainty, unlike the case where s = 1.

I Theorem 8. Algorithm 1 guarantees prediction uncertainty with c = (1− f+1
n )(1− s).

This result is another evidence that picking s < 1 allows to derive meaningful privacy
guarantees. The proof can be found in the full version of this paper [6].

5.2 Spreading time
We have shown that parameter s has a significant impact on privacy, from optimal (s = 0)
to very weak (s = 1) guarantees. Yet, s also impacts the spreading time: the larger s, the
more active nodes at each round. This is highlighted by the two extreme cases, for which the
spreading time is already known and exhibits a large gap: O(logn) for s = 1 and O(n logn)
for s = 0. To establish whether we can obtain a protocol that is both private and fast, we
need to characterize the spreading time for the cases where 0 < s < 1.
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The key result of this section is to prove that the logarithmic speed of the standard push
gossip protocol holds more generally for all s > 0. This result is derived from the fact that
the ability to forget does not prevent an exponential growth phase. What changes is that
the population of active nodes takes approximately 1/s rounds to double instead of 1 for
standard gossip. For ease of presentation, we state below the result for the synchronous
version of Algorithm 1, in which the notion of round corresponds to iterating over the full
set A. A similar result (with an appropriate notion of rounds) can be obtained for the
asynchronous version given in Algorithm 1.

I Theorem 9. For a given s > 0 and for all 1 > δ > 0 and C ≥ 1, there exists n large
enough such that the synchronous version of Algorithm 1 with parameter s sends at least
Cn logn messages in 6C log(n)/s rounds with probability at least 1− δ.

Proof sketch. The key argument of the proof is that the gossip process very closely follows
its mean dynamics. After a transition phase of a logarithmic number of rounds, a constant
fraction of the nodes (depending on s) remains active despite the probability to stop emitting
after each communication. This “determinism of gossip process” has been introduced in [40],
but their analysis only applies to s = 1. Our proof accounts for the nontrivial impact of
nodes deactivation in the exponential and linear growth phase. Besides, we need to show
that in the last phase, with high probability, the population never drops below a critical
threshold of active nodes. The full proof is in the full version of this paper [6]. J

Theorem 9 shows that generic gossip with s > 0 still achieves a logarithmic spreading
time even though nodes can stop transmitting the message. The 1/s dependence is intuitive
since 1/s rounds are needed in expectation to double the population of active nodes (without
taking collisions into account). Therefore, the exponential growth phase which usually takes
time O(logn) now takes time O(log(n)/s) for s < 1. To summarize, we have shown that one
can achieve both fast spreading and near-optimal privacy, leading to the values presented in
Table 1 of the introduction.

6 Empirical Evaluation

In this section, we evaluate the practical impact of s on the spreading time as well as on the
robustness to source location attacks run by adversaries with background knowledge.

6.1 Spreading Time
To complement Theorem 9, which proves logarithmic spreading time (asymptotic in n), we
run simulations on a network of size n = 216. The logarithmic spreading time for s > 0 is
clearly visible in Figure 2a, where we see that the gossip spreads almost as fast for s = 0.5
that it does for s = 1. We also observe that even when s is small, the gossip remains
much faster than for s = 0. The results in Figure 2b illustrate that the fraction of active
nodes grows exponentially fast for all values of s > 0 and then reaches a plateau when the
probability of creating a new active node is compensated by the probability of informing an
already active node. Empirically, this happens when the fraction of active nodes is of order s.

We note incidentally that gossip protocols are often praised for their robustness to lost
messages [3, 24]. While the protocol with s = 0 does not tolerate a single lost message,
setting s > 0 improve the resilience thanks to the linear proportion of active nodes. The
latter property makes it unlikely that the protocol stops because of lost messages as long as
s is larger than the probability of losing messages. Of course, the protocol remains somewhat
sensitive to messages lost during the first few steps.

DISC 2020
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(a) Fraction of informed nodes. (b) Fraction of active nodes.

Figure 2 Effect of parameter s of Algorithm 1 on the spreading time for a network of n = 216

nodes. The curves represent median values and the shaded area represents the 10 and 90 percent
confidence intervals over 100 runs. Each curve stops when all nodes are informed (and so the protocol
terminates), except for s = 0 since the protocol is very slow in this case.

(a) Attack precision under prior information on the
source.

(b) Attack precision when the source spreads multi-
ple rumors.

Figure 3 Effect of parameter s of Algorithm 1 on the precision of source location attacks for a
network of n = 216 node with 10% of curious nodes. Precision is estimated over 15,000 random runs.

6.2 Robustness Against Source Location Attacks

Getting an intuitive understanding of the privacy guarantees provided by Theorem 7 is not
straightforward, as often the case with differential privacy. Therefore, we illustrate the effect
of the muting parameter on the guarantees of our gossip protocol by simulating concrete
source location attacks. We consider two challenging scenarios where the adversary has some
background knowledge: either 1) prior knowledge that the source belongs to a subset of the
nodes, or 2) side information indicating that the same source disseminates multiple rumors.

Prior knowledge on the source. We first consider the case where the adversary is able
to narrow down the set of suspected nodes. In this case we can design a provably optimal
attack, as shown by the following theorem (see [6]).

I Theorem 10. If the adversary has a uniform prior over a subset P of nodes, i.e., p(I0 =
i) = p(I0 = j) for all i, j ∈ P and p(I0 = i) = 0 for i /∈ P , and for some output sequence S,
tc is such that Stc ∈ P and St /∈ P if t < tc , then p(I0 = Stc |S) ≥ p(I0 = i|S) for all i.
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Theorem 10 means that under a uniform prior over nodes in P , the attack in which curious
nodes predict the source to be the first node in P that communicates with them corresponds
to the Maximum A Posteriori (MAP) estimator. The set P represents the prior knowledge
of the adversary: he knows for sure that the source belongs to P .

Figure 3a shows the precision of this attack as a function of s for varying degrees of
prior knowledge. We see that, when s is small, the prior knowledge does not improve the
attack precision significantly, and that the precision remains very close to the probability that
the source sends its first message to a curious node. This robustness to prior knowledge is
consistent with the properties of differential privacy (see Section 2.3). On the contrary, when
s is high (i.e., differential privacy guarantees are weak), the impact of the prior knowledge
on the precision of the attack is much stronger.

Multiple dissemination. We investigate another scenario in which differential privacy guar-
antees can also provide robustness, namely when the adversary knows that the same source
node disseminates multiple rumors. In this setting, analytically deriving an optimal attack is
very difficult. Instead, we design an attack which leverages the fact that even though the
source is not always the first node to communicate with curious nodes, with high probability
it will be among the first to do so. More precisely, the curious nodes record the 10 first nodes
that communicate with them in each instance (results are not very sensitive to this choice),
and they predict the source to be the node that appears in the largest number of instances. In
case of a tie, the curious nodes choose the node that first communicated with them, with ties
broken at random. Figure 3b shows that the precision of this attack increases dramatically
with the number of rumors when s is large, reaching almost sure detection for 10 rumors.
Remarkably, for small values of s, the attack precision increases much more gracefully with
the number of rumors, as expected from the composition property of differential privacy
discussed in Section 2.3. Meaningful privacy guarantees can still be achieved as long as the
source does not spread too many rumors.

7 Concluding Remarks

This paper initiates the formal study of privacy in gossip protocols to determine to which
extent the source of a gossip can be traceable. Essentially: (1) We propose a formal model
of anonymity in gossip protocols based on an adaptation of differential privacy; (2) We
establish tight bounds on the privacy of gossip protocols, highlighting their natural privacy
guarantees; (3) We precisely capture the trade-off between privacy and speed, showing in
particular that it is possible to design both fast and near-optimally private gossip protocols;
(4) We experimentally evaluate the speed of our protocols as well as their robustness to
source location attacks, validating the relevance of our formal differential privacy guarantees
in scenarios where the adversary has some background knowledge.

Our work opens several interesting perspectives. In particular, it paves the way to the
study of differential privacy for gossip protocols in general graphs, which is challenging and
requires relaxations of differential privacy in order to obtain nontrivial guarantees. We refer
to the full version of this paper [6] for a discussion of these questions. Another avenue
for future research is motivated by very recent work showing that hiding the source of a
message can amplify differential privacy guarantees for the content of the message [20, 11, 5].
Unfortunately, classic primitives to hide the source of messages such as mixnets can be
difficult and costly to deploy. Showing that gossip protocols can naturally amplify differential
privacy for the message contents would make them very desirable for privacy-preserving
distributed AI applications, such as those based on federated [32] and decentralized machine
learning [7].
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