A Single Metabolite which Modulates Lipid Metabolism Alters Hematopoietic Stem/Progenitor Cell Behavior and Promotes Lymphoid Reconstitution

Fatty acid beta-oxidation (FAO), the breakdown of lipids, is a metabolic pathway used by various stem cells. FAO levels are generally high during quiescence and downregulated with proliferation. The endogenous metabolite malonyl-CoA modulates lipid metabolism as a reversible FAO inhibitor and as a substrate for de novo lipogenesis. Here we assessed whether malonyl-CoA can be exploited to steer the behavior of hematopoietic stem/progenitor cells (HSPCs), quiescent stem cells of clinical relevance. Treatment of mouse HSPCs in vitro with malonyl-CoA increases HSPC numbers compared with nontreated controls and ameliorates blood reconstitution capacity when transplanted in vivo, mainly through enhanced lymphoid reconstitution. Similarly, human HSPC numbers also increase upon malonyl-CoA treatment in vitro. These data corroborate that lipid metabolism can be targeted to direct cell fate and stem cell proliferation. Physiological modulation of metabolic pathways, rather than genetic or pharmacological inhibition, provides unique perspectives for stem cell manipulations in health and disease.

Published in:
Stem Cell Reports, 15, 3, 566-576
Sep 08 2020
This is an open access article under the CC BY-NC-ND license.

Note: The status of this file is: Anyone

 Record created 2020-10-07, last modified 2020-10-29

Download fulltext

Rate this document:

Rate this document:
(Not yet reviewed)