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Abstract. Objective. Event Related Potentials (ERPs) reflecting cognitive response

to external stimuli, are widely used in Brain Computer Interfaces (BCI). ERP

waveforms are characterized by a series of components of particular latency and

amplitude. The classical ERP decoding methods exploit this waveform characteristic

and thus achieve a high performance only if there is sufficient time- and phase-locking

across trials. The required condition is not fulfilled if the experimental tasks are

challenging or if it is needed to generalize across various experimental conditions.

Features based on spatial covariances across channels can potentially overcome the

latency jitter and delays since they aggregate the information across time. Approach.

We compared the performance stability of waveform and covariance-based features

as well as their combination in two simulated scenarios: 1) generalization across

experiments on Error-related Potentials and 2) dealing with larger latency jitter across

trials. Main results. The features based on spatial covariances provide a stable

performance with a minor decline under jitter levels of up to ± 300 ms, whereas the

decoding performance with waveform features quickly drops from 0.85 to 0.55 AUC.

The generalization across ErrP experiments also resulted in a significantly more stable

performance with covariance-based features. Significance. The results confirmed our

hypothesis that covariance-based features can be used to: 1) classify more reliably

ERPs with higher intrinsic variability in more challenging real-life applications and 2)

generalize across related experimental protocols.
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1. Introduction

Humans are constantly engaged in evaluating sensory percepts that are critical to

achieve their goals. Such decision making processes give rise to brain responses that can

be measured as electroencephalography (EEG) event-related potentials (ERP). Real-

time detection of these ERPs provide tremendous opportunities for brain-computer

interfacing (BCI). As an illustration, when the user observes an error committed by

the system she is interacting with, an Error-Related Potential (ErrP) is elicited and

its detection can be used to correct it [1]. Upon each occurrence of such an event, the

perception and the evaluation processes take variable periods of time. We investigate

the robustness of various ERP properties to these temporal variations for the purpose

of improving their decoding performance for BCI applications.

ERP waveforms consist of multiple components characterized by a particular

latency, polarity and spatial distribution [2]. The early components are triggered by

a sensory stimulation whereas the late components reflect cognitive processing.

ERPs can be successfully detected directly from the waveform in the specific

frequency band under controlled experimental conditions where time- and phase-

locking is consistent across trials [3]. When facing real world conditions, our cognitive

processes may be challenged by complex and diverse stimuli as well as the fact that

the environment is dynamic. As a result, the later ERP components are more prone to

latency variability across trials [4], which compromises the decoding performance.

An alternative way to detect ERP is to use features based on the spatial covariance

matrices across EEG channels. Such features emphasize the pair-wise interaction

between channels and the total variance of single channels. Since spatial covariance

does not contain precise temporal information we hypothesize that the covariance-based

features may be a suitable choice to address the challenge of decoding ERPs with high

latency variability inherent to real world BCI applications. Typically, it is advisable

to augment the covariance features estimated on a single trial with the covariances

between channels in single trial and channels in the template ERP (i.e. grand average

ERP) of one of the classes. The rationale for this, is that it allows to keep the temporal

information of ERP dynamics which is considered to be a valuable source of discriminant

information [5, 6]. In the case of ERP latency variability, however, augmented covariance

matrices may have the same limitations as waveforms. The impact of latency shifts

and jitter have previously been studied for augmented covariance matrices [6] and the

performance dropped quickly for delays as short as 60 ms. An alternative is to consider

simple channel-based covariance matrices. Covariance matrices can be used directly as

features [7], however it has been hypothesized that treating them under the Riemannian

geometry framework provides better performance [8, 9].

In order to investigate this hypothesis, we specifically compare waveform vs
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covariance features, the benefits of their combination and the impact of Riemannian

geometry under two scenarios. This analysis is done on the data from error-monitoring

experiments [10]. Firstly, we simulate the high temporal variability by artificially

introducing a latency jitter on ErrP trials with a low temporal variability. This

corresponds to the expected ERP variability when facing events that require high

cognitive processing because either their complexity or limited attentional resources due

to multi-tasking. Secondly, we study the robustness of the mentioned features to the

systematic latency shifts between the training and test data. Such scenario corresponds

to the generalization (i.e. classifier transfer) across related ERP protocols. Latency-

robust features may be used to reduce BCI calibration time by direct transfer of the

available classifier trained on one protocol to other related protocols.

2. Materials and Methods

2.1. Data

The dataset that we chose was specifically recorded to address the issue of systematic

latency shift in transfer learning across protocols [10]. This dataset contains recordings

from multiple protocols on Error-related Potentials (ErrP). In all the protocols

participants observed a discrete movement of an object on the computer screen or in

physical space. They evaluated the movement as correct if the object moved towards a

marked target or erroneous otherwise. The evaluation was made mentally without an

overt behavioral response.

In Experiment 1 (E1), a one-dimensional space with 9 positions was shown on

a visual display and a blue square was moving towards a red square (target). In

Experiment 3 (E3), participants were seated in front of a robotic arm, 2 meters away

with a transparent panel in between. The panel contained squared marks in a regular

grit forming a two-dimensional space. The robotic arm moved behind the marks up,

down, left or right towards one of the corners (targets). Experiment 2 (E2) was a virtual

version of Experiment 3 in which marks and the robotic arm were rendered on a visual

display. The probability of the erroneous movement was approximately 30%. The time

between consecutive movements was randomly sampled from the range [1.7, 4.0] s. 6

subjects participated in the three ErrP experiments. Further details about the protocols

can be found in [10].

The three experiments yielded a similar grand average ERP waveform while having

systematic differences in latency (Figure 1). The latency differences were previously

estimated to be: 60.42 ± 25.24, 108.85 ± 22.86 and 41.02 ± 12.95 ms for the E1E2,

E1E3, and E2E3 pair of experiments. A linear classifier based on waveform features

cannot cope with it when trained and applied on different datasets, the performance

drops to random level for considerable latency shifts. However, in an offline analysis

when the latency shift can be estimated, e.g. by using a few labelled trials of the new

experiment, a simple correction of latency allows to recover the performance up to the
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Figure 1. Grand averages for all three experiments. Left: The waveforms show the

difference between Error and Correct trials at FCz channel. Topographies show the

amplitudes for P3 and N4 peaks. Right: Waveform differences between Error and

Correct trials at FCz channel after adding jitter with uniform noise in the range [-300,

300] ms.
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Figure 2. The box plots of latency variability estimation per experiment and per

subject. The latencies are estimated from a negative peak of Error trials at channel

FCz in the window [0.3, 0.9] s.

level obtained within the single protocol dataset [10]. We further estimated latency

variability of Error trials per subject and per experiment based on the position of the

characteristic negative peak at FCz within the time window [0.3, 0.9] s (Figure 2).

Standard deviations of latencies across trials per experiment and subject range from 90

to 170 ms with mean standard deviation of 130 ms.

2.2. Covariance-based features

Different sources of neural activity project at the scalp with a specific distribution.

Spatial covariances between EEG channels capture the shape of this distribution and the

strength of the activity averaged across the time-window of interest. Covariance matrices

can be built in different ways. The simple estimation is done as follows: C = 1
s
XTX

where X ∈ Rs×n is a multichannel EEG epoch with n channels and s time points. In

case of ERPs, this estimation looses the precise temporal dynamics of the waveform. In
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order to compensate for this, a modified version of covariance matrices was suggested

[5]. The epoch X is augmented with a template T ∈ Rs×k along the channel dimension

to build a super epoch Z = [X T] ∈ Rs×(n+k), where k is the number of template

channels. The covariance matrix estimated on the augmented signal becomes:

CZ =
1

s
ZTZ =

1

s

(
XTX XTT

TTX TTT

)
(1)

The covariance between X and T allows to capture the temporal dynamics

specifically with the relation to the template T. In the context of ERP experiments, the

template is typically an average ERP of one or several classes. In this case it will reflect

how similar a particular epoch is to the average ERP. Thus the covariance matrix CT

contains the combination of two sources of information: covariances between channels

and the similarity to the template waveform.

In high dimensional settings a simple Maximum Likelihood Estimator of covariance

matrix is not stable so a regularization is often applied. In this paper we use a shrinkage

as described in [11].

Riemannian geometry on covariance matrices. The natural choice to treat covariance

matrices is to vectorize them and use as a feature vector for further processing and

classification. But most vector-based algorithms assume a Euclidean space, such

as PCA [12]. Covariance matrices are always Symmetric and Positive semi-Definite

(SPD), however, Euclidean geometry is not well suited for SPD matrices due to various

drawbacks [13], so they can be characterized better with Riemannian geometry while

improving the performance.

Riemannian geometry is the branch of mathematics that studies smooth spaces

locally behaving like a Euclidean space. The main feature of Riemannian space consists

in the way the distances are defined. While Euclidean space has a constant distance

metric in all points, the Riemannian metric smoothly changes along the space. As a

simple visual example, imagine the curvy surface of a sphere. Although the surface is a

2-dimensional space, we cannot directly compute the distance between 2 remote points.

However, around each point distances can be locally approximated with R2 Euclidean

space.

One of the simple ways to introduce the benefits from Riemannian geometry into

classification of covariance matrices is to project them on a tangent space [14]. The

tangent space is a Euclidean space which allows to leverage the standard vector-based

algorithms. The approach requires two steps:

(i) To find a geometric mean C̄ of the sample of covariance matrices:

C̄ = argminC

N∑
i=1

δ2(Ci,C) (2)

where Ci denotes a covariance matrix, and δ is a Riemannian distance between

covariance matrices.
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(ii) The relationship between covariance matrices can be approximated with Euclidean

geometry around the geometric mean C̄ by projecting them on a tangent space SC̄

which is called logarithmic mapping Logm(·):

SC̄ = Logm(C) = C̄1/2logm(C̄−1/2CC̄−1/2)C̄1/2 (3)

where logm denotes the logarithm of a matrix [15].

2.3. Data processing and feature extraction

EEG signals were filtered with a Butterworth band-pass filter of order 4 within the

band [1, 10] Hz forward and backward and downsampled from 512 Hz to 128 Hz. Then

the signal was spatially filtered with common-average-reference (CAR). Further feature

extraction was done in the time window of [200, 1000] ms after the event (correct or

erroneous movement). We explore and compare different sets of features, which include

ERP waveform and covariance matrices.

For the classification we compute the following features (Figure 3):

F1 Waveform. Waveform of the ERP epoch X, i.e. the amplitude at all channels

and time points in the selected window. Due to high dimensionality (1648) we

applied PCA and keep components with highest eigenvalue which explain 90% of

the variance. It resulted into 60 +/- 8 features.

F2 Euclid. Covariance matrices C computed with shrinkage to improve stability,

yielding 136 features.

F3 Riemann. Projections of shrinkaged covariance matrices on a tangent space S.

The projection reference point was the geometric mean estimated from the training

data. The projection does not affect the dimensionality, yielding 136 features (see

the equation 3).

F4 Riemann+. Shrinkaged covariance matrices CZ estimated on super epochs

augmented with the averaged ERPs of each class Z. ERPs were estimated from the

training data. Such an augmentation produced a high number of features (1176),

so we decided to preselect 8 channels which drastically reduced the number of

features to 300. We automatically chose the channels according to the mean Fisher

score across all time points [16]. The covariance matrices CZ were projected on a

corresponding tangent space SZ .

2.4. Classification performance evaluation with respect to the latency

To classify erroneous vs correct trials we applied penalized logistic regression (PLR),

robust to overfiting and outliers [17]. The logistic regression model is a generalized

linear model that describes probability of data sample x to belong to class c = t, it is

parametrized by the projection vector w:

p(c = t|x) =
1

1 + e−wTx
(4)
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Figure 3. Steps of feature construction for each EEG epoch. The following operations

were used: Vect - vectorization of unique values (only upper triangle for SPD matrices),

Cov - estimation of covariance matrix with shrinkage, Select Channels - selection of 8

most discriminant channels, Augment - augmentation of the epoch with grand average

of erroneous and correct classes, Logm - logarithmic mapping on the tangent space.

The optimal projection vector w is obtained as a maximum likelihood estimator.

However, in penalized logistic regression the estimator is regularized by L1 and/or L2-

norm of vector w, we use only L2-norm. The regularization parameter was chosen

by 4-fold cross-validation in the training dataset. The data was split to preserve the

temporal relationships (non-randomized trials).

Additionally, we standardized all features by z-score with mean and standard

deviation obtained from the training data because we used a regularized classifier [18].

Since the classes were not balanced in ErrP protocols, we measured the performance by

area under the ROC curve (AUC) [19].

Baseline performance within protocol. As a baseline we estimated the performance of

all features in a leave-one-run-out cross validation. Together with the hyperparameter

optimization the overall procedure was structured as a nested cross validation.

Latency jitter. The authors of the used dataset reported high decoding performance of

AUC > 80 with a linear classifier when trained and applied within the same protocol.

This suggests that ERP waveforms are consistent across single trials and classifier can

tolerate latency variability of up to 130 ms of standard deviation when used with

waveform features. In order to investigate the robustness of different features to the

temporal variability we introduced a random jitter to the time window for all data

which included both training and test epochs. The amount of jitter was sampled from

a uniform distribution. Three gradual jitter levels were [-50, 50], [-100, 100], [-200, 200]

and [-300, 300] ms. This procedure was repeated on all three experiments.
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Figure 4. Robustness of the features to simulated temporal jitter. Each figure

represents one of the experiments. The data shows AUC as mean and standard

deviation across all subjects.

Classifier transfer. The three experiments proved to evoke similar ErrP waveforms

on grand averages with a systematic shift in latency. Without any fine-tuning and

additional transformation we tested classifier transfer within the same subject between

experiments. Classifier trained on all data of one experiment is tested on all data of the

other two, providing a single AUC value per pair. This procedure is repeated for all

pairs of the experiments and all feature sets.

3. Results

3.1. Baseline BCI performance within protocol

First, we can see that all features perform well on the original datasets without jitter

(Figure 4). The average AUC across subjects is between 75 and 90. There is a

statistically significant difference in performance across feature sets obtained with two-

way repeated measures ANOVA, the factors being the feature and the experiments (p-

value < 0.001 (0.000186)). By breaking down the difference into pair-wise comparison
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with post-hoc two-way repeated measures ANOVA, we can see that the difference is

mainly driven by “Riemann+” features (p-value < 0.01 for all pair-wise comparisons

with other features). So the combination of discriminant information by means of

covariance matrices on super epochs gives the best results. Processing of covariance

matrices with Riemannian geometry significantly improves the performance as opposed

to Euclidean geometry (p-value = 0.03).

3.2. Robustness to latency jitter

We introduced different levels of latency jitter to compare the temporal robustness of

different feature sets. The performance change for different levels of jitter is shown

on Figure 4. The overall trend is a reduction in performance with the increase in

temporal jitter for all features. The significance of the effect is tested on each experiment

independently with 2-way repeated measures ANOVA for the jitter level and the

feature as factors. Both main effects are significant (p-values < 0.001). Regardless

the experiment, the strongest effect is obtained for the interaction of factors (p-values

< 0.0001) for all the experiments.

The performance decreases more rapidly with jitter for Waveform features, which

drops to nearly chance level for jitter level above 200 ms. The post-hoc comparison of

“Euclid” or “Riemann” against “Riemann+” features gives non-significant difference on

the features, however, the interaction is significant (p-values < 0.0001). It allows us to

conclude that simple covariance matrices are most stable against the jitter regardless of

whether they are treated with Euclidean or Riemannian geometry.

3.3. Classifier transfer between protocols

We trained separate classifiers on the datasets of each protocol and assessed their

performance on the two remaining protocols (Figure 5). As it was the case for the

latency variations, waveform features demonstrate the biggest drop in performance.

The transfer from E1 to either E2 or E3 leads to a random classification performance.

The respective grand average latency differences are 60 and 100 ms.

In contrast to the within-dataset performance, the “Riemann+” approach which

combines both types of information does not provide best results when transferring

between protocols. Interestingly, covariance matrices are more robust especially when

the latency shift is bigger. There is a statistically significant difference across features

for all training/test pairs, with p-values < 0.0001 (one-way ANOVA). Furthermore,

there is no difference in performance between simple covariance matrices and the ones

transformed with Riemannian geometry.

4. Discussion and Conclusion

Various studies have shown high performance of ERP-based BCIs in controlled

experimental conditions. Stimuli diversity or any other change in experimental
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Figure 5. Cross-protocol classifier transfer. First three matrices show AUC estimated

on test dataset (y-axis) with a classifier trained on a training dataset (x-axis). The

right-most matrix provides p-values in log10(·) obtained with ANOVA when comparing

features for each train/test pair.

conditions, however, can affect ERP waveforms and degrade classification performance.

On one side, as we have seen through the set of experiments on error monitoring, a

small modification such as a transition from 1D to 2D scenario or virtual to physical

can influence the ERP latency. On the other side, more complex stimuli could lead to

a higher temporal variability of ERP within the same protocol [4].

In this study we investigated the robustness of different types of features to the

variability and systematic shifts in latency using real ErrP data. We conducted two

analyses: 1) simulated ErrP temporal variability (latency jitter) and 2) classifier transfer

between protocols where an ErrP latency shift is observed. Although our study is based

on the later ERP’s components reflecting cognitive process of Error detection, we expect

that these results can be generalized to any other type of ERPs prone to large latency

variability across trials/conditions; yet further validation is needed.

We showed that both types of features – spatial covariances and the ERP waveform

– carry sufficient information for high decoding performance (AUC > 75) in all three

experiments. Waveform features outperform covariance features, yet their combination

by the means of the augmenting covariance matrices results in the highest performance.

This can be explained by complementary information contained in the spatio-temporal

relations between channels. When facing ERP latency shifts – as in the between-protocol

generalization scenario – spatial covariance features are more robust in contrast to

waveform features. Furthermore, the results of our simulated study on increased latency

jitter (variability) suggest that spatial covariance can successfully cope also with this

challenge for certain range of variability. Namely, the classification based on waveform

features approach a chance level for jitter levels above 200 ms, or latency differences

between experiments that exceed 100 ms. The features combining both information

sources do not provide the best performance, it is intermediate between the performances

of covariance and waveform feature sets alone. This is expected as it is constrained by

limitation of the waveform features. Confirmation of the potential of the considered

method will require investigation of protocols that elicit ERPs characterized by large

latency variance.

Covariance matrices can be used directly to classify EEG signals, however, they
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are also widely applied in the estimation of spatial filters by means of Common Spatial

Patterns (CSP) method [20] mainly in non-ERP paradigms [21]. The typical features

extracted after CSP filter estimation are log variances of spatially projected signal. This

feature space approximates a decomposition of Riemannian distances between covariance

matrices [22]. Moreover, covariance matrices can be used to estimate spatio-temporal

filters as in Regularized Spatio-Temporal Filtering and Classification (RSTFC) [23].

These filtering and denoising methods can take advantage of the spatial covariance

robustness against latency variability. Nonetheless, we warn the readers that some

methods of spatio-temporal filtering may result in none or negative effect on the

performance with high latency variability datasets. This includes methods that model

the synchronous ERP in temporal domain based on waveform features and assume

constant latency, for example, Spatial-Temporal Discriminant Analysis (STDA) [24],

ERP spatial and spectral patterns (ESSP) [25] or SIgnal-to-noise ratio Maximizer for

event-related potentials (SIM) [26].

The robustness of covariance-based features to latency shifts allows to optimize the

classifier transfer between different ErrP protocols. The common approaches to transfer

learning in BCI try to match the distributions of various datasets by keeping the classifier

trained on one of the datasets. For example, in the original study the authors suggested

to estimate the ERP latency between different protocols and adjust it for single ERPs

in new protocols [10]. It can also be done in a geometry-aware manner by treating

covariance matrices with Riemannian geometry. For example, the two distributions of

covariance matrices can be matched by alignment of geometric means (see equation 2)

[9] or by translation, stretching and rotation of the whole distribution [27]. In all cases,

achieving efficient cross-experiment, and even cross-subject, transfer requires substantial

modeling of distributions, which is only possible after collecting a certain amount of new

data. Here we show that in the case of latency shifts, our approach does not need to

collect and model new data by relying on spatial covariances as features. It allows to

reduce the calibration time to zero with only a mild drop in performance. Nevertheless,

we point out that our approach may not be applicable to classifier transfer in case of

substantial ERP differences such as in cross-subject transfer.

We recognize a potential of the covariance-based features for real world BCI

applications where ERP variability is inevitable. One cannot control all the aspects

of the natural environment – diverse stimuli may require different levels of cognitive

effort reflected in the ERP latency [28]. Moreover, there is a requirement on efficient

calibration and a quick switch to a new setup, which could be fulfilled with the approach

presented here.
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