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Abstract. In this paper, we discuss strengths and limitations of different abstrac-
tion levels for distributed robotics experiments. We support the discussion with
a concrete case study which has been investigated at four different levels: real ro-
bots, embodied simulations, microscopic modeling, and macroscopic modeling. Both
modeling methodologies presented represent the collective dynamics of the experi-
ment as a set of stochastic events based on simple geometrical considerations and
systematic tests with one or two real robots instead of computing trajectories and
sensory information like an embodied simulator would do. The case study we de-
scribe is concerned with pulling sticks out of the ground - an action which requires
the collaboration of two robots to be successful. Experiments were carried out with
teams consisting of two to 24 individuals endowed with simple reactive controllers.
In addition to showing that models can deliver both qualitatively and quantitatively
correct predictions in time lapses that are three or four orders of magnitude smaller
than those required by embodied simulations, we discuss differences, assumptions,
and subtle numerical effects of the current modeling methodologies.

1 Introduction

Swarm Intelligence (SI) is a new computational and behavioral metaphor for
solving distributed problems [1]; it is based on the principles underlying the
behavior of natural systems consisting of many agents, such as ant colonies
and bird flocks. The abilities of such systems appear to transcend the abilities
of the constituent individual agents; in all the biological cases studied so far,
the emergence of high-level control has been found to be mediated by nothing
more than a small set of simple low-level interactions among individuals, and
between individuals and the environment. The application of SI principles
to multiple-robot systems leads to three main advantages: first, scalability
of the control architecture, from a few to thousands of units; second, self-
organization, as units can be dynamically added, removed, or reallocated to
different tasks without explicit reorganization; and third, increased system
robustness, not only through unit redundancy but also through the design of
simple units.

One way to analyze and understand underlying common principles of
swarm systems (both natural and artificial) is to capture their dynamics at
more abstract levels. Modeling is a means for saving time, enabling gener-
alization to different platforms, and estimating optimal system parameters,
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including control parameters and number of individuals. There has been rela-
tively little prior work in modeling of multi-robot systems with the exception
of our research [2-5] and that of Sugawara and coworkers [6], which explored
macroscopic models for a foraging task. This paper combines the strengths
of our previous quantitative microscopic and qualitative macroscopic models
in order to move towards a macroscopic quantitative modeling methodology.
In addition, we discuss how the new macroscopic methodology relates to the
microscopic one, in particular by describing how to build up a macroscopic
model starting from a state diagram of the robot controller used at the mi-
croscopic level. Finally, we discuss some of the problems and limitations that
affect either one or both types of modeling, in particular in comparison to
other popular simulation tools such as sensor-based, embodied simulators.
We support our discussion with a concrete case study concerned with pulling
sticks out of the ground with a team of simple, reactive, autonomous robots.

2 A Case Study in Distributed Manipulation

The case study described in this paper, first introduced by Martinoli and
Mondada [7], has been systematically investigated using embodied simula-
tions and a microscopic model [3], and, more recently, using a qualitative
macroscopic model [5]. In this case study, the task involves pulling sticks out
of the ground, an action which requires the collaboration of two robots to be
successful. All the experiments have been carried out to quantitatively inves-
tigate and model the effects of variations of robot controller implementations
and number of robots on group behavior, in particular, on the collaboration
rate among robots, i.e. the number of sticks successfully taken out of the
ground over time.

2.1 Physical Set-Up and Embodied Simulations

The experiment is carried out in a circular arena (40 cm of radius) delimited
by a white wall. Four holes situated at the corners of a square with 30 cm
edges, hold white sticks (15 cm long, diameter of 1.6 cm) which, in their low-
est position, protrude 5 cm above the ground (see Fig. 1, left). Groups of two
to six Khepera robots, equipped with gripper turrets, are used to pull the
sticks out of the ground. Because of their thinness, the sticks can be distin-
guished from the wall and from other robots using the Khepera’s six frontal
IR proximity sensors. Because the sticks are too long to be pulled from the
ground by a single robot’s lifting motion, collaboration between two robots is
required. After a successful collaboration, the stick taken out of the ground
is released by the robot, and replaced in its hole by the experimenter.

In order to more systematically investigate the collaboration dynamics,
we also implemented the experiment in Webots, a 3D kinematic, sensor-based
simulator of Khepera robots (see Fig. 1, right). Teams of two to 24 robots were
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Fig. 1. Left: Overview of the physical set-up for the stick-pulling experiments.
Right: Corresponding set-up in the embodied simulator

simulated using Webots. The simulator computes trajectories and sensory
input of the robots in an arena corresponding to the physical set-up. The
simulation is sufficiently faithful for the controllers to be transferred to real
robots without changes and for the robot behaviors to be very similar to
those of the real robots, as shown in several previous papers [2,3]. The mean
speed ratio for this experiment with five robots between Webots and real
time is about 18 on a Pentium III, 900 MHz machine.

2.2 The Robot’s Controller

The behavior of a robot is determined by a simple hand-coded program which
can be represented with a standard flow chart or a Finite State Machine
(FSM), as depicted on the left hand of Fig. 2. The behavioral granularity
shown in Fig. 2 is arbitrary and is chosen by the experimenter so that the
FSM captures all the details of interest.
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Fig. 2. Left: FSM representing the controller of a real robot. Transition between
states are deterministically triggered by sensory measurements. Right: PFSM rep-
resenting an agent in the microscopic model or the whole robotic team in the macro-
scopic model. The parameters characterizing probabilistic transitions and states are
explained in the text
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In addition to the default search behavior (wandering in a straight line)
and an obstacle avoidance behavior, the robot is endowed with an original
stick gripping and pulling procedure. During pulling, the robot can determine
whether another robot is already gripping the same stick by measuring the
speed of elevation of the gripper arm. If the elevation is fast, the robot assumes
that the stick is free (no other robot holding it) and we call such a grip a
gripl. If the elevation is slow, the robot assumes that another robot is already
holding that stick and therefore “braking” the elevation. Such a grip is called
grip2. When a robot makes a gripl, it holds the stick half out of the ground
and releases it when either the duration of the grip exceeds a gripping time
parameter (which is then considered as a failed collaboration) or another
robot comes to make a grip2. The robot can detect when another robot is
making a grip2 because the force exerted by that robot on the stick leads to
a slight elevation of its arm’s position compared to the arm’s programmed
position. Once the stick is released, the robot turns away, performs obstacle
avoidance for a few seconds, and returns to the search procedure. When a
robot makes a grip2, the pulling of the stick is temporarily braked until the
robot making the gripl releases the stick. The arm eventually reaches the
programmed position, which corresponds to a complete lift of the stick out
of the ground. To mark the successful collaboration, a small “success dance”
(moving the arm up and down) is performed. Like at the end of gripl, the
robot then releases the stick (which has to be replaced in the hole by the
experimenter) and resumes looking for sticks.

Note that, because of the way sticks are recognized (i.e. only by their
thinness), a stick which is held by one robot can only be recognized when ap-
proached from the opposite side within a certain angle (approx. 125 degrees).
For the other angles of approach, both the stick and the robot are detected
and the whole is therefore taken for an obstacle [3].

3 Microscopic and Macroscopic Models

The central idea of both probabilistic modeling methodologies is to describe
the experiment as a series of stochastic events with probabilities computed
from the interactions’ geometrical properties and systematic experiments
with one or, due to the collaborative nature of the stick pulling experiment,
two real robots. Fig. 2 (right) shows a Probabilistic Finite State Machine
(PFSM) or a Markov chain whose state-to-state transitions depends on the
interaction probabilities of a robot with another teammate and with the en-
vironment. As first introduced in [5], while in microscopic models each robot
is represented by its own PFSM, in macroscopic models a single PFSM sum-
marizes the whole robotic team, each of its states representing the average
number of teammates in a particular state at a certain time step. In both
types of models, the robots’ PFSM(s) are then coupled with the environ-
ment. The environment can be considered as a passive, shared resource whose



Modeling Swarm Robotic Systems 5

modifications are generated by the parallel actions of the robots. In order to
compute the arbitrary metric we are interested in (collaboration rate) we
keep track of the modifications of the environment. The mean speed ratio for
this experiment with five robots between microscopic model (implemented
in C) and Webots simulations is about 25’000 on a Pentium III, 900 MHz
machine. That of the macroscopic model (currently implemented in Matlab)
on the same machine is instead of 4 x N x R, N being the total number of
robots in the team and R the total number of runs for obtaining the mean
performance.

3.1 Common Modeling Assumptions and Properties

Both modeling methodologies share common assumptions and properties,
each of them briefly described in turn.

1. Spatial Uniformity - Both methodologies currently rely on the assump-
tion that the coverage of the arena by the groups of robots is uniform.
Robots’ trajectories therefore are not considered in the models. We also
assume that the absolute position of a given object to manipulate in the
arena does not play a role: the object will have the same probability to be
manipulated if it is placed in the center or in the periphery of the arena.

2. Markov Properties - We assume that the robot’s future state depends
only on its present state and on how much time it has spent in that state.
This assumption is correct for a reactive robot controller extended with a
time-out or following a predetermined sequence of actions (e.g. gripping
a stick, dancing) that lasts a certain amount of time. The robots (and
the environment) in the stick-pulling case study clearly obey this Markov
property if we assume that trajectories (i.e. position and heading history)
can be neglected for computing the desired metric.

3. Transition Probabilities - Consistent with previous publications [2—4],
we compute the transition probabilities from a state to another based on
simple geometrical considerations about the interaction (e.g. detection
areas, approaching perimeters). The numerical values used for these geo-
metrical parameters are measured in systematic tests with one or two
real robots, as mentioned above. At each iteration or time step, the prob-
ability that a robot in the search mode will encounter a wall, a stick,
or another robot is determined by their corresponding detection area di-
vided by the whole arena area A,. For instance, the probability of finding
a stick can be computed as p; = Ag/A,, As being the detection area of a
stick. Similarly, p,, = A, /A, and p, = A, /A, represent the probability
of encountering a wall and another robot respectively. Additionally, since
robots can perform a gripl from any angle of approach, pg1 = ps. On the
other hand, since a stick available for grip2 can only be approached from
a certain angle, an additional factor R, based on the approaching-whole
perimeter ratio has to be introduced. The probability of a grip2 event is
therefore pgo = Rypg1. See [3] for more details.
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4. Time Discretization - Consistent with previous publications [2-4],

each iteration of our models correspond to a time step of a finite duration
in real time. The duration of a time step is equivalent to the time needed
for a robot moving with a certain speed V,. and having a certain detection
width W, to cover the area of the smallest object in the arena (in our
case, a stick). Equation (1) shows how to compute the duration T" of one
time step in both modeling methodologies:

p— AS
A

T (1)
All the different average durations measured with one or two real robots,
such as the time for centering on and gripping a stick 7, the duration
of obstacle avoidance 7,, the duration of the interference between two
robots 7;, the duration of the success dance 74, and the gripping time
parameter 7, can also be discretized using the time step 7T'. In this paper,
the numerical values used in the microscopic and macroscopic models are
exactly the same as those reported in [3].

4 Mathematical Description of the Macroscopic Model

The Markov chain depicted in Fig. 2 (right) can also be translated into a set of
difference equations (DE), one for each state, which mathematically represent
the dynamic of the whole system at the macroscopic level. An equation stating
the conservation of the number of robots during the experiment can be also
exploited to replace one of the DEs. For instance, the mean number of robots
in search state N, can be expressed as follows:

Ny(KT +1) = N,(KT) — pgs [Mo — Ny (KT)| N, (KT) @)
—pgaNy(kT)N(kT) — (puw + pr)Ns(KT)
+0g20 (kT — Teda) Ns (KT — Teaa)Ng (kT — Tega)
+Pg20 (KT — 7o) N (kT — Teq) Ny (KT — 7o)
+pg1 O (KT — Tega)[Mo — Ng(KT — Tega)|Ns (BT — Tega)
+pwO (KT — 74 )Ns(kT — 74) + pRO(KT — 7ia ) Ns (kT — Tiq)

k—7q/T
I'= H [1 = pgaNs(JT)|OKT — 740 /T) (3)
j=k—7ga/T
0if kT <71
Q(kT_T)_{lifszT )

where k£ = 0..n, n being the maximal number of iterations, M, the number

of sticks in the arena, Ny the total number of robots, IV, the mean number of
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robots in grlpplng state, pr = (NO_l)pr7 Teda = TetTd+Ta, Tega = Tc+7—g+7—aa
Tea = Te + Ta, Tia = Ti + Ta, and T,y = T + T4. Similar expressions can be
derived for the other states (N, N, Na, Ny, N;) of the PFSM depicted in
Fig. 2 (right).

In other words, (2) tells us that the mean number of robots in search state
at any time is decreased by the robots which transition to a gripping state
(gripl and grip2) and those which start avoiding a wall or a teammate; N
is increased by the robots which come back from a successful collaboration
either as first or second robot, those which come back from an unsuccessful
collaboration, and those which finish their wall or robot avoidance maneuver.
Equation (3) represents the fraction of robots that abandoned the gripl state
after the time spent in this state exceeded their gripping time parameter
T4. As explained more extensively in [5], this is equivalent to calculating the
probability that no other robot came “to help” during the time interval [kT —
Teq, KT']. Step functions © (4) are instead introduced in order to ensure that
delayed factors do not play a role in the DE set when their corresponding time
step would assume negative values. Finally, our team metric, the collaboration
rate Cy, can be computed from the number of successful collaborations C per
time unit over the observation time T%:

C(kT) = pg2O (KT — Teqa) Ns (kT — Teqa) Ng(ET — Teqq) (5)

- v O(kT)

G = k=0 ©)

5 Results

We present the results of several experiments implemented at four different
levels: real robots, embodied simulations, microscopic, and macroscopic mod-
eling. In particular, we investigate the influence of the gripping time parame-
ter and team size. We first investigate the standard experimental conditions
(two to six robots, four sticks distributed symmetrically in an arena of 40 cm
in radius) and we then discuss the influence of several experimental parame-
ters such as the stick distribution, the robot density, and the absolute team
size on the quality of the model predictions. All the real robot experiments
lasted about 20 minutes (duration of the on-board batteries) while those in
simulation 30 minutes (simulated time). Experiments using real robots have
been repeated three times, those using the embodied simulator ten times,
and those using the microscopic model 100 times. At the macroscopic level,
of course, one run suffices, since only the mean team performance can be pre-
dicted. Although the simulation of microscopic models scales at least linearly
with the team size and requires multiple runs in order to deliver statistically
accurate predictions, with small team sizes, their results are quantitatively
accurate (see Fig. 3, left). Macroscopic models base their collective perfor-
mance forecast on one single run whose computation time is independent of
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the number of teammates but with small group sizes their predictions are
only qualitatively correct (see Fig. 3, right).
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Fig. 3. Left: Collaboration rate as a function of the gripping time parameter
for group sizes of two, four, and six robots. Results gathered using real robots
(r¢ = [5,30,100,300] seconds), embodied simulations (74 = [0 : 5 : 300] seconds),
and the microscopic model (74 = [0 : 5 : 300] seconds) are overlapped. Right:
Comparison of the prediction of the microscopic and the macroscopic model for the
same experimental conditions

5.1 Numerical Effects due to the Stick Distribution

Both modeling methodologies assume a uniform distribution of objects on the
arena. As long there are no overlapping detection areas between the objects
(in this case walls, sticks), this assumption is correct. In order to verify this,
we ran several experiments characterized by different stick distributions (see
Fig. 4) using the embodied simulator. In each of these cases, the predictions
of both models were as good as those shown in Fig. 3. The current modeling
methodologies could be also easily adapted in order to take into account
overlapped detection areas. This should be particularly easy for non-mobile
objects. However, subtle effects due to robot clustering and mutual influence
in search and manipulation activities could arise in dense scenarios and, as
we will show in the next section, these effects are more difficult to incorporate
in the models.

5.2 Numerical Effects due to the Team Size and Robot Density

Macroscopic models base their prediction on the validity of the law of large
numbers. Fig. 5 (left) shows that, without changing the density of objects
in the arena (area and number of sticks are also multiplied), it suffices to
multiply the number of robots by four in order to obtain a perfect quantitative
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Fig. 4. Four examples of implemented stick distributions (four sticks, centered and
eccentric distribution; one stick, centered and eccentric distribution)
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Fig. 5. Left: Results of microscopic and macroscopic models for 8, 16, and 24
robots, 16 sticks, and an arena of 80 cm in radius. Right: Comparison of the
predictions obtained using embodied simulations and the microscopic model on an
overcrowded arena (up to 20 robots and arena of 40 cm in radius). For each group

size we plotted the collaboration rate achieved after optimization of 74 (systematic
search)

agreement between microscopic and macroscopic models without changing
any implementation details.

Finally, both modeling methodologies achieve quantitatively correct pre-
dictions based on the assumption that robots are homogeneously distributed
in the arena. As soon as this assumption is no longer valid, such as in an
overcrowded scenario, the current methodologies reach their limitations and
predictions are no longer correct. Fig. 5 (right) illustrates this effect for the
microscopic model. The plot shows a clear discrepancy between the model’s
and embodied simulation’s results for group sizes greater than 12 robots. In
fact, the model predicts that with 13 robots in an arena of 40 cm radius, the
detection area covered by the robots is equivalent to the arena area and there-
fore each robot will continuously avoid its teammates without any chance of
collaborating in stick pulling. The reality is instead that robots form clusters
(overlapped detection areas) and free up space around sticks which can, in
turn, be exploited by other robots for successful collaborations.
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6 Conclusion

In this paper, we have presented microscopic and macroscopic methodolo-
gies based on Markov models for predicting the dynamics of a swarm robotic
system. We have supported the discussion with a specific case study in dis-
tributed manipulation: the stick pulling experiment. The methodologies are
characterized by zero-free parameters, are three or four order of magnitude
faster than embodied simulations, and achieve fairly accurate predictions if
the density of robots is sufficiently low (“gaseous phase”) and boundary con-
ditions (e.g. sticks very close to the wall) do not play a major role in the
metric considered. Future work will include a rigorous investigation of the
role of time discretization in the current methodologies as well as possible
extensions to further case studies characterized by different tasks, environ-
mental features, and robots’ controllers.
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