
  

  
Abstract: In this paper, we present a mathematical model 
of an aggregation experiment carried out using multiple 
embodied agents in teams of time-varying sizes. The 
aggregation experiment is concerned with gathering and 
clustering of small objects initially scattered in an 
enclosed arena. The number of active agents engaged in 
the aggregation task is varying according to a local, 
distributed stimulus-response law, similar to the behavior 
observed in ant colonies. We use a set of differential 
equations to describe the dynamics of the system at the 
macroscopic level. We validate the predictions of this 
model by comparing them to experimental data obtained 
using a sensor-based embodied simulator. Results show 
that the proposed approach delivers accurate predictions 
and constitutes a computationally efficient tool for 
studying aggregation experiments with constant or 
variable group sizes. The simplicity of the model suggests 
that it is easily applicable to other aggregation or 
segregation experiments characterized by different agent 
capabilities and individual control algorithms. 
 
Keywords: multi-agent systems, division of labor, 
aggregation, embodied simulations, self-organization.  

I. INTRODUCTION 
There are two main approaches to control in multi-
agent systems, one centralized and the other 
distributed. This paper contributes to research in 
multiple embodied agent systems based on the latter by 
proposing a mathematical approach for studying such 
complex systems. Swarm Intelligence [3] is a new 
behavioral and control paradigm in the design of multi-
agent systems. It is characterized by the use of large 
numbers of autonomous agents to accomplish tasks 
while relying solely on the collaborative behavior that 

 
 
 

emerges from interactions among agents and between 
individuals and the environment.  
To understand complex biological colonies in general 
and study their inspired applications in multi-robot 
systems, few accurate and computationally efficient 
microscopic or macroscopic models have been 
proposed. While the former describe the individual’s 
interactions with its teammates and the environment 
(see for instance [7,8]), the latter offer a direct 
description of the collective group behavior. Among 
the macroscopic models developed so far, some focus 
on task allocation mechanisms [1,3,12,13], others offer 
a reliable but mostly qualitatively accurate theoretical 
paradigm [6]. In general, the macroscopic models are 
more computationally efficient than their microscopic 
counterparts even if the latter often offer more detailed 
information about the dynamics of the same systems 
they are applied to.  
In the following, we present a mathematical model 
applied to a distributed, multi-agent manipulation 
experiment concerned with cluster formation. This 
approach accurately predicts the quantitative outcome 
of different variables of the experiment. The proposed 
model completes and generalizes a first macroscopic 
model based on difference equations that we 
introduced in [1]. Finally, it has the additional 
advantage of being easily applicable to other 
distributed manipulation experiments such as puck 
clustering [4] and object sorting [9]. 
In the next section, we present the case study, the 
simulation tool used as test-bed, and the object 
clustering algorithm. In section III we introduce and 
apply our methodology to the system. The results and 
discussions are in section IV and the concluding 
remarks are in section V.  
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II. A CASE STUDY: THE AGGREGATION EXPERIMENT 
The aggregation or cluster formation experiment by 
multiple autonomous agents is an excellent example of 
distributed problem solving. It can be roughly 
described as follows: several objects present in a given 
arena are to be sorted and gathered in clusters by some 
autonomous agents [4,7,9]. The particular case study 
we used in this paper is concerned with the use of a 
team of 10 autonomous agents picking up and 
clustering 20 small objects (referred to as “seeds”) 
scattered in an enclosed 80X80 cm arena (see [1,7]). 

1. The Sensor-based Simulator 
We implemented the aggregation experiment in 
Webots 2.0.1, a 3D sensor-based, kinematics simulator 
[10] of Khepera robots [11]. The simulator computes 
trajectories and sensory inputs of the embodied agents 
in an arena corresponding to the physical set-up (for 
examples see Figures 1 and 2). 
The environment consists of an 80x80 cm arena where 
twenty small seeds are randomly scattered at the 
beginning of the experiment. The average speed ratio 
for this experiment with 10 robots between Webots 
and real time is about 7 on a PC Pentium III 800 MHz 
workstation. When programmed in C and using Matlab 
to process the data, the speed ratio of this macroscopic 
model on the same computer as that described above is 
about 3000.   

2. The Aggregation and the Worker Allocation 
Algorithms 

 

 
Figure 1: Close up of a simulated robot (5.5 cm in 

diameter) in Webots equipped with a gripper turret in 
front of a seed. 

 

 
Figure 2: Experimental setup: inner area corresponds 
to the working zone and outer area is the resting zone. 

Aggregation in progress with 10 agents. 
Each agent’s behavior can be summarized by the 
following simple rules. In its default behavior, the 
agent moves straight forwards within the arena looking 
for seeds. When at least one of its six frontal proximity 
sensors is activated, the agent starts a discriminating 
procedure. Two cases can occur: if the agent is in front 
of a large object (a wall, another agent, or the body side 
of a cluster of seeds), the object is considered as an 
obstacle and the agent avoids it. In the second case, a 
small object is considered as a seed. If the agent is not 
carrying a seed, it grasps the seed with the gripper, 
otherwise, it drops the seed it is carrying close to that it 
has found; then, in both cases, the agent resumes 
looking for seeds. With this simple individual behavior, 
the team is able to gather objects in clusters of 
increasing size. A cluster is defined as a group of seeds 
whose neighboring elements are separated by at most 
one seed diameter. Note that, because agents identify 
only the two end seeds of a cluster as seeds (as opposed 
to obstacles), clusters are built in lines.  
The embodied agents described in section II are not 
endowed with the physical capability of knowing when 
the aggregation task is finished e.g., they do not have a 
global perception of the environment. However, each 
of these agents is able to estimate the amount of time it 
spends searching for seeds and relate that individual 
information to the availability of work. This is at the 
core of our current worker allocation mechanism 
described as follows. When an agent has not been able 
to work (i.e. to pick up and drop a seed) for a 
reasonable amount of time that depends on the 
experimental setup, its propensity to accomplish the 
task is decreased. If the amount of time spent in the 
search for work to accomplish is above a given fixed 
threshold (i.e. a Ts time-out), a first deterministic 
switching mechanism prompts the agent to leave the 



  

working zone and rest in the adjacent parking space. 
An agent carrying a seed that decides to become 
inactive cannot do so until it finds an appropriate spot 
(i.e. one tip of a cluster) to drop the seed. A second 
deterministic switching mechanism could allow the 
agent to resume the working activity as soon as the 
resting time has exceeded a Tr time-out. This is not 
necessary if the demand does not increase at any time, 
which is the case with the present aggregation 
experiment. 
Thus, with this simple algorithm with two thresholds 
common to all the teammates, the agents are able to 
locally evaluate the aggregation demand and to decide 
whether to work or rest with no need of a central 
controller (see [1,2] for more details). This task 
allocation mechanism is similar to that observed in 
some ant colonies [5,14] where it has been shown that 
an individual performs a task as long as the level of the 
demand stimulus of the task e.g., a pheromone, 
exceeds its threshold for that particular task [3,13]. 

III. THE MATHEMATICAL MODEL 
The dynamical variables of this model are nk(t), the 
number of clusters of size k, xc(t), the fraction of agents 
carrying a seed, and xs(t), the fraction of agents 
searching for a seed to pick up respectively. In the 
following, we describe the quantitative dynamics of the 
system through a set of differential equations. 

1. Dynamics of the Manipulated Objects 
In subsections 1.1 and 1.2, we present the quantitative 
dynamics of the clusters of seeds and estimate the 
average cluster size at steady state. 
1.1. Dynamics of the Clusters of Seeds 

The general rate equation for any given cluster of size k 
is described by: 
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where W  represents the total number of agents and τ 
the average amount of time an agent needs to pick 
up/drop a seed. Finally, γk

dec and γk
inc corresponds to the 

rate at which an agent encounters and picks up a seed 
from a cluster of size k and drops a seed next to a 
cluster of the same size respectively, if such a cluster is 
present in the arena. It is worth noting that the last two 
parameters are both design and experimental setup 
related parameters as they depend on the area occupied 
by a cluster related to the total area of the environment 
in which the agents are moving and the density of 
obstacles. For instance, if the working area surface is 
simply reduced, the team of agents will encounter 
clusters and obstacles at a higher rate in the new 

environment than in the previous one. Similarly, a 
larger τ will result in a slower aggregation rate, as 
agents will spend longer time to modify clusters. 
On the right hand side of equation 1, the first term 
corresponds to the contribution of the agents that are 
searching for seeds to pick up. These agents can 
increase or decrease the number of clusters of size k by 
removing a seed from one of size k+1 or k. Similarly, 
the second term translates the contribution of loaded 
agents. 
1.2. Steady State Analysis 

As shown by Martinoli et al. [7,8], if the agents do not 
withdraw (i.e. the team size is constant) and do not 
drop a seed unless it is next to another seed or pick up 
an internal seed of a cluster, the number of clusters 
monotonically decreases and eventually a single cluster 
always arises. Based on the assumption above, we 
studied the steady state of the system after a single 
cluster arises. In that state the average number of seeds 
on the arena surface will remain constant. We found 
that the average size of the single cluster in steady state 
(denoted ñ∞) for a fixed team size W is given by: 
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where M corresponds to the total number of seeds in 
the environment, thus the size of the largest cluster 
possible and ρ= γk

inc / γk
dec is a constant for all k < M. 

A more practical way of defining ñ∞ is that it 
represents the average size of the unique cluster 
remaining in the environment as some seeds are 
continuously being picked up from and dropped at its 
two end tips. 

2. Dynamics of the Active Agents 
Following prior work on the group size of active 
workers in multi-agent systems [12,13], we present the 
variation of the fraction of agents instead of the number 
of agents, as this is better suited for generalization and 
scalability purposes. Equation 3 represents the 
dynamics of the fraction of agents searching for seeds 
to pick up. In that equation x(t) represents the fraction 
of agents that withdraw from the task at time t. On the 
right hand side of equation 3, the first term corresponds 
to the variation due to agents that drop seeds and start 
searching for a new one to pick up and agents that stop 
searching for seeds to pick up one they have just found. 
A similar equation gives the dynamics of the fraction of 
loaded agents. 
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We introduce a new approach for estimating x(t) based 
on the manipulation stimulus S(t) associated with the 
aggregation task. In this case study, S(t) is expressed in 
time units and represents the average amount of time 
agents would spend to find a seed to manipulate at time 
t. There are similarities and differences between the 
stimulus as it is defined for this aggregation task and 
the demand stimulus associated with a task carried out 
in an ant colony. As a global information, S(t) is 
similar to the pheromone level present in the ant nest 
that regulates the foraging activity of the colony. 
However, while in the ant nest the stimulus is an 
increasing function of the demand, in our experiment 
the higher is the aggregation demand, the lower is the 
manipulation stimulus since this does not corresponds 
to a pheromone concentration but to the time spent 
before finding a seed to manipulate. Furthermore, the 
distributed nature of our aggregation experiment and 
the absence of explicit communication mechanisms 
among agents, generate differences in the local demand 
estimations. We capture these differences by 
introducing a noise source in the manipulation stimulus 
estimated at the individual level i.e. Ŝ(t). In other 
words, even if all the individuals have the same 
activity-threshold TS (homogeneous team), conversely 
to the common pheromone level permeating the nest of 
an ant colony, our embodied agents do not perceive the 
same manipulation stimulus due to the use of their 
local perception to evaluate it. Hence for a 
homogeneous team of agents, we can express the 
individual estimation of this demand stimulus and the 
fraction of active agents by (4) and (6) respectively. 
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ε(t) represents a white, additive noise. For this 
aggregation experiment, we relate the variation of S(t) 
to the availability of manipulation sites and the number 
of agents present in the arena at time t as described in 
equation 5. In that equation, c(t) and w(t) represent the 
average cluster size and the average number of agents 
present in the arena at time t respectively. λ1 and λ2 
represent the unit increase/decrease of the average 
amount of time that an agent needs to find and 
manipulate a seed present in the arena due to a unit 
increase/decrease of the average cluster size and the 
average number of agents respectively. Note that λ1 is 
in time units per seed and λ2 is in time units per agent. 
More practically as the aggregation process goes on, 
S(t) translates the increasing scarcity of available seeds 
to manipulate and also captures the change in the agent-

to-agent interference rate as the number of agents 
decreases over time. As a comparison, this increasing 
scarcity of seeds to manipulate over time is equivalent 
to the chemical feedback that ants rely on to estimate 
the progress in task performance [5,13,14]. 
In equation 6, Γ(t) is the probability that in response to 
the stimulus an agent remains active at time t and δt 
translates how fast an agent can change from active to 
inactive state. For instance, in this cluster formation 
experiment, an agent needs about 10 seconds to pick up 
or drop a seed and travels at an average speed of 8 
cm/sec. Therefore the average quantity of any 
constituent of the environment changes little over less 
than 10 seconds time. Finally, we use a white Gaussian 
noise of zero mean and variance σ2 as an example. The 
probability Γ(t) is then given by equation 7 where Θ(.) 
is a step function that assures that t >Ts. 
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IV. RESULTS AND DISCUSSION 
In the following we present and compare results 
obtained using the proposed model with the embodied 
simulator presented above. Each aggregation run lasted 
10 hours. We carried out 30 simulation runs using the 
embodied simulator. All error bars represent the 
standard deviations among runs. The mean time to pick 
up/drop a seed i.e. τ was measured from a same 
embodied agent. Then for any cluster of size k, we 
calculated γk

dec and γk
inc by multiplying the probability 

that an agent encounters such a cluster and picks 
up/drops a seed from/at its tips by the seed 
picking/dropping rate measured using the same 
procedure proposed in [7,8]. For the results presented 
below, we hand-coded: Ts=25 minutes, λ1=0.98 
minutes per seed, λ2=0.91 minutes per agent, and 
σ=4.83 minutes. Ts is a design choice (the same in the 
model and the embodied simulator) while λ1, λ2, and σ 
are free parameters of the model.  

1. Aggregation without Worker Allocation 
Without worker allocation, the aggregation 
experiments are characterized by a constant team size, 
i.e. ten active agents from the beginning till the end of 
the experiment. Figure 3 presents the average size of 
the clusters over time. Using the γ-parameters 
calculated above, it comes that ñ∞ ≈ 15.21 seeds, and 
Figure 3 shows that after 10 hours into the aggregation 
process the average cluster size is close to this value 
for both the macroscopic model and the embodied 
simulator.   



  

 

 
Figure 3: Aggregation experiment without worker 
allocation with 10 agents in an 80X80 cm arena. 

Figure 3 shows a first phase when the average cluster 
size increases steadily from 1 seed to about 15 seeds 
and a second phase when the average cluster size 
remains on average constant around 15 seeds. This can 
be explained by the fact that, once a single cluster 
arises, only two manipulation sites remain in the 
environment (i.e. the two end tips of that cluster). 
Since the probabilities of picking up and dropping a 
seed are empirically very close (hence so are γk

dec and 
γk

inc), during that last phase of the aggregation process, 
at any given time, about half of the active workers will 
be carrying a seed and the remaining portion will not.  

2. Aggregation with Worker Allocation 

Figure 4: Aggregation experiment with worker 
allocation with 10 agents in an 80X80 cm arena. 

Figures 4 and 5 show that conversely to the case 
without worker allocation, during the last phase of the 
aggregation, the average cluster size remains an 
increasing function of time eventually reaching 20 
seeds, the optimal largest value possible, while the 
number of active workers in the environment decreases. 
As predicted in section IV.1, reducing the number of 

active agents, consequently increases the size of the 
single cluster during the last phase of aggregation. 

 
Figure 5: Fraction of active agents over time in an 

80X80 cm arena. 

 
Figure 6: Evolution of the task stimulus with and 

without worker allocation 
Figure 6 presents the evolution of the manipulation 
stimulus over time. The upper two curves represent the 
manipulation stimulus for the aggregation experiment 
without worker allocation while the lower curves were 
obtained using worker allocation. In both cases, the 
manipulation stimulus function presents two evolution 
phases. Without worker allocation, the stimulus 
increases from 0 to reach about 15 minutes during the 
first phase and this corresponds to the time when the 
number of manipulation sites decreases from 20 to 2 
seeds. During the second phase the stimulus remains on 
average constant around 15 minutes due to the low 
number of manipulation sites (only two remain and it 
takes longer to find one) and the high agent-to-agent 
interference rate. With worker allocation, the 
manipulation stimulus remains on average smaller than 
in the previous case and slightly decreases during the 
second phase. This is explained by the fact that as there 
are fewer agents, the interference rate is considerably 
reduced and the remaining agents spend less time 



  

finding the remaining manipulation sites. The decrease 
in the demand suggests that agent-to-agent interference 
is predominant when the team size is large.  
Finally, we obtain a good (quantitative) agreement 
between the macroscopic model and embodied 
simulations. Although this was achieved by using three 
free parameters, the significance of these parameters is 
intuitively clear and the model helps to shed light on 
the complex system dynamics resulting simultaneously 
from aggregation and worker allocation.   

V. CONCLUSION 
  

In this paper, we have presented a mathematical model 
for studying aggregation experiments using embodied 
agents in groups of fixed or variable sizes. We have 
validated the predictions of the macroscopic model 
with a realistic, microscopic, embodied simulator. 
Results show that the proposed approach delivers 
quantitatively accurate predictions and constitutes a 
computationally efficient tool. The simplicity of the 
model suggests that it is easily applicable to other 
aggregation or segregation experiments characterized 
by different agent capabilities and individual control 
algorithms. Future work will involve an effort to 
remove the free parameters, to generalize this model to 
a methodology, and to investigate different methods of 
analyzing at the macroscopic level, the noise due to 
agents’ partial perception. 
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