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Abstract 
In this paper, an original automatic design synthesis 
methodology based on evolutionary computation is 
proposed for designing and optimizing distributed embodied 
systems.  To validate the efficacy of this evolutionary 
design methodology, it was applied to an initial case study 
concerned with the configuration of a collective sensory 
system for intelligent vehicles.  Results are presented from 
simulations at different levels of abstraction and different 
traffic scenarios.  The proposed method is able to synthesize 
novel design configurations according to engineering design 
needs and is expected to tackle more complex problems.  

Introduction 
Design has traditionally been a creative process that 
requires human ingenuity and experience.  When the 
design of intelligent vehicles which must assist a human 
driver to improve traffic safety and fluidity is considered, 
the design task is highly complex and characterized by 
severe reliability requirements.  The main challenges 
include, but are not limited to, the following difficulties: 1) 
high, or sometimes even a priori unknown, complexity of 
good design solutions; 2) multiple objectives, competing 
factors, trade-offs and/or simultaneous hardware and 
software optimization requirements; 3) the evaluation 
process and result for a given design solution can be 
intrinsically dynamic and stochastic instead of static and 
deterministic, especially in traffic scenarios.  All these 
problems make it difficult for an engineer, using traditional 
engineering methods, to find a good design solution for 
complex systems such as a traffic system. 

Natural evolution has been an inspiration for 
engineering design researchers to develop automatic design 
synthesis methods able to cope with the difficulties 
mentioned above.  In this paper, an evolutionary 
computation methodology (Martinoli, et al., 2002) is 
proposed for designing and optimizing distributed 
embodied systems.  This method is platform-independent, 
system-oriented, off-line but realistic enough to be 
transported to real hardware.  In comparison to traditional 
hand-coded design, the human engineering effort involved 
is minimized to the mathematical formulation of desired 
performance and to the encoding of real problems in the 
search space of the algorithm.  Selection of algorithmic 
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parameters is also up to the engineer but usually the 
evolutionary algorithms are not very sensitive to the initial 
settings.  Heuristic criteria based on experience are usually 
applied to perform these choices.  As a first case study, the 
problem of designing a collective sensory system for 
intelligent vehicles is considered. 

In the following sections, evolutionary computation 
methods are introduced, along with approaches to adjusting 
the canonical evolutionary algorithms to meet the needs of 
engineering design of distributed embodied systems.  The 
encoding of a given sensory solution is presented next, 
with the simulation tools employed and the fitness function. 
A few sample results obtained in the framework of this 
first case study are discussed, including an outline of the 
limitations of the proposed methodology.  The paper 
concludes with a brief discussion of future promising 
research directions. 

Evolutionary Methodology 
Since the 1960�s, there has been an increasing interest in 
simulating the natural evolution process to solve 
optimization problems, leading to the development of 
evolutionary computation (EC) methods (Goldberg 1989, 
Mitchell 1996) such as genetic algorithms (GA), genetic 
programming (GP), and evolutionary strategies (ES).  The 
idea is to have a pool of candidate solutions evaluated in 
parallel, from which the �fittest� solutions are chosen to 
mate and breed new candidate solutions using stochastic 
operators.  This procedure is iterated until the population 
converges or a preset condition is met. 

Based on GA and ES, the evolutionary optimization 
loop used here is shown in Figure 1.  First, the initial pool 
of solutions is generated randomly.  Then each individual 
is evaluated under an evaluation test for one evaluation 
span.  According to the evaluation results, i.e. the fitness of 
each individual, the parent selection scheme will choose 
pairs of parent solutions for crossover, promoting 
individuals with higher fitness.  Crossover between the 
selected pairs of parents is conducted under certain 
crossover probability to generate pairs of offspring.  
Mutation is also applied to each gene of the original pool 
under certain mutation probability and generates more 
offspring.  If the fitness is deterministic, then only the 
offspring (from both crossover and mutation) is evaluated, 
otherwise the original pool is also re-evaluated.  The best 
individuals are then selected from both the original pool 
and the offspring, i.e. elitist generation selection, to 



constitute the next generation.  Hence an offspring will 
only replace an individual of the original population if it 
has a higher fitness.  At the end of each generational loop 
the program verifies whether or not another generation is 
needed in order to meet a pre-established criterion for 
terminating the evolutionary run. 
 

 
 

Figure 1: The evolutionary optimization loop used in the 
automatic design synthesis process 
 

The three challenges mentioned previously are all 
addressed in this methodology.  First, the encoding allows 
variable-length chromosomes, making it possible to evolve 
design solutions of suitable complexity (appropriate 
number of design parameters) and optimize parameter 
values simultaneously. The crossover and mutation 
operators have to be adjusted from the canonical ones to 
conform with the variable-length chromosome encoding, 
which will be explained below.  Second, various objectives 
and competing factors can be carefully incorporated into a 
fitness function with adjustable weights on each factor, 
whose respective influence on the final design can be 
easily examined.  Third, when the evaluation process and 
result is dynamic and stochastic, as characterized by real 
traffic scenarios, solutions are selected based not only on 
their one time performance but also on their robustness 
through multiple re-evaluations, where the worst result 
over an individual�s life span (the number of generations it 
has survived, also the number of times it has been 
evaluated) is considered to be a better estimate of its actual 
fitness than a single evaluation.  The selection here is 
therefore based on individuals that have been evaluated 
different numbers of times.  This dynamic evaluation 
approach is naturally more computationally expensive than 
a canonical GA, where the fitness is often assumed to be 

static and hence a single evaluation suffices.  However, it 
is more computationally efficient than systematically 
evaluating all offspring for a constant number of times, 
since more computational power is reserved for more 
promising solutions that survived over multiple 
generations.  In order to assess the best individual at the 
last generation, a fair final test is performed consisting of 
100 evaluation spans on all distinct individuals in the final 
population and again the worst result is taken to be an 
individual�s final fitness. 

Case Study 
As a first case study, the evolutionary method was applied 
to a simple problem in a complex (dynamic and noisy) 
environment.  The goal is to determine the optimal 
configuration (such as number, types, and placement) of 
proximity sensors on an intelligent vehicle, in order to 
monitor a pre-established detection region around the 
vehicle in a realistic traffic scenario.  The vehicles 
considered here are circular and unicycle (i.e. single axis 
with two motor wheels), and the detection region is also 
circular, as shown in Figure 2.  An object vehicle is 
considered detected by the collective sensory system if the 
vehicle�s body has overlap with at least one sensor�s 
scanning area. 

Encoding of Sensory Parameters 
Sensors are mounted on the periphery of the vehicles, as 
shown in Figure 2.  The range, the cone of view, and the 
position of the sensors as well as the number of sensors are 
the parameters to be designed and optimized by the 
evolutionary algorithm.  Except for the number of sensors, 
all the other parameters are encoded as real numbers.  The  
 

 
 
Figure 2: Sensor parameters and the detection region: the sector 
shows a sample sensor�s scanning area. 



position of each sensor is characterized by two angles: ϕ 
(the angle between the front direction of the vehicle and 
the radius pointing to the sensor�s mount) and θ (the angle 
between the radius pointing to the sensor�s mount and the 
center line of the sensor�s scanning area).  The sensor 
range ρ and cone of view δ are the other two sensor 
parameters.  With a total of four parameters for each sensor, 
and for a collective sensory system with n sensors, the 
individual would have 4*n parameters for no forced 
symmetry (asymmetric) cases, and 2*n parameters for the 
forced symmetry cases (where the sensor number n must 
be even).  Each parameter range is finite and discretized 
into 400 intervals.  Each sensor also has a cost factor that 
depends on its range and cone of view.  The sensors with 
wider cone of views and longer ranges have a higher cost, 
and the cost formula can be defined according to the reality. 
As an important trade-off factor in the engineering design 
process, the cost is included in the fitness function 
explained below. 
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Figure 3: Graphical representation of the static test (a), the 1D (b) 
and 2D (c) quasi-static tests, and the 1D (d) and 2D (e) full 
coverage tests.  The test vehicle lies at the center and the object 
vehicles are distributed on the periphery ring (for static and 1D 
experiments) or full area (for 2D experiments) of the detection 
zone. 

Evaluation Tests 
To understand the role of the noise in shaping the evolved 
solutions and to find the best and most efficient simulation, 
six different types of evaluation tests are considered in this 
case study: static, 1D/2D quasi-static, 1D/2D full coverage, 
and an embodied test.  Figure 3 and 4 show the details of 
the six evaluation tests.  Static and full coverage tests are 
deterministic tests with static fitness while quasi-static and 
embodied tests are probabilistic tests, where a different 
evaluation result (fitness) will be obtained from each 
evaluation test for one given sensory configuration.  

This seemingly simple case study problem reflects all 
three main challenges mentioned before.  First, the optimal 
number of sensors is unknown; hence the number of design 
parameters is also open and increases with the number of 
sensors in the solution.  Second, the sensor cost and the 
coverage of the detection region are two competing factors 
here, whose relative importance lies in the fitness function 
that leads to a trade-off between the two.  Evolution of the 
vehicle�s behavior/controller together with its morphology, 
i.e. simultaneous software and hardware optimization, will 
also be addressed in the future work, which is shown to be 
more promising than evolving the behavior alone 
(Balakrishnan and Honavar 1996, Bugajska and Schultz 
2000).  Third, the sensory configuration solutions are 
evaluated in various evaluation tests characterized by 
different levels of abstraction of real traffic scenarios, 
including both static and non-static tests.  Currently each 
evolution only uses one evaluation test and the best 
individuals discovered by evolutionary runs under different 
evaluation tests are crosschecked by one form of test in the 
end.  In the future, different tests could be combined into 
one evaluation span, following a hierarchical order of 
difficulty of the tests.  Hence the computationally 
inexpensive tests can be used to quickly eliminate the bad 
individuals, saving more computational time and evolving 
robust solutions. 

Having 20 fixed object vehicles of the same size 
distributed evenly on an external ring within the detection  
 

 
 
Figure 4: Screenshot of the embodied simulator: Webots. 
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Figure 5: 1D (a,c) and 2D (b,d) PDFs generated from the vehicle occurrence data collected in the embodied Webots simulation for 
accumulative 5000 evaluation spans. The vehicles were characterized by different cruising speeds and different initial positions for each 
evaluation span. And they were either not allowed to change lanes (a,b) or allowed to do so (c,d). The front of the vehicles is at 0°/360° 
in (a,c) and x=0, y > 0 in (b,d); while the back is at 180° in (a,c) and x=0, y<0 in (b,d). 
 

zone, the static test (Figure 3a) is computationally the least 
expensive test, but is quite different from the actual traffic 
scenario. On the other hand, the embodied test, performed 
using Webots, a sensor-based, 3D mobile robot simulator 
(Figure 4, refer to www.cyberbotics.com), is currently the 
most realistic level of simulation but is at least three orders 
of magnitude more computationally expensive than the 
simplest static test.  Table 1 shows the approximate relative 
time cost of the six types of evaluation tests.  Sample 
traffic scenarios are simulated in Webots, where the 
simulated robots are the test and object vehicles considered.  
The sensors and actuators simulated are characterized by 
realistic noise values.  Simple but realistic driver behaviors 
are implemented for each vehicle with different cruising 
speeds and random initial positions for each evaluation 
span.  The drivers are either allowed to change lanes, or 
not, characterizing the two different traffic scenarios 
simulated.  Currently the driver behavior is always 
attentive and reactive: they maintain a safe distance in 

front of the vehicle, keep the vehicle in the lane, and 
change lanes only when it is safe and they are allowed to 
do so. 

The one-dimensional (1D) and two-dimensional (2D) 
quasi-static and full coverage tests are based on the 1D/2D 
probability density functions (PDFs) (see Figure 5) 
generated from the vehicle occurrence data collected in a 
more expensive (computationally and/or financially) and 
realistic environment for a sufficiently long period of time, 
such as the embodied simulation or real road tests.  
Currently the PDFs used were generated from the data 
collected from the embodied simulation for 5000 
evaluation spans.  Only the approaching angle of the object 
vehicles is considered in a 1D PDF, while the relative 
distance of the approaching object vehicle is additionally 
considered in a 2D PDF.  In quasi-static tests, the PDF is 
used to generate the random occurrences of object vehicles 
on an external ring (1D, Figure 3b) or multiple concentric 
rings (2D, Figure 3c) within the detection region.  In full 



coverage tests, the object vehicles are placed 
systematically along the external ring (1D, Figure 3d) or 
multiple concentric rings (2D, Figure 3e) within the 
detection region, while the same PDF is used to weigh the 
fitness at each object position, as explained next. 

Table 1: Approximate Relative Time Cost of the 
Evaluation Tests 

Evaluation Tests Relative Time Cost 
Static 1.0 
1D Quasi-static 9.4 
2D Quasi-static 77 
1D Full Coverage 4.1 
2D Full Coverage 257 
Webots 6686 

Algorithmic Parameters and Fitness Function 
In this case study, a parent selection based on a roulette 
wheel scheme, with an elitist generation selection, one-
point crossover, and a uniform mutation, was adopted.  For 
the variable-length chromosome cases, insertion and 
deletion are also used as mutation operators, in addition to 
the normal mutation, to change the lengths of 
chromosomes.  The one-point crossover had to be modified 
to ensure proper crossover operation between parents with 
chromosomes of different lengths. 

One possible solution is to identify each gene in the 
chromosome with a value chosen from a preset range, over 
which the crossover point is randomly chosen and divides 
the chromosomes into two sections to be swapped 
according to the identifying values (Lee 2000).  Another 
solution is to introduce families of chromosomes, i.e. sets 
of solutions with same number of genes, and crossover is 
only allowed between members of the same family (Mark, 
Polani, and Uthmann 1998).  Since the latter method 
restricts the crossover between two individuals of different 
lengths, the principle of the first method was applied in this 
case study.  

In the sensory configuration case study, the parameters 
belonging to one sensor can be considered as one gene in 
the chromosome that encodes a collective sensory system.  
The crossover point is taken randomly along the periphery 
ring where the sensors are mounted, and the sensors of the 
parents between the crossover point and the start point are 
swapped in the crossover operation (Martinoli, et al., 2002). 

Table 2: Algorithmic Parameters 

Parameters Values 
Population Size 50 
Selection Scaling Factor 2 
pcrossover 0.2 
pmutation 0.182 
pinsertion 0.05 
pdeletion 0.05 

 

Table 2 presents the numerical parameters used in the 
evolutionary algorithm.  The probabilities of genetic 
operators are fixed during an evolutionary run and are 
calculated per genetic individual (chromosome). 

The fitness function used is as follows: 
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where a is a weighting factor that decides the relative 
weight of Cost and Coverage; n is the number of sensors 
used in the current sensory configuration; costi is the ith 
sensor�s cost, which  is calculated based on the sensor�s 
cone of view and range; V is the number of vehicles 
effectively appeared within the detection region (i.e. their 
centers were within the detection region shown in Figure 2) 
during the evaluation span; ki  is 1 if the object vehicle i is 
detected, 0 if it is not.; and αi and ri are the angle and the 
distance of the ith vehicle relative to the test vehicle.  Under 
the full coverage tests, the PDFs are those shown in Figure 
5.  Under all other test conditions, the PDF in the fitness 
function is independent of the angle and distance, and is 
therefore equal to 1/V for all possible cases. 

Results 
Evolutionary runs based on the static, 1D quasi-static and 
1D full coverage tests were repeated 20 times with  
different random number generator seeds and terminated 
after 200 generations for each run; 2D quasi-static and 2D 
full coverage evolutionary runs were repeated 10 times and 
stopped after 200 generations; embodied evolutionary runs 
were repeated 5 times and comprised 100 generations each.  
These values were selected upon consideration of the 
relative computational cost of the different levels of 
simulation (refer to Table 1).  The number of sensors is 
either evolved by the algorithm or pre-established (in this 
case, six sensors).  

For the evolutionary runs with variable number of 
sensors, the initial population has solutions with a 
randomly chosen number of sensors from 1 to 20. 

Figure 6 shows an example of an evolutionary run under 
the 2D full coverage test based on the 2D traffic PDF 
shown in Figure 5d, with forced left-right symmetry on the 
configuration of the collective sensory system (the sensors 
lying close to the symmetry axis itself are mirrored to the 
opposite end as shown in Figure 7).  Figure 6a shows the 
evolution of the mean of the population fitness and its two 
components (cost and coverage) over 200 generations, 
while Figure 6b shows the evolution of the population 
diversity, expressed by the mean and standard deviation of 
each individual�s distance to the center of the mass of the 
population at each generation.  Note that the diversity plot 
is omitted for the evolutionary runs with variable number  
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Figure 6: Example data of an evolutionary run of 200 generations with fixed six sensors under a 2D full coverage test based on a PDF 
shown in Figure 5d with enforced symmetry on the sensory configuration.  a) Evolution of the mean of the population fitness, cost and 
coverage over generations. b) Evolution of the population diversity, expressed by the mean and standard deviation of each individual�s 
distance to the center of the mass of the population. 
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Figure 7: The best phenotypes achieved by evolutions with 
variable number of sensors and forced symmetry under 2D full 
coverage test (a,b) and the embodied test (c,d).  The 2D full 
coverage test (a) and (b) are based on the 2D PDFs shown in 
Figure 5b (lane-changing prohibited) and 5d (lane-changing 
allowed) respectively.  Accordingly, the vehicles simulated in the 
embodied test are either prohibited to change lanes (c) or allowed 
to do so (d).  The sectors show the sensor scan areas; the small 
solid circle at the center is the test vehicle considered and its front 
is on the top of the picture; and the two (inner and outer) big dash 
line circles show respectively the center line and outer edge of the 
object vehicles that are on the outer edge of the detection region.  

of sensors, since it is not straightforward to define the 
center of mass for a pool of individuals of different lengths. 

Figure 7 shows four samples of the best phenotypes at 
the last generation of evolutionary runs under the 2D full 
coverage test based on the 2D traffic PDFs and the 
embodied test, both under lane-changing and non-lane- 
changing conditions.  Note that the PDFs used in the 2D 
full coverage test of Figure 7a and 7b were generated by 
the corresponding embodied scenario used in Figure 7c and 
7d.  Only the cases with variable number of sensors and 
forced symmetry on sensory configurations are shown here 
due to the space limit. 

It is interesting to notice that the evolved solutions are 
quite similar under different traffic conditions: with and 
without lane-changing, especially in the 2D full coverage 
case.  Although the best phenotypes shown here from the 
2D full coverage evolution have six sensors, while the best 
phenotypes evolved under the embodied simulation have 
eight sensors, Figure 8 shows that they achieved 
comparable performances in both the 2D full coverage and 
embodied cross tests. 

Figure 8 also shows a comparison of the performances 
of the best individuals (and sometimes also the most 
popular) at the last generation under different phenotypical 
constraints (forced symmetry (Sym) on the sensory 
configuration or not (Asym), fixed six (6) or variable 
number (V#) of sensors) and under different final 
evaluation tests.  The 1D/2D quasi-static and full coverage 
evaluation tests used the non-lane-changing 1D/2D PDFs 
shown in Figure 5a and 5b respectively and the traffic 
conditions in embodied simulations were the same as those 
used to record the PDFs.  In the histograms shown in 
Figure 8, the height of a column represents the average 
value, while error bars and triangular marks respectively 
correspond to the standard deviation and the maximum 
value over different runs with different random seeds of 
the same evolutionary experiment. 



 
(a) 
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Figure 8: Performance of the best individuals from different evolutionary runs at the last generation under various final tests.  (a) 
Individuals evolved under one specific evaluation test are tested under the same evaluation final test. (b) The number of sensors used by the 
best individuals of the last generation in the variable number of sensors cases.  Individuals evolved under each of the six evaluation tests 
are then finally evaluated under the 2D full coverage test (c) and the embodied test (d). 
 

Figure 8a reports the results of a �native� final test for 
each evaluation form: for instance, if an individual was 
evolved in a 1D quasi-static environment, the performance 
plotted was recorded during a 1D final quasi-static test.  
Note that for the deterministic evaluation tests (i.e. static 
and full coverage tests), a final test is just a single 
evaluation test (no need of repetitions); while for stochastic 
evaluation tests (i.e. quasi-static and embodied tests), a 
final test contains 100 evaluation tests and the worst result 
is taken to be the final test result. 

Figure 8b shows the number of sensors used by the best 
individuals at the last generation and provides an 
approximation of the optimal number of sensors under the 
current variety of conditions.  This is also the reason why 
six was chosen to be the number of sensors in the cases of 
synthesis with a pre-fixed number of sensors. 

Figure 8c and 8d crosscheck the performance of 
individuals evolved in different environments under the 
same final evaluation.  In Figure 8c all the best individuals 
have been tested using the 2D full coverage test while in 
Figure 8d all the best individuals have been evaluated 
using the embodied final test in Webots. 

It is interesting to notice that the two cross tests show 
very similar trends for qualitative comparisons among 
results from different evaluations, although the two tests 
are quite different: one being deterministic with just a 
single evaluation test and the other being probabilistic with 
100 evaluation tests of expensive embodied simulations.  
Moreover, the 1D/2D full coverage and quasi-static 
evolutions achieved almost interchangeable performances 
in most cases, with the 2D cases slightly better than the 1D 
cases, although the PDFs are used quite differently in the 
two types of evaluation tests, as explained before.  



Furthermore, as expected, the static test is the simplest but 
has the worst performances in the cross tests due to lack of 
traffic information.  On the other hand, significant 
differences are not observed between the results achieved 
by the embodied evolution and other types of evolutions, 
except for the static evolution.  The results from 2D full 
coverage and quasi-static evolutions almost always 
outperformed the embodied one, which suggests that the 
computationally expensive embodied test could be 
replaced by simpler and faster evaluation tests without 
compromising the performance of the evolutionary results. 

In addition, Figure 8 also shows that enforcing 
symmetry does not necessarily improve the quality of 
performances achieved at the end of evolution.  Enforcing 
symmetry (and therefore reducing the search space to half) 
usually only shortens convergence time but does not lead 
to major difference in performance at the end of 
evolutionary runs, since 100 or 200 generations is a long 
enough period to discover good solutions in asymmetric 
cases.  In addition, major difference are not observed 
between the performances achieved in the fixed 6 sensors 
cases and the corresponding variable number of sensors 
cases.  Hence the exact optimal number of sensors does not 
have to be known beforehand, the algorithm will discover 
that.  Finally, it is likely that there exist multiple good 
solutions with different numbers of sensors that achieve 
nearly the same level of performance in the evaluation tests, 
as those shown in Figure 7. 

Conclusion and Outlook 
This paper presents an original automatic design synthesis 
method based on evolutionary computation and validates 
its efficacy on a case study concerned with the 
configuration problem of a collective sensory system.  The 
canonical evolutionary algorithms have been modified to 
fit the needs present in the modern design challenges and 
to improve the computational efficiency.  Several levels of 
static and non-static simulations of two traffic scenarios 
were introduced and sample data results were presented: 
noisy and time-consuming, but realistic embodied 
simulations can be apparently replaced by more abstract 
and therefore computationally efficient simulations without 
compromising the quality of the final results.  

Although more work needs to be done to improve the 
algorithm efficiency and to understand the role of noise 
and simulation level on the final evolved solutions, the 
results reported in this paper appear promising.  The 
proposed design synthesis methodology is expected to be 
able to address more complex problems and challenges 
faced by modern engineering design researchers.  In the 
near future, more realistic elements at the sensory and 
vehicle level as well as more emergency traffic scenarios 
will be introduced.  More complex metrics and fitness 
functions that involve the vehicle dynamics and traffic 
safety will be developed and investigated.  It is anticipated 
that, when the number of design parameters is large and 
when noise is involved, the evolutionary design could be 

superior to traditional design methods in terms of solution 
quality and engineering efforts. 
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