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19 Abstract

20 Large amounts of toxic metals are discharged into rivers and lakes, but little is known about the 

21 factors that drive the adsorption and transformation of these metals in the hyporheic zone and the 

22 exchange flux across the sediment-water interface. To better understand transport and 

23 transformation of metal ions in the hyporheic zone, flume experiments and numerical simulations 

24 were performed in a streambed with periodic bedforms using zinc ions. Compared to non-adsorbing 

25 contaminant, the results show that adsorption leads to a more rapid decrease in the concentration of 

26 Zn2+ in the overlying water, and a lower final concentration is reached. The mass of adsorbed ions is 

27 several times higher than that of free ions in the bedform’s water phase. Indeed, metal adsorption is 

28 in the shallow layer of the streambed. Although this prevents heavy metal groundwater 

29 contamination, the same cannot be said of shallow layer of the hyporheic zone. Knowledge of the 

30 migration and transformation of metal ions in the hyporheic zone provides insights pertinent to the 

31 restoration of polluted rivers.

32 Keywords: Metal ions; Zinc ions; Hyporheic exchange; Adsorption; Flume experiment; Numerical 

33 simulation
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34 1. Introduction

35 Metals have been used by humans for thousands of years [1], and a large amount of metals are 

36 discharged from domestic [2,3] and industrial sources [4-6] into rivers and lakes [7,8]. It is noted 

37 that some of these metals, especially heavy metals [9-11], are driven by hydrodynamic forces 

38 [7,8,12]. They are transported and retained in aquatic and hyporheic ecosystems [13] for long 

39 periods as they are difficult to degrade [14,15]. These toxic metals may cause protein denaturation, 

40 enzyme inactivation and DNA damage [16,17] and thus pose a threat to aquatic ecosystems [18,19] 

41 and humans [20]. 

42 The hyporheic zone provides an area for surface water-groundwater exchange [21,22], transport 

43 and transformation of nutrients and trace metals [23,24] and is a habitat for aquatic biota [25,26]. It 

44 can act as a physical, chemical and biological filter to transform pollutants [27]. Notably, metallic 

45 pollutants are likely to be released back to the overlying water from the hyporheic zone under 

46 hydrodynamic forcing, thereby causing secondary pollution [28,29].

47 Manganese and iron oxides attached to sediments can increase the removal rate of trace metals 

48 and heavy metals as they may provide additional sites for adsorption [30,31]. Fuller and Bargar 

49 [32] investigated the distribution of zinc (Zn) and manganese oxides in Pinal Creek, Arizona, by 

50 field sampling and found attenuation of zinc is affected by biogenic manganese oxides in hyporheic 

51 zone. Peña et al. [33] found in their bacterial culture experiments that Ni could be effectively 

52 scavenged by bacterial biomass-birnessite assemblages. However, they mainly focused on the 

53 mechanism of metal adsorption-desorption rather than their transport in the hyporheic zone. Ren and 

54 Packman [34,35] conducted flume experiments to investigate the stream-streambed interface flux of 

55 dissolved Zn, Cu and phosphate in the presence of colloids, and found that adsorption had a 
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56 significant effect on metal transport in the hyporheic zone. They examined the exchange rate of ions 

57 between stream and streambed, but did not consider the distribution pattern of ions in the streambed. 

58 Palumbo-Roe et al. [36, 37] investigated the sources of metals in the hyporheic zone and found that 

59 the natural attenuation of metals in the surface water of a contaminated urban river was limited by 

60 poor connectivity of the hyporheic zone, but the transport pattern of metals in hyporheic zone 

61 remains unclear. Some previous studies also provide valuable insights into factors driving the 

62 adsorption and transformation of metals, and found that metal sulfide deposits and bacteriogenic 

63 sulfides in river sediments enhance the adsorption of heavy metals, while high sediment 

64 permeability prevents accumulation of heavy metals in riverbeds [38]. The transformation of metals 

65 in the hyporheic zone is influenced by water movement, permeability, substrate particle size, 

66 resident biota, and the physiochemical features of the overlying stream and adjacent aquifers [39]. In 

67 spite of this, these previous studies concentrated more on the surface water and interface exchange 

68 in rivers, but not on the inner area of the hyporheic zone.

69 In order to better understand transport and fate of metal ions in the hyporheic zone, flume 

70 experiments and simulations are investigated here. We describe experiments with flow over a 

71 streambed with periodic bedforms, which induces interactions between the bed and the overlying 

72 water, i.e., the flow/bedform interaction generates hydraulic gradients that drive pore water flow in 

73 the hyporheic zone (Fig. 1a, b). Zn2+ ions are used as the transported metal within the overland flow 

74 [34,35], while the bedforms are triangular, similar to previous experiments [40,41,42]. Given that 

75 the transport of metal ions in the streambed is determined by pore water flow and adsorption (Fig. 

76 1c), the main purpose of this study is to investigate 1) how does adsorption affect the transport of 

77 metal ions in the streambed? and 2) what are the transport and distribution characteristics of metals 
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78 in the hyporheic zone?

79 2 Laboratory experiments

80 2.1 Flume and sand

81 Experiments were conducted in an indoor recirculating flume for physical modeling of a river 

82 with uniform triangular bedforms (Fig. 1a). The wall of the flume is made of transparent glass, 

83 permitting imaging of the experiments. The effective length of the sand bed is about 10 m; its height 

84 varied from 12.0 cm at the trough to 14.0 cm at the crest (Fig. 1b, Table 1); the average overlying 

85 water depth was 8.22 cm (Table 1). A transducer was installed at the tail end of the flume for 

86 monitoring the temperature, conductivity, pH and salinity of the overlying water.

87 The bedform was made of silica sand from the Yangtze River, which was sieved to 0.25 - 0.60 

88 mm with a median grain size of d = 0.387 mm. The bulk porosity (θ) was measured as 0.33 with the 

89 water evaporation method. The saturated hydraulic conductivity was K = 8.84 × 10-4 m s-1, 

90 determined using the constant-head method. Both properties were assumed to remain constant 

91 during the experiments [43]. Before the experiments, the sand was washed to remove metal ions, 

92 oxides, organic matter and other impurities [44]. The sand washing steps were: 1) Washing with 

93 deionized water four times, 45 mins each time; 2) washing with an acidic solution at pH 3.5 for 8-9 

94 h; 3) repeat the washing in step 1 three more times; 4) repeat step 2 with a solution at pH 10.5; 5) 

95 repeat step 1 three times. In the experiments, the pH of the flume effluent was 6.8. 

96 2.2 Experiments and measurements of Zn2+ concentrations

97 The washed sand was packed into the flume, then the bedform stability was checked by 

98 overland flow. Subsequently, NaCl was added to the overlying water to give an initial ionic strength 

99 of 7.5 mM based on previous work [44]. Buffer (NaHCO3 solution) was added to maintain the pH 
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100 around 7 in the flume surface water. Finally, ZnCl2 solution was uniformly added to the flow. The 

101 experiment lasted for about 3 d, during which 400 ml of deionized water was added every 4 h to 

102 replace evaporated water. The pH was monitored periodically and maintained using buffer solutions. 

103 During the initial 30 min, the overlying water was simultaneously extracted from three different 

104 positions (entry, midpoint, exit) of the flume. After 30 min, it was extracted only at the exit of the 

105 flume because the solute was almost uniform in the overlying water [44]. In addition, 0.25 mL of 

106 pore water was extracted from sampling points (Fig. 1b) using Hamilton (Switzerland) micro-

107 samplers (outer diameter: 0.72 mm; inner diameter: 0.15 mm; length: 51 mm). Then, samples were 

108 placed in a 4-mL glass bottle and diluted with 2 mL of deionized water. The NaCl samples were 

109 measured in situ using electrical conductivity (EC) assuming a linear relationship between 

110 concentration and EC [42]. For zinc, sample vials were sealed and refrigerated for subsequent 

111 measurement using ICP-MS.

112 3. Numerical simulations, adsorption models and coefficients

113 Stream water flow, pore water flow, and reactive and nonreactive solute transport in the 

114 streambed were simulated based on one-way sequential couplin [41,45-47]. Stream water flow was 

115 computed using the 2D CFD package, FLUENT, based on the Reynolds-Averaged Navier-Stokes 

116 equations together with the k-ω turbulence closure scheme [44]. The predicted pressures at the bed 

117 surface were used as boundary conditions in a 2D COMSOL-based model for simulation of pore 

118 water flow and reactive and nonreactive solute transport in the streambed. The pore water flow was 

119 modeled using Darcy’s Law and the continuity equation for incompressible flow in a non-

120 deformable medium based on boundary conditions described by Jin et al. [44]. Finally, the transport 
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121 of reactive and nonreactive solutes was simulated based on the pore water flow field. The mesh 

122 selection is discussed in Section S1 (S refers to Supplementary Material).

123 3.1 Pore water flow

124 COMSOL Multiphysics was used to model the flow and solute transport in the bed. The pore 

125 water flow is governed by the combination of Darcy’s Law and the continuity equation for 

126 incompressible flow in a non-deformable medium, and thus the groundwater flow can be described 

127 as (constant fluid density assumed):

128 (1)0i

i

u
x






129 (2)i
i

K hu
x


 



130 where θ (-) is the volumetric porosity, K (m s-1) is the hydraulic conductivity, (i = 1, 2) is the iu

131 pore water flow velocity component in the  (i = 1, 2) direction and h is the hydraulic head. 𝑥𝑖

132 Simulation parameters are shown in Table 1 and boundary condition are shown in Fig. S2a.

133 3.2 Mass transport

134 The linear adsorption equilibrium adsorption [48], were considered in the simulation. The 

135 linear isothermal adsorption equation is described as [34],

136 (3)adS K C

137 where S (kg kg-1) is the adsorbed mass per bulk mass, C (kg m-3) is the equilibrium concentration of 

138 contaminants in the pore water, Kad (m3 kg-1) is the equilibrium constant for linear adsorption. The 

139 linear adsorption model satisfactorily describes this experiment (Section 4).

140 Using Eq. 3, the zinc ion transport is given by:

141 (4)(1 )b
ad ij i

i j

C CK D u C
t x x
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142 where ρb (kg m-3) is the bulk density and  (m2 s-1) is the 2D dispersion coefficient tensor:ijD

143 (5)( ) ( ) /ij T e ij L T i jD u D u u u      

144 Here,  and  are the longitudinal and transverse dispersivities, respectively;  is 𝛼𝐿 𝛼𝑇
2 2
1 2u u u 

145 the magnitude of the pore water flow velocity; and De is the effective molecular diffusion 

146 coefficient.

147 3.3 Boundary conditions for mass transport

148 The boundary conditions for metal ion transport were set as follows (Fig. S2): (1) periodic 

149 conditions with C(0, ,t) = C(L, ,t) and  were imposed on 2x 2x 2 2 2 2(0,  , ) / ( ,  , ) /C x t x C L x t x    

150 the lateral boundaries (x1 = 0,L) of the domain. Note that only one bedform was simulated as the 

151 processes and conditions for different bedforms were assumed to behave similarly; (2) a no-flux 

152 condition was imposed on the bottom boundary of the domain, giving a zero concentration gradient 

153 [49,50]; and (3) the following boundary conditions were imposed along the 
2

2 0
/ 0

x
C x


  

154 sediment-water interface:

155 (6)
                0

0               0

tC C
C
  




   

n u

n u
n

156 where n is the unit vector normal to the interface (pointing inward), u is the flow velocity vector of 

157 metal ions, and  (kg m-3) is the concentration of metal ions in the overlying water at time t. The tC

158 overlying water in our experiments was well mixed and hence a spatially uniform concentration was 

159 assumed along the flume. However,  varies with time due to mass exchange between the tC

160 overlying water and the bed:

161 (7)
 0 1 2 1 2( , , ) ( , , )

,o b
t

o

C V B C x x t S x x t dA
C

V
  

 

162 where Vo (m3) is the total water volume in the flume system excluding Vp (pore water in the 
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163 streambed),  and  are, respectively, the simulated concentrations of metal ions 1 2( , , )C x x t 1 2( , , )S x x t

164 in the pore water and adsorbed metal ions in the sand at location and time t, B (m) is the  1 2,x x

165 width of the flume, and A (m2) is the area (on the  plane shown in Fig. S2) of the bed in the 1 2x x

166 flume. The integral in Eq. 7 gives the mass of ions retained in the bed.

167 3.4 Calibration of equilibrium constant (Kad)

168 Batch adsorption experiments were conducted to obtain the equilibrium constant for linear 

169 adsorption (Kad). First, 150 g of dried sand was added to 150 mL of 7.5 mM NaCl solution, then 

170 Zn2+ (at various initial concentrations in the range 0.010-0.040 mM) was added keeping the pH 

171 (range 2-9) fixed (NaHCO3 buffer). The resulting mixtures were shaken for 48 h in order to reach 

172 equilibrium. The adsorption time of Zn2+ ions was determined before the batch adsorption 

173 experiments (Fig. 2a).

174 Exchange of Zn2+ with the soil is assumed to follow the reaction [34]:

175 (8)2+ + +SiOH+Zn SiOZn +H

176 where SiOH is the surface hydroxyl species of silica sand, and SiOHZn+ are adsorbed phase Zn2+ 

177 ions. The equilibrium constant (KZn) of this reaction is [51]:

178 (9)
+ +

0
2+

0

[SiOZn ][H ] exp
[SiOH][Zn ]Zn

FK
R T




179 where F (96493.5 J V-1 eq-1) is the Faraday constant, Ψ0 (V) is the potential on the surface of silica 

180 sand, R0 (8.3147 J mol-1 K-1) is the gas constant, T (°K) is the temperature and the brackets indicate 

181 activity. As [SiOH] = 1, Eq. 9 can be converted into (base 10 logarithm):

182 (10)+ 2+0

0

log( ) - log(exp ) + pH log[SiOZn ] - log[Zn ]Zn
FK
R T
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183 Later, we use  in this expression.0

0

 = log( ) - log(exp )Zn
FK
R T


184 The adsorbed proportion (PST) is defined as the ratio of adsorbed mass to the total mass 

185 (assuming activities can be replaced by concentrations):

186 (11)
+

+ 2+

[SiOZn ]
[SiOZn ] [Zn ]STP 



187 Using Eq. 10 and approximating activities by molarity reduces Eq. 11 to:

188 (12)𝑃𝑆𝑇 = (1 + 10 ‒ 𝜑 ‒  pH) ‒ 1

189 The fits of this equation to the measured adsorption data are found in Fig. 2b, which involve fitting 

190 φ. For the conditions of the flume experiment (φ = -6.003, CM0 = 0.036 mM, pH = 6.8), the adsorbed 

191 proportion PST = 0.8622. The equilibrium constant for linear adsorption is then found using:

192 (13)𝐾𝑎𝑑 =
𝜃
𝜌𝑏

𝑃𝑆𝑇

1 ‒ 𝑃𝑆𝑇

193 4. Results and Discussion

194 The concentrations of NaCl and Zn2+ in both overlying water and pore water were measured 

195 and simulated with the transport model described above. The effects of the dispersion coefficient (α) 

196 and equilibrium constant (Kad) on the transport of metal ions are then examined.

197 4.1 NaCl and Zn2+ concentrations in the overlying water

198 The NaCl concentration in the overlying water decreased rapidly during the first 5 h of the 

199 experiment (Fig. 3), which can be attributed to the rapid migration of NaCl from the overlying water 

200 to the shallow area of the bedform with a large pore water velocity and associated solute migration 

201 flux. However, as the solute front passed through the shallow area, the NaCl concentration in the 

202 overlying water decreased more slowly. Finally, the value of C/C0 for NaCl reached a stable level at 

203 around 0.75. Given that there is no adsorption or reaction of NaCl, NaCl would be uniformly 
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204 distributed in the whole system after an infinite time, i.e., Vo/(Vo + Vp) = 0.75. A more dramatic 

205 decrease is noted for the Zn2+ concentration in the overlying water as it is driven by both advection 

206 and adsorption. For Zn2+, the normalized concentration (C/C0) reaches a stable level lower than 0.40 

207 (Fig. 3), which is much lower than that of NaCl due to the adsorption of Zn2+ by the streambed.

208 4.2 Variation of Zn2+ concentration in the bedform

209 The measured and modeled Zn2+ concentrations in the monitoring profiles N1 and N2 (Fig. 

210 1b) at different times are shown in Fig. 4. The modeled results generally compare well with the 

211 measurements. Two characteristic coefficients are introduced to describe the intrusion of NaCl and 

212 Zn2+, the maximum-initial concentration ratio (Rm = Cm/C0) and intrusion depth (Din), where Cm is 

213 the maximum concentration in a monitoring column at a specific time, and Din is the depth at which 

214 the concentration is Cm/2 (Fig. S3).

215 The simulated Din of Zn2+ is much shallower compared with measured Din at 25 min and from 

216 123 - 1825 min the measured and modeled Din are almost at same level regardless of errors (Fig. 4a), 

217 possibly because of the assumption of equilibrium adsorption of Zn2+ used in the model (Fig. 2a 

218 suggests the characteristic time of the adsorption kinetics to be 10-20 mins). Both the measurements 

219 and simulations show that the Zn2+ profiles have lower concentrations near the surface boundary 

220 than the maximum concentration measured in the streambed. This occurs due to the continuous 

221 reduction of the Zn2+ concentration in the overlying water [52]. The simulations of zinc 

222 concentrations in the streambed reflect this change, i.e., the initial high concentration in the stream 

223 result in higher concentrations deeper in the streambed, and lower concentrations near the stream-

224 streambed boundary. The same behavior occurs in the NaCl case, although the reduction in the 

225 concentration near the top of the streambed is not obvious. For the concentration distribution in the 
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226 whole bedform, the intrusion area increases and the maximum concentration decreases (Fig. S4) 

227 over time. For the linear adsorption isotherm, the distributions of C/C0 and S/S0 are the same (Fig. 

228 S5).

229 The Rm values show a rapidly increasing trend at the beginning of experiment and then slowly 

230 decrease, while the magnitude of Din increases with time for both NaCl and Zn2+ (Fig. 5). When 

231 comparing the differences between NaCl and Zn2+, the Rm values for NaCl are larger than those of 

232 Zn2+. As well, the corresponding Din values are also greater, as expected, due to adsorption of Zn2+ 

233 (Figs. 4, 5). When comparing the differences between profiles N1 and N2, the curves for both Din 

234 and Rm are obviously delayed (Fig. 5). A sharp decreasing trend is observed at the end of the NaCl 

235 curves in Fig. 5b, because the solute has reached the bottom of the profile but the intrusion depth 

236 (Din) has not reached the bottom (Figs. S3c).

237 4.3 Variation of Zn2+ mass in three phases

238 Fig. 6 illustrates the trends of Zn2+ mass in three phases: overlying water, pore water and 

239 adsorbed to the streambed. Fig. 6a shows the modeled predictions for each phase, as well as Zn2+ in 

240 the overlying water from measurements (assumed to be well mixed [42]). The mass of Zn2+ ions 

241 decreases in the overlying water but increases in pore water as the adsorption is assumed to be 

242 instantaneous (Fig. 6a). The mass of Zn2+ in the overlying water decreases rapidly in the first few 

243 hours of the experiment, then reduces more slowly. Correspondingly, the mass of Zn2+ in the pore 

244 water and adsorbed phase show opposite trends. Because of instantaneous sorption, the adsorbed 

245 mass of Zn2+ is 6.26 times of the mass in pore water (Fig. 6b), as computed from:
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𝑃𝑆𝐶 =
𝑚𝑎𝑠𝑠 𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑 𝑡𝑜 𝑠𝑜𝑖𝑙

𝑚𝑎𝑠𝑠 𝑖𝑛 𝑝𝑜𝑟𝑒 𝑤𝑎𝑡𝑒𝑟 =

∫
𝑚

𝑆 𝑑𝑚

∫
𝑉𝑝

𝐶 𝑑𝑉𝑝

=
𝜌𝑏𝐾𝑎𝑑

𝜃

(14)

246 where m (kg) is the mass of sand. As the equilibrium constant (Kad) is fixed for constant pH (Eq. 

247 13), PSC is also constant. As seen above (Eqs. 3, 4), the partitioning of Zn depends on Kad and hence 

248 pH. For fixed pH, the adsorbed mass of Zn increases with Kad and the total mass in overlying water 

249 and pore water become smaller (Fig. 6c). Correspondingly, as Kad reduces, so does the total 

250 adsorbed mass so that in the limit of no sorption (Kad = 0), we recover the case of NaCl (Fig. 6c). 

251 The mass ratio of the overlying water phase to pore water phase (POC) is defined as:

𝑃𝑂𝐶 =
𝑚𝑎𝑠𝑠 𝑖𝑛 𝑜𝑣𝑒𝑟𝑙𝑦𝑖𝑛𝑔 𝑤𝑎𝑡𝑒𝑟

𝑚𝑎𝑠𝑠 𝑖𝑛 𝑝𝑜𝑟𝑒 𝑤𝑎𝑡𝑒𝑟 =

∫
𝑉𝑜

𝐶𝑡 𝑑𝑉𝑜

∫
𝑉𝑝

𝐶 𝑑𝑉𝑝

(15)

252 Similarly, we define the mass ratio of the adsorbed mass to the mass in the overlying water phase 

253 (PSO) is defined as:

𝑃𝑆𝑂 =
𝑚𝑎𝑠𝑠 𝑎𝑑𝑠𝑜𝑟𝑏𝑒𝑑 𝑡𝑜 𝑠𝑜𝑖𝑙

𝑚𝑎𝑠𝑠 𝑖𝑛 𝑜𝑣𝑒𝑟𝑙𝑦𝑖𝑛𝑔 𝑤𝑎𝑡𝑒𝑟 =

∫
𝑚

𝑆 𝑑𝑚

∫
𝑉𝑜

𝐶𝑡 𝑑𝑉𝑜

(16)

254 i.e., PSC = PSOPOC.

255 Even though PSC is constant for all t, both PSO and POC vary with t (Fig. 6b). Assuming that no 

256 zinc is lost from the experiment, in the long-time limit it will be distributed with uniform 

257 concentrations in each of the water and soil phases, i.e., the concentrations in the overlying and pore 

258 water will be identical, and the adsorbed concentrations will be uniform throughout the streambed. 

259 To generalize the results slightly, we assume that the volume of overlying water is M times that of 

260 the pore water (in our experiment, M = 3). Then, it is straightforward to show that, for large t :
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𝑃𝑆𝑂 =
𝜌𝑏𝐾𝑎𝑑

𝑀𝜃
(17)

𝑃𝑂𝐶 = 𝑀 (18)

261 Under the given assumptions, the time scale beyond which Eqs. 17 and 18 hold is defined by the time 

262 needed for zinc to spread throughout the porous medium, i.e., it is defined by the flow conditions, 

263 and not the reaction kinetics of zinc adsorption.

264 4.4 The effects of dispersivities (α)

265 Fig. 7 (and Fig. S6) illustrates the effects of dispersivities (α) on the concentration in the 

266 overlying water, and the Zn distribution in the bedform. Thus, the variation of α does not affect the 

267 concentration in the overlying water (Fig. 7a) as well as the exchange rate between the stream and 

268 streambed. However, in terms of the concentration distribution in the bedform, a larger α results in a 

269 wider concentration transition zone (Figs. 7b, S6). In spite of this, the concentration distribution 

270 above the transition zone is almost the same for different values of α (Fig. 7b). The maximum-initial 

271 concentration ratio (Rm = Cm/C0) is also affected by α (Fig. 7c). The smaller α is, the larger Rm would 

272 be, i.e., the diffusive flux is less and the maximum concentrations are increased. The variation of α 

273 hardly affects the intrusion depth (Din), i.e., Din is controlled by advection rather than dispersion 

274 (Fig. 7c).

275 4.5 Effects of equilibrium constants (Kad) 

276 Here, we consider the effects of different Kad values (i.e., for different pH values, held constant 

277 in a given experiment). For this, two characteristic parameters are defined: the final stable 

278 concentration (Cf) and the time to reach half of this concentration (Th). Note that Cf = C(x1,x2,t → 

279 ∞). Using the same assumptions as in Section 4.3, we find that:
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𝑚𝑍𝑛, 𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑓𝑉𝑝(𝑀 + 1 +
𝜌𝑏𝐾𝑎𝑑

𝜃 ) (19)

280 where mZn,total is the total mass of zinc in the system (adsorbed and in the water phase). For fixed 

281 mZn,total, it is clear from Eq. 19 that Cf decreases as Kad increases, as can be seen in Fig. 8 (and Fig. 

282 S6). However, the range of Th/Th0 (0.7 to 1.1) is relatively small compared with the range of Kad/Kad0 

283 (ranging from 0 to 4.0). When Kad/Kad0 increases from 0 to 0.5, the Th/Th0 increases from 0.7 to 1.1, 

284 i.e., the time scale to reach a stable concentration is noticeable. On the contrary, when Kad/Kad0 

285 increases from 0.5 to 4, the Th/Th0 gradually drops from 1.1 to 0.8. These results show that the time 

286 to reach steady state is, as already noted above, is mainly due to the flow conditions than to the 

287 value of the equilibrium constant, Kad.

288 The intrusion depth (Din) and the maximum-initial concentration ratio (Rm = Cm/C0) decrease 

289 with Kad (Fig. 9), because more Zn2+ ions would be adsorbed and thus less Zn2+ ions would be 

290 retained in pore water. Figure 9 shows that Rm at profiles N1 and N2 is nearly identical, i.e., 

291 insensitive to Kad. However, the range of Din is greater for profile N2 compared to N1, i.e., Din varies 

292 in a wider range on the lee-side of bedform as Kad varies.

293 The intrusion depth (Din) becomes deeper and the maximum-initial concentration ratio (Rm) 

294 becomes smaller over time (Fig. S9) even for NaCl (Fig. S3c). Fig. S9 shows that adsorption can 

295 significantly reduce the intrusion depth (Din) and the maximum-initial concentration ratio (Rm). And 

296 the maximum-initial concentration ratio (Rm) reduces also with larger Kad (Fig. S9), indicating that 

297 the concentration of contaminants in the overlying water also decreases over time (Fig. S7). Thus, 

298 the decrease in the maximum-initial concentration ratio (Rm) of Zn2+ over time (Fig. S9) can be 

299 attributed to the decreasing concentration in the overlying water and adsorption in the bedform. A 

300 comparison of Fig. S4a and b shows that the intrusion depth (Din) is deeper on the stoss side of the 
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301 bedform, but the maximum-initial concentration ratio (Rm) remains almost unchanged on both sides, 

302 indicating that the intrusion time on the lee side is postponed.

303 The maximum-initial concentration ratio (Rm) increases sharply and then decreases slowly to a 

304 stable level; whereas the intrusion depth (Din) increases continuously (Fig. S10). Comparisons of 

305 Fig. S10a & b and Fig. 9c & d show that the time is postponed in Fig. S10b & d because ions are 

306 first migrated to the stoss side (N1) and then slowly carried out from the lee side (N2). A sharp 

307 decreasing trend is observed at the end of case Kad = 0.25Kad0 in Fig. S10c, because the front tip of 

308 the concentration intrusion curve has reached the bottom of the profile ahead of the intrusion depth 

309 (Din) (Fig. S3). As the intrusion depth (Din) reaches the bottom of the bedform, it is maintained at -

310 12 cm (Fig. S10c, Fig. S3c), as is apparent for NaCl in Fig. S10c. 

311 A new coefficient, the half depth arrival time (Ta) at which the intrusion depth Din = -6 cm 

312 (Fig. S10), is defined to represent the time for the intrusion line to reach a certain depth. Fig. 10 

313 shows that there is a linear correlation between the half depth arrival time (Ta) and the equilibrium 

314 constant for linear adsorption (Kad), and thus the larger the value of Kad, the longer the arrival time 

315 will be. However, it is noted that the arrival times are delayed on the lee side of the bedform.

316 All these results suggest that adsorption prevents the intrusion of ions into the streambed, 

317 which can reduce the pollution of groundwater but can also cause higher accumulation of 

318 contaminated metals in the hyporheic zone, and as a consequence secondary pollution may occur if 

319 these metal ions are released back to the overlying water.

320 6. Conclusions

321 In this study, experiments and numerical simulations were performed to investigate the 
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322 adsorption of Zn2+ ions and their transport in the hyporheic zone. The main conclusions are:

323 1) Adsorption leads to a more rapid decrease of Zn2+ concentration in the overlying water 

324 compared with non-adsorbing case (NaCl). The variation of Zn2+ concentration in the overlying 

325 water is sensitive to the equilibrium constant. The larger the adsorption coefficient is, the more 

326 rapidly the concentration decreases.

327 2) The mass in three phases varies rapidly at beginning (increasing in pore water and adsorbed 

328 phase, decreasing in overlying water) and finally reaches an equilibrium. The sum of Zn2+ in pore 

329 water and adsorbed phase is strictly equal to the decreasing mass in overlying water. The adsorbed 

330 mass of metal ions is more than 6 times higher than the pore water phased mass.

331 3) The strong function of adsorption prevents the intrusion of ions into the streambed and thus 

332 mitigates the pollution of groundwater, but will also cause higher accumulation of contaminated 

333 metals in the shallower layer of hyporheic zone.

334 Knowledge of the transport of metal ions in the hyporheic zone may provide important 

335 insights into the restoration of polluted rivers. Next important research direction is to elucidate the 

336 interactions of metal ions and particles in the hyporheic zone. Fine sediments and colloidal particles 

337 can act as a carrier of metal ions [34, 43], which may lead to higher accumulations of contaminants 

338 in the hyporheic zone.
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1

1
2 Fig. 1. (a) The circulating flume used in experiments; (b) the shape and size of a single bedform. Red arrows represent the flow direction of pore water. The 
3 open circles show sampling locations. N1 and N2 are two columns for concentration monitoring on the stoss and lee sides, respectively, of the bedform. (c) 
4 Diagrammatic sketch of the transport of ions. The red arrow represents the flow of pore water, the white arrow represents the flow of free ions with pore water, 
5 and the yellow arrows represent the sorption-desorption process.
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10 Fig. 2. (a) The adsorption kinetics between sediment and Zn2+. (b) Data and fitted curves (at steady state) 
11 from batch adsorption experiments.
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13 Fig. 3. Variation of Zn2+ and NaCl concentrations in the overlying water.
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23 Fig. 4. Variation of Zn2+ concentration in the pore water in monitoring column N1 (a) and N2 (b) at different 
24 times. The intrusion depths of Zn2+ from simulation (Dins) and from measurement (Dinm) are labeled by blue 
25 and magenta dash line, respectively. 
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30 Fig. 5. The maximum-initial concentration ratio Rm (a) and intrusion depth Din (b) variations for NaCl and 
31 Zn2+ at profiles N1 and N2. A sharp decreasing trend is observed (in the dash box) at the end of case NaCl 
32 for Din because the front tip of the concentration intrusion curve has reached the bottom of the profile ahead 
33 of the intrusion depth (Fig. S6). 
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38 Fig. 6. (a) Variations of mass proportions of Zn2+ in three phases with time (Kad = Kad0). (b) Mass ratio of 
39 adsorption to overlying water phase (PSO), overlying water phase to pore water phase (POC), and adsorption 
40 to pore water phase (PSC). (c) Final stable mass proportions with different Kad values. The value of Kad0 is 
41 from Table 1. (d) Final mass ratio of adsorption to overlying water phase (PSO), overlying water phase to 
42 pore water phase (POC), and and adsorption to pore water phase (PSC).
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47 Fig. 7. Effects of dispersivities (α). (a) Concentration in overlying water for different α. (b) Zn2+ 
48 concentration in the pore water at t = 797 min in profile N1. (c) Variation of Rm/Rm0 and Din/Din0.



9

49

0 0.5 1 1.5 2 2.5 3 3.5 4
Kad/ K ad0

0

0.5

1

1.5

2

2.5

3

C
f/ C

f0
or

T h/ T
h0

Cf/ C f0
Th/ T h0
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1 Table 1. Parameters for experiments and simulations.
Parameters Values Parameters Values

Average flow rate of the 
overlying water (v)

12.78 cm s-1 Porosity (θ) 0.33

Average depth of the 
overlying water (H)

8.22 cm Water density (ρ) 1000 kg m-3

Length of the bedform (L) 15.2 cm
Hydrodynamic viscosity 

coefficient (μ)
0.001 Pa s

Height of top of the 
bedforms (Hb), Fig. 1b

2 cm
Longitudinal dispersivities 

(αL)
0.001 m

Length of the stoss side of 
the bedform (Lc)

11.4 cm
Transverse dispersivities 

(αT)
0.0001 m

Minimum bedform height 
(Hs), Fig. 1b

12.0 cm
Effective molecular 
diffusion coefficient

10-9 m2 s

Hydraulic conductivity (K) 8.83 × 10-4 m s-1
Initial concentration of 

Zn2+ (C0)
2.34 × 10-3 kg m-3

Equilibrium constant for 
linear adsorption (Kad)

0.00142 m3 kg-1
Bulk density of sand bed 

(ρb)
1.454 × 103 kg m-3

2
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Supporting Information

Transport of zinc ions in the hyporheic zone: Experiments and simulations

Guangqiu Jin, Zhongtian Zhang, Ruzhong Li, Chen Chen, Hongwu Tang*, Ling Li, David Andrew Barry

S1 Mesh selection

In order to choose a suitable mesh for numerical simulation, four meshes with different grid densities 

were tested (Fig. S1a). The results show that different grid densities have little effect on the concentration 

variations in the overlying water (Fig. S1b). However, the pore water concentrations differ (Fig. S1c). For 

Meshes 1 and 2, the concentrations show irregular features, which are not noticeable for Meshes 3 and 4. 

Consequently, Mesh 3 was used subsequently. 
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(b)

(c)
Fig. S1. (a) Different meshes tested. Meshes 1-4 contained, respectively, 697, 2788, 11152, 44608 grids.  
Concentration variations in the (b) overlying water and (c) pore water simulated by meshes computed for 

different meshes. 



3

Fig. S2. Schematic of simulation domain and boundaries. (a) Water flow (overlying water and porewater 
flow). L, H, Hb and db are the bedform length, average water depth of the overlying water, bedform height 
and average depth of streambed, respectively. (b) Solute transport. A uniform concentration is assumed in 
the overlying water. For the solute released from streambed, the total quantity of solute in the overlying 

water and pore water is assumed to be constant over time in the flume experiment but the concentration in 
the overlying water is assumed to vary.



4

Fig. S3. Sketch for maximum-initial concentration ratio (Rm = Cm/C0) and intrusion depth (Din) in four 
different cases, and the curves in the figure do not represent real measured data. (a) The peak concentration 

for the intrusion line has not reached the profile. (b) The peak concentration for the intrusion line has 
reached the profile ahead of the front tip. (c) The solute has reached the bottom of the profile but the 

intrusion depth (Din) has not reached the bottom; (d) The intrusion depth (Din) has reached the bottom. 
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Fig. S4. Computed concentrations (a) at profile N1 for Zn2+; (b) at profile N2 for Zn2+; and (c) at profile N1 

for NaCl.
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25 min                      123 min                    333 min

797 min                     1491 min                   1528 min

Fig. S5. Normalized concentrations of Zn2+ in pore water and adsorbed at different times. These results are 
for the linear adsorption isotherm (Eq. 3, 4), so the distributions of C/C0 and S/S0 are identical.
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Fig. S6. Normalized concentrations in the bedform for different dispersion coefficients.
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Fig. S7. Normalized concentration evolution in the overland water for different equilibrium constants.
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Fig. S8. Definition of final stable concentration (Cf) and half concentration arrival time (Th).
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5 Fig. S9. Concentration variations in pore water at N1 for different equilibrium constants (Kad). 
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Fig. S10. Maximum intrusion concentration (Cm) and intrusion depth (Din) for different equilibrium 

constants (Kad) for different vertical profiles. (a) and (c) N1; (b) and (d) N2. Kad0 is the fitted equilibrium 
constant for measured data. Ta (h) is the arrival time when the Din is -6 cm.




