2	simulations
3	Guangqiu Jin ¹ , Zhongtian Zhang ¹ , Ruzhong Li ² , Chen Chen ¹ , Hongwu Tang ^{1,#} , Ling
4	Li ³ , D. A. Barry ⁴
5	¹ State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai
6	University, Nanjing, China
7	Emails: jingq@hhu.edu.cn, zhongtian_zhang@163.com, hwtang@hhu.edu.cn,
8	chenchenhhu@163.com
9	² School of Resources and Environmental Engineering, Hefei University of Technology, Hefei
0	230009, China
1	Emails:Lrz1970@163.com
2	³ School of Engineering, Westlake University, Hangzhou, China
3	Email: <u>liling@westlake.edu.cn</u>
4	⁴ Laboratoire de technologie écologique, Institut d'ingénierie de l'environnement, Faculté de
5	l'environnement naturel, architectural et construit (ENAC), Ecole Polytechnique Fédérale de
6	Lausanne (EPFL), Station 2, 1015 Lausanne, Switzerland
7	Email: andrew.barry@epfl.ch
8	
8	#Author to whom all correspondence should be addressed. Tel: +86 (25) 8378-6662. Fax: +86 (25) 8373-5375

62 63 64	19	Abstract
65 66	20	Large amounts of toxic metals are discharged into rivers and lakes, but little is known about the
67 68 69	21	factors that drive the adsorption and transformation of these metals in the hyporheic zone and the
70 71	22	exchange flux across the sediment-water interface. To better understand transport and
72 73	23	transformation of metal ions in the hyporheic zone, flume experiments and numerical simulations
74 75 76	24	were performed in a streambed with periodic bedforms using zinc ions. Compared to non-adsorbing
77 78	25	contaminant, the results show that adsorption leads to a more rapid decrease in the concentration of
79 80 81	26	Zn ²⁺ in the overlying water, and a lower final concentration is reached. The mass of adsorbed ions is
82 83	27	several times higher than that of free ions in the bedform's water phase. Indeed, metal adsorption is
84 85 86	28	in the shallow layer of the streambed. Although this prevents heavy metal groundwater
87 88	29	contamination, the same cannot be said of shallow layer of the hyporheic zone. Knowledge of the
89 90	30	migration and transformation of metal ions in the hyporheic zone provides insights pertinent to the
91 92 93	31	restoration of polluted rivers.
94 95 96	32	Keywords: Metal ions; Zinc ions; Hyporheic exchange; Adsorption; Flume experiment; Numerical
97 98 99	33	simulation
 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 		

1. Introduction

Metals have been used by humans for thousands of years [1], and a large amount of metals are discharged from domestic [2,3] and industrial sources [4-6] into rivers and lakes [7,8]. It is noted that some of these metals, especially heavy metals [9-11], are driven by hydrodynamic forces [7,8,12]. They are transported and retained in aquatic and hyporheic ecosystems [13] for long periods as they are difficult to degrade [14,15]. These toxic metals may cause protein denaturation, enzyme inactivation and DNA damage [16,17] and thus pose a threat to aquatic ecosystems [18,19] and humans [20].

The hyporheic zone provides an area for surface water-groundwater exchange [21,22], transport and transformation of nutrients and trace metals [23,24] and is a habitat for aquatic biota [25,26]. It can act as a physical, chemical and biological filter to transform pollutants [27]. Notably, metallic pollutants are likely to be released back to the overlying water from the hyporheic zone under hydrodynamic forcing, thereby causing secondary pollution [28,29].

Manganese and iron oxides attached to sediments can increase the removal rate of trace metals and heavy metals as they may provide additional sites for adsorption [30,31]. Fuller and Bargar [32] investigated the distribution of zinc (Zn) and manganese oxides in Pinal Creek, Arizona, by field sampling and found attenuation of zinc is affected by biogenic manganese oxides in hyporheic zone. Peña et al. [33] found in their bacterial culture experiments that Ni could be effectively scavenged by bacterial biomass-birnessite assemblages. However, they mainly focused on the mechanism of metal adsorption-desorption rather than their transport in the hyporheic zone. Ren and Packman [34,35] conducted flume experiments to investigate the stream-streambed interface flux of dissolved Zn, Cu and phosphate in the presence of colloids, and found that adsorption had a

significant effect on metal transport in the hyporheic zone. They examined the exchange rate of ions between stream and streambed, but did not consider the distribution pattern of ions in the streambed. Palumbo-Roe et al. [36, 37] investigated the sources of metals in the hyporheic zone and found that the natural attenuation of metals in the surface water of a contaminated urban river was limited by poor connectivity of the hyporheic zone, but the transport pattern of metals in hyporheic zone remains unclear. Some previous studies also provide valuable insights into factors driving the adsorption and transformation of metals, and found that metal sulfide deposits and bacteriogenic sulfides in river sediments enhance the adsorption of heavy metals, while high sediment permeability prevents accumulation of heavy metals in riverbeds [38]. The transformation of metals in the hyporheic zone is influenced by water movement, permeability, substrate particle size, resident biota, and the physiochemical features of the overlying stream and adjacent aquifers [39]. In spite of this, these previous studies concentrated more on the surface water and interface exchange in rivers, but not on the inner area of the hyporheic zone.

In order to better understand transport and fate of metal ions in the hyporheic zone, flume experiments and simulations are investigated here. We describe experiments with flow over a streambed with periodic bedforms, which induces interactions between the bed and the overlying water, i.e., the flow/bedform interaction generates hydraulic gradients that drive pore water flow in the hyporheic zone (Fig. 1a, b). Zn²⁺ ions are used as the transported metal within the overland flow [34,35], while the bedforms are triangular, similar to previous experiments [40,41,42]. Given that the transport of metal ions in the streambed is determined by pore water flow and adsorption (Fig. 1c), the main purpose of this study is to investigate 1) how does adsorption affect the transport of metal ions in the streambed? and 2) what are the transport and distribution characteristics of metals

in the hyporheic zone?

2 Laboratory experiments

2.1 Flume and sand

Experiments were conducted in an indoor recirculating flume for physical modeling of a river with uniform triangular bedforms (Fig. 1a). The wall of the flume is made of transparent glass, permitting imaging of the experiments. The effective length of the sand bed is about 10 m; its height varied from 12.0 cm at the trough to 14.0 cm at the crest (Fig. 1b, Table 1); the average overlying water depth was 8.22 cm (Table 1). A transducer was installed at the tail end of the flume for monitoring the temperature, conductivity, pH and salinity of the overlying water.

The bedform was made of silica sand from the Yangtze River, which was sieved to 0.25 - 0.60mm with a median grain size of d = 0.387 mm. The bulk porosity (θ) was measured as 0.33 with the water evaporation method. The saturated hydraulic conductivity was $K = 8.84 \times 10^{-4}$ m s⁻¹, determined using the constant-head method. Both properties were assumed to remain constant during the experiments [43]. Before the experiments, the sand was washed to remove metal ions, oxides, organic matter and other impurities [44]. The sand washing steps were: 1) Washing with deionized water four times, 45 mins each time; 2) washing with an acidic solution at pH 3.5 for 8-9 h; 3) repeat the washing in step 1 three more times; 4) repeat step 2 with a solution at pH 10.5; 5) repeat step 1 three times. In the experiments, the pH of the flume effluent was 6.8.

2.2 Experiments and measurements of Zn²⁺ concentrations

97 The washed sand was packed into the flume, then the bedform stability was checked by
98 overland flow. Subsequently, NaCl was added to the overlying water to give an initial ionic strength
99 of 7.5 mM based on previous work [44]. Buffer (NaHCO₃ solution) was added to maintain the pH

around 7 in the flume surface water. Finally, ZnCl₂ solution was uniformly added to the flow. The 302¹⁰¹ experiment lasted for about 3 d, during which 400 ml of deionized water was added every 4 h to replace evaporated water. The pH was monitored periodically and maintained using buffer solutions. ³⁰⁶_103 During the initial 30 min, the overlying water was simultaneously extracted from three different positions (entry, midpoint, exit) of the flume. After 30 min, it was extracted only at the exit of the flume because the solute was almost uniform in the overlying water [44]. In addition, 0.25 mL of pore water was extracted from sampling points (Fig. 1b) using Hamilton (Switzerland) micro-samplers (outer diameter: 0.72 mm; inner diameter: 0.15 mm; length: 51 mm). Then, samples were ³¹⁸108 placed in a 4-mL glass bottle and diluted with 2 mL of deionized water. The NaCl samples were measured in situ using electrical conductivity (EC) assuming a linear relationship between 321¹⁰⁹ concentration and EC [42]. For zinc, sample vials were sealed and refrigerated for subsequent 326¹¹¹ measurement using ICP-MS.

328329112 3. Numerical simulations, adsorption models and coefficients

Stream water flow, pore water flow, and reactive and nonreactive solute transport in the streambed were simulated based on one-way sequential couplin [41,45-47]. Stream water flow was 337¹¹⁵ computed using the 2D CFD package, FLUENT, based on the Reynolds-Averaged Navier-Stokes equations together with the k- ω turbulence closure scheme [44]. The predicted pressures at the bed ³⁴¹ 342¹¹⁷ surface were used as boundary conditions in a 2D COMSOL-based model for simulation of pore water flow and reactive and nonreactive solute transport in the streambed. The pore water flow was modeled using Darcy's Law and the continuity equation for incompressible flow in a non-349¹²⁰ deformable medium based on boundary conditions described by *Jin et al.* [44]. Finally, the transport

406¹⁴⁰

of reactive and nonreactive solutes was simulated based on the pore water flow field. The mesh selection is discussed in Section S1 (S refers to Supplementary Material).

3.1 Pore water flow

COMSOL Multiphysics was used to model the flow and solute transport in the bed. The pore water flow is governed by the combination of Darcy's Law and the continuity equation for incompressible flow in a non-deformable medium, and thus the groundwater flow can be described as (constant fluid density assumed):

$$\frac{\partial u_i}{\partial x_i} = 0 \tag{1}$$

$$u_i = -\frac{K}{\theta} \frac{\partial h}{\partial x_i} \tag{2}$$

where θ (-) is the volumetric porosity, K (m s⁻¹) is the hydraulic conductivity, u_i (i = 1, 2) is the pore water flow velocity component in the x_i (i = 1, 2) direction and h is the hydraulic head. Simulation parameters are shown in Table 1 and boundary condition are shown in Fig. S2a.

3.2 Mass transport

The linear adsorption equilibrium adsorption [48], were considered in the simulation. The linear isothermal adsorption equation is described as [34],

$$S = K_{ad}C \tag{3}$$

where S (kg kg⁻¹) is the adsorbed mass per bulk mass, C (kg m⁻³) is the equilibrium concentration of contaminants in the pore water, K_{ad} (m³ kg⁻¹) is the equilibrium constant for linear adsorption. The linear adsorption model satisfactorily describes this experiment (Section 4).

Using Eq. 3, the zinc ion transport is given by:

$$(1 + \frac{\rho_b}{\theta} K_{ad}) \frac{\partial C}{\partial t} = \frac{\partial}{\partial x_i} \left(D_{ij} \frac{\partial C}{\partial x_j} - u_i C \right)$$
(4)

where ρ_b (kg m⁻³) is the bulk density and D_{ij} (m² s⁻¹) is the 2D dispersion coefficient tensor:

$$D_{ij} = (\alpha_T |u| + D_e) \delta_{ij} + (\alpha_L - \alpha_T) u_i u_j / |u|$$
(5)

Here, α_L and α_T are the longitudinal and transverse dispersivities, respectively; $|u| = \sqrt{u_1^2 + u_2^2}$ is the magnitude of the pore water flow velocity; and D_e is the effective molecular diffusion coefficient.

3.3 Boundary conditions for mass transport

The boundary conditions for metal ion transport were set as follows (Fig. S2): (1) periodic conditions with $C(0, x_2, t) = C(L, x_2, t)$ and $\partial C(0, x_2, t) / \partial x_2 = \partial C(L, x_2, t) / \partial x_2$ were imposed on the lateral boundaries $(x_1 = 0, L)$ of the domain. Note that only one bedform was simulated as the processes and conditions for different bedforms were assumed to behave similarly; (2) a no-flux condition was imposed on the bottom boundary of the domain, giving a zero concentration gradient $\partial C / \partial x_2 \Big|_{x_2=0} = 0$ [49,50]; and (3) the following boundary conditions were imposed along the sediment-water interface:

$$\begin{cases} C = C_t & \mathbf{n} \bullet \mathbf{u} \ge 0 \\ \frac{\partial C}{\partial \mathbf{n}} = 0 & \mathbf{n} \bullet \mathbf{u} < 0 \end{cases}$$
(6)

where **n** is the unit vector normal to the interface (pointing inward), **u** is the flow velocity vector of metal ions, and C_t (kg m⁻³) is the concentration of metal ions in the overlying water at time t. The overlying water in our experiments was well mixed and hence a spatially uniform concentration was assumed along the flume. However, C_t varies with time due to mass exchange between the overlying water and the bed:

 $C_{t} = \frac{C_{0}V_{o} - B \iint (\theta C(x_{1}, x_{2}, t) + \rho_{b}S(x_{1}, x_{2}, t)) dA}{V_{o}},$

 (7)

 streambed), $C(x_1, x_2, t)$ and $S(x_1, x_2, t)$ are, respectively, the simulated concentrations of metal ions in the pore water and adsorbed metal ions in the sand at location (x_1, x_2) and time *t*, *B* (m) is the width of the flume, and *A* (m²) is the area (on the $x_1 - x_2$ plane shown in Fig. S2) of the bed in the flume. The integral in Eq. 7 gives the mass of ions retained in the bed.

3.4 Calibration of equilibrium constant (*K_{ad}***)**

Batch adsorption experiments were conducted to obtain the equilibrium constant for linear adsorption (K_{ad}). First, 150 g of dried sand was added to 150 mL of 7.5 mM NaCl solution, then Zn²⁺ (at various initial concentrations in the range 0.010-0.040 mM) was added keeping the pH (range 2-9) fixed (NaHCO₃ buffer). The resulting mixtures were shaken for 48 h in order to reach equilibrium. The adsorption time of Zn²⁺ ions was determined before the batch adsorption experiments (Fig. 2a).

Exchange of Zn^{2+} with the soil is assumed to follow the reaction [34]:

$$SiOH+Zn^{2+} \leftrightarrow SiOZn^{+}+H^{+}$$
(8)

where SiOH is the surface hydroxyl species of silica sand, and SiOHZn⁺ are adsorbed phase Zn²⁺ ions. The equilibrium constant (K_{Zn}) of this reaction is [51]:

$$K_{Zn} = \frac{[\text{SiOZn}^+][\text{H}^+]}{[\text{SiOH}][\text{Zn}^{2^+}]} \exp\left|\frac{F\psi_0}{R_0T}\right|$$
(9)

where F (96493.5 J V⁻¹ eq⁻¹) is the Faraday constant, Ψ_0 (V) is the potential on the surface of silica sand, R_0 (8.3147 J mol⁻¹ K⁻¹) is the gas constant, T (°K) is the temperature and the brackets indicate activity. As [SiOH] = 1, Eq. 9 can be converted into (base 10 logarithm):

$$\log(K_{Zn}) - \log(\exp\left|\frac{F\psi_0}{R_0T}\right|) + pH = \log[SiOZn^+] - \log[Zn^{2+}]$$
(10)

Later, we use $\varphi = \log(K_{Z_n}) - \log(\exp\left|\frac{F\psi_0}{R_0T}\right|)$ in this expression. 536¹⁸³ The adsorbed proportion (P_{ST}) is defined as the ratio of adsorbed mass to the total mass (assuming activities can be replaced by concentrations): $P_{ST} = \frac{[\text{SiOZn}^+]}{[\text{SiOZn}^+] + [\text{Zn}^{2+}]}$ (11)Using Eq. 10 and approximating activities by molarity reduces Eq. 11 to: $P_{ST} = (1 + 10^{-\varphi} - pH)^{-1}$ 550¹⁸⁸ (12)The fits of this equation to the measured adsorption data are found in Fig. 2b, which involve fitting ⁵⁵⁴190 φ . For the conditions of the flume experiment ($\varphi = -6.003$, $C_{M0} = 0.036$ mM, pH = 6.8), the adsorbed proportion $P_{ST} = 0.8622$. The equilibrium constant for linear adsorption is then found using: $K_{ad} = \frac{\theta P_{ST}}{\rho_{h} 1 - P_{ST}}$ 559₁₉₂ (13)⁵⁶²193 4. Results and Discussion 566¹⁹⁴ The concentrations of NaCl and Zn²⁺ in both overlying water and pore water were measured and simulated with the transport model described above. The effects of the dispersion coefficient (α) and equilibrium constant (K_{ad}) on the transport of metal ions are then examined. 4.1 NaCl and Zn²⁺ concentrations in the overlying water The NaCl concentration in the overlying water decreased rapidly during the first 5 h of the experiment (Fig. 3), which can be attributed to the rapid migration of NaCl from the overlying water 580²⁰⁰ to the shallow area of the bedform with a large pore water velocity and associated solute migration flux. However, as the solute front passed through the shallow area, the NaCl concentration in the ⁵⁸⁴202 overlying water decreased more slowly. Finally, the value of C/C_0 for NaCl reached a stable level at around 0.75. Given that there is no adsorption or reaction of NaCl, NaCl would be uniformly

distributed in the whole system after an infinite time, i.e., $V_o/(V_o + V_p) = 0.75$. A more dramatic decrease is noted for the Zn²⁺ concentration in the overlying water as it is driven by both advection and adsorption. For Zn²⁺, the normalized concentration (*C*/*C*₀) reaches a stable level lower than 0.40 (Fig. 3), which is much lower than that of NaCl due to the adsorption of Zn²⁺ by the streambed.

4.2 Variation of Zn²⁺ concentration in the bedform

The measured and modeled Zn^{2+} concentrations in the monitoring profiles N1 and N2 (Fig. 1b) at different times are shown in Fig. 4. The modeled results generally compare well with the measurements. Two characteristic coefficients are introduced to describe the intrusion of NaCl and Zn^{2+} , the maximum-initial concentration ratio ($R_m = C_m/C_0$) and intrusion depth (D_{in}), where C_m is the maximum concentration in a monitoring column at a specific time, and D_{in} is the depth at which the concentration is $C_m/2$ (Fig. S3).

The simulated D_{in} of Zn²⁺ is much shallower compared with measured D_{in} at 25 min and from 123 - 1825 min the measured and modeled D_{in} are almost at same level regardless of errors (Fig. 4a), possibly because of the assumption of equilibrium adsorption of Zn²⁺ used in the model (Fig. 2a suggests the characteristic time of the adsorption kinetics to be 10-20 mins). Both the measurements and simulations show that the Zn²⁺ profiles have lower concentrations near the surface boundary than the maximum concentration measured in the streambed. This occurs due to the continuous reduction of the Zn²⁺ concentration in the overlying water [52]. The simulations of zinc concentrations in the streambed reflect this change, i.e., the initial high concentration in the stream tresult in higher concentrations deeper in the streambed, and lower concentrations near the streamstreambed boundary. The same behavior occurs in the NaCl case, although the reduction in the concentration near the top of the streambed is not obvious. For the concentration distribution in the whole bedform, the intrusion area increases and the maximum concentration decreases (Fig. S4) over time. For the linear adsorption isotherm, the distributions of C/C_0 and S/S_0 are the same (Fig. S5).

The R_m values show a rapidly increasing trend at the beginning of experiment and then slowly decrease, while the magnitude of D_{in} increases with time for both NaCl and Zn²⁺ (Fig. 5). When comparing the differences between NaCl and Zn²⁺, the R_m values for NaCl are larger than those of Zn²⁺. As well, the corresponding D_{in} values are also greater, as expected, due to adsorption of Zn²⁺ (Figs. 4, 5). When comparing the differences between profiles N1 and N2, the curves for both D_{in} and R_m are obviously delayed (Fig. 5). A sharp decreasing trend is observed at the end of the NaCl curves in Fig. 5b, because the solute has reached the bottom of the profile but the intrusion depth (D_{in}) has not reached the bottom (Figs. S3c).

4.3 Variation of Zn²⁺ mass in three phases

Fig. 6 illustrates the trends of Zn^{2+} mass in three phases: overlying water, pore water and adsorbed to the streambed. Fig. 6a shows the modeled predictions for each phase, as well as Zn^{2+} in the overlying water from measurements (assumed to be well mixed [42]). The mass of Zn^{2+} ions decreases in the overlying water but increases in pore water as the adsorption is assumed to be instantaneous (Fig. 6a). The mass of Zn^{2+} in the overlying water decreases rapidly in the first few hours of the experiment, then reduces more slowly. Correspondingly, the mass of Zn^{2+} in the pore water and adsorbed phase show opposite trends. Because of instantaneous sorption, the adsorbed mass of Zn^{2+} is 6.26 times of the mass in pore water (Fig. 6b), as computed from:

$$P_{SC} = \frac{mass \ adsorbed \ to \ soil}{mass \ in \ pore \ water} = \frac{\int_{m}^{S} S \ dm}{\int_{V_p}^{m} C \ dV_p} = \frac{\rho_b K_{ad}}{\theta}$$
(14)

where m (kg) is the mass of sand. As the equilibrium constant (K_{ad}) is fixed for constant pH (Eq. 721 247 13), P_{SC} is also constant. As seen above (Eqs. 3, 4), the partitioning of Zn depends on K_{ad} and hence pH. For fixed pH, the adsorbed mass of Zn increases with K_{ad} and the total mass in overlying water ⁷²⁵249 and pore water become smaller (Fig. 6c). Correspondingly, as K_{ad} reduces, so does the total adsorbed mass so that in the limit of no sorption ($K_{ad} = 0$), we recover the case of NaCl (Fig. 6c).

The mass ratio of the overlying water phase to pore water phase (P_{OC}) is defined as:

$$P_{OC} = \frac{mass in overlying water}{mass in pore water} = \frac{\int_{V_o} C_t \, dV_o}{\int_{V_p} C \, dV_p}$$
(15)

739²⁵² Similarly, we define the mass ratio of the adsorbed mass to the mass in the overlying water phase (P_{SO}) is defined as:

$$P_{SO} = \frac{\text{mass adsorbed to soil}}{\text{mass in overlying water}} = \frac{\int_{m}^{S} S \, dm}{\int_{V_o} C_t \, dV_o}$$
(16)

⁷⁴⁹254 i.e., $P_{SC} = P_{SO}P_{OC}$.

Even though P_{SC} is constant for all t, both P_{SO} and P_{OC} vary with t (Fig. 6b). Assuming that no zinc is lost from the experiment, in the long-time limit it will be distributed with uniform 757²⁵⁷ concentrations in each of the water and soil phases, i.e., the concentrations in the overlying and pore water will be identical, and the adsorbed concentrations will be uniform throughout the streambed. 761 259 To generalize the results slightly, we assume that the volume of overlying water is M times that of the pore water (in our experiment, M = 3). Then, it is straightforward to show that, for large t :

$$P_{SO} = \frac{\rho_b K_{ad}}{M\theta} \tag{17}$$

$$P_{OC} = M \tag{18}$$

Under the given assumptions, the time scale beyond which Eqs. 17 and 18 hold is defined by the time needed for zinc to spread throughout the porous medium, i.e., it is defined by the flow conditions, and not the reaction kinetics of zinc adsorption.

4.4 The effects of dispersivities (α)

Fig. 7 (and Fig. S6) illustrates the effects of dispersivities (α) on the concentration in the overlying water, and the Zn distribution in the bedform. Thus, the variation of α does not affect the concentration in the overlying water (Fig. 7a) as well as the exchange rate between the stream and streambed. However, in terms of the concentration distribution in the bedform, a larger α results in a wider concentration transition zone (Figs. 7b, S6). In spite of this, the concentration distribution above the transition zone is almost the same for different values of α (Fig. 7b). The maximum-initial concentration ratio ($R_m = C_m/C_0$) is also affected by α (Fig. 7c). The smaller α is, the larger R_m would be, i.e., the diffusive flux is less and the maximum concentrations are increased. The variation of α hardly affects the intrusion depth (D_{in}), i.e., D_{in} is controlled by advection rather than dispersion (Fig. 7c).

4.5 Effects of equilibrium constants (*K_{ad}*)

Here, we consider the effects of different K_{ad} values (i.e., for different pH values, held constant in a given experiment). For this, two characteristic parameters are defined: the final stable concentration (C_f) and the time to reach half of this concentration (T_h). Note that $C_f = C(x_1, x_2, t \rightarrow \infty)$. Using the same assumptions as in Section 4.3, we find that:

$$m_{Zn, total} = C_f V_p \left(M + 1 + \frac{\rho_b K_{ad}}{\theta} \right)$$

(19)

> where $m_{Zn,total}$ is the total mass of zinc in the system (adsorbed and in the water phase). For fixed $m_{Zn,total}$, it is clear from Eq. 19 that C_f decreases as K_{ad} increases, as can be seen in Fig. 8 (and Fig. S6). However, the range of T_h/T_{h0} (0.7 to 1.1) is relatively small compared with the range of K_{ad}/K_{ad0} (ranging from 0 to 4.0). When K_{ad}/K_{ad0} increases from 0 to 0.5, the T_h/T_{h0} increases from 0.7 to 1.1, i.e., the time scale to reach a stable concentration is noticeable. On the contrary, when K_{ad}/K_{ad0} increases from 0.5 to 4, the T_h/T_{h0} gradually drops from 1.1 to 0.8. These results show that the time to reach steady state is, as already noted above, is mainly due to the flow conditions than to the value of the equilibrium constant, K_{ad} .

The intrusion depth (D_{in}) and the maximum-initial concentration ratio $(R_m = C_m/C_0)$ decrease with K_{ad} (Fig. 9), because more Zn²⁺ ions would be adsorbed and thus less Zn²⁺ ions would be retained in pore water. Figure 9 shows that R_m at profiles N1 and N2 is nearly identical, i.e., insensitive to K_{ad} . However, the range of D_{in} is greater for profile N2 compared to N1, i.e., D_{in} varies in a wider range on the lee-side of bedform as K_{ad} varies.

The intrusion depth (D_{in}) becomes deeper and the maximum-initial concentration ratio (R_m) becomes smaller over time (Fig. S9) even for NaCl (Fig. S3c). Fig. S9 shows that adsorption can significantly reduce the intrusion depth (D_{in}) and the maximum-initial concentration ratio (R_m) . And the maximum-initial concentration ratio (R_m) reduces also with larger K_{ad} (Fig. S9), indicating that the concentration of contaminants in the overlying water also decreases over time (Fig. S7). Thus, the decrease in the maximum-initial concentration ratio (R_m) of Zn²⁺ over time (Fig. S9) can be attributed to the decreasing concentration in the overlying water and adsorption in the bedform. A comparison of Fig. S4a and b shows that the intrusion depth (D_{in}) is deeper on the stoss side of the maximum-initial concentration depth (D_{in}) is deeper on the stoss side of the

bedform, but the maximum-initial concentration ratio (R_m) remains almost unchanged on both sides, indicating that the intrusion time on the lee side is postponed.

The maximum-initial concentration ratio (R_m) increases sharply and then decreases slowly to a stable level; whereas the intrusion depth (D_{in}) increases continuously (Fig. S10). Comparisons of Fig. S10a & b and Fig. 9c & d show that the time is postponed in Fig. S10b & d because ions are first migrated to the stoss side (N1) and then slowly carried out from the lee side (N2). A sharp decreasing trend is observed at the end of case $K_{ad} = 0.25K_{ad0}$ in Fig. S10c, because the front tip of the concentration intrusion curve has reached the bottom of the profile ahead of the intrusion depth (D_{in}) (Fig. S3). As the intrusion depth (D_{in}) reaches the bottom of the bedform, it is maintained at -12 cm (Fig. S10c, Fig. S3c), as is apparent for NaCl in Fig. S10c.

A new coefficient, the half depth arrival time (T_a) at which the intrusion depth $D_{in} = -6$ cm (Fig. S10), is defined to represent the time for the intrusion line to reach a certain depth. Fig. 10 shows that there is a linear correlation between the half depth arrival time (T_a) and the equilibrium constant for linear adsorption (K_{ad}), and thus the larger the value of K_{ad} , the longer the arrival time will be. However, it is noted that the arrival times are delayed on the lee side of the bedform.

All these results suggest that adsorption prevents the intrusion of ions into the streambed,
 which can reduce the pollution of groundwater but can also cause higher accumulation of
 contaminated metals in the hyporheic zone, and as a consequence secondary pollution may occur if
 these metal ions are released back to the overlying water.

6. Conclusions

In this study, experiments and numerical simulations were performed to investigate the

adsorption of Zn²⁺ ions and their transport in the hyporheic zone. The main conclusions are:

1) Adsorption leads to a more rapid decrease of Zn^{2+} concentration in the overlying water compared with non-adsorbing case (NaCl). The variation of Zn^{2+} concentration in the overlying water is sensitive to the equilibrium constant. The larger the adsorption coefficient is, the more rapidly the concentration decreases.

2) The mass in three phases varies rapidly at beginning (increasing in pore water and adsorbed phase, decreasing in overlying water) and finally reaches an equilibrium. The sum of Zn^{2+} in pore water and adsorbed phase is strictly equal to the decreasing mass in overlying water. The adsorbed mass of metal ions is more than 6 times higher than the pore water phased mass.

3) The strong function of adsorption prevents the intrusion of ions into the streambed and thus mitigates the pollution of groundwater, but will also cause higher accumulation of contaminated metals in the shallower layer of hyporheic zone.

Knowledge of the transport of metal ions in the hyporheic zone may provide important insights into the restoration of polluted rivers. Next important research direction is to elucidate the interactions of metal ions and particles in the hyporheic zone. Fine sediments and colloidal particles can act as a carrier of metal ions [34, 43], which may lead to higher accumulations of contaminants in the hyporheic zone.

	0				
1	0	0	5		
	0				
1	0	0	7	1	0
1	0	0	8	4	U
1	0	0	9		
1	0 0	1	Q		1
1	0	1	1	4	I
1	0	1	2		
	0			4	2
1	0	1	4		
1	0	1	5	1	2
1	0	1	6	4	5
1	0	1	7		
1	0	1	8	4	4
	0				
	0			4	5
	0				Č
	0				
	0			1	6
1	0	2	3 4	4	0
1	0	2	5		
1	0	2	è	4	7
	0				
	0				
1	0	2	g	4	9
1	0	3	6	5	0
1					
	0	3	3		
1	0	3 3	3 2	5	1
1 1	0	3 3 3	3 2 3	5 5	1 2
1 1 1	0	3 3 3 3	3 2 3 4	5 5 5	1 2 3
1 1 1	0:00	3 3 3 3 3	323353	5 5 5	1 2 3
1 1 1 1	0: 0: 0: 0: 0: 0:	3 3 3 3 3 3 3	32345367	5 5 5	1 2 3 4
1 1 1 1	0:000	3 3 3 3 3 3 3 3 3 3	323453638	5 5 5 5	1 2 3 4 5
1 1 1 1	0:000	3 3 3 3 3 3 3 3 3 3	323453638	5 5 5 5	1 2 3 4 5
1 1 1 1	0:000	3 3 3 3 3 3 3 3 3 3	323453638	5 5 5 5	1 2 3 4 5
1 1 1 1 1 1		3 3 3 3 3 3 3 3 3 4	3234576 389900	5 5 5 5 5 5	1 2 3 4 5 6 7
1 1 1 1 1 1 1		3 3 3 3 3 3 3 3 4 4	1323 4 596 T 89900 t	5 5 5 5 5 5 5 5	1 2 3 4 5 6 7 8
1 1 1 1 1 1 1 1 1		33333334444	1 2 3 4 5 6 7 8 9 9 0 1 1 2 1 3	5 5 5 5 5 5 5 5 5 5	1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1		333333344444	1 2 3 4 5 6 7 8 9 9 0 1 1 2 m 2 m 3 4	5 5 5 5 5 5 5 5 5 5	1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1		333333344444	1 2 3 4 5 6 7 8 9 9 0 1 1 2 m 2 m 3 4	5 5 5 5 5 5 5 5 5 5	1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1		333333344444	1 2 3 4 5 6 7 8 9 9 0 1 1 2 m 2 m 3 4	5 5 5 5 5 5 5 5 5 5	1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1 1 1		3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4	3 2 3 4 5 6 7 8 9900 1323 4356 7	5 5 5 5 5 5 5 5 5 6 6 6 6	1 2 3 4 5 6 7 8 9
1 1 1 1 1 1 1 1 1 1 1 1		3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4	3 2 3 4 5 6 3 8 9 9 0 1 2 3 4 5 6 7	5 5 5 5 5 5 5 5 5 6 6 6 6	1 2 3 4 5 6 7 8 9 0 1 2
1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4	3 2 3 4 5 6 3 8 9 9 0 1 2 3 4 5 6 7 8 9	5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6	1 2 3 4 5 6 7 8 9 0 1 2 3
1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4	3 2 3 4 5 6 3 8 9 9 0 1 2 3 4 5 6 7 8 9	5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6	1 2 3 4 5 6 7 8 9 0 1 2 3
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$		3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 5	3234536 38990 13233 43567 8090	5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6	1 2 3 4 5 6 7 8 9 0 1 2 3 4
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$		33333334444444444555	13 2 3 47 536 TS 89900 13203 43506 7 809 0 1 2	5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$		33333334444444444555	13 2 3 47 536 TS 89900 13203 43506 7 809 0 1 2	5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$		333333344444444455555	1 2 3 4 5 6 7 8 9 9 0 1 2 3 4 5 6 7 8 9 9 0 1 2 3 4 5 6 7 8 9 9 0 1 2 3 4	5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$		333333344444444455555555555555555555555	1 2 3 4 5 6 B 8 9 9 0 1 2 3 4 5 6 7 8 9 9 8 2 3 4 5	5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$		333333344444444455555555555555555555555	1 2 3 4 5 6 B 8 9 9 0 1 2 3 4 5 6 7 8 9 9 8 2 3 4 5	5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$		333333334444444445555555555555555555555	1 2 3 4 5 6 7 8 9 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6	5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6	1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

Acknowledgments

1010 101 ³⁴¹		This research has been supported by the Natural Science Foundation of China (51679065), the
1012 101 342 1014	Bas	sic Research Programs (Natural Science Foundation) of Jiangsu Province (BK20171436), Social
1015 1016 1016	Dev	velopment - Major Demonstration of Science and Technology of Science and Technology
1017 101 <mark>844</mark> 1019	Pro	jects of Jiangsu Province (BE2018737); and the 111 Project (B17015), Ministry of Education
102945 1021 1022	and	State Administration of Foreign Experts Affairs, P. R. China.
102346 1024	Ref	ferences
1025 1028 ⁴⁷ 102 3 48	1	Järup, L. (2003). Hazards of heavy metal contamination. British medical bulletin, 68(1), 167-182. https://doi.org/10.1093/bmb/ldg032
1028 102 3 49 103 0 50 103 <u>3</u> 51 1032	2	Islam, M. S., Ahmed, M. K., Raknuzzaman, M., Habibullah-Al-Mamun, M., & Islam, M. K. (2015). Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecological Indicators, 48, 282-291.https://doi.org/10.1016/j.ecolind.2014.08.016
1032 103 3 52 103 3 53 103 <u>5</u> 54 1036	3	Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials, 195, 355-364.https://doi.org/10.1016/j.jhazmat.2011.08.051
103355 103856 1039 1040 57	4	Liu, G., Tao, L., Liu, X., Hou, J., Wang, A., & Li, R. (2013). Heavy metal speciation and pollution of agricultural soils along Jishui River in non-ferrous metal mine area in Jiangxi Province, China. Journal of Geochemical Exploration, 132, 156-163.https://doi.org/10.1016/j.gexplo.2013.06.017
¹⁰⁴ 358 1042 1043 1043	5	Milenkovic, N., Damjanovic, M., & Ristic, M. (2005). Study of Heavy Metal Pollution in Sediments from the Iron Gate (Danube River), Serbia and Montenegro. Polish Journal of Environmental Studies, 14(6).
1044 1045 1046 104 3 61 104 3 62	6	Jabłońska-Czapla, M., Nocoń, K., Szopa, S., & Łyko, A. (2016). Impact of the Pb and Zn ore mining industry on the pollution of the Biała Przemsza River, Poland. Environmental monitoring and assessment, 188(5), 262.https://doi.org/10.1007/s10661-016-5233-3
1048 1049 ⁶³ 1058 ⁶⁴ 105365	7	Li, X., Wai, O. W., Li, Y. S., Coles, B. J., Ramsey, M. H., & Thornton, I. (2000). Heavy metal distribution in sediment profiles of the Pearl River estuary, South China. Applied Geochemistry, 15(5), 567-581.https://doi.org/10.1016/s0883-2927(99)00072-4
1052 1053 ⁶⁶ 105 4 67	8	Haileslassie, T., & Gebremedhin, K. (2015). Hazards of heavy metal contamination in ground water. International Journal of Technology Enhancements and Emerging Engineering Research, 3(2), 1-6.
1055 1058 ⁶⁸ 105369 105§70 1059	9	Giller, K. E., Witter, E., & McGrath, S. P. (1998). Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil biology and biochemistry, 30(10-11), 1389-1414.https://doi.org/10.1016/s0038-0717(97)00270-8
1060 1061 1062		18

1063	
1064	
1000	Ogunleye, P. O., Mayaki, M. C., & Amapu, I. Y. (2002). Radioactivity and heavy metal composition of Nigerian phosphate rocks: Possible environmental implications. Journal of environmental radioactivity, 62(1),
106 ³⁷² 106873	39-48.https://doi.org/10.1016/s0265-931x(01)00149-7
1069 107874 1 107375	 Dalmacija, B., Prica, M., Ivancev-Tumbas, I., Van der Kooij, A., Roncevic, S., Krcmar, D., & Teodorovic, I. (2006). Pollution of the Begej Canal sediment-metals, radioactivity and toxicity assessment. Environment
107376 1073 1073	International, 32(5), 606-615.https://doi.org/10.1016/j.envint.2006.01.006
107 4 77 1 107 5 78	2 Bajracharya, K., Y. T. Tran, and D. A. Barry. 1996. Cadmium adsorption at different pore water velocities. Geoderma. 73(3-4): 197-216. DOI: 10.1016/0016-7061(96)00048-1
1076 107 3 79 1	Gandy, C. J., Smith, J. W. N., & Jarvis, A. P. (2007). Attenuation of mining-derived pollutants in the
107 <u>880</u> 107 <u>9</u> 81 1080	hyporheic zone: A review. Science of the Total Environment, 373(2-3), 435-446. https://doi.org/10.1016/j.scitotenv.2006.11.004
108382 1	4 Borgmann, U., & Norwood, W. P. (1997). Toxicity and accumulation of zinc and copper in Hyalella azteca
1082 1083 1083 1084 1084	exposed to metal-spiked sediments. Canadian Journal of Fisheries and Aquatic Sciences, 54(5), 1046-1054.https://doi.org/10.1139/f97-020
¹⁰⁸ 585 1 1086 1087 ⁸⁶	5 Kookana, R. S., R. Naidu, D. A. Barry, Y. T. Tran, and K. Bajracharya. 1999. Sorption-desorption equilibria and dynamics of cadmium during transport in soil. In Fate and Transport of Heavy Metals in the Vadose
108887	Zone. Editors: H. M. Selim and I. K. Iskandar, Lewis Publishers, Boca Raton, Florida, Chapter 3, pp. 59-90.
1090 109 3 89 109 2 90	6 Al Bakheet, S. A., Attafi, I. M., Maayah, Z. H., Abd-Allah, A. R., Asiri, Y. A., & Korashy, H. M. (2013). Effect of long-term human exposure to environmental heavy metals on the expression of detoxification and DNA repair genes. Environmental Pollution, 181, 226-232.https://doi.org/10.1016/j.envpol.2013.06.014
109 5 92 109 <u>6</u> 93	7 Ou, X., Zhang, Y., Xu, C., Lin, X., Zang, Q., Zhuang, T., & Liu, B. (2012). Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PloS One, 7(9), e41143.https://doi.org/10.1371/journal.pone.0041143
1097 109894 1 109 <u>995</u> 110 <u>9</u> 96 1101	8 Dallinger, R., Prosi, F., Segner, H., & Back, H. (1987). Contaminated food and uptake of heavy metals by fish: A review and a proposal for further research. Oecologia, 73(1), 91- 98.https://doi.org/10.1007/bf00376982
110397 1 110398 1104 1105 1105	9 Cheng, Z., Man, Y. B., Nie, X. P., & Wong, M. H. (2013). Trophic relationships and health risk assessments of trace metals in the aquaculture pond ecosystem of Pearl River Delta, China. Chemosphere, 90(7), 2142- 2148.https://doi.org/10.1016/j.chemosphere.2012.11.017
110600 2 1107 1108 110902	Türkdoğan, M. K., Kilicel, F., Kara, K., Tuncer, I., & Uygan, I. (2003). Heavy metals in soil, vegetables and fruits in the endemic upper gastrointestinal cancer region of Turkey. Environmental toxicology and pharmacology, 13(3), 175-179.https://doi.org/10.1016/s1382-6689(02)00156-4
1110 111403 2 111404 111305	 Triska, F. J., Kennedy, V. C., Avanzino, R. J., Zellweger, G. W., & Bencala, K. E. (1989). Retention and transport of nutrients in a third - order stream in northwestern California: Hyporheic processes. Ecology, 70(6), 1893-1905. DOI: 10.2307/1938120
1114 111 4 06 2 111 6 07 111 7 08 1118	2 Triska, F. J., Kennedy, V. C., Avanzino, R. J., Zellweger, G. W., & Bencala, K. E. (1989). Retention and transport of nutrients in a third - order stream: Channel processes. Ecology, 70(6), 1877-1892. DOI: 10.2307/1938119
1119 1120 1121	19

1122		
1123		
1124	23	Findlay S. Importance of surface-subsurface exchange in stream ecosystems: The hyporheic zone. Limnology
1125^{409}	25	and Oceanography, 1995, 40(1):159-164. DOI: 10.4319/lo.1995.40.1.0159
112 6 10		and Occanography, 1775, 40(1).157-104. DOI: 10.4517/10.1775.40.1.0157
1127 1128 ¹¹	24	Boulton, A.J.; Findlay, S.; Marmonier, P.; Stanley, E.H.; Valet, H.M. (1998). The functional significance of
112912		the hyporheic zone in streams and rivers. Annual Review of Ecological Systems, 29, 59-
113013		81.https://doi.org/10.1146/annurev.ecolsys.29.1.59
1131		
113214	25	Stubbington R. (2012). The hyporheic zone as an invertebrate refuge: A review of variability in space, time,
113315		taxa and behaviour. Marine and Freshwater Research, 63(4): 293-311. DOI: 10.1071/MF11196
1134		
113 4 16	26	Battin TJ, Besemer K, Bengtsson MM, et al. The ecology and biogeochemistry of stream biofilms. Nature
113617		Reviews Microbiology, 2016, 14(4):251-263. DOI: 10.1038/nrmicro.2016.15
1137	27	Bourg, A.C.M.; Bertine, C. (1993). Biogeochemical processes during the infiltration of river water into an
113818	21	
113 9 19 1140		alluvial aquifer. Environmental Science and Technology, 27, 661-666.https://doi.org/10.1021/es00041a009
1140 114 4 20	28	Zhu, H. W., Zhong, B. C., & Wang, D. Z. (2014). Sediment rarefaction resuspension and contaminant release
1142421		under tidal currents. Journal of Hydrodynamics, 26(5), 827-834. https://doi.org/10.1016/S1001-
1143222		6058(14)60091-3
1144		0058(14)00091-5
114 5 23	29	Jin, G., Tang, H., Li, L., & Barry, D. A. (2015). Prolonged river water pollution due to variable-density flow
114@p24		and solute transport in the riverbed. Water Resources Research, 51(4), 1898-1915.
1147425		https://doi.org/10.1002/2014WR016369
1148		
1149426	30	Fuller CC, Harvey JW. Reactive uptake of trace metals in the hyporheic zone of a mining-contaminated
1150 427		stream, Pinal Creek, Arizona. Environ Sci Technol 2000;34:1150 5.https://doi.org/10.1021/es990714d
1151 115 <u>2</u> 28	21	
115 <u>4</u> 28 1153 429	31	Winde, F., & van der Walt, I. J. (2004). The significance of groundwater-stream interactions and fluctuating
1154		stream chemistry on waterborne uranium contamination of streams-a case study from a gold mining site in
$1154^{430}_{1155^{430}}$		South Africa. Journal of Hydrology, 287(1-4), 178-196.ttps://doi.org/10.1016/j.jhydrol.2003.10.004
¹¹⁵⁶ 431	32	Fuller, C. C., & Bargar, J. R. (2014). Processes of zinc attenuation by biogenic manganese oxides forming in
1157 1158 1158	52	the hyporheic zone of Pinal Creek, Arizona. Environmental science & technology, 48(4), 2165-
115933		2172.https://doi.org/10.1021/es402576f
1160 1161 1161	33	Peña, J., Kwon, K. D., Refson, K., Bargar, J. R., & Sposito, G. (2010). Mechanisms of nickel sorption by a
116 <u>4</u> 35		bacteriogenic birnessite. Geochimica et Cosmochimica Acta, 74(11), 3076-
116336		3089.https://doi.org/10.1016/j.gca.2010.02.035
1164		5007.https://doi.org/10.1010/j.god.2010.02.055
116 § 37	34	Ren, J., & Packman, A. I. (2004). Stream-subsurface exchange of zinc in the presence of silica and kaolinite
116638		colloids. Environmental Science & Technology, 38(24), 6571-6581.https://doi.org/10.1021/es035090x
1167		
116 8 39	35	Ren, J., & Packman, A. I. (2005). Coupled stream-subsurface exchange of colloidal hematite and dissolved
116 9 40		zinc, copper, and phosphate. Environmental Science & Technology, 39(17), 6387-
117041		6394.https://doi.org/10.1021/es050168q
1171	26	Delember Der D. Wasser, I. & Deules V. I. (2012). Les deus bilisetien in the homenhois source and sime heule
117 <u>2</u> 42	36	Palumbo-Roe, B., Wragg, J., & Banks, V. J. (2012). Lead mobilisation in the hyporheic zone and river bank
117 <u>3</u> 43		sediments of a contaminated stream: Contribution to diffuse pollution. Journal of Soils and Sediments,
¹¹⁷⁴ 444 1175		12(10), 1633-1640. https://doi.org/10.1007/s11368-012-0552-7
1176445	37	Palumbo-Roe, B., Banks, V. J., Bonsor, H. C., Hamilton, E. M., & Watts, M. J. (2017). Limitations on the
1177	51	
1178		
1179		20
1180		

1181		
1182 1183		
1183 1184 1184		role of the hyporheic zone in chromium natural attenuation in a contaminated urban stream. Applied
118 § 47		Geochemistry, 83, 108-120.https://doi.org/10.1016/j.apgeochem.2017.02.011
1186 1187 1	38	Yu, K., Duan, Y., Liao, P., Xie, L., Li, Q., Ning, Z., & Liu, C. (2019). Watershed-scale distributions of heavy
118 8 49		metals in the hyporheic zones of a heavily polluted Maozhou River watershed, southern China. Chemosphere,
118950		124773.https://doi.org/10.1016/j.chemosphere.2019.124773
1190	20	Ward, A.S. (2016). The evolution and state of interdisciplinary hyporheic research. Wiley Interdisciplinary
119 4 51 119 2 52	39	Reviews Water, 3, 83-103.https://doi.org/10.1002/wat2.1120
11993		Keviews water, 5, 85-105.https://doi.org/10.1002/wat2.1120
119453	40	Packman, A. I., Brooks, N. H., & Morgan, J. J. (2000). Kaolinite exchange between a stream and streambed:
11954		Laboratory experiments and validation of a colloid transport model. Water Resources Research, 36(8), 2363-
119 <u>6</u> 55 1197		2372.https://doi.org/10.1029/2000wr900058
119856	41	Cardenas, M. B., & Wilson, J. L. (2006). The influence of ambient groundwater discharge on exchange zones
119 <u>9</u> 57		induced by current-bedform interactions. Journal of Hydrology, 331(1-2), 103-
1200		109.https://doi.org/10.1016/j.jhydrol.2006.05.012
1201 120 <u>2</u> 59	42	Jin, G., Tang, H., Li, L., & Barry, D. A. (2011). Hyporheic flow under periodic bed forms influenced by low-
¹²⁰³ 460	42	density gradients. Geophysical Research Letters, 38(22). https://doi.org/10.1029/2011GL049694
1204		
120 <u>5</u> 61	43	Jin, G., Zhang, Z., Tang, H., Xiaoquan, Y., Li, L., & Barry, D. A. (2019). Colloid transport and distribution in
1206 462 1207		the hyporheic zone. Hydrological Processes, 33(6), 932-944.https://doi.org/10.1002/hyp.13375
120 <u>8</u> 63	44	Jin, G., Tang, H., Gibbes, B., Li, L., & Barry, D. A. (2010). Transport of nonsorbing solutes in a streambed
1209		with periodic bedforms. Advances in Water Resources, 33(11), 1402-1416.
1209 1210 121 ⁴⁶⁵		https://doi.org/10.1016/j.advwatres.2010.09.003
¹²¹² 466	45	Barry, D. A., C. T. Miller, and P. J. Culligan-Hensley. 1996. Temporal discretisation errors in non-iterative
1212 1213 1214 ⁶⁷		split-operator approaches to solving chemical reaction/groundwater transport models. Journal of Contaminant
1214 121 § 68		Hydrology. 22(1-2): 1-17. DOI: 10.1016/0169-7722(95)00062-3.
1216	16	
121769	46	Barry, D. A., K. Bajracharya, and C. T. Miller. 1996. Alternative split-operator approach for solving
121870		chemical reaction/groundwater transport models. Advances in Water Resources. 19(5): 261-275. DOI:
121 9 71 1220		10.1016/0309-1708(96)00002-4.
122472	47	Barry, D. A., C. T. Miller, P. J. Culligan, and K. Bajracharya. 1997. Analysis of split operator methods for
122273		nonlinear and multispecies groundwater chemical transport models. Mathematics and Computers in
122 <u>3</u> 474 1224		Simulation. 43(3-6): 331-341. DOI: 10.1016/S0378-4754(97)00017-7.
1224	48	Barry, D. A. 1992. Modelling contaminant transport in the subsurface: Theory and computer programs. In
122@76		Modelling Chemical Transport in Soil: Natural and Applied Contaminants, H. Ghadiri and C. W. Rose
1227477		(editors), Lewis Publishers, Boca Raton, Florida, pp. 105-144.
1228 122 <u>9</u> 78	40	Dame D. A. and C. Specite 1000 Application of the convection dispersion model to solute transport in
123970	49	Barry, D. A., and G. Sposito. 1988. Application of the convection-dispersion model to solute transport in finite soil columns. Soil Science Society of America Journal. 52(1): 3-9. DOI:
1230 1231 1232 1232		10.2136/sssaj1988.03615995005200010001x.
1232		
1233 481 1234 1235	50	Parlange, JY., J. L. Starr, M. Th. van Genuchten, D. A. Barry, and J. C. Parker. 1992. Exit condition for
1235 ⁴⁸²		miscible displacement experiments in finite columns. Soil Science. 153(3): 165-171. DOI:
123683		10.1097/00010694-199203000-00001.
1237 1238		21
1238		

1240		
1241		
1242 1243	51	
1243 ⁴⁸⁴	51	Dzombak, D.A., and Morel, F.M.M., 1990, Surface complexation modeling-Hydrous ferric oxide: New
124485		York, John Wiley, 393 p.
1245 1246	52	Jin, G., Yang, W., Xu, H., Zhang, Z., Yuan, S., Tang, H., Li, L. & Barry, D. A. (2020). Density effects on
124 7 87		solute release from streambeds. Hydrological Processes, 34(5), 1144-1153. https://doi.org/10.1002/hyp.13655
1248 1249 ⁴⁸⁸		
1250		
1251		
1252		
1253		
1253		
1255		
1256		
1250		
1258		
1259		
1260		
1261		
1262		
1263 1264		
1265		
1266		
1267		
1268		
1269		
1209		
1271		
1272		
1273		
1274		
1275		
1276		
1277		
1278		
1279		
1280		
1281		
1282		
1283		
1284		
1285		
1286		
1287		
1288		
1289		
1290		
1291		
1292		
1293		
1294		
1295		
1296		
1297		22
1298		

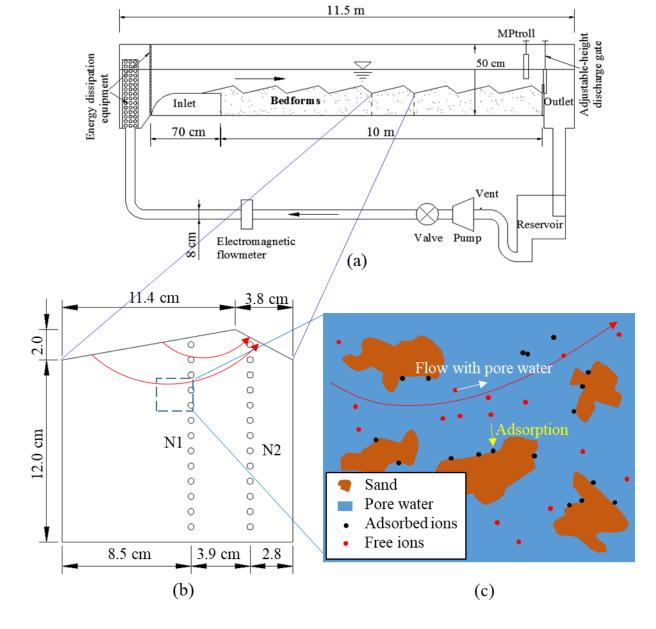


Fig. 1. (a) The circulating flume used in experiments; (b) the shape and size of a single bedform. Red arrows represent the flow direction of pore water. The
 open circles show sampling locations. N1 and N2 are two columns for concentration monitoring on the stoss and lee sides, respectively, of the bedform. (c)
 Diagrammatic sketch of the transport of ions. The red arrow represents the flow of pore water, the white arrow represents the flow of free ions with pore water,
 and the yellow arrows represent the sorption-desorption process.

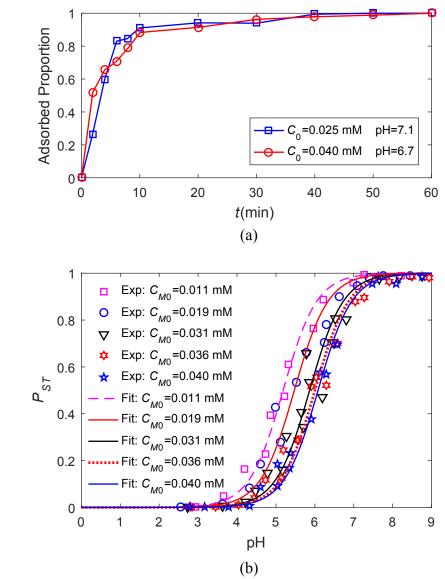
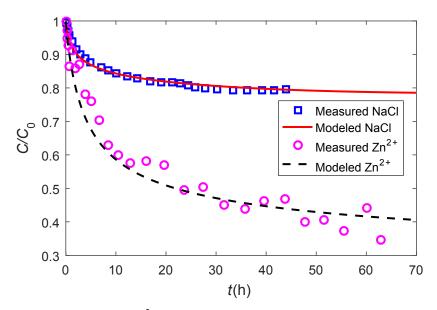
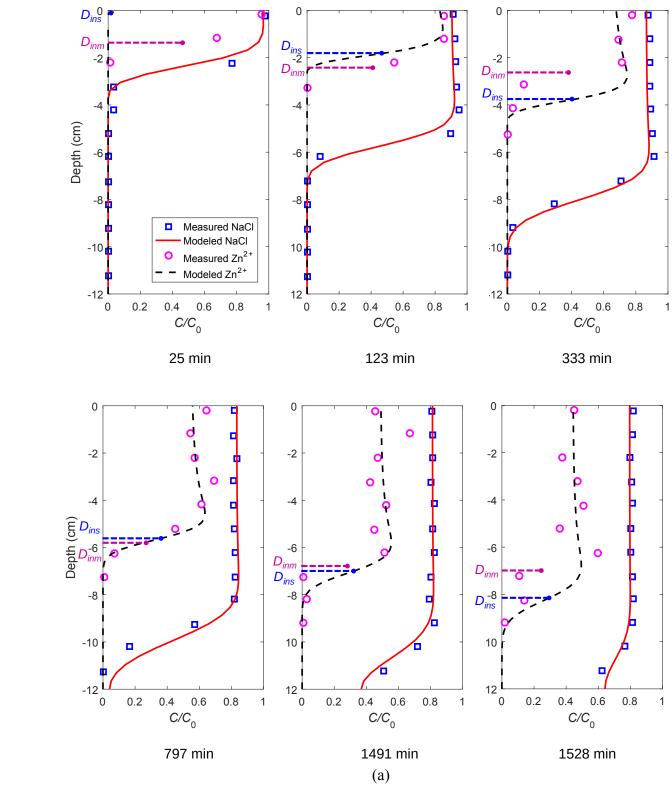
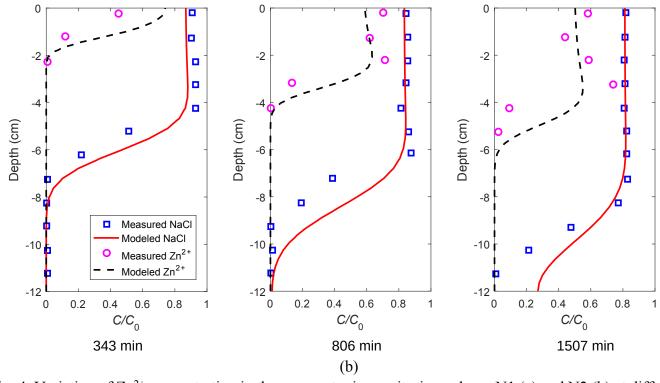
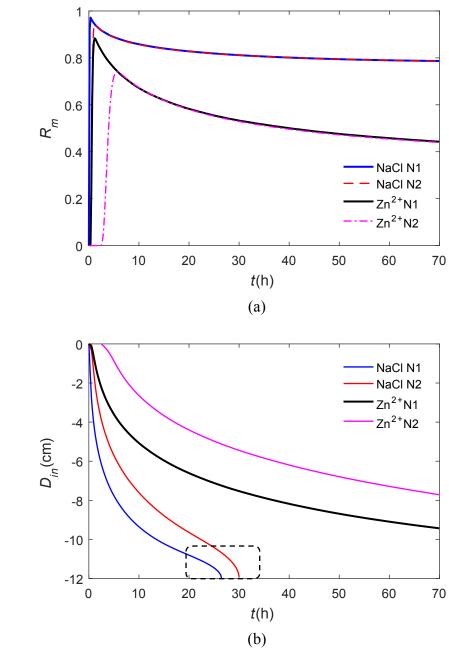


Fig. 2. (a) The adsorption kinetics between sediment and Zn²⁺. (b) Data and fitted curves (at steady state)
 from batch adsorption experiments.


Fig. 3. Variation of Zn^{2+} and NaCl concentrations in the overlying water.

21 22

Fig. 4. Variation of Zn^{2+} concentration in the pore water in monitoring column N1 (a) and N2 (b) at different times. The intrusion depths of Zn^{2+} from simulation (D_{ins}) and from measurement (D_{inm}) are labeled by blue and magenta dash line, respectively.

26 27

28 29

Fig. 5. The maximum-initial concentration ratio R_m (a) and intrusion depth D_{in} (b) variations for NaCl and Zn²⁺ at profiles N1 and N2. A sharp decreasing trend is observed (in the dash box) at the end of case NaCl for D_{in} because the front tip of the concentration intrusion curve has reached the bottom of the profile ahead of the intrusion depth (Fig. S6).

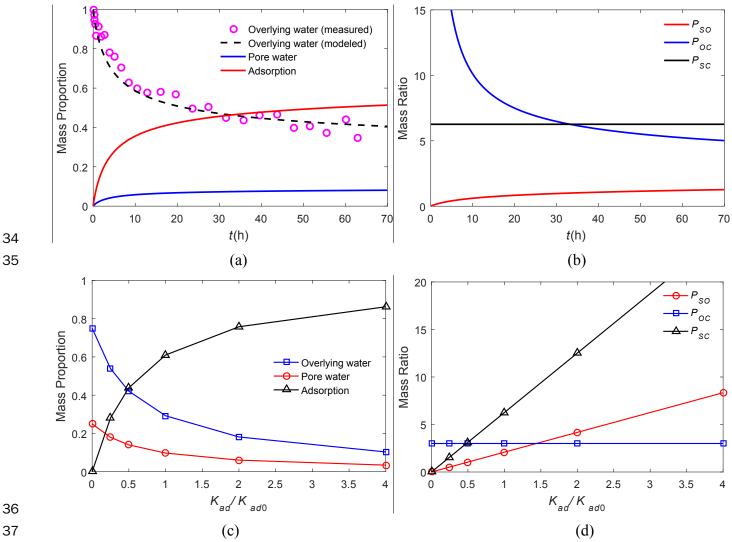
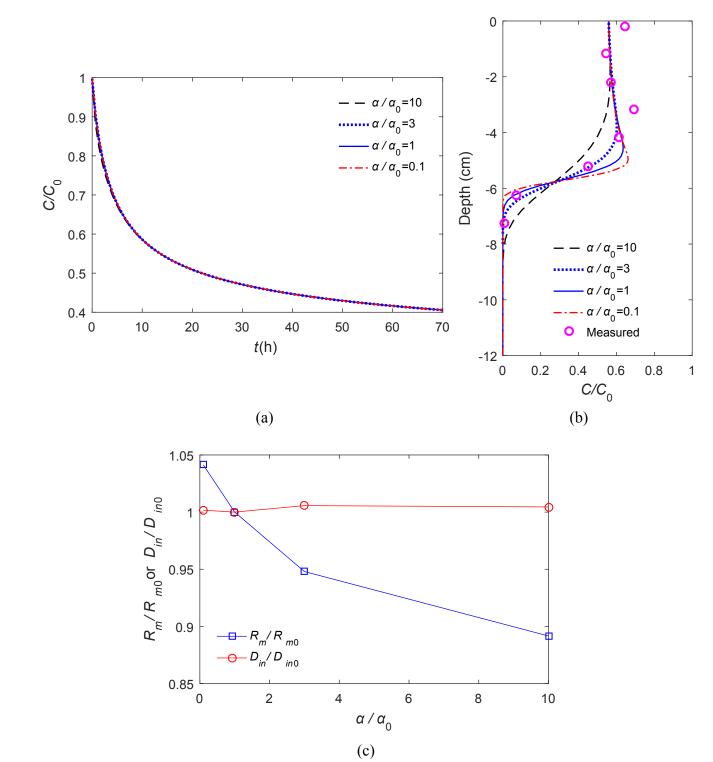



Fig. 6. (a) Variations of mass proportions of Zn^{2+} in three phases with time ($K_{ad} = K_{ad0}$). (b) Mass ratio of 38 adsorption to overlying water phase (P_{SO}), overlying water phase to pore water phase (P_{OC}), and adsorption 39 to pore water phase (P_{SC}). (c) Final stable mass proportions with different K_{ad} values. The value of K_{ad0} is 40 from Table 1. (d) Final mass ratio of adsorption to overlying water phase (P_{SO}), overlying water phase to 41 pore water phase (P_{OC}), and and adsorption to pore water phase (P_{SC}). 42

47 Fig. 7. Effects of dispersivities (α). (a) Concentration in overlying water for different α . (b) Zn²⁺ 48 concentration in the pore water at t = 797 min in profile N1. (c) Variation of R_m/R_{m0} and D_{in}/D_{in0} .

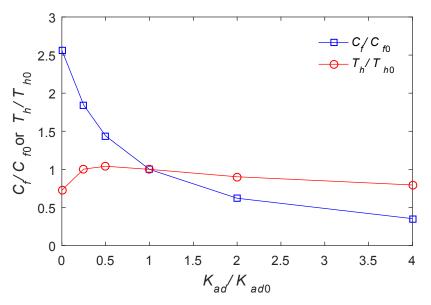


Fig. 8. Variation of the final stable concentration (C_f) and half concentration arrival time (T_h) with the equilibrium constant (K_{ad}).

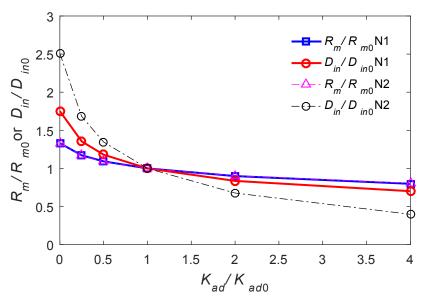


Fig. 9. Variation of the maximum-initial concentration ratio (R_m) and intrusion depth (D_{in}) with the equilibrium constant (K_{ad}) at 797 min.

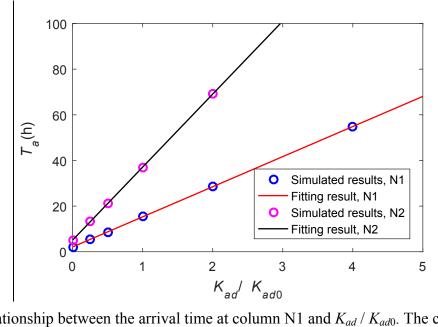
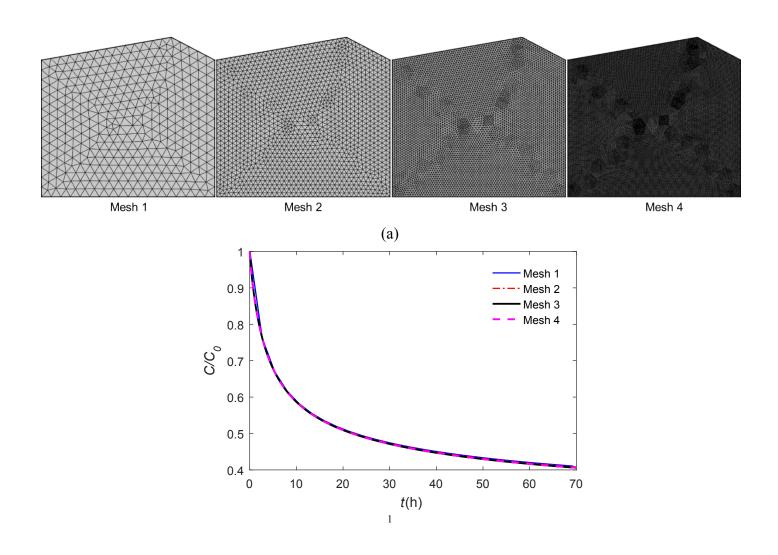
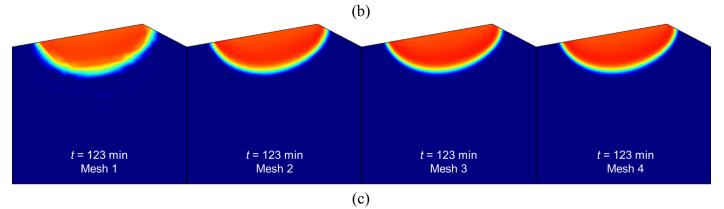


Fig. 10. Relationship between the arrival time at column N1 and K_{ad} / K_{ad0} . The circles represent the simulation results and the lines are linear fits. K_{ad0} is the fitted equilibrium constant based on measured data.

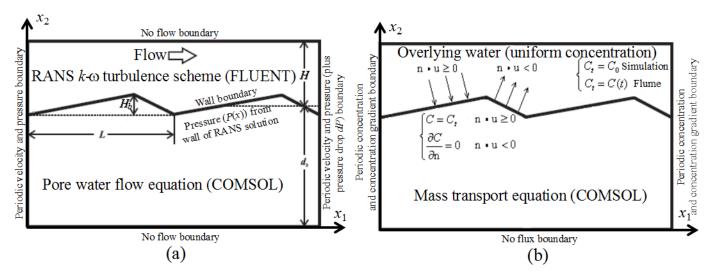
1 Table 1. Parameters for experiments and simulations.

Parameters	Values	Parameters	Values
Average flow rate of the overlying water (v)	12.78 cm s ⁻¹	Porosity (θ)	0.33
Average depth of the overlying water (<i>H</i>)	8.22 cm	Water density (ρ)	1000 kg m ⁻³
Length of the bedform (L)	15.2 cm	Hydrodynamic viscosity coefficient (μ)	0.001 Pa s
Height of top of the bedforms (H_b) , Fig. 1b	2 cm	Longitudinal dispersivities (α_L)	0.001 m
Length of the stoss side of the bedform (L_c)	11.4 cm	Transverse dispersivities (α_T)	0.0001 m
Minimum bedform height (H_s) , Fig. 1b	12.0 cm	Effective molecular diffusion coefficient	10 ⁻⁹ m ² s
Hydraulic conductivity (K)	8.83 \times 10 ⁻⁴ m s ⁻¹	Initial concentration of $\operatorname{Zn}^{2+}(C_0)$	$2.34 \times 10^{-3} \mathrm{kg} \mathrm{m}^{-3}$
Equilibrium constant for linear adsorption (K_{ad})	0.00142 m ³ kg ⁻¹	Bulk density of sand bed (ρ_b)	$1.454 \times 10^3 {\rm kg} { m m}^{-2}$

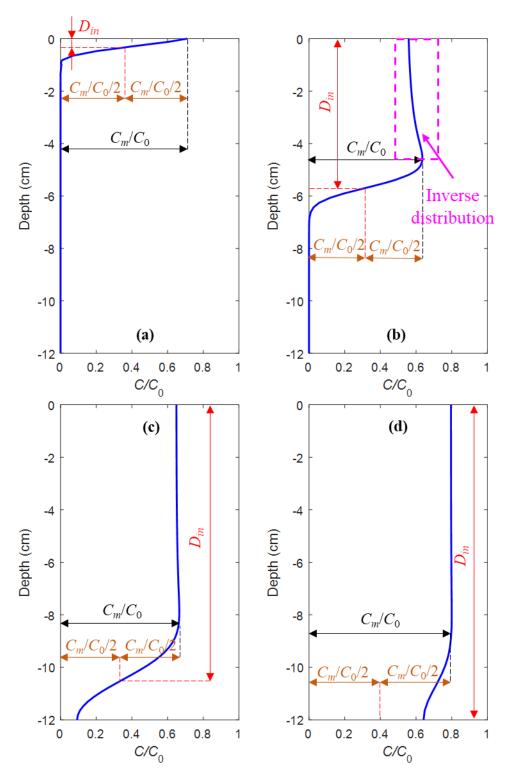

Supporting Information

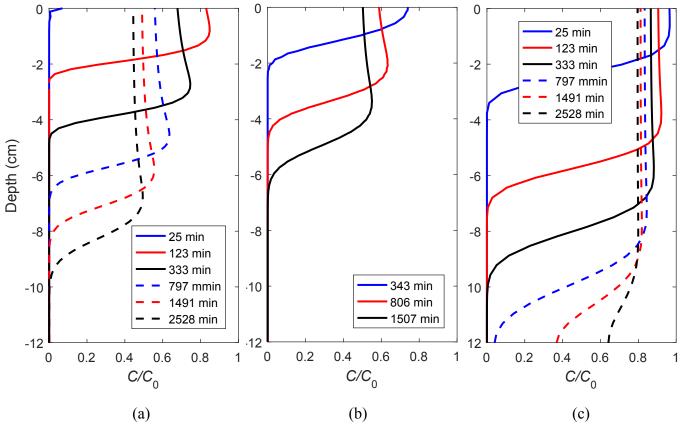

Transport of zinc ions in the hyporheic zone: Experiments and simulations

Guangqiu Jin, Zhongtian Zhang, Ruzhong Li, Chen Chen, Hongwu Tang*, Ling Li, David Andrew Barry


S1 Mesh selection

In order to choose a suitable mesh for numerical simulation, four meshes with different grid densities were tested (Fig. S1a). The results show that different grid densities have little effect on the concentration variations in the overlying water (Fig. S1b). However, the pore water concentrations differ (Fig. S1c). For Meshes 1 and 2, the concentrations show irregular features, which are not noticeable for Meshes 3 and 4. Consequently, Mesh 3 was used subsequently.




Fig. S1. (a) Different meshes tested. Meshes 1-4 contained, respectively, 697, 2788, 11152, 44608 grids. Concentration variations in the (b) overlying water and (c) pore water simulated by meshes computed for different meshes.

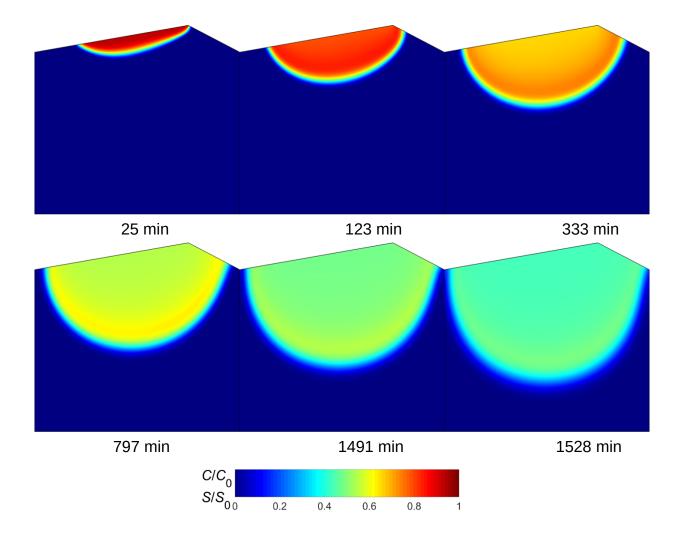

Fig. S2. Schematic of simulation domain and boundaries. (a) Water flow (overlying water and porewater flow). L, H, H_b and d_b are the bedform length, average water depth of the overlying water, bedform height and average depth of streambed, respectively. (b) Solute transport. A uniform concentration is assumed in the overlying water. For the solute released from streambed, the total quantity of solute in the overlying water and pore water is assumed to be constant over time in the flume experiment but the concentration in the overlying water is assumed to vary.

Fig. S3. Sketch for maximum-initial concentration ratio ($R_m = C_m/C_0$) and intrusion depth (D_{in}) in four different cases, and the curves in the figure do not represent real measured data. (a) The peak concentration for the intrusion line has not reached the profile. (b) The peak concentration for the intrusion line has reached the profile ahead of the front tip. (c) The solute has reached the bottom of the profile but the intrusion depth (D_{in}) has not reached the bottom; (d) The intrusion depth (D_{in}) has reached the bottom.

Fig. S4. Computed concentrations (a) at profile N1 for Zn²⁺; (b) at profile N2 for Zn²⁺; and (c) at profile N1 for NaCl.

Fig. S5. Normalized concentrations of Zn^{2+} in pore water and adsorbed at different times. These results are for the linear adsorption isotherm (Eq. 3, 4), so the distributions of C/C_0 and S/S_0 are identical.

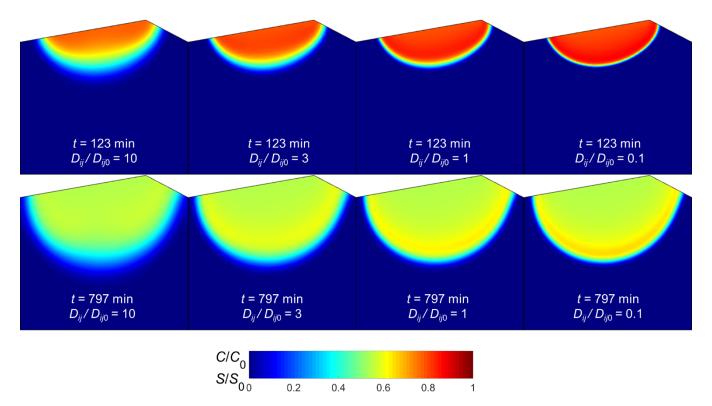


Fig. S6. Normalized concentrations in the bedform for different dispersion coefficients.

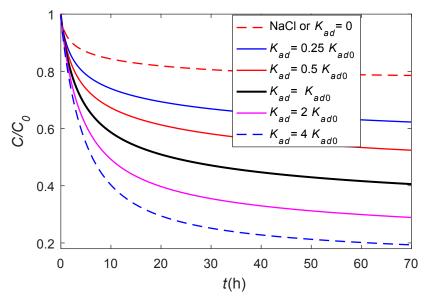
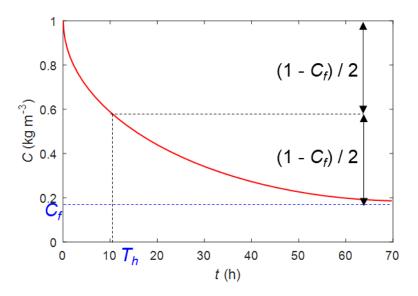



Fig. S7. Normalized concentration evolution in the overland water for different equilibrium constants.

Fig. S8. Definition of final stable concentration (C_f) and half concentration arrival time (T_h).

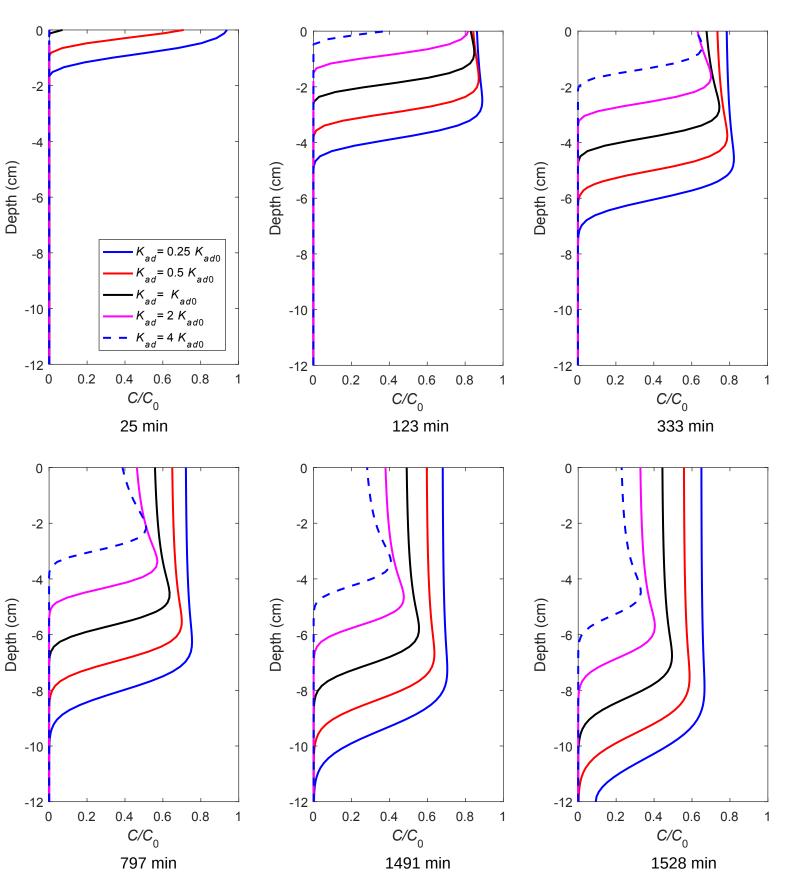
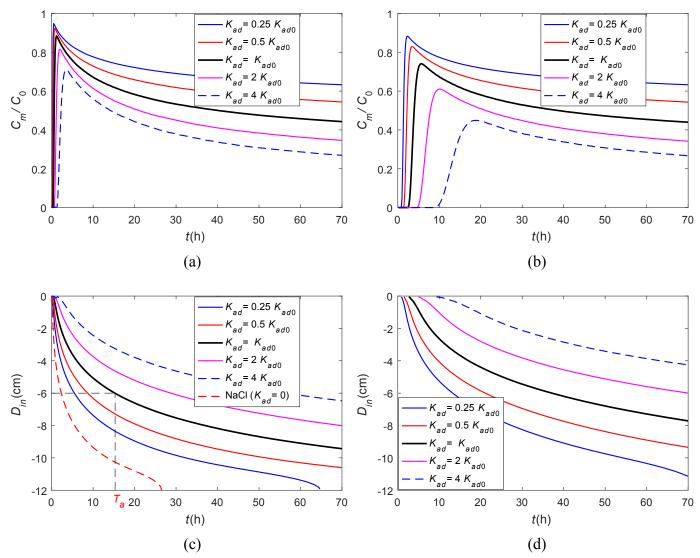



Fig. S9. Concentration variations in pore water at N1 for different equilibrium constants (K_{ad}).

Fig. S10. Maximum intrusion concentration (C_m) and intrusion depth (D_{in}) for different equilibrium constants (K_{ad}) for different vertical profiles. (a) and (c) N1; (b) and (d) N2. K_{ad0} is the fitted equilibrium constant for measured data. T_a (h) is the arrival time when the D_{in} is -6 cm.