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Abstract In this paper, we propose a time-discrete, macroscopic model able to
capture the dynamics of a robotic swarm system engaged in a collab-
orative manipulation task. The case study is concerned with pulling
sticks out of the ground, an action that requires the collaboration of
two robots to be successful. We will show that the model can deliver
not only quantitatively correct predictions but also be a very useful tool
for optimization. In particular, we will show how a mathematical analy-
sis of a simplified model leads to counterintuitive results which can then
be exploited in the full model or more detailed microscopic simulations
to quantitatively assess the dynamic of the whole system. We conclude
the paper with a discussion of strengths and limitations of the current
model-based optimization method.
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1. Introduction

Swarm Intelligence (SI) is a computational and behavioral metaphor
for solving distributed problems that takes its inspiration from biologi-
cal examples mainly provided by social insects [1]. The abilities of such
natural systems appear to transcend the abilities of the constituent in-
dividual agents. In most biological cases studied so far, the robust and
capable high-level group behavior is mediated by nothing more than a
small set of simple low-level interactions between individuals and be-
tween individuals and the environment.

One way to analyze and understand underlying common principles
of swarm systems (both natural and artificial) is to capture their dy-
namics at more abstract levels. Modeling is a means for saving time,
enabling generalization to different platforms, and estimating optimal
system parameters, including control parameters and number of indi-
viduals. We present a detailed macroscopic model for a case study con-
cerned with pulling sticks out of the ground with a team of simple,
reactive autonomous robots. The macroscopic model is quantitatively
correct, time-discrete, and characterized by zero-free parameters. It has
been derived from its corresponding microscopic model presented in [3],
and is consistent with the microscopic and macroscopic methodologies
originally introduced in [6] and [7] respectively. Finally, we show how
macroscopic models can be used as an optimization tool for swarm ro-
botic systems. In particular, we discuss strengths and limitations of this
model-based approach in comparison to one based on learning and mi-
croscopic models, a solution we recently investigated for the same case
study in [5].

2. A Case Study in Distributed Manipulation

In the case study described in this paper, robots must pull sticks out
of the ground, an action which, due to the length of the sticks, requires
the collaboration of two robots to be successful. The metric measured to
quantitatively investigate and model the effects of variations of system
parameters is the collaboration rate among robots, i.e. the number of
sticks successfully taken out of the ground over time.

2.1 Physical Set-Up and Embodied Simulations

The experiment is carried out in a circular arena of fixed radius with
several 15 cm-long sticks, protruding 5 cm above holes in the arena floor.
Groups of Khepera robots, equipped with gripper turrets, are used to
pull sticks out of the ground.
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Figure 1. Left: Khepera robot with gripper in the embodied simulator. Right:
Stick-pulling set-up in the embodied simulator (24 robots, 16 sticks).

Results of physical experiments (conducted with 4 sticks, team sizes
from 2 to 6 robots, in an arena of radius 40 cm) are presented in [3, 7].
Embodied simulation, however, allows us to more systematically validate
collaboration dynamics predicted by our models. Further experiments
characterized by arenas with 4 to 16 sticks and team sizes between 2
and 24 robots were conducted in Webots, a 3D kinematic, sensor-based
embodied simulator of Khepera robots (see Fig. 1). As shown in pre-
vious cases studies concerned with different tasks and different robotic
platforms, this simulator is sufficiently faithful for the controllers to be
transferred to real robots without changes [6, 3, 2].

2.2 The Robot’s Controller

The behavior of a robot is determined by a simple hand-coded pro-
gram which can be represented with a standard flow chart or a Finite
State Machine (FSM), as depicted in Fig. 2 (left). The behavioral gran-
ularity shown in Fig. 2 is arbitrary and is chosen by the experimenter
so that the FSM captures all the details of interest.

In addition to the default search behavior (moving in a straight line)
and an obstacle avoidance behavior, the robot is endowed with a stick-
gripping and -pulling procedure. The robot can determine from its arm
elevation speed while pulling whether another robot is already gripping
the same stick. While waiting for collaboration, another robot’s attempt
to lift the stick is similarly detected. If no other robot is holding the
stick, we call such a grip a grip1. If another robot is already holding the
stick, such a grip is called grip2. When a robot makes a grip1, it holds
the stick raised half-way out of the ground and releases it when either
the duration of the grip exceeds the gripping time parameter τg (a failed
collaboration), or another robot comes to make a grip2 (a successful col-
laboration). Once the stick is released, the robot turns away, performs
obstacle avoidance for a few seconds, then returns to the search pro-
cedure. When a robot makes a grip2, the robot making the grip1 will
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Figure 2. Left: FSM representing the robot controller. Transition between states
are deterministically triggered by sensory measurements. Right: PFSM representing
an agent in the microscopic model or the whole robotic team in the macroscopic model.
The parameters characterizing probabilistic transitions and states are explained in the
text.

release the stick, allowing its teammate to raise the stick completely.
The robot making grip2 performs a short “success dance” (moving the
arm up and down) to mark the successful collaboration, then releases
the stick (which has to be replaced in the hole by the experimenter),
performs obstacle avoidance for a few seconds, and resumes searching
for sticks. Because of the way sticks are recognized (only by their thin-
ness), a stick which is held by one robot can only be recognized when
approached from the opposite side within a certain angle (approx. 125
degrees in the physical set-up). For the other angles of approach, both
the stick and the robot are detected and the whole is taken for an ob-
stacle. More details are reported in [3], but we note that the acceptable
approach angle, expressed as a ratio Rg over the whole approaching
perimeter, is an important parameter in the collaboration dynamics of
the system and its role is explored in Section 4.

3. The Macroscopic Model

The central idea of both microscopic and macroscopic probabilistic
modeling methodologies is to describe the experiment as a series of sto-
chastic events with probabilities computed from the interactions’ geo-
metrical properties and systematic experiments with one or, due to the
collaborative nature of the stick pulling experiment, two real robots or
embodied agents [6, 3, 7]. Fig. 2 (right) shows a Probabilistic Finite
State Machine (PFSM) whose state-to-state transitions depend on the
interaction probabilities of a robot with another teammate and with the
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environment. While in microscopic models each robot is represented by
its own PFSM, in macroscopic models, a single PFSM summarizes the
whole robotic team, each of its states representing the average number
of teammates in a particular state at a certain time step. In both types
of models, the robots’ PFSM(s) are coupled with the environment, a
passive, shared resource whose modifications are generated by the par-
allel actions of the robots. In both cases, our metric, the collaboration
rate, is computed from the modifications made to the environment.

3.1 Modeling Assumptions and Properties

The microscopic and macroscopic probabilistic modeling methodolo-
gies share several assumptions and properties [7]. The methodologies
currently rely on the assumption that the coverage of the arena by the
groups of robots is spatially uniform. Because we model the system as a
PFSM, we must also assume that the robot’s future state depends only
on its present state and on how much time it has spent in that state.
The details of computing the transition probabilities for the stick-pulling
experiment can be found in [3]. Furthermore, consistent with previous
publications [6, 3, 7], each iteration of our models corresponds to a time
step T in real time equivalent to the time needed for a robot moving with
a certain speed Vr and having a certain detection width Wr to cover the
area of the smallest object in the arena (in our case, a stick).

3.2 Mathematical Description

The PFSM depicted in Fig. 2 (right) can also be translated into a set
of difference equations (DE), one for each state, which mathematically
represent the dynamics of the whole system at the macroscopic level.
Conservation laws based on invariant numbers of sticks and robots dur-
ing the experiment can be also exploited by replacing one of the DEs
with a conservation equation.

All the different average durations measured with real robots or em-
bodied agents can be then translated into numbers of iterations. It
follows that the time needed for centering on and gripping a stick τc
corresponds to Tc iterations, the duration of obstacle avoidance τa to Ta
iterations, the duration of the interference between two robots τi to Ti
iterations, the duration of the success dance τd to Td iterations, and the
gripping time parameter τg to Tg iterations. In this paper, the numerical
values used in the microscopic and macroscopic models are exactly the
same as those reported in [3], with the exception of the robot’s detec-
tion width, Wr

1. The following set of difference equations represent the
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macroscopic model of the stick pulling experiment:

Ns(k + 1) = (1)

Ns(k)− (pw + pR)Ns(k)− pg2Ng(k)Ns(k)− pg1[M0 −Ng(k)]Ns(k)

+ pwNs(k − Ta) + pRNs(k − Tia) + pg2Ng(k − Tca)Ns(k − Tca)

+ pg2Ng(k − Tcda)Ns(k − Tcda)

+ pg1[M0 −Ng(k − Tcga)]Ns(k − Tcga)Γ(k;Tga)

Na(k + 1) = (2)

Na(k) + pwNs(k) + pRNs(k − Ti) + pg2Ng(k − Tc)Ns(k − Tc)

+ pg2Ng(k − Tcd)Ns(k − Tcd)

+ pg1[M0 −Ng(k − Tcg)]Ns(k − Tcg)Γ(k;Tg)− pwNs(k − Ta)

− pRNs(k − Tia)− pg2Ng(k − Tca)Ns(k − Tca)

− pg2Ng(k − Tcda)Ns(k − Tcda)

− pg1[M0 −Ng(k − Tcga)]Ns(k − Tcga)Γ(k;Tga)

Ni(k + 1) = (3)

Ni(k) + pRNs(k)− pRNs(k − Ti)

Nc(k + 1) = (4)

Nc(k) + pg2Ng(k)Ns(k) + pg1[M0 −Ng(k)]Ns(k)

− pg2Ng(k − Tc)Ns(k − Tc)− pg1[M0 −Ng(k − Tc)]Ns(k − Tc)

Nd(k + 1) = (5)

Nd(k) + pg2Ng(k − Tc)Ns(k − Tc)− pg2Ng(k − Tcd)Ns(k − Tcd)

Ng(k + 1) = (6)

N0 −Ns(k + 1)−Na(k + 1)−Ni(k + 1)−Nc(k + 1)−Nd(k + 1)

Γ(k;Tg) =
k∏

j=k−Tg
[1− pg2Ns(j)] (7)

Γ(k;Tga) =
k−Ta∏

j=k−Tga
[1− pg2Ns(j)] (8)

The current iteration is represented by k, k = 0, 1, 2, .. and for k < 0
the arena is empty (i.e. Ns = Na = Ni = Nc = Nd = Ng = 0). M0 is
the number of sticks in the arena, N0 is the total number of robots, and
Txyz = Tx + Ty + Tz. Ns represents the mean number of robots in the
searching state, Na those in the obstacle avoidance state, Ni those in the
interference state, Nc those in the stick centering state, Nd those in the
success dance state, and Ng those in the gripping state. Furthermore,
pw is the probability to find a wall, ps = pg1 that of finding a stick for
grip1, pg2 = Rgpg1 that of finding a stick for grip2, pr that of finding a
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robot, and pR = pr(N0−1) that of finding any other robot in the arena.
Equations (7) and (8) represent the fraction of robots that abandoned
the grip1 state after the time spent in this state exceeded their gripping
time parameter τg. This is equivalent to calculating the probability that
no other robot came “to help” during a time interval of duration τg.

Finally, our team metric, the collaboration rate C̄t, can be computed
from the number of successful collaborations C per time unit2 over the
maximal number of iterations Te:

C(k) = pg2Ns(k − Tcd)Ng(k − Tcd) (9)

C̄t =

∑Te
k=0C(k)

Te
(10)

3.3 Validation of the Model

Using an embodied simulator to validate our models’ predictions, we
present the results of several experiments. In particular, in this section
we investigate the influence of the gripping time parameter and team
size. Experiments using the embodied simulator have been repeated 10
times, and those using the microscopic model 100 times. All error bars
in the plots correspond to the standard deviation among runs.

Macroscopic models base their collective performance forecast on one
single run whose computation time is independent of the number of
teammates but with small group sizes their predictions is only qualita-
tively correct (see Fig. 3, left) because they base their prediction on the
validity of the law of large numbers. Fig. 3 (right) shows that, with-
out changing the density of sticks in the arena (area and number of
sticks are also multiplied), it suffices to multiply the number of robots
by four in order to obtain quantitative agreement between microscopic
and macroscopic models without changing any implementation details.

Observing Fig. 3, our intuition suggests than there is a different re-
lation between the collaboration rate and the gripping time parameter
depending on the ratio between number of robots and number of sticks.
When there are more robots than sticks, the collaboration rate increases
monotonically with the gripping time parameter and eventually satu-
rates in a plateau corresponding to the optimal collaboration rate. In
other words, under these conditions, it is a good strategy for a robot
gripping a stick to wait a very long time for another robot to give a
hand, because there will always be at least one “free” robot available.
By contrast, when there are fewer robots than sticks, waiting a very long
time becomes a bad strategy, as the few robots lose time holding different
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Figure 3. Left: Collaboration rate as a function of the gripping time parameter for
several group sizes. Results gathered for using embodied simulations (dotted lines),
the microscopic model (dashed lines), and the macroscopic model (solid lines) in the
4-stick, 40 cm-radius arena and Right: in the 16-stick, 80 cm-radius arena.

sticks, while no other robots are available to collaborate. For instance
(an extreme case), an infinite gripping time parameter would lead to
a null collaboration rate with all robots eventually holding a different
stick permanently. In Section 4, we will demonstrate via the steady-state
macroscopic analysis that this intuition is not generally correct since it is
only true for a particular range of values of the Rg parameter. The spe-
cific value corresponding to the physical set-up investigated happened
to be precisely in this range.

4. Model Analysis and System Optimization

In this section, we will show that macroscopic models not only allow a
researcher to predict the behavior of the whole system but represent also
a useful tool for optimization. For the sake of simplicity and availability
of space in this paper, we will focus our analysis on a simplified model
which is, however, good enough to qualitatively capture the collaboration
dynamics of the system. In Subsection 4.3, with the help of Eqs. (1—
10), we use the insight gained with the simple model to investigate the
behavior of the full-system model quantitatively.

4.1 Steady-State Analysis of a Simplified Model

As described in Subsection 3.2, several states of the macroscopic mod-
els (Na, Ni, Nc, Nd) can be thought of simple delay states: in reality, ro-
bots assume these modes for a short period of time, for instance the time
needed to perform a success dance or avoiding an obstacle. These opera-
tions usually last a few seconds and are therefore much shorter than most
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of the values of the gripping time parameter considered in this paper.
As a consequence, for sake of simplicity, we can neglect these delays and
reduce the model to two states: searching and gripping. Mathematically,
this can be obtained by setting Ta = Ti = Tc = Td = 0 in Eqs. (1—10)
and reformulating the model as follows:

Ns(k + 1) = Ns(k)− pg1[M0 −Ng(k)]Ns(k) + pg2Ng(k)Ns(k)(11)

+ pg1[M0 −Ng(k − Tg)]Ns(k − Tg)Γ(k;Tg)

Ng(k + 1) = N0 −Ns(k + 1) (12)

Γ(k;Tg) is described by Eq. (7), the collaboration rate by Eq. (10),
while Eq. (9) becomes:

C(k) = pg2Ns(k)Ng(k) (13)

4.2 The Role of the Collaboration Parameter Rg

Much as Lerman et al. have proposed in [4] for a time-continuous
version of the simplified model, we now perform an analysis of the system
in its steady state.

By setting Ns(i) = N∗
s and Ng(i) = N∗

g for all i between k − Tg and
k + 1 in Eq. (7), Eq. (11), and Eq. (12), we obtain:

0 = −pg1(M0 −N∗
g )N

∗
s + pg2N

∗
gN

∗
s + (14)

pg1(M0 −N∗
g )N

∗
s (1− pg2N

∗
s )

Tg

N∗
g = N0 −N∗

s (15)

C∗ = pg2N
∗
sN

∗
g (16)

First of all, we would like to know when the number of collaborations
is maximized as a function of the robots in the searching state (or in the
gripping state, respectively). In order to answer this question, we insert
Eq. (15) in Eq. (16), perform a partial derivative over N ∗

s , and set the
result equal to zero. C∗ is maximal when N ∗

s = N0/2.
By inserting this result, pg2 = Rgpg1, and Eq. (15) in Eq. (14), we

obtain following transcendental equation:

0 = −(M0 − N0

2
) +Rg

N0

2
+ (M0 − N0

2
)(1− pg1Rg

N0

2
)T

opt
g (17)

Introducing β = N0/M0 and solving the equation over T
opt
g , we obtain:

T opt
g =

1

ln (1− pg1Rg
N0
2 )

ln
1− β

2 (1 +Rg)

1− β
2

(18)
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Figure 4. Collaboration rate as a function of Rg (from left to right Rg =
0.035; 0.35; 1.0). Results gathered using the microscopic model (dashed lines) and
the macroscopic model (solid lines) in the 16-stick, 80 cm-radius arena.

Equation (18) tells us that an optimal Tg exists if all the arguments
of the logarithms are greater than zero. While this condition is always
verified for the first logarithm (N0 < 2/pg1 ≈ 312 with Rg = 1, our worst
case), the argument of the second logarithm depends on β and Rg. It
can be demonstarted that an optimum exists if and only if3:

β < βc =
2

1 +Rg
(19)

Equation (19) tells us that the bifurcation of the system (optimal Tg
vs. no optimum at all) is a function of the collaboration parameter Rg.
For instance, this means that if the collaboration is very difficult (Rg is
very small), there could be situations where βc is quite greater than one.
This in turn means that, even in the case we have an enclosed arena
and more robots than sticks, an optimal gripping time parameter will
still exist. In other words, when it is difficult to collaborate, in order to
enhance the number of collaborations, it is worth abandoning the sticks
after a while and increasing the critical mass working in another side
of the arena. Although the precise team size at which the bifurcation
happens in the real system cannot correctly be computed with Eq. (19),
this equation allows us to better situate intuitive considerations such as
those presented in Subsection 3.3.

4.3 Validation using Full-System Models

We assessed the validity of the assertion presented in the previous
section using three different values of Rg: 0.035, 0.35 (corresponding
to the physical set-up), and 1.0. Figure 4 shows the results obtained
using the full-system microscopic and macroscopic models. We notice
the correctness of Eq. (19), for instance, by observing the collaboration
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rate of a team of 20 robots in the left plot of Fig. 4: although there are
more robots than sticks (16) a τg of about 100 s represents the optimal
gripping time parameter for these experimental conditions.

5. Conclusion

In this paper, we have presented a time-discrete, macroscopic model
able to deliver quantitatively correct predictions about the collaboration
dynamics of a specific distributed manipulation experiment concerned
with pulling sticks out of the ground. Furthermore, we have shown how
this type of model can be very useful as tool to estimate optimal para-
meters of the robotic system as a function of the environmental or task
conditions. While a model-based approach shows several advantages,
the major one being that if the model is mathematically tractable, it
allows researchers to draw general conclusions very quickly, also shows
several limitations. First, although modeling collective robotic system
has recently received more attention than in the past, a lot of work
must still be done to develop methodologies which describe the system
at an abstract level (e.g. behavioral level) but are, at the same time,
soundly anchored to the real physical system. The methodology we have
developed in recent years is a good attempt in this direction but alterna-
tive approaches should be explored. Second, from an optimization point
of view, a homogeneous solution may not necessarily achieve the best
performance and we would like to have tools to explore heterogeneous
solutions as well. The use of macroscopic models forces us to introduce
a new set of DEs for each new type of agent involved in the system with
the risk that, if the optimal solution requires high differentiation (in the
worst case each individual may differ from the other), the quantitative
correctness of the prediction is no longer insured, as we have shown in
Subsection 3.3. To explore heterogeneous solutions, in particular those
with non pre-established heterogeneity, microscopic models combined
with machine-learning algorithms (see for instance [5]) appear to be a
more efficient solution.

In conclusion, we strongly believe that the combination of model-
based and machine-learning-based approaches will be a winning strat-
egy for understanding, designing, and optimizing future swarm robotic
systems able to solve real world tasks.
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Notes

1. Systematic experiments in Webots indicate a more accurate value of Wr to be 12.8 cm,
i.e., twice the center-to-center distance at which a robot can detect a seed. This is consistent
with the original microscopic methodology presented in [6].

2. A collaboration is considered successfully terminated when the second robot is at the
end of its success dance.

3. It can be easily demonstrated that by introducing β = N0/M0 in Eq. (17), solving
over β and comparing with Eq. (19), Ns in Eq. (17) will be always greater than N0/2, i.e.
not an optimal value.
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