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Abstract We present a simple, behavior-based, distributed control algorithm
to inspect a regular structure with a swarm of autonomous, miniature robots,
using only on-board, local sensors. To estimate intrinsic advantages and limita-
tions of the proposed control solution, we capture its characteristics at a higher
abstraction level using non-spatial probabilistic microscopic and macroscopic
models. Both models achieve consistent prediction on the chosen swarm met-
ric and deliver a series of interesting qualitative and quantitative insights on
further, counterintuitive, improvement of the distributed control algorithm.
Modeling results were validated by experiments with one to twenty robots
using a realistic simulator in the framework of a case study concerned with
the inspection of a jet turbine.

1 Introduction

In order to minimize failure of jet turbine engines, the engines have to
be inspected at regular intervals. This is usually performed visually using
borescopes, a process which is time consuming and cost intensive [5]. One
possible solution to speed up and automatize the inspection process is to rely
on a swarm of autonomous, miniature robots which could be sent into the
turbine without disassembling it. While this idea is intellectually appealing
and could pave the way for other similar applications in coverage/inspection
of engineered or natural, regular structures, it involves a series of technical
challenges which dramatically limit possible designs of robotic sensors. For
instance, the shielded, complex, and narrow structure of a turbine imposes
not only strong miniaturization constraints on the design, but also prevents
the use of any traditional global positioning and communication system. Fur-
thermore, a limited on-board energy budget might prevent computation of a
sophisticated deliberative planning strategy and dramatically narrows sensor
and communication range of our robots [3].
In this paper, we perform a series of simplifications to the turbine inspection
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scenario and present one of the simplest algorithms for such a task. The robots
have local, on-board sensors and a simple behavior-based controller that al-
lows them to avoid collisions, follow a blade contour (emulating inspection for
blade flaws), and move from blade to blade by exploiting the regularity of the
turbine pattern and specific features of the blades (e.g., tips).
Similar to previous case studies concerned with distributed manipulation of
objects (see for instance [1, 6]), we make use of non-spatial probabilistic mi-
croscopic and macroscopic models in order to understand general properties
of the inspection (or coverage) problem, and to estimate and optimize perfor-
mance and reliability of our approach.

2 The Case Study: Turbine Inspection

In this paper, we are not concerned with the reliable detection of flaws and
progress reporting but rather with individual and group motion in the tur-
bine scenario. For the sake of simplicity, we therefore assume that completely
circumnavigating a blade is a good emulation of the scanning-for-flaws ma-
neuver.

2.1 Simplification and Simulation of the Turbine Scenario

Figure 1, left shows the simulated scenario for this case study. We simplify
the real 3D environment by unrolling the axis-symmetric geometry of the
turbine into a flat representation with the blades as vertical extrusions. The
resulting rectangular arena (246 × 186cm2) is delimited by walls (emulating
the boundaries of the compressor section) on the short edges and a “wrap-
around” zone (emulating the continuity of the turbine cylinder) on the long
edge.
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Fig. 1. Left : Overview of the turbine set-up in the embodied simulator. Middle:
Close-up of blades and robots. Right : Interaction between a static robot (center) and
a moving one. Dots correspond to positions at which the static robot was detected
by the moving robot. The corresponding average detection area is indicated by a
circle.
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We implemented this simplified turbine environment using Webots 4.0 [7],
a realistic, multi-robot, embodied, sensor-based simulator. In Webots, simu-
lated sensors and actuators are characterized by precise, user-definable non-
linearities and noise—in our simulations, all sensors and actuators on-board
are characterized by ±10 percent white noise. As shown in previous publica-
tions, this simulator can provide realistic results (e.g. [1, 6]) when compared
with real robot experiments. It is worth noting that to allow comparison with
real robotic experiments [3], we limit the simulated experimental setup to 16
blades in four stages, and the maximum number of robots to 20.

2.2 The Behavior-Based Robot Controller

The behavior of a single robot is determined by a schema-based controller [2]
that tightly links the platform’s actions to sensor perception while using as
little representational knowledge of the world as possible. For a schema-based
controller, behavioral responses are represented by vectors generated from lo-
cal potential fields, and behavioral coordination is achieved by vector addition.
Sequencing of behaviors is achieved by a dynamic action-selection mechanism
based on two internal timers which are set and reset by the schemas.
The overall behavior of a robot can be summarized as follows (see Figure 2,
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Fig. 2. Left : The high-level behavioral flowchart of the robot controller as a deter-
ministic Finite State Machine (FSM). Right : The corresponding Probabilistic FSM
used in the models, which captures details of interest of the schema-based controller.

left). The robot searches for blades throughout the compressor section. The
robot avoids obstacles (teammates and walls) when it is in search mode, and
tries to remain on its trajectory while scanning a blade. Teammates (cylindri-
cal shapes) can be reliably differentiated from walls and blades (flat surface)
just using on-board distance sensors. We assume that another on-board, local
sensor can allow the robot to differentiate between walls (limits of the com-
pressor sections) and blades. As soon as the robot detects a blade, it starts
to follow the contour emulating a scanning-for-flaws maneuver and sets an
internal timer (Tmax) which it will later check in order to assess whether or
not a pre-established number of tours of the blade has been carried out. In
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order to bias the robot’s trajectory without using any sophisticated naviga-
tional mechanisms, the robot can only leave a blade at one of its two tips,
which are recognized by a specific sensorial pattern generated by the robot’s
on-board distance sensors.

3 Microscopic and Macroscopic Models

The central idea of the probabilistic modeling methodology is to describe the
experiment as a series of stochastic events with probabilities computed from
the interactions’ geometrical properties and systematic experiments. Consis-
tent with previous publications [1, 6], we can use the controller’s FSM de-
picted in Figure 2 as blueprint to devise the Probabilistic FSM (PFSM or
Markov chain) representing an individual agent at the microscopic level or
the whole swarm at the macroscopic level. At the microscopic level, a specific
state represents the actual mode a specific individual is in, while a state at
the macroscopic level defines the average number of individuals in the same
mode. The state granularity can be chosen to capture details of the robot’s
controller and environment which influence the swarm performance metric; in
our case, the time needed to complete the inspection of all the blades. The
overall PFSM for the system is represented graphically in Figure 2, right using
two coupled PFSMs, one representing the robot(s) and one representing the
shared turbine environment.
We present the results of the microscopic and the macroscopic models for the
following reasons. First, although the microscopic-to-macroscopic mapping is
currently linear and therefore no major discrepancies between the predictions
of the two types of models can arise, quantization in the number of individ-
uals or blade tours might generate some numerical differences (see Section
4). Second, the time-to-completion metric cannot be captured easily at the
macroscopic level due to numerical effects in the integration of the difference
equations. Therefore, a precise criterion based on statistics generated by the
microscopic model has to be considered in order to obtain good correspon-
dence between the predictions of the two models.

3.1 Modeling Assumptions

As is more extensively detailed in [1, 6], the modeling methodology relies on
three main assumptions. First, coverage of the arena by the group of robots is
uniform and robots’ trajectories and objects’ positions in the arena do not play
a role in the metric of interest. Second, a robot’s future state depends only on
its present state and how much time it has spent in that state (semi-Markov
property). Third, agents change their state autonomously but synchronously
to a common clock whose time step has been chosen to capture, with sufficient
precision, all time delays considered in the system as well as changes in the
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metric of interest. Notice that, although time in the models is discretized, since
state changes at the level of individual agents are probabilistic, these models
adequately approximate the overall behavior of an asynchronous swarm.

3.2 Characterization of Models’ Parameters

All our models are characterized by two categories of parameters: state-to-
state transition probabilities and behavioral delays. In contrast with previous
publications [1, 6], we do not assume any coupling between these two cate-
gories of parameters, and we propose a new way of computing and calibrating
them based on the concept of encountering rates, as suggested in [4]. Consis-
tent with previous publications, we compute the transition probabilities from
one state to another based on simple geometrical considerations about the
interaction. However, here we introduce a clear separation between geometric
detection probabilities and encountering probabilities. We call geometric de-
tection probability the probability that a robot is within the detection area of
a certain object. The detection area of an object is determined by its physical
size, the sensory configuration, and processing used by the robot to reliably
detect it (see Figure 1, right). After defining the contours of the detection
area Ai for an given object i, we calculate its geometric detection probability
gi by dividing Ai by the whole arena area Aa. We can then calculate the cor-
responding encountering probability, i.e. the probability of encountering the
object i per time step, using the corresponding encountering rate ri (in s−1).
The conversion factor from geometric detection probabilities to encountering
rates is given by the average robot speed vr (6.5 cm

s ), its detection width wr

and the detection area As of the smallest object in the arena (in our case a
robot). The detection width is defined as twice the maximum detection dis-
tance of the smallest object in the arena, measured from center of the robot
to the center of the object, here given by 2Rs = 15.2cm with As = R2

sπ.
Equation 1 shows how to compute the encountering probability for the object
i given the geometric detection probability gi:

pi = riT =
vrwr

As
giT, (1)

where T is the time step characterizing our time-discrete models. In this
paper, we discretize the different average durations of interactions so that
changes in our chosen metric are described with sufficient precision using
T = 1s. Numerical values used for the model parameters can be verified using
systematic experiments with real robots [6] or realistic simulations (see [1]
and Section 4.1).

3.3 Mathematical Description of the Macroscopic Model

From Figure 2, right we can derive a set of difference equations (DEs) to
capture the dynamics of the whole system at the macroscopic level. We for-
mulate one DE per considered state (either in the robotic or in the environ-
mental Markov chain) and exploit conservation of the number of robots and
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the number of blades to replace two of the DEs respectively.
Given M0 blades and N0 robots, the number of robots covering virgin blades
Nv, and inspected blades Ni; the number of robots in obstacle avoidance
Na, and the number of robots in search mode Ns are given by equation 2-5
(compare also Figure 2); the number of virgin blades Mv and the number of
inspected blades Mi are calculated by equations 6-7:

Ns(k + 1) = Ns(k)−∆v(k)−∆i(k)−∆r(k)−∆w(k) + ∆v(k − Tb) (2)

+∆i(k − Tb) + ∆r(k − Tr) + ∆w(k − Tw)

Na(k + 1) = Na(k) + ∆r(k) + ∆w(k)−∆r(k − Tr)−∆w(k − Tw) (3)

Nv(k + 1) = Nv(k) + ∆v(k)−∆v(k − Tb) (4)

Ni(k + 1) = N0 −Ns(k + 1)−Na(k + 1)−Nv(k + 1) (5)

Mv(k + 1) = Mv(k)− ξb∆v(k − Tb) (6)

Mi(k + 1) = M0 −Mv(k + 1) (7)

where k represents the current time step (and absolute time kT ); k = 0 . . . n,
where n is the total number of iterations (and therefore nT the end of the
experiment). pb, pr, and pw represent the encountering probabilities of blades,
robots, and walls, respectively. Tb, Tr, and Tw define the average times needed
for circumnavigating a blade, avoiding a teammate, and avoiding a wall. ξb

represents instead the percentage of blade coverage when a scanning robot
circumnavigates a blade.
The ∆-functions define the coupling between state variables of the model and
can be calculated as follows:

∆v(k) = pb(Mv(k)−Nv(k))Ns(k) (8)

∆i(k) = pb(Mi(k) + Nv(k))Ns(k) (9)

∆r(k) = pr(N0 − 1)Ns(k) (10)

∆w(k) = pwNs(k) (11)

The initial conditions are Ns(0) = N0 and Na(0) = Nv(0) = Ni(0) = 0 for the
robotic system (all robots in search mode) while those of the environmental
system are Mv(0) = M0 and Mi(0) = 0 (all blades virgin). As common use
for time-delayed DE, we assume ∆x(k) = Nx(k) = Mx(k) = 0 for k < 0.
For instance, we can interpret the first DE (equation 2) as follows. The average
number of robots in the searching state is decreased by those that start to
cover a virgin blade or an inspected blade and those that start avoiding either a
teammate or a wall; it is increased by all robots resuming searching after either
an inspection or an obstacle avoidance maneuver, each of them characterized
by a specific duration. The other state equations can be interpreted in a similar
way.
The probability pl of accidently leaving a blade at one of its tips before Tmax

has expired and the control design parameter Tmax both influence the mean
time needed for inspecting a blade Tb, as well as the percentage of inspection
per blade ξb. For Tfb, the average time required to fully circumnavigate a
blade once and only once, we can calculate Tb and ξb as follows:
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Tb = −1

4
Tfb +

I∑
i=0

1

2
Tfb(1− pl)

i, ξb =
Tb

Tfb
(12)

with I ≥ 2Tmax

Tfb
− 1

2 and I ∈ N, reflecting the maximal “allowed” tip en-
counters that are defined by Tmax. Here, we assume that the robot covers, on
average, 25% of the blade it is attached to and has a probability of (1 − pl)
of covering another 50% before encountering the next tip. This process might
continue for multiple half tours (from tip to tip) and is only bounded by I.
Finally, our metric for evaluating the performance of the swarm is the time
to complete the inspection, nT . To compute nT , Mv(n) = 0 (all blades are
inspected) is an easy condition to apply in the embodied simulator and in the
microscopic model. However, in the macroscopic model, this represents a limit
condition as limk→∞Mv(k) = 0. Therefore, we solve the DEs numerically for
Mt(n) = µ where µ is the expected values from the microscopic model.

4 Results and Discussion

In contrast with previous experiments in the distributed manipulation class
where obstacles were always axis-symmetric and either movable [1] or much
smaller [6] than the immovable blades considered in this case study, the met-
ric to evaluate swarm performance in the inspection task appears to be more
heavily influenced by the distribution of the robots, while still being essen-
tially non-spatial. For the above reasons, we first validate whether or not the
assumptions of our modeling methodology are still valid in this case study
and we compare measured with computed model parameters.

4.1 Characterization of Models’ parameters

We carried out two series of experiments in order to validate our method of
computing geometric detection probabilities and encountering rates, respec-
tively. In the first series of experiments, we measure the ratio of time that a
robot spends within and outside a specific area in a fully enclosed obstacle-
free arena. This area corresponds to the detection area of the objects later
considered in the embodied simulator, blades and robots. We consider differ-
ent shapes, sizes, and positions in a rectangular arena of the same size as our
turbine scenario (see Table 1).
We observe a good match between measured and computed geometric prob-
ability of an object with fixed size but varying shape and position. We also
notice that the standard deviation in the measurement accuracy is approxi-
mately proportional to the object size.
In a second series of experiments, we measured the actual encountering rates
using the embodied simulator and compared these with encountering rates
computed by Equation 1. Biases due to the interaction duration of the robot
(collision avoidance) with specific objects are considered separately in the
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Table 1. Comparison of measured and computed geometric detection probabilities
for different shapes (square, rectangular, circular) and two different sizes (robot and
blade). Measured values represent mean and standard deviation for three different
locations during 100h of simulated time. All values are in percent.

Size Square Rectangular Circular All Shapes Geo. Prob.

Blade 1.69± 0.17 1.72± 0.17 1.32± 0.62 1.57± 0.21 1.52
Robot 0.31± 0.04 0.3± 0.03 0.32± 0.02 0.31± 0.03 0.31

model (compare equation 2-5) and have therefore been eliminated from this
measurement. We considered four different scenarios: two empty arenas with
different boundary conditions (fully enclosed by walls; walls on two sides while
“wrap-around” on the other sides); fully enclosed arena with a blade in its
center; fully enclosed arena with a robot in its center. The results of this sec-
ond series of experiments are reported in Table 2.

Table 2. Measured and computed encountering rates for some objects, and their
mean interaction time with standard deviation. Each experiment lasted 25h of sim-
ulated time.

Object Measured enc. rate Computed enc. rate Interaction time

Half-Wall 0.0125s−1 rw = 0.0148s−1 Tw = 5.38± 1.4s
Full-Wall 0.0423s−1 rw = 0.042−1 Tw = 5.47± 1.52s
Blade 0.0059s−1 rb = 0.0085s−1 Tfb = 40.29± 8s
Robot 0.0021s−1 rr = 0.0017s−1 Tr = 3.9± 0.43s

While in the first series of experiments we observe that the geometric proba-
bility is shape and position invariant (see Table 1), the accuracy of prediction
of encountering rates is changing for different kind of objects (see Table 2). A
possible reason for this observation is that the embodiment of an object causes
a partitioning of the robot’s distribution over time in the arena and therefore,
as a function of object shape and size, its trajectories are affected. When mul-
tiple robots are present in the arena (results not shown here), the influence
of individual trajectories is weakened, the robot distribution becomes more
uniform, and the discrepancies between computed and measured encountering
rates tend to vanish.

4.2 Controller Optimization using the Microscopic Model

Before running a whole series of experiments with our embodied simulator,
we were interested in evaluating the influence of our control design parameter
Tmax on the swarm metric as a function of pl, the probability of accidentally
leaving a blade at its tips. We observe (Figure 3), that the (intuitive) choice of



Swarm-Intelligent Inspection System 9

Tmax = 40s has minimized our metric for pl = 0. However, the model suggests
that our controller can be further optimized when pl ≈ 0.2 for Tmax = 40s or
pl ≈ 0.4 with Tmax → ∞ respectively. Although this results are counterintu-
itive, one can imagine that leaving blades earlier may be a tradeoff between
increased exploration and the risk of prematurely leaving a virgin blade and
thus might improve task performance.

4.3 Swarm Performance Metrics

We estimated time to completion for 16 blades for pl = 0 and Tmax = 40s
by performing 10000 runs using the microscopic model and solving numeri-
cally the macroscopic model. We considered team sizes from 1–20 robots and
used the computed rates from Table 2 as model parameters. To validate model
predictions, we performed 100 runs each for team sizes of 1,2,5,10,16, and 20
robots in the embodied simulator. In order to come closer to our assumption
of spatial uniformity (3.1), robots were initially distributed randomly in the
turbine. Figure 3, right depicts the resultant completion time as a function of
swarm size.
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Fig. 3. Results obtained using the microscopic model and the embodied simulator
are represented by their mean and corresponding standard deviation. Left : Time to
completion as a function of Tmax and different values of pl. The results have been
obtained with the microscopic model. Right : Modeling predictions (microscopic and
macroscopic) compared with results gathered using the embodied simulator for the
time to completion (16 blades) vs. team size (1 to 20 robots).

We observe that for increased swarm size, model predictions for experiments
using embodied simulation improve. We believe that this is because in a struc-
tured environment an individual robot’s trajectory does not satisfy our as-
sumption of spatial uniformity in the distribution of robots. Similar to results
of Section 4.1, increasing the team size weakens the effect of individual trajec-
tories and increases the quality of prediction. Note also that, the microscopic
model achieves slightly better quantitative results than the macroscopic one
when the swarm size is small.
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5 Conclusion and Future Work

We have proposed a swarm-intelligent, distributed algorithm for collective in-
spection of an engineered regular structure. Although the algorithm is fairly
simple, its robustness in the presence of noise is remarkable and its compu-
tational requirements are extremely low. Furthermore, we demonstrate that
our modeling methodology, which has already proven a valuable tool in dis-
tributed manipulation experiments, also yields valid predictions in this dis-
tributed sensing task. Finally, we explain how models can help to adjust indi-
vidual (control) parameters to optimize swarm performance. In the future, we
would like to use local communication to achieve a more explicit collaboration
among the robots and merge the results achieved here with those obtained
with real robots [3]. Furthermore, we believe that more detailed information
about the geometric structure of the environment should be incorporated in
the models in order to design a more effective swarm-intelligent inspection sys-
tem. For instance, it should be possible to quantify and exploit the regularity
of the environment to systematically shift the swarm through the turbine.
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