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Abstract

This article presents an experiment which investigates how collaboration in a
group of simple reactive robots can be obtained through the exploitation of local
interactions. A test-bed experiment is proposed in which the task of the robots
is to pull sticks out of the ground —an action which requires the collaboration of
two robots to be successful. The experiment is implemented in a physical setup
composed of groups of 2 to 6 Khepera robots, and in Webots, a 3D simulator of
Khepera robots.

The results using these two implementations are compared with the predictions
of a probabilistic modelling methodology (Martinoli, Ijspeert, & Mondada, 1999a;
Martinoli, Ijspeert, & Gambardella, 1999b) which is here extended for the charac-
terization and the prediction of a collaborative manipulation experiment. Instead of
computing trajectories and sensory information, the probabilistic model represents
the collaboration dynamics as a set of stochastic events based on simple geometrical
considerations. It is shown that the probabilistic model qualitatively and quantita-
tively predicts the collaboration dynamics. It is significantly faster than a traditional
sensor-based simulator such as Webots, and its minimal set of parameters allows
the experimenter to better identify the effect of characteristics of individual robots
on the team performance.

Using these three implementations (the real robots, Webots and the probabilis-
tic model), we make a quantitative investigation of the influence of the number of
workers (i.e robots) and of the primary parameter of the robots’ controller —the
gripping time parameter— on the collaboration rate, i.e. the number of sticks suc-
cessfully taken out of the ground over time. It is found that the experiment presents
two significantly different dynamics depending on the ratio between the amount of
work (the number of sticks) and the number of robots, and that there is a super-
linear increase of the collaboration rate with the number of robots. Furthermore,
we investigate the usefulness of heterogeneity in the controllers’ parameters and of
a simple signalling scheme among the robots. Results show that, compared to ho-
mogeneous groups of robots without communication, heterogeneity and signalling
can significantly increase the collaboration rate when there are fewer robots than
sticks, while presenting a less noticeable or even negative effect otherwise.

Keywords: collective autonomous robotics, swarm intelligence, collaboration, sensor-
based simulation, probabilistic modeling.
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1 Introduction

Swarm Intelligence (SI) (Beni & Wang, 1989) is an innovative computational and be-
havioral metaphor for solving distributed problems, that takes its inspiration from the
biological examples provided by social insects - ants, termites, bees, and wasps - and by
swarming, flocking, herding, and shoaling phenomena in vertebrates (Bonabeau, Dorigo,
& Theraulaz, 1999). The abilities of such systems appear to transcend the abilities of
the constituent individual agents. In most biological cases studied so far, the robust and
capable high level group behavior has been found to be mediated by nothing more than
a small set of simple low level interactions between individuals, and between individuals
and the environment. The SI approach emphasizes distributedness and exploitation of di-
rect (robot-to-robot) or indirect (via the environment) local interactions among relatively
simple agents.

The main advantages of the application of the SI approach to the control of a group
of robots are three-fold: first, scalability: the control architecture is kept exactly the
same from a few units to thousands of units; second, flexibility: units can be dynamically
added or removed, they can be given the ability to reallocate and redistribute themselves
in a self-organized way; third, robustness: the resulting collective system is robust not
only through unit redundancy but also through the unit minimalistic design (Boehringer,
Brown, Donald, Jennings, & Rus, 1995). Although a formal and quantitative definition of
minimalism has yet to be defined for collective systems, minimalistic design in SI implies
an effort to keep the resources for computation, sensors, actuatuors, and communication
as low as possible for each unit, while aiming at having an as smart as possible group
behavior.

In the last few years, the SI control principles have been successfully applied to a series
of case studies in collective robotics: aggregation (Beckers, Holland, & Deneubourg, 1994;
Martinoli et al., 1999a; Martinoli, 1999) and segregation (Holland & Melhuish, 1999), ex-
ploration (Hayes, Martinoli, & Goodman, 2000), collaborative transportation (Kube &
Bonabeau, 2000), work division and task allocation (Krieger & Billeter, 2000), and self-
assembling (Hosokawa et al., 1998; Yoshida, Murata, Tomita, Kurokawa, & Kokaji, 1999).
All these works have been performed using groups of 1 up to 12 simple, autonomous real
robots, exploiting local communication forms among teammates (implicit, through the
environment, or limited explicit, wireless communication), and fully distributed control.
However, the lack of rigorous, scalable methodologies for designing and analyzing such
fully distributed robotics systems has, for the moment, prevented a more extensive ap-
plication of the SI approach to collective robotics. There are indeed many applications
such as traffic regulation (Wang & Premvuti, 1995), waste cleaning (Gage, 1995; Parker,
1998), surveillance (Everett, Gilbreath, Heath-Pastore, & Laird, 1993), collective naviga-
tion (Mataric, 1994; Balch & Arkin, 1998), collaborative mapping (Yamauchi, 1999), or
foraging (Mataric, 1994), which, so far, have been carried out using approaches which can
not be classified as SI (either because they made extensive use of global communication,
they had centralized control, or used sophisticated sensors based on global references),
and for which, we believe, the SI approach would be very well suited because of the
advantages cited above.

This article aims at contributing to research in swarm intelligence 1) by making a
quantitative study of how collaboration in a group of simple reactive, autonomous robots
can be obtained and controlled through the exploitation of local interactions, and 2)
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by consolidating and extending a novel modeling methodology (Martinoli et al., 1999a,
1999b) for characterizing and predicting the collective behavior of (large) distributed
robotic systems.

Collaborative robotics One way to increase the solving performance of a robot team
without significantly modifying the robots capacities is collaboration. In particular, when
collaboration is obtained with stigmergic mechanisms (i.e. implicit communication via the
environment) or with simple explicit communication schemes such as binary signalling,
the task accomplished by the team can be more complex and its performance enhanced
without loosing autonomy or increasing in a relevant way the complexity at the individual
level. In some cases, e.g. (Johnson & Bay, 1995; Boehringer et al., 1995; Mataric, Nilsson,
& Simsarian, 1995; Ghanea-Hercock & Barnes, 1996; Khatib, 1999; Ota & Arai, 1999;
Humberstone & Smith, 2000; Kube & Bonabeau, 2000; Wang, Kimura, Takahashi, &
Nakano, 2000) and the experiment presented in this article, the task may even require
collaboration to be successfully performed, with single robots not being able to carry
out the task alone. Such types of experiments can be defined to be ”strictly collabora-
tive” (Martinoli, 1999).

The experiment presented in this article is the follow-up of initial tests presented
in (Martinoli & Mondada, 1995). The task is to locate sticks in a circular arena and to
pull them out of the ground.1 The task is carried out by groups of two to six2 Khepera
robots (Mondada, Franzi, & Ienne, 1993) equipped with grippers and capable of distin-
guishing the sticks with their frontal sensors. Because of the length of a stick, a single
robot is not capable of pulling it out of the ground alone, and collaboration between
two robots is necessary for pulling a stick completely out. As the robots have only local
sensing capabiliities and do not use explicit communication (except in one experiment),
there is no explicit coordination between robots. Coordination is purely probabilistic and
happens based on local interactions (see the experiment description in Section 2). The
experiment is not intended to represent a real-life application but to serve as a case study
of the dynamics of collaboration and as an abstraction of future collaborative robotics
applications.

A prediction tool for collective robotics One of the main difficulties in designing
efficient robotic teams, is the problem of characterizing and predicting how the group
behavior is affected by the hardware and software characteristics of the individuals form-
ing the group. This is particularly true for large groups of robots controlled in a fully
distributed way. As hardware costs are high and experimenting with real robots is time
consuming, it is most useful to have prediction tools which allow one to determine the
optimal number of robots or the optimal control parameters for an optimal team perfor-
mance, for instance, before setting all the details of the experimental set-up. One popular
approach is to use detailed sensor-based simulations which simulate as realistically as pos-
sible the sensor and actuator characteristics of the robots, including kinematic noise, as

1Although the experiment is not intended to reproduce a biological system, the experiment presents
several similarities with the matches extraction and transportation performed by some ant colonies (Chau-
vin & Janin, 1975).

2Six was the maximum number of real robots available for the experiments. Consistently with the SI
approach, there is absolutely no limitation in the size of the team from a control architecture point of
view.
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well as the characteristics of the environment. Although useful, these types of simulation
have the inconveniences that they are time-consuming both to develop, and to run when
the group of robots is large. In addition, the number of parameters considered by these
types of simulation is so large that it is then difficult to extract those which really play a
crucial role on the team performance.

In this article, we present a simulation based on a probabilistic model which is sig-
nificantly easier to implement and faster than a sensor-based simulation, while being
able to predict group behavior, in particular the collaboration rate (the number of suc-
cessful collaborations over time), with the same accuracy. The idea of the probabilistic
model is that, with simple reactive autonomous robots and a distributed control scheme,
a collective manipulation experiment is essentially a stochastic process based on simple
geometrical considerations. Using the same methodology described in (Martinoli et al.,
1999a, 1999b), in which it was used for the characterization of different clustering exper-
iments with different robotic platforms, the probabilistic model represents the group of
robots as a set of parallel processes which, instead of computing trajectories and sensory
information, represent actions such as gripping a stick or encountering another robot as
stochastic events.

Compared to previous applications of the methodology (Martinoli et al., 1999a, 1999b),
the contribution of this article is four-fold. First, we demonstrate that the methodology
can successfully be applied to a collective manipulation experiment in which the task
needs strict collaboration between robots, where spatial and temporal coordination are
needed for succeeding in the task. This requires, among other things, the introduction
of probabilities which do no not only depend on the current state of the environment
(as for the clustering tasks), but also on the current state of the other robots. Second,
while controllers were fixed in (Martinoli et al., 1999a, 1999b), we illustrate here how
the probabilistic model can be used to make a detailed quantitative investigation of the
effect of varying parameters of the robots’ controller on the group behavior. Third, we
demonstrate that the methodology can address heterogeneous as well as homogeneous
groups of robots. Fourth, we investigate a case (collaboration using explicit signalling) in
which the current methodology shows its limitations, and for which the model’s predictions
have to be corrected with the help of two additional free parameters such as to fit the
results obtained with real robots and sensor-based simulations.

Three sets of experiments In the next sections, we present results of the stick pulling
experiment in three different implementations: the real Kheperas, a sensor-based simula-
tion (Webots (Michel, 1998)), and the probabilistic model. Three sets of experiments are
carried out to quantitatively investigate the effects of variations of robot controller imple-
mentations and number of robots on group behavior, in particular, on the collaboration
rate among robots, i.e. the number of sticks successfully taken out of the ground over
time. In the first set, we investigate the case with homogeneous groups of robots, that is,
groups in which all robots are identical from a hardware and software point of view. In
the second set, we test whether introducing heterogeneity at the level of the controllers’
parameters can improve the team performance compared to homogeneous groups. In the
last set, which is only carried out with Webots and the probabilistic model, we analyze
the effect of a simple signalling scheme among the robots.
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2 The stick pulling experiment

2.1 The physical setup

The experiment is carried out in a circular arena (80 cm of diameter) delimited by a white
wall. Four holes situated at the corners of a square with 30 cm edges, contain white sticks
(15 cm long, diameter of 1.6 cm) which, in their lowest position, stick 5 cm out of the
ground (Figure 1).

Figure 1: Physical set-up for the stick pulling experiment.

Groups of 2 to 6 Khepera robots, equipped with gripper turrets, are used to pull
the sticks out of the ground. Because of their thinness, the sticks can be distinguished
from the wall and from other robots3 using the six frontal IR proximity sensors of the
Khepera. Two Kheperas are necessary for pulling a stick completely out of the ground.
Collaboration is thus required, with a first robot taking the stick half out of the ground,
until a second robot approaches the stick from the opposite direction and lifts the stick
completely (see the right hand-side of Figure 1 and Figure 3). As described in the next
section, the robots are able to determine whether another robot is holding the same stick
using information about the gripper’s arm position. After a successful collaboration, the
stick taken out of the ground is released by the robot, and replaced in its hole by the
experimenter.

2.2 The robots’ controllers

The behavior of a robot is determined by a simple hand-coded program consisting of a
loop through several functional blocks (Figure 2). The default behavior is to look for
sticks, that is, to wander in the arena in a straight line until something is detected by the
frontal proximity sensors, in which case the robot turns towards the detected object and
starts a detection procedure. The detection procedure consists of taking multiple sensor
samples of the same object with the robot turning on itself once to the left and once
to the right (similarly to (Martinoli et al., 1999a)). A stick is recognized from obstacles
(the wall or other robots) if, within these measurements, the number of proximity sensors

3To increase their reflectivity, robots have a belt of white paper, as well as a thin band of IR-reflective
stickers in their back (not shown on the picture).
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Figure 2: Flowchart of the robots’ controller.

returning a significant signal does not exceed two. The multiple measurements enables
an increased spatial resolution and a filtering of noise, leading to a perfect distinction of
sticks and preventing, in particular, moving robots to be mistaken for sticks.

If the detected object is an obstacle, the robot turns away from it, performs obstacle
avoidance for a few seconds, and returns to the looking-for-sticks procedure. If the object
is a stick, the robot backtracks for a predefined distance (a few centimeters), grips the
stick and pulls it up. During pulling, the robot can determine whether another robot is
already gripping the same stick by measuring the speed of elevation of the gripper arm.4

If the elevation is fast, the robot assumes that the stick is free (no other robot holding it)
and we call such a grip a grip1. If the elevation is slow, the robot assumes that another
robot is already holding that stick and therefore “braking” the elevation. Such a grip is
called grip2.

Robot making a grip1 When a robot makes a grip1, it holds the stick half out of
the ground and releases it when either the duration of the grip exceeds a gripping time
parameter (which is then considered as a failed collaboration) or another robot comes to
make a grip2 (successful collaboration, see Figure 3). The robot can detect when another
robot is making a grip2 because the force exerted by that robot on the stick leads to a
slight elevation of its arm’s position compared to the arm’s programmed position. Once
the stick is released, the robot turns away, performs obstacle avoidance for a few seconds,
and returns to the looking-for-sticks procedure. The gripping time parameter therefore
corresponds to the maximum duration a robot will wait with the stick lifted, from the
moment the gripper elevation sensor indicates that the gripper is completely lifted. This
parameter plays a primary role in determining the number of successful collaborations,
and this role will be thoroughfully investigated in the experiments of Section 4.

4The gripper turret is equipped with a sensor giving the arm’s elevation angle.
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Figure 3: Collaborative sequence.

Robot making a grip2 When a robot makes a grip2, the pulling of the stick is tem-
porarily braked until the robot making the grip1 releases its grip. The arm eventually
reaches the programmed position, which corresponds to a complete lift of the stick out of
the ground. To mark the successful collaboration, a small “success dance” (moving the
arm up and down) is performed. Similarly to the end of grip1, the robot then releases
the stick (which has to be replaced in the hole by the experimenter) and resumes looking
for sticks.

Note that, because of the way sticks are recognized (i.e. only by their thinness), a stick
which is held by one robot can only be recognized when approached from the opposite side,
within a certain angle (approx. 125 degrees, see also Figure 6). In that case, the robot
holding the stick is far enough for it not to be detected by the frontal proximity sensors.
For the other angles of approach, both the stick and the robot are detected and the whole
is therefore taken for an obstacle. This limits the probabilities for collaborations, but
ensures that the second robot approaches the stick within an angle which allows it to
grasp the stick without its gripper getting entangled with the first robot.

2.3 Simulations with Webots

In order to more systematically investigate the collaboration dynamics, we also imple-
mented the experiment in Webots, a 3D simulator of Khepera robots. The simulator
computes trajectories and sensory input of the robots in an arena corresponding to the
physical set-up (Figure 4). The simulation is sufficiently faithful for the controllers to be
transfered to real robots without changes,5 and for the robot behaviors to be very similar
to those of the real robots (see Results). The mean acceleration ratio for this experiment
with 5 robots between Webots and real time is about 15 on a Ultra Sun1 workstation.

5In Webots 2.0, Webots API commands can be directly crosscompiled into Khepera BIOS commands
and downloaded into the real robots.
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Figure 4: Implementation of the experiment in Webots, a 3D simulator of Khepera robots
(Michel, 1998).

3 The probabilistic model

The central idea of the probabilistic model is to describe the experiment as a series
of stochastic events with probabilities based on simple geometrical considerations. The
states of the robots are defined by a program with exactly the same structure as that
of the controllers of the real robots (Figure 2), but, instead of computing the detailed
sensory information and trajectories of the robots, the change of states is determined by
the throwing of dice (Figure 5). In other words, the probabilistic nature of interactions
during an experiment is captured by the transformation of deterministic branch operators
of the real robot/webots controllers into probabilistic branch operators in the probabilistic
model.

Look-for-sticks mode Once a robot is in the look-for-sticks mode, it will, at each
iteration, have probabilities PN of encountering nothing, PW of encountering a wall, PR

of encountering a robot, and PS of finding a stick. Sticks can be distinguished between
those that are available for a grip1 PG1 (if they are free) and those available for a grip2
PG2 (if another robot holds them), with PS = PG1 + PG2.

These different probabilities depend on the respective detection areas of the different
elements in the arena, AW for the surrounding wall, AR one robot, and AS one stick (Fig-
ure 6), relative to the area of the whole arena AA. These detection areas in turn depend
on the physical dimensions of each element, its surface features (e.g. IR reflectivity), the
sensor range of robots, and the controller’s parameters used in the detection procedure.
These areas are measured from the corresponding detection distances using the real robots
(Table 1).

The probabilities PN , PR, PG1 and PG2 also depend on the current state of the envi-
ronment i.e. the number of robots NR, and the number of sticks available for a grip1 NG1
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Figure 5: Flowchart of the robots’ controller in the probabilistic simulation.

and for a grip2 NG2 (where NG1 + NG2 = NS, the total number of sticks):

PW = AW /AA (1)

PR = NR · AR/AA (2)

PG1(t) = NG1(t) · AS/AA (3)

PG2(t) = NG2(t) · RG2 · AS/AA (4)

PN(t) = 1− (PW + PR + PG1(t) + PG2(t)) (5)

Variables which vary with time during an experiment are indicated by their dependency on
current iteration t. Note that PG2 is computed by taking into account that a stick available
for a grip2 (i.e. which is held by another robot) is only recognized when approached from
an angle within an RG2 ratio (approximately 35%, see figure 6).6

The probabilities defined by equations 1-5 are based on the following assumptions: 1)
robots move around the arena with a uniform distribution (i.e. they do not tend to stay
longer or shorter in one part of the arena), and 2) the sticks are sufficiently spaced to be
accessible from all sides. These assumptions will be discussed in Section 5.

Other modes and other robots It is worth noticing that the description level of both
the robot controller’s and the probabilistic process’ flowcharts is arbitrarily defined by the
experimenter. The level is chosen so that behavioral states that do not exert direct influ-
ence on the considered metrics (i.e., in this experiment, the collaboration rate) are simply
summarized in blocks whose real time duration is taken into account in the probabilistic

6Note also that, while the number of robots is fixed for each experiment reported in this article, this is
not a prerequisite. For instance, the number of robots could be varied during an experiment to investigate
the effect on the collaboration dynamics of a sudden increase or decrease of the number of robots.

10



model. For instance, when the robot is in either the detection, obstacle-avoidance, grip-
and-success-dance, or release mode, its behavior is frozen for a fixed number of iterations
(corresponding to the time measured with a real robot, see below) in one of these states.
The whole simulation consists of running several processes described in Figure 5 in par-
allel, with one process per robot, while keeping track of the state of the environment (i.e.
NG1(t) and NG2(t), the numbers of sticks available for grip1 and for grip2, respectively).
The different processes for the different robots influence each other indirectly by mod-
ifying NG1(t) and NG2(t), but also directly when a collaboration occurs: when a robot
makes a grip2, one of the robots making a grip17 is randomly chosen to release the stick
it is holding.

R_grip2

S_stick

S_robot

S_wall

A

A

R

S

R

G2 AS

AW

Figure 6: Geometrical aspects considered for the probabilities’ calculation.

Time-iterations transformation Similarly to the methodology proposed in (Marti-
noli et al., 1999b), the correspondence between iterations in the probabilistic simulation
and time in the real experiment is obtained by linking the number of iterations and the
time needed to systematically cover the whole arena in the probabilistic simulation and in
the real experiment, respectively. In the probabilistic simulation N = AA/AS iterations
would be needed for the systematic search for sticks (i.e. without passing twice one the
same position), while this would take a duration of T = AA/(VR ·WR) in the real experi-
ment, where VR and WR are the robot’s mean forward speed and detection width.8 The
duration of one iteration therefore corresponds to AS/(VR ·WR) (in this case 1.15 seconds,
see Table 1). Using this correspondence factor, it is possible to translate the different
durations appearing in the real experiment, such as the gripping time, the duration of
obstacle avoidance, and the duration of the detection procedure into numbers of iteration.

As the program requires little computation, it is very fast (at least 300 times faster
than Webots). Table 1 gives all the parameters used in the simulation. These parameters

7Equation 4 ensures that a grip2 can only occur when at least one other robot is making a grip1. If
no robot is making a grip1, NG2(t) = 0.

8We define a systematic search as the search which takes the minimum time (or number of iterations)
to discover all the elements (robots or sticks) in the arena. It therefore corresponds to traveling around
the arena without passing twice on the same position (in this mental experiment, the robot is supposed
to “pass through” the elements in the arena without having to detour). For the probabilistic model, the
discretization of the arena area must therefore be realized with the detection area of the smallest of the
elements in the arena, in this case the stick, for N = AA/AS to be the minimum number of iterations for
detecting all elements in the arena.

11



Table 1: Parameters used in the probabilistic model. The robot and stick detection distances
are given from center (of the robot) to center (of the object). The interference duration is the
time lost by a robot for recognizing another robot as an obstacle and turning away from it.

Variable Value
Arena radius 40.0 cm
Robot detection width (WR) 14.0 cm
Robot speed (VR) 8.0 cm/sec
Wall detection distance 6.0 cm
Robot detection distance 10.0 cm
Stick detection distance 6.4 cm
Angle ratio for grip2 (RG2) 35%
Duration of one iteration 1.15 sec
Time for distinguishing and gripping a stick 10.0 sec (9 iterations)
Success dance duration 6.0 sec (5 iterations)
Obstacle avoidance duration 1.0 sec (1 iteration)
Interference duration 2.0 sec (2 iterations)

have all been measured from systematic tests with two real robots in the environment.
This probabilistic model has therefore no free parameters.

4 Results

We present the results of several experiments implemented at the three different levels:
the physical set-up, Webots, and the probabilistic simulation. In the first set of experi-
ments, the influence of the gripping time parameter on the collaboration rate is tested with
homogeneous groups of robots, i.e. groups of identical robots (same hardware and same
controller). These experiments also evaluate how well the probabilistic model describes
the collaboration dynamics. In a second set of experiments, we investigate whether the
collaboration rate can be increased by using groups of heterogeneous, rather than homo-
geneous, robots.9 The heterogeneity is introduced at a software level, with robots differing
from each other by their gripping time parameter. Finally, in a third set of experiments
which are only carried out with Webots and with the probabilistic model, the benefits of
a simple communication scheme —directional signalling— is investigated.

4.1 Homogeneous population

We carried out several experiments in order to quantify the influence of the number of
robots and the gripping time parameter on the collaboration dynamics, in particular on
the collaboration rate. All robots have exactly the same controller —the population is
homogeneous— and the experiments are carried out in the same environment (fixed size
and fixed number of sticks, see Section 2.1).

With the real Kheperas, a total of 20 runs are carried out with groups of 2 to 6 robots
and time parameters equal to 5, 30, 100, and 500 seconds. Each run lasted approximately
20 minutes (the time for the batteries to discharge). With Webots, the influence of

9From a hardware point of view, the group is homogeneous (except, of course, for some minimal
component differences in the real robotic platform). Heterogeneity in this article therefore only refers to
differences in software control parameters.
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the time parameter is tested more systematically, with time parameters varying between
5 and 1000 seconds.10 Each run lasts 30 minutes (simulated time) and is repeated 5
times. Finally, with the probabilistic model, the time parameter is varied between 5 and
1000 seconds by 5-second steps, and each 30-minute run (simulated time) is repeated
100 times. The choice of repeating a run a different number of times depending on the
implementation (respectively, once, 5, or 100 times, with the Kheperas, Webots and the
probabilistic model), is due to the significant differences in the (real) time necessary for
carrying out each run in each implementation.

Figures 7, left and right, present the results of these different runs and illustrates
the influence of the gripping time parameter on the collaboration rate and the relative
collaboration rate per robot (i.e. the number of collaborations over time to which one
robot participates by either making a grip1 or a grip2). Several observations can be made.
First, the results with the three different implementations present a good correspondence
qualitatively and quantitatively. In particular, almost all the collaboration rates with
real robots are within one standard deviation of the mean values obtained either with
Webots or the probabilistic model (two standard deviations at maximum). For Webots,
this means that the sensor-based simulator faithfully reproduces the sensory information
and trajectories of real robots. For the probabilistic model, it shows that, although it
is very simple, it incorporates the essential characteristics determining the collaboration
dynamics. The probabilistic model and Webots also present a very good quantitative
agreement. While the averaged data are smoother with the probabilistic model than with
Webots —they are namely the average of 100 runs instead of 5— they have very similar
standard deviations, and their mean values ± one standard deviation always overlap for
all group sizes and all gripping time parameters. Figures 11 left and right in appendix,
show that the probabilistic model also correctly predicts the rate of failed collaboration
and the average time for a robot to find and grasp a stick. For a given group size, the
rate of failed collaboration is found to decrease almost exponentially with the gripping
time parameter, while the average time to find and grasp a stick remains approximately
constant.

Second, the results demonstrate the importance of the influence of the gripping time
parameter on the collaboration rate. As could intuitively be predicted, there is a different
relation between the collaboration rate and the time parameter depending on the ratio
between number of robots and number of sticks. When there are more robots than sticks,
the collaboration rate increases monotonically with the gripping time parameter, until a
plateau corresponding to the optimal collaboration rate. In other words, it is in this case
a good strategy for a robot gripping a stick to wait a very long time for another robot to
give a hand, because there will always be at least one “free” robot available. By contrast,
when there are fewer robots than sticks, waiting a very long time becomes a bad strategy,
as the few robots lose time holding different sticks. For instance (an extreme case), an
infinite gripping time parameter would lead to a null collaboration rate with all robots
eventually holding a different stick permanently. It is therefore important, when there are
fewer robots than sticks, to adjust the gripping time parameter such as to optimize the
collaboration rate.

The results also show that, at least with groups of up to 6 robots, the collaboration
rate significantly increases with the number of robots, independently of the gripping time

10In Webots, the gripping time parameter is varied with 5-second steps between 5 and 200 seconds and
25-second steps between 225 and 1000 seconds.
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Figure 7: Left: Collaboration rate as a function of the gripping time in homogeneous groups
of robots. The large single markers correspond to the results with the real robots, the linked
small markers to those with the Webots simulator, and the underlying continuous lines to those
with the probabilistic simulation. Right: Relative collaboration rate per robot (i.e. the average
number of collaborations over time to which one robot participates by either making a grip1 or
a grip2). Errorbars correspond to ± standard deviations of the results with the probabilistic
model (thicker bars) and with Webot (thin lines). For reasons of clarity, only some errorbars
are shown and results are only shown for gripping time parameters up to 600s.

parameter. Interestingly, this increase is super-linear; that is, increasing the number of
robots not only increases the global performance of the group (the total collaboration
rate, Figure 7 Left) but also the performance of each individual (the collaboration rate
per robot, Figure 7 Right). However, as can logically be expected, increasing the number
of robots will eventually lead to a diminution of the collaboration rate due to overcrowd-
ing and excessive interference. Only 6 Kheperas were available for experiments with real
robots. The probabilistic model predicts that the increase of the collaboration rate re-
mains super-linear for groups up to 7 robots, then becomes almost linear for groups up
to 11 robots (Appendix, Figure 12, right). The model also predicts that the maximal
collaboration rate is obtained with groups of 11 robots and that the collaboration rate
then quickly decreases for larger groups due to excessive interference between robots (Ap-
pendix, Figure 12, left). For the group of 13 robots, the probability of making a grip is
zero in the probabilistic simulation (PG1 = PG2 = 0) because the probability of encoun-
tering another robot, PR, becomes equal to one (the total area of detection of a group of
13 robots indeed covers the whole area of the arena). Note that, for this last situation,
the probabilistic model probably over-estimates this effect of interference compared to
experiments with real robots, as, unless the arena is really too crowded, small movements
within the group of robots can still allow, potentially, some robots to be sufficiently iso-
lated to successfully grip a stick once in a while (i.e. PG1 and PG2 are not strictly zero).
These boundary effects will be further discussed in Section 5.
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Figure 8: Collaboration rate as a function of the gripping time in a heterogeneous population
of two robots. The collaboration rate is proportional to the darkness in the graph. Left: Results
with the Webots simulator, right: results with the probabilistic simulation. In both graphs,
the diagonal line corresponds to the collaboration rate in homogeneous groups of robots (time
parameter A = time parameter B).

4.2 Heterogeneous population

The experiments carried out so far used groups of robots with identical controllers. In
order to investigate whether heterogeneity could increase the collaboration rate of a group
of robots of a given size, we carried out a series of experiments in which robots in a group
have different gripping time parameters. The heterogeneity is therefore at a software level
and concerns only a single parameter.

The experiments were mainly carried out with Webots and the probabilistic model
(see below for the implementation with real Kheperas), with groups of 2 to 6 robots. The
time parameters are varied between 5 and 1000 seconds in an approximately geometrical
progression (5, 10, 15, 20, 30, 50, 100, 200, 500, and 1000 seconds). In order to reduce the
number of possible combinations of different time parameters among a group of robots,
groups are split into 2 subgroups,11 with a given time parameter for each subgroup. All
possible combinations of time parameters between the two subgroups are tested (55 runs).
Each run lasts 30 minutes (simulated time) and is repeated 5 times in Webots and 100
times in the probabilistic model.

Figure 8 illustrates the collaboration rate as a function of the gripping time in a
group of two robots, with both the Webots and the probabilistic model implementations.
Although the collaboration rates are slightly higher with the probabilistic model, and the
function representing the dependency of the collaboration rate on the different gripping
time parameters smoother (it is namely the average of 100 trials instead of 5 with Webots),
the probabilistic model gives a good prediction of the results with Webots.

11The subgroups are of equal size if the number of robots is even, and closest to half the number of
robots, if odd (i.e. a group of 5 robots is split in subgroups of 2 and 3).
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Figure 9: Ratio of optimal collaboration rates between heterogeneous and homogeneous groups
of robots. The size of the error bars corresponds to the propagation of the standard deviations
of the different runs with the optimal gripping time parameter(s): ∆(A/B) = ∆A/B̄ + ∆B/Ā ,
where ∆(A/B) is the size of the error bar, ∆A and Ā are the standard deviation and average
value of the heterogeneous runs with the optimal gripping time parameters, and ∆B and B̄ are
the standard deviation and average value of the homogeneous runs with the optimal gripping
time parameter.

The main outcome of these experiments is that heterogeneity can improve the collab-
oration rate when there are fewer robots than sticks. For instance, in the case of groups of
2 robots (Figure 8), the optimal collaboration rate in the heterogeneous group (gripping
time parameter A = 5s, and gripping time parameter B = 500s) is approximately 50%
better than with the homogeneous population (gripping time parameter = 30s). With
groups of 2 or 3 robots, i.e. when the number of robots is less than the number of sticks,
optimal collaboration is indeed obtained when one group of robots has a very small grip-
ping time parameter, and the other, a large one (i.e. the dark areas close to the horizontal
and vertical axes in Figure 8). This could be seen as the latter group specializing in per-
forming the grip1s (and in waiting for a hand), and the former in performing grip2s, with
short grips without waiting. In three initial experiments, we tested a similar specializa-
tion with groups of 2 to 4 real Kheperas. The groups were divided into 2 subgroups with
gripping time parameters of 5 and 500 seconds. Although these single runs are by no
means statistically significant, a 45% increase of the optimal collaboration rate compared
to the homogeneous group was also observed with the group of 2 robots, while there was
no significant increase for groups of 3 and 4 robots.

As illustrated in Figure 9 which summarizes the differences of optimal collaboration
rates between homogeneous and heterogeneous groups, the benefits of heterogeneity dis-
appear when the number of robots exceeds the number of sticks. In that case, the optimal
strategy is having all robots waiting a long time once they found a stick, similarly to the
homogeneous groups.
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Figure 10: Collaboration rate as a function of the gripping time in a homogeneous population
of robots with a simple signalling scheme. Left: Results with the Webots simulator. The results
with (continuous lines) and without (dotted lines) signalling are superposed; the collaboration
rate is systematically higher with signalling. Right: superposition of the results with Webots
(linked markers) and the probabilistic simulation (continuous lines). Errorbars correspond to ±
standard deviations of the results with the probabilistic model (thicker bars) and with Webot
(thin lines).

4.3 Communication

In this last section, we investigate whether introducing a simple communication scheme
among the robots can increase the collaboration rate by introducing a less local and more
explicit interaction between robots. The experiments are only carried out with Webots
and with the probabilistic model, but are based on the IrDA communication turrets
developed for the Khepera robots (Martinoli, Franzi, & Matthey, 1997). These turrets
allow local communication through 4 directional IR emitters and receivers, separated by
angles of 90 degrees.12

A simple signalling scheme is implemented as follows. Once a robot grips a stick, it
emits a continuous signal in a 60o cone through its frontal emitter (“call for help”). The
signal can be perceived by other robots within the whole arena (signalling range is fixed
and larger than the arena’s size), as long as they are located within the emission cone.
Robots which are in the looking-for-sticks mode and which sense that signal perform a
phototaxis towards it until they detect an object, in which case they start the detection
procedure as described in Section 2.2. As the emission is directional, robots moving
towards the emitter tend to arrive to the caller robot with the right angle for making a
grip2, unless they encounter another object on their way (a robot or another stick).

Figure 10 left shows the effect of the signalling scheme on the collaboration rate com-
pared to the experiment without signalling (in the Webots implementation). The sig-
nalling systematically improves the collaboration rate, independently of the gripping time
parameter. The effect is most visible with groups of few robots, for which the signalling
nearly doubles the collaboration rate.

In its current version, the probabilistic model is not perfectly suited for including

12The emitters and receivers are on the front, the back, and the sides of the Kheperas.
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such a signalling scheme, because the effect of signalling on the probabilities of finding
sticks and robots cannot be determined from simple geometrical considerations as before.
Difficulties arise partly because the area covered by the call depends significantly on the
orientation of the caller13 and should be averaged, but mainly because signalling alters the
distribution of robots over the arena, and therefore changes the probabilities of meeting
other robots in a way which is hard to measure. However, by simply adding two free
parameters which modulate the probabilities for making a grip2 and for finding robots,
the model can be adapted to present a good fit of the results obtained with Webots.
Figure 10 right presents a superposition of the results with Webots and those with the
probabilistic model, when the probability of making a grip2 (PG2) is increased by 80% and
that of finding a robot (PR) by 30%. These increases corresponds to what could intuitively
be predicted: signalling significantly increases the probabilities of collaborations (i.e. of
making a grip2), but also of encountering other robots, as several robots may move towards
the same call, therefore increasing the chances of interferences between them. With these
new probabilities for making a grip2 and for findings robots, the probabilistic model
predicts that, for groups larger than 9 robots, this simple signalling scheme has a negative
effect on the collaboration rate, and that groups without signalling perform better than
with signalling (Figure 13 in Appendix).

In summary, a simple signaling scheme as presented here can significantly improve the
collaboration rate as long as the increase of probability of collaboration outweighs the
increase of interference between robots.

5 Discussion

This article presented an experiment in collaborative robotics with the motivations 1) to
investigate the collaboration dynamics of a group of simple autonomous reactive robots,
and 2) to develop a tool —the probabilistic model— for the characterization and prediction
of such an experiment.

Probabilistic model As mentioned, the central idea of the probabilistic model is to
represent the dynamics of a group of robots as a series of stochastic events without
considering individual trajectories and sensory measurements. Similarly to (Martinoli
et al., 1999a, 1999b) where the same approach was taken for the characterization of two
different clustering problems, the benefits of the model are two-fold. First, it allows one
to pin down the essential characteristics determining the collaboration dynamics. The
approach is minimalistic —it includes very few parameters— and aims at capturing only
the system parameters which play a relevant role for the metrics in which the experimenter
is interested, in our case the collaboration rate. For instance, we took into account
parameters such as the robots’ speeds, their detection width, and their gripping time
parameter, and did not consider lower level parameters such as the PID parameters of
the wheel controllers, the exact positions of the sensors, and the height of the robots, to
name a few, as these parameters have either a negligible effect on the metrics we were
interested in, or their effect was taken in account by the higher-level parameters that we

13The area covered by the call is much smaller when the caller is facing a near wall, than when it has
its back to it.
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had chosen.14 In our experiments, the surprisingly good fits between the results with the
probabilistic model and those with the real robots and Webots, lead to think that the
model represents correctly the dynamics of the experiment, and that it includes all the
essential parameters defining it.

The second benefit is the development of a tool for prediction. The model requires only
two robots for the setting of all its parameters (i.e. there are no free parameters in the
simulation), and these parameters (timings and geometrical considerations) can easily be
measured. Notice that the modelling methodology we used in this paper produces “micro-
models”: at the local level, the robot-to-robot and robot-to-environment interactions are
very precisely defined, with the granularity of details chosen by the experimenter; this
micro-model can then be used to predict the collective behavior (the “macro-behavior”)
with significantly bigger groups of robots via probabilistic simulations. Because of its
speed, the probabilistic simulation is particularly well suited for experimenting with very
large groups of robots, and therefore to test the behavior of real swarms. Of special
interest, is the possibility of optimizing the number of robots, their hardware and software
characteristics for a given objective, before developing dedicated hardware and setting up
all the details of the experiment. In that respect, the advantages of the probabilistic model,
compared to more complex, sensor-based simulations such as Webots, are the following.
First, the probabilistic model is very easy to implement: it consists of a very limited
number of lines of code, and is closely based on the flowcharts of the robots controllers.
As described in Section 3, it only requires the transformation of local perception situations
into probabilities, i.e., in our case, the transformation of deterministic branch operators
of the robotic controller into probabilistic ones. A sensor-based simulation requires on the
other hand the complete specification of the sensor and actuator properties of the robot,
as well as accurate models of the environment. Second, it has few parameters which can
readily be measured from a few robots (from two robots in this experiment): as mentioned
above, the probabilistic model relies on high level parameters (such as the detection
range of a stick, the robot detection width, i.e. parameters that summarize both physical
characteristics of sensors, and control thresholds). Unlike sensor-based simulations, it
does not require the detailed characterization of each individual sensor (e.g. their position,
orientation, detection range, opening angle, or intrinsic noise). Finally, it is very fast: it
requires few computations, and comprehensive characterizations of the experiment can be
obtained in minutes. This is especially important for computation-intensive tasks such as
optimization. Even if sensor-based simulation are faster than running experiments with
real robots, making a systematic search for optimal multiple control parameters is often
prohibitive with such a type of simulation. In our case, computations which might take
almost a year with Webots, can be carried out in one day with the probabilistic model,
assuming that the same computer is used.

Note that the probabilistic framework presented here can also serve as basis for a
more explicit characterization of the experiment dynamics in terms of time-dependent
probabilistic equations (macro-models). An example of such an extension of the approach
to a collective exploration task is given in (Billard, Ijspeert, & Martinoli, 1999).

14The intuition of the engineer plays, of course, an important role in selecting the parameters she/he
thinks play a major role on the metrics chosen for an experiment. An iterative process between defining
the parameters to be included into the model and comparing the predictions with real data might be
necessary to gradually identify the parameters. Note also that some experiments might not be suited to
be modelled by this approach (see below).

19



Types of experiments to which the probabilistic model can be applied, and
limitations The modeling methodology used in this paper was specifically designed
to predict the dynamics of collective manipulation experiments using distributed control
and autonomous, reactive robots. It therefore addresses problems which are pseudo-
stochastic in nature, i.e. problems which involve groups of robots with limited navigation
capabilities whose trajectories are pseudo-random because of their multiple interactions
with other robots and the environment, and because of the noise in their sensors. In that
case, trajectories, that is, correlated sequences of robot positions, can be approximated
at the level of environmental changes by uncorrelated sequences of random positions, as
illustrated by the good agreement of collaboration rates between the probabilistic model
and the two other implementations. Unlike sensor-based simulations, the methodology
can therefore only be applied to describe the average dynamics of a group of robots and
average effect of the group of robots on its environment, a shared resource, rather than
giving also examples of instances of an experiment (e.g. typical trajectories followed by
the group of robots or which stick was pulled out by which robot).

The methodology currently relies on the assumption that the coverage of the arena
by the groups of robots is uniform. In our case, this means that the probabilities of basic
events (detecting a robot, a stick or a wall) only depend on geometrical considerations,
and do not depend on time (except for our state variables, i.e. the number of grip1s
and grip2s made at any time) nor on the positions/orientations of the robots. Uniform
coverage might not always be the case, and depends on the environment —e.g. it could
have bottle necks leading to higher density of robots in some parts of the environment —,
on the robots’ configuration —e.g. their size, the positioning of their sensors —, and/or
on the robots’ controllers—e.g. robots might be programmed to follow beacons or to move
in flocks. See (Hayes et al., 2000) for probabilistic models that take into account these
effects.

As illustrated by the experiments with signalling, experiments in which the probabil-
ities of events are not constant in space and time, but depend on the behavior, position,
and orientation of other robots are less straightforwardly implemented. They require some
kind of averaging of the probabilities as was realized with the modification of PR and PG2

for fitting the Webots results. This problem can however be solved by either adding free
parameters, or extending the model to represent these specific effects more appropriately.
For some situations, it might be worth introducing a non-uniform probabilistic density
function for the robots’ positions. Experiments with robots that are programmed to gen-
erally remain close to walls, for instance, could include a density function in which robots
have higher probabilities to be close to a wall.

In our experiments, the probabilistic model also relies on the assumption that the sticks
are accessible from all sides for a grip1, which was the case in the real experiments with
sticks being sufficiently spaced from each other and from the wall. In some situations, the
exact position of a stick might become relevant, and the probabilistic model would need
to be modified to take that into account. For instance, a stick which is close to the wall
and only partially accessible would lead 1) to a reduction of its probability to be detected
for a grip1 (this could easily be measured, or deduced from geometrical considerations),
but also 2) to a more subtle effect on the probability of a grip2 as this probability would
depend on the angle with which the grip1 is made (low probability if the robot making
the grip1 is headed towards the wall, higher probability if the robot making the grip1
is parallel to the wall). Similar situations might occur when sticks are close to each
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other in which case having a robot gripping one of the sticks could potentially reduce the
probabilities of grips on the other sticks. In its current form, the probabilistic model is
not well suited to describe these situations which depend on the trajectories, positions,
and orientations of each robot.

As briefly discussed in Section 4, the probabilistic model also needs to be improved to
better describe boundary effects such as, for instance, situations with many robots whose
total area of detection comes close to, or exceeds, the total area of the arena. In such
an “overcrowded” situation, the probabilistic model needs to be modified to take into
account the fact that detection areas overlap (despite their obstacle-avoidance behavior,
robots are forced to remain within each others detection range). There is no fundamental
obstacle to consider this overlap in the modelling methodology, but the exact overlap
might be difficult to assess as it intimately depends on details of the robots’ behavior
during obstacle avoidance e.g. how much and how fast they turn away from an obstacle
in comparison to how much time and space they need to perform a gripping operation.

Finally, some types of robot’s controllers might be difficult to be implemented into
the probabilistic model. Creating the probabilistic model requires that the controllers
(e.g. rule-based, behavior-based, neural networks-based controllers) present a relation
from sensory space to action space which can be classified into a discrete set of actions
triggered by well defined sensor-states. These different actions are then represented by
branches in the probabilistic model, and probabilities are attached to each of these actions
to represent how often they occur with the real robots.15 Controllers for which such a clear
and discrete mapping does not exist, e.g. whose actions depend in a complex way on low
level information from the individual sensors, are therefore not suitable to be modelled
with this methodology. Note however that only actions which are meaningful for the
chosen metrics need to be distinguished. In our case, for instance, obstacle-avoidance is
implemented in a trivial neural network and is considered as a single action (i.e. turning
away from an obstacle by 30 degrees or 60 degrees are not considered as different actions)
which is then captured in the model only by its effective duration measured on a real
robot. A last limitation is that the current methodology does not deal with adaptive
controllers, and it remains to be seen how much adaptation it can integrate (see future
works below).

A Swarm Intelligence approach towards collaboration The experiment presented
in this article is one of the few experiments in strictly collaborative robotics implemented
with real robots rather than only in simulation, and, more generally, one of the few exper-
iments in collaborative robotics with groups of more than three robots. The experiment
presented here is characterized 1) by the fact that it uses robots which are simple, re-
active, and with local and noisy sensory information, 2) by the fact that the robots are
autonomous and do not rely on an external supervisor or a robot leader, and 3) by the
fact that collaboration is obtained by exploiting only local interactions (stigmergic or
explicit communication mechanisms such as directional signalling). Collaboration occurs
when there is a spatial and temporal coordination between two robots. In the experiments
without signalling, this coordination happens randomly rather than being actively sought,

15Note that the controllers need not to be deterministic, the probabilistic model can easily integrate
probabilistic action-selection, as long as the internal probabilities for each action given a sensori-state are
known.
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as robots do not coordinate their actions except through a stigmergic communication, i.e.
by influencing the state of the environment (the state of the sticks).

Similar collaborative experiments with a SI approach were, for instance, presented
in (Beckers et al., 1994; Holland & Melhuish, 1999; Kube & Bonabeau, 2000; Krieger
& Billeter, 2000; Hosokawa et al., 1998; Yoshida et al., 1999). This is in contrast with
many other experiments which, for instance, either relied on a central supervisor (Hum-
berstone & Smith, 2000) or robot leaders (Wang et al., 2000) for generating guide lines
and coordinating the group behavior, used extensive wireless communication for action
coordination and compensating sensory weaknesses (Parker, 1994; Mataric et al., 1995),
or used more sophisticated sensors (e.g. force and torque sensors) and models of the
dynamics of the robot-to-environment interaction (Boehringer et al., 1995; Khatib, 1999;
Ota & Arai, 1999).

Consistently with the SI approach, we minimized the complexity of the individual
units by using the simplest possible sensing and communication capabilities, without cen-
tralized control. We therefore obtained good scalability of the system by avoiding global
communication schemes and corresponding bottlenecks due to a limited bandwidth. The
price to be payed for renouncing to any form of global information and global networking
is system efficiency since action coordination and collaboration is based on probabilistic
rather than deterministic rules.

Collaboration dynamics The collaborative essence of the experiment leads to the
following observations.

First, the dynamics of the experiment —the relation between collaboration rate and
gripping time parameter, for instance— differ significantly depending on the ratio between
number of workers (i.e robots) and amount of work (i.e. number of sticks). This is due
to the necessity for spatial and temporal coordination between at least two robots for
successful collaborations. When there are few robots and a large amount of work (many
sticks), special care must be given to prevent robots to disperse spatially and “temporally”
(temporal dispersion corresponding to the situation where robots arrive at a same stick
but with important time differences). Optimizing the time overlap for collaboration can be
obtained by optimizing the gripping time parameters, as investigated with homogeneous
and heterogeneous groups. Having homogeneous groups with a too high or especially a
too low time parameter indeed leads to a strongly suboptimal performance. As observed
in Section 4.2, the best performance is then obtained with heterogeneous groups and
specialization. A natural continuation of this work would therefore be to implement
adaptive rules for the robots to determine themselves their gripping time parameter, as,
ideally, the robots should be able to adapt to the current work load and number of robots
in the arena (as in (Parker, 2000; Touzet, 2000), for instance). It would also be worth
investigating simple ways to prevent spatial dispersion (other than signalling) with, for
instance, the implementation of a following-routine such that robots travel in pairs.

Although quantitative analysis is often missing in related research, we believe that the
importance of the ratio between number of workers and amount of work can be generalized
to a whole range of similar collaborative tasks, including object-pushing (Parker, 1994;
Boehringer et al., 1995; Mataric et al., 1995; Wang et al., 2000), transportation (Johnson
& Bay, 1995; Ghanea-Hercock & Barnes, 1996; Ota & Arai, 1999; Humberstone & Smith,
2000) and manipulation (Fujita & Kimura, 1998; Khatib, 1999), and that similarly strong
differences of the “qualitative dynamics” of the experiment can be made between under-
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staffed and adequately staffed groups of robots for a given amount of work. The exact
dynamics depends, of course, on the details of task. In the box pushing experiment
presented in (Kube & Bonabeau, 2000), for instance, the size and type of box is found
to significantly influence the mean execution time of moving a box towards a goal for a
given group size. When the influence of the group size is tested, it is found that pushing
a box is done fastest with the smallest group of robots tested (with three robots). Had
the box been heavier, the results would probably have been quite different (and closer
to the experiment presented in this paper) with small groups being less efficient or even
unable to move the box. As mentioned by the authors “... performance is dependent
on some yet to be determined task density function”. In this paper, we experimentally
defined such a function for a specific task in a specific environment. Our investigation is
however not exhaustive (we did not, for instance, vary the number of sticks, see below),
and further experiments to characterize such a task density in a broader sense will be
mentioned below.

Second, the need for collaboration leads to a collaboration rate which, in groups up to a
certain size, increases super-linearly with the number of robots. As mentioned, increasing
the number of robots not only increases the global performance of the group, but also the
performance of each individual. This is rarely the case in autonomous collective robotics
which is not strictly collaborative.16 The increase of performance becomes sub-linear when
the effects of interference outweigh the benefits of having more robots for collaboration.

Finally, the preliminary experiment with the directional signalling scheme showed
how introducing a less local interaction between robots could significantly improve the
collaboration rate, especially with small groups of robots. The interesting aspects of
signalling are clear: they increase the probabilities of having the right spatial and temporal
coordination for collaborations and they reduce the overall stochasticity of collaborations.
In this simple case, where there is no agreement between robots receiving a call about
which one should handle it, signalling also increases the interference between robots which
means that for big groups of robots signalling leads to worse collaboration rates than no
signalling. While a detailed analysis of the respective benefits of different communication
protocols is out of the scope of the current article, the analysis of which communication
protocol and range is most appropriate for a given task and a given number of robots is
a central question in collective robotics (Balch & Arkin, 1994; Yoshida, Arai, Yamamoto,
& Ota, 1998).

An interesting observation from these experiments is that for a given environment, a
given task and a given initial group of robots, there are often multiple ways to improve
the collaboration rate among the group. The collaboration rate can indeed be improved
by, for instance, adding or removing robots, giving them better sensors, improving their
controllers and adding specialization, or introducing signalling. Figure 10 left, for in-
stance, shows that, given a group of 3 robots without communication, an almost identical
improvement of collaboration rate can be obtained by either adding a fourth robot or giv-
ing the capacity to the 3 robots to communicate and use the signalling scheme described
above. Each of these means has its advantages and drawbacks in terms of costs, time to
implement, complexity (consistently with the minimalism idea of the SI approach), and
system robustness. As mentioned above, having a prediction tool such as the probabilistic
model is therefore most useful for investigating these issues and taking costs into consid-

16In (Mataric et al., 1995) another strictly collaborative experiment, superlinearity in the pushing time
was also reported for the group of 2 robots.
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erations before having to effectively buy and/or implement the different possibilities.

Future work The experiments presented in this article are by no means exhaustive,
and need to be extended in several directions. First, the predictions of collaboration rates
for groups larger than 6 robots need to be tested with Webots and the real robots. Of
particular interest, is the predicted collapse of collaboration rate for groups larger than
11 robots. Second, more experiments need to be made with Webots and the real robots
in order to assess how well the probabilistic model predicts the collaboration rate of the
real robots compared to Webots from a statistical point of view. Current numbers of runs
are too limited and too different from one type of implementation to the other to allow
statistical tests to be used in a meaningful way. Further experiments are also required to
characterize the task density function, not only as a function of the number of robots, but
also of the number of sticks and the size of the arena. Experiments with very large number
of sticks would be especially interesting in order to investigate how much heterogeneity
in the gripping time parameters can improve the collaboration rate in a large group of
heterogeneous robots compared to homogeneous robots. Finally, it would be interesting
to test whether the methodology could be applied to adaptive controllers. The current
probabilistic model could certainly help to develop an adaptive rule for each robot to
determine its gripping time parameter given the number of successful and unsuccessful
collaborations it makes as well as the number of obstacles it encounters, for instance. It
remains to be investigated however how much the methodology is applicable when the
whole controller organization is adaptive rather than just a few parameters.

6 Conclusion

This article investigated the collaboration dynamics among groups of simple, reactive,
autonomous robots involved in a collaborative stick pulling task. In particular, a proba-
bilistic model was developed for the characterization and the prediction of such dynamics.
It was found that, by representing the experiment as a set of stochastic events with prob-
abilities based on simple geometrical considerations, the probabilistic model was able to
provide a very good prediction, both qualitatively and quantitatively, of the collaboration
dynamics as a function of two main parameters studied in the experiment, the number of
robots and their gripping time parameter.

Four observations can be made from the experiments. First, the experiments showed
that there are two different dynamics depending on the ratio between the number of robots
and the number of sticks. Second, with group sizes up to certain size (six robots), the
collaboration rate increases super-linearly with the number of robots. Third, heterogeneity
in the robots’ controller parameters increases the collaboration rate when there are fewer
robots than sticks while having no significant effect otherwise. Finally, the experiments
showed that a simple signalling scheme can significantly improve the collaboration rate
among robots unless the group of robots is large (larger than nine robots) in which case
the increased interference between robots due to the chosen signaling scheme outweighs
the benefits of increased coordination between robots.
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Figure 11: Left: failed collaboration rate with homogeneous groups of robots. Right: average
time to find and grip a stick with homogeneous groups of robots. The large single markers
correspond to the results with the real robots, the linked small markers to those with the
Webots simulator, and the underlying continuous lines to those with the probabilistic simulation.
Errorbars correspond to± standard deviations of the results with the probabilistic model (thicker
bars) and with Webot (thin lines). Note that the correspondance between Webots and the
probabilitic model on one side, and the real robots on the other side, is less good for the groups
of 5 and 6 robots with gripping time parameter equal to 500sec. We believe this is due a
statistical artifact which will disappear when more runs with the real robots will be carried out
(see the future work Section).
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Figure 12: Collaboration rates (left) and relative collaboration rates (right) predicted by the
probabilistic model for homogeneous groups of robots with size larger than six.
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Figure 13: Comparison of collaboration rates predicted by the probabilistic model for homoge-
neous groups of robots with size larger than six, with and without signalling.
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