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Abstract

Requiring all nodes of a wireless multihop network to be connected is expensive
and results in a poor scalability of properties such as transport capacity. We show
however that it is no longer the case if we only slightly loosen the connectivity
requirement, by just imposing that most nodes be connected to each other (so that
the network “percolates”). This feature is found in models neglecting interferences,
taking interferences as noise or taking a more information theoretic approach.

1 Introduction

Connectivity of a multi-hop wireless network is usually understood as the full connectivity
of all its nodes. Lower bounds on its transport capacity [1] are obtained by routing data
in networks that are already assumed to be fully connected. In this paper, we replace
the costly requirement of a fully connected network by that of a network where not
all, but most of the nodes, are connected to each other. More precisely, we want a
giant component to appear in the network, that contains a vast majority of the nodes,
but we can leave a tiny number out of it (in other words, we want the network to
percolate). This apparently benign change gives a much more optimistic perspective on
the scalability of wireless multihop networks. We consider three different models: the
simplest Boolean model, with a circular connectivity range for each node (Section 2),
a model with interferences, where nodes connect if their signal to noise ratio is above
some given threshold (Section 3), and a more “information theoretic” model, where nodes
connect if they can exchange data at a rate higher than some given rate (Section 4). This
shows therefore that the high cost of full connectivity can be spared without prejudice.
On the contrary, trading full connectivity for a giant component makes it possible to
construct a scheduling and routing scheme that matches the upper bound on the transport
capacity of the network and offers multiple paths between most nodes (Section 5).

∗The work presented in this paper was supported (in part) by the National Competence Center in
Research on Mobile Information and Communication Systems (NCCR-MICS), a center supported by
the Swiss National Science Foundation under grant number 5005-67322.



2 The Boolean model

The first and simplest model for tackling the connectivity issue is the Boolean model.
The main assumption is that nodes have a connectivity range r, within which they can
wirelessly connect to their neighbors. We assume furthermore that the range is the same
for all nodes. Therefore, two nodes are directly connected if the distance between them
is less than r.

We take now a finite area, and model the node distribution using a 2-dimensional
Poisson point process of intensity λ (λ is thus the average number of nodes per square
meter). Full connectivity occurs when one can find a path joining any two nodes.

As a first observation, it is clear that the probability that the network is fully con-
nected is always less than one, whenever the diameter of the network area is larger than
r. Therefore, full connectivity can only be an asymptotic property, in the sense that this
probability can only tend to one. Moreover, if one considers the (unrealistic) case where
the network area is infinite, then the probability that the network is fully connected is
always exactly zero.

However, in the case of an ad hoc network, one can say that a network still well
connected, if disconnected nodes may exist but always represent a small fraction of the
total number of nodes. We say that a node is disconnected if it is not connected to the
majority of the other nodes. In fact, in the context of ad hoc networks, we would like
most nodes to belong to the same huge connected component (which forms the network
itself).

Percolation theory addresses the case where the network area is infinite, and the
fundamental result is that if the node density λ and the range r are such that πλr2 > N∗,
for a special constant N ∗ ' 4.5, then the network is indeed formed by a huge connected
component (the network), plus a multitude of finite components (disconnected nodes).
Moreover, the fraction of connected nodes is a deterministic function θ of the average
node degree πλr2.

Therefore, this infinite network model is a good approximation for large networks.
However, networks are never infinite, and one needs more specific results for the finite
case. Penrose and Pisztora [2] showed that for a large but finite area, the fraction of
connected nodes is always close to the deterministic function θ(πλr2). We call this
partial connectivity.

Theorem 1 Let B(m) denote the square [0,m]2 and set Pλ,m := Pλ ∩ B(m), a Poisson
point process of intensity λ on B(m). Suppose that λr2 > N∗. Let 0 < ε < 1

2
, and let

E(m) be the event that (i) there is a unique cluster Cb(B(m)) on Pλ,m containing more
than ελθ(πλr2)m2 points of Pλ,m, and (ii)

(1 − ε)λm2θ(πλr2) ≤ card(Cb(B(m)) ∩ Pλ,m) ≤ (1 + ε)λm2θ(πλr2).

Then there exist constants c1 > 0 and m0 > 0, such that

P[E(m)] ≥ 1 − exp(−c1m), m ≥ m0.

We can observe in the above theorem that if we let the area of the network m2

tend to infinity (and thus also the number of nodes), then the fraction of connected
nodes tends to the constant θ(πλr2). This result matches the first percolation result
for infinite networks. However, there is a slight difference between the two: in the first



one, we consider only an infinite network area, whereas in the second one, we consider
a sequence of finite networks, and derive an asymptotic property when the number of
nodes tend to infinity.

The same approach can be applied for full connectivity. As we only consider (larger
and larger but still) finite networks, full connectivity can happen with positive probability.
This approach is very frequent in the literature, and the following result has been proven
first by Penrose in 1997 [3].

Theorem 2 Let Mn denote the length of the longest edge of the minimal spanning tree
connecting all nodes in the network. Then

lim
n→∞

P[nπMn − log n ≤ α] = exp(e−α), ∀α ∈ IR.

It is now interesting to observe how these two results, namely the one about partial
connectivity (Theorem 1) and the one about full connectivity (Theorem 2), are related.
We will start with an intuitive – but not rigorous – reasoning, that allows to link the
probability that the network is fully connected with the function θ(πλr2). A rigorous
and detailed version of this reasoning can be found in [4].

We assume without loss of generality that nodes are distributed according to a Poisson
point process of unit density (λ = 1), and that the network area increases and is equal
to n. The total number of nodes in the network is therefore approximately equal to n.
We want to compute the critical range r(n) to keep the network fully connected.

We start with the simple observation that the network is fully connected if and only
if no node is disconnected. So we obtain immediately a lower bound on the probability
that the network is connected:

P[the network is connected] ≥ 1 − nP [node i is disconnected].

Furthermore, we know from Theorem 1 that the probability that a given node is isolated
tends to 1 − θ(πλr2) when the network area tends to infinity. Therefore

P[the network is connected] ≥ 1 − n(1 − θ(πλr2)).

In fact, this lower bound is asymptotically tight, as when the number of nodes becomes
large, the events that different nodes are connected become almost independent. There-
fore we have

P[the network is connected] ' θn(πλr2). (1)

In order to have the above probability tend to one when n tends to infinity, we must have
θ(πλr2) → 1. This is only possible if λr2 = λr2(n) grows with n.

To compute how fast r(n) should grow, we derive an approximation of the function
θ(πλr2) when πλr2 is large. According to Propositions 6.4-6.6 in [5], when the average
node degree is large, the ratio between the probability that a node is disconnected, and
the probability that a node is isolated (i.e. has degree zero) tends to one. Therefore,
asymptotically, all disconnected nodes are isolated nodes. The probability that a node
is isolated is easy to compute:

P[a given node is isolated] = exp(−πλr2).

Therefore, when πλr2 is large, θ(πλr2) ' 1 − exp(−πλr2). Figure 1 shows a simulation
based evaluation of θ(πλr2) for large values of πλr2.
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Figure 1: The fraction of disconnected nodes in the Boolean model.

Using this approximation in (1), we obtain

P[the network is connected] ' [1 − exp(−πλr2(n))]n.

The latter expression tends to one provided n exp(−πλr2(n)) tends to zero. Taking the
logarithm of this expression leads to the conclusion that the network is asymptotically
connected if and only if

πλr2(n) − log n → ∞.

This means that the average node degree must grow approximately like log n, when the
number of nodes in the network increases. However, it appears in this intuitive derivation
of the critical range for full connectivity that the most isolated node is determining the
result. In fact, the network becomes connected when the last node joins the network.
This means that full connectivity is not really a global property of the network; it just
answers the question “how isolated is the most isolated node”. As we just saw above,
the distance to the first neighbor of the most isolated node increases with the number of
nodes. But this is a pure statistical effect: we are taking a set of randomly distributed
distances, and pick the largest one. As we increase the sample set, the largest element
becomes longer and longer. This explains why the range of the nodes has to increase,
even though the node density remains constant.

3 Taking interferences into account

In this section, we introduce a slightly more sophisticated model for connectivity. We
keep the Poison distribution of the nodes, but assume that two nodes are neighbors if
they can communicate wirelessly, despite the interferences from all other nodes. More
precisely, Node i and Node j are neighbors if

Pl(||xi − xj||)
N0 + γ

∑

k 6=i,j Pl(||xk − xj||)
> β and

Pl(||xj − xi||)
N0 + γ

∑

k 6=i,j Pl(||xk − xi||)
> β, (2)

where P is the emitting power of all nodes, l(d) is the attenuation of the signal over
distance d, N0 is the ambient noise, γ is a weighting factor for interferences (inverse pro-
cessing gain of the CDMA system) and β is the SNIR threshold for successful decoding.

In this model, as we take interferences into account, it is not enough to increase the
range (i.e. the emitting power) of the nodes to keep the network connected. Increasing



the emitting power would also increase interferences, and at the limit, when P tends to
infinity, one can see in (2) that the SNIR converges to a maximum.

However, it has been proven in [6] that percolation can still occur in this model, for
appropriate parameters λ, P , N0, γ and β. Regarding partial connectivity, the situation
is thus similar to the previous section. Let us make this precise. We assume in the sequel
that λ, N0 and γ are fixed, and that P and β are our parameters (varying β correspond
to adapting the data rate, for example as in 802.11).

Let us consider the case where the network spreads over the whole plane first, and
denote by θ(P, β) the probability that a given node belongs to an infinite connected
component (i.e. is connected to the network). The following proposition can be inferred
from the results in [6]

Proposition 1 For any value of P , there exists a critical value β∗(P ) such that if β <
β∗(P ), then there exists an infinite connected component a.s., and θ(P, β) > 0.

Although it was not formally proven yet, we can conjecture that a similar theorem as
Theorem 1 exists for this model, and that for a finite network, the fraction of connected
nodes tend to θ(P, β) when the network area grows.

For full connectivity, we must study more precisely the shape of the function θ(P, β).
Simulation based evaluations of θ(P, β) are presented on Figure 2. As a first observation,
we notice that if β is fixed and P arbitrarily large, the fraction of connected nodes θ(P, β)
is bounded above by a constant θ(β), that is strictly smaller than one. In fact, letting
P tend to infinity is equivalent to let N0 tend to zero in (2). Therefore, at the limit,
we obtain a purely interference-limited network. It can be shown that such a network
always contain a non-zero fraction of disconnected nodes. We skip this proof because of
space limitation.

However, to have full connectivity, we must have θ(P, β) → 1 when n → ∞. The
only way to achieve that is to have β → 0, as shown on the right-hand side of Figure 2.
Therefore, to achieve full connectivity, the rate on each link has to decrease with the
number of nodes.

A drawback of this model is that we assume that all nodes emit with power P at
any instant. This assumption leads of course to strong interferences, and therefore a
poor connectivity. One can improve the model by introducing a random TDMA scheme,
where each node picks a time slot at random, out of t time slots. Then, at each instant,
only a fraction 1/t of the nodes are emitting, and the average interference level is t times
lower. For fixed P and β, one can now increase the number of time slots t to improve the
network connectivity. This setting has also been studied in [6], and it has been shown
that the network can be made at least super-critical (i.e. partially connected) by setting
t sufficiently large.

But whether we decrease β or increase t, we always end up to reduce of the throughput
per link. It turns out in this model that increasing the emitting power does not allow
to reconnect the network. The only way to achieve full connectivity is to reduce the
throughput.

4 Information theoretic connectivity

In this section, we consider a slightly more sophisticated (and more realistic) definition
of connectivity: two nodes are connected, if it is possible to transmit data from one node
to the other at rate at least R, all other nodes of the network serving as relays. Nodes are
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Figure 2: On the left: the fraction of connected nodes, as a function of the emitting power
P , for a fixed β = 0.02. The function converges to θ̂(β) < 1. On the right, the fraction
of disconnected nodes, as a function of the SNIR threshold β, with fixed P ' 7.7 · 103.

still distributed according to a Poisson point process of intensity λ over an area of size
A. This model has been first introduced by Liu and Srikant [7]. It has in fact many more
parameters than the Boolean model, like the maximum emitting power of the nodes, the
attenuation exponent or the ambient noise. Here, we assume them all fixed, but the node
density λ, the network area A and the rate R.

We raise the same two questions as above: is the network is fully connected, and
does it contain a giant connected component with most nodes. It turns out that the first
question lead to asymptotic results similar to those obtained for the Boolean model:

Theorem 3 [7] For an attenuation function of the form l(d) = d−α, with α > 1, and if

R(A) ≥ c2λα

(log λA)α−1 where c2 = 48P4α−1(1+ε)(2α−1)
(1−ε)αN0(α−1)

for some ε > 0, the network is discon-
nected w.h.p. when A → ∞.

We observe that when the network size A increases, the rate must decrease to keep
the network connected. Equivalently, if we fix the rate, then the emitting power of the
nodes should increase. Again, this result is a pure statistical effect, as the probability
to find an arbitrarily isolated node in the network tends to one when the network area
grows to infinity. In their paper, Liu and Srikant directly use this argument on the most
isolated node to find the upper bound on the achievable rate R.

However, if we only require partial connectivity, with an arbitrarily low fraction of
disconnected nodes, the asymptotic behavior of R when the area tends to infinity dra-
matically changes: R can be kept constant when the network size tend to infinity. The
two following theorems have been proven in [8], in the case where the network area tends
to infinity.

Theorem 4 For any 0 < θ̌ < 1, there exists a rate R > 0 independent of n, such that a
fraction at least θ̌ of the nodes can exchange data at rate R w.h.p.

Theorem 5 For any rate R > 0, the fraction of nodes that can send data to some
destination at that rate is at most θ̂ w.h.p., where

θ̂ = P[I ≥ N0

P

(

e2R − 1
)

],

where I is the shot-noise defined by I =
∑

x∈N l2(||x||) and N is a Poisson point process
of unit density over IR2.



In other words, the two above theorems say that when the network size tends to
infinity, a constant fraction of the nodes have the property that for any pair of such
nodes, a link with throughput R can be established between them. This remains true
when the two nodes are arbitrarily distant. The converse says that for any rate R, there
will be a non-zero fraction of nodes that cannot communicate with any other node with
rate at least R.

Again, with this model of connectivity, the results have the same flavor: requiring full
connectivity makes the network performance drop when the number of nodes is large.
On the contrary, if we only require partial connectivity (even with a very small fraction
of disconnected nodes), the network performance scales perfectly.

5 The cost of full connectivity

5.1 The capacity under uniform traffic matrix

In the above section, we considered the case where only one link is active at a time. Al-
though this assumption is realistic for lightly loaded sensor networks, it is also interesting
to consider the other extreme case, where all nodes want to transmit data at the same
time.

We consider here the model where each node picks a destination at random, and
transmit data to it (uniform traffic matrix). As before, the node density is kept constant,
whereas the network area increases. n denotes the average number of nodes.

This situation has been first studied in [1], where a constructive scheme is found, that
achieves a throughput of order 1/

√
n log n. However, if the nodes are placed in a more

regular (non-random) fashion, a throughput of order 1/
√

n is achievable. The key for
this gap is that we require that each node benefits from the same throughput. Of course,
this rules out the possibility of having a few disconnected nodes (which would have zero
throughput). In this section, we follow the alternative approach from [9], and show how
the requirement of full connectivity is responsible for this

√
log n factor.

We consider here a square area B(m) = [0,m] × [0,m], and we assume without loss
of generality that λ = 1. Hence n = m2. We divide the area B(m) into squarelets of
size c × c. There are thus approximately n/c2 squarelets, each containing in average c2

nodes. We set the nodes’ power so that each node in a squarelet can reach any node in
the 4 contiguous squarelets. Then, for each source-destination pair, we use the following
deterministic routing scheme (see Figure 3): we draw a straight line from source to
destination, and pick one node per squarelet cut by this line. These nodes will be the
relays for this flow. It can be shown that with a simple TDMA scheme, each squarelet
benefits from a constant throughput, which must be shared by all nodes inside of the
squarelet. Therefore, the actual throughput per flow will depend on the number of routes
that cross a typical squarelet.

However, this deterministic routing scheme only works if there is at least one node
in each squarelet (this happens with probability p = 1 − exp(−c2) in each squarelet).
Clearly, if c is a constant, there is always a positive probability that each squarelet is
empty. Asymptotically, the probability that there are at least k empty squarelets in the
network goes to one, for any finite k. Even worse, the probability that there are occupied
squarelets surrounded by empty squarelets also tends to one. Therefore, our network is
disconnected w.h.p.

To keep the network connected, we must let c grow as a function of n. By tak-
ing c = c(n) ∼

√
log n we obtain a connected network, with order Θ(log n) nodes per



Figure 3: On the left: the deterministic routing scheme. In each squarelet cut by the bold
line, we pick on relay. On the right, the site percolation model induced by the occupancy
of squarelets. Filled disks represent the isolated nodes in our scheme: the deterministic
routing scheme cannot be successfully applied to these nodes

squarelet, and Θ(
√

n/ log n) routes crossing each squarelet. The resulting throughput is
thus Θ(1/

√
n log n).

An alternative is to allow for some empty squarelets, and to keep c constant. This lead
to a site percolation model on a square grid, where nodes are occupied with probability
p = 1 − exp−c2 and empty with probability 1 − p. It has been shown in [10] that if c is
large enough, one can find a routing scheme on this incomplete grid, so that each node
has a throughput of order 1/

√
n.

However, with a constant squarelet size c, there are still disconnected nodes w.h.p.
To cope with them, we use a separate time slot, for draining the traffic from disconnected
nodes to the connected part. This is done by using longer hops. As this traffic is only local
(from remote nodes to the closest connected nodes), it can be shown that the throughput
per node during this special time slot decreases slowlier than 1/

√
n. Therefore, as the

overall throughput is determined by the minimum of the throughput during the two
time slots, introducing this draining phase does not affect the asymptotic behavior of
the result. The difference between this strategy and the previous one is that here we
treat the problems of transport capacity and connectivity separately (in two distinct
time slots), whereas by letting c tend to infinity, we solve the capacity and connectivity
issues simultaneously, with high cost on the throughput.

Note that in this model, we can grantee service to all the nodes (and therefore keep
the network fully connected) only because the throughput is decreasing with n. There is
therefore no contradiction with Theorem 3.

5.2 The number of paths

As suggested by the above section, increasing c (the average hop length) with n is counter
productive. On the other hand, if c is too small, the fraction of empty squarelets is large,
and no route can be found from one side of the network to the other (sub-critical case).
There should therefore be an optimal value for c, that maximizes the throughput.

In this section, we address this trade-off in a more general context by studying the
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number of paths in the percolation cluster, under the protocol model, as defined in [1]
and the model presented in Section 3.

We start with the Boolean model. We consider a large square network, with a fixed
node density λ, and each node having the same connecting range r. We try here to find
an optimal value of r for maximizing the throughput from the left side of the network to
the right.

We know already that if the range r is too small, the network is sub-critical, and there
exists no path crossing the network from left to right. Therefore, r has to be such that
πλr2 > N∗. Furthermore, when r increases, the connectivity graph becomes richer, and
the number of left-right crossings increases. This provides a better left-right throughput.

However, using a large range causes many interferences. To evaluate their impact
on throughput, we use the protocol model [1]: each transmission occupies a footprint of
area π(∆r)2. Therefore, if the size of the network area is n, the maximum number of
simultaneous transmissions cannot be larger than n/π(∆r)2. On the other hand, each
transmission can transport data at a distance at most r. Thus, the total transport
capacity is n/π∆2r. As the length of a left-right crossing is at least m =

√
n, the

horizontal throughput across the network cannot be larger than
√

n/π∆2r.
Figure 4 shows the shape of the throughput as a function of r. For small average node

degrees, no path are found, because the network is sub-critical. Above the percolation
threshold, the number of vertex-disjoint paths (and thus the throughput) slowly increases.
This corresponds to the noise-limited regime. For high node degree, many paths are
found, but they interfere with each other, and the overall throughput decreases like 1/r,
for the reason mentioned above. This corresponds to the interference-limited regime.
Therefore, there should exist an optimal value for the range r.

We finish this section with a slightly different simulation model. Here we consider
the model of Section 3, with the random TDMA scheme with t time slots. In this model,
the SNIR is at least β on each link. Thus, the throughput on each path is guaranteed,
and it is enough to count the number of vertex-disjoint path to estimate the throughput.
However, if we use TDMA, we have to divide the result by the number of time slots t.

Figure 5 shows the throughput obtained for several number of time slots. We took
the parameters of the model such that the network is sub-critical when no TDMA is used
(t = 1). This is the interference-limited case. Then, when we increase t, interferences
decrease, and more links are available. The number of paths increases. But when t
becomes very large, the interferences are so low that the noise becomes dominant, and
the connectivity graph saturates. Thus, the throughput decreases like 1/t.
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Similarly to Section 3, an alternative strategy would be to reduce the rate on the links
(reduce β). As the required SNIR would be lower, one would obtain more links, but with
lower rate. This strategy leads to a similar trade-off a with the TDMA scheme. If the
threshold is too high, the network does not percolate, and no path is found. When the
threshold tends to zero, the actual range of the nodes is bounded from above: according
to (2), we have

β ≤ Pl(||xi − xj||)
N0 + γ

∑

k 6=i,j Pl(||xk − xj||)
≤ Pl(||xi − xj||)

N0

,

which implies

l(||xi − xj||) ≥
βN0

P
.

If we assume a power-law attenuation of the form l(d) = d−α, we obtain

||xi − xj|| ≤
(

βN0

P

)− 1
α

:= r. (3)

The connectivity graph in this model is thus a subgraph of the connectivity graph in the
Boolean model with the range r defined above. Therefore, we can bound the number of
paths by counting the number of path in the Boolean model.

We consider a slice of width r that cuts the network from top to bottom. Clearly,
in the Boolean model, each vertex-disjoint path must have one node in this slice. The
number of left-right crossings is thus limited by the number of nodes in the slice, which
increases linearly with r. Because of (3, we know that r increases like β−1/α. So finally,
we conclude that the number of paths increases like β−1/α.

On the other hand, according to Shannon’s formula, the rate of the links is linear in
β when β is small. Therefore, the actual horizontal throughput across the networks is
of order β · β−1/α = β1−1/α. For any α > 0, this function tends to zero when β tends
to zero. We conclude that lowering the threshold β eventually decreases the horizontal
throughput. This reasoning is confirmed by the simulation result in the right-hand side
of Figure 5.



6 Conclusion

We have seen that in the Boolean model as well as in the information theoretic con-
nectivity model, full connectivity do not scale when the network size increases. At the
contrary, if we allow for a (possibly very small) fraction of disconnected nodes, then the
range (respectively the rate) does not need to be adjusted when the number of nodes
tend to infinity.

When several flows have to share the available bandwidth and interferences are criti-
cal, full connectivity turns out to be very costly in terms of throughput. In fact, keeping
the most isolated nodes connected consumes a lot of resource, and affects greatly the
overall performance of the network. This situation leads to a trade-off between capac-
ity and connectivity. Under several models, keeping the connectivity graph quite sparse
leads to optimal throughput.
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