Spectral gaps of frustration-free spin systems with boundary

In quantum many-body systems, the existence of a spectral gap above the ground state has far-reaching consequences. In this paper, we discuss “finite-size” criteria for having a spectral gap in frustration-free spin systems and their applications. We extend a criterion that was originally developed for periodic systems by Knabe and Gosset-Mozgunov to systems with a boundary. Our finite-size criterion says that if the spectral gaps at linear system size n exceed an explicit threshold of order n−3/2, then the whole system is gapped. The criterion takes into account both “bulk gaps” and “edge gaps” of the finite system in a precise way. The n−3/2 scaling is robust: it holds in 1D and 2D systems on arbitrary lattices and with arbitrary finite-range interactions. One application of our results is to give a rigorous foundation to the folklore that 2D frustration-free models cannot host chiral edge modes (whose finite-size spectral gap would scale like n−1).


Published in:
Journal of Mathematical Physics, 60, 5, 051901
Year:
May 01 2019
ISSN:
0022-2488
1089-7658
Laboratories:




 Record created 2020-10-01, last modified 2020-10-01


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)