Heat flows on hyperbolic spaces

In this paper we develop new methods for studying the convergence problem for the heat flow on negatively curved spaces and prove that any quasiconformal map of the sphere Sn−1,n≥3, can be extended to the n-dimensional hyperbolic space such that the heat flow starting with this extension converges to a quasi-isometric harmonic map. This implies the Schoen–Li–Wang conjecture that every quasiconformal map of Sn−1,n≥3, can be extended to a harmonic quasi-isometry of the n-dimensional hyperbolic space.


Published in:
Journal of Differential Geometry, 108, 3, 495-529
Year:
Mar 01 2018
ISSN:
0022-040
Laboratories:




 Record created 2020-10-01, last modified 2020-10-29


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)