
1

Malware in the SGX supply chain:
Be careful when signing enclaves!

Vlad Crăciun, Pascal Felber Senior Member, IEEE , Andrei Mogage,
Emanuel Onica Member, IEEE , Rafael Pires Member, IEEE

Abstract—Malware attacks are a significant part of the new software security threats detected each year. Intel Software Guard
Extensions (SGX) are a set of hardware instructions introduced by Intel in their recent lines of processors that are intended to provide a
secure execution environment for user-developed applications. To our knowledge, there was no serious attempt yet to overcome the
SGX protection by exploiting the weaknesses in the software supply chain infrastructure, namely at the level of the development, build
or signing servers. While SGX protection does not specifically take into consideration such threats, we show in the current paper that a
simple malware attack exploiting a separation between the build and signing processes can have a serious damaging impact,
practically nullifying SGX integrity protection measures. We also explore two possible mitigations against the attack, one centralized
leveraging SGX itself, and one distributed that relies on a smart contract deployed on a blockchain infrastructure. Our evaluation shows
that both methods are feasible in practice and their added costs are acceptable for the offered protection.

Index Terms—security, dependable software, supply chain, malware, SGX, blockchain.

F

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works. Pre-print version. Published in the IEEE Transactions on Dependable and Secure Computing. For the final
version, refer to DOI 10.1109/TDSC.2020.3024562

1 INTRODUCTION

A software supply chain attack can be informally defined
as the act of compromising legitimate software packages
during their development or distribution phases. The num-
ber of such attacks showed a tremendous increase recently.
A NIST forum presentation [1] reported seven significant
events in 2017 compared to only four during the previous
three years. One of the most common attack vectors is
injecting malicious malware code [1], [2] into legitimate
software packages during or between development and
distribution phases, such as upon building or signing. The
most prominent example is an infected installation package
of the well-known CCleaner [3] application that included a
malware deployed in the vendor’s build server [4]. The al-
tered binary file was downloaded by 2.27 million customers,
with potentially serious effects ranging from keystrokes
recording to stealing secret credentials from users.

Other recent examples of fairly similar supply chain
attacks include an embedded malware in software packages
released by NetSarang [5], a company that develops secure
connectivity solutions, or corrupted packages injected with
malicious code used for updates on M.E.Doc [6], a popular
accounting application suite in Ukraine. The focus of our
paper lies on the severe implications of a supply chain attack
against one of the most recent approaches of preserving
confidentiality and integrity of applications: Intel SGX.

SGX [7] is a set of instruction extensions introduced
by Intel in their line of commodity processors since the
Skylake generation in 2015. SGX offers developers the ben-
efit of a trusted execution environment (TEE) supported in

Vlad Crăciun is with Alexandru Ioan Cuza University of Iaşi, Roma-
nia (UAIC); Pascal Felber is with University of Neuchâtel, Switzer-
land; Andrei Mogage and Emanuel Onica are also with UAIC; Rafael
Pires is with the Swiss Federal Institute of Technology in Lau-
sanne (EPFL). emails: vcraciun@info.uaic.ro, pascal.felber@unine.ch, mo-
gage.andrei.catalin@info.uaic.ro, eonica@info.uaic.ro, rafael.pires@epfl.ch.

hardware for critical applications or parts of applications
requiring enhanced security levels. The TEE can be used
as an isolated space for executing code in enclave contain-
ers where confidentiality and integrity are assured. The
integrity of a software application that will run in the trusted
environment is determined by a measurement that uniquely
identifies the code and initial state inside the enclave [7].
This measurement is computed as a hash, included in a
signing material along with additional enclave metadata, and
finally signed. Based on this value, an attestation procedure
can be performed whenever a third party wants to check
if the correct code is actually running in a SGX-capable
machine. This check requires that each time the enclave
is loaded for execution, the measurement be re-calculated
and compared for integrity against the initial value. If the
enclave is altered at any step of the supply chain, resulting
in distinct code or initial data, this integrity check will fail.

Due to the execution in an isolated secure environment,
the SGX integrity checking procedure is a very attractive
countermeasure against the previously described supply
chain attacks. If a critical software application is loaded
within a secure enclave, its modification through malicious
code injection could be easily detected during the attestation
process. Unfortunately, as we show in this paper, an attacker
can circumvent the SGX integrity protection using a particu-
lar attack methodology that consists of injecting pernicious
code between the time of building the software binary and
its signing that prepares it for the attestation.

Although, in some light, the attack we show can be
regarded as generic, since it is applicable to any software
package that is vulnerable to tampering before applying a
secure signature, the case we present has particular severe
implications on the attempt to protect integrity using SGX.
The attack targets the SGX signing process and renders
useless its enclave measurement in the way this is initially
computed, as well as all its subsequent verifications. As a

https://doi.org/10.1109/TDSC.2020.3024562

2

result, this means that developers and users cannot blindly
trust SGX in itself as a way to protect their code and data. To
counter the attack we explore two mitigation variants. The
first secures the enclave measurement by atomically binding
its generation in a signer process with the enclave compila-
tion phase. This method is conditioned by the availability of
a specially crafted enclave that is capable to integrate the
necessary compiler and signer, and is practically feasible
especially for building enclaves of smaller size. In a sec-
ond mitigation variant we consider a distributed approach
where a set of servers reach consensus on the correct sign-
ing material. We propose a simple implementation, which
makes use of the integrity and consensus offered implicitly
by a blockchain network. This method does not need inte-
grating any special enclave in the SGX supply chain, which
also makes it resilient to zero-day exploits over SGX. It is
also applicable for building enclaves of any size, although it
comes with some inherent infrastructure requirements.

In Section 2 we provide details over the measurement
mechanism and the way this is currently used in verifying
the integrity of an enclave. Section 3 describes the actual
attack scenario, pointing out current vulnerabilities. Sec-
tion 4 provides some practical details regarding the effective
attack implementation. Section 5 discusses possible ways of
mitigating the attack. In Section 6 we provide an overview
of related work and we conclude in Section 7.

2 SGX BACKGROUND

SGX has been available as a TEE in Intel processors since
the Skylake family. It is intended to allow applications to
safely handle sensitive data when running within secure
enclaves. SGX provides memory confidentiality, integrity and
freshness assurances even against powerful attackers with
physical access and full control of system software, includ-
ing hypervisors and the operating system (OS). The security
boundary is the central processing unit (CPU) die, where
data is available in plaintext form. Outside it, enclaves’ data
are always encrypted and their respective digests are kept
for integrity and freshness checks.

One SGX application is formed by the combination of
two logical components: trusted and untrusted. Untrusted
code runs in user mode. It is responsible for asking the
operating system to allocate enclave memory and is able to
perform enclave calls (ecalls) through a special instruction,
but it does not have access to enclave memory pages.
Trusted code, on the other hand, is able to access both its
own pages and the ones that belong to the same process
running in untrusted mode. Since the OS is not part of the
trusted computing base (TCB), the enclave is not able to
directly perform system calls, and it can only execute these
through outside calls (ocalls) by relaying the execution of
system calls to untrusted code. Since trusted code deals with
sensitive data, it must be signed and can be attested by local
or remote parties before being provisioned with secrets.

The development of applications targeted to run within
SGX enclaves includes a mandatory signing step before
the executables are able to be deployed and used in pro-
duction. This serves two essential purposes: (i) the code
is uniquely associated to independent software vendors
(ISVs), making them recognizable by whom interacts with

Private key

Signer tool

Signer tool

Signing facility

Signing material
Signature

010101010110
111001101001
011011100111011
001100101011100

001110101001001
000000110010001
100101001000000

Enclave

010101010110
111001101001
011011100111011
001100101011100

001110101001001
000000110010001
100101001000000

Enclave

Fig. 1. Two-step signing method

the enclave and accountable for any consequence originated
from their product; and (ii) whoever communicates with the
application can have guarantees that the enclaved endpoint
has loaded and is actually running the expected code within
a genuine SGX platform.

Intel offers to ISVs two signing methods [8]: (i) single-
step method, for development or pre-release modes, which
uses a private key locally stored in the building system; and
(ii) two-step method, for release enclaves made by ISVs who
have obtained a production license from Intel [9]. With the
two-step method, the ISVs first generate the signing material,
which is later signed in a different facility that has access
to the signing key. Then, the signature comes back to the
building platform and is appended to the enclave’s meta-
data, along with the executable binary. Figure 1 illustrates
the two-step method.

The signing material includes information about the
vendor, the date, some attributes, a version number and,
especially important to our attack, the enclave measurement
hash. This hash corresponds to a digest made upon the
enclave’s initial state, including data, code and metadata [7].
When the enclave is loaded, a hardware implementation of
the same procedure performs a measurement on the actual
content of the running enclave, which has to precisely match
the one that was computed during the signing step. Tamper
attempts performed after signing are hence detectable by
this protection scheme. Our attack, however, acts before the
signing material is generated and therefore passes unde-
tectable by the measurement comparison.

Later on, when interlocutors want to communicate with
a running enclave, they should first attest it before shar-
ing sensitive data with it. Enclave attestation can be per-
formed locally or remotely, the latter being dependent on
the former. The attestation procedure starts locally through
a previously established communication channel, when the
attester—which is a platform enclave in case of a remote
attestation—sends its identity (measurement) to the enclave
being attested, or target. This, in turn, calls a special report
instruction that cryptographically binds the target enclave
measurement with other security-related information. This
report’s signature can only be checked locally by the attester
enclave, as it is generated with a hidden key embedded in
the platform and bound to the requester’s measurement. If
the platforms’ signature is valid, the target’s measurement is
considered authentic. In case of remote attestation, another

3

report called quote must be generated, which is done by a
special enclave provided by Intel within the platform soft-
ware (PSW) package. This quote, in turn, may be checked
by the remote party with the aid of Intel attestation ser-
vice (IAS). Since this happens after our attack has been
performed, the measurement will correspond to that of the
tampered enclave, and therefore it will pass all checks.

3 ATTACK SCENARIO

The purpose of our attack is to corrupt an SGX binary
enclave. This must happen before the enclave is measured
and the resulting measurement is included in the signing
material. This way, the rogue enclave will be endorsed by a
perfectly valid signature. Therefore, we consider a context
where an attacker can gain access to a machine where the
signing material is generated, as described in Section 2.
Frequently, this is executed on the build server where the
enclave is compiled. We assume that the attacker is able to
deploy a malware on such machine. As referenced in the
introduction this is a plausible scenario, multiple similar
cases being recently recorded.

The target of our malware is precisely the process that re-
ceives the enclave binary as input and generates the signing
material. We further refer to this process as the signer process.
The malware will intercept and suspend the signer process
in order to patch the enclave with malicious code. Finally,
the signer process is resumed. The obtained signing material
will include the measurement computed over the tampered
enclave. The effective enclave signature will be applied on
this altered signing material as nothing abnormal would
have happened. Since the enclave integrity assurance is
based on the comparison between the signed measurement
and the actual loaded content, any further integrity checks
on the maliciously patched enclave will succeed.

Figure 2 depicts the usual chain for manufacturing an
enclave and pinpoints where our malware attacks: after the
binary is produced by a compiler and before it is signed.
Note that the figure is representative for the single-step
signing method, where the signing material generation and
the effective signing are part of the same process, but the
flow is similar for the two-step method, with the difference
that a separate process performs the effective signing, as
shown in Figure 1. In such case, our attack would strike in
the first step, i.e., when the signing material is generated.

The malware includes two components used for hi-
jacking and infecting the enclave manufacturing chain: the
signer monitor and the enclave patcher. The execution flow
of the two components is illustrated in Figure 3.

The signer monitor has the role of scanning the running
processes until it is able to identify and suspend the signer
process. To achieve that, it uses heuristics such as the pro-
cess name, input parameters, memory occupancy, hash on
certain memory chunks or digital signature.

The enclave patcher is composed by malicious code and
instructions on where to inject this code. This depends on
the attacker’s knowledge about the enclave, ranging from
very specific changes on its behavior, like altering some re-
mote server endpoint address, to more generic approaches,
like exfiltrating as much information as it can. We exemplify
in the following section a use case where such a malicious

Compiler

Source
Code

Signer

Enclave
Patcher

Private key

011001100110
101001000001
010010100111011
001100111001100

001001101001001
000000110010001
101001001000010

Enclave

Signer
Monitor

010101010110
111001101001
011011100111011
001100101011100

001110101001001
000000110010001
100101001000000

Enclave

011001100110
101001000001
010010100111011
001100111001100

001001101001001
000000110010001
101001001000010

Enclave

Fig. 2. Attack flow architecture

Get the enclave
binary

Apply patchResume signer
process

Enclave PatcherSigner Monitor

YES

NO

Was the
signer process

launched?

Suspend signer
process

Fig. 3. Malware operation

patch is hooked to the functions listed in the enclave’s ecall
table, leaks sensitive data out of the enclave and changes
input data that is given to the secure enclave space.

In order to observe the overhead of our approach, we
measured the time it takes for enclave signing with and
without activating our malware both in Windows and Linux
platforms. We used three source codes that generated bina-
ries of similar sizes in both platforms. Results are shown in
Figure 4. We measure solely the signer monitor component,
as the enclave patcher depends on each specific attack. All
experiments were conducted on a machine with an Intel
Core i7-8650U at 1.90GHz, with 16GiB of RAM and using
Windows 10 Professional x64 build 2004. Linux measure-
ments were done in the same machine using Windows
subsystem for Linux (WSL). Each average accounts for 10
executions and error bars correspond to the 95% confidence
interval. In general, Windows executions took roughly twice
as much time in comparison to Linux ones. With regard
to the malware overhead, we observed on average 8.5ms
(Linux) and 1.2ms (Windows) in addition to when the
malware is deactivated, which corresponds to increases of
53% in Linux and 3% in Windows.

4 USE CASE AND IMPLEMENTATION DETAILS

We describe a practical use case about how an attacker could
exploit the window of opportunity detailed in Section 3 for
getting access to sensitive data and changing it. Concisely,
we inject code to learn about internal data structures and
monitor their content in order to modify sensitive data.
Besides, we describe a data exfiltration patch.

SGX enclaves are accessed through an instruction called
EENTER that transfers the execution to a single entry point

4

snake
263kB

reencrypt
360kB

sqlite
1.26MB

0

10

20

30

40
Ti

m
e
[m

s]

Linux Linux malware
Windows Windows malware

Fig. 4. OS comparison between signing times with and without the
malware

in the protected area. The specific ecall routine address
is then fetched from a table to which we refer as ecall
table. The enclave patcher finds this table by a series of
steps illustrated in Figure 5. First, the enclave dynamic link
library (DLL) is disassembled with the aid of the BeaEngine
library [10]. It is responsible for parsing and interpreting
the portable executable (PE) format in which the DLL is
organized. The enclave’s export data section contains a
symbol called enclave_entry, which is associated to its
entry point address (Ê). By following this address, we find
a piece of code that occasionally executes a call instruction
to a given address (Ë). When followed (Ì), this address
leads to a chain of other calls to pieces of code that are
similar across different enclaves. Eventually, the ecall table
is consulted (Í). In all of our enclave samples, the ecall table
was located somewhere in the read-only initialized data sec-
tion (.rdata) of the DLL. Once we find the table, a similar
procedure happens to find the ecall function implemented
by the enclave developer (Î and Ï), since the SGX software
development kit (SDK) adds some wrappers in order to
perform security checks before calling the actual enclave
code. All these heuristics were obtained through the analysis
of several different enclaves generated by the SGX SDK
version 2.0.101.44281, until a set of patterns allowed us to
find the ecall table with certainty. Although this construction
may change across different SDK versions, the attacker
could apply a distinct set of heuristics depending on the
version, which is explicitly marked in the DLL’s metadata.

Once the enclave patcher finds the target ecall, it injects
a jump instruction in its beginning to a specially crafted
piece of code. We refer to it as the patch, whose address is
marked with the label HOOK. Besides the jump instruction
to the patch, we add a label (BACK) where the execution
continues after executing the hooked code. Figure 6 shows
on the left the initial state of the ecall table and the functions
it points to. In the bottom, we depict a set of disjoint chunks
of free memory within executable pages. These are found by
looking for contiguous areas containing only zeros or ones,
as these could not possibly refer to any instruction codes.
Such areas are used for placing the patch. Since there might
not be a single chunk big enough for holding the malicious
code, the patcher may break it into several pieces linked
by jumps and labels. On the right side of the figure, we
illustrate the enclave after applying the patch. The hooked

 export section

 read-only data section

 code section

enclave_entry: 0x90

90 …
98 call 0xC0

A8 …
B0 mov edx, 0x10

C0 …
C8 call 0xA8

D8 …
E0 …
E8 ret

F8 call 0xD8

08 …
10 0xF8
18 …

ecall table

ecall function

➊

➊
➋

➋
➌

➌
➍

➍ ➎

➎ ➏

➏

010101010110
111001101001
011011100111011
001100101011100

001110101001001
000000110010001
100101001000000

Enclave BeaEngine

Fig. 5. Steps to find ecall table

code is split in two and connected by the label H1.
As for the patch code, we first describe the exfiltration

example, depicted as the data leak patch in Figure 7. The
malicious code first tries to identify the arguments of the
ecall function by looking at the stack. It checks, among the
parameters, if there is an output buffer by evaluating if
the pointer refers to an untrusted piece of memory using
auxiliary functions provided by the SGX SDK1. In the figure,
this pointer is referred to as Ptr0 and it will be used by
the patch to leak sensitive data. The output buffer Ptr0
is shown between two other arguments passed by value:
Val0 and Val1, whose contents the attacker is interested in
leaking along with other local variables found in the stack.

In our prototype, the hook is injected in the beginning
of the ecall. One might argue that these values are not
interesting for exfiltration at this point, since these would
be similar to parameters passed from the untrusted code,
which the attacker might already know. Yet, placing the
hook in the end of the function would not be effective, since
then the ecall would have already written the output buffer
and it would not be possible to use it as a leakage vector
anymore. So, the ideal placement is after some computation
on local variables has been done, but before the output
buffer is written. For simplicity, we chose to place the hook
in the beginning. We point out, however, that a more useful
stack data leakage attack would do it differently.

Once the control is diverted to the patch, it copies the
stack data to the output buffer. To confirm that the data
leakage has happened and expedite its location, the patch
also prepends a marker in the output buffer, referred to

1. The SGX SDK provides the functions sgx_is_within_enclave
and sgx_is_outside_enclave for this purpose [11]

5

Patch

Enclave binary

Function_0

ecall table

push ebp
mov ebp,esp
…

Function_1

push ebp
mov ebp,esp
…

Function_N

push ebp
mov ebp,esp
…

Fragmented free space
00 00 00 00 00 00 00 00 00 00 0000 00 00

Chunk 0 Chunk 1 Chunk 2

…

Enclave binary

Fragmented free space

Function_0

ecall table

push ebp
mov ebp,esp
…

Function_1 Function_N

push ebp
mov ebp,esp
…

00 00 00

Chunk 0

Chunk 1

Chunk 2

…

jmp HOOK
BACK:
mov ebp,esp
…

HOOK:
push ebb
…
jmp H1

H1:
…
jmp BACK

Fig. 6. Enclave patcher

as MALW in Figure 7. To prevent that the output buffer be
overwritten when the ecall function is resumed, the patch
also uses a spin lock on a boolean variable in the output
buffer before it gives back the control to the ecall. Once
the untrusted part reads the leaked content, it changes the
value of this variable and lets the enclave execution go on.
The leaked data is shown in the first “hexdump chunk”
of Figure 8, preceded by the marker. Although this is an
illustrative example, the same techniques could be used for
leaking session keys, server credentials or actual payloads
decrypted inside the enclave.

Our second experiment, instead of just leaking infor-
mation, also changes it. We used the remote attestation
end-to-end example [12] and the signing tool [13], both
provided by Intel. It basically performs all the neces-
sary steps for remotely attesting a server and establish-
ing a session key. Our tampered binaries passed unde-
tected by all attestations, as expected. We slightly modi-
fied the server by adding the transmission of supposedly
sensitive information encrypted with the session key, the
string "John;892157932877159;$100" symbolizing, for
instance, the destination of some financial transaction.

The enclave patcher, in this case, includes the trampoline
to the patch in the end of the decryption function, so
that we can modify the information that arrived from the
remote server right after it was deciphered with the session
key. The two hexdump chunks of memory on the bottom

Stack

Heap

SGX
Enclave

Libraries

data
leak

patch

SGX process memory layout

ecall
function

Hook

patch
execution

Write(Ptr0, {“MALW”, Stack[0:31]})

Spin locktime for copying
leaked data

Ptr0
Val0

Val1

ecall
arguments

Fig. 7. Exfiltrating enclave data

of Figure 8 show the tampering, by replacing “John” for
“Lary”. Note that we write plaintext decrypted content in
the output buffer provided as a parameter of the ecall from
the former example. This happens to be untrusted memory
area, accessible by the attacker. In a real world application,
any sensitive content must only leave the protected memory
in encrypted form. For the sake of this experiment, however,
we used untrusted memory for being able to monitor the
tampering when it happened.

In general, our approach resembles other infections of
executable files, where malicious code is hooked on the
execution flow and the injection is done in the free space
within the executable section. Nevertheless, we identified
and provided details on specific features of SGX enclaves in
our design. Among these, we locate and analyze the ecall
table before injecting code in enclave calls, we test whether
pointers belong to trusted or untrusted memory areas to
locate potential leaking vectors and we synchronize the
hooked code with an untrusted agent through spin locks.

5 DISCUSSION AND MITIGATIONS

Our attack relies on a malware that monitors and inter-
cepts the SGX signer process in order to gain access to the
enclave binary. It will strike where the signing material is
generated (see Section 2). The attack success depends on
altering the enclave binary just before this step. One could
argue that the malware could also intercept the source code
sent to the compiler and directly tamper with it. However,
this would be significantly harder. It would require the
attacker to precisely know the programming language and
the particular structure of the code. Moreover, since such
characteristics change for distinct enclave compilations, the
attacker should be able to continuously monitor the machine
in order to appropriately tune the malware for each attack.
Such capability is beyond our malware scope. However, the
mitigation we discuss in this section also defends against
tampering attacks on both the input as well as the binary
output of the compiler.

An aspect worth mentioning is that the single-step
signing method would always expose the signing key to
an attacker who has the ability to deploy a malware on
the signing platform. Instead of trying to tamper with the
enclave to be signed, the attacker could then just exfiltrate

6

1412FB23DE0 - 4D 41 4C 57 78 E3 1E CC 01 00 00 00 00 00 00 00 MALWx
1412FB23DF0 - 00 00 00 00 4E AF 87 31 41 01 00 00 70 48 B0 2FN 1A...pH /
1412FB23E00 - 41 01 00 00 00 00 00 00 B1 59 CD 86 00 27 00 80 A....... Y .'.

1412FB04870 - 4A 6F 68 6E 3B 38 39 32 31 35 37 39 33 32 38 37 John;89215793287
1412FB04880 - 37 31 35 39 3B 24 31 30 30 00 00 00 00 00 00 00 7159;$100.......

1412FB04870 - 4C 61 72 79 3B 38 39 32 31 35 37 39 33 32 38 37 Lary;89215793287
1412FB04880 - 37 31 35 39 3B 24 31 30 30 00 00 00 00 00 00 00 7159;$100.......

tampering

Little-endian for 0x1412FB04870 (Ptr0 argument)

markerexfiltrated stack data

Fig. 8. Obtained data

the key. This would allow the attacker to impersonate the
ISV by launching rogue enclaves with genuine signatures.
Tampering with the enclave, however, stealthily puts the
patch inside the vendor’s production code, and potentially
gives access to sensitive data more easily.

Since our attack acts just before the signing material is
generated, it would succeed even with the supposedly more
secure two-step signing method [8]. Even though the private
signing key is distinctively protected in a different platform,
this will be used on the already corrupted signing material
that is generated after the tampering takes place.

With regard to the malware’s privileges, we assume in
our discussion the worst case when it can escalate to gain
super user powers and load kernel modules or manipulate
code and data of any process. A first option to mitigate
the attack is a centralized approach that puts compilation
and signing inside a dedicated SGX builder enclave. This
special enclave must be carefully crafted and accordingly
signed by a trusted party. Ideally, this trusted party would
be the compiler vendor, who would offer and maintain
the builder enclave. Sensitive data provisioning (code and
key) for building and signing enclaves would be performed
through the typical SGX attestation and secret provisioning.

SGX memory constraints might look like a potential
problem for compilation requirements, although such lim-
itation only has impact on compilation time. The issue can
be addressed with appropriate software caching manage-
ment [14] or ordinary memory swapping. However, this
makes the centralized mitigation a better fit for enclaves
that are not very large. We further detail this mitigation
variant in Section 5.1, by providing a proof-of concept and
evaluating its performance costs.

A second option to mitigate the attack would be a
distributed approach, where multiple nodes can reach con-
sensus [15], [16] on the enclave’s hash after each participant
compiles its own copy of the source code. This would not
depend on a specific enclave and would be resilient to zero-
day attacks targeting SGX. Also, it would not be constrained
by memory usage, at the expense of extra material costs
incurred by the distributed infrastructure. In Section 5.2 we
present a simple prototype relying on a trusted arbitration
provided by a blockchain framework. This would require
from the attacker the ability of compromising a certain
number of build servers, which is hard to accomplish.

The goal of both mitigation options is to prevent the
attacker from obtaining a signed tampered enclave. Just ex-
posing the attack is, however, an easier task. The attack can

always be detected if one compares the original untampered
enclave with the final tampered and signed one. When the
attacker leaves the original input binary untouched, such
comparison can be performed after the signature stage. For
the two-step signing method, the attacker must replace the
input with the tampered version, since the signature comes
later and it must match with the enclave binary. As a conse-
quence, it is also possible to detect the attack at the signing
material generation step, as long as the original untampered
file is preserved. Comparing the input file before and after
launching the signing tool is, however, arguably unusual,
and only likely to be performed when being aware of attacks
such as ours. In conclusion, facility of exposure does not
nullify the necessity to enhance supply chain security.

In the following we further explore the two mitigation
options just introduced.

5.1 Centralized mitigation
We further investigate the centralized mitigation approach
described above by designing, implementing and measur-
ing the performance of a combined compiler and signer
within SGX enclaves. Such method would guarantee that
the enclave signature corresponds to that of the binary gen-
erated by an accredited compiler even if the signing machine
is compromised by a super user who has full control of the
operating system. We assume, however, that the source code
and private key were safely provided through encrypted
channels after an attestation (see Section 2) performed by the
ISV, as illustrated in Figure 9. Once the enclave is attested
and the secure communication channel is established (Ê),
the ISV provides the source code it intends to compile
and sign (Ë). The compiler embedded in the enclave then
generates the binary and provides it to the signer (Ì),
which also resides in the secure environment. This, in turn,
computes the signature of the generated binary using the
private key provisioned by the ISV (Í), to whom it finally
sends the final signed enclave (Î).

5.1.1 Implementation details
We chose the tiny C compiler (TCC) [17] for our experi-
ments. TCC provides support for cross compiling Windows
MZPE files (.exe applications and .dll dynamic libraries)
and Linux extensible linking format (ELF) files (a.out
executables and .so shared objects) for x86, x64 and ARM
architectures. As in our previous experiments, we used
Windows x64 as build target. Figure 10 portrays the data

7

ISV

Source
Code

Private key

Build server

SGX Enclave

Compiler

Signer

Attestation

Encrypted channel

➊

➋
➌

➍

➎

010101010110
111001101001
011011100111011
001100101011100

001110101001001
000000110010001
100101001000000

Enclave

Fig. 9. SGX compilation and signing

Source
Code

SGX Enclave

TCC Compiler

MZPE Buffer

ecall

… …

stdio.h
windows.h

crt1.c
wincrt1.c

stdlib.h chkstk.S

Built-in headers and libraries

Signer
Private key ecall

ocall

MZPE Buffer Encrypted
Hash

Public key

Fig. 10. TCC compiler within an enclave

flow along with the adaptations we carried out. In order to
support the compilation of legacy code, we had to ship with
the enclave some common dependencies, such as standard
libraries, headers and the common runtime (CRT). In spite
of this, the final enclave size, including compiler and signer,
accounted for only 2.4MiB.

The signer in the enclave receives the compiler output
and the signing private key. We implemented the signa-
ture using libraries available in the SGX SDK (sgx tcrypto
and sgx ippcp). Particularly, secure hash algorithm 256-bit
(SHA-256), and RSA 3072 bits (public exponent equal to 3),
as specified by Intel [11]. The signature is then appended to
the enclave binary along with the corresponding public key.
This bundle is then sent back to the ISV.

We note that the TCC compiler does not provide native
support for building SGX enclaves. We have tuned its envi-
ronment for building several specific enclaves, as a simple
prototype of the centralized mitigation. TCC was conceived
with a focus on very low resource consumption, but it does
not provide most optimizations offered by other compilers,
which typically results in less efficient binaries [18]. We

TABLE 1
Enclave samples used in the benchmark

Program Code Size Binary Size Build Memory Usage

Micro Snake [19] 80kB 263kB 2.03MB
SGX-reencrypt [20] 111kB 360kB 3.65MB
SGX-SQLite [21] 7.38MB 1.26MB 14.6MB

decided to use this compiler due to its simplicity and ease of
modifications required to integrate it within an SGX enclave.
We are aware of its limitations, although we believe that it
achieves the purpose of demonstrating our idea. A dedi-
cated builder enclave solution that would natively integrate a
full SGX compilation stack should ideally be supported and
offered to software developers by Intel in collaboration with
the major compiler vendors.

5.1.2 Evaluation

The system setup for measuring the compilation and signa-
ture durations is similar to the one referred in Section 3,
a machine equipped with an Intel processor i7-8650U at
1.90GHz, with 16GiB of RAM and using Windows 10
Professional x64 build 2004. We tested our mitigation ap-
proach on three publicly available SGX enclaves: a Snake
game version with SGX support [19], a proxy reencryption
application [20] and an SQLite database integrated in an
SGX enclave [21]. Table 1 provides information on these
samples. We compiled and signed the corresponding bi-
naries both within a secured SGX enclave using the setup
described above, as well as using the native enclave building
routine. Results are shown in Figure 11. Each experiment
was repeated 10 times and averaged. Error bars correspond
to the 95% confidence interval.

We can notice that the compilation times take longer in-
side the enclave. This is mostly because our builder enclave
compilation setup needs a preliminary prepare phase for
loading the source files in memory buffers and arranging
dependencies. However, the signing times are slightly lower
in the builder enclave. The main reason resides in a signifi-
cant difference between our inside enclave implementation
and the outside one. The outside version writes the binary
on disk and reads it back for the signing step. Our SGX
version, on the other hand, takes advantage of a memory
buffer. Nevertheless, if the output enclave binary is larger
than the stack size after signing in the builder enclave, this
might result in a small penalty caused by getting the output
out of the enclave in chunks.

In larger projects, we can assume that the whole
93.5MiB of usable enclave page cache (EPC) memory [22]
could be exhausted. In such case we expect the building
time to degrade due to memory paging [23] or due to the
need of writing temporary files on disk. Nevertheless, we
did not observe such effects even with our largest samples.
Also, the trade-off between compilation time and security
would arguably favor the latter. Finally, the alternative
distributed mitigation approach would be a viable option
if such degradation occurs.

8

0 100 200 300 400 500

snake
80kB

reencrypt
111kB

sqlite
7.38MB

Time [ms]

Native compile
Native sign

SGX compile
SGX sign

Fig. 11. Compilation and signing duration when varying source code
sizes

5.2 Distributed mitigation

In our distributed mitigation prototype, the ISV will use a
set of nodes to redundantly and independently build the
enclave and to reach consensus on the produced binary.
These nodes can be, for instance, virtual machines deployed
by the ISV on a public cloud. Each builder node will have an
account address on a blockchain network (e.g., Ethereum)
allowing it to sign and initiate transactions, namely the
possibility to invoke functions in a smart contract. Using a
blockchain network facilitates both obtaining a trusted con-
sensus and providing integrity guarantees on the signing
material. This is due to natural traits offered by blockchain
environments, which we briefly introduce next.

5.2.1 Blockchain background
A blockchain network is composed by nodes that maintain
a globally replicated data structure: the blockchain ledger.
This ledger evolves following the processing of transac-
tions submitted by the network’s clients. Transactions are
grouped into blocks, and each block is cryptographically
linked by a hash to the previous one. As a consequence,
the ledger’s structure consists of an append-only chain of
blocks, whose consistency and integrity may be checked.
The peers mutually agree on each new block through
consensus protocols that vary depending on the specific
blockchain platform. A general trait is that the architecture
provides decentralized trust in the blockchain data, which
are immutable and have guaranteed integrity by design.

Some of the existing blockchain platforms (e.g.,
Ethereum [24], Hyperledger Fabric [25]) offer the flexibil-
ity of running smart contracts, which are small programs
that can be executed in the blockchain nodes. They allow
exposing custom functionality to external clients and pro-
vide storage in the blockchain to keep the contract data.
Each invocation of a contract function that changes the
contract storage counts as a transaction in the ledger, and
therefore provides the same blockhain integrity guaran-
tees. New blocks, including any contract storage changes,
are eventually verified and replicated by all nodes in the
blockchain network, so that contract storage corruption is
considered infeasible. Also, each external client invoking a
smart contract function that counts as transaction has to sign
and authenticate its invocation. Additionally, these clients

typically pay a fee that depends on the execution cost of the
function and the storage requirements. These authentication
measures can be used to enforce access control for invoking
specific contract functions and to prevent DoS attempts to
the nodes where these functions are executed.

5.2.2 Implementation details
The distributed mitigation considers a slightly modified
version of the two-step signing method referred in Section 2,
where the enclave’s signing material is signed in a separate
facility. We keep the same attack model, where the attacker
gains control over a builder node and corrupts the enclave
binary just before the signing material is generated. How-
ever, it is essential that the separate signer facility does
not fall under the attacker control. This is a reasonable
assumption, since the main purpose of the two-step signing
method is to have the effective signing performed on a
secure and trusted host.

Given this context, we define an enclave building and
signing process that follows the steps depicted in Figure 12.
Each builder node will first fetch the enclave sources from
the same online repository (e.g., Github). To prevent any
interference with the code, this transfer can be done via a
secure channel using TLS. Each node will build the enclave
binary and generate the signing material in the typical fash-
ion. Next, instead of sending the signing material directly
to the signer facility as in the original two-step signing
method, each node will submit the generated signing mate-
rial to a smart contract hosted on a blockchain via a signed
transaction. The submitted signing material includes the
measurement hash of the built enclave.

The smart contract implements an arbitration for choos-
ing the measurement hash that has a majority. If no enclave
tampering occurred during the build, all hashes submitted
by builder nodes should be consistent. Otherwise, as de-
picted in Figure 12, some might differ. The contract will
set the majority value as the correct one, and will expose
the corresponding signing material to be retrieved by the
secure signer facility. This will be the only signing material
to be finally signed. The process completes similarly to the
two-step signing method, with each builder node retrieving
the signature from the secure signer facility and using the
signer process in a second step to append it to the enclave.
Corrupted enclaves will obviously fail verification during
loading time, therefore the attack attempt will be denied.

The smart contract and all its associated storage are
publicly accessible to all nodes involved, including the ones
controlled by attackers. This means that they can read any
data stored by the contract. However, they are neither able
to change the contract code nor to modify the contract data,
as this is only possible by executing the functions exposed
by the contract. Still, since all data used by the contract
is publicly accessible, several additional aspects must be
considered in respect to the proposed mitigation.

The blockchain accounts of builder nodes are needed in
the contract data initialization, in order to associate their
submitted signing material and also limit their actions (i.e.,
permit only one signing material submission per node and
avoid extra fake accounts attempting to gain a majority).
One may consider that the attacker could try to gain control
of multiple builder nodes, having this information public.

9

Fig. 12. Distributed mitigation communication flow

However, a blockchain account address typically preserves
some level of anonymity, so the real identity of the builder
nodes (i.e., their IP addresses) is not directly exposed by
the contract data. Only the ISV and optionally the secure
signer facility need to know the association between the
nodes IP addresses and their blockchain account addresses.
Moreover, this association is flexible and can be changed,
i.e., the ISV can stop a builder node and start a different one
at a different IP using the same blockchain address as the
former. Finally, a corrupted builder node will be detected as
its hash will not match the majority’s one. It can hence be
blacklisted for participating in future builds. In summary, it
is reasonable to assume that the attacker will not be able to
gain control of a majority of the builder nodes.

The contract storage will be fully open, even beyond the
participating nodes. Because of this, data can be limited de-
pending on the desired confidentiality level. Builder nodes
could submit only the enclave measurement instead of the
entire signing material, which reveals the vendor’s identity.
In this case, the signer facility will retrieve from the contract
the set of accounts associated with the majority hash, and
fetch the signing material directly from one of these. In
addition, this reduced amount of data in the contract storage
will decrease associated storage fees.

5.2.3 Evaluation
We evaluated our proposed smart contract mitigation us-
ing the Ethereum blockchain, which is currently the most
popular public platform to offer support for running smart
contracts. There are two aspects to be considered: the fee
that an ISV would pay for using such a smart contract and
the time required by the blockchain network to confirm the
transactions following the interaction with the contract.

Smart contracts in Ethereum are executed by the
Ethereum Virtual Machine (EVM), a runtime environment
hosted on participating nodes in the network. Since the
network is public, in order to prevent abuse, each contract
transaction generates a material cost that has to be paid

by the entity requesting it. This cost is quantified using
an internal Ethereum currency named gas, and based on a
fixed quantum applied for the various transaction opcodes
defined at the EVM level (Appendix G of [24]).

Our smart contract has a simple structure. The interac-
tion with the contract includes a single type of transaction
that is cost significant: the submission of the signing ma-
terial by each builder node. We have considered an epoch-
based setting, where each builder node is allowed to send
exactly one signing material per epoch. We programmed
the contract such that each submission updates a counter
associated with the sent signing material. A decision on the
majority is automatically taken following the last builder’s
submission within the epoch. We note that the transaction
associated with first submission is more costly than the
rest since it is the first that stores a signing material for
that epoch (changing storage space from zero is one of the
most expensive operations at the EVM level). The following
transactions within an epoch have a constant cost, with
minor variations if submitting a different signing material
or when triggering a decision on the majority per epoch.

We have tested our contract on a local Ethereum network
simulator and on the Ropsten network, a test network that
closely mimics the main Ethereum network operation. Ta-
ble 2 presents the results for both the case of submitting the
complete signing material and the optimized scenario with
only the enclave hash. The latter reduces the contract storage
costs, but requires additional communication for retrieving
the signing material from one of the builder nodes.

Last column of Table 2 provides an estimation of the fee
that an ISV would pay in fiat currency (actual monetary
costs). While the gas amount is fixed in Ethereum, the fiat
price per gas unit depends on the market. This price is set at
transaction submission and expressed in the cryptocurrency
specific to Ethereum (usually in Gwei). Variations on this
price can impact how fast the transaction is confirmed
by the network. The values in the table were computed
based on the median of price paid per gas unit as recorded

10

TABLE 2
Submission transaction cost evaluation

Transaction evaluated Local (gas) Ropsten (gas) Fiat cost ($)

First submission (full) 448211 427875 1.23
Other submission (full) 83809 75473 0.23
First submission (hash) 91322 95450 0.25
Other submission (hash) 42636 49764 0.11

between August 2019 and August 2020 [26], which was
14.8 Gwei. To estimate the fiat value we used the median
conversion rate to US dollars ($) during the same period,
namely 186× 10−9 $per Gwei [27]. An ISV using 10 builder
nodes would pay an approximate $ 3.30 for building one
enclave. Adding more builder nodes for higher security
would cost about $ 0.23 more per node. The cost could be
lowered to a total of $ 1.25 and $ 0.11 per additional node
if only the enclave hash is submitted to the contract. We
note, however, that the Ethereum market is very volatile,
recording gas price variations of more than 900% only in the
last year. For instance, in our first estimations computed in
December 2019 the expected price for an average transaction
confirmation time reached a low 3 Gwei per gas unit. This
resulted in less than $ 0.50 for building one enclave.

Another aspect we considered is the transaction time,
which depends on the confirmation that the block where it
is included was actually appended to the ledger. One block
has a maximum gas limit for the transactions it includes.
This is periodically adjusted in the Ethereum network, but
is typically close to 10M gas [28], which is comfortably larger
than the total gas required by 10 builder nodes. This means
that all transactions could fit in a block. It might happen,
however, that other transactions are grouped together with
the submissions. In our tests on the Ropsten network, the
transactions spanned over at most 3 blocks. Since the av-
erage confirmation time per block in the main Ethereum
network is about 15 seconds [28], this results in a range
of 15 to 45 seconds per consensus round. This will be the
dominant time for executing one epoch, which corresponds
to one enclave in our distributed protocol.

We emphasize that our results are obtained on the most
popular, accessible and widely used public blockchain net-
work that supports smart contracts. Our experiment shows
that our distributed mitigation is already feasible in this con-
text. The time span of a transaction confirmation could be
drastically reduced and the material fees removed if the so-
lution would be implemented on a permissioned blockchain,
such as Hyperledger Fabric [25]. This is typically run by
smaller number of nodes, in closed enterprise environments.

6 RELATED WORK

There is currently very limited published research specif-
ically addressing malware attacks on SGX, and to our
knowledge none addressing the context we refer to in
our work. The research presented in [29] is probably the
closest approach to our case. The situation considered is of
a malware code that is encrypted, downloaded, decrypted
and executed in an enclave that was previously attested as
legitimate. To initiate these steps, the attacker requires a
remote bootstrap program that is used to build the initial

enclave, attest it, and facilitate the exchange of keys with
the attacker for encrypting the malware code. The decrypted
malware code running inside the enclave can subsequently
receive other instructions or input from the attacker.

Most of the documented attacks that target SGX rely on
cache exploits. In [30], the authors assume the inclusion of
malware in a malicious enclave co-located with a victim
enclave. The malware performs a Prime+Probe side-channel
attack through which it is able to recover RSA keys used in
the victim enclave. The purpose of hiding the malware in-
side an enclave is to conceal the malicious code, leveraging
the SGX protection features to avoid detection. However,
the attack does not target effectively infecting or corrupting
the enclave where the malware resides, which is our case.

Another work [31] also profits from SGX isolation to
stealthily operate by leveraging Intel’s transactional syn-
chronization extensions (TSX) memory-disclosure primitive.
They show how to bypass the host application interface and
execute arbitrary system calls via return-oriented program-
ming (ROP), without collaboration from untrusted code.
Different from us, they do not target sensitive data operated
by enclaves, but rather hijacking the infected machine.

The authors of [32] present another attack on SGX that
develops on the Prime+Probe technique of recovering cache
information. In this case the attack isolates the core used
by the victim enclave from other processes to minimize the
noise in the side channel. Another improvement of the at-
tack is uninterrupted execution by configuring the interrupt
controller to not deliver interrupts to the attack core, which
could be used to deflect side channel attacks. The attack also
relies on Intel performance monitoring counters (PMC) for
monitoring cache evictions and also monitors the frequency
in order to not miss victim accesses to the cache. In [33], the
authors also describe an attack that uses CPU pinning and
Intel PMC in a Prime+Probe approach. The attack retrieves
cache information that leads to an AES key leak.

The recent Foreshadow attack [34] again targets CPU
cache leaks, by exploiting a speculative execution bug. This
consists in an unauthorized memory access in transient out-
of-order instructions, which can be used before rollback to
retrieve confidential data, in a similar manner to the Melt-
down attack [35]. Another recently-published side-channel
attack [36] exploits contention on simultaneous multithread-
ing (SMT) and code-reuse.

In [37], the authors describe an attack that violates the
enclave integrity with the purpose of triggering a processor
lockdown. The attack relies on the Rowhammer approach
for flipping bits in the EPC memory region. This is achieved
by executing a code snippet inside the enclave that has to
find conflicting row addresses in the same memory bank
of the EPC. The code snippet is supposed to be executed
inside a malicious enclave that will be downloaded on a
victim machine. Our attack scenario opens the possibility
to corrupt legitimate enclaves with custom malicious code,
which could also be such DoS triggering routines injected
during the signing process.

In [38], the authors present in-toto, a solution that at-
tempts protecting the integrity of an entire software supply
chain. This consists in a framework where a software project
owner has to define a layout of the chain steps. Each of
the steps requires trusted involved actors to provide signed

11

attestations of metadata associated with that particular step.
The solution is, however, a general one, not addressing any
specificities that might appear at the individual steps, as
in our case of SGX enclave signing. In particular in-toto
focuses exclusively on the detection of the tampering, and
not on prevention measures. We believe that our mitigation
proposals could be integrated with such a framework.

Several solutions have been proposed for leveraging
blockchain immutability in securing integrity of binary files.
These typically address protecting the integrity of simple
binaries in a supply chain, not specifically of an SGX en-
clave. The most close to our distributed mitigation is the
idea presented in [39]. Similar to our approach, a hash digest
computed over the binary is stored in a smart contract in the
Ethereum blockchain, with the purpose to detect if the bi-
nary was tampered. However, the considered attack surface
is limited to altering the binary only after the generation of
the correct hash. This is fundamentally different from our
scenario, where the attacker tampers an enclave before the
generation of the signing material. The less powerful attack
model permits delegating to an external trusted auditor to
verify the digest stored in the blockchain, by comparing
it to one computed over the binary distributed to users.
This detects an attack but does not directly prevent it. Our
distributed protocol mitigates the attack by not allowing
the proper completion of the two-step signing method for
a tampered binary, rendering it unusable.

Other work that suggests blockchain as a trusted entity
for attestation of software integrity is [40]. The authors
choose again Ethereum as a root-of-trust platform, propos-
ing the use of smart contracts in several baseline scenarios
for safely bootstrapping a device, tampering detection or
updating a value securely by a smart meter. The targeted
use cases address mainly the operation of IoT devices,
and proposed interactions with a smart contract are mostly
described at conceptual level relying on external attesta-
tion protocols or manual inspection. The work is therefore,
orthogonal to our attack context, but as well as [39] it
strengthens the common assumption of using blockchain,
and in particular Ethereum, for its integrity guarantees.

7 CONCLUSION

We have presented a novel attack in the area of supply chain
malware, with a specific target on protection measures that
involve the use of SGX. We provided a practical use case for
our attack methodology, which is able to successfully extract
sensitive data from the secure enclave space. This use case is
generic enough to be applied to multiple cases of enclaves.
A malicious entity who has knowledge of a particular
enclave functionality can leverage the attack scenario for
more specific attacks that can be even more disabling, e.g.,
changing some particular behavior of the enclave code. The
flexibility of the attack scenario, which requires essentially
just a window of opportunity between the building and the
signing of an enclave, makes it quite problematic.

Fortunately, some basic mitigation mechanisms are rel-
atively easy to enforce, as discussed in Section 5. We have
shown that protection via compiling and securely signing
the binary within a dedicated SGX enclave, as well as a
distributed approach that relies on smart contract operation

over blockchain, are both feasible practical options. Also,
we believe some other more advanced mitigation options
involving cryptographic techniques, such as verifiable secret
sharing, could be explored. As future work, we consider
evaluating and comparing such mechanisms.

ACKNOWLEDGMENTS

Some of the activities that contributed to this work were
funded by the European Union's Horizon 2020 research and
innovation programme under grant agreement No 692178.

REFERENCES

[1] R. Shaw, “Software supply chain attacks - NIST
Software and Supply Chain Assurance Winter Forum,”
2017, accessed on 29/04/2019. [Online]. Available:
https://csrc.nist.gov/csrc/media/projects/supply-chain-risk-
management/documents/ssca/2017-winter/ncsc placemat.pdf

[2] Malwarebytes Labs, “Supply chain attack definition,” accessed
on 29/04/2019. [Online]. Available: https://blog.malwarebytes.
com/glossary/supply-chain-attack/

[3] CCleaner. Accessed on 29/04/2019. [Online]. Available: https:
//www.ccleaner.com/

[4] Avast. (2018) New investigations into the CCleaner incident
point to a possible third stage that had keylogger
capacities. Accessed on 29/04/2019. [Online]. Available:
https://blog.avast.com/new-investigations-in-ccleaner-incident-
point-to-a-possible-third-stage-that-had-keylogger-capacities

[5] Kaspersky Lab. (2017) ShadowPad - how attackers hide
backdoor in software. Accessed on 29/04/2019. [Online].
Available: https://www.kaspersky.com/about/press-releases/
2017 shadowpad-how-attackers-hide-backdoor-in-software-
used-by-hundreds-of-large-companies-around-the-world

[6] A. Cherepanov. (2017) Analysis of telebots cunning
backdoor. Accessed on 29/04/2019. [Online]. Avail-
able: https://www.welivesecurity.com/2017/07/04/analysis-of-
telebots-cunning-backdoor/

[7] V. Costan and S. Devadas, “Intel SGX explained,” Cryptology
ePrint Archive, Report 2016/086, 2016.

[8] (2018) Intel - enclave signing key management. Accessed on
29/04/2019. [Online]. Available: https://software.intel.com/en-
us/sgx-sdk-dev-reference-enclave-signing-key-management

[9] (2018) Intel - request a commercial license. Accessed on
29/04/2019. [Online]. Available: https://software.intel.com/en-
us/sgx/commercial-use-license-request

[10] P. Fautrero et al. (2016) BeaEngine. Accessed on 29/04/2019.
[Online]. Available: https://github.com/BeaEngine/beaengine

[11] Intel Software Guard Extensions SDK Developer Ref-
erence for Linux OS, 3 2019. [Online]. Avail-
able: https://download.01.org/intel-sgx/linux-2.5/docs/Intel
SGX Developer Reference Linux 2.5 Open Source.pdf

[12] J. P. Mechalas. (2018) Code sample: Intel Software Guard
Extensions remote attestation end-to-end example. Accessed on
29/04/2019. [Online]. Available: https://software.intel.com/en-
us/articles/code-sample-intel-software-guard-extensions-
remote-attestation-end-to-end-example

[13] (2018) Intel - the enclave signing tool. Accessed on 29/04/2019.
[Online]. Available: https://software.intel.com/en-us/sgx-sdk-
dev-reference-the-enclave-signing-tool

[14] M. Orenbach, P. Lifshits, M. Minkin, and M. Silberstein, “Eleos:
Exitless OS services for SGX enclaves,” in The 12th ACM European
Conference on Computer Systems (EuroSys ’17), 2017, pp. 238–253.

[15] A. Bessani, J. Sousa, and E. E. P. Alchieri, “State machine repli-
cation for the masses with BFT-SMART,” in The 44th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN ’14), 2014, pp. 355–362.

[16] J. Behl, T. Distler, and R. Kapitza, “Hybrids on steroids: SGX-based
high performance BFT,” in The 12th ACM European Conference on
Computer Systems (EuroSys ’17), 2017, pp. 222–237.

[17] F. Bellard et al. (2018) TinyCC. Accessed on 29/04/2019. [Online].
Available: https://github.com/TinyCC/tinycc

[18] (2011) C compiler comparison - TCC. Accessed on 15/06/2020.
[Online]. Available: https://willus.com/ccomp.shtml?p16

https://csrc.nist.gov/csrc/media/projects/supply-chain-risk-management/documents/ssca/2017-winter/ncsc_placemat.pdf
https://csrc.nist.gov/csrc/media/projects/supply-chain-risk-management/documents/ssca/2017-winter/ncsc_placemat.pdf
https://blog.malwarebytes.com/glossary/supply-chain-attack/
https://blog.malwarebytes.com/glossary/supply-chain-attack/
https://www.ccleaner.com/
https://www.ccleaner.com/
https://blog.avast.com/new-investigations-in-ccleaner-incident-point-to-a-possible-third-stage-that-had-keylogger-capacities
https://blog.avast.com/new-investigations-in-ccleaner-incident-point-to-a-possible-third-stage-that-had-keylogger-capacities
https://www.kaspersky.com/about/press-releases/2017_shadowpad-how-attackers-hide-backdoor-in-software-used-by-hundreds-of-large-companies-around-the-world
https://www.kaspersky.com/about/press-releases/2017_shadowpad-how-attackers-hide-backdoor-in-software-used-by-hundreds-of-large-companies-around-the-world
https://www.kaspersky.com/about/press-releases/2017_shadowpad-how-attackers-hide-backdoor-in-software-used-by-hundreds-of-large-companies-around-the-world
https://www.welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor/
https://www.welivesecurity.com/2017/07/04/analysis-of-telebots-cunning-backdoor/
https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-signing-key-management
https://software.intel.com/en-us/sgx-sdk-dev-reference-enclave-signing-key-management
https://software.intel.com/en-us/sgx/commercial-use-license-request
https://software.intel.com/en-us/sgx/commercial-use-license-request
https://github.com/BeaEngine/beaengine
https://download.01.org/intel-sgx/linux-2.5/docs/Intel_SGX_Developer_Reference_Linux_2.5_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.5/docs/Intel_SGX_Developer_Reference_Linux_2.5_Open_Source.pdf
https://software.intel.com/en-us/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/articles/code-sample-intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/sgx-sdk-dev-reference-the-enclave-signing-tool
https://software.intel.com/en-us/sgx-sdk-dev-reference-the-enclave-signing-tool
https://github.com/TinyCC/tinycc
https://willus.com/ccomp.shtml?p16

12

[19] (2017) Micro Snake. Accessed on 23/06/2020. [Online]. Available:
https://github.com/djwessel/sgx-snake

[20] (2016) SGX proxy reencryption application. Accessed
on 23/06/2020. [Online]. Available: https://github.com/
kudelskisecurity/sgx-reencrypt

[21] (2018) SQLite database implemented inside SGX enclave.
Accessed on 23/06/2020. [Online]. Available: https://github.
com/yerzhan7/SGX SQLite

[22] S. Vaucher, R. Pires, P. Felber, M. Pasin, V. Schiavoni, and C. Fetzer,
“SGX-aware container orchestration for heterogeneous clusters,”
in The 38th IEEE International Conference on Distributed Computing
Systems (ICDCS ’18), 2018, pp. 730–741.

[23] R. Pires, M. Pasin, P. Felber, and C. Fetzer, “Secure content-based
routing using Intel software guard extensions,” in Proceedings of the
17th International Middleware Conference (Middleware ’16). Trento,
Italy: ACM, 2016, pp. 10:1–10:10.

[24] G. Wood, “Ethereum: A secure decentralised generalised transac-
tion ledger (Byzantium version) - Yellow Paper,” 2019.

[25] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis,
A. De Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich,
S. Muralidharan, C. Murthy, B. Nguyen, M. Sethi, G. Singh,
K. Smith, A. Sorniotti, C. Stathakopoulou, M. Vukolić, S. W.
Cocco, and J. Yellick, “Hyperledger Fabric: A distributed operating
system for permissioned blockchains,” in The 13th ACM European
Conference on Computer Systems (EuroSys ’18), 2018.

[26] (2020) Etherscan - Ethereum average gas price chart. Accessed
on 19/08/2020. [Online]. Available: https://etherscan.io/chart/
gasprice

[27] (2020) CoinMarketCap - historical data for
Ethereum. Accessed on 19/08/2020. [Online].
Available: https://coinmarketcap.com/currencies/ethereum/
historical-data/?start=20190815&end=20200815

[28] (2019) Main ethereum network operation statistics. Accessed on
10/12/2019. [Online]. Available: https://ethstats.net/

[29] J. van Prooijen, “The design of malware on modern hardware:
Malware inside Intel SGX enclaves,” University of Amsterdam,
Tech. Rep., 2016.

[30] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard,
“Malware guard extension: Using SGX to conceal cache attacks,”
in Detection of Intrusions and Malware, and Vulnerability Assessment.
Springer International Publishing, 2017, pp. 3–24.

[31] M. Schwarz, S. Weiser, and D. Gruss, “Practical enclave malware
with Intel SGX,” CoRR, vol. abs/1902.03256, 2019.

[32] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi, “Software grand exposure: SGX cache attacks are
practical,” in The 11th USENIX Workshop on Offensive Technologies
(WOOT 17), 2017.

[33] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks
on intel SGX,” in The 10th European Workshop on Systems Security
(EuroSec’17). ACM, 2017, pp. 2:1–2:6.

[34] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the intel SGX kingdom with
transient out-of-order execution,” in The 27th USENIX Security
Symposium (USENIX Security 18), 2018, pp. 991–1008.

[35] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg, “Meltdown: Reading kernel memory from user space,” in
27th USENIX Security Symposium (USENIX Security 18), 2018.

[36] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner,
A. Sorniotti, B. Falsafi, M. Payer, and A. Kurmus,
“SMoTherSpectre: exploiting speculative execution through
port contention,” CoRR, vol. abs/1903.01843, 2019.

[37] Y. Jang, J. Lee, S. Lee, and T. Kim, “SGX-bomb: Locking down the
processor via Rowhammer attack,” in The 2nd Workshop on System
Software for Trusted Execution (SysTEX’17). ACM, 2017.

[38] S. Torres-Arias, H. Afzali, T. K. Kuppusamy, R. Curtmola, and
J. Cappos, “in-toto: Providing farm-to-table guarantees for bits and
bytes,” in The 28th USENIX Security Symposium (USENIX Security
19), 2019, pp. 1393–1410.

[39] O. Stengele, A. Baumeister, P. Birnstill, and H. Hartenstein, “Ac-
cess control for binary integrity protection using ethereum,” in
24th ACM Symposium on Access Control Models and Technologies
(SACMAT ’19), 2019, p. 3–12.

[40] V. Jesus, “Blockchain-enhanced roots-of-trust,” in The 2018 Interna-
tional Conference on Smart Communications and Networking (Smart-
Nets), 2018, pp. 1–7.

Vlad Crăciun is a PhD student at the Alexandru
Ioan Cuza University of Iaşi, Romania, studying
the field of automated binary analysis. He joined
Bitdefender Laboratories in early 2009, being in-
volved in threat cleaning mechanisms and cryp-
tography. His current research interest includes
binary instrumentation, symbolic/concolic execu-
tion, and control flow analysis.

Pascal Felber received his M.Sc. and Ph.D. de-
grees in Computer Science from the Swiss Fed-
eral Institute of Technology (EPFL). He has then
worked at Oracle Corporation and Bell-Labs in
the USA, and at Institut EURECOM in France.
Since 2004, he is a Professor of Computer Sci-
ence at the University of Neuchâtel, Switzerland,
working in the field of dependable, distributed,
and concurrent systems. He has published over
200 research papers in various journals and con-
ferences.

Andrei Mogage is a PhD student at the Alexan-
dru Ioan Cuza University of Iaşi, Romania,
studying formal methods with a keen interest
towards security. He has joined Bitdefender in
2016 and has been involved in cyber threat dis-
infection and decryption. His current research
interests include cryptography, malicious threats
and exploitation.

Emanuel Onica is an associate professor at the
Alexandru Ioan Cuza University of Iaşi, Roma-
nia. He received his Ph.D. degree in Computer
Science from University of Neuchâtel, Switzer-
land in 2014, where he worked as scientific
collaborator from 2010 to 2014. His current re-
search interests lie in the area of distributed
event based systems, where he is the recipient
of four awards in international conferences. Most
of his work in this field has a focus on privacy and
security.

Rafael Pires is a postdoctoral researcher at
the Swiss Federal Institute of Technology in
Lausanne (EPFL). He received his Ph.D. de-
gree in Computer Science from the University
of Neuchâtel, Switzerland, and his B.Sc and
M.Sc. degrees from the Federal Universities of
Santa Maria and Santa Catarina, respectively,
both in Brazil. His current research interests lie
in the usage of trusted execution environments
for enhancing security and privacy guarantees in
distributed systems.

https://github.com/djwessel/sgx-snake
https://github.com/kudelskisecurity/sgx-reencrypt
https://github.com/kudelskisecurity/sgx-reencrypt
https://github.com/yerzhan7/SGX_SQLite
https://github.com/yerzhan7/SGX_SQLite
https://etherscan.io/chart/gasprice
https://etherscan.io/chart/gasprice
https://coinmarketcap.com/currencies/ethereum/historical-data/?start=20190815&end=20200815
https://coinmarketcap.com/currencies/ethereum/historical-data/?start=20190815&end=20200815
https://ethstats.net/

	Introduction
	SGX Background
	Attack Scenario
	Use Case and Implementation Details
	Discussion and Mitigations
	Centralized mitigation
	Implementation details
	Evaluation

	 Distributed mitigation
	Blockchain background
	Implementation details
	Evaluation

	Related Work
	Conclusion
	References
	Biographies
	Vlad Craciun
	Pascal Felber
	Andrei Mogage
	Emanuel Onica
	Rafael Pires

