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1 Introduction

In [1] and [2] we initiated a bootstrap analysis of massive quantum field theories. In

particular, we obtained bounds on couplings of a quantum field theory compatible with a

given spectrum of stable particles.

Physically, one expects such bounds to exist since increasing the interaction strength

will typically increase the attraction between particles. As such, we expect to have maxi-

mum values for couplings beyond which the masses of bound states must decrease, or new

bound-states should emerge from the continuum, or both.

Mathematically, this problem is also very natural once we make the non-trivial as-

sumption that scattering amplitudes are described by functions that are analytic away

from the usual physical poles and cuts. The point is that analytic functions always attain

their maximum at a boundary of their domain of definition. In the context of scattering

amplitudes, these boundaries are the cuts generated by multiparticle intermediate states.

For physical kinematics the amplitude along the cut is constrained by the conditions that

probabilities add up to one — i.e. by unitarity. For this reason we focus on the two body

scattering of the lightest particle in the theory since then all the usual cuts of the ampli-

tude correspond to physical kinematics. In 1+1 dimensions where unitarity can be directly

applied at the level of the S-matrix (simply, |S(s)| ≤ 1 for s along the cuts) we are faced

with a clean problem in the theory of complex functions of a single variable. As we have an

analytic function on a domain with a boundary along which it is bounded, so we are able

to constrain its values inside this region and in particular the various physical couplings

which we define as residues of factorization poles. Section 2 contains a derivation of the

two dimensional bound which is a significant refinement of that in [2].

In this paper we move the focus to higher dimensions which contains a plethora of very

interesting and difficult elements absent in the simpler 1+1 dimensional case. An essential

difference is that the most convenient way to formulate unitarity requires introducing

partial waves and these are not bounded by unitarity along their entire boundary (only

along the so-called “right cut”). Therefore the simple complex analysis argument of 1 + 1

dimensions cannot directly apply. Furthermore, the analyticity and crossing symmetry

requirements involve the amplitudes rather than the partial waves, which forces one to use

both descriptions of the scattering event. Still, it is possible to overcome these technical

obstacles. We shall introduce a kind of uniformization coordinates where the full space of

physical kinematics is mapped to (a few) unit circles. This will allow us to Taylor expand

the amplitudes in a convergent and manifestly crossing symmetric way in the full physical

plane and then to numerically impose unitarity along the physical boundaries.

We start by revisiting the two dimensional results with this new approach in section 2,

setup the higher dimensional problem in section 3 and present and analyze the correspond-

ing numerical results in section 4. In section 4.4 we compare our numerical results with

the completely orthogonal approach of [1] which is based on QFT in AdS and in particular

does not require any analyticity assumptions. We conclude in section 5. A number of

appendices are included to complement the main text presentation.
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Figure 1. Mapping from the cut s-plane to the unit disk given in equation (2.1). The mapping

associates the points z(2 + iy) = z(2− iy) and maps the half plane Re(s) > 2 to the full unit disk.

The grey, dashed curves on the left map to those on the right and are included to help the reader

visualize the mapping.

2 Two dimensions redux and unit circles

In this section we revisit the much simpler two dimensional problem. In two dimensions we

can solve things analytically, and so it is a great training ground for developing intuition

and testing any new numerical approaches. Nonetheless, for the braver readers eager to

learn about the higher dimensional story, this section can be skipped without compromising

the logic of the paper.

Most of the mathematical analysis of [2] boils down to minor variations of the following

simple problem:

Q: Consider all real analytic functions f(z) = [f(z?)]? with no singularities inside the

unit disk apart from a simple pole at z = 0 and which are bounded on the unit circle

as |f(eiφ)| ≤ 1.1 What is the maximum possible residue at z = 0 and which function

has that residue?

A: The maximum residue is 1 and the corresponding function is f = 1/z.

Indeed g(z) = f(z)/(1/z) has no singularities inside the disk and obeys |g(z)| ≤ 1 at

the boundary of the unit disk. By the so-called maximum modulus principle, it satisfies

|g(z)| ≤ 1 everywhere inside the disk. Its value at the origin — which is nothing but the

residue of f — is therefore at most 1. This maximum value is attained when g is constant

everywhere, that is when g(z) = 1 corresponding to f(z) = 1/z.

To see how this simple problem relates to the analysis in [2, 3] consider the 2 → 2

S-matrix S(s) for scattering of identical neutral particles of mass m considered in [2].

Assume also that there is a single bound-state showing up in this S-matrix element and for

simplicity assume its mass mb >
√

2m. Because of crossing symmetry S(s) = S(4m2 − s)
1In addition, f(z) should not have an essential singularity at the boundary of the disk such that |f(z)|

diverges as we approach the boundary from any direction inside the disk.
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and we can focus on the region Re(s) > 2m2 without any loss of generality. In this half

plane we have a threshold cut starting at s = 4m2, the bound-state pole at s = m2
b and no

other singularities. Consider then the change of variable

z =

√
s(4m2 − s)−mb

√
4m2 −m2

b√
s(4m2 − s) +mb

√
4m2 −m2

b

or

(
s− 2m2

2m2

)2

= 1 +
m2
b

m2

(
m2
b

4m2
− 1

)(
z + 1

z − 1

)2

(2.1)

which maps this half plane into the unit disk, the bound-state pole into the origin of that

disk and finally the threshold cut — where unitarity is to be imposed — to the boundary

of the disk, see figure 1. In terms of z the S-matrix is therefore exactly constrained by

the conditions of the previous point; it has a pole at z = 0 and obeys |S(z)| ≤ 1 at the

boundary of the disk.2 Its maximum residue — which is where we measure the (square of

the) coupling to the bound-state — is therefore 1 and the corresponding optimal S-matrix

is therefore S(z) = 1/z.

To recover the results of [2] — see e.g. formula (36) therein — we simply need to

take into account the Jacobian to go from z to s, the simple kinematical multiplicative

factors relating the S-matrix and the T-matrix and a factor of m4 to render the coupling

dimensionless. All other results of [2] for more complicated bound-state spectra can be

treated through simple generalizations of this simple example!3

Although redundant at this point, it is instructive for what will come next in higher

dimensions to set up this exactly solvable problem numerically. We define a function S(z)

in the unit circle as a pole plus a convergent Taylor expansion which we truncate at some

large power zM . Then we simply maximize the residue with the constraint that in a tightly

spaced grid of K points on the unit circle unitarity is satisfied. In Mathematica, the simple

code below does the job:

M=20; K=50;

S[z_] = residue/z + Sum[c[n] z^n, {n, 0, M}];

variables = {residue}~Join~Table[c[n], {n, 0, M}];

constraints = Table[S[Exp[I x]] S[Exp[-I x]] <= 1, {x, 0, \[Pi], \[Pi]/K}];

FindMaximum[{residue, constraints}, variables]

This nicely yields residue ' 1 and cn ' 0 with great numerical accuracy which can be

always improved. The reader is encouraged to copy/paste this and try by him/herself. It

should take about 2 or 3 seconds to run.

As a last warm-up it is very useful to solve this very same problem in a third way

since this last approach is the closest to what we will do in higher dimensions. In this last

2Note that this condition also holds on the lower half of the disk due to real analyticity.
3Strictly speaking the map to the unit circle is not even needed here. It suffices to assume there is no

essential singularity at infinity so that the unitarity cut is the boundary of the region where S(s) takes

values. Then S(s)/z(s)−1 is free of singularities in the physical region and obeys |S(s)| ≤ 1 on the cuts

which are the boundaries of this region. Hence it can at most be one inside by the maximum modulus

principle and the bound on the residue of S follows. This is the argument in [3]. We still found the unit

circle discussion to be useful as a warm-up to the higher dimensional case.
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Figure 2. Mapping from the cut s-plane to the unit disk given in equation (2.2).

approach to the problem we start by thinking of the S-matrix as being a function of both

s and t as if they were independent variables; they are not since s+ t+u = 4m2 and u = 0

in two dimensions.4 Then S(s, t) is a function with a cut for s > 4m2, another cut for

t > 4m2 as well as poles for single-particle processes in the s- and t- channels. Next we use

a very convenient change of variable which maps the full complex plane with those cuts

removed into the unit disk. This is the map

s 7→ ρs =

√
4m2 − s0 −

√
4m2 − s√

4m2 − s0 +
√

4m2 − s
, s =

s0(1− ρs)2 + 16m2ρs
(1 + ρs)2

. (2.2)

where s0 < 4m2 is a free parameter that we can choose according to convenience. In the

present case, it is convenient to choose s0 = 2m2 so that ρs = 0 corresponds to the crossing

symmetric point s = t = 2m2. A similar map is also very useful in conformal bootstrap

studies [4]. It is illustrated in figure 2. The top of the cut maps to the upper boundary

of the unit disk and the bottom of the cut maps to the lower boundary of the disk. The

interval
[
0, 4m2

]
maps to the interval ρ ∈

[
2
√

2− 3, 1
]

so this is where we find the poles

associated to stable particles.

Apart from the poles corresponding to single particle exchanges, S(ρs, ρt) is analytic

for both ρs and ρt inside the unit disk and thus we can write

S(s, t) = − ĝ2

s−m2
b

− ĝ2

t−m2
b

+
∞∑

a,b=0

cab ρ
a
sρ
b
t (2.3)

Crossing symmetry is guaranteed provided the coefficients of the convergent Taylor ex-

pansion are symmetric, cab = cba. Since we are going to evaluate the S-matrix on the

constraint surface s + t = 4m2 we can simplify this ansatz further. In terms of ρs and ρt
this constraint yields

ρ2
sρt + ρ2

tρs + 4ρsρt + ρs + ρt = 0 (2.4)

This means the representation (2.3) has a big redundancy. We can always add to it poly-

nomials in the left hand side of the constraint (2.4). To remove this ambiguity, we can set

4More precisely, either u = 0 or t = 0 corresponding to backward and forward scattering.
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Re(S) Im(S) |S| Snum

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.0

0.5

1.0

ϕ

Figure 3. Comparison of the exact optimal S-matrix (given by 1/z(s) with z given by (2.1)) to

numerical results using the ansatz (2.3) with the a, b series truncated at maximum degree N = 5

and m2
BS = 3. We plot the physical region ρ = eiφ with φ ∈ [0, π). The numerical results (red

dashing) are indistinguishable from the exact results.

to zero many of constants cab (in appendix B we explained in detail which cab can be set

to zero).

Numerically, we set a cut-off in the sum (2.3) and impose unitarity for s > 4 which

corresponds to the upper half circle where ρs = eiφ with φ ∈ [0, π]. We evaluate |S(s, t)|2

in a uniform grid in the φ interval which gives a set of quadratic constraint equations on

the cab and the residues of the poles. We optimize ĝ2 in the usual way using FindMaximum

for example. The outcome of this third approach is in perfect agreement with our previous

analytical and numerical results as illustrated in figure 3.

To summarize: in two dimensions we can find the optimal S-matrix with largest possi-

ble residue analytically.5 We do so by dividing the S-matrix by a clever guess and using the

maximum modulus principle to show that this ratio should be one. We recovered the same

analytic results numerically in two ways. In the first one we start from a parametrization of

the kinematics where we can Taylor expand the S-matrix and then truncate that expansion

to obtain a finite algebraic problem which we can put on a computer. The second numerical

approach is a small variation where we think of the S-matrix as a function of s and t as if

they were independent and then consider a double Taylor expansion in each of them.

What we implicitly used in the last method can be called an analytic extension —

note that it is not an analytic continuation as we are increasing the number of variables

and not just moving into the complex plane keeping the number of variables fixed. In this

5Notice that if we allow essential singularities at s =∞ then there is no upper bound on ĝ2. To see that

consider the ansatz

S(s, t) = − ĝ2

s−m2
b

exp

[
−
(
s−m2

b

δm2

)2n
]

+ (s↔ t) , (2.5)

where δm2 = 1
2

min(4m2 −m2
b ,m

2
b). For any value of ĝ2, we can find a (large) positive integer n such that

this ansatz satisfies the unitarity constraint |S(s, 4m2 − s)| ≤ 1 for s > 4m2. We thank Etienne Granet

for raising this point. We exclude such essential singularities at s =∞ because they are incompatible with

causality (see for instance appendix D of [5]).
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extension we promoted the S-matrix to a more general function of two variables which has

no singularities in the cut s and t planes.6 Equivalently, in terms of the ρ variables, we

assumed the existence of an extension into a function S(ρs, ρt) which has no singularities in

the polydisk {ρs, ρt such that |ρs| ≤ 1 and |ρt| ≤ 1} while all we know a priori is that such

a regular function exists only in the intersection of the polydisk with the constraint (2.4).

Why do we have the right to assume that such an extension exists at all? For instance, it

could happen that such an extension would inevitably introduce new singularities in the

full polydisk domain which would then invalidate the convergence of the double expan-

sion (2.3). Numerically, using this extension method we seem to find perfect agreement

with the analytic results so somehow we should be safe. Indeed, the polydisk is a so-called

Stein manifold7 and the constraint (2.4) is an holomorphic embedding and as such defines

a submanifold inside the polydisk which is also Stein. As discussed in greater detail below,

there is a rather remarkable mathematical result which states that regular analytic exten-

sions from Stein sub-manifolds inside Stein manifolds to the full Stein manifold do exist!

The perfect numerical agreement is thus to be expected.

Of course, in two dimensions this discussion is a clear use of excessive force. On the

other hand, in higher dimensions we will also make use of such analytic extensions and

there we will not have the luxury of the analytic results to cross-check our numerics. The

theorem alluded to above generalizes to that case as well and is key in providing confidence

for the higher dimensional numerics.

There is also another more pedestrian explanation of why the double Taylor expansion

numerics had to work which we present in appendix A; however, contrary to the discussion

above, it makes use of particular features of the two dimensional problem and is not that

useful as a warm up to the higher dimensional case.

3 Higher dimensions

We now move on to scattering amplitudes in d+1 spacetime dimensions. Consider again the

elastic scattering process of two identical real scalar particles of mass m. In our conventions

the S-matrix element is

〈p3,p4|S|p1,p2〉 = 1 + i(2π)d+1δ(d+1)(p1 + p2 − p3 − p4)M(s, t, u) (3.1)

with normalization such that

1 = (2π)2d4Ep1Ep2

(
δ(d)(p1 − p3)δ(d)(p2 − p4) + (3↔ 4)

)
(3.2)

where Ep =
√
m2 + p2. The Mandelstam invariants are given by

s = (p1 + p2)2 t = (p1 − p3)2 u = (p1 − p4)2 (3.3)

6Of course we still have the poles associated with stable particles but these can be easily treated sepa-

rately as in (2.3). Here, we focus on the parametrization of the analytic part of the S-matrix.
7The unit disk is an open Riemann surface and those are Stein manifolds. Products of Stein manifolds

are also Stein so the polydisk is also Stein.

– 7 –
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which of course obey s+ t+ u = 4m2, and we henceforth work in units such that m2 = 1.

We often write M(s, t) ≡ M(s, t, 4 − s − t). In the channel under consideration s is the

squared center-of-mass energy and the scattering angle is given by

x = cos(θ) = 1 +
2t

s− 4
= −1− 2u

s− 4
(3.4)

Physical values of the Mandelstam invariants are therefore 4 ≤ s and 4 − s ≤ t ≤ 0.

We can project onto channels with definite angular momentum by introducing the partial

amplitudes :

S`(s) = 1 + i
(s− 4)

d−2
2

√
s

1∫
−1

dx (1− x2)
d−3
2 P

(d)
` (x) M(s, t)|t→ 1

2
(s−4)(x−1) (3.5)

where P
(d)
` (x) is proportional8 to the Gegenbauer polynomials. In our conventions,

P
(3)
` (x) =

1

32π
P`(x) , P

(2)
` (x) =

1

8π
cos(`θ) , (3.6)

with P`(x) the usual Legendre polynomials, normalized such that P`(1) = 1. We note

that S`(s) = 1 for odd ` because Bose symmetry implies invariance under the reflection

θ → π − θ.
Although the S-matrix element (3.1) has all kind of distributional properties, the am-

plitude M(s, t, u) is a regular function (see e.g. [6, section 4.3]). We will assume that

M(s, t, u) obeys three further constraints:

• Crossing symmetry: M(s, t, u) is completely symmetric in its arguments. The

symmetry u ↔ t follows from the aforementioned Bose symmetry, but the other

generator of the crossing symmetry group can only be found from a more sophisticated

analysis and requires the LSZ prescription.

• Analyticity: M(s, t, 4 − s − t) is analytic for arbitrary complex s and t, ex-

cept for potential bound-state poles at s = m2
b with 0 < m2

b < 4, a cut along

the real axis starting at s = 4, and the images of these singularities under the

crossing symmetry transformations. It further obeys the usual reality condition

M(s∗, t∗4− s∗− t∗) = M∗(s, t, 4− s− t). We note that the analyticity assumption is

actually rather optimistic, since this ‘maximal’ analyticity has not been proven from

axiomatic field theory.9 On the other hand some a posteriori justification is provided

8In general spacetime dimension, we have

P
(d)
` (x) =

l! Γ( d−2
2

)

4(4π)
d
2 Γ(d+ l − 2)

C
(d−2)/2
` (x) .

9Certain analyticity properties are known to be valid very generally, derived either to all orders in

perturbation theory or from axiomatic field theory; the latter case sometimes requires the Wightman

axioms and other times merely requires the validity of the LSZ prescription and causality. Typically one

can prove two-variable analyticity for all s (modulo the known poles and cuts) but only for some finite range

of values of t or of x which in particular includes the physical values. A standard result is that the proven

analyticity is sufficient to analytically continue the amplitude from the s-channel to the t or u channels,

establishing crossing symmetry [7]. We refer to [8, 9] and references therein for more extensive discussions.

– 8 –



J
H
E
P
1
2
(
2
0
1
9
)
0
4
0

by the remarkable agreement between some of our results and those obtained without

maximal analyticity in the older literature. We therefore believe that this assumption

is sufficiently mild to generate physically meaningful results. We offer some further

comments on this point in section 4.4 and the conclusions section below.

• Unitarity: from S†S = 1 we find that the unitarity constraint for elastic scattering

takes the form

|S`(s)| ≤ 1 (3.7)

for all s ≥ 4 and ` ∈ {0, 2, 4, . . .}. Generically no other channels are available for a

finite window of values of s, starting at 4 and ending at a higher threshold (like s = 9

for three-particle scattering). In such a window the above inequality should in fact

be saturated. In this work we will not impose such saturation, but our numerics in

principle allows for it.

The aim of the S-matrix bootstrap program (as we envisage it) is to use these general

conditions to obtain concrete constraints on the behavior of the function M(s, t, u) or the

partial amplitudes S`(s) at interesting points. Many results from the previous century can

be found in the textbook [10] and the reviews [8, 11].

The recent works [12, 13] pursue a bootstrap analysis of scattering amplitudes of weakly

interacting higher spin theories, where the amplitudes are meromorphic functions of the

Mandelstam invariants. Analytically, they beautifully explore the large s and t regime of

weakly interacting higher spin scattering amplitudes and observe remarkable universality

there. In contrast, our analysis is fully non-perturbative and the only poles of the scattering

amplitudes are associated with stable particles (below the 2-particle continuum). Never-

theless it would be very interesting to investigate the same large s and t regime within our

numerical approach.

3.1 Ansatz

In this subsection we explore the consequences of our analyticity assumption in some detail.

As a toy model we can start with a single-variable function f(z) which is analytic in a simple

domain D ⊂ C. If we define ρ : D → ∆ as a biholomorphic map between D and the unit

disk ∆ = {ρ ∈ C : |ρ| < 1}, then any such f(z) has a Taylor series expansion of the form

f(z) =
∞∑
n=0

cnρ(z)n (3.8)

which converges as long as |ρ(z)| < 1. Our multi-variable problem is unfortunately not so

easy, since for M(s, t) the moving cuts imply that the domain of analyticity in one variable,

say s, depends on the other variable t. We will remedy this as follows. First we relax the

constraint s+t+u = 4 and consider three-variable functions M(s, t, u). Then we transform

the variables (s, t, u)→ (ρs, ρt, ρu) using the map (2.2) which is, with m2 = 1,

s 7→ ρs =

√
4− s0 −

√
4− s√

4− s0 +
√

4− s
, s =

s0(1− ρs)2 + 16ρs
(1 + ρs)2

. (3.9)

– 9 –
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In this case, it is convenient to choose s0 = 4
3 so that ρs = ρt = ρu = 0 corresponds to

the crossing symmetric point s = t = u = 4
3 . Now, since the transformation ρs maps the

s-plane minus the right cut starting at s = 4 to the unit disk, we see that in the ρ variables

all the cuts lie outside the polydisk ∆3 defined by |ρs| < 1, |ρt| < 1 and |ρu| < 1. The only

remaining singularities are then the poles and it is natural to write

M(s, t, u) = − g2

s−m2
b

− g2

t−m2
b

− g2

u−m2
b

+
∑

a,b,c=0

αabc ρ
a
sρ
b
tρ
c
u (3.10)

where the triple ρ series converges inside ∆3, and for definiteness we have put in the

poles for a single scalar bound state of mass mb. The demands of crossing symmetry are

implemented by demanding that the coefficients αabc are totally symmetric in their indices.

When restricted to the surface defined by s+t+u = 4 the ansatz (3.10) obeys the analyticity

and crossing symmetry constraints. It is perhaps more surprising that the converse is also

true: any function obeying the analyticity constraints on the surface s+ t+ u = 4 can be

extended to a function on ∆3, analytic modulo the poles, and therefore can be written in

the form (3.10). This follows from a mathematical theorem known as Cartan’s theorem

B, which is a statement about the vanishing of higher cohomologies of coherent analytic

sheaves on Stein manifolds (see e.g. [14]) — in the case at hand this implies that there is

no obstruction to an extension away from the surface s+ t+ u = 4.10

The triple ρ expansion in equation (3.10) is the starting point for our numerical work.

Our approach is to restrict the expansion to a finite sum by imposing

a+ b+ c ≤ Nmax (3.11)

and then further restricting to the constraint surface s + t + u = 4 which is given by a

polynomial equation

ρ2
sρ

2
tρu + ρ2

sρ
2
uρt + ρ2

tρ
2
uρs + (lower degree terms) = 0 (3.12)

and which in practice allows us to eliminate many terms in (3.10) (in appendix B we

explain in detail which terms can be set to zero). The remaining freedom in our ansatz

then consists of the finitely many remaining αabc together with the bound state parameters;

since this is a finite-dimensional space we can use a computer to numerically explore the

space of scattering amplitudes. Of course we want to keep Nmax as large as possible. As

we will see, in fortunate cases the numerical results stabilize already for feasible values of

Nmax, while in other cases we can extrapolate.11

It will be the job of the computer to impose the unitarity constraints, which are

quadratic constraints in the parameters g2 and αabc. Rather than checking the infinity

10In contrast to the Mandelstam representation, notice that our ansatz (3.10) ‘solves’ the constraints of

analyticity and crossing symmetry without demanding specific asymptotic behavior for large values of the

Mandelstam invariants. We offer more comments on the relation between our ansatz and the Mandelstam

representation in appendix C.
11As discussed further in appendix D.3, the unitarity constraints imply that the large energy behavior is

somewhat restricted if we keep Nmax finite, but we do not expect this to affect the physics in our results.
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Figure 4. Largest possible value |g|max as a function of m2
b , using a triple rho expansion of the

amplitude for the given values of Nmax and after imposing the unitarity constraints for spins up to

`max = 20. As explained in the text, the shaded area is physically incompatible with our analyticity

assumption. We added the analytic result of appendix E as the dashed line near m2
b = 4.

of constraints for all s and `, we impose a cutoff and check that unitarity constraints are

obeyed only for ` ≤ `max and along a grid of values for s. Experimentally we observe that

our results remain meaningful if `max is not much smaller than Nmax and if the grid is

sufficiently refined. In appendix F we discuss the dependence on these parameters in more

detail, and outline the numerical implementation.

4 Results

In this section we present our numerical results for several maximization problems using

the S-matrix bootstrap method explained above. For most of this section we restrict our

attention to 3+1 dimensional QFTs, i.e. d = 3 in our notation. In the final subsection 4.4,

we consider 2 + 1 dimensional QFTs.

4.1 Cubic coupling

For our first result we consider a scattering amplitude with a single pole corresponding to

the exchange of a scalar particle of mass mb, exactly as in our ansatz (3.10), and maximize

the value of the residue g2 as a function of mb.
12

In figure 4 we plot the maximum absolute value of the coupling |g| defined as the

residue of the pole, with the different curves corresponding to different values of Nmax. We

have obtained this plot by maximizing |g| for a sequence of values of mb and the indicated

curve is an interpolation through our data points. The plot is rather rich; we discuss its

key features one by one.

12For mb 6= m this in particular implies that there is by assumption no three-point coupling where all

particles have mass m. This could be due to a symmetry but we do not have to commit to an underlying

mechanism here.
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• Convergence with Nmax. For mb &
√

2 we see that |g|max is nearly stationary as

we vary Nmax, whereas for mb .
√

2 we observe more significant improvements with

Nmax. We have no explanation for this disparate behaviour (although we suspect

it to be related to some subtler higher energy behaviour to which our ansatz is

struggling to converge — see also discussion section 5 and appendix G). Numerically

we find that we can extrapolate to infinite Nmax and appear to get a finite answer in

either domain. We expect this value to correspond to an upper bound on |g| for any

scattering amplitude that obeys the constraints of the previous section.13

• Peak near mb ∼
√

2. The clear peak is reminiscent of two-dimensional scattering

amplitudes, where it was easily explained because in that case the s- and u-channel

poles cancel precisely at mb =
√

2 and the number |g| becomes meaningless — so no

upper bound can be obtained.14 In greater than two dimensions the cross-channel

poles are smeared into a cut by the projection onto the partial waves. One can

easily see from (3.5) that this cut starts at s = 4 −m2
b thus we find in the partial

amplitudes the s-channel pole starts to overlap with the t- and u-channel cut when

m2
b ≤ 2. While there is a singularity at the branch point of this cut with the correct

sign to “screen” the s-channel pole, this singularity is not strong enough to fully

cancel the pole as in 1 + 1 dimensions. The singularity is a log(s− 4 +m2
b) in 3 + 1

and (s− 4 +m2
b)
−1/2 in 2 + 1 (see appendix D for the expicit expressions). We thus

expect the peak in figure 4 to remain finite as Nmax →∞. This is borne out by some

crude extrapolations (not shown).

• Behavior near threshold, mb ∼ 2. As explained in appendix E, when mb − 2 is

parametrically small we can analytically constrain the behavior of |g|max as a function

of mb. This result is plotted in the figure as the dashed red line segment. Figure 5

shows a closer analysis of this limit. We see that it accurately traces our numerical

results, with the agreement improving as mb approaches 2.

• Behavior for mb < 1. In this region the scattered particle is no longer the lightest

particle in the theory and on physical grounds we expect the two-particle cut in

A(s, t, u) to begin at 2mb rather than at 2m. For small enough mb this is corroborated

by our numerics since |g|max ∼ 0 so no pole can be present without modifying our

ansatz. It would be interesting to understand in more detail the kink near mb ≈ 0.5.

For mb = 1 we can identify the pole with an exchange of the external particle. Refer-

ence [15] (see also [10]) discusses an analytic upper bound on |g| for that case which in our

conventions takes the value:

|g| . 16π
√

1.5 · 106 ≈ 61562.4 (4.1)

which is far weaker than our current bounds.15

13As for any of the results in this paper, it might very well be possible to derive even stronger bounds by

including the constraints from other processes involving more particles.
14In our ansatz (3.10) this is easily observed by recalling that t = 0 in two dimensions, so also u = 4− s.

There is also only one partial wave with ` = 0.
15In [10] the author conceded that “[it] is a large number, but of course [the] calculation was only carried

through to show that there exists an upper bound.” We are however not aware of any better previous bounds

in the literature.
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Figure 5. Comparison of numerics with the non-relativistic prediction |g|max ∼ 256π
√

2−mb/m

derived in appendix E. These numerics were performed with s0 = m2
b so that the bound state pole

always maps to the centre of the ρ disk. This greatly expedites the convergence in this limit. For

example one can already see convergence with Nmax = 2 and `max = 4 which are the parameter

values used for this plot.
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Figure 6. A first attempt at obtaining a maximal value of the quartic coupling λ ≡ 1
32πM( 4

3 ,
4
3 ,

4
3 ),

using the ansatz (3.10) with g = 0. We impose the unitarity constraint (3.7) for all ` ≤ `max.

Convergence requires larger `max for higher values of Nmax. With this ansatz, the maximal quartic

coupling continues to increase significantly with Nmax even for Nmax = 20. The black line indicates

the value 2.262 achieved in the solution of [16], while the red line indicates the rigorous upper bound

2.75 of [17]. For large enough `max and Nmax our curves must eventually form a plateau between

these two lines, however the convergence is so poor that this cannot be inferred from the plot.

4.2 Quartic coupling

Our second set of results concerns the scattering amplitudes M(s, t, u) without any bound

state poles, as for example would be the case in π0 scattering. We will constrain the value of

the amplitude at the symmetric but unphysical point s = t = u = 4/3 and therefore define:

λ ≡ 1

32π
M

(
4

3
,
4

3
,
4

3

)
(4.2)
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Figure 7. Maximal value of the quartic coupling λ ≡ 1
32πM( 4

3 ,
4
3 ,

4
3 ), now using the ansatz (3.10)

with g = 0, supplemented with the term (4.4). With this improved ansatz, the maximal quartic

coupling effectively saturates for Nmax & 6. A few values of `max are shown to demonstrate

that the value of the plateau is independent of this cutoff — the data points for various `max are

indistinguishable until around Nmax & 12 where the plateau is lost for `max = 10 (this is just the

usual loss of the plateau when Nmax becomes too large compared to `max).

Historically λ was taken to be a measure of the quartic pion interaction strength. In

previous works [17] it was constrained both from above and below, in our conventions:

− 8.2 ≤ λ ≤ 2.75 (4.3)

These constraints stem only from the use of axiomatially proven analyticity, crossing and

unitarity. Another data point is provided by the explicit “amplitudes” constructed by

Auberson and Mennessier, one with λ = 2.62 [16] and one with λ = −1.69 [18], both

of which obey analyticity, crossing and unitarity. This provides a lower bound for any

upper bound and vice versa. It is particularly remarkable that there exists a fairly narrow

interval [2, 62, 2.75] in which the best upper bound must reside.

Let us first discuss the case of the upper bound. Figure 6 shows the largest possible

value on λ using the ansatz (3.10) (with g = 0). One can see that the convergence with

Nmax is quite slow which suggests the presence of a singularity near or on the boundary

of the ρ discs. Indeed, as pointed out in [16, 17] the amplitude which achieves the upper

bound naturally has a singularity of the form (s − 4)−1/2 corresponding to a bound state

sitting precisely at threshold. Physically this is intuitive: the positive sign of the amplitude

corresponds to an attractive interaction.16 The situation in which the interaction is as

attractive as possible without introducing new bound states occurs just at the point where

a resonance is pulled all the way to the threshold. Mathematically it is natural that to

make the amplitude as big as possible at the symmetric point it should be made as big

as possible at threshold. Figure 7 shows the bound on λ with the threshold bound state

16For example in a non-relativistic approximation this would correspond to an attractive delta function

potential [19].
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Figure 8. Real and imaginary parts of S0 for Nmax = 12 and `max = 20 (left plot). Absolute value

of S0 for `max = 20 and several values of Nmax (right plot).

included in the anstaz. This amounts to adding

α

(
1

ρs − 1
+

1

ρt − 1
+

1

ρu − 1

)
(4.4)

to the ansatz (3.10) where now α is another parameter to be varied. This singularity does

not cause a violation of unitarity because it is canceled by the phase-space volume factor

in (3.7). More precisely, we find that the ` = 0 partial amplitude near threshold behaves like

S0(s) = 1 +
1

16
√

6π
α+O(

√
s− 4) . (4.5)

and therefore

− 32
√

6π ≤ α ≤ 0 . (4.6)

The unitarity constraints for the higher spin partial amplitudes do not lead to further

restrictions on α.

Once the threshold bound state (4.4) is included we find that convergence is now quite

rapid as indicated by the plateau in figure 7 already seen at modest values of `max and

Nmax. The height of the plateau is 2.6613 . . . and since

2.62 < 2.6613 . . . < 2.75. (4.7)

it falls beautifully below the rigorous bound of [17] but above the solution constructed

in [16]. Given the flexibility of our anstaz we expect this value to represent the strictest

possible bound that derives from unitarity, crossing and analyticity of a single amplitude.

An interesting feature of the optimal solution is what appears to be a tendency toward

saturation of unitarity. In right plot in figure 8 one can see that |S0| increasingly saturates

unitarity for increasing values of Nmax. A related fact is that we observe numerically α =

−32
√

6π to great accuracy indicating that unitarity is saturated at threshold. Unitarity

saturation is also observed in the higher partial waves.

Let us now consider the lower extremum for which our results are shown in figure 9.

As in the previous case (without the threshold singularity) the convergence is quite slow in
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Figure 9. Minimal value of the quartic coupling λ ≡ 1
32πM( 4

3 ,
4
3 ,

4
3 ) achieved with the ansatz (3.10)

(with g = 0). With this ansatz, the minimal quartic coupling continues to decrease significantly

with Nmax even for Nmax = 20.

Nmax. Unfortunately the addition of a threshold bound-state of the form (4.4) cannot save

us here, since we would need α > 0 to lower the value of λ but according to (4.6) this is

not allowed by unitarity of the spin 0 partial amplitude at threshold. Physically this makes

sense — if λ < 0 then this indicates a repulsive force which does not favour the creation of

bound states nor moving resonances down to the threshold value. Unfortunately we were

not able to identify the relevant singularity in this case and thus were not able to improve

the slow convergence.

Notwithstanding these convergence issues, we did already significantly improve the

lowest possible value of −1.69 that was explicitly constructed in [18]. As the authors of

that paper already noted, the discrepancy between their −1.69 and the lower bound −8.2

of [17] means that either the lower bound is quite far from optimal, or that the behaviour of

the amplitude which provides this bound is quite “wild” so as to not be contained within the

space of functions they explored. Our results indicate that the latter scenario is the correct

one since we do seem to be approaching a value in the ball park of the lower bound in (4.3).

4.3 Exploring scattering lengths

Another set of observables that received interest in days long gone were the scattering

lengths a`. These are defined as the behavior of the partial waves when s approaches its

threshold value 4. We will restrict ourselves to four spacetime dimensions, i.e. d = 3, where

it is typically defined as

a` := lim
s→4

S`(s)− 1

i(s− 4)`+1/2
. (4.8)

with the limit taken from above in order to make direct contact with experiment. The

power of s − 4 in the denominator arises as follows. One assumes that lims→4M(s, t) is

finite for all t in some neighborhood of zero. Analyticity in t then allows one to write

down a Taylor series expansion in t whose radius of convergence remains strictly positive

as s → 4. Substituting t = 1
2(s − 4)(x − 1) and doing the x integral in (3.5) to project

onto the partial waves of spin ` then gives a finite scattering length for all ` precisely with
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Figure 10. Exploring large values of the scattering length. We plot the largest obtained spin 0,

2 and 4 scattering lengths as a function of the number of terms in our ansatz as parametrized by

Nmax. For the larger values of Nmax we include two values of `max. The results are in line with the

expectation of unbounded growth as Nmax →∞.

the given prefactor (recall that we are considering d = 3). The factor of i is included to

make the scattering length real if M(s, t) is real-analytic. In this section we will investigate

constraints on the scattering length for amplitudes without bound state poles, so we will

be using the ansatz (3.10) without the pole terms.

Let us begin with the largest possible values of the scattering length. We first recall

that, in ordinary quantum mechanics, scattering lengths are known to diverge when a

resonance crosses the threshold value s = 4. In the ρ-variables in d = 3 this can be seen

by considering scattering amplitudes that locally take the form

− µ
P

(3)
` (x)

ρs − 1− ε
+ . . . (4.9)

with the dots denoting subleading terms, which include permutations to make the ampli-

tude crossing symmetric and other terms to make the amplitude unitary for s away from

4. From unitarity near s = 4 we obtain the constraint

0 ≤ µ ≤ 2`+ 1

(8π)2
√

4− s0
(4.10)

where we recall that s0 in our ansatz is equal to 4/3 and we used that
∫ 1
−1 dxP

(3)
` (x)2 =

[512π2(2` + 1)]−1 in our conventions. The important observation here is that unitarity

bounds µ independently of the value of ε, whereas the contribution to the spin ` scattering

length is given by
(16π)2µ

(2`+ 1)ε
(4.11)

so by sending ε to zero from above we can get an infinitely large positive scattering length.

Notice that ε < 0 creates a pole on the physical sheet and this is disallowed by our ansatz.17

The unboundedness from above is borne out by our numerical results. In figure 10 we

plot the largest possible values we can obtain for the spin 0, 2 and 4 scattering lengths with

our usual ansatz (3.10), again with g = 0. We observe no convergence to a finite value as

we increase Nmax.

17In fact, for negative but small ε and ` = 0 this amplitude reproduces precisely the extremal behavior

for a bound state near threshold discussed in section 4.1 and in appendix E.

– 17 –



J
H
E
P
1
2
(
2
0
1
9
)
0
4
0

6 8 10 12 14 16 18 20
-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

Nmax

a 0

ℓmax
8

10

12

14

16

18

20

Figure 11. Lowest possible value of the scattering length as a function of Nmax. Red dashed line:

precise lower bound obtained in [21]. Red shaded band: approximate lower bound obtained in [20].

We can also consider the lowest possible values of the scattering lengths. For spin 0

the best known lower bound dates from 1980 and is given by [20]

a0 & −1.7 , (4.12)

which slightly improves on a more precise bound obtained five years earlier in [21]:

a0 ≥ −1.75 . (4.13)

These result were the culmination of a series of works, starting with the observations in [22]

which were followed by a series of intermediate improvements in e.g. [10, 20, 23, 24].18 Our

numerical results are shown in figure 11 and are clearly converging in the neighborhood of

the above lower bounds. This shows that the lower bound can more or less be saturated

(with an amplitude that falls within our ansatz), which is actually a new result: the best

known constructible value was -0.88 [18].

In fact, it may appear that we get dangerously close to the value −1.7 and that

further increasing Nmax may push us over the edge. However for this particular bound the

convergence with `max is quite slow and the value corresponding to infinite `max may in

fact increase a little bit. It would be interesting to perform a precision study with larger

values of `max and Nmax and to simultaneously re-compute with higher precision the lower

bound of −1.7 obtained in [20]. We leave this to the future.

For the higher spin scattering lengths one can use the Froissart-Gribov representation,

see e.g. [11], to arrive at the simple lower bound:

a` ≥ 0 ∀` ≥ 2 (4.14)

This is borne out by our numerics but we do not show the results since a plot consisting

of nothing but zeroes is not very interesting.19

18Papers like [18] contain a reference to an unpublished lower bound of -1.65 that had supposedly been

obtained in 1978 by Caprini and Dita, the authors of [20]. It was confirmed to us by Irinel Caprini in

personal communication that this value is incorrect.
19We would like to remark that for sufficiently high Nmax (say, 20) we need to impose unitarity for

relatively large values of `max (say, 24) before the lowest possible allowed value of a` gets pinned at zero.
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4.4 Bonus feature: three spacetime dimensions and QFT in AdS

In our previous work [1] we outlined another method for constraining QFT data, based

on putting a QFT in AdS. The main idea is to investigate the boundary correlation

functions, which behave exactly like CFT correlation functions (except there is no stress

tensor) and are therefore amenable to an ordinary conformal bootstrap analysis. As

we explained in [1], the translation between boundary and bulk quantities parallels the

standard AdS/CFT dictionary, for example m2R2 = ∆(∆− d), and furthermore we found

precise formulae that dictate how the boundary correlation functions morph into flat-space

scattering amplitudes upon sending the AdS curvature to zero. In [1] we numerically

tested these equations in 1+1 dimensions and found a quantitative match between the

two approaches to the S-matrix bootstrap.

For this paper we set out to repeat this exercise for QFTs in 2+1 dimensions. We

focused on the 2+1 dimensional version of the maximal possible coupling that we discussed

in section 4.1. This setup was called scenario I in [1]. We discuss the salient points of the

methodology before presenting the results.

4.4.1 S-matrix bootstrap approach

For the S-matrix bootstrap, the only difference in the implementation between the 3+1

dimensional analysis of section 4.1 and the present one is that we were no longer able to

compute the partial amplitudes (3.5) analytically. The method explained in appendix D

fails because the factor (1−x2)
d−3
2 in (3.5) introduces an additional square-root cut in 2+1

dimensions (d = 2 in the conventions of this paper). Thus we are forced to evaluate the

partial amplitudes by brute force use of Mathematica’s NIntegrate. Although slow, this

approach is manageable with the use of multiple computing cores. This leads us to the:

• First approach: maximal three-point coupling g2 for any flat-space QFT, obtained by

assuming a flat-space scattering amplitude captured by our ansatz (3.10) and obeying

the unitarity condition (3.7), as a function of mb/m.

4.4.2 QFT in AdS approach

For the QFT in AdS approach we refer to [1] for a detailed exposition of the method,

except that presently we consider two-dimensional rather than one-dimensional conformal

four-point functions. This implies that there is an extra cross ratio, since z is no longer

kinematically equal to z̄, and conformal blocks are labelled by a pair (∆, `) rather than

just the scaling dimension ∆. The combined effect of these modifications is simply that

the numerics is computationally much more demanding.20

Now, in [1] we obtained a precise match in 1+1 dimensions by taking the raw numerical

QFT in AdS results and performing a double extrapolation: first to “infinite computational

20The introduction of spin does lead to one new subtlety, namely the magnitude of the two-particle

gap for spinning particles. If there is a single scalar particle corresponding to a boundary operator with

dimension ∆ then we chose to set the two-particle gap at 2∆ + ` as in free field theory. Notice that the

flat-space limit merely dictates that the gap tends to 2∆ for very large ∆, but there is freedom in choosing

the subleading terms.
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Figure 12. Investigating the coupling between two particles of mass m = 1 and a third particle

of mass mb in 2+1 dimensional QFT. First approach: maximum flat-space coupling for a QFT

obtained with our ansatz (3.10). We plot two curves with Nmax equal to 10 (bottom) and 18 (top)

which lie almost on top of each other. Second approach: upper bound on the bulk coupling for a

QFT in AdS with a radius of curvature R ≈ 16. The four curves connect the sets of data points

which were obtained with functionals with 10 (top), 36, 78 and 136 (bottom) components.

power” and then to infinite ∆ corresponding to the flat-space limit. For our 2+1 dimen-

sional results we unfortunately run into trouble at the first step: our numerical results,

obtained for 1 ≤ ∆ ≤ 20 with functionals with up to 136 components, were not amenable

to reliable extrapolations. We therefore chose to present the result directly for a QFT in

AdS. We chose ∆ = 17 as a representative value.21 Altogether this gives the:

• Second approach: maximal three-point (bulk) coupling g2 for a QFT in AdS, obtained

by assuming boundary correlation functions consistent with unitarity and a spectrum

with the natural two-particle gaps, again as a function of mb/m.

4.4.3 Results

The resulting bounds are shown in figure 12. Notice the logarithmic scale.22 It is clear

that the upper bound obtained from QFT in AdS is way larger than the largest value

obtained from the S-matrix bootstrap, but the AdS results have not converged yet and

one may hope that the numerical upper bound can decrease much further. The good

news, however, is the remarkably similar shape of the two curves, both having a somewhat

asymmetric peak slightly above m2
b = 2. In this sense we see a repetition of the results in

1+1 dimensions, namely that we can obtain similar bounds on the residue of a pole in a

scattering amplitudes using two drastically different methods.

Physically, it is important to realize that our QFT in AdS approach is completely

devoid of any assumptions about the analyticity of the flat-space scattering amplitude. If

one agrees that the result in figure 12 provides evidence of the equivalence between the two

21For ∆ = 17 we find that m2R2 = ∆(∆ − 2) = 255 so the reduced compton wavelength of the particle

is about 16 times the AdS radius of curvature in our setup - in this sense space is already quite flat.
22On a regular scale the shape of the peak is very similar to the one shown in figure 4.
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approaches, then either our S-matrix bounds on the coupling do not require the amount

of analyticity that we have imposed or the analyticity (at least of the extremal scattering

amplitudes) is a property that we may hope to derive from the QFT in AdS construction.

Either option would be very interesting and should be investigated further.23

Although ∆ = 17 was the largest value for which we had a full set of results, let us

briefly discuss the result for 0 < ∆ ≤ 20. In line with the results in [1], the absolute

value of the numerical bounds decreases quickly upon decreasing ∆. For ∆ & 4 the curve

always has a peak hovering around m2
b = 2, which broadens a bit upon decreasing ∆. For

0 < ∆ . 4 the peak moves more or less linearly towards m2
b = 4 as ∆ → 0. In the future

it would be interesting to invest more computational resources and explore in more detail

both this behavior and the general convergence of the bounds.

5 Discussion

Here we continued our exploration of the space of S-matrices of gapped quantum field

theories initiated in [1, 2]. We present a fresh approach to an old question of constraining

S-matrix elements based on unitarity, crossing and analyticity. The former two properties

are firmly established properties of the S-matrix whose meaning requires no clarification.

By analyticity we mean the rather simplistic (but perhaps most natural) assumption that

M(s, t, u) is an analytic function of each of its variables with no singularities in their

respective cut planes. We make no assumption about the properties of the S-matrix outside

of this union of cut planes — i.e. off the physical sheet.

Of course there are many open questions in S-matrix theory pertaining to analyticity.

Are all singularities in the complex Mandelstam variables s, t, u associated to Landau di-

agrams (as expected based on perturbation theory) or should we be open to more exotic

possibilities especially in strongly coupled theories? What is the most general possible large

energy behaviour of scattering amplitudes? Finally, if we bravely cross the gates and delve

into the various Riemann sheets of non-perturbative scattering amplitudes by crossing its

various cuts in the physical sheet, what kind of scary Chimeras await us down there?

We tried to be optimistic — by assuming the minimal expected singularities in the

physical sheet — and cautious at the same time — by assuming as little as possible about

the uncontrollable world of the other unphysical sheets or the large energy behaviour of scat-

tering amplitudes. In short we mapped the physical sheet into a few unit disks and assumed

little about the behaviour of amplitudes on the boundary of those disks which is where

both the large energy behaviour as well as the various physical thresholds lie. Inside these

disks we assumed that the only singularities were poles associated to stable bound states.

In the future, it would be interesting to develop new numerical investigations relying

on more rigorous analyticity assumptions. Perhaps our results are not too sensitive to this

distinction, or perhaps we will encounter exotic S-matrices which make use of the allowed

23In 1+1 dimensions the status of analyticity is a little different. Although we are not aware of any full-

fledged two-dimensional proofs, since t = 0 kinematically one may say that analyticity in two dimensions

is similar to forward analyticity in higher dimensions. The analyticity properties of M(s, t = 0) can often

be proven from axiomatic field theory [8].
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non-analyticity to allow for a wider range of values. Both would be very interesting! To

this end, it is worth noting that in the case of the quartic pion coupling and the lower

bound on the spin zero scattering length we can say with confidence that we are in the

former scenario — our results approach the bounds obtained in [17, 18] and in [20] which

are based on rigorously proven analyticity properties. More evidence for the first scenario

is the at least qualitative match between our maximal coupling and the upper bound on the

same observable for a QFT in AdS, since the latter computation relied on no analyticity

properties whatsoever. Finally we can point to the consistency of our approach with a

Mandelstam representation expansion discussed in appendix C.

As for the behaviour at the boundary of the disks the idea here is that we can be

agnostic about it and let regular Taylor expansions in the bulk converge towards whatever

they want to. Of course, without inputing the correct singularities at the boundary of

the disk, the numerics should still work but their convergence will suffer considerably.

We encountered two examples of this already in the main text. The first is the quartic

coupling numerics whose convergence increased substantially once we allowed for a bound

state singularity at threshold. Another example is probably the four dimensional bound

state coupling numerics when the bound-state mass is less than
√

2 times the mass of the

lowest particle. The numerics are converging much slower for that range as clearly seen

in the left curves in figure 4. We suspect in this case it is rather related to a non-trivial

large energy behaviour of the S-matrix which the ansatz has a hard time reproducing.24 It

would be interesting to investigate this further.

It is also at the boundary of these disks where we read physical amplitudes with any

s > 4m2 and negative t. Multi-particle production will show up as further cuts at larger

s such as 9m2, 16m2, etc and infinitely many others like (m+ m′)2, etc if there are other

stable particles. We saw no signs of these singularities in our numerics. As we for example

show in figure 8, our optimal S-matrices do not seem to open multi-particle production cuts

in any significant way. A priori this sounds very strange. How could we have no particle

production of four particles from two particles if - by crossing one particle to the past -

that amplitude is related to a 3 → 3 process which obviously must exist?25 Indeed, it is

known [26] that particle production is mandatory. It can not be strictly zero or it would

lead to important contradictions. Unfortunately, the same work [26] — or any other work

as far as we know — does not put a lower bound on how much particle production one

must have and as such we could not reach a sharp contradiction with the numerics which

by definition can never rule out an arbitrarily low particle production.26

Nonetheless, absence of particle production is unphysical in spacetime dimension

greater than 2. We would like to describe more realistic theories where particle production

24See appendix G for a two dimensional example which we believe might be the counterpart of what we

are observing here.
25Of course in 1+1 there is a well know loophole in this argument which allows for integrable theories [25].

This loophole is not possible in higher dimensions.
26Actually one can show that a certain amount of production must persist in the limit of infinite spin [27].

However, to our knowledge, there is no theorem saying, for example, that the first L partial waves exhibit

no production.
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naturally arises. One way of forcing such particle production in a natural way is to study

multiple S-matrix elements where we consider a system of scattering elements involving

not only the lightest particle but also the next-to-lightest etc. We are currently working

on this and finding some very encouraging preliminary results in two dimensions where the

bounds are often significantly improved and the corresponding S-matrices do exhibit par-

ticle production and thus must correspond to genuinely non-integrable theories in contrast

to our previous work [2].

The analyticity properties of scattering amplitudes of several particles of different

mass are more intricate than what we considered here. The optimistic scenario is that all

singularities on the physical sheet follow from Landau diagrams describing propagation of

on-shell particles. This Landau analyticity is far from being rigorously established but it is

a reasonable physical conjecture to start from. Even with this assumption, we will have to

deal with anomalous thresholds (singularities that arise from Landau diagrams that are not

on a line). A simple example is the scattering amplitude of particles of mass greater than√
2 times the mass lightest particle. We plan to analyse this issue in the future, starting

in 1+1 dimensions.
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A x(s) vs ρs, ρt in 1 + 1 dimensions

Consider the map

x(s) =
2−
√

4− s
√
s

s− 2
which maps the full s-plane minus the cuts s > 4 and s < 0 into the unit disc |x(s)| ≤ 1

and the map

ρs =
2−
√

4− s
2 +
√

4− s
which maps the full s-plane minus a single cut s > 4 into the unit disc |ρs| ≤ 1. An analytic

function in the s-plane minus the cuts s > 4 and s < 0 — such as the S-matrix once we

subtract out its known poles — can be written as

f(s) =
∞∑
n=0

cn x(s)n (A.1)
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Now, we have

x(s) =
ρs − ρt
1− ρsρt

where t = 4− s (A.2)

which admits a convergent expansion in powers of ρs and ρt provided they are both inside

the unit list (and hence so is their product in the denominator). Hence the function f(s)

can also be cast as

f(s) =

∞∑
n=0

cnm ρ
n
s ρ

m
t where t = 4− s (A.3)

As such, our 1 + 1 numerics had to work.

B Constraint surface in ρ-coordinates

The on-shell condition imposes

0 = s+ t+ u− 4m2. (B.1)

If we write this constraint in terms of the ρs, ρt and ρu variables with arbitrary s0 (cf.

eq. (2.2)) we get a somewhat lengthy expression of the form

0 =

(
s0 −

4

3
m2

)
ρ2
s ρ

2
t ρ

2
u + . . .+

(
s0 −

4

3
m2

)
. (B.2)

Specializing to the case s0 = 4
3m

2, the point ρs = ρt = ρu = 0 satisfies the on-shell

condition. Defining then the symmetrized monomials:

ρ(a,b,c) = ρas ρ
b
t ρ

c
u + perms , (B.3)

the constraint equation becomes (m = 1):

0 = ρ(1,2,2) − 4ρ(1,1,2) + ρ(1,2,0) + 12ρ(1,1,1) − 4ρ(1,1,0) − ρ(1,0,0). (B.4)

We can now obtain all such constraints by multiplying this equation by other symmetrized

monomials. As an example, multiplying by ρ(1,0,0) we get a new identity,

0 = ρ(0,0,2) + 2ρ(0,1,1) − 4ρ(0,1,2) + ρ(0,1,3) + 2ρ(0,2,2) − 12ρ(1,1,1)

+ 14ρ(1,1,2) − 4ρ(1,1,3) − 8ρ(1,2,2) + ρ(1,2,3) + 3ρ(2,2,2). (B.5)

We can use these identities to systematically reduce the number of monomials in our ansatz

as explained in figure 13. Note that in two spacetime dimensions we can set u = 0 which

simplifies the constraint equation to (2.4).
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Terms we can eliminate in Two Dimensions:
c1,0
c2,0 c1,1
c3,0 c2,1 → 0
c4,0 c3,1 c2,2 → 0
c5,0 c4,1 → 0 c3,2 → 0
c6,0 c5,1 c4,2 → 0 c3,3 → 0
c7,0 c6,1 → 0 c5,2 → 0 c4,3 → 0
c8,0 c7,1 c6,2 → 0 c5,3 → 0 c4,4 → 0
c9,0 c8,1 → 0 c7,2 → 0 c6,3 → 0 c5,4 → 0
c10,0 c9,1 c8,2 → 0 c7,3 → 0 c6,4 → 0 c5,5 → 0
c11,0 c10,1 → 0 c9,2 → 0 c8,3 → 0 c7,4 → 0 c6,5 → 0

Terms we Can Eliminate in Higher Dimensions:
α1,0,0
α2,0,0 α1,1,0
α3,0,0 α2,1,0 α1,1,1
α4,0,0 α3,1,0 α2,2,0 α2,1,1
α5,0,0 α4,1,0 α3,2,0 α3,1,1 α2,2,1 → 0
α6,0,0 α5,1,0 α4,2,0 α3,3,0 α4,1,1 α3,2,1 α2,2,2 → 0
α7,0,0 α6,1,0 α5,2,0 α4,3,0 α5,1,1 α4,2,1 α3,3,1 → 0 α3,2,2 → 0
α8,0,0 α7,1,0 α6,2,0 α5,3,0 α4,4,0 α6,1,1 α5,2,1 α4,3,1 → 0 α4,2,2 → 0 α3,3,2 → 0
α9,0,0 α8,1,0 α7,2,0 α6,3,0 α5,4,0 α7,1,1 α6,2,1 α5,3,1 α4,4,1 → 0 α5,2,2 → 0 α4,3,2 → 0 α3,3,3 → 0
α10,0,0 α9,1,0 α8,2,0 α7,3,0 α6,4,0 α5,5,0 α8,1,1 α7,2,1 α6,3,1 α5,4,1 → 0 α6,2,2 → 0 α5,3,2 → 0 α4,4,2 → 0 α4,3,3 → 0
α11,0,0 α10,1,0 α9,2,0 α8,3,0 α7,4,0 α6,5,0 α9,1,1 α8,2,1 α7,3,1 α6,4,1 → 0 α7,2,2 → 0 α5,5,1 → 0 α6,3,2 → 0 α5,4,2 → 0 α5,3,3 → 0 α4,4,3 → 0

Figure 13. When centering the ρ variables around general points, we can eliminate all constants

ca,b with a, b > 1 in two dimensions and all constants αa,b,c with a, b, c > 1 in higher dimensions.

By centering the ρ variables around s0 = 2 in two dimensions and around s0 = 4/3 in higher

dimensions, the kinematical constraints simplify further allowing us to eliminate a few more terms

in the Taylor expansions as explained in the text. An option for which terms we can eliminate is

illustrated in the tables above up to N = 11 where the level N = a+ b or N = a+ b+ c is the total

powers of ρ in the multiple Taylor expansion. The number of terms we should keep at each level is
N
2 + (−1)N

4 + 3
4 in two dimensions and N2

12 + N
2 + (−1)N

8 + 2
9 cos

(
2πN
3

)
+ 47

72 in higher dimensions.

C Mandelstam representation

The double dispersion representation proposed by Mandelstam [28] implies that the am-

plitude can be written as follows

M(s, t, u) = B(s, t) +B(s, u) +B(t, u) , (C.1)

where

B(s, t) =

∫
ds′dt′

C(s′, t′)

(s′ − s)(t′ − t)
. (C.2)

If there are no stable particles below threshold, the double discontinuity C(s, t) has support

inside the region s > 4m2 and t > 4m2. In practice, this form of the double dispersion

relation is not valid and one needs to include subtractions. A simple trick to derive the

form of the dispersion relation with n subtractions is to use the identity

1

s′ − s
=

(s− s0)n

(s′ − s)(s′ − s0)n
+

n−1∑
k=0

(s− s0)k

(s′ − s0)k+1
(C.3)
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in equation (C.2) for both factors in the denominator. This leads to

B(s, t) = (s− s0)n(t− t0)n
∫
ds′dt′

C(s′, t′)

(s′ − s)(t′ − t)(s′ − s0)n(t′ − t0)n

+

n−1∑
k=0

(s− s0)k(t− t0)n
∫
dt′

ck(t
′)

(t′ − t)(t′ − t0)n
(C.4)

+

n−1∑
k=0

(t− t0)k(s− s0)n
∫
ds′

ck(s
′)

(s′ − s)(s′ − s0)n

+
n−1∑
k,l=0

(s− s0)k(t− t0)lck,l

where

ck(t) =

∫
ds′

C(s′, t)

(s′ − s0)k+1
, ck,l =

∫
ds′dt′

C(s′, t′)

(s′ − s0)k+1(t′ − t0)l+1
. (C.5)

In general the integrals (C.5) do not converge. The subtracted dispersion relation is (C.4)

considering ck(t) and ck,l as independent functions from the double discontinuity C(s, t).

Stable particles correspond to delta-function pieces in the single discontinuities ck(s).
27

Besides these delta-functions, the support of ck(s) is s ≥ 4m2. Therefore, the analytic

properties of equation (C.4) imply that

B(s, t) = Poles +
∞∑

a,b=0

α(ab)ρ
a
sρ
b
t , (C.6)

with a convergent double ρ series in the product of two unit disks. This is a more restricted

form of formula (3.10) where we set to zero all coefficients αabc with a > 0, b > 0 and c > 0.

In order to test the validity of Mandelstam representation, we reconsidered the problem

discussed in section 4.2 using the more restricted ansatz

B(s, t) =
α

2

(
1

ρs − 1
+

1

ρt − 1

)
+

Nmax∑
a,b=0

α(ab)ρ
a
sρ
b
t . (C.7)

In figure 14, we show the maximal value of the quartic coupling λ obtained with this ansatz.

The maximal value λ ≈ 2.6613 . . . is obtained for Nmax & 6. This result suggests that in

the limit of large Nmax both ansatze cover the same space of functions.

D Partial wave integrals

D.1 Pole contributions

Here we will consider the contribution to partial waves coming from poles of the scattering

amplitude. Consider

M(s, t, u)poles = − g2

s−m2
b

− g2

t−m2
b

− g2

u−m2
b

. (D.1)

27Therefore, we should use n ≥ j+ 1 where j is the maximal spin of the stable particles. In this way, the

second and third line of (C.4) can reproduce the degree j polynomial residue of the pole produced by the

stable particle.
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Figure 14. Comparison of upper bound on pion coupling using ansatz (3.10) with g = 0 and the

threshold singularity (4.4) included (blue squares) versus ansatz (C.7) (orange dots). In both cases

we use `max = 14. The plateau converges to 2.6613 . . . in both cases.

It is easy to compute the partial wave decomposition of this expression. For d = 3 we get

S`(s)− 1

2i
= − g2

32π

√
s− 4√
s

[
δl,0

s−m2
b

− 4

s− 4m2
Q`(xb)

]
(D.2)

with xb = x(s, t = m2
b) and Q`(z) the Legendre function of the second kind with branch

cut along z ∈ (−1, 1). For d = 2 we instead get

S`(s)− 1

2i
= − g2

16
√
s

 δ`,0
s−m2

b

− 2

mb

√
s− 4m2 +m2

b

mb −
√
s− 4m2 +m2

b

mb +
√
s− 4m2 +m2

b

`
 . (D.3)

Now consider the contribution to the amplitude from a threshold bound state. The

pole part is

M(s, t, u)th.pole = − 2α√
6
√

4m2 − s
− 2α√

6
√

4m2 − t
− 2α√

6
√

4m2 − u
. (D.4)

If we focus on the case d = 3, we must compute integrals of the form:∫ 1

−1
dx

P`(x)√
4m2 − t(x)

(D.5)

with t(x) = −1
2(s − 4)(1 − x). Introducing the generating function for the Legendre

polynomials
+∞∑
n=0

znPn(x) =
1√

1− 2xz + z2
, (D.6)

it is not difficult to obtain∫ 1

−1
dx

P`(x)√
4m2 − t(x)

=
4

2`+ 1

(
√
s− 2m)`

(
√
s+ 2m)`+1

(D.7)
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Adding up contributions from s, t, u the partial amplitudes are

S`(s)− 1

2i
= − α

16
√

6π

√
s− 4m2

√
s

(
i δ`,0√
s− 4m2

+
4

2`+ 1

(
√
s− 2m)`

(
√
s+ 2m)`+1

)
(D.8)

D.2 ρs ρt ρu contributions

Here we will show how to obtain the contribution to the partial amplitudes from terms

of the form ρas ρ
b
t ρ

c
u analytically in d = 3. While the calculation is somewhat tedious, the

underlying concept is simple: the integral that we want to do has only one cut (of square-

root type) in the integrand and thus with a simple trigonometric change of variables the

integrand can be converted to a rational function and computed by partial fractions (or

some more clever method).

The non-trivial integrals to perform take the form

I`b,c =

∫ 1

−1
dxP`(x) ρ(t)bρ(u)c (D.9)

with, as in (2.2) with m = 1,

ρ(s) =
1−

√
1− s−s0

4−s0

1 +
√

1− s−s0
4−s0

(D.10)

In applications we typically set s0 = 4/3. We next introduce our first inspired change of

variables from x to φ which is given by

x = −s+ 4

s− 4
cos(2φ). (D.11)

In these variables we get:

I`b,c = 4

(
s+ 4

s− 4

) ∫
dφP`(x(φ)) sin(φ) cos(φ)

(
1− r cosφ

1 + r cosφ

)b (1− r sinφ

1 + r sinφ

)c
(D.12)

where we also introduced

r2 ≡ 4 + s

4− s0
. (D.13)

We should now do the usual change of variables,

φ = 2 arctan(y) (D.14)

This gives

I`b,c =
42r2

r2 − 8
4−s0

∫
dy P`(x(y))

y(1− y2)

(1 + y2)3

(
(1− r) + y2(1 + r)

(1 + r) + y2(1− r)

)b (
1− 2r y + y2

1 + 2r y + y2

)c
.

(D.15)

We have

x(y) =
r2

r2 − 8
4−s0

1− 6y2 + y4

(1 + y2)2
, (D.16)

– 28 –



J
H
E
P
1
2
(
2
0
1
9
)
0
4
0

and the integral runs from yi to yf with

yi =

√
4− s0

2

(
r −

√
r2 − 4

4− s0

)
, yf =

(
r − 2√

4−s0
r + 2√

4−s0

) 1
2

. (D.17)

The trick now is to rewrite the integration region using the discontinuity of a logarithm,∫ y2

y1

dyf(y) =
1

2πi

∫ y2

y1

dyf(y) Disc log

(
y − y2

y − y1

)
=

1

2πi

∫
(y1,y2)

dyf(y) log

(
y − y2

y − y1

)
(D.18)

where (y1, y2) is a clockwise contour wrapping the line segment from y1 to y2. In our case

f(y) is a rational function, therefore we can pull the contour to infinity so that it picks up

the poles of f(y) to obtain exact expressions.

D.3 Large energy

Let us consider the large energy limit s→∞ of our ansatz. Since unitarity is imposed for

each spin `, we are interested in the limit s → ∞ with fixed scattering angle θ. In this

limit, we find

ρasρ
b
tρ
c
u = (−1)a+b+c

[
1 +

2
√

4− s0√
s

(
ia−

√
2b√

1− x
−
√

2c√
1 + x

)

−4
√

2(4− s0)a

s

(
ib√

1− x
+

ic√
1 + x

+ real

)
+O

(
s−

3
2

)]
. (D.19)

The contribution from the pole terms in our ansatz are real and of order 1/s in this limit

and therefore can be neglected. The leading term in (D.19) only contributes to the spin 0

partial wave. The large s expansion of S0(s) is given by

S0(s) = 1 +
is

d−3
2

22d−1π
d
2
−1Γ

(
d
2

) ∑
a,b,c

αabc(−1)a+b+c

[
1 +

2ia
√

4− s0 + real√
s

+O

(
1

s

)]
.

(D.20)

Unitarity implies that (for d > 4 the inequality must be saturated)∑
a,b,c

αabc(−1)a+b+ca ≥ 0 . (D.21)

If d > 2 then unitarity also implies that∑
a,b,c

αabc(−1)a+b+c = 0 . (D.22)

For d = 2, the correct condition is

32
√

4− s0

∑
a,b,c

αabc(−1)a+b+ca ≥

∑
a,b,c

αabc(−1)a+b+c

2

. (D.23)
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For ` > 0 (even) we find

S`(s) = 1− is
d−4
2 I`

∑
a,b,c

αabc(−1)a+b+ca

[
1 +

i2
√

4− s0b+ real√
s

+O

(
1

s

)]
, (D.24)

where28

I` = 4
√

2
√

4− s0

∫ 1

−1
dx(1− x2)

d−3
2 P

(d)
` (x)

1√
1 + x

> 0 . (D.25)

Therefore, unitarity implies (for d > 5 the inequality must be saturated)∑
a,b,c

αabc(−1)a+b+cab ≤ 0 . (D.26)

For d > 3 unitarity also implies ∑
a,b,c

αabc(−1)a+b+ca = 0 . (D.27)

For d = 3 we find

40π
∑
a,b,c

αabc(−1)a+b+cab ≤ −

∑
a,b,c

αabc(−1)a+b+ca

2

. (D.28)

where we used that I` < I2 =
√

4−s0
10π for ` > 2.

Where applicable, we have verified the above constraints a posteriori for our numerical

solutions and found them satisfied to very good numerical accuracy.

As a final comment, we remark that the unitarity constraints dictate that

lims→∞ S`(s) = 1 for any amplitude within our ansatz with finite Nmax.29 This prop-

erty is likely to be too restrictive, and it is therefore worthwhile to try to improve our

ansatz with more singular terms compatible with unitarity and analyticity. As a first at-

tempt we added an extra term of the form (ρs+1)(ρt+1)−1 plus s, t, u permutations, which

allows lims→∞(S`(s)− 1) to be non-zero — this modification however did not significantly

change any of the results displayed above. In the future we plan to add other more singular

terms and investigate their effect in more detail.30 Finally, the restricted behavior at large

s might also be a source of slow convergence when Nmax → ∞ we have observed in some

cases. This idea is also corroborated by the two dimensional analysis in appendix G.

28For d ≤ 2 the integral I` is divergent. The origin of this divergence is that the we can only use the large

s form of the integrand for (1− x)s� 1 and (1 + x)s� 1. The effect of this can be taken into account by

including the s-dependence I` ∼ s
2−d
2 for d < 2 and I` ∼ log s for d = 2.

29With the exception of d = 5 where it is possible to obtain lims→∞ S`(s) 6= 1 for ` > 0.
30We also deem it likely that there exists a higher-dimensional version of the two-dimensional construction

discussed in footnote 5 that would lead to unbounded couplings, but we again expect the associated essential

singularity to be in conflict with causality.
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D.4 Large spin

The partial waves can also be written in terms of an hypergeometric function,

P
(d)
` (x) =

21−2dπ
1
2
− d

2

Γ
(
d−1

2

) 2F1

(
−`, d+ `− 2;

d− 1

2
;

1− x
2

)
. (D.29)

It is convenient to define

Q
(d)
` (x) = − Γ(l + 1)(x− 1)2−d−`

π
d
2
−122d+`−1Γ

(
d
2 + `

) 2F1

(
d+ `− 2,

d+ 2`− 1

2
; d+ 2`− 1;

2

1− x

)
(D.30)

such that

Disc
[
(x2 − 1)

d−3
2 Q

(d)
` (x)

]
= 2πi(1− x2)

d−3
2 P

(d)
` (x) , −1 < x < 1 . (D.31)

Notice that for integer d the function Q
(d)
` (x) has no monodromy around x =∞. We will

work in the sheet where Q
(d)
` (x) only has a branch cut from x = −1 to x = 1. The factor

(x2 − 1)
d−3
2 = xd−3(1− x−2)

d−3
2 has the same analytic properties. Then we can write

1∫
−1

dx (1− x2)
d−3
2 P

(d)
` (x)M(s, x) =

1

2πi

∮
C
dx(x2 − 1)

d−3
2 Q

(d)
` (x)M(s, x) , (D.32)

where the contour C encircles the real segment [−1, 1] clockwise and M(s, x) denotes the

amplitude M(s, t)|t→ 1
2

(s−4)(x−1). Since

Q
(d)
` (x) ≈ − 1

2
3d
2 π

d−2
2 `

d−2
2 (x2 − 1)

d−2
4

1

(x+
√
x2 − 1)`+

d−2
2

, (D.33)

for large ` and x2 > 1, we can expand the contour and drop the contribution from infinity.

At large spin, the integral will be dominated by the singularity of M(s, x) closer to the

origin x = 0. Generically, this will come from the poles associated with stable particles.

More precisely,

1∫
−1

dx(1−x2)
d−3
2 P

(d)
` (x)M(s,x) =

1

2πi

∮
C
dx(x2−1)

d−3
2 Q

(d)
` (x)M(s,x) (D.34)

=− 1

2πi

[∫ −x1(s)

−∞
dx+

∫ ∞
x1(s)

dx

]
(x2−1)

d−3
2 Q

(d)
` (x) [M(s,x+ iε)−M(s,x− iε)] (D.35)

=− 1

iπ

∫ ∞
x1(s)

dx(x2−1)
d−3
2 Q

(d)
` (x) [M(s,x+ iε)−M(s,x− iε)] (D.36)

where x1(s) is determined from

t(s, x) = m2
1 ⇒ x1(s) = 1 +

2m2
1

s− 4m2
. (D.37)
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In fact, the pole −g2
t−m2

1
contributes

1∫
−1

dx (1− x2)
d−3
2 P

(d)
` (x)M(s, x) ≈ − 2g2

s− 4m2
(x1(s)2 − 1)

d−3
2 Q

(d)
` (x1(s)) , (D.38)

which decays exponentially with l. Notice that this gives a purely imaginary contribution

to S`(s) (see equation (3.5)), which by itself would violate unitarity. However, unitarity

can be restored with a small real contribution of the order of the square of (D.38). At large

l, this requires that we match the exponential behaviour(
x1(s) +

√
x1(s)2 − 1

)2
= x2(s) +

√
x2(s)2 − 1 ⇔ m2

2

4m2
1

= 1 +
m2

1

s− 4m2
. (D.39)

In other words, unitarity can be restored with another particle or particles of total invariant

mass squared m2
2 ≥ 4m2

1. This is what happens in perturbation theory where the box

diagram restores unitarity of the tree-level exchanges.

Let us now study the contribution from the polynomial terms ρasρ
b
tρ
c
u in our ansatz.

The discontinuity of M for x > 1 comes from

ρ(t(s, x+ iε))b − ρ(t(s, x− iε))b ≈ 2ib

√
2s− 8m2

4m2 − s0

√
x− x?(s) (D.40)

where

x?(s) =
s+ 4m2

s− 4m2
(D.41)

and we only kept the leading behaviour of the discontinuity near its lower end x?(s).

Similarly, we can approximate

Q
(d)
` (x) ≈ Q(d)

` (x?(s)) exp

[
−`s− 4m2

4m
√
s

(x− x?(s))
]

(D.42)

and find

1∫
−1

dx (1− x2)
d−3
2 P

(d)
` (x)ρasρ

b
tρ
c
u ≈ −

1

iπ
ρasρ

c
−s(x?(s)

2 − 1)
d−3
2 Q

(d)
` (x?(s))× (D.43)

×
∫ ∞
x?(s)

dx exp

[
−`s− 4m2

4m
√
s

(x− x?(s))
]

2ib

√
2s− 8m2

4m2 − s0

√
x− x?(s) (D.44)

= − b
√
π`

3
2

8m
3
2 s

3
4

s− 4m2

√
2

4m2 − s0
ρasρ

c
−s(x?(s)

2 − 1)
d−3
2 Q

(d)
` (x?(s)) (D.45)

≈ F (s)

`
d+1
2

(
x?(s) +

√
x2
?(s)− 1

)` bρasρc−s (D.46)

where F (s) > 0 for s > 4m2. Notice that at large ` the leading contribution comes from

t ≈ 4m2 which implies that ρu → ρ−s. Unitary implies ReS`(s) ≤ 1 which at large `

becomes ∑
a,b,c

αabc b (Im ρas) ρ
c
−s ≥ 0 . (D.47)
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Notice that this condition is independent of the spin ` and of the spacetime dimension d.

This justifies our numerical procedure of truncating the unitarity conditions at some value

of the spin `max � 1. Writing ρs = eiφ with φ ∈ [0, π], equation (D.47) can be written as

∑
a,b,c

αabc (−1)cb sin(aφ)


√

1 + y0 cos φ2 − cos φ2√
1 + y0 cos φ2 + cos φ2

c ≥ 0 , ∀φ ∈ [0, π] , (D.48)

where y0 = 4m2+s0
4m2−s0 > −1.

The constraints (D.47) are linear constraints on the numerical coefficients and can

easily be taken into account in our numerical code (again by sampling for a discrete set of

values of s). We have run several of our analyses both with and without this additional

constraint. As expected, the effect of the additional term decreases with the maximum

spin `max for which we manifestly check the unitarity constraints. For the values `max used

in our plots the effect of including (D.47) is always small and amounts to maybe to a one

percent change in the final result.

D.5 Threshold expansion and elastic unitarity

Here we shall discuss the threshold behaviour of amplitudes satisfying our ansatz. We start

with the expression for the amplitude,

M(s, t, u) =
+∞∑

a,b,c=0

αabc ρ
a
sρ
b
tρ
c
u + poles (D.49)

At threshold the poles become constants and are irrelevant. This is not so for threshold

poles which are discussed separately below. Define w :=
√
s− 4. Then for s → 4+ above

the cut we have

ρs = 1 + 2
+∞∑
n=1

(
i√

4− s0

)n
wn = 1 +

2i√
4− s0

w + . . . (D.50a)

ρbtρ
c
u =

∞∑
k=0

w2k

( ∑
n+m=k

cn,m(1− x)n(1 + x)m

)
(D.50b)

Recall that in our conventions the partial waves take the form:

S`(s) = 1 + i
(s− 4)

d−2
2

√
s

1∫
−1

dx (1− x2)
d−3
2 P

(d)
` (x) M(s, t)|t→ 1

2
(s−4)(x−1) . (D.51)

The leading contribution for the spin ` partial wave corresponds to the k = ` term in the

above, leading to

S`(s) = 1− b`wd−1+2` + ia`w
d−2+2` + . . . , (D.52)

with real a`, b`. These are linear combinations of the coefficients αabc in our ansatz. Uni-

tarity near threshold imposes:

b` ≥ 0, d ≥ 2, ` ≥ 0; (D.53a)

a0 = 0, d = 2, ` = 0; (D.53b)

b0 ≥ a2
0/2, d = 3, ` = 0. (D.53c)
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Near threshold we have the expansion of S`(s) in terms of the phase shift,

S`(s) = e2iδ`(s) ∼ 1 + 2iδ`(s)− 2δ`(s)
2 + . . . . (D.54)

Absence of particle production would imply reality of δ`(s), and hence a measure of the

inelasticity of the amplitude at the threshold is

Re [1− Sl(s)]
[ImS`(s)]

2 = O[(s− 4)−`]. (D.55)

We see that for positive spin we generically get a divergent result in the threshold limit.

This means that our ansatz does not automatically give an amplitude which becomes purely

elastic as we approach threshold, unlike what we would expect on physical grounds. In

order for purely elastic scattering to hold, we would have had to impose order ` linear

constraints on the coefficients of the threshold expansion of the spin ` partial wave. We did

not impose these in our numerical computations. However, experimentally we do find that

as the number of parameters in our ansatz is increased, the coefficients in the threshold

expansion seem to decrease.

E Non-relativistic limit

Consider a scalar φ of mass m interacting with itself via the exchange of a second heavy

scalar Φ with mass mb = 2m−ε with small ε. We can think of Φ as a loosely bound state of

two φ particles with binding energy ε. The two body amplitude for φ+φ scattering contains

a pole at s = m2
b due to virtual production of a Φ which is just below the two-particle

threshold at s = (2m)2. The residue of this pole g2 is the square of the φφΦ coupling. Now

consider low energy φ+φ scattering and write s = (2m+E)2 where E is the centre of mass

energy after subtraction of the rest mass. The s-channel pole of the amplitude is given by31

Mpole =
m5−dg2

s−m2
b

∼ m5−dg2/ε

4m(E/ε+ 1)
(E.1)

where we have assumed small E and ε. The l = 0 phase shift inherits this pole through

the relation

√
s

i(s− 4m2)
d−2
2

(S0(s)− 1) =

1∫
−1

dx (1− x2)
d−3
2 P

(d)
0 (x) M(s, t)|t→ 1

2
(s−4)(x−1) (E.2)

Plugging (E.1) into (E.2) and zooming in on the pole of the phase shift at s = (2m − ε)2

we have

23−dm(mε)1−d/2Spole
0 (E/ε) ∼ 21−2dπ1− d

2

Γ
(
d
2

) m5−dg2/ε

4m(E/ε+ 1)
(E.3)

We write the pole of the phase shift as g2
NR/(E/ε + 1) where g2

NR is the residue in units

of the binding energy ε. We then have

g2 → 24+dπ
d
2
−1Γ(d/2)g2

NR(ε/m)2− d
2 (E.4)

31The factor m5−d is to make the coupling g2 dimensionless.
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We will show below that there is a bound on the non-relativistic coupling g2
NR ≤ 22. Note

that this correctly predicts the behaviour

g2
1+1 ≤ 27(ε/m)3/2 (E.5)

in 1 + 1 dimensions [2]. Moreover, this limit has been studied extensively in 3 + 1

dimensions (d = 3) [29, 30]. These authors find (adding a factor of 2 to their results to

account for identical particles)

g2
3+1 ≤ 28π

√
ε/m (E.6)

and thus we find perfect agreement with (E.4).

Let us now derive the bound on g2
NR quoted above. Recall that we are consider-

ing a very weakly bound state with binding energy ε. We wish to obtain the behaviour of

g2
max(ε/m) for small ε/m. Thus we concentrate on “slow” physics at energies E ∼ ε (recall E

is the centre of mass energy after removal of the rest mass). Formally, in the phase shift we

consider s→ s̄ε2 and consider finite s̄ as ε→ 0. Any singularites of the phase shift that are a

finite distance (in s) from the two-particle threshold — e.g. the left cut and inelastic thresh-

olds — will be infinitely far away in s̄ and thus only contribute through positive powers

of ε. We can thus neglect these singularities to obtain the leading behaviour of g2
max(ε/m)

and consider a non-relativistic phase shift SNR(Ē) with only a right-hand cut starting at

Ē = 0 and a single bound-state pole at Ē = −1, where Ē = E/ε. Since this phase shift is

bounded by unitarity along the cut and cannot grow faster than a constant at infinity then

the residue of the pole can easily be bounded by maximum modulus theorem. Perhaps the

cleanest way to derive the precise value of the bound is to consider the change of coordinates

x(E) =
1− (−Ē)1/2

1 + (−Ē)1/2
, Ē(x) = −(x− 1)2

(x+ 1)2
(E.7)

which maps the E-plane minus the positive real axis to the unit disk and maps the bound

state pole to the origin
g2
NR

Ē(x)− 1
∼
g2
NR

4x
(E.8)

Now note that the function f(x) = xSNR(x) is analytic throughout the unit disk and

obeys |f | ≤ 1 on the boundary due to unitarity. Thus maximum modulus theorem implies

1 ≥ f(0) = g2
NR/4 which is the desired bound.

F Semidefinite programming implementation

Consider an ansatz as in (3.10), truncated such that a+b+c ≤ Nmax. After eliminating the

redundant monomials as described in appendix B, we are left with a finite subset of the αabc,

which together with the coupling g2 completely determine the amplitude. Let us group

these real coefficients into a vector that we call ~η, so we can schematically write (3.10) as

M(s, t, 4− s− t) = ~η ·
−−−−→
M(s, t) (F.1)
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with
−−−−→
M(s, t) the vector of functions of s and t that each coefficient multiplies. We then

substitute into the partial amplitude projection (3.5) and get, schematically,

S`(s) = 1 + i~η ·
−−→
f`(s) (F.2)

with
−−→
f`(s) defined in the obvious way as the integral of

−−−−→
M(s, t) against the Gegenbauer

polynomials with the right prefactor. The unitarity constraints |S`(s)|2 ≤ 1 now dictate

that for all physical ` and s we must have(
1− ~η · ~I

)2
+ (~η · ~R)2 ≤ 1 ⇔ U ≡ 2~η · ~I − (~η · ~I)2 − (~η · ~R)2 ≥ 0 (F.3)

with ~R = Re[
−−→
f`(s)] and ~I = Im[

−−→
f`(s)]. This constraint can be re-phrased as a

semidefiniteness condition. Indeed, consider the matrix

M :=

(
1 + ~η · ~R 1− ~η · ~I
1− ~η · ~I 1− ~η · ~R

)
(F.4)

The eigenvalues of this matrix are precisely

λ± = 1±
√

1− U (F.5)

As befits a Hermitian matrix, they are always real since U ≤ 1 by construction. It is now

clear that

M � 0⇔ U ≥ 0. (F.6)

and the unitarity constraints are therefore precisely those of a semidefinite program.

We need to choose a grid of values of s and a finite set of spins ` for which to test

the unitarity constraints. We found it sufficient to take approximately 200 values of s,

interspersed uniformly along the upper half of the unit circle in the ρs variable defined in

the main text. We observed no significant change in the results by taking a more refined

s grid, or by distributing the points differently along the unit circle. The maximal value

of the spin `max is indicated in the various plots. Notice that `max needs to be sufficiently

big since otherwise the extremal value completely destabilizes — see for example the data

points in figure 6 with `max = 10 for large Nmax. In practice we observed convergence by

taking `max at least as large as Nmax, and for the scattering length computations we needed

at least Nmax + 4. Increasing `max beyond these values did not affect our results.

In our numerical computations we did find it necessary to retain very high precision,

generally at least 1000 binary digits. This appears to stem from the approximate redun-

dancy that remains even after imposing the polynomial constraint B. To illustrate this we

can for example compute a derivative like

∂2

∂s2

∑
a,b,c

αabcρ
a(s)ρb(t)ρc(4− s− t)

∣∣∣∣∣∣
s=t=4/3

=

=
9

256

(
α100 + α001 +

1

2
α200 +

1

2
α002 −

1

2
α101

) (F.7)
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p
2

naive ansatz naive ansatz improved ansatz

Great convergencePoor convergenceGreat convergence

Figure 15. Plot of |(Snum − Sanalytic)/Sanalytic|, that is of the relative mismatch in the numerical

solution in this two dimensional example where the analytic solution is available. In all these plots we

use Λ = 20 and check unitarity in a small grid of 40 points. With these parameters, mathematica’s

built-in FindMaximum suffices and produces an outcome in about two or three seconds. We see on

the left that for mb >
√

2m the agreement is spectacular with the most naive ansatz (G.4) while in

the middle we see that the agreement is much worse (a few percent off) with the same ansatz when

mb <
√

2m. On the right we see that this is neatly fixed - leading again to a perfect convergence -

by simply adopting an improved ansatz as in (G.5).

In a typical solution we find that this derivative is rather modest in magnitude, of order 102

or so, whereas the individual coefficients can be very large, of order 1024 in some solutions.

These kind of cancellations require high precision.

We have performed all the numerical computations in section 4 with sdpb [31]. Details

of the computations like parameter settings are available from the authors upon request.

G Slow convergence on a simple 2D example

In this appendix we revisit once more the two dimensional problem considered in section 2

but this time done in the language of the M amplitude rather than S. In two dimensions

the two are simply related by

S(s, t)− 1 =
1

2
√
st
×M(s, t) , s+ t = 4m2 . (G.1)

and unitarity then reads

Im(M(s, t))− 1

4
√
−st
|M(s, t)|2 ≤ 0 for s = 4m2 − t > 4m2 . (G.2)

This discussion will provide us with a simple example of numerics which work yet converge

very slowly until we slightly improve our ansatz and thus completely solve this convergence

issue.

To be concrete we consider here the case where there is a single bound-state with

mass mb whose coupling we maximize. The S-matrix with the largest coupling and such

bound-state is given by [2]

Smax g = sign(mb −
√

2m)×

√
s(s− 4m2) +

√
m2
b(4m

2 −m2
b)√

s(s− 4m2)−
√
m2
b(4m

2 −m2
b)

(G.3)
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At high energies the S-matrix approaches +1 for mb >
√

2m and −1 for mb <
√

2m and

this leads to a very different behavior when translated to the amplitude M . In particular,

for a light bound state mb <
√

2m we see that the amplitude M in (G.1) must diverge

at high energies so that the right hand side approaches −2. This is hard for an ansatz a

la (2.3) to achieve, that is it would require that the sum in

Mnaive(s, t) = − ĝ2

s−m2
b

− ĝ2

t−m2
b

+
Λ∑

a,b=0

cab ρ
a
sρ
b
t (G.4)

to develop a divergence as s = 4m2 − t → ∞ which corresponds to ρs, ρt → −1. Such

non-analytic behavior at the boundary of the unit disc can be achieved but a numerically

sufficiently accurate approximation requires very large Λ.

In this case there is however a very obvious improvement which is to simply allow for a

divergence at large energies which is after all allowed by unitarity and write down instead

an ansatz of the form

Mimproved(s, t) = − ĝ2

s−m2
b

− ĝ2

t−m2
b

+
Λ−2∑
a,b=0

cab ρ
a
sρ
b
t +

β√
ρs + 1

√
ρt + 1

+
β̃

(ρs + 1)(ρt + 1)

(G.5)

This immediately allows for a more general high energy behavior and thus an extreme

improvement in convergence as illustrated in figure 15.

The moral of this story seems to be that we better allow for flexible ansatze which can

easily capture various analytic properties of scattering amplitudes if we want to achieve

optimal convergence. In this simple two dimensional example, allowing for an ansatz with

a more flexible high energy behavior led to a drastic improvement in the numerics.
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