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Abstract

High fidelity (HF) mathematical models describing the generation of active force in the cardiac muscle tissue typically
feature a large number of state variables to capture the intrinsically complex underlying subcellular mechanisms. With the
aim of drastically reducing the computational burden associated with the numerical solution of these models, we propose a
machine learning method that builds a reduced order model (ROM); this is obtained as the best-approximation of the HF
model within a class of candidate differential equations based on Artificial Neural Networks (ANNs). Within a semiphysical
(gray-box) approach, an ANN learns the dynamics of the HF model from input–output pairs generated by the HF model
itself (i.e. non-intrusively), being additionally informed with some a priori knowledge about the HF model. The ANN-based
ROM, with just two internal variables, can accurately reproduce the results of the HF model, that instead features more
than 2000 variables, under several physiological and pathological working regimes of the cell. We then propose a multiscale
3D cardiac electromechanical model, wherein active force generation is described by means of the previously trained ANN.
We achieve a very favorable balance between accuracy of the result (order of 10−3 for the main cardiac biomarkers) and
omputational efficiency (with a speedup of about one order of magnitude), still relying on a biophysically detailed description
f the microscopic force generation phenomenon.
c 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
http://creativecommons.org/licenses/by-nc-nd/4.0/).

eywords: Data-driven modeling; Machine learning; Model Order Reduction; Cardiac simulations; Sarcomere modeling; Artificial Neural
etworks

1. Introduction

Numerical simulations of the cardiac function require coupling different mathematical models representing
processes taking place at different spatial scales [1–5]. Cardiac tissue mechanical activation, which is responsible
for the generation of active force and for the contraction of the myocardium, is driven by a subcellular mechanism
with characteristic spatial scales of micrometers or less. Hence, when the target is a three-dimensional Finite
Element simulation of the heart integrated function [6–9], like for cardiac electromechanics, the mathematical model
describing the activation of the cardiac contractile cells should be solved virtually in any point of the computational
domain and practically at each nodal point or at every quadrature node of the computational mesh. Since capturing
the complexity of realistic heart models requires as many as 105–106 mesh elements, multiscale numerical

∗ Corresponding author.
E-mail address: francesco.regazzoni@polimi.it (F. Regazzoni).
https://doi.org/10.1016/j.cma.2020.113268
0045-7825/ c⃝ 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2020.113268
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2020.113268&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:francesco.regazzoni@polimi.it
https://doi.org/10.1016/j.cma.2020.113268
http://creativecommons.org/licenses/by-nc-nd/4.0/
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simulations based on biophysically detailed active contraction models represent a computational challenge, both
because of computing time and memory storage. Indeed, due to the intrinsic complexity of the subcellular processes
leading to the mechanical activation, it is difficult to build activation models that are at the same time low-
dimensional and biophysically accurate [10–12]. This harms the accomplishment of a well balanced trade-off
between model computational complexity and model reliability.

In this paper, we propose a multiscale approach to cardiac electromechanics (EM) wherein active force generation
at the subcellular level is modeled by a ROM built by means of Artificial Neural Networks (ANNs). We aim at
reducing the computational burden associated to the numerical approximation of cardiac EM, wherein complex
sarcomere models should be used for accurate simulations. We show, both qualitatively and quantitatively, that our
approach and our reduced model realize a very good trade-off between computational efficiency and accuracy.

We build the ANN-based reduced model by further extending the method that we proposed in [13], to which we
refer as a black-box machine learning algorithm. The latter, indeed, does not require any knowledge of the high-
fidelity (HF) model but only a collection of input–output pairs generated by the HF model. In this work, we move
instead towards a gray-box approach (or semi-physical approach), by feeding the ANN learning process with some
a priori knowledge on the HF model. We employ this method to reduce the dimensionality and the computational
complexity of the cardiac activation model proposed in [14] and we compare the results of simulations performed
with the HF and the reduced model.

The paper is organized as follows. In Section 2 we briefly review the mechanism of cardiac force generation
and the associated mathematical models, highlighting the difficulties in finding a low dimensional model for this
process. Then, we review the available literature on the reduction of computational complexity of activation models.
In Section 3 we recall the activation model proposed in [14], which we consider here as the HF model to be reduced
and, in Section 4, we present the reduction strategy. In Section 5 we provide the technical details on the ANN
training, we show the results obtained, and we validate the ANN-based ROM by means of single cell simulations,
under both physiological and pathological conditions. In Section 6 we consider multiscale three-dimensional cardiac
EM simulations and we compare the results obtained with the HF activation model and our reduced model. We
critically discuss the results obtained in Section 7 and we draw our conclusions in Section 8.

2. Cardiac activation models and model order reduction

The fundamental contractile unit of cardiac muscle tissues is the sarcomere, a cylindrical structure nearly 2 µm
long, made of two families of filaments – known as thin and thick filaments – arranged in a highly organized
structure [15–20]. Myosin, the principal constituent of thick filaments, is a molecular motor able to bind to actin,
which is part of the thin filaments, and to generate force by pulling thin filaments towards the M-line, located
at the center of the sarcomere. When the tissue is at rest, however, the regulatory units (i.e. troponin–tropomyosin
complexes located on thin filaments) are in a non-permissive configuration that blocks actin binding sites, preventing
myosin from generating force [17,18].

Cells contraction is triggered by an increase of the intracellular concentration of calcium ions (that we denote
by the variable [Ca2+]i), which bind to troponin thus making the permissive configuration energetically favorable
or the associated regulatory unit. When a regulatory unit is in the permissive configuration, myosin is free to bind
o the actin binding sites regulated by that unit, forming the so-called crossbridges and generating active force (see
ig. 1). A regulatory unit acts indeed as a microscopical on–off switch for the generation of force. When calcium
oncentration returns to its presystolic level, calcium ions detach from troponin and the regulatory units move back
o the non-permissive configuration; this sterically hinders the formation of further crossbridges.

Besides calcium concentration, the activation mechanism is regulated by the local stretch of the tissue, which
ffects the sarcomere length (here denoted by SL). The main consequences of an increment of SL (in the
hysiological range) are an increase of maximal force at saturating calcium concentrations and an enhanced
ensitivity to calcium. This is linked to the Frank–Starling law, for which an increased presystolic volume (at
he microscopical level, larger SL) translates into a higher generated force (linked to higher tissue activation at the

icroscale) [15,16].
Mechanical activation models aim at linking the time evolution of [Ca2+]i(t) and of SL(t) (regarded as the two

nputs of the model) to the level of activation. The latter is measured by the so-called permissivity – denoted by
y(t) ∈ [0, 1] – that is the fraction of regulatory units in permissive state. When a regulatory unit is in permissive
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Fig. 1. The cardiac force generation process is split into two parts: first, the regulatory units located on the thin filament (troponin–tropomyosin
protein complexes) are activated as a consequence of an increase of intracellular calcium concentration [Ca2+]i and regulated by the sarcomere
elongation SL; then, when tropomyosin switches to the permissive configuration, actin and myosin undergo the so-called Lymn–Taylor cycle
and generate active force [15].

state, steric hindrance is absent, and force-generating actin–myosin interactions take place. The total active force
generated by the muscle tissue is then assumed to be proportional to permissivity [14].

2.1. Modeling cardiac mechanical activation

Mathematical models of cardiac muscle cells activation are typically represented by Continuous-Time Markov
Chains describing the transitions of the regulatory units proteins [21–24]. In such stochastic models, a single
representative regulatory unit is considered, thus adopting a mean-field approach, to contain computational
complexity.

As shown in the seminal contribution of [11], mean-field models are however unable to reproduce the steep
nonlinear response of tissue activation to an increase of calcium concentration, which features a Hill coefficient
(i.e. a measure of ultrasensitivity of a protein to a ligand, see e.g. [15]) significantly larger than one [25–28]. Indeed,
the large Hill coefficient reveals an apparent cooperative behavior between the different units and this cannot be
captured by a mean-field model, which considers instead only a single unit. On the contrary, the experimentally
observed force–calcium dependence can be recovered by explicitly considering a spatial distribution of regulatory
units, which allows to model nearest-neighboring interactions [10].

The drawback of spatially explicit models is their overwhelming computational complexity since the number of
degrees of freedom grows exponentially with the number of regulatory units, reaching the order of 1021 and even
larger [14]. This issue is typically tackled by sampling the solution of spatially-explicit models by the Monte Carlo
method, which is however time-consuming and exhibits a slow convergence towards accurate results [11,29–31].
With the Monte Carlo method, a set of possible trajectories of the system, whose state is represented by just a
few tens of variables, is simulated and the results are averaged. However, in order to reach statistical convergence,
as much as 104 trajectories may be required (see e.g. [12,14,31]), raising again the issue of memory storage in
three-dimensional realistic cardiac simulations.

Due to their large computational cost, physics-based models of cardiac activation are typically replaced, in
large-scale cardiac simulations, by phenomenological models; the latter are empirical relationships obtained by
fitting experimental data without being derived from first-principles [32–36]. The reduced computational cost of
phenomenological models comes at the price of less mechanistic insight into the multiscale phenomena, the lack
of a clear physical interpretation of some of their parameters and a hampered predictive power; the latter drawback
mainly comes from the intrinsic difficulties in gathering accurate data on the microscopic phenomena under the
working condition of a beating heart. Moreover, unlike for phenomenological models, biophysically detailed models
allows to investigate the impact of the macroscopic properties of the contractile apparatus on the macroscopic
observable quantities.
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2.2. Reducing computational burden of cardiac cells activation models

Due to the abovementioned advantages of physics-based models with respect to phenomenological ones, several
attempts have been made to reduce the computational complexity of spatially-explicit models while preserving
their reliability, in particular for reproducing the physiological force–calcium relationship [11]. In [10] an exact
solution for a spatially-explicit model was proposed, which is however limited to the steady-state. In [37] the large
complexity of the proposed reduced model limits its applicability to a small number of regulatory units. In [12] the
authors propose an integro-differential system derived from the Forward Kolmogorov Equation associated with the
Markov Chain describing the transition of the regulatory units. This system comprises a set of parameters which
have to be estimated by a least-squares fitting over a collection of simulations obtained by means of the Monte
Carlo method. However, this reduction approach introduces a non-negligible error and the training is performed
for specific inputs, without guaranteeing the reliability of the model under different conditions. In [38], aiming at
reducing the complexity of a spatially-explicit model, the authors grouped the states of the model by the number of
units being in a given state, regardless of their position. Then, the position of units is again taken into account when
the transition probabilities are computed by averaging, with Monte Carlo random sampling, over all configurations
of the considered group. However, in this model the spatially-explicit description is lost and length dependent effects
cannot be captured.

In [14], we introduced a physically motivated assumption of conditionally independence on specific sets of events,
which allowed to derive a system of ordinary differential equations (ODEs) for the time evolution of the probability
of the states of triplets of consecutive neighboring regulatory units. This model allows to accurately reproduce the
results of the original model (with a relative error of order of 10−2) more efficiently than with a Monte Carlo
approximation (to get the same error, the latter requires more than 10 000 times of computational time). Moreover,
a thorough validation of the model in [14] shows a good qualitative and quantitative agreement with experimental
measurements under various settings. In particular, the force–calcium relationship is accurately reproduced, a
significantly important achievement for cardiac electromechanics. This model accomplishes a significant reduction
of the computational burden, both in terms of model size and of computational time, compared to spatially-explicit
models. However, it still features 2176 internal variables, that describe all the possible combinations of triplets
of adjacent regulatory units. In a full-organ three-dimensional simulation with a space discretization featuring 106

degrees of freedom, the total number of variables associated to the muscle cells activation would be of the order
of 109. A further significant reduction of the dimensionality of this model is thus desirable, if not necessary. This
is precisely our goal in this paper.

2.3. Model order reduction techniques

We consider therefore general purpose Model Order Reduction (MOR) reduction techniques to derive a
computationally tractable, lower dimensional counterpart of a HF model, yet accurately reproducing its results
[39–41]. MOR techniques can be classified as model-based or data-driven. With the former strategy, the reduced
formulation is derived from the HF model, by projecting it onto a smaller space [39,40,42,43]. In this framework,
the space of the full-order state is approximated by a lower dimensional subspace, which can be obtained through
different techniques, including Moment-Matching [44–46], Balanced-Truncation [43,47] and Proper Orthogonal
Decomposition (POD, see [43,48–51]), as in the case of the Reduced Basis (RB) method [41,52]. Projection-based
methods are tailored on linear models; if applied to nonlinear models they need to be suitably adapted [41,52–55].

On the other hand, data-driven MOR approaches build the reduced model from a collection of input–output
pairs, from which they attempt to infer the dynamics of the HF model. The Loewner framework [56–58] and the
orthonormal vector fitting (OVF) method [59,60] are data-driven MOR techniques for linear systems based on an
approximation of the transfer function of the HF model in the frequency domain. Data-driven MOR techniques
for nonlinear models are, e.g.: dynamic mapping kriging (DMK) [61], which approximates the right-hand side
of a nonlinear system by Gaussian Process (GP) regression [62,63]; Sparse Identification of Nonlinear Dynamics
(SINDy) [64], which seeks an approximation of the system right-hand side as a combination of a predetermined
collection of linear and nonlinear terms; a generalization of the Loewner framework to analytic nonlinear models
with affine input dependence [65–67]; Multistep Neural Networks, trained to minimize the residuals of a given

multi-step time-stepping scheme on a collection of available snapshots of the full-order state [68]. However, the
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latter mentioned techniques are aimed to reduce the computational effort of the evaluation of the right-hand side
of the HF model and not to reduce its dimensionality. In [69], the authors proposed a MOR technique based on
a combination of projection-based methods with GP regression. In [70], an ANN-based MOR method for time-
dependent PDEs is proposed. However, the last two methods are restricted to parametric differential equations and
cannot be easily extended to models with a time-dependent input.

In [13] we proposed a data-driven MOR technique, based on ANNs, which is suitable for nonlinear models with
time-dependent inputs and can provide a significant reduction of dimensionality of the HF model. This approach
consists in reformulating the model reduction problem as a maximum-likelihood problem, where one looks for the
model which best approximates, inside a class of candidate models, a collection of input–output pairs. Specifically,
the set of candidate models consists in systems of ODEs whose right-hand side is represented by an ANN that is
trained to learn from the collection of input–output pairs – generated by the HF model – the underlying physics
of the HF model itself. We will recall our data-driven MOR technique in Section 4.1 and we will extend it in
Section 4.2 by the introduction of suitable penalization terms that enforce some a priori knowledge on the HF
model into the learning process.

3. The high fidelity model for cardiac activation

In this work our HF model is the activation model for cardiac muscle cells proposed in [14], describing the
time evolution of the probabilities associated to the possible states of triplets of adjacent regulatory units on
a myofilament. We have nRU = 36 units, each having 4 possible states given by the combination of the two
conditions of being bound to calcium or not and of being in permissive state or not. The transition rates between the
states are either directly measured or calibrated from experiments that allow to decouple their effects [10,71]. The
cooperative end-to-end iterations among regulatory units are included in the model by thermodynamically consistent
nearest-neighboring interactions, as proposed in [10]. Finally, length dependent effects are captured thanks to the
spatially-explicit representation of regulatory proteins, that allows to accurately track the filaments overlap.

Since each triplet can be in 43 possible states and we have (nRU − 2) different triplets of adjacent units, the size
f the internal state of the model is N = (nRU − 2) · 43

= 2176. We denote by Z(t) ∈ RN the internal state of the
F model, that is the vector collecting all such variables.
The HF model for cardiac activation can be written in the following form:⎧⎪⎨⎪⎩

Ż(t) = F(Z(t), u(t)), t ∈ (0, T ]
Z(0) = Z0

y(t) = G(Z(t)), t ∈ (0, T ],
(1)

here the input is given by u(t) = ([Ca2+]i(t), SL(t))T and the output is the permissivity y(t). The right-hand side
and the output function G are nonlinear and linear functions, respectively; we refer the interested reader to [14]

or the definition of these terms.
Following [10], we assume that each cycling crossbridge can exert a fixed amount of force and that calcium-driven

ctivation represents the rate-limiting step of the force generation dynamics. As the fraction of cycling crossbridges
orresponds to the permissivity, the total active tension (Ta) is proportional to y:

Ta = T y, (2)

where T is the force generated for y = 1. We here neglect shortening velocity-related effects [15,72], which require
n explicit representation of crossbridges to be modeled [73–75] and which we will include in a future work.

We remark that whereas in this paper we focus on a specific HF model of active force generation (the one
roposed in [14]), the MOR strategy here proposed can be applied to virtually any other HF model of force
eneration. As a matter of fact in [71] successful examples of application to different active tension models are
resented.

. The model reduction strategy

Within a data-driven framework, we carry out Ns experiments (i.e. numerical simulations) with the HF model and
e collect a set of Ns outputs y(t), each one obtained with a different input u(t). As our goal is to obtain a reduced
odel to be exploited in multiscale cardiac simulations, our inputs will span the range of values possibly covered
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during the cardiac activity. In particular, since calcium concentration during each heartbeat varies between 0.1 µM
(micromolar) and 1.2 µM and the working range of sarcomeres spans a length from 1.7 µm to 2.3 µm [15,16], our
input takes values in U = [[Ca2+]i,min, [Ca2+]i,max]×[SLmin, SLmax], where we prudentially set [Ca2+]i,min = 0 µM,
[Ca2+]i,max = 1.5 µM, SLmin = 1.6 µM, SLmax = 2.4 µM. Since the output of the model represents the fraction of
units in permissive state, we define the space of output values as Y = [0, 1].

We employ the following notation to denote the input–output pairs of the training dataset. For j = 1, . . . , Ns ,
we consider a time interval [0, T j ] and an input function û j : [0, T j ] → U and we define ŷ j : [0, T j ] → Y as the
solution of the HF model (1) associated to the input û j . The j th training experiment (where j = 1, . . . , Ns) consists
of the pair (̂u j , ŷ j ).

The solution of the HF model (1) also depends on the initial condition Z0. Because of the non-intrusive nature of
our approach, a unique initial condition must be used in each experiment, otherwise the input–output map that we
aim to learn would not be well-defined (see [13] for more details). Specifically, we set as initial condition for each
training experiment the steady-state of the cell in pre-systolic conditions, which is when calcium concentration
is [Ca2+]i,0 = 0.1 µM and the sarcomere length is SL0 = 2.2 µm. The corresponding state can be numerically
computed by solving the HF model with input u(t) ≡ u0 := ([Ca2+]i,0, SL0)T , until a steady-state is reached.

4.1. Black-box model reduction

Our ROM will approximate the HF model in the following form:⎧⎪⎨⎪⎩
ż(t) = f(z(t), u(t)), t ∈ (0, T j ]
z(0) = z0

y(t) = z(t) · e1, t ∈ (0, T j ],
(3)

where the reduced state z(t) belongs to a lower dimensional space Rn such that n ≪ N . By setting y(t) = z(t) · e1,
here e1 = (1, 0, . . . , 0)T

∈ Rn , we are forcing the first entry of the reduced state to coincide with the output itself.
t follows that the first entry of the initial reduced state z0 (here denoted by (z0)1) must coincide with the output
ssociated with the initial full-order state Z0. Hence, (z0)1 represents the presystolic permissivity and is given by

y0 := G(Z0) ≃ 1.5 · 10−3. As discussed in [13], we can set, without loss of generality, (z0)i = 0 for i = 2, . . . , n as
his choice does not reduce the set of candidate reduced models (each model not satisfying the condition (z0)i = 0
or i = 2, . . . , n can be rewritten, after a change of variables, as a model in the form of Eq. (3) satisfying the
forementioned condition.). To sum up, we set the initial reduced state as z0 = (y0, 0, . . . , 0)T .

By comparing Eq. (1) with Eq. (3), we notice that the full-order state Z(t) is replaced by a new variable z(t).
onversely, both the input u(t) and the output y(t), having the same physical meaning, are denoted with the same

ymbol. The right-hand side f : Rn
× U → Rn is the unique element in (3) still to be defined. This term is, in

act, what the machine learning algorithm will learn from the training input–output pairs. Our strategy is that of
xing the dimension n of the ROM, selecting a candidate class of functions F̂ , and interpreting the model reduction
roblem as a best-approximation problem. In the latter, we look for the function f ∈ F̂ such that the input–output
ap represented by the model (3) best fits the input–output pairs belonging to the training set. Basically, within all

he possible models with n state variables, we are looking for the one which best approximates the HF model. More
recisely, we consider the following optimization problem, in which we minimize the distance, in the least-squares
ense, between the HF output and the output obtained by the ROM:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
f∈F̂

1
2

∑Ns
j=1

∫ T j
0 |̂y j (t) − y j (t)|2dt

s.t. ż j (t) = f(z j (t), û j (t)), t ∈ (0, T j ], j = 1, . . . , Ns

z j (0) = z0, j = 1, . . . , Ns

y j (t) = z j (t) · e1, t ∈ (0, T j ], j = 1, . . . , Ns .

(4)

he former problem can be interpreted as a maximum-likelihood problem, where the unknown is f ∈ F̂ , subject
o the constraint given by the model itself. Clearly, we need to suitably select the set of candidate functions F̂ .
ecause of their universal approximation properties [76] and their well assessed ability of learning manifolds fromˆ
ata [77,78], we set as candidate functions space F the space of functions represented by ANNs with a prescribed
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architecture. ANNs are functions from Rp to Rq (in our case, p = n + 2 and q = n), parametrized by a finite
number of parameters (representing the weights and biases), which are collected in a real valued vector µ ∈ Rk ,
for k ≥ 1 (see e.g. [79]). To stress the dependence of f on the parameters µ, we will use henceforth the notation
f(z, u; µ). We remark that the use of ANNs as space of candidate functions has a solid theoretical basis since, as
we proved in [13], any time-dependent differential equation can be approximated with arbitrary accuracy by an
ANN-based model.

In this manner, problem (4) can be written as an optimization problem in Rk and standard optimization techniques
can be employed for its solution. In particular, we use the Levenberg–Marquardt algorithm [80], an approximated
Newton method, specifically designed for least-squares problems, that exploits first-order derivative information
to approximate the second-order derivatives. For the computation of the gradients of the least-squares terms with
respect to the design variables µ, an adjoint backward equation is solved at each iteration of the optimization
algorithm. We refer the interested reader to [13] for the technical details.

4.2. Feeding the learning process with a priori knowledge

The approach presented so far is fully black-box, that is it does not require any knowledge about the HF model
except for a collection of input–output pairs generated by the HF model itself. However, as for the application
considered in this paper, we may actually have some insight into the HF model that we aim to reduce. Such a
priori knowledge can be exploited in the learning process by adding to the cost functional of problem (4) suitable
penalization terms, that we introduce in this section.

4.2.1. The cycle condition
As explained in [13], with the proposed approach it is not possible to give a physical meaning to all the entries

of the reduced state z(t), apart from (z(t))1, which coincides with the permissivity y. This is intimately linked with
the black-box nature of data-driven approaches. Nonetheless, the reduced state z is a compact representation of the
full-order state Z: we may suppose that there exists a map between the full-order and the reduced state. Hence, the
initial state Z0 is mapped, by construction, into the reduced initial state z0.

This implies that, whenever the HF model returns to the initial state at the final time T j , i.e., Z(T j ) = Z0, the
OM should correspondingly satisfy z(T j ) = z0. To enforce this condition, which we call cycle condition, we insert

n the training set some experiments, labeled by the indexes j ∈ Jr , such that at final time T j the full-order state
oincides with the initial state Z0. Then, we add to the cost functional of problem (4) the following term:

E2
c = a−1

c

∑
j∈Jr

n∑
i=2

(
z j (T j ) · ei

)2

1
T j

∫ T j
0

(
z j (t) · ei

)2 dt
, (5)

here ac = |Jr |(n − 1) is a normalization factor, whose role will be discussed later. We remark that Ec does not
nvolve (z)1 since it is already accounted for in the cost functional of problem (4). We also notice that in (5) we
ormalize with respect to the L2 norm of the history of z(t), otherwise the introduction of the penalization term
5) would be useless. Indeed, by performing a change of variable the internal state by multiplying its entries, but
or the first one, by a small constant α ≪ 1, the quantity

∑
j∈Jr

∑n
i=2

(
z j (T j ) · ei

)2 can be made arbitrary small,
ithout changing the input–output map represented by the model.

.2.2. The equilibrium condition
In Section 4 we have defined the initial full-order state Z0 as the steady-state associated to the input u0. Therefore,

uch state is by definition an equilibrium solution (i.e. F(Z0, u0) = 0), a condition that should be satisfied also by
he ROM (i.e. f(z0, u0) = 0). To enforce this condition (which we call equilibrium condition), we envisage two
lternative strategies. The first one, which we call weak imposition, consists in adding to the cost functional the
ollowing further penalization term:

E2
e = a−1

e |f(z0, u0)|2, (6)

here the normalization factor is defined as ae = n. The second one consists in manipulating the ANN architecture
¯
n such a way that the equilibrium condition is exactly satisfied. Specifically, we redefine f as f(z, u) = f(z, u) −
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f̄(z0, u0), where f̄ stands as the ANN to be trained (from which we remove the last layer of biases since it is
canceled by the subtraction). We call this second approach strong imposition of the equilibrium condition as the
latter is satisfied by construction. In other words, we train the ANN weights and biases, excluding the biases of
the output layer, which are defined in such a way that the equilibrium condition is satisfied. The reduction of the
number of the unknowns is a consequence of the reduction of the space of candidate solutions (we have excluded
the functions not satisfying the equilibrium condition).

4.3. Gray-box model reduction

The introduction of the cycle condition and of the equilibrium condition, made in Section 4.2, would not be
possible in a strict black-box framework since the internal state would not be observable. We have thus moved
towards a gray-box approach since we have mixed a black-box technique with some insight on the HF model.
Before stating the formulation of the gray-box model reduction problem, we introduce the following notation to
denote the cost-functional of the black-box formulation (4), which penalizes the error between the HF model and
the ROM

E2
b = a−1

b

Ns∑
j=1

∫ T j

0
|̂y j (t) − y j (t)|2dt, (7)

where ab =
∑Ns

j=1

∫ T j
0 |̂y j (t)|2dt . Then, the gray-box MOR problem reads:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

min
µ∈Rk

1
2w2

b E2
b +

1
2w2

c E2
c +

1
2w2

e E2
e

s.t. ż j (t) = f(z j (t), û j (t); µ), t ∈ (0, T j ], j = 1, . . . , Ns

z j (0) = z0, j = 1, . . . , Ns

y j (t) = z j (t) · e1, t ∈ (0, T j ], j = 1, . . . , Ns .

(8)

he weight factors wb, wc, we ∈ R+ allow to tune the contribution of the different terms. The normalization factors
b, ac and ae allow to keep the relative weight of the different terms unaffected by changes in the number of training
amples, in Jr or in n. When the strong imposition of the equilibrium condition is employed, we set we = 0 and
e modify the architecture of f accordingly.

.4. Discrete version of the MOR problem

We discretize in the problem (8) both for the state equation and the objective functional. As in [13], we consider
niform subdivisions of the time intervals [0, T j ] with step-size ∆t ; then, we discretize the state equation by a
orward Euler scheme and the objective functional in (8) by the composite trapezoidal rule [81].

We notice that all the terms of the objective functional of problem (8) can be written as sum of squares. The
ptimization problem retains a least-squares structure and the Levenberg–Marquardt algorithm can thus be applied.
he unique change with respect to the solution of the fully black-box problem (4) is that it requires the calculation
f the gradient of the terms Ec and Ee with respect to the design variables µ. Such gradients can be obtained by
eans of the Lagrange Multiplier method (as in [13]) and by differentiation with respect to µ, respectively.

. The reduced cardiac activation model

In this section, we provide details on the ANN training and we present our strategy to select the hyperparameters
i.e. the ANN architecture, the weights of the physics-based penalization terms and the strategy used to impose
he equilibrium condition). Then, we show the results obtained with the selected ROM, by validating it against
xperimental data, under physiological and pathological conditions.
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5.1. Training the ANN

To train the ANN we generate a training set by means of the HF model, i.e. a collection of input–output pairs
(̂u j , ŷ j ), for j = 1, . . . , Ns . In such training set we insert three kinds of input functions:

• 50 step responses of duration T = 3 s, in the form of u(t) = u0 + (ū−u0)1[t1,t2)(t), where t1 = 0.2 s, t2 = 2 s
and where ū is randomly selected, being 1A the indicator function of the set A. Specifically, we put into the
train set 40 inputs where the values ū are selected by Latin Hypercube Sampling (LHS) of the input set U and
10 additional inputs obtained by LHS of the subset [0.3, 0.6] µM × [2.15, 2.25] µm ⊂ U . In the latter region,
indeed, the steady-state force–length relationship has a non regular shape and thus requires a better resolution
to be appreciated. The samples belonging to this set are such that the final full state Z(T ) virtually coincides
(with a relative error lower that 10−4) with Z0. Therefore, we set the corresponding indexes into the set Jr .

• 45 oscillating inputs of duration T = 1 s, in the form of u(t) = ([Ca2+]i,min + A sin( 2π
T1

t)2, B + C sin( 2π
T2

t))T ,
where the periods T1 and T2 are randomly selected in the range 0.1 − 0.8 s and the constants A, B and C are
randomly selected, with the constrain that the function values belong to the set U .

• 60 randomly generated inputs of duration T = 1 s.

For selecting the hyperparameters, we proceed by a trial-and-error approach. Aiming at a drastic reduction of
imensionality of the HF model, we set n = 2 internal variables for the ROM. For this choice we found that
wo hidden layers of 6 neurons each yield accurate results without a significant overfitting, as we will show later
Table 1). Concerning the weights of the loss function, we set, without loss of generality, wb = 1; indeed the

learning process is only affected by the ratio of the weights. For all the results of this paper, we set wc = 10−1 and
(in the case of weak imposition of the equilibrium condition) we = 10−1. This choice is driven by a compromise
between the satisfaction of the physics-based constraints and the minimization of the data-driven loss function.
However, our experience indicates that the learning outcome is not sensibly affected by the choice of wc and we,
unless much larger or smaller values are employed.

To evaluate the accuracy of the ROM, we build a testing set with a collection of step inputs, randomly generated
inputs and the physiological and pathological inputs described in Section 5.2. Moreover, in order to evaluate the
reliability of the ROM over time intervals longer than the one used for the training, we also test the ROM with
random inputs of duration T = 10 s.

Therefore, the ANN is trained based on the input–output pairs generated by the HF model under fundamental
regimes (step responses, frequency responses) and random inputs. Then, the learned model is tested on different
test cases, including physiological samples. If the ANN model, which has been exposed during the training stage
only to fundamental inputs, is able to reproduce the results of the HF model also for physiological inputs, we can
conclude that the ANN has really learned the dynamics of the system, and it is not simply interpolating between
a database of precomputed solutions.

In Table 1 we compare the training and testing errors obtained with and without imposition of the equilibrium
condition (in weak or strong form) and with or without imposition of the cycle condition. We conclude that the
best strategy consists in introducing in the learning process both the cycle condition and the equilibrium condition
(the latter with strong imposition). All the results shown in the rest of this paper have been obtained with the ANN
model built by means of the aforementioned strategy. For simplicity, we will refer to this model as the ANN model.
The trained ANN is publicly available online (see Appendix A).

5.2. Validation of the reduced model

We perform with the HF and the ANN models some of test cases typically employed to validate microscopic
cardiac force generation models and we check that the ANN model did not lose the capability of the HF model
to reproduce the experimentally observed features of cardiac force generation. The results, reported in Fig. 2 and
briefly commented in the next sections, show a remarkably good match.

5.2.1. Steady-state force–calcium–length relationships
An important characterization of muscle tissue models is the dependence of the steady-state force on the two

inputs, [Ca2+] and SL (see Figs. 2a and 2b respectively). The force–calcium relationship reveals the characteristic
i
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Table 1
Training and testing relative errors obtained by training the ANN model with or without imposition
of the equilibrium condition (in either weak or strong form) and with or without imposition of
the cycle condition.

Equilibrium condition Cycle condition Train error Test error

– – 1.62 × 10−2 2.66 × 10−2

Weak (we = 10−1) – 1.52 × 10−2 2.10 × 10−2

Strong – 1.70 × 10−2 3.10 × 10−2

Weak (we = 10−1) wc = 10−1 1.48 × 10−2 2.35 × 10−2

Strong wc = 10−1 1.44 × 10−2 1.97 × 10−2

sigmoidal shape, with a steep slope in proximity of half activation. An increase in SL leads to an increase of
plateau force and to an increase of calcium sensitivity, which translates in a leftward shift of the curve. Conversely,
the force–length relationship features increasing curves for SL < 2.2 µm, with a change of convexity as [Ca2+]i

ncreases (from convex to concave), and a plateau for SL > 2.2 µm (see e.g. [26–28]).

.2.2. Isometric twitches
Then, we consider isometric twitches, i.e. force transients in response to the calcium wave occurring at each

eartbeat, at constant SL . We impose the following calcium transient (from [12]):

[Ca2+]i(t) = [Ca2+]i,0 +
[Ca2+]i,peak − [Ca2+]i,0

β

[
e−

t−t0
τ1 − e−

t−t0
τ2

]
1t≥t0 , (9)

where

β =

(
τ1

τ2

)−

(
τ1
τ2

−1
)−1

−

(
τ1

τ2

)−

(
1−

τ2
τ1

)−1

and [Ca2+]i,0 = 0.1 µM, t0 = 0.1 s, τ1 = 0.02 s, τ2 = 0.11 s. In Fig. 2c, we set [Ca2+]i,peak = 1.2 µM and we
consider different values of SL . Conversely, in Fig. 2d, we set SL = 2 µm and we let [Ca2+]i,peak vary. In both
cases, by increasing either [Ca2+]i,peak or SL , three effects can be observed: (1) the peak force increases; (2) the
ctivation time is not significantly affected; (3) the relaxation time increases (see e.g. [82,83]).

.2.3. Sudden development of tension
Experiments show that the rate of tension development following a sudden rise of [Ca2+]i, starting from its

resystolic value of near 0.1 µM, increases with the calcium level [84–87]. To replicate this phenomenon, we apply
step change in calcium at different levels, with SL = 2.2 µm. The results are shown in Fig. 2e.

5.2.4. Isometric versus shortening twitches
The systolic contraction of the myocardium leads to a shortening of the muscle fibers and, as a consequence, to

a decrease of SL . Therefore, in the normal cardiac activity, shortening twitches, rather than isometric twitches, are
observed. To investigate the difference between the two settings, we consider the experimentally measured [Ca2+]i

and SL transients reported in [88]. The results of the simulation, shown in Fig. 2f, show that the decrease of SL
leads to a decrease of force peak and to a slight decrease of duration of activation (see e.g. [15,16]).

5.2.5. Long-term twitches
The normal cardiac activity features a nearly periodic behavior. To test the capability of our model to sustain a

periodic input after several cycles, we perform 10 s long simulations by applying the calcium transient (9), with
[Ca2+]i,peak = 1.1 µM and SL = 2 µm, with different periods, ranging from 0.3 to 1.5 s (see Fig. 2g). We notice
that for the highest frequency the wave summation phenomenon occurs, by which the effect of consecutive twitches
sums up in a sustained contraction state (see e.g. [15,16]).
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Fig. 2. Comparison between the results of the HF model (colored solid lines) and the ANN-based reduced model (black dashed lines) for
different test cases, discussed in Section 5.2. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

6. Three dimensional cardiac electromechanics

We present our approach to reduce the computational burden associated to the numerical approximation of
multiscale cardiac EM, where we describe force generation at the microscopic level by means of the reduced ANN
model developed in Section 5. First, we introduce the EM problem (Section 6.1) and its numerical discretization
(Section 6.2). Then, we illustrate our multiscale strategy (Section 6.3) and we assess the results, both in terms of
efficiency and accuracy with three test cases (Sections 6.4 and 6.5).
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6.1. The EM problem

We consider a reference computational domain Ω0, representing the left ventricle (LV) muscle tissue, and a final
ime T = 0.8 s (the characteristic duration of a heartbeat). We define the following functions, defined over the
pace–time domain Ω0 × [0, T ] (in the following the dependence on (x, T ) will be implicit): the transmembrane
otential v, the ionic variables w, the activation variables Z and the displacement d. By using a standard notation,
e denote by F = I + ∇d the deformation gradient in the reference configuration and by J = det F its Jacobian.
o account for the anisotropic properties of the cardiac tissue, we define a local frame of reference by means of

he mutually orthogonal vector fields f0, s0 and n0, denoting respectively the fibers direction, the sheets directions
nd a direction normal to the previous ones [89].

.1.1. Electrophysiology
To model the propagation of the action potential, we consider the monodomain equation, which reads (see

.g. [90,91]):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

χm

(
Cm

∂v

∂t
+ I ion(v, w)

)
= ∇ ·

(
J F−1DmF−T

∇v
)
+ Iapp in Ω0 × (0, T ]

∂w
∂t

= h(v, w) in Ω0 × (0, T ](
J F−1DmF−T

∇v
)
· N = 0 on ∂Ω0 × (0, T ]

v = v0, w = w0 in Ω0 × {0},

(10)

here N denotes the outer normal versor at the surface. The functions I ion and h are specified according to the
onic model. In this work we consider the ten Tusscher–Panfilov model with 18 variables in the M cells setting [92].
o reduce the number of parameters, we divide the first equation by the membrane surface to volume ratio χm and
y the membrane capacitance Cm , obtaining:

∂v

∂t
+ Ĩ ion(v, w) = ∇ ·

(
J F−1D̃mF−T

∇v
)
+ Ĩapp

where Ĩ ion
= C−1

m I ion, Ĩapp
= C−1

m χ−1
m Iapp and D̃m = C−1

m χ−1
m Dm . To account for the anisotropic properties of

the tissue, we write the diffusion tensor as D̃m = σiso(I − f0 ⊗ f0) + σf f0 ⊗ f0. The electrical signal is triggered
y the applied current Ĩapp. In this work, we do not explicitly model the Purkinje network and consider instead a
ollection of points x1, . . . , xNp where the electrical stimulus is applied, yielding

Ĩapp(x, t) = Imax
Np∑
j=1

exp
(

|x − x j |
2

δ2

)
1[0,tapp](t).

6.1.2. Cardiac tissue activation
Among the ionic variables of the ten Tusscher–Panfilov model, there is the intracellular calcium concentration.

To recover the other input variable of the cardiac activation model proposed in [14], namely the local sarcomere
length SL , we assume that the sarcomere deformation is proportional to the local deformation in the fiber direction,
i.e. SL = SL0

√
I4, f , where I4, f = Ff0 · Ff0. To regularize the I4, f field, which may be irregular, especially on

oarse FEM computational meshes, we define SL as solution of the following differential problem:{(
SL − SL0

√
I4, f

)
− δ2

SL∆SL = 0 in Ω0 × (0, T ]

δ2
SL∇SL · N = 0 on ∂Ω0 × (0, T ]

(11)

where δSL is the regularization parameter. Then, the activation equation, by employing the model proposed in [14],
reads:⎧⎨⎩

∂Z
∂t

= F(Z, ([Ca2+]i, SL)T ) in Ω0 × (0, T ]

Z(0) = Z0 in Ω0 × {0}.
(12)

The active tension field is then computed as T = T G(Z)
a
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.1.3. Mechanics
The balance of momentum written in the reference domain reads as follows (see e.g. [93]):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ
∂2d
∂t2 − ∇ · P(d) = 0 in Ω0 × (0, T ]

P(d)N + (N ⊗ N)

(
K epi

⊥
d + Cepi

⊥

∂d
∂t

)
+ (I − N ⊗ N)

(
K epi

∥
d + Cepi

∥

∂d
∂t

)
= 0 on Γ

epi
0 × (0, T ]

P(d)N =
∥JF−T N∥∫

Γbase
0

∥JF−T N∥dΓ0

∫
Γ endo

0

pJF−T NdΓ0 on Γ base
0 × (0, T ]

P(d)N = −pJF−T N on Γ endo
0 × (0, T ]

d = d0,
∂d
∂t

= ḋ0 in Ω0 × {0},

(13)

where the total Piola–Kirchhoff stress tensor P is split, by adopting an active stress approach [94], into a passive
and an active contribution as P = Ppass

+ Pact. The passive term is defined as the differential of the hyperelastic
energy W with respect to the deformation gradient (Ppass

=
∂W
∂F ). We consider a quasi-incompressible exponential

aterial model [95] with the hyperelastic energy defined by

W =
C
2

(
eQ

− 1
)
+

B
2

(J − 1) log J

Q = b f f E2
f f + bss E2

ss + bnn E2
nn

+ b f s
(
E2

f s + E2
s f

)
+ b f n

(
E2

f n + E2
n f

)
+ bsn

(
E2

sn + E2
ns

)
,

(14)

where Eab = E a0 ·b0, for a, b ∈ { f, s, n}, are the entries of the Green–Lagrange strain tensor E =
1
2 (C − I) in the

f0, s0, n0) frame of reference and B is the bulk modulus. On the other hand, the active stress tensor is defined as:

Pact
= Ta

Ff0 ⊗ f0√
I4, f

.

To model the effect of pericardium on the cardiac wall, we set generalized Robin boundary conditions at the
epicardium Γ

epi
0 (see [89,96]). The boundary condition at the base, accounting for the effect of the neglected part

of the domain on the artificial boundary Γ base
0 , is derived in Appendix C. Finally, the action of the fluid at the

endocardium (Γ endo
0 ) is modeled by the pressure p(t) (see below).

6.1.4. Blood external circulation
To close the problem, the LV activity must be coupled with the external circulation. With this aim, we consider

a lumped description, as done in [89], consisting of four phases, where we conventionally start with systole:

1. In the isovolumetric contraction phase, the pressure p(t) starts from its end-diastolic value ( p̄ED) and then
raises in such a way that the ventricular volume V is kept constant.

2. When p(t) reaches the aortic valve opening pressure value p̄AVO (we define such time instant as t = T AVO),
the ejection phase starts. In this phase, the evolution of p(t) is modeled by a two-elements Windkessel
model [97] as:⎧⎨⎩Ccirc

dp
dt

= −
p

Rcirc
−

dV
dt

t ∈ (T AVO, T AVC]

p(T AVO) = p̄AVO

(15)

where T AVC (aortic valve closing time) is the first time, after T AVO, when the negative flux dV
dt changes sign.

3. At this stage, another isovolumetric phase begins. This phase ends when p(t) reaches p̄MVO, the value of the
mitral valve opening pressure.

4. In the filling phase, we linearly increase p(t) so that it reaches p̄ at final time T .
ED
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To compute the ventricular volume V we employ the following formula, that is derived in Appendix B:

V (t) =
1
3

∫
Γ endo

0

J (t) (X + d(t) − b(t)) · F−T (t)N dΓ0,

here

b(t) =
1⏐⏐Γ base
0

⏐⏐
∫
Γbase

0

(X + d(t))dΓ0.

.1.5. The coupled EM problem
We report here for completeness the coupled EM problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χm

(
Cm

∂v

∂t
+ I ion(v, w)

)
= ∇ ·

(
J F−1DmF−T

∇v
)
+ Iapp in Ω0 × (0, T ]

∂w
∂t

= h(v, w) in Ω0 × (0, T ](
J F−1DmF−T

∇v
)
· N = 0 on ∂Ω0 × (0, T ]

v = v0, w = w0 in Ω0 × {0}(
SL − SL0

√
I4, f

)
− δ2

SL∆SL = 0 in Ω0 × (0, T ]

δ2
SL∇SL · N = 0 on ∂Ω0 × (0, T ]

∂Z
∂t

= F(Z, ([Ca2+]i, SL)T ) in Ω0 × (0, T ]

Z(0) = Z0 in Ω0 × {0}

ρ
∂2d
∂t2 − ∇ ·

(
Ppass(d) + T G(Z)

Ff0 ⊗ f0√
I4, f

)
= 0 in Ω0 × (0, T ]

P(d)N + (N ⊗ N)

(
K epi

⊥
d + Cepi

⊥

∂d
∂t

)
+ (I − N ⊗ N)

(
K epi

∥
d + Cepi

∥

∂d
∂t

)
= 0 on Γ

epi
0 × (0, T ]

P(d)N =
∥JF−T N∥∫

Γbase
0

∥JF−T N∥dΓ0

∫
Γ endo

0

pJF−T NdΓ0 on Γ base
0 × (0, T ]

P(d)N = −pJF−T N on Γ endo
0 × (0, T ]

d = d0,
∂d
∂t

= ḋ0 in Ω0 × {0},

(16)

here the endocardial pressure p has to be determined, depending on the cardiac cycle phase, either as Lagrange
ultiplier for the isovolumetric phases, or as solution of the circulation model (15). In Table 2 we report the full

ist of parameters used in the EM model.

.2. Numerical discretization

For the spatial discretization of the first equation of Eq. (10), for Eqs. (11)–(13) and for the generation of fibers
elds, we employ P1 linear Finite Elements on a tetrahedral mesh. Moreover, we discretize the ionic variables w

and the activation variables Z by means of P1 linear Finite Elements, and we solve the associated ODE models
(i.e. the equation for w of Eqs. (10) and (12)) at each nodal point of the computational mesh. As for the time
discretization, we consider a uniform subdivision 0 = t0 < t1 < · · · < tM = T of the time interval [0, T ] with
step ∆t = 2 × 10−4 s. To denote the unknown at the kth time step, we use a superscript (e.g. v(k)

≈ v(tk)). For the
discretization of time derivatives, we use first order finite difference schemes [81].
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able 2
arameters of the EM problem.

Variable Value Unit Description

Electrophysiology
σf 1.204 × 103 mm2 s−1 Normalized electrical diffusivity in fiber direction
σiso 0.1761 × 103 mm2 s−1 Normalized electrical diffusivity in transverse direction
Imax 100 V s−1 Applied current value
δ 14 mm Applied current radius
tapp 2 × 10−3 s Applied current duration

Activation
T 700 kPa Active tension per unit area if y = 1
SL0 2.0 µm Reference sarcomere length
δSL 5 mm SL regularization radius

Mechanics
ρ 1 × 103 kg m−3 Tissue density
B 50 kPa Bulk modulus
C 2 kPa Material stiffness
b f f 8 – Hyperelastic parameter
bss 6 – Hyperelastic parameter
bnn 3 – Hyperelastic parameter
b f s 12 – Hyperelastic parameter
b f n 3 – Hyperelastic parameter
bsn 3 – Hyperelastic parameter
K epi

⊥
2 × 10−1 kPa mm−1 Robin boundary condition

Cepi
⊥

2 × 10−2 kPa s mm−1 Robin boundary condition
K epi

∥
2 × 10−2 kPa mm−1 Robin boundary condition

Cepi
∥

2 × 10−3 kPa s mm−1 Robin boundary condition

Circulation
Rcirc 3.5 × 10−2 Pa s mm−3 Windkessel model parameters
Ccirc 4.5 mm3 Pa−1 Windkessel model parameters
p̄ED 1.333 kPa End-diastolic pressure
p̄AVO 9.333 kPa Aortic valve opening pressure
p̄MVO 0.667 kPa Mitral valve opening pressure

To couple the different models, we employ the segregated strategy presented in [98]. Specifically, at each time
step tk , we orderly perform the following steps:

I. We update the ionic variables of the ten Tusscher–Panfilov model [92], with an IMEX scheme, to deal with
the stiff nature of the equations.

II. We update the potential field v(k) by solving the monodomain equation (Eq. (10)), with implicit treatment of
the potential and by employing an extrapolation of the displacement d consistent with the order of the time
derivative discretization.

III. We recover the local sarcomere length by solving Eq. (11) and we update the activation variables by solving
Eq. (12), with explicit treatment of the unknown Z. Since the solution of the activation model requires a
smaller time step (2.5 × 10−5 s), at this step we perform an inner iteration.

IV. We update the displacement by Eq. (13), with implicit treatment of the unknown d(k). To deal with the
nonlocal nature of the boundary condition on Γ base

0 , we adopt a quasi-Newton strategy, by computing the
Jacobian matrix only with respect to the local terms. In the isovolumetric phases of the heartbeat, we solve
Eq. (13) together with the equation V (k)

= V (k−1). This is a saddle-point problem in the unknowns d(k) and
p(k) and we solve it by Schur complement reduction [99]. On the other hand, during the ejection phase, the
pressure is updated before solving the mechanical problem with an implicit treatment of p. In Test Case 3, to
lower the computational burden due to the fine mesh, for the solution of the mechanical problem we employ
a 5 times larger time step (see [98,100]).
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Fig. 3. Test Case 1: comparison of the displacement field (at different time steps) between the simulations performed by the HF activation
model and by the ANN model. For visualization purposes, the domain is split into two identical subregions: in the left subregion, the solution
obtained with the HF activation model is shown; in the right subregion, the solution obtained with the ANN-based activation model.

6.3. ANN-based efficient EM simulations

The computational cost associated with the numerical approximation of the EM problem is strongly affected by
the solution of the 2176-variables activation model (12), both in terms of memory storage and computational time
(we provide quantitative indications in Sections 6.4–6.5). To lower such computational burden, we replace the HF
activation model (12) with its surrogate given by the 2-variables ANN model (3). This can be easily done thanks
to the fact that the two models share the same inputs and outputs. In the following, we compare the results of EM
simulations obtained by employing the HF activation model and by employing the ANN model, which we will
respectively denote by HF-EM and ANN-EM.

6.4. Test Case 1: cardiac slab

We consider a slab of cardiac tissue, defined by the computational domain Ω0 = (0, 40 mm) × (0, 20 mm) ×

(0, 8 mm). We consider a fiber field f0 = e1 aligned as the x-axis and a sheet field s0 = e3 aligned as the z-axis. We
consider a unique stimulus location x1 = (0, 0, 0)T (point A of Fig. 4). Due to the simple domain employed, in this
test case the three boundaries (Γ base

0 , Γ epi
0 and Γ endo

0 ) are not defined. Thus, we change the boundary conditions of the
mechanical problem (13), by imposing d · N = 0 and a no-stress condition in tangential direction on the three faces
passing through the origin (i.e. {x : x · e j = 0}, for j = 1, 2, 3). In the remaining subset of the boundary, we impose
a generalized boundary condition with K⊥ = 5 × 10−1 kPa mm, C⊥ = 1 × 10−1 kPa mm and K∥ = C∥ = 0.

We consider a structured computational mesh with a uniform subdivision in 16, 8 and 3 elements along the
cartesian directions x, y, and z, respectively, for a total of 2304 tetrahedra and 612 dofs. In Figs. 3–4 we show a
comparison between the HF-EM and the ANN-EM results. The computational costs are compared in Table 4.

6.5. Test Cases 2 and 3: idealized and patient-specific left ventricle

We consider an idealized LV (Test Case 2) and a realistic LV derived from the Zygote CAD [101] (Test case 3).
The idealized computational mesh consists of 6500 tetrahedra and 1827 degrees of freedom (see Fig. 5a), whereas
the patient-specific one accounts for 354 ·103 tetrahedra and 65 ·103 degrees of freedom (see Fig. 5b). The electrical
stimulus Iapp is applied at three points, located on the endocardial surface close to the apex. We generate the

◦
fibers and sheets distribution according to the rule-based algorithm proposed in [102], by setting αendo = −60 ,
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Fig. 4. Test Case 1: comparison of the time course of quantities of interest in three points (indicated in the top image) obtained with the
simulations performed with HF-EM (solid colored lines) and with ANN-EM (black dashed lines).

Fig. 5. LV computational meshes of Test Case 2 and 3.

αepi = +60◦. The fibers, sheets and normal fields are displayed (just for the patient-specific geometry) in Fig. 6. In
Test Case 2 we set the parameter T to 480 kPa, to obtain realistic pressure values.

The stress–strain relationship defined by (14) is referred to the natural configuration. However, in practical
pplications, the natural stress-free configuration is unknown since an internal pressure p is always present in each
hase of the heartbeat. In Test Case 2, we assume that the computational domain is referred to the end dyastolic
hase. Therefore, we recover the natural configuration as the domain such that by applying the pressure p = p̄ED,
one recovers the given computational domain as steady-state solution. Then, we employ such deformation as initial
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Fig. 6. Test Case 3: representation of fibers, sheets and normal fields. Three sections in the apico-basal direction allow to appreciate the
transmural variation of fibers orientation.

Fig. 7. Test Case 3: transmembrane potential at different times.

Fig. 8. Test Case 3: intracellular calcium concentration at different times.

condition for the mechanical problem (13). On the other hand, as the computational domain of Test Case 3 is
associated to a phase of the heart cycle such that the diastolic filling is not fully completed (more precisely, the
beginning of the atrial kick), we recover the natural configuration by assuming that the computational domain is
at equilibrium with an intermediate pressure between p̄ED and the pressure at the end of the second isovolumetric
phase (specifically we take p = 5.6 mmHg). Then, we passively inflate the ventricle until we reach the pressure
p̄ED, and we employ the obtained displacement as initial condition for the mechanics problem (13).

In Figs. 7 and 8 we show the propagation of the v and the c fields, respectively, for Test Case 3. The active
tension field Ta is visualized, at different time steps, in Fig. 9, where three sections at different quotes along the
apex-base coordinate allow to appreciate the distribution of active stress across the transmural coordinate. In Fig. 9
we also report the spatial distribution of the relative error between the active tension fields obtained with the HF-EM
and the ANN-EM paradigms. The results are commented in Section 7. Finally, in Fig. 10 (Test case 2) and in Fig. 11
(Test case 3), we show the displacement field and the contraction of the LV. The top and frontal sections highlight
the torsion that the LV undergoes during the heartbeat and the wall thickening.
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Fig. 9. Test Case 3: active tension at different times obtained with HF-EM (first row) and ANN-EM (second row) and the corresponding
relative error (third row).

Table 3
Test Cases 2 and 3: main cardiac indicators. Comparison between the HF-EM and the ANN-EM
frameworks and corresponding relative errors.

Indicator HF-EM ANN-EM Relative error

Test Case 2 (idealized LV, 1827 dof)
Stroke volume (mL) 63.33 63.57 3.71 × 10−3

Ejection fraction (%) 46.63 46.80 3.71 × 10−3

Maximum pressure (mmHg) 112.96 113.91 8.38 × 10−3

Work (mJ) 766 773 9.08 × 10−3

Test Case 3 (patient-specific LV, 65476 dof)
Stroke volume (mL) 56.64 56.39 4.33 × 10−3

Ejection fraction (%) 44.48 44.29 4.33 × 10−3

Maximum pressure (mmHg) 108.94 109.10 1.52 × 10−3

Work (mJ) 662 659 4.85 × 10−3

Then, in Fig. 12 (Test case 2) and Fig. 13 (Test case 3), we compare the results obtained within the HF-EM and
the ANN-EM paradigms. In the top row, we show the time evolution, of the average, minimum and maximum values
over the domain of [Ca2+]i, SL and Ta . In the bottom row we show the time evolution of the macroscopic quantities
p and V and the LV pressure–volume loop. All the curves show a good match between the results obtained in the
HF-EM and the ANN-EM paradigms.
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(

Fig. 10. Test Case 2: deformed geometry and magnitude of displacement at different times. Top row: full geometry. Middle row: half domain
top view). Bottom row: half domain (frontal view).

Table 4
Comparison of the computational times associated to the four physics and the total wall time
between HF-EM and ANN-EM, for both test cases.

Simulation type Ionic Potential Activation Mechanics Wall time

Test Case 1 (cardiac slab, 612 dof, 1 core)
HF-EM 6.3% 0.3% 89.0% 4.5% 3 h 16′

ANN-EM 53.0% 2.7% 3.3% 41.1% 22′

Test Case 2 (idealized LV, 1827 dof, 1 core)
HF-EM 4.27% 0.29% 91.94% 3.40% 9 h 31′

ANN-EM 53.38% 3.31% 3.74% 39.57% 46′

Test Case 3 (patient-specific LV, 65476 dof, 20 cores)
HF-EM 3.14% 0.47% 83.07% 13.33% 20 h 18′

ANN-EM 41.21% 4.80% 2.54% 51.46% 2 h 04′

The main cardiac biomarkers, some of them clinically meaningful, computed in the HF-EM and ANN-EM
paradigms, are reported in Table 3. For all the biomarkers, the error between HF-EM and ANN-EM is even smaller
than the train and the test error associated with the ANN model. We will comment on this in Section 7.

Finally, in Table 4, we report the computational times associated with the numerical approximation of the EM
problem in the HF-EM and in the ANN-EM paradigms. For Test Case 2, a single core was employed, whereas for
Test Case 3 simulations were run in parallel on 20 cores.

7. Discussion

7.1. Computational gain

The ANN-EM paradigm accomplishes a significant reduction of the computational cost of the HF-EM paradigm.
The solution of the activation model, which accounts for most of the computational time of the whole simulation,



F. Regazzoni, L. Dedè and A. Quarteroni / Computer Methods in Applied Mechanics and Engineering 370 (2020) 113268 21

(

h
o

Fig. 11. Test Case 3: deformed geometry and magnitude of displacement at different times. Top row: full geometry. Middle row: half domain
top view). Bottom row: half domain (frontal view).

Fig. 12. Test Case 2: comparison of the time evolution of quantities of interest and of the pressure–volume loop obtained with the simulations
performed with HF-EM (solid colored lines) and with ANN-EM (black dashed lines). In (a)–(b)–(c) the three lines show the time evolution
of the minimum, maximum and mean values of [Ca2+]i, SL and Ta over the computational domain.

ighlights a gain nearly of a factor 300 in all test cases, reducing the overall computational times by one order
f magnitude. The computational speedup is slightly smaller for finer grids, for which the relative weight of
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Fig. 13. Test Case 3: comparison of the time evolution of quantities of interest obtained in the HF-EM and the ANN-EM frameworks (see
caption of Fig. 12).

the mechanical subproblem is more pronounced. However, whereas the approximation of the electrophysiology
subproblem (10) requires a finer grid for the convergence of the solution [6], the computational mesh used in Test
Case 3 features a large enough number of elements to get accurate results for the mechanics subproblem (13) and
to capture the complexity of patient-specific domains [6,38]. Therefore, since when different meshes are employed
for the different physics the activation subproblem (12) is typically solved on the mesh used for the mechanics [6],
we expect that the speedup obtained in Test Case 3 is representative for the computational gain one can obtain for
HF simulations of patient-specific EM.

With the ANN-EM approach, the number of variables for each degree of freedom of the domain is 24 (18 ionic
variables, the transmembrane potential, 2 activation variables, 3 components of the displacement), significantly lower
than the number of variables with the HF-EM approach (18 + 1 + 2176 + 3 = 2198).

Finally, we remark that in this work we considered a staggered approach [98,100], where the four different
physics are solved in sequence. The results could vary with other numerical coupling approaches. In particular,
with a monolithic approach (where the 4 physics are solved simultaneously in a strongly coupled manner [89]), the
computational gain is expected to be even greater since the size of the Jacobian matrix scales as the square of the
number of variables.

7.2. Approximation accuracy

The zero-dimensional simulations obtained with the reduced ANN model (see Section 5.2) are accurate with
respect to the ones obtained with the HF model (relative error of order 10−2). Nevertheless, when the activation
model is embedded in the EM coupled system, the model output (i.e. active force) has a feedback not only on
its inputs (mostly on SL , as it causes the tissue contraction, but also on [Ca2+]i, due to the mechano-electrical
feedback). Therefore, one should check whether such feedback has the effect of amplifying the error introduced by
the ANN reduced model, or not.

Numerical results show that the errors are kept under control when the ANN model is embedded in a EM setting.
The largest error between the active tension obtained with the ANN-EM and the HF-EM paradigms is attained at
the time of maximum activation (i.e. t = 0.1 s), as shown in Fig. 9. A deeper analysis reveals that the discrepancy
between the two results is related to a small anticipation (nearly 5 × 10−3 s) in the activation dynamics obtained
in the ANN-EM paradigm with respect to that obtained with the HF-EM one. We believe that this is due to the
time-discretization error associated to the training phase, during which a larger time-step (∆t = 1 × 10−2 s) than
the one used for the EM simulation (∆t = 2 × 10−4 s) is employed. We plan to investigate this aspect in future
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orks. Nonetheless, the small anticipation of the active stress peak does not compromise the quality of the results.
s a matter of fact, the errors associated to the main cardiac biomarkers (order of 10−3) are dampened by one order
f magnitude with respect to the errors obtained with zero-dimensional simulations of the activation model alone.
ndeed, the feedback of mechanics on activation has a favorable effect: a positive deviation of active tension leads to
larger shortening of the tissue (i.e. lower SL), which, in turn, makes the active tension decrease, compensating the

nitial error in Ta . This is a consequence of the fact that the heart works on the ascending limb of the force–length
elationship (on the descending limb, which occurs when the tissue is over-stretched, we would have the opposite
ffect). It is indeed recognized [15,16] that the advantage of this fact lies in an enhanced stability in the contraction
f the heart. In Appendix D we prove, in a simplified one-dimensional setting, that the error in the ANN-EM setting
with respect to HF-EM) is lower than the error of the ANN model alone (with respect to the HF model).

.3. Comparison with phenomenological models

The ANN model is built from data generated by the HF model. This is somehow similar to the way the so-called
henomenological models, i.e. models built by fitting the experimental observations with a few number of variables
see e.g. [32–34,36]), are built. A natural question is how those models compare with the ANN model.

Building a model consists in the solution of an inverse problem: starting from experimental observations, one
ooks for a law, written in mathematical terms, and a set of parameters describing the phenomenon that generated the
bservations themselves. However, experimental data are typically noisy and defective. This is particularly evident
n the case considered in this work, due to the microscopic scale at which force is generated and to the intrinsic
ifficulties in performing experimental measurements of the internal properties of myofilaments without damaging
hem [25,26,28]. In the context of inverse problems and statistical learning, the action of compensating for noise
nd deficiency of data is known as regularization (see e.g. [103,104]). Regularization is typically performed either
y suitable penalization of the unknown variables, or by restricting the set of candidate solutions [105].

Phenomenological models are derived by finding the best fit of experimental data with a simple law chosen
priori. Such a priori assumptions allow for a lumped description of the phenomenon with a small number of

arameters to be tuned from experimental data. This is crucial, due to the noisy and defective nature of data. In
act, such a priori assumptions are a way of performing regularization. For instance, to reproduce the nonlinear
esponse of activation to calcium concentration – consequence of the nearest-neighborhood interaction within units

without explicitly representing the units themselves, a power law dependence on [Ca2+]i is typically assumed,
nd the exponent is estimated by fitting experimental data. However, this law has a phenomenological basis and it
s not derived by first principles [34].

With our approach, instead, regularization is performed during the construction of the HF model thanks to
he introduction of physics first principles and to a detailed description of the microscopic arrangement of the
ontractile system. In such a way, indeed, the set of possible relationships among the variables is restricted to those
atisfying some physical principles. However, a detailed physics-based description leads to complex models (in
he previous example, a biophysically-detailed description of nearest-neighborhood interactions within units is not
ossible without a spatially-explicit description of the filament). On the other hand, establishing a model on physics
rinciples clearly enhances its predictive power. Then, in a second stage, the ROM is learned from the HF model,
hich does not suffer from the problems affecting experimental data: training data can be generated from the HF
odel without noise and without constraints on the quantity. This allows to fit data within a much wider class of

andidate solutions (specifically, we fit training data with ANN-based models, which are able to virtually represent
ll ODE models, if a sufficient number of neurons is used, as proved in [13]).

To summarize, whereas phenomenological models are directly derived from experimental observations, with our
pproach the process is split into two stages. First, we build an HF model, by compensating for the deficiency and
ad quality of experimental data thanks to physics. Then, in a second stage, we build a ROM, by fitting data (no
ore noisy or defective) generated by HF model. Thus, the ROM should be seen merely as a way of efficiently

olving the physics-based model itself.
A further advantage of building a model on the ground of a microscopical description is this allows to investigate

he effects of microscopical properties on the macro-level tissue features (e.g. study the effect of drugs affecting the
inding rate of myofilament proteins), whereas the parameters of phenomenological models may not have a clear
hysical interpretation.



24 F. Regazzoni, L. Dedè and A. Quarteroni / Computer Methods in Applied Mechanics and Engineering 370 (2020) 113268

i
r
m

D

c
m

A

H
M
M
G

A

g

T
o

h

a
h

8. Conclusions

We proposed a novel strategy to reduce the computational burden of cardiac multiscale EM simulations, wherein
the intrinsically complex subcellular mechanisms leading to the activation of the muscular tissue make it difficult
to trade off the detail of description of activation models (and thus their reliability) with computational efficiency.
Specifically, we built an ANN-based ROM of a complex and detailed model of cardiac activation, featuring more
that 2000 variables. This operation, thanks to the scale separation between the organ and the myofilaments, can be
performed offline, without any dependence on the three-dimensional setting where we later embed the ROM. The
ANN learns, within a gray-box approach, the dynamics of the HF model from a collection of input–output pairs,
generated by the HF model itself, combined with some a priori knowledge, enforced during the learning process. In
such a way we have derived a 2-variables ROM, capable of reproducing the results of the HF model with a relative
error of about 10−2. Moreover, we have validated the results of the ANN-based model, by checking that it is still
able to reproduce the experimental characterizations that the HF model can reproduce.

By employing the ANN-based ROM in the context of multiscale EM, the computational time associated to the
solution of the activation subproblem is reduced by nearly 300 times, leading – in the case of the computational
grids employed in this work – to a one order of magnitude decrease of the overall computational time required to
approximate the EM problem. Moreover, the number of variables for each degree of freedom reduces from 2198
to just 24, a significant gain, especially when large-scale simulations are addressed. Remarkably, thanks to the
stabilizing effect of the SL feedback on the activation dynamics, the relative error in the main cardiac biomarkers
introduced by employing the ANN-based ROM in the context of EM is just of about 10−3. We conclude that,
n virtue of the offline ANN learning of the complex activation subproblem, a very favorable balance between
eliability and computational efficiency is achieved, without any compromise on the details of description of the
icroscopic phenomena pertaining to the generation of force.
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ppendix A. The ANN-based model

The ANN-based model considered in this paper can be written in the form of (3), where the right hand side is
iven by the following ANN:

f(z, u) = W2 tanh (W1 tanh (W0(zT , uT )T
− ϑ0) − ϑ1) − ϑ2.

he application of the operator tanh has to be intended componentwise. The value of the weight matrices W j and
f the bias vectors ϑ j (where j = 0, 1, 2) are made available in the following online repository, together with

MATLAB and PYTHON codes to perform numerical simulations with the ANN model:
ttps://github.com/FrancescoRegazzoni/cardiac-activation-ann

The training of the ANNs has been carried out with the MATLAB library model-learning, which is also
vailable online [106]:

ttps://github.com/FrancescoRegazzoni/model-learning

https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/cardiac-activation-ann
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
https://github.com/FrancescoRegazzoni/model-learning
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ppendix B. Ventricular volume computation

In order to compute the ventricular volume V (i.e. the volume of the ventricular cavity), we proceed as follows.
irst, we identify the center point of the base as:

b(t) =
1⏐⏐Γ base
0

⏐⏐
∫
Γbase

0

(X + d(t))dΓ0,

here X denotes the material coordinate. Then, we close the ventricular cavity by the surface Γ
cap
t , defined as the

urface connecting the point b(t) with the orifice ring. The ventricular volume is thus defined as the measure of
the volume Ωfluid

t , delimited by Γ endo
t and Γ

cap
t . By exploiting the identity ∇ · (x − b(t)) = 3, where x denotes the

patial coordinate, we have:

3V (t) =

∫
Ωfluid

t

3 dx =

∫
Ωfluid

t

∇ · (x − b(t)) dx

=

∫
Γ endo

t

(x − b(t)) · n(t) dΓ +

∫
Γ

cap
t

(x − b(t)) · n(t) dΓ ,

here n(t) and N denote the outer normal at the surface in the actual and reference domains respectively. Since,
y construction, (x − b(t)) ⊥ n(t) on Γ

cap
t , the second term vanishes, leading to the formula:

V (t) =
1
3

∫
Γ endo

0

J (t) (X + d(t) − b(t)) · F−T (t)N dΓ0,

ppendix C. Boundary conditions for the mechanics problem

The base Γ base
0 is an artificial boundary and, as such, it must be provided with boundary conditions which account

for the effect of the neglected part of the domain on the considered part. We respectively denote by Ω̃t and Ω̃fluid
t

he solid and fluid domains located above the base, and by Γ̃ endo
t , Γ̃ epi

t the endocardial end epicardial surfaces
located above the base. By considering a quasistatic approximation and by denoting the Cauchy stress tensor by
T = Tpass

+ Tact, the momentum equation in the current configuration entails:

0 =

∫
Ω̃t

∇ · T dx =

∫
∂Ω̃t

Tn dΓt =

∫
Γ̃

epi
t

Tn dΓt +

∫
Γ̃ endo

t

Tn dΓt +

∫
Γ̃base

t

Tn dΓt .

e assume that the epicardial surface located above the base is unloaded [96], that is Tn = 0 on Γ̃
epi
t . On Γ̃ endo

t ,
hich is in contact with the fluid, we have Tn = −pn. Moreover, we have the following identity:

0 =

∫
Ωfluid

t ∪Ω̃fluid
t

∇ p dx =

∫
Γ endo

t

pn dΓt +

∫
Γ̃ endo

t

pn dΓt ,

hich entails:∫
Γbase

t

Tn dΓt = −

∫
Γ̃base

t

Tn dΓt =

∫
Γ endo

t

pn dΓt =

∫
Γ endo

0

p JF−T n dΓ0. (17)

q. (17) allows to derive the total stress applied on the boundary Γ base
t , but not its pointwise distribution. This is

he price to pay as we do not explicitly include the domain Ω̃t into the EM model. Nonetheless, if we assume that
he stress is uniformly distributed, we get:

Tn = |Γ base
t |

−1
∫
Γ endo

0

p JF−T n dΓ0 on Γ base
t , (18)

hich reads, in the reference configuration:

PN =
∥JF−T N∥∫

Γbase
0

∥JF−T N∥dΓ0

∫
Γ endo

0

pJF−T NdΓ0 on Γ base
0 . (19)

e notice that thanks to Eq. (19) the net force exerted by the fluid on the solid is null since the stress on Γ base
0

erfectly balances the stress exerted on Γ endo
0 . This is coherent with the hydrostatic nature of the pressure force,

hich contributes to the energy of the system, but not to its momentum.
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To further validate the consistency of the newly introduced boundary condition (19), we consider the energetic
balance of the LV. With this purpose, we multiply the first equation of Eq. (13) by ∂d

∂t and we integrate over Ω0,
getting:∫

Ω0

ρ
∂2d
∂t2 ·

∂d
∂t

dX +

∫
Ω0

P(d) : ∇
∂d
∂t

dX −

∫
∂Ω0

P(d)N ·
∂d
∂t

dΓ0 = 0. (20)

he first term of Eq. (20) provides the time derivative of the kinetic energy, defined as K(t) =
∫
Ω0

ρ
⏐⏐ ∂d

∂t

⏐⏐2 dX. By
recalling the additive splitting of the Piola tensor as P = Ppass

+ Pact, the second term of Eq. (20) gives rise to two
terms, namely:

•
∫
Ω0

∂W
∂F : ∇

∂d
∂t dX =

d
dt

∫
Ω0

W(F) dX, the time derivative of the total hyperelastic energy;
• Π act(t) =

∫
Ω0

Pact
: ∇

∂d
∂t dX, the total power produced by the microscopic active tension in the considered

ventricular tissue.

Finally, in the last term of Eq. (20) we replace, in each part of the boundary ∂Ω0, the term P(d)N by the associated
oundary conditions, according to Eq. (13). In conclusion, we obtain the following balance:

dK(t)
dt

+
dE(t)

dt
+ Π act(t) + Π press(t) + Π diss(t) = 0, ∀ t ∈ (0, T ], (21)

where we have defined the total elastic energy as the sum of the volumetric hyperelastic energy and the energy
stored by the pericardium:

E(t) =

∫
Ω0

W(F) dX +
1
2

∫
Γ

epi
0

[
K epi

⊥
∥d · N∥

2
+ K epi

∥
∥(I − N ⊗ N) d∥

2
]

dΓ0.

Conversely, the following nonnegative term corresponds to the power dissipated by viscous interaction with the
pericardium:

Π diss(t) =

∫
Γ endo

0

[
Cepi

⊥

∂d
∂t

· N
2

+ Cepi
∥

(I − N ⊗ N)
∂d
∂t

2
]

dΓ0 ≥ 0.

inally, the following term represents the power exerted by the blood in the ventricular cavity through the pressure
p(t):

Π press(t)

= p(t)

[∫
Γ endo

0

JF−T N ·
∂d
∂t

dΓ0 −

∫
Γbase

0
∥JF−T N∥

∂d
∂t dΓ0∫

Γbase
0

∥JF−T N∥dΓ0
·

∫
Γ endo

0

JF−T NdΓ0

]
.

(22)

e now check that the value of Π press(t) of Eq. (22), derived from the boundary condition (19), is consistent with
he formula Π press(t) = p(t) dV (t)

dt , corresponding the power exerted by the pressure p(t) inside a cavity with volume
V (t) [107]. With this aim, we compute the time derivative of the volume enclosed by the considered domain, given
by:

dV (t)
dt

=
d
dt

∫
Ωfluid

t

1 dx =

∫
Γ endo

t

∂d
∂t

· N dx +

∫
Γ

cap
t

∂d
∂t

· N dx, (23)

here we have used the Reynolds transport theorem [108]. With Γ
cap
t we denote the surface enclosed by the orifice

ring. Since its motion is not directly tracked by the variables of problem (16), we estimate it by the motion of the
ventricular base. Specifically, we assume that the velocity on Γ

cap
t is equal to the integral mean velocity on Γ base

t :

∂d
∂t

⏐⏐⏐⏐
Γ

cap
t

≃ |Γ base
t |

−1
∫
Γbase

t

∂d
∂t

dΓt =

∫
Γbase

0
∥JF−T N∥

∂d
∂t dΓ0∫

Γbase
0

∥JF−T N∥dΓ0
. (24)

oreover, by the divergence theorem [107], we have:∫
cap

N dx = −

∫
endo

N dx = −

∫
endo

JF−T NdΓ0. (25)

Γt Γt Γ0
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inally, by combining Eqs. (22)–(25), we get Π press(t) = p(t) dV (t)
dt . This further confirms the validity of the

oundary condition of Eq. (19). Moreover, we notice that in case of motion given by a rigid translation (i.e. ∂d
∂t

constant in space), the two terms in Eq. (22) cancel, giving Π press(t) = 0. This property, which is not satisfied if
e.g. homogeneous Neumann boundary conditions are applied on Γ base

0 , provides a further verification of Eq. (19).
For these reasons, we call Eq. (19) energy-consistent boundary condition.

Appendix D. Error estimation of ANN-EM vs. HF-EM in 1D

To gain some insight on the effect of the feedback of mechanics on activation, we consider a one-dimensional
steady-state version of Eq. (13), which can be regarded as a simple model for the tissue deformation along the
direction of the active force (i.e. the fibers direction). By denoting by d the one-dimensional displacement and
by e =

d
dx d the one-dimensional strain, we consider an elastic energy W(e) and we define the passive stress as

Ppass(e) := W ′(e), while we denote by Pact the active stress. The mechanical equilibrium equation in the domain
(0, L) reads as follows:⎧⎪⎪⎨⎪⎪⎩

−
d

dx

(
Ppass

(
d

dx
d(x)

)
+ Pact(x)

)
= 0 for x ∈ (0, L)

d(0) = 0
P( d

dx d(L)) + Pact(L) = p,

(26)

here we set a symmetry boundary condition at one side and a load p at the other side. Coherently with model (1),
he active stress is a function of calcium concentration and sarcomere length: Pact(x) = Ta([Ca2+]i(x), SL(x)) =

Ta([Ca2+]i(x), SL0(1 + e(x))). The solution of Eq. (26) satisfies:

Ppass(e(x)) + Ta([Ca2+]i(x), SL0(1 + e(x))) = p ∀x ∈ (0, L)

onsider now a perturbed version of Eq. (26), where the function Ta is replaced by a surrogate T̃a = Ta +η, affected
y the error η (in our case, η can be regarded as the approximation error associated with the reduced ANN model).
y asymptotic analysis, the perturbed solution d̃ satisfies:

d
dx

d̃ −
d

dx
d ∼ η

(
∂Ta

∂SL
SL0 + W ′′(e)

)−1

.

ence, the active stress in the perturbed problem is linked with the HF one by:

T̃a([Ca2+]i, SL0(1 + ẽ(x))) − Ta([Ca2+]i, SL0(1 + e(x))) ∼ η

(
1 +

∂Ta
∂SL SL0

W ′′(e)

)−1

.

eing the elastic energy convex, the term W ′′(e) is positive. Thus, on the ascending limb of the force–length
elationship ( ∂Ta

∂SL > 0), the error η is attenuated; conversely, on the descending limb ( ∂Ta
∂SL < 0) it is amplified.
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